vdev_queue.c revision 277700
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/*
27 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
28 */
29
30#include <sys/zfs_context.h>
31#include <sys/vdev_impl.h>
32#include <sys/spa_impl.h>
33#include <sys/zio.h>
34#include <sys/avl.h>
35#include <sys/dsl_pool.h>
36
37/*
38 * ZFS I/O Scheduler
39 * ---------------
40 *
41 * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios.  The
42 * I/O scheduler determines when and in what order those operations are
43 * issued.  The I/O scheduler divides operations into six I/O classes
44 * prioritized in the following order: sync read, sync write, async read,
45 * async write, scrub/resilver and trim.  Each queue defines the minimum and
46 * maximum number of concurrent operations that may be issued to the device.
47 * In addition, the device has an aggregate maximum. Note that the sum of the
48 * per-queue minimums must not exceed the aggregate maximum, and if the
49 * aggregate maximum is equal to or greater than the sum of the per-queue
50 * maximums, the per-queue minimum has no effect.
51 *
52 * For many physical devices, throughput increases with the number of
53 * concurrent operations, but latency typically suffers. Further, physical
54 * devices typically have a limit at which more concurrent operations have no
55 * effect on throughput or can actually cause it to decrease.
56 *
57 * The scheduler selects the next operation to issue by first looking for an
58 * I/O class whose minimum has not been satisfied. Once all are satisfied and
59 * the aggregate maximum has not been hit, the scheduler looks for classes
60 * whose maximum has not been satisfied. Iteration through the I/O classes is
61 * done in the order specified above. No further operations are issued if the
62 * aggregate maximum number of concurrent operations has been hit or if there
63 * are no operations queued for an I/O class that has not hit its maximum.
64 * Every time an I/O is queued or an operation completes, the I/O scheduler
65 * looks for new operations to issue.
66 *
67 * All I/O classes have a fixed maximum number of outstanding operations
68 * except for the async write class. Asynchronous writes represent the data
69 * that is committed to stable storage during the syncing stage for
70 * transaction groups (see txg.c). Transaction groups enter the syncing state
71 * periodically so the number of queued async writes will quickly burst up and
72 * then bleed down to zero. Rather than servicing them as quickly as possible,
73 * the I/O scheduler changes the maximum number of active async write I/Os
74 * according to the amount of dirty data in the pool (see dsl_pool.c). Since
75 * both throughput and latency typically increase with the number of
76 * concurrent operations issued to physical devices, reducing the burstiness
77 * in the number of concurrent operations also stabilizes the response time of
78 * operations from other -- and in particular synchronous -- queues. In broad
79 * strokes, the I/O scheduler will issue more concurrent operations from the
80 * async write queue as there's more dirty data in the pool.
81 *
82 * Async Writes
83 *
84 * The number of concurrent operations issued for the async write I/O class
85 * follows a piece-wise linear function defined by a few adjustable points.
86 *
87 *        |                   o---------| <-- zfs_vdev_async_write_max_active
88 *   ^    |                  /^         |
89 *   |    |                 / |         |
90 * active |                /  |         |
91 *  I/O   |               /   |         |
92 * count  |              /    |         |
93 *        |             /     |         |
94 *        |------------o      |         | <-- zfs_vdev_async_write_min_active
95 *       0|____________^______|_________|
96 *        0%           |      |       100% of zfs_dirty_data_max
97 *                     |      |
98 *                     |      `-- zfs_vdev_async_write_active_max_dirty_percent
99 *                     `--------- zfs_vdev_async_write_active_min_dirty_percent
100 *
101 * Until the amount of dirty data exceeds a minimum percentage of the dirty
102 * data allowed in the pool, the I/O scheduler will limit the number of
103 * concurrent operations to the minimum. As that threshold is crossed, the
104 * number of concurrent operations issued increases linearly to the maximum at
105 * the specified maximum percentage of the dirty data allowed in the pool.
