vdev_queue.c revision 297108
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/*
27 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
28 */
29
30#include <sys/zfs_context.h>
31#include <sys/vdev_impl.h>
32#include <sys/spa_impl.h>
33#include <sys/zio.h>
34#include <sys/avl.h>
35#include <sys/dsl_pool.h>
36
37/*
38 * ZFS I/O Scheduler
39 * ---------------
40 *
41 * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios.  The
42 * I/O scheduler determines when and in what order those operations are
43 * issued.  The I/O scheduler divides operations into six I/O classes
44 * prioritized in the following order: sync read, sync write, async read,
45 * async write, scrub/resilver and trim.  Each queue defines the minimum and
46 * maximum number of concurrent operations that may be issued to the device.
47 * In addition, the device has an aggregate maximum. Note that the sum of the
48 * per-queue minimums must not exceed the aggregate maximum, and if the
49 * aggregate maximum is equal to or greater than the sum of the per-queue
50 * maximums, the per-queue minimum has no effect.
51 *
52 * For many physical devices, throughput increases with the number of
53 * concurrent operations, but latency typically suffers. Further, physical
54 * devices typically have a limit at which more concurrent operations have no
55 * effect on throughput or can actually cause it to decrease.
56 *
57 * The scheduler selects the next operation to issue by first looking for an
58 * I/O class whose minimum has not been satisfied. Once all are satisfied and
59 * the aggregate maximum has not been hit, the scheduler looks for classes
60 * whose maximum has not been satisfied. Iteration through the I/O classes is
61 * done in the order specified above. No further operations are issued if the
62 * aggregate maximum number of concurrent operations has been hit or if there
63 * are no operations queued for an I/O class that has not hit its maximum.
64 * Every time an I/O is queued or an operation completes, the I/O scheduler
65 * looks for new operations to issue.
66 *
67 * All I/O classes have a fixed maximum number of outstanding operations
68 * except for the async write class. Asynchronous writes represent the data
69 * that is committed to stable storage during the syncing stage for
70 * transaction groups (see txg.c). Transaction groups enter the syncing state
71 * periodically so the number of queued async writes will quickly burst up and
72 * then bleed down to zero. Rather than servicing them as quickly as possible,
73 * the I/O scheduler changes the maximum number of active async write I/Os
74 * according to the amount of dirty data in the pool (see dsl_pool.c). Since
75 * both throughput and latency typically increase with the number of
76 * concurrent operations issued to physical devices, reducing the burstiness
77 * in the number of concurrent operations also stabilizes the response time of
78 * operations from other -- and in particular synchronous -- queues. In broad
79 * strokes, the I/O scheduler will issue more concurrent operations from the
80 * async write queue as there's more dirty data in the pool.
81 *
82 * Async Writes
83 *
84 * The number of concurrent operations issued for the async write I/O class
85 * follows a piece-wise linear function defined by a few adjustable points.
86 *
87 *        |                   o---------| <-- zfs_vdev_async_write_max_active
88 *   ^    |                  /^         |
89 *   |    |                 / |         |
90 * active |                /  |         |
91 *  I/O   |               /   |         |
92 * count  |              /    |         |
93 *        |             /     |         |
94 *        |------------o      |         | <-- zfs_vdev_async_write_min_active
95 *       0|____________^______|_________|
96 *        0%           |      |       100% of zfs_dirty_data_max
97 *                     |      |
98 *                     |      `-- zfs_vdev_async_write_active_max_dirty_percent
99 *                     `--------- zfs_vdev_async_write_active_min_dirty_percent
100 *
101 * Until the amount of dirty data exceeds a minimum percentage of the dirty
102 * data allowed in the pool, the I/O scheduler will limit the number of
103 * concurrent operations to the minimum. As that threshold is crossed, the
104 * number of concurrent operations issued increases linearly to the maximum at
105 * the specified maximum percentage of the dirty data allowed in the pool.
106 *
107 * Ideally, the amount of dirty data on a busy pool will stay in the sloped
108 * part of the function between zfs_vdev_async_write_active_min_dirty_percent
109 * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the
110 * maximum percentage, this indicates that the rate of incoming data is
111 * greater than the rate that the backend storage can handle. In this case, we
112 * must further throttle incoming writes (see dmu_tx_delay() for details).
