vdev_queue.c revision 288552
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/*
27 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
28 */
29
30#include <sys/zfs_context.h>
31#include <sys/vdev_impl.h>
32#include <sys/spa_impl.h>
33#include <sys/zio.h>
34#include <sys/avl.h>
35#include <sys/dsl_pool.h>
36
37/*
38 * ZFS I/O Scheduler
39 * ---------------
40 *
41 * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios.  The
42 * I/O scheduler determines when and in what order those operations are
43 * issued.  The I/O scheduler divides operations into six I/O classes
44 * prioritized in the following order: sync read, sync write, async read,
45 * async write, scrub/resilver and trim.  Each queue defines the minimum and
46 * maximum number of concurrent operations that may be issued to the device.
47 * In addition, the device has an aggregate maximum. Note that the sum of the
48 * per-queue minimums must not exceed the aggregate maximum, and if the
49 * aggregate maximum is equal to or greater than the sum of the per-queue
50 * maximums, the per-queue minimum has no effect.
51 *
52 * For many physical devices, throughput increases with the number of
53 * concurrent operations, but latency typically suffers. Further, physical
54 * devices typically have a limit at which more concurrent operations have no
55 * effect on throughput or can actually cause it to decrease.
56 *
57 * The scheduler selects the next operation to issue by first looking for an
58 * I/O class whose minimum has not been satisfied. Once all are satisfied and
59 * the aggregate maximum has not been hit, the scheduler looks for classes
60 * whose maximum has not been satisfied. Iteration through the I/O classes is
61 * done in the order specified above. No further operations are issued if the
62 * aggregate maximum number of concurrent operations has been hit or if there
63 * are no operations queued for an I/O class that has not hit its maximum.
64 * Every time an I/O is queued or an operation completes, the I/O scheduler
65 * looks for new operations to issue.
66 *
67 * All I/O classes have a fixed maximum number of outstanding operations
68 * except for the async write class. Asynchronous writes represent the data
69 * that is committed to stable storage during the syncing stage for
70 * transaction groups (see txg.c). Transaction groups enter the syncing state
71 * periodically so the number of queued async writes will quickly burst up and
72 * then bleed down to zero. Rather than servicing them as quickly as possible,
73 * the I/O scheduler changes the maximum number of active async write I/Os
74 * according to the amount of dirty data in the pool (see dsl_pool.c). Since
75 * both throughput and latency typically increase with the number of
76 * concurrent operations issued to physical devices, reducing the burstiness
77 * in the number of concurrent operations also stabilizes the response time of
78 * operations from other -- and in particular synchronous -- queues. In broad
79 * strokes, the I/O scheduler will issue more concurrent operations from the
80 * async write queue as there's more dirty data in the pool.
81 *
82 * Async Writes
83 *
84 * The number of concurrent operations issued for the async write I/O class
85 * follows a piece-wise linear function defined by a few adjustable points.
86 *
87 *        |                   o---------| <-- zfs_vdev_async_write_max_active
88 *   ^    |                  /^         |
89 *   |    |                 / |         |
90 * active |                /  |         |
91 *  I/O   |               /   |         |
92 * count  |              /    |         |
93 *        |             /     |         |
94 *        |------------o      |         | <-- zfs_vdev_async_write_min_active
95 *       0|____________^______|_________|
96 *        0%           |      |       100% of zfs_dirty_data_max
97 *                     |      |
98 *                     |      `-- zfs_vdev_async_write_active_max_dirty_percent
99 *                     `--------- zfs_vdev_async_write_active_min_dirty_percent
100 *
101 * Until the amount of dirty data exceeds a minimum percentage of the dirty
102 * data allowed in the pool, the I/O scheduler will limit the number of
103 * concurrent operations to the minimum. As that threshold is crossed, the
104 * number of concurrent operations issued increases linearly to the maximum at
105 * the specified maximum percentage of the dirty data allowed in the pool.
106 *
107 * Ideally, the amount of dirty data on a busy pool will stay in the sloped
108 * part of the function between zfs_vdev_async_write_active_min_dirty_percent
109 * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the
110 * maximum percentage, this indicates that the rate of incoming data is
111 * greater than the rate that the backend storage can handle. In this case, we
112 * must further throttle incoming writes (see dmu_tx_delay() for details).
113 */
114
115/*
116 * The maximum number of I/Os active to each device.  Ideally, this will be >=
117 * the sum of each queue's max_active.  It must be at least the sum of each
118 * queue's min_active.