106 *
107 * Ideally, the amount of dirty data on a busy pool will stay in the sloped
108 * part of the function between zfs_vdev_async_write_active_min_dirty_percent
109 * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the
110 * maximum percentage, this indicates that the rate of incoming data is
111 * greater than the rate that the backend storage can handle. In this case, we
112 * must further throttle incoming writes (see dmu_tx_delay() for details).
113 */
114
115/*
116 * The maximum number of I/Os active to each device.  Ideally, this will be >=
117 * the sum of each queue's max_active.  It must be at least the sum of each
118 * queue's min_active.
119 */
120uint32_t zfs_vdev_max_active = 1000;
121
122/*
123 * Per-queue limits on the number of I/Os active to each device.  If the
124 * sum of the queue's max_active is < zfs_vdev_max_active, then the
125 * min_active comes into play.  We will send min_active from each queue,
126 * and then select from queues in the order defined by zio_priority_t.
127 *
128 * In general, smaller max_active's will lead to lower latency of synchronous
129 * operations.  Larger max_active's may lead to higher overall throughput,
130 * depending on underlying storage.
131 *
132 * The ratio of the queues' max_actives determines the balance of performance
133 * between reads, writes, and scrubs.  E.g., increasing
134 * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete
135 * more quickly, but reads and writes to have higher latency and lower
136 * throughput.
137 */
138uint32_t zfs_vdev_sync_read_min_active = 10;
139uint32_t zfs_vdev_sync_read_max_active = 10;
140uint32_t zfs_vdev_sync_write_min_active = 10;
141uint32_t zfs_vdev_sync_write_max_active = 10;
142uint32_t zfs_vdev_async_read_min_active = 1;
143uint32_t zfs_vdev_async_read_max_active = 3;
144uint32_t zfs_vdev_async_write_min_active = 1;
145uint32_t zfs_vdev_async_write_max_active = 10;
146uint32_t zfs_vdev_scrub_min_active = 1;
147uint32_t zfs_vdev_scrub_max_active = 2;
148uint32_t zfs_vdev_trim_min_active = 1;
149/*
150 * TRIM max active is large in comparison to the other values due to the fact
151 * that TRIM IOs are coalesced at the device layer. This value is set such
152 * that a typical SSD can process the queued IOs in a single request.
153 */
154uint32_t zfs_vdev_trim_max_active = 64;
155
156
157/*
158 * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent
159 * dirty data, use zfs_vdev_async_write_min_active.  When it has more than
160 * zfs_vdev_async_write_active_max_dirty_percent, use
161 * zfs_vdev_async_write_max_active. The value is linearly interpolated
162 * between min and max.
163 */
164int zfs_vdev_async_write_active_min_dirty_percent = 30;
165int zfs_vdev_async_write_active_max_dirty_percent = 60;
166
167/*
168 * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
169 * For read I/Os, we also aggregate across small adjacency gaps; for writes
170 * we include spans of optional I/Os to aid aggregation at the disk even when
171 * they aren't able to help us aggregate at this level.