113 */
114
115/*
116 * The maximum number of I/Os active to each device.  Ideally, this will be >=
117 * the sum of each queue's max_active.  It must be at least the sum of each
118 * queue's min_active.
119 */
120uint32_t zfs_vdev_max_active = 1000;
121
122/*
123 * Per-queue limits on the number of I/Os active to each device.  If the
124 * sum of the queue's max_active is < zfs_vdev_max_active, then the
125 * min_active comes into play.  We will send min_active from each queue,
126 * and then select from queues in the order defined by zio_priority_t.
127 *
128 * In general, smaller max_active's will lead to lower latency of synchronous
129 * operations.  Larger max_active's may lead to higher overall throughput,
130 * depending on underlying storage.
131 *
132 * The ratio of the queues' max_actives determines the balance of performance
133 * between reads, writes, and scrubs.  E.g., increasing
134 * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete
135 * more quickly, but reads and writes to have higher latency and lower
136 * throughput.
137 */
138uint32_t zfs_vdev_sync_read_min_active = 10;
139uint32_t zfs_vdev_sync_read_max_active = 10;
140uint32_t zfs_vdev_sync_write_min_active = 10;
141uint32_t zfs_vdev_sync_write_max_active = 10;
142uint32_t zfs_vdev_async_read_min_active = 1;
143uint32_t zfs_vdev_async_read_max_active = 3;
144uint32_t zfs_vdev_async_write_min_active = 1;
145uint32_t zfs_vdev_async_write_max_active = 10;
146uint32_t zfs_vdev_scrub_min_active = 1;
147uint32_t zfs_vdev_scrub_max_active = 2;
148uint32_t zfs_vdev_trim_min_active = 1;
149/*
150 * TRIM max active is large in comparison to the other values due to the fact
151 * that TRIM IOs are coalesced at the device layer. This value is set such
152 * that a typical SSD can process the queued IOs in a single request.
153 */
154uint32_t zfs_vdev_trim_max_active = 64;
155
156
157/*
158 * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent
159 * dirty data, use zfs_vdev_async_write_min_active.  When it has more than
160 * zfs_vdev_async_write_active_max_dirty_percent, use
161 * zfs_vdev_async_write_max_active. The value is linearly interpolated
162 * between min and max.
163 */
164int zfs_vdev_async_write_active_min_dirty_percent = 30;
165int zfs_vdev_async_write_active_max_dirty_percent = 60;
166
167/*
168 * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
169 * For read I/Os, we also aggregate across small adjacency gaps; for writes
170 * we include spans of optional I/Os to aid aggregation at the disk even when
171 * they aren't able to help us aggregate at this level.
172 */
173int zfs_vdev_aggregation_limit = SPA_OLD_MAXBLOCKSIZE;
174int zfs_vdev_read_gap_limit = 32 << 10;
175int zfs_vdev_write_gap_limit = 4 << 10;
176
177#ifdef __FreeBSD__
178SYSCTL_DECL(_vfs_zfs_vdev);
179
180TUNABLE_INT("vfs.zfs.vdev.async_write_active_min_dirty_percent",
181    &zfs_vdev_async_write_active_min_dirty_percent);
182static int sysctl_zfs_async_write_active_min_dirty_percent(SYSCTL_HANDLER_ARGS);
183SYSCTL_PROC(_vfs_zfs_vdev, OID_AUTO, async_write_active_min_dirty_percent,
184    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RWTUN, 0, sizeof(int),
185    sysctl_zfs_async_write_active_min_dirty_percent, "I",
186    "Percentage of async write dirty data below which "
187    "async_write_min_active is used.");
188
189TUNABLE_INT("vfs.zfs.vdev.async_write_active_max_dirty_percent",
190    &zfs_vdev_async_write_active_max_dirty_percent);
191static int sysctl_zfs_async_write_active_max_dirty_percent(SYSCTL_HANDLER_ARGS);
192SYSCTL_PROC(_vfs_zfs_vdev, OID_AUTO, async_write_active_max_dirty_percent,