119 */
120uint32_t zfs_vdev_max_active = 1000;
121
122/*
123 * Per-queue limits on the number of I/Os active to each device.  If the
124 * sum of the queue's max_active is < zfs_vdev_max_active, then the
125 * min_active comes into play.  We will send min_active from each queue,
126 * and then select from queues in the order defined by zio_priority_t.
127 *
128 * In general, smaller max_active's will lead to lower latency of synchronous
129 * operations.  Larger max_active's may lead to higher overall throughput,
130 * depending on underlying storage.
131 *
132 * The ratio of the queues' max_actives determines the balance of performance
133 * between reads, writes, and scrubs.  E.g., increasing
134 * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete
135 * more quickly, but reads and writes to have higher latency and lower
136 * throughput.
137 */
138uint32_t zfs_vdev_sync_read_min_active = 10;
139uint32_t zfs_vdev_sync_read_max_active = 10;
140uint32_t zfs_vdev_sync_write_min_active = 10;
141uint32_t zfs_vdev_sync_write_max_active = 10;
142uint32_t zfs_vdev_async_read_min_active = 1;
143uint32_t zfs_vdev_async_read_max_active = 3;
144uint32_t zfs_vdev_async_write_min_active = 1;
145uint32_t zfs_vdev_async_write_max_active = 10;
146uint32_t zfs_vdev_scrub_min_active = 1;
147uint32_t zfs_vdev_scrub_max_active = 2;
148uint32_t zfs_vdev_trim_min_active = 1;
149/*
150 * TRIM max active is large in comparison to the other values due to the fact
151 * that TRIM IOs are coalesced at the device layer. This value is set such
152 * that a typical SSD can process the queued IOs in a single request.
153 */
154uint32_t zfs_vdev_trim_max_active = 64;
155
156
157/*
158 * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent
159 * dirty data, use zfs_vdev_async_write_min_active.  When it has more than
160 * zfs_vdev_async_write_active_max_dirty_percent, use
161 * zfs_vdev_async_write_max_active. The value is linearly interpolated
162 * between min and max.
163 */
164int zfs_vdev_async_write_active_min_dirty_percent = 30;
165int zfs_vdev_async_write_active_max_dirty_percent = 60;
166
167/*
168 * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
169 * For read I/Os, we also aggregate across small adjacency gaps; for writes
170 * we include spans of optional I/Os to aid aggregation at the disk even when
171 * they aren't able to help us aggregate at this level.
172 */
173int zfs_vdev_aggregation_limit = SPA_OLD_MAXBLOCKSIZE;
174int zfs_vdev_read_gap_limit = 32 << 10;
175int zfs_vdev_write_gap_limit = 4 << 10;
176
177#ifdef __FreeBSD__
178SYSCTL_DECL(_vfs_zfs_vdev);
179
180TUNABLE_INT("vfs.zfs.vdev.async_write_active_min_dirty_percent",
181    &zfs_vdev_async_write_active_min_dirty_percent);
182static int sysctl_zfs_async_write_active_min_dirty_percent(SYSCTL_HANDLER_ARGS);
183SYSCTL_PROC(_vfs_zfs_vdev, OID_AUTO, async_write_active_min_dirty_percent,
184    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RWTUN, 0, sizeof(int),
185    sysctl_zfs_async_write_active_min_dirty_percent, "I",
186    "Percentage of async write dirty data below which "
187    "async_write_min_active is used.");
188
189TUNABLE_INT("vfs.zfs.vdev.async_write_active_max_dirty_percent",
190    &zfs_vdev_async_write_active_max_dirty_percent);
191static int sysctl_zfs_async_write_active_max_dirty_percent(SYSCTL_HANDLER_ARGS);
192SYSCTL_PROC(_vfs_zfs_vdev, OID_AUTO, async_write_active_max_dirty_percent,
193    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RWTUN, 0, sizeof(int),