172 */
173int zfs_vdev_aggregation_limit = SPA_OLD_MAXBLOCKSIZE;
174int zfs_vdev_read_gap_limit = 32 << 10;
175int zfs_vdev_write_gap_limit = 4 << 10;
176
177#ifdef __FreeBSD__
178SYSCTL_DECL(_vfs_zfs_vdev);
179
180TUNABLE_INT("vfs.zfs.vdev.async_write_active_min_dirty_percent",
181    &zfs_vdev_async_write_active_min_dirty_percent);
182static int sysctl_zfs_async_write_active_min_dirty_percent(SYSCTL_HANDLER_ARGS);
183SYSCTL_PROC(_vfs_zfs_vdev, OID_AUTO, async_write_active_min_dirty_percent,
184    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RWTUN, 0, sizeof(int),
185    sysctl_zfs_async_write_active_min_dirty_percent, "I",
186    "Percentage of async write dirty data below which "
187    "async_write_min_active is used.");
188
189TUNABLE_INT("vfs.zfs.vdev.async_write_active_max_dirty_percent",
190    &zfs_vdev_async_write_active_max_dirty_percent);
191static int sysctl_zfs_async_write_active_max_dirty_percent(SYSCTL_HANDLER_ARGS);
192SYSCTL_PROC(_vfs_zfs_vdev, OID_AUTO, async_write_active_max_dirty_percent,
193    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RWTUN, 0, sizeof(int),
194    sysctl_zfs_async_write_active_max_dirty_percent, "I",
195    "Percentage of async write dirty data above which "
196    "async_write_max_active is used.");
197
198TUNABLE_INT("vfs.zfs.vdev.max_active", &zfs_vdev_max_active);
199SYSCTL_UINT(_vfs_zfs_vdev, OID_AUTO, max_active, CTLFLAG_RWTUN,
200    &zfs_vdev_max_active, 0,
201    "The maximum number of I/Os of all types active for each device.");
202
203#define ZFS_VDEV_QUEUE_KNOB_MIN(name)					\
204TUNABLE_INT("vfs.zfs.vdev." #name "_min_active",			\
205    &zfs_vdev_ ## name ## _min_active);					\
206SYSCTL_UINT(_vfs_zfs_vdev, OID_AUTO, name ## _min_active,		\
207    CTLFLAG_RWTUN, &zfs_vdev_ ## name ## _min_active, 0,		\
208    "Initial number of I/O requests of type " #name			\
209    " active for each device");
210
211#define ZFS_VDEV_QUEUE_KNOB_MAX(name)					\
212TUNABLE_INT("vfs.zfs.vdev." #name "_max_active",			\
213    &zfs_vdev_ ## name ## _max_active);					\
214SYSCTL_UINT(_vfs_zfs_vdev, OID_AUTO, name ## _max_active,		\
215    CTLFLAG_RWTUN, &zfs_vdev_ ## name ## _max_active, 0,		\
216    "Maximum number of I/O requests of type " #name			\
217    " active for each device");
218
219ZFS_VDEV_QUEUE_KNOB_MIN(sync_read);
220ZFS_VDEV_QUEUE_KNOB_MAX(sync_read);
221ZFS_VDEV_QUEUE_KNOB_MIN(sync_write);
222ZFS_VDEV_QUEUE_KNOB_MAX(sync_write);
223ZFS_VDEV_QUEUE_KNOB_MIN(async_read);
224ZFS_VDEV_QUEUE_KNOB_MAX(async_read);
225ZFS_VDEV_QUEUE_KNOB_MIN(async_write);
226ZFS_VDEV_QUEUE_KNOB_MAX(async_write);
227ZFS_VDEV_QUEUE_KNOB_MIN(scrub);
228ZFS_VDEV_QUEUE_KNOB_MAX(scrub);
229ZFS_VDEV_QUEUE_KNOB_MIN(trim);
230ZFS_VDEV_QUEUE_KNOB_MAX(trim);
231
232#undef ZFS_VDEV_QUEUE_KNOB
233
234TUNABLE_INT("vfs.zfs.vdev.aggregation_limit", &zfs_vdev_aggregation_limit);
235SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, aggregation_limit, CTLFLAG_RWTUN,
236    &zfs_vdev_aggregation_limit, 0,