193    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RWTUN, 0, sizeof(int),
194    sysctl_zfs_async_write_active_max_dirty_percent, "I",
195    "Percentage of async write dirty data above which "
196    "async_write_max_active is used.");
197
198TUNABLE_INT("vfs.zfs.vdev.max_active", &zfs_vdev_max_active);
199SYSCTL_UINT(_vfs_zfs_vdev, OID_AUTO, max_active, CTLFLAG_RWTUN,
200    &zfs_vdev_max_active, 0,
201    "The maximum number of I/Os of all types active for each device.");
202
203#define ZFS_VDEV_QUEUE_KNOB_MIN(name)					\
204TUNABLE_INT("vfs.zfs.vdev." #name "_min_active",			\
205    &zfs_vdev_ ## name ## _min_active);					\
206SYSCTL_UINT(_vfs_zfs_vdev, OID_AUTO, name ## _min_active,		\
207    CTLFLAG_RWTUN, &zfs_vdev_ ## name ## _min_active, 0,		\
208    "Initial number of I/O requests of type " #name			\
209    " active for each device");
210
211#define ZFS_VDEV_QUEUE_KNOB_MAX(name)					\
212TUNABLE_INT("vfs.zfs.vdev." #name "_max_active",			\
213    &zfs_vdev_ ## name ## _max_active);					\
214SYSCTL_UINT(_vfs_zfs_vdev, OID_AUTO, name ## _max_active,		\
215    CTLFLAG_RWTUN, &zfs_vdev_ ## name ## _max_active, 0,		\
216    "Maximum number of I/O requests of type " #name			\
217    " active for each device");
218
219ZFS_VDEV_QUEUE_KNOB_MIN(sync_read);
220ZFS_VDEV_QUEUE_KNOB_MAX(sync_read);
221ZFS_VDEV_QUEUE_KNOB_MIN(sync_write);
222ZFS_VDEV_QUEUE_KNOB_MAX(sync_write);
223ZFS_VDEV_QUEUE_KNOB_MIN(async_read);
224ZFS_VDEV_QUEUE_KNOB_MAX(async_read);
225ZFS_VDEV_QUEUE_KNOB_MIN(async_write);
226ZFS_VDEV_QUEUE_KNOB_MAX(async_write);
227ZFS_VDEV_QUEUE_KNOB_MIN(scrub);
228ZFS_VDEV_QUEUE_KNOB_MAX(scrub);
229ZFS_VDEV_QUEUE_KNOB_MIN(trim);
230ZFS_VDEV_QUEUE_KNOB_MAX(trim);
231
232#undef ZFS_VDEV_QUEUE_KNOB
233
234TUNABLE_INT("vfs.zfs.vdev.aggregation_limit", &zfs_vdev_aggregation_limit);
235SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, aggregation_limit, CTLFLAG_RWTUN,
236    &zfs_vdev_aggregation_limit, 0,
237    "I/O requests are aggregated up to this size");
238TUNABLE_INT("vfs.zfs.vdev.read_gap_limit", &zfs_vdev_read_gap_limit);
239SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, read_gap_limit, CTLFLAG_RWTUN,
240    &zfs_vdev_read_gap_limit, 0,
241    "Acceptable gap between two reads being aggregated");
242TUNABLE_INT("vfs.zfs.vdev.write_gap_limit", &zfs_vdev_write_gap_limit);
243SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, write_gap_limit, CTLFLAG_RWTUN,
244    &zfs_vdev_write_gap_limit, 0,
245    "Acceptable gap between two writes being aggregated");
246
247static int
248sysctl_zfs_async_write_active_min_dirty_percent(SYSCTL_HANDLER_ARGS)
249{
250	int val, err;
251
252	val = zfs_vdev_async_write_active_min_dirty_percent;
253	err = sysctl_handle_int(oidp, &val, 0, req);
254	if (err != 0 || req->newptr == NULL)
255		return (err);
256
257	if (val < 0 || val > 100 ||
258	    val >= zfs_vdev_async_write_active_max_dirty_percent)
259		return (EINVAL);
260
261	zfs_vdev_async_write_active_min_dirty_percent = val;
262
263	return (0);
264}
265
266static int
267sysctl_zfs_async_write_active_max_dirty_percent(SYSCTL_HANDLER_ARGS)
268{
269	int val, err;
270
271	val = zfs_vdev_async_write_active_max_dirty_percent;
272	err = sysctl_handle_int(oidp, &val, 0, req);
273	if (err != 0 || req->newptr == NULL)
274		return (err);
275
276	if (val < 0 || val > 100 ||
277	    val <= zfs_vdev_async_write_active_min_dirty_percent)
278		return (EINVAL);
279
280	zfs_vdev_async_write_active_max_dirty_percent = val;
281
282	return (0);
283}
284#endif
285
286int