194    sysctl_zfs_async_write_active_max_dirty_percent, "I",
195    "Percentage of async write dirty data above which "
196    "async_write_max_active is used.");
197
198TUNABLE_INT("vfs.zfs.vdev.max_active", &zfs_vdev_max_active);
199SYSCTL_UINT(_vfs_zfs_vdev, OID_AUTO, max_active, CTLFLAG_RWTUN,
200    &zfs_vdev_max_active, 0,
201    "The maximum number of I/Os of all types active for each device.");
202
203#define ZFS_VDEV_QUEUE_KNOB_MIN(name)					\
204TUNABLE_INT("vfs.zfs.vdev." #name "_min_active",			\
205    &zfs_vdev_ ## name ## _min_active);					\
206SYSCTL_UINT(_vfs_zfs_vdev, OID_AUTO, name ## _min_active,		\
207    CTLFLAG_RWTUN, &zfs_vdev_ ## name ## _min_active, 0,		\
208    "Initial number of I/O requests of type " #name			\
209    " active for each device");
210
211#define ZFS_VDEV_QUEUE_KNOB_MAX(name)					\
212TUNABLE_INT("vfs.zfs.vdev." #name "_max_active",			\
213    &zfs_vdev_ ## name ## _max_active);					\
214SYSCTL_UINT(_vfs_zfs_vdev, OID_AUTO, name ## _max_active,		\
215    CTLFLAG_RWTUN, &zfs_vdev_ ## name ## _max_active, 0,		\
216    "Maximum number of I/O requests of type " #name			\
217    " active for each device");
218
219ZFS_VDEV_QUEUE_KNOB_MIN(sync_read);
220ZFS_VDEV_QUEUE_KNOB_MAX(sync_read);
221ZFS_VDEV_QUEUE_KNOB_MIN(sync_write);
222ZFS_VDEV_QUEUE_KNOB_MAX(sync_write);
223ZFS_VDEV_QUEUE_KNOB_MIN(async_read);
224ZFS_VDEV_QUEUE_KNOB_MAX(async_read);
225ZFS_VDEV_QUEUE_KNOB_MIN(async_write);
226ZFS_VDEV_QUEUE_KNOB_MAX(async_write);
227ZFS_VDEV_QUEUE_KNOB_MIN(scrub);
228ZFS_VDEV_QUEUE_KNOB_MAX(scrub);
229ZFS_VDEV_QUEUE_KNOB_MIN(trim);
230ZFS_VDEV_QUEUE_KNOB_MAX(trim);
231
232#undef ZFS_VDEV_QUEUE_KNOB
233
234TUNABLE_INT("vfs.zfs.vdev.aggregation_limit", &zfs_vdev_aggregation_limit);
235SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, aggregation_limit, CTLFLAG_RWTUN,
236    &zfs_vdev_aggregation_limit, 0,
237    "I/O requests are aggregated up to this size");
238TUNABLE_INT("vfs.zfs.vdev.read_gap_limit", &zfs_vdev_read_gap_limit);
239SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, read_gap_limit, CTLFLAG_RWTUN,
240    &zfs_vdev_read_gap_limit, 0,
241    "Acceptable gap between two reads being aggregated");
242TUNABLE_INT("vfs.zfs.vdev.write_gap_limit", &zfs_vdev_write_gap_limit);
243SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, write_gap_limit, CTLFLAG_RWTUN,
244    &zfs_vdev_write_gap_limit, 0,
245    "Acceptable gap between two writes being aggregated");
246
247static int
248sysctl_zfs_async_write_active_min_dirty_percent(SYSCTL_HANDLER_ARGS)
249{
250	int val, err;
251
252	val = zfs_vdev_async_write_active_min_dirty_percent;
253	err = sysctl_handle_int(oidp, &val, 0, req);
254	if (err != 0 || req->newptr == NULL)
255		return (err);
256
257	if (val < 0 || val > 100 ||
258	    val >= zfs_vdev_async_write_active_max_dirty_percent)
259		return (EINVAL);
260
261	zfs_vdev_async_write_active_min_dirty_percent = val;
262
263	return (0);
264}
265
266static int
267sysctl_zfs_async_write_active_max_dirty_percent(SYSCTL_HANDLER_ARGS)
268{
269	int val, err;
270
271	val = zfs_vdev_async_write_active_max_dirty_percent;
272	err = sysctl_handle_int(oidp, &val, 0, req);
273	if (err != 0 || req->newptr == NULL)
274		return (err);
275
276	if (val < 0 || val > 100 ||
277	    val <= zfs_vdev_async_write_active_min_dirty_percent)
278		return (EINVAL);
279
280	zfs_vdev_async_write_active_max_dirty_percent = val;
281
282	return (0);
283}
284#endif
285
286int
287vdev_queue_offset_compare(const void *x1, const void *x2)
288{