237    "I/O requests are aggregated up to this size");
238TUNABLE_INT("vfs.zfs.vdev.read_gap_limit", &zfs_vdev_read_gap_limit);
239SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, read_gap_limit, CTLFLAG_RWTUN,
240    &zfs_vdev_read_gap_limit, 0,
241    "Acceptable gap between two reads being aggregated");
242TUNABLE_INT("vfs.zfs.vdev.write_gap_limit", &zfs_vdev_write_gap_limit);
243SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, write_gap_limit, CTLFLAG_RWTUN,
244    &zfs_vdev_write_gap_limit, 0,
245    "Acceptable gap between two writes being aggregated");
246
247static int
248sysctl_zfs_async_write_active_min_dirty_percent(SYSCTL_HANDLER_ARGS)
249{
250	int val, err;
251
252	val = zfs_vdev_async_write_active_min_dirty_percent;
253	err = sysctl_handle_int(oidp, &val, 0, req);
254	if (err != 0 || req->newptr == NULL)
255		return (err);
256
257	if (val < 0 || val > 100 ||
258	    val >= zfs_vdev_async_write_active_max_dirty_percent)
259		return (EINVAL);
260
261	zfs_vdev_async_write_active_min_dirty_percent = val;
262
263	return (0);
264}
265
266static int
267sysctl_zfs_async_write_active_max_dirty_percent(SYSCTL_HANDLER_ARGS)
268{
269	int val, err;
270
271	val = zfs_vdev_async_write_active_max_dirty_percent;
272	err = sysctl_handle_int(oidp, &val, 0, req);
273	if (err != 0 || req->newptr == NULL)
274		return (err);
275
276	if (val < 0 || val > 100 ||
277	    val <= zfs_vdev_async_write_active_min_dirty_percent)
278		return (EINVAL);
279
280	zfs_vdev_async_write_active_max_dirty_percent = val;
281
282	return (0);
283}
284#endif
285
286int
287vdev_queue_offset_compare(const void *x1, const void *x2)
288{
289	const zio_t *z1 = x1;
290	const zio_t *z2 = x2;
291
292	if (z1->io_offset < z2->io_offset)
293		return (-1);
294	if (z1->io_offset > z2->io_offset)
295		return (1);
296
297	if (z1 < z2)
298		return (-1);
299	if (z1 > z2)
300		return (1);
301
302	return (0);
303}
304
305int
306vdev_queue_timestamp_compare(const void *x1, const void *x2)
307{
308	const zio_t *z1 = x1;
309	const zio_t *z2 = x2;
310
311	if (z1->io_timestamp < z2->io_timestamp)
312		return (-1);
313	if (z1->io_timestamp > z2->io_timestamp)
314		return (1);
315
316	if (z1->io_offset < z2->io_offset)
317		return (-1);
318	if (z1->io_offset > z2->io_offset)
319		return (1);
320
321	if (z1 < z2)
322		return (-1);
323	if (z1 > z2)
324		return (1);
325
326	return (0);
327}
328
329void
330vdev_queue_init(vdev_t *vd)
331{
332	vdev_queue_t *vq = &vd->vdev_queue;
333
334	mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
335	vq->vq_vdev = vd;
336
337	avl_create(&vq->vq_active_tree, vdev_queue_offset_compare,
338	    sizeof (zio_t), offsetof(struct zio, io_queue_node));
339
340	for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
341		/*
342		 * The synchronous i/o queues are FIFO rather than LBA ordered.
343		 * This provides more consistent latency for these i/os, and
344		 * they tend to not be tightly clustered anyway so there is
345		 * little to no throughput loss.