287vdev_queue_offset_compare(const void *x1, const void *x2)
288{
289	const zio_t *z1 = x1;
290	const zio_t *z2 = x2;
291
292	if (z1->io_offset < z2->io_offset)
293		return (-1);
294	if (z1->io_offset > z2->io_offset)
295		return (1);
296
297	if (z1 < z2)
298		return (-1);
299	if (z1 > z2)
300		return (1);
301
302	return (0);
303}
304
305static inline avl_tree_t *
306vdev_queue_class_tree(vdev_queue_t *vq, zio_priority_t p)
307{
308	return (&vq->vq_class[p].vqc_queued_tree);
309}
310
311static inline avl_tree_t *
312vdev_queue_type_tree(vdev_queue_t *vq, zio_type_t t)
313{
314	if (t == ZIO_TYPE_READ)
315		return (&vq->vq_read_offset_tree);
316	else if (t == ZIO_TYPE_WRITE)
317		return (&vq->vq_write_offset_tree);
318	else
319		return (NULL);
320}
321
322int
323vdev_queue_timestamp_compare(const void *x1, const void *x2)
324{
325	const zio_t *z1 = x1;
326	const zio_t *z2 = x2;
327
328	if (z1->io_timestamp < z2->io_timestamp)
329		return (-1);
330	if (z1->io_timestamp > z2->io_timestamp)
331		return (1);
332
333	if (z1->io_offset < z2->io_offset)
334		return (-1);
335	if (z1->io_offset > z2->io_offset)
336		return (1);
337
338	if (z1 < z2)
339		return (-1);
340	if (z1 > z2)
341		return (1);
342
343	return (0);
344}
345
346void
347vdev_queue_init(vdev_t *vd)
348{
349	vdev_queue_t *vq = &vd->vdev_queue;
350
351	mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
352	vq->vq_vdev = vd;
353
354	avl_create(&vq->vq_active_tree, vdev_queue_offset_compare,
355	    sizeof (zio_t), offsetof(struct zio, io_queue_node));
356	avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_READ),
357	    vdev_queue_offset_compare, sizeof (zio_t),
358	    offsetof(struct zio, io_offset_node));
359	avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE),
360	    vdev_queue_offset_compare, sizeof (zio_t),
361	    offsetof(struct zio, io_offset_node));
362
363	for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
364		int (*compfn) (const void *, const void *);
365
366		/*
367		 * The synchronous i/o queues are dispatched in FIFO rather
368		 * than LBA order.  This provides more consistent latency for
369		 * these i/os.
370		 */
371		if (p == ZIO_PRIORITY_SYNC_READ || p == ZIO_PRIORITY_SYNC_WRITE)
372			compfn = vdev_queue_timestamp_compare;
373		else
374			compfn = vdev_queue_offset_compare;
375
376		avl_create(vdev_queue_class_tree(vq, p), compfn,
377		    sizeof (zio_t), offsetof(struct zio, io_queue_node));
378	}
379
380	vq->vq_lastoffset = 0;
381}
382
383void
384vdev_queue_fini(vdev_t *vd)
385{
386	vdev_queue_t *vq = &vd->vdev_queue;
387
388	for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++)
389		avl_destroy(vdev_queue_class_tree(vq, p));
390	avl_destroy(&vq->vq_active_tree);
391	avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_READ));
392	avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE));
393
394	mutex_destroy(&vq->vq_lock);
395}
396
397static void
398vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
399{
400	spa_t *spa = zio->io_spa;
401	avl_tree_t *qtt;
402	ASSERT(MUTEX_HELD(&vq->vq_lock));
403	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
404	avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio);
405	qtt = vdev_queue_type_tree(vq, zio->io_type);
406	if (qtt)
407		avl_add(qtt, zio);
408
409#ifdef illumos
410	mutex_enter(&spa->spa_iokstat_lock);
411	spa->spa_queue_stats[zio->io_priority].spa_queued++;
412	if (spa->spa_iokstat != NULL)
413		kstat_waitq_enter(spa->spa_iokstat->ks_data);
414	mutex_exit(&spa->spa_iokstat_lock);
415#endif
416}
417
418static void
419vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
420{