289	const zio_t *z1 = x1;
290	const zio_t *z2 = x2;
291
292	if (z1->io_offset < z2->io_offset)
293		return (-1);
294	if (z1->io_offset > z2->io_offset)
295		return (1);
296
297	if (z1 < z2)
298		return (-1);
299	if (z1 > z2)
300		return (1);
301
302	return (0);
303}
304
305static inline avl_tree_t *
306vdev_queue_class_tree(vdev_queue_t *vq, zio_priority_t p)
307{
308	return (&vq->vq_class[p].vqc_queued_tree);
309}
310
311static inline avl_tree_t *
312vdev_queue_type_tree(vdev_queue_t *vq, zio_type_t t)
313{
314	ASSERT(t == ZIO_TYPE_READ || t == ZIO_TYPE_WRITE);
315	if (t == ZIO_TYPE_READ)
316		return (&vq->vq_read_offset_tree);
317	else
318		return (&vq->vq_write_offset_tree);
319}
320
321int
322vdev_queue_timestamp_compare(const void *x1, const void *x2)
323{
324	const zio_t *z1 = x1;
325	const zio_t *z2 = x2;
326
327	if (z1->io_timestamp < z2->io_timestamp)
328		return (-1);
329	if (z1->io_timestamp > z2->io_timestamp)
330		return (1);
331
332	if (z1->io_offset < z2->io_offset)
333		return (-1);
334	if (z1->io_offset > z2->io_offset)
335		return (1);
336
337	if (z1 < z2)
338		return (-1);
339	if (z1 > z2)
340		return (1);
341
342	return (0);
343}
344
345void
346vdev_queue_init(vdev_t *vd)
347{
348	vdev_queue_t *vq = &vd->vdev_queue;
349
350	mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
351	vq->vq_vdev = vd;
352
353	avl_create(&vq->vq_active_tree, vdev_queue_offset_compare,
354	    sizeof (zio_t), offsetof(struct zio, io_queue_node));
355	avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_READ),
356	    vdev_queue_offset_compare, sizeof (zio_t),
357	    offsetof(struct zio, io_offset_node));
358	avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE),
359	    vdev_queue_offset_compare, sizeof (zio_t),
360	    offsetof(struct zio, io_offset_node));
361
362	for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
363		int (*compfn) (const void *, const void *);
364
365		/*
366		 * The synchronous i/o queues are dispatched in FIFO rather
367		 * than LBA order.  This provides more consistent latency for
368		 * these i/os.
369		 */
370		if (p == ZIO_PRIORITY_SYNC_READ || p == ZIO_PRIORITY_SYNC_WRITE)
371			compfn = vdev_queue_timestamp_compare;
372		else
373			compfn = vdev_queue_offset_compare;
374
375		avl_create(vdev_queue_class_tree(vq, p), compfn,
376		    sizeof (zio_t), offsetof(struct zio, io_queue_node));
377	}
378
379	vq->vq_lastoffset = 0;
380}
381
382void
383vdev_queue_fini(vdev_t *vd)
384{
385	vdev_queue_t *vq = &vd->vdev_queue;
386
387	for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++)
388		avl_destroy(vdev_queue_class_tree(vq, p));
389	avl_destroy(&vq->vq_active_tree);
390	avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_READ));
391	avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE));
392
393	mutex_destroy(&vq->vq_lock);
394}
395
396static void
397vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
398{
399	spa_t *spa = zio->io_spa;
400	ASSERT(MUTEX_HELD(&vq->vq_lock));
401	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
402	avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio);
403	avl_add(vdev_queue_type_tree(vq, zio->io_type), zio);
404
405#ifdef illumos
406	mutex_enter(&spa->spa_iokstat_lock);
407	spa->spa_queue_stats[zio->io_priority].spa_queued++;
408	if (spa->spa_iokstat != NULL)
409		kstat_waitq_enter(spa->spa_iokstat->ks_data);
410	mutex_exit(&spa->spa_iokstat_lock);
411#endif
412}
413
414static void
415vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
416{
417	spa_t *spa = zio->io_spa;