346		 */
347		boolean_t fifo = (p == ZIO_PRIORITY_SYNC_READ ||
348		    p == ZIO_PRIORITY_SYNC_WRITE);
349		avl_create(&vq->vq_class[p].vqc_queued_tree,
350		    fifo ? vdev_queue_timestamp_compare :
351		    vdev_queue_offset_compare,
352		    sizeof (zio_t), offsetof(struct zio, io_queue_node));
353	}
354
355	vq->vq_lastoffset = 0;
356}
357
358void
359vdev_queue_fini(vdev_t *vd)
360{
361	vdev_queue_t *vq = &vd->vdev_queue;
362
363	for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++)
364		avl_destroy(&vq->vq_class[p].vqc_queued_tree);
365	avl_destroy(&vq->vq_active_tree);
366
367	mutex_destroy(&vq->vq_lock);
368}
369
370static void
371vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
372{
373	spa_t *spa = zio->io_spa;
374	ASSERT(MUTEX_HELD(&vq->vq_lock));
375	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
376	avl_add(&vq->vq_class[zio->io_priority].vqc_queued_tree, zio);
377
378#ifdef illumos
379	mutex_enter(&spa->spa_iokstat_lock);
380	spa->spa_queue_stats[zio->io_priority].spa_queued++;
381	if (spa->spa_iokstat != NULL)
382		kstat_waitq_enter(spa->spa_iokstat->ks_data);
383	mutex_exit(&spa->spa_iokstat_lock);
384#endif
385}
386
387static void
388vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
389{
390	spa_t *spa = zio->io_spa;
391	ASSERT(MUTEX_HELD(&vq->vq_lock));
392	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
393	avl_remove(&vq->vq_class[zio->io_priority].vqc_queued_tree, zio);
394
395#ifdef illumos
396	mutex_enter(&spa->spa_iokstat_lock);
397	ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_queued, >, 0);
398	spa->spa_queue_stats[zio->io_priority].spa_queued--;
399	if (spa->spa_iokstat != NULL)
400		kstat_waitq_exit(spa->spa_iokstat->ks_data);
401	mutex_exit(&spa->spa_iokstat_lock);
402#endif
403}
404
405static void
406vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio)
407{
408	spa_t *spa = zio->io_spa;
409	ASSERT(MUTEX_HELD(&vq->vq_lock));
410	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
411	vq->vq_class[zio->io_priority].vqc_active++;
412	avl_add(&vq->vq_active_tree, zio);
413
414#ifdef illumos
415	mutex_enter(&spa->spa_iokstat_lock);
416	spa->spa_queue_stats[zio->io_priority].spa_active++;
417	if (spa->spa_iokstat != NULL)
418		kstat_runq_enter(spa->spa_iokstat->ks_data);
419	mutex_exit(&spa->spa_iokstat_lock);
420#endif
421}
422
423static void
424vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio)
425{
426	spa_t *spa = zio->io_spa;
427	ASSERT(MUTEX_HELD(&vq->vq_lock));
428	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
429	vq->vq_class[zio->io_priority].vqc_active--;
430	avl_remove(&vq->vq_active_tree, zio);
431
432#ifdef illumos
433	mutex_enter(&spa->spa_iokstat_lock);
434	ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_active, >, 0);
435	spa->spa_queue_stats[zio->io_priority].spa_active--;
436	if (spa->spa_iokstat != NULL) {
437		kstat_io_t *ksio = spa->spa_iokstat->ks_data;
438
439		kstat_runq_exit(spa->spa_iokstat->ks_data);
440		if (zio->io_type == ZIO_TYPE_READ) {
441			ksio->reads++;
442			ksio->nread += zio->io_size;
443		} else if (zio->io_type == ZIO_TYPE_WRITE) {
444			ksio->writes++;
445			ksio->nwritten += zio->io_size;
446		}
447	}
448	mutex_exit(&spa->spa_iokstat_lock);
449#endif
450}
451
452static void
453vdev_queue_agg_io_done(zio_t *aio)
454{
455	if (aio->io_type == ZIO_TYPE_READ) {
456		zio_t *pio;
457		while ((pio = zio_walk_parents(aio)) != NULL) {
458			bcopy((char *)aio->io_data + (pio->io_offset -
459			    aio->io_offset), pio->io_data, pio->io_size);
460		}
461	}
462
463	zio_buf_free(aio->io_data, aio->io_size);
464}
465
466static int
467vdev_queue_class_min_active(zio_priority_t p)
468{
469	switch (p) {
470	case ZIO_PRIORITY_SYNC_READ:
471		return (zfs_vdev_sync_read_min_active);
472	case ZIO_PRIORITY_SYNC_WRITE:
473		return (zfs_vdev_sync_write_min_active);
474	case ZIO_PRIORITY_ASYNC_READ:
475		return (zfs_vdev_async_read_min_active);
476	case ZIO_PRIORITY_ASYNC_WRITE:
477		return (zfs_vdev_async_write_min_active);
478	case ZIO_PRIORITY_SCRUB:
479		return (zfs_vdev_scrub_min_active);
480	case ZIO_PRIORITY_TRIM:
481		return (zfs_vdev_trim_min_active);
482	default:
483		panic("invalid priority %u", p);
484		return (0);
485	}
486}
487
488static int
489vdev_queue_max_async_writes(spa_t *spa)
490{
491	int writes;
492	uint64_t dirty = spa->spa_dsl_pool->dp_dirty_total;
493	uint64_t min_bytes = zfs_dirty_data_max *
494	    zfs_vdev_async_write_active_min_dirty_percent / 100;
495	uint64_t max_bytes = zfs_dirty_data_max *
496	    zfs_vdev_async_write_active_max_dirty_percent / 100;
497
498	/*
499	 * Sync tasks correspond to interactive user actions. To reduce the
500	 * execution time of those actions we push data out as fast as possible.