421	spa_t *spa = zio->io_spa;
422	avl_tree_t *qtt;
423	ASSERT(MUTEX_HELD(&vq->vq_lock));
424	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
425	avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio);
426	qtt = vdev_queue_type_tree(vq, zio->io_type);
427	if (qtt)
428		avl_remove(qtt, zio);
429
430#ifdef illumos
431	mutex_enter(&spa->spa_iokstat_lock);
432	ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_queued, >, 0);
433	spa->spa_queue_stats[zio->io_priority].spa_queued--;
434	if (spa->spa_iokstat != NULL)
435		kstat_waitq_exit(spa->spa_iokstat->ks_data);
436	mutex_exit(&spa->spa_iokstat_lock);
437#endif
438}
439
440static void
441vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio)
442{
443	spa_t *spa = zio->io_spa;
444	ASSERT(MUTEX_HELD(&vq->vq_lock));
445	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
446	vq->vq_class[zio->io_priority].vqc_active++;
447	avl_add(&vq->vq_active_tree, zio);
448
449#ifdef illumos
450	mutex_enter(&spa->spa_iokstat_lock);
451	spa->spa_queue_stats[zio->io_priority].spa_active++;
452	if (spa->spa_iokstat != NULL)
453		kstat_runq_enter(spa->spa_iokstat->ks_data);
454	mutex_exit(&spa->spa_iokstat_lock);
455#endif
456}
457
458static void
459vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio)
460{
461	spa_t *spa = zio->io_spa;
462	ASSERT(MUTEX_HELD(&vq->vq_lock));
463	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
464	vq->vq_class[zio->io_priority].vqc_active--;
465	avl_remove(&vq->vq_active_tree, zio);
466
467#ifdef illumos
468	mutex_enter(&spa->spa_iokstat_lock);
469	ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_active, >, 0);
470	spa->spa_queue_stats[zio->io_priority].spa_active--;
471	if (spa->spa_iokstat != NULL) {
472		kstat_io_t *ksio = spa->spa_iokstat->ks_data;
473
474		kstat_runq_exit(spa->spa_iokstat->ks_data);
475		if (zio->io_type == ZIO_TYPE_READ) {
476			ksio->reads++;
477			ksio->nread += zio->io_size;
478		} else if (zio->io_type == ZIO_TYPE_WRITE) {
479			ksio->writes++;
480			ksio->nwritten += zio->io_size;
481		}
482	}
483	mutex_exit(&spa->spa_iokstat_lock);
484#endif
485}
486
487static void
488vdev_queue_agg_io_done(zio_t *aio)
489{
490	if (aio->io_type == ZIO_TYPE_READ) {
491		zio_t *pio;
492		while ((pio = zio_walk_parents(aio)) != NULL) {
493			bcopy((char *)aio->io_data + (pio->io_offset -
494			    aio->io_offset), pio->io_data, pio->io_size);
495		}
496	}
497
498	zio_buf_free(aio->io_data, aio->io_size);
499}
500
501static int
502vdev_queue_class_min_active(zio_priority_t p)
503{
504	switch (p) {
505	case ZIO_PRIORITY_SYNC_READ:
506		return (zfs_vdev_sync_read_min_active);
507	case ZIO_PRIORITY_SYNC_WRITE:
508		return (zfs_vdev_sync_write_min_active);
509	case ZIO_PRIORITY_ASYNC_READ:
510		return (zfs_vdev_async_read_min_active);
511	case ZIO_PRIORITY_ASYNC_WRITE:
512		return (zfs_vdev_async_write_min_active);
513	case ZIO_PRIORITY_SCRUB:
514		return (zfs_vdev_scrub_min_active);
515	case ZIO_PRIORITY_TRIM:
516		return (zfs_vdev_trim_min_active);
517	default:
518		panic("invalid priority %u", p);
519		return (0);
520	}
521}
522
523static __noinline int
524vdev_queue_max_async_writes(spa_t *spa)
525{
526	int writes;
527	uint64_t dirty = spa->spa_dsl_pool->dp_dirty_total;
528	uint64_t min_bytes = zfs_dirty_data_max *
529	    zfs_vdev_async_write_active_min_dirty_percent / 100;
530	uint64_t max_bytes = zfs_dirty_data_max *
531	    zfs_vdev_async_write_active_max_dirty_percent / 100;
532
533	/*
534	 * Sync tasks correspond to interactive user actions. To reduce the
535	 * execution time of those actions we push data out as fast as possible.