418	ASSERT(MUTEX_HELD(&vq->vq_lock));
419	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
420	avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio);
421	avl_remove(vdev_queue_type_tree(vq, zio->io_type), zio);
422
423#ifdef illumos
424	mutex_enter(&spa->spa_iokstat_lock);
425	ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_queued, >, 0);
426	spa->spa_queue_stats[zio->io_priority].spa_queued--;
427	if (spa->spa_iokstat != NULL)
428		kstat_waitq_exit(spa->spa_iokstat->ks_data);
429	mutex_exit(&spa->spa_iokstat_lock);
430#endif
431}
432
433static void
434vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio)
435{
436	spa_t *spa = zio->io_spa;
437	ASSERT(MUTEX_HELD(&vq->vq_lock));
438	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
439	vq->vq_class[zio->io_priority].vqc_active++;
440	avl_add(&vq->vq_active_tree, zio);
441
442#ifdef illumos
443	mutex_enter(&spa->spa_iokstat_lock);
444	spa->spa_queue_stats[zio->io_priority].spa_active++;
445	if (spa->spa_iokstat != NULL)
446		kstat_runq_enter(spa->spa_iokstat->ks_data);
447	mutex_exit(&spa->spa_iokstat_lock);
448#endif
449}
450
451static void
452vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio)
453{
454	spa_t *spa = zio->io_spa;
455	ASSERT(MUTEX_HELD(&vq->vq_lock));
456	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
457	vq->vq_class[zio->io_priority].vqc_active--;
458	avl_remove(&vq->vq_active_tree, zio);
459
460#ifdef illumos
461	mutex_enter(&spa->spa_iokstat_lock);
462	ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_active, >, 0);
463	spa->spa_queue_stats[zio->io_priority].spa_active--;
464	if (spa->spa_iokstat != NULL) {
465		kstat_io_t *ksio = spa->spa_iokstat->ks_data;
466
467		kstat_runq_exit(spa->spa_iokstat->ks_data);
468		if (zio->io_type == ZIO_TYPE_READ) {
469			ksio->reads++;
470			ksio->nread += zio->io_size;
471		} else if (zio->io_type == ZIO_TYPE_WRITE) {
472			ksio->writes++;
473			ksio->nwritten += zio->io_size;
474		}
475	}
476	mutex_exit(&spa->spa_iokstat_lock);
477#endif
478}
479
480static void
481vdev_queue_agg_io_done(zio_t *aio)
482{
483	if (aio->io_type == ZIO_TYPE_READ) {
484		zio_t *pio;
485		while ((pio = zio_walk_parents(aio)) != NULL) {
486			bcopy((char *)aio->io_data + (pio->io_offset -
487			    aio->io_offset), pio->io_data, pio->io_size);
488		}
489	}
490
491	zio_buf_free(aio->io_data, aio->io_size);
492}
493
494static int
495vdev_queue_class_min_active(zio_priority_t p)
496{
497	switch (p) {
498	case ZIO_PRIORITY_SYNC_READ:
499		return (zfs_vdev_sync_read_min_active);
500	case ZIO_PRIORITY_SYNC_WRITE:
501		return (zfs_vdev_sync_write_min_active);
502	case ZIO_PRIORITY_ASYNC_READ:
503		return (zfs_vdev_async_read_min_active);
504	case ZIO_PRIORITY_ASYNC_WRITE:
505		return (zfs_vdev_async_write_min_active);
506	case ZIO_PRIORITY_SCRUB:
507		return (zfs_vdev_scrub_min_active);
508	case ZIO_PRIORITY_TRIM:
509		return (zfs_vdev_trim_min_active);
510	default:
511		panic("invalid priority %u", p);
512		return (0);
513	}
514}
515
516static int
517vdev_queue_max_async_writes(spa_t *spa)
518{
519	int writes;
520	uint64_t dirty = spa->spa_dsl_pool->dp_dirty_total;
521	uint64_t min_bytes = zfs_dirty_data_max *
522	    zfs_vdev_async_write_active_min_dirty_percent / 100;
523	uint64_t max_bytes = zfs_dirty_data_max *
524	    zfs_vdev_async_write_active_max_dirty_percent / 100;
525
526	/*
527	 * Sync tasks correspond to interactive user actions. To reduce the
528	 * execution time of those actions we push data out as fast as possible.