536	 */
537	if (spa_has_pending_synctask(spa)) {
538		return (zfs_vdev_async_write_max_active);
539	}
540
541	if (dirty < min_bytes)
542		return (zfs_vdev_async_write_min_active);
543	if (dirty > max_bytes)
544		return (zfs_vdev_async_write_max_active);
545
546	/*
547	 * linear interpolation:
548	 * slope = (max_writes - min_writes) / (max_bytes - min_bytes)
549	 * move right by min_bytes
550	 * move up by min_writes
551	 */
552	writes = (dirty - min_bytes) *
553	    (zfs_vdev_async_write_max_active -
554	    zfs_vdev_async_write_min_active) /
555	    (max_bytes - min_bytes) +
556	    zfs_vdev_async_write_min_active;
557	ASSERT3U(writes, >=, zfs_vdev_async_write_min_active);
558	ASSERT3U(writes, <=, zfs_vdev_async_write_max_active);
559	return (writes);
560}
561
562static int
563vdev_queue_class_max_active(spa_t *spa, zio_priority_t p)
564{
565	switch (p) {
566	case ZIO_PRIORITY_SYNC_READ:
567		return (zfs_vdev_sync_read_max_active);
568	case ZIO_PRIORITY_SYNC_WRITE:
569		return (zfs_vdev_sync_write_max_active);
570	case ZIO_PRIORITY_ASYNC_READ:
571		return (zfs_vdev_async_read_max_active);
572	case ZIO_PRIORITY_ASYNC_WRITE:
573		return (vdev_queue_max_async_writes(spa));
574	case ZIO_PRIORITY_SCRUB:
575		return (zfs_vdev_scrub_max_active);
576	case ZIO_PRIORITY_TRIM:
577		return (zfs_vdev_trim_max_active);
578	default:
579		panic("invalid priority %u", p);
580		return (0);
581	}
582}
583
584/*
585 * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if
586 * there is no eligible class.
587 */
588static zio_priority_t
589vdev_queue_class_to_issue(vdev_queue_t *vq)
590{
591	spa_t *spa = vq->vq_vdev->vdev_spa;
592	zio_priority_t p;
593
594	ASSERT(MUTEX_HELD(&vq->vq_lock));
595
596	if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active)
597		return (ZIO_PRIORITY_NUM_QUEUEABLE);
598
599	/* find a queue that has not reached its minimum # outstanding i/os */
600	for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
601		if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
602		    vq->vq_class[p].vqc_active <
603		    vdev_queue_class_min_active(p))
604			return (p);
605	}
606
607	/*
608	 * If we haven't found a queue, look for one that hasn't reached its
609	 * maximum # outstanding i/os.
610	 */
611	for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
612		if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
613		    vq->vq_class[p].vqc_active <
614		    vdev_queue_class_max_active(spa, p))
615			return (p);
616	}
617
618	/* No eligible queued i/os */
619	return (ZIO_PRIORITY_NUM_QUEUEABLE);
620}
621
622/*
623 * Compute the range spanned by two i/os, which is the endpoint of the last
624 * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
625 * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
626 * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
627 */
628#define	IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
629#define	IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
630
631static zio_t *
632vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
633{
634	zio_t *first, *last, *aio, *dio, *mandatory, *nio;
635	uint64_t maxgap = 0;
636	uint64_t size;
637	boolean_t stretch;
638	avl_tree_t *t;
639	enum zio_flag flags;
640
641	ASSERT(MUTEX_HELD(&vq->vq_lock));
642
643	if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE)
644		return (NULL);
645
646	first = last = zio;
647
648	if (zio->io_type == ZIO_TYPE_READ)
649		maxgap = zfs_vdev_read_gap_limit;
650
651	/*
652	 * We can aggregate I/Os that are sufficiently adjacent and of
653	 * the same flavor, as expressed by the AGG_INHERIT flags.
654	 * The latter requirement is necessary so that certain
655	 * attributes of the I/O, such as whether it's a normal I/O
656	 * or a scrub/resilver, can be preserved in the aggregate.
657	 * We can include optional I/Os, but don't allow them
658	 * to begin a range as they add no benefit in that situation.
659	 */
660
661	/*
662	 * We keep track of the last non-optional I/O.
663	 */
664	mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first;
665
666	/*
667	 * Walk backwards through sufficiently contiguous I/Os
668	 * recording the last non-option I/O.