529	 */
530	if (spa_has_pending_synctask(spa)) {
531		return (zfs_vdev_async_write_max_active);
532	}
533
534	if (dirty < min_bytes)
535		return (zfs_vdev_async_write_min_active);
536	if (dirty > max_bytes)
537		return (zfs_vdev_async_write_max_active);
538
539	/*
540	 * linear interpolation:
541	 * slope = (max_writes - min_writes) / (max_bytes - min_bytes)
542	 * move right by min_bytes
543	 * move up by min_writes
544	 */
545	writes = (dirty - min_bytes) *
546	    (zfs_vdev_async_write_max_active -
547	    zfs_vdev_async_write_min_active) /
548	    (max_bytes - min_bytes) +
549	    zfs_vdev_async_write_min_active;
550	ASSERT3U(writes, >=, zfs_vdev_async_write_min_active);
551	ASSERT3U(writes, <=, zfs_vdev_async_write_max_active);
552	return (writes);
553}
554
555static int
556vdev_queue_class_max_active(spa_t *spa, zio_priority_t p)
557{
558	switch (p) {
559	case ZIO_PRIORITY_SYNC_READ:
560		return (zfs_vdev_sync_read_max_active);
561	case ZIO_PRIORITY_SYNC_WRITE:
562		return (zfs_vdev_sync_write_max_active);
563	case ZIO_PRIORITY_ASYNC_READ:
564		return (zfs_vdev_async_read_max_active);
565	case ZIO_PRIORITY_ASYNC_WRITE:
566		return (vdev_queue_max_async_writes(spa));
567	case ZIO_PRIORITY_SCRUB:
568		return (zfs_vdev_scrub_max_active);
569	case ZIO_PRIORITY_TRIM:
570		return (zfs_vdev_trim_max_active);
571	default:
572		panic("invalid priority %u", p);
573		return (0);
574	}
575}
576
577/*
578 * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if
579 * there is no eligible class.
580 */
581static zio_priority_t
582vdev_queue_class_to_issue(vdev_queue_t *vq)
583{
584	spa_t *spa = vq->vq_vdev->vdev_spa;
585	zio_priority_t p;
586
587	ASSERT(MUTEX_HELD(&vq->vq_lock));
588
589	if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active)
590		return (ZIO_PRIORITY_NUM_QUEUEABLE);
591
592	/* find a queue that has not reached its minimum # outstanding i/os */
593	for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
594		if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
595		    vq->vq_class[p].vqc_active <
596		    vdev_queue_class_min_active(p))
597			return (p);
598	}
599
600	/*
601	 * If we haven't found a queue, look for one that hasn't reached its
602	 * maximum # outstanding i/os.
603	 */
604	for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
605		if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
606		    vq->vq_class[p].vqc_active <
607		    vdev_queue_class_max_active(spa, p))
608			return (p);
609	}
610
611	/* No eligible queued i/os */
612	return (ZIO_PRIORITY_NUM_QUEUEABLE);
613}
614
615/*
616 * Compute the range spanned by two i/os, which is the endpoint of the last
617 * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
618 * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
619 * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
620 */
621#define	IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
622#define	IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
623
624static zio_t *
625vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
626{
627	zio_t *first, *last, *aio, *dio, *mandatory, *nio;
628	uint64_t maxgap = 0;
629	uint64_t size;
630	boolean_t stretch;
631	avl_tree_t *t;
632	enum zio_flag flags;
633
634	ASSERT(MUTEX_HELD(&vq->vq_lock));
635
636	if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE)
637		return (NULL);
638
639	/*
640	 * The synchronous i/o queues are not sorted by LBA, so we can't
641	 * find adjacent i/os.  These i/os tend to not be tightly clustered,
642	 * or too large to aggregate, so this has little impact on performance.
643	 */
644	if (zio->io_priority == ZIO_PRIORITY_SYNC_READ ||
645	    zio->io_priority == ZIO_PRIORITY_SYNC_WRITE)
646		return (NULL);
647
648	first = last = zio;
649
650	if (zio->io_type == ZIO_TYPE_READ)
651		maxgap = zfs_vdev_read_gap_limit;
652
653	/*
654	 * We can aggregate I/Os that are sufficiently adjacent and of
655	 * the same flavor, as expressed by the AGG_INHERIT flags.
656	 * The latter requirement is necessary so that certain
657	 * attributes of the I/O, such as whether it's a normal I/O
658	 * or a scrub/resilver, can be preserved in the aggregate.
659	 * We can include optional I/Os, but don't allow them
660	 * to begin a range as they add no benefit in that situation.
661	 */
662
663	/*
664	 * We keep track of the last non-optional I/O.
665	 */
666	mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first;
667
668	/*
669	 * Walk backwards through sufficiently contiguous I/Os
670	 * recording the last non-option I/O.
671	 */
672	flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT;
673	t = vdev_queue_type_tree(vq, zio->io_type);
674	while ((dio = AVL_PREV(t, first)) != NULL &&
675	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
676	    IO_SPAN(dio, last) <= zfs_vdev_aggregation_limit &&
677	    IO_GAP(dio, first) <= maxgap) {
678		first = dio;
679		if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL))
680			mandatory = first;
681	}
682
683	/*
684	 * Skip any initial optional I/Os.
685	 */
686	while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) {
687		first = AVL_NEXT(t, first);
688		ASSERT(first != NULL);
689	}
690
691	/*
692	 * Walk forward through sufficiently contiguous I/Os.
693	 */
694	while ((dio = AVL_NEXT(t, last)) != NULL &&
695	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
696	    IO_SPAN(first, dio) <= zfs_vdev_aggregation_limit &&
697	    IO_GAP(last, dio) <= maxgap) {
698		last = dio;
699		if (!(last->io_flags & ZIO_FLAG_OPTIONAL))
700			mandatory = last;
701	}
702
703	/*
704	 * Now that we've established the range of the I/O aggregation
705	 * we must decide what to do with trailing optional I/Os.
706	 * For reads, there's nothing to do. While we are unable to
707	 * aggregate further, it's possible that a trailing optional
708	 * I/O would allow the underlying device to aggregate with
709	 * subsequent I/Os. We must therefore determine if the next
710	 * non-optional I/O is close enough to make aggregation
711	 * worthwhile.
712	 */
713	stretch = B_FALSE;
714	if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) {
715		zio_t *nio = last;
716		while ((dio = AVL_NEXT(t, nio)) != NULL &&
717		    IO_GAP(nio, dio) == 0 &&
718		    IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) {
719			nio = dio;
720			if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
721				stretch = B_TRUE;
722				break;
723			}
724		}
725	}
726
727	if (stretch) {
728		/* This may be a no-op. */
729		dio = AVL_NEXT(t, last);
730		dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
731	} else {
732		while (last != mandatory && last != first) {
733			ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL);
734			last = AVL_PREV(t, last);
735			ASSERT(last != NULL);
736		}
737	}
738
739	if (first == last)
740		return (NULL);
741
742	size = IO_SPAN(first, last);
743	ASSERT3U(size, <=, zfs_vdev_aggregation_limit);
744
745	aio = zio_vdev_delegated_io(first->io_vd, first->io_offset,
746	    zio_buf_alloc(size), size, first->io_type, zio->io_priority,
747	    flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
748	    vdev_queue_agg_io_done, NULL);
749	aio->io_timestamp = first->io_timestamp;
750
751	nio = first;
752	do {
753		dio = nio;
754		nio = AVL_NEXT(t, dio);
755		ASSERT3U(dio->io_type, ==, aio->io_type);
756
757		if (dio->io_flags & ZIO_FLAG_NODATA) {
758			ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE);
759			bzero((char *)aio->io_data + (dio->io_offset -
760			    aio->io_offset), dio->io_size);
761		} else if (dio->io_type == ZIO_TYPE_WRITE) {
762			bcopy(dio->io_data, (char *)aio->io_data +
763			    (dio->io_offset - aio->io_offset),
764			    dio->io_size);
765		}
766
767		zio_add_child(dio, aio);
768		vdev_queue_io_remove(vq, dio);
769		zio_vdev_io_bypass(dio);
770		zio_execute(dio);
771	} while (dio != last);
772
773	return (aio);
774}
775
776static zio_t *
777vdev_queue_io_to_issue(vdev_queue_t *vq)
778{
779	zio_t *zio, *aio;
780	zio_priority_t p;
781	avl_index_t idx;
782	avl_tree_t *tree;
783	zio_t search;
784
785again:
786	ASSERT(MUTEX_HELD(&vq->vq_lock));
787
788	p = vdev_queue_class_to_issue(vq);
789
790	if (p == ZIO_PRIORITY_NUM_QUEUEABLE) {
791		/* No eligible queued i/os */
792		return (NULL);
793	}
794
795	/*
796	 * For LBA-ordered queues (async / scrub), issue the i/o which follows
797	 * the most recently issued i/o in LBA (offset) order.
798	 *
799	 * For FIFO queues (sync), issue the i/o with the lowest timestamp.