669	 */
670	flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT;
671	t = vdev_queue_type_tree(vq, zio->io_type);
672	while (t != NULL && (dio = AVL_PREV(t, first)) != NULL &&
673	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
674	    IO_SPAN(dio, last) <= zfs_vdev_aggregation_limit &&
675	    IO_GAP(dio, first) <= maxgap) {
676		first = dio;
677		if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL))
678			mandatory = first;
679	}
680
681	/*
682	 * Skip any initial optional I/Os.
683	 */
684	while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) {
685		first = AVL_NEXT(t, first);
686		ASSERT(first != NULL);
687	}
688
689	/*
690	 * Walk forward through sufficiently contiguous I/Os.
691	 */
692	while ((dio = AVL_NEXT(t, last)) != NULL &&
693	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
694	    IO_SPAN(first, dio) <= zfs_vdev_aggregation_limit &&
695	    IO_GAP(last, dio) <= maxgap) {
696		last = dio;
697		if (!(last->io_flags & ZIO_FLAG_OPTIONAL))
698			mandatory = last;
699	}
700
701	/*
702	 * Now that we've established the range of the I/O aggregation
703	 * we must decide what to do with trailing optional I/Os.
704	 * For reads, there's nothing to do. While we are unable to
705	 * aggregate further, it's possible that a trailing optional
706	 * I/O would allow the underlying device to aggregate with
707	 * subsequent I/Os. We must therefore determine if the next
708	 * non-optional I/O is close enough to make aggregation
709	 * worthwhile.
710	 */
711	stretch = B_FALSE;
712	if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) {
713		zio_t *nio = last;
714		while ((dio = AVL_NEXT(t, nio)) != NULL &&
715		    IO_GAP(nio, dio) == 0 &&
716		    IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) {
717			nio = dio;
718			if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
719				stretch = B_TRUE;
720				break;
721			}
722		}
723	}
724
725	if (stretch) {
726		/* This may be a no-op. */
727		dio = AVL_NEXT(t, last);
728		dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
729	} else {
730		while (last != mandatory && last != first) {
731			ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL);
732			last = AVL_PREV(t, last);
733			ASSERT(last != NULL);
734		}
735	}
736
737	if (first == last)
738		return (NULL);
739
740	size = IO_SPAN(first, last);
741	ASSERT3U(size, <=, zfs_vdev_aggregation_limit);
742
743	aio = zio_vdev_delegated_io(first->io_vd, first->io_offset,
744	    zio_buf_alloc(size), size, first->io_type, zio->io_priority,
745	    flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
746	    vdev_queue_agg_io_done, NULL);
747	aio->io_timestamp = first->io_timestamp;
748
749	nio = first;
750	do {
751		dio = nio;
752		nio = AVL_NEXT(t, dio);
753		ASSERT3U(dio->io_type, ==, aio->io_type);
754
755		if (dio->io_flags & ZIO_FLAG_NODATA) {
756			ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE);
757			bzero((char *)aio->io_data + (dio->io_offset -
758			    aio->io_offset), dio->io_size);
759		} else if (dio->io_type == ZIO_TYPE_WRITE) {
760			bcopy(dio->io_data, (char *)aio->io_data +
761			    (dio->io_offset - aio->io_offset),
762			    dio->io_size);
763		}
764
765		zio_add_child(dio, aio);
766		vdev_queue_io_remove(vq, dio);
767		zio_vdev_io_bypass(dio);
768		zio_execute(dio);
769	} while (dio != last);
770
771	return (aio);
772}
773
774static zio_t *
775vdev_queue_io_to_issue(vdev_queue_t *vq)
776{
777	zio_t *zio, *aio;
778	zio_priority_t p;
779	avl_index_t idx;
780	avl_tree_t *tree;
781	zio_t search;
782
783again:
784	ASSERT(MUTEX_HELD(&vq->vq_lock));
785
786	p = vdev_queue_class_to_issue(vq);
787
788	if (p == ZIO_PRIORITY_NUM_QUEUEABLE) {
789		/* No eligible queued i/os */
790		return (NULL);
791	}
792
793	/*
794	 * For LBA-ordered queues (async / scrub), issue the i/o which follows
795	 * the most recently issued i/o in LBA (offset) order.
796	 *
797	 * For FIFO queues (sync), issue the i/o with the lowest timestamp.