800	 */
801	tree = vdev_queue_class_tree(vq, p);
802	search.io_timestamp = 0;
803	search.io_offset = vq->vq_last_offset + 1;
804	VERIFY3P(avl_find(tree, &search, &idx), ==, NULL);
805	zio = avl_nearest(tree, idx, AVL_AFTER);
806	if (zio == NULL)
807		zio = avl_first(tree);
808	ASSERT3U(zio->io_priority, ==, p);
809
810	aio = vdev_queue_aggregate(vq, zio);
811	if (aio != NULL)
812		zio = aio;
813	else
814		vdev_queue_io_remove(vq, zio);
815
816	/*
817	 * If the I/O is or was optional and therefore has no data, we need to
818	 * simply discard it. We need to drop the vdev queue's lock to avoid a
819	 * deadlock that we could encounter since this I/O will complete
820	 * immediately.
821	 */
822	if (zio->io_flags & ZIO_FLAG_NODATA) {
823		mutex_exit(&vq->vq_lock);
824		zio_vdev_io_bypass(zio);
825		zio_execute(zio);
826		mutex_enter(&vq->vq_lock);
827		goto again;
828	}
829
830	vdev_queue_pending_add(vq, zio);
831	vq->vq_last_offset = zio->io_offset;
832
833	return (zio);
834}
835
836zio_t *
837vdev_queue_io(zio_t *zio)
838{
839	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
840	zio_t *nio;
841
842	if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
843		return (zio);
844
845	/*
846	 * Children i/os inherent their parent's priority, which might
847	 * not match the child's i/o type.  Fix it up here.
848	 */
849	if (zio->io_type == ZIO_TYPE_READ) {
850		if (zio->io_priority != ZIO_PRIORITY_SYNC_READ &&
851		    zio->io_priority != ZIO_PRIORITY_ASYNC_READ &&
852		    zio->io_priority != ZIO_PRIORITY_SCRUB)
853			zio->io_priority = ZIO_PRIORITY_ASYNC_READ;
854	} else if (zio->io_type == ZIO_TYPE_WRITE) {
855		if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE &&
856		    zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE)
857			zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE;
858	} else {
859		ASSERT(zio->io_type == ZIO_TYPE_FREE);
860		zio->io_priority = ZIO_PRIORITY_TRIM;
861	}
862
863	zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE;
864
865	mutex_enter(&vq->vq_lock);
866	zio->io_timestamp = gethrtime();
867	vdev_queue_io_add(vq, zio);
868	nio = vdev_queue_io_to_issue(vq);
869	mutex_exit(&vq->vq_lock);
870
871	if (nio == NULL)
872		return (NULL);
873
874	if (nio->io_done == vdev_queue_agg_io_done) {
875		zio_nowait(nio);
876		return (NULL);
877	}
878
879	return (nio);
880}
881
882void
883vdev_queue_io_done(zio_t *zio)
884{
885	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
886	zio_t *nio;
887
888	if (zio_injection_enabled)
889		delay(SEC_TO_TICK(zio_handle_io_delay(zio)));
890
891	mutex_enter(&vq->vq_lock);
892
893	vdev_queue_pending_remove(vq, zio);
894
895	vq->vq_io_complete_ts = gethrtime();
896
897	while ((nio = vdev_queue_io_to_issue(vq)) != NULL) {
898		mutex_exit(&vq->vq_lock);
899		if (nio->io_done == vdev_queue_agg_io_done) {
900			zio_nowait(nio);
901		} else {
902			zio_vdev_io_reissue(nio);
903			zio_execute(nio);
904		}
905		mutex_enter(&vq->vq_lock);
906	}
907
908	mutex_exit(&vq->vq_lock);
909}
910
911/*
912 * As these three methods are only used for load calculations we're not concerned
913 * if we get an incorrect value on 32bit platforms due to lack of vq_lock mutex
914 * use here, instead we prefer to keep it lock free for performance.
915 */
916int
917vdev_queue_length(vdev_t *vd)
918{
919	return (avl_numnodes(&vd->vdev_queue.vq_active_tree));
920}
921
922uint64_t
923vdev_queue_lastoffset(vdev_t *vd)
924{
925	return (vd->vdev_queue.vq_lastoffset);
926}
927
928void
929vdev_queue_register_lastoffset(vdev_t *vd, zio_t *zio)
930{
931	vd->vdev_queue.vq_lastoffset = zio->io_offset + zio->io_size;
932}
933