798	 */
799	tree = vdev_queue_class_tree(vq, p);
800	search.io_timestamp = 0;
801	search.io_offset = vq->vq_last_offset + 1;
802	VERIFY3P(avl_find(tree, &search, &idx), ==, NULL);
803	zio = avl_nearest(tree, idx, AVL_AFTER);
804	if (zio == NULL)
805		zio = avl_first(tree);
806	ASSERT3U(zio->io_priority, ==, p);
807
808	aio = vdev_queue_aggregate(vq, zio);
809	if (aio != NULL)
810		zio = aio;
811	else
812		vdev_queue_io_remove(vq, zio);
813
814	/*
815	 * If the I/O is or was optional and therefore has no data, we need to
816	 * simply discard it. We need to drop the vdev queue's lock to avoid a
817	 * deadlock that we could encounter since this I/O will complete
818	 * immediately.
819	 */
820	if (zio->io_flags & ZIO_FLAG_NODATA) {
821		mutex_exit(&vq->vq_lock);
822		zio_vdev_io_bypass(zio);
823		zio_execute(zio);
824		mutex_enter(&vq->vq_lock);
825		goto again;
826	}
827
828	vdev_queue_pending_add(vq, zio);
829	vq->vq_last_offset = zio->io_offset;
830
831	return (zio);
832}
833
834zio_t *
835vdev_queue_io(zio_t *zio)
836{
837	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
838	zio_t *nio;
839
840	if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
841		return (zio);
842
843	/*
844	 * Children i/os inherent their parent's priority, which might
845	 * not match the child's i/o type.  Fix it up here.
846	 */
847	if (zio->io_type == ZIO_TYPE_READ) {
848		if (zio->io_priority != ZIO_PRIORITY_SYNC_READ &&
849		    zio->io_priority != ZIO_PRIORITY_ASYNC_READ &&
850		    zio->io_priority != ZIO_PRIORITY_SCRUB)
851			zio->io_priority = ZIO_PRIORITY_ASYNC_READ;
852	} else if (zio->io_type == ZIO_TYPE_WRITE) {
853		if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE &&
854		    zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE)
855			zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE;
856	} else {
857		ASSERT(zio->io_type == ZIO_TYPE_FREE);
858		zio->io_priority = ZIO_PRIORITY_TRIM;
859	}
860
861	zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE;
862
863	mutex_enter(&vq->vq_lock);
864	zio->io_timestamp = gethrtime();
865	vdev_queue_io_add(vq, zio);
866	nio = vdev_queue_io_to_issue(vq);
867	mutex_exit(&vq->vq_lock);
868
869	if (nio == NULL)
870		return (NULL);
871
872	if (nio->io_done == vdev_queue_agg_io_done) {
873		zio_nowait(nio);
874		return (NULL);
875	}
876
877	return (nio);
878}
879
880void
881vdev_queue_io_done(zio_t *zio)
882{
883	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
884	zio_t *nio;
885
886	mutex_enter(&vq->vq_lock);
887
888	vdev_queue_pending_remove(vq, zio);
889
890	vq->vq_io_complete_ts = gethrtime();
891
892	while ((nio = vdev_queue_io_to_issue(vq)) != NULL) {
893		mutex_exit(&vq->vq_lock);
894		if (nio->io_done == vdev_queue_agg_io_done) {
895			zio_nowait(nio);
896		} else {
897			zio_vdev_io_reissue(nio);
898			zio_execute(nio);
899		}
900		mutex_enter(&vq->vq_lock);
901	}
902
903	mutex_exit(&vq->vq_lock);
904}
905
906/*
907 * As these three methods are only used for load calculations we're not concerned
908 * if we get an incorrect value on 32bit platforms due to lack of vq_lock mutex
909 * use here, instead we prefer to keep it lock free for performance.
910 */
911int
912vdev_queue_length(vdev_t *vd)
913{
914	return (avl_numnodes(&vd->vdev_queue.vq_active_tree));
915}
916
917uint64_t
918vdev_queue_lastoffset(vdev_t *vd)
919{
920	return (vd->vdev_queue.vq_lastoffset);
921}
922
923void
924vdev_queue_register_lastoffset(vdev_t *vd, zio_t *zio)
925{
926	vd->vdev_queue.vq_lastoffset = zio->io_offset + zio->io_size;
927}
928