501	 */
502	if (spa_has_pending_synctask(spa)) {
503		return (zfs_vdev_async_write_max_active);
504	}
505
506	if (dirty < min_bytes)
507		return (zfs_vdev_async_write_min_active);
508	if (dirty > max_bytes)
509		return (zfs_vdev_async_write_max_active);
510
511	/*
512	 * linear interpolation:
513	 * slope = (max_writes - min_writes) / (max_bytes - min_bytes)
514	 * move right by min_bytes
515	 * move up by min_writes
516	 */
517	writes = (dirty - min_bytes) *
518	    (zfs_vdev_async_write_max_active -
519	    zfs_vdev_async_write_min_active) /
520	    (max_bytes - min_bytes) +
521	    zfs_vdev_async_write_min_active;
522	ASSERT3U(writes, >=, zfs_vdev_async_write_min_active);
523	ASSERT3U(writes, <=, zfs_vdev_async_write_max_active);
524	return (writes);
525}
526
527static int
528vdev_queue_class_max_active(spa_t *spa, zio_priority_t p)
529{
530	switch (p) {
531	case ZIO_PRIORITY_SYNC_READ:
532		return (zfs_vdev_sync_read_max_active);
533	case ZIO_PRIORITY_SYNC_WRITE:
534		return (zfs_vdev_sync_write_max_active);
535	case ZIO_PRIORITY_ASYNC_READ:
536		return (zfs_vdev_async_read_max_active);
537	case ZIO_PRIORITY_ASYNC_WRITE:
538		return (vdev_queue_max_async_writes(spa));
539	case ZIO_PRIORITY_SCRUB:
540		return (zfs_vdev_scrub_max_active);
541	case ZIO_PRIORITY_TRIM:
542		return (zfs_vdev_trim_max_active);
543	default:
544		panic("invalid priority %u", p);
545		return (0);
546	}
547}
548
549/*
550 * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if
551 * there is no eligible class.
552 */
553static zio_priority_t
554vdev_queue_class_to_issue(vdev_queue_t *vq)
555{
556	spa_t *spa = vq->vq_vdev->vdev_spa;
557	zio_priority_t p;
558
559	ASSERT(MUTEX_HELD(&vq->vq_lock));
560
561	if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active)
562		return (ZIO_PRIORITY_NUM_QUEUEABLE);
563
564	/* find a queue that has not reached its minimum # outstanding i/os */
565	for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
566		if (avl_numnodes(&vq->vq_class[p].vqc_queued_tree) > 0 &&
567		    vq->vq_class[p].vqc_active <
568		    vdev_queue_class_min_active(p))
569			return (p);
570	}
571
572	/*
573	 * If we haven't found a queue, look for one that hasn't reached its
574	 * maximum # outstanding i/os.
575	 */
576	for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
577		if (avl_numnodes(&vq->vq_class[p].vqc_queued_tree) > 0 &&
578		    vq->vq_class[p].vqc_active <
579		    vdev_queue_class_max_active(spa, p))
580			return (p);
581	}
582
583	/* No eligible queued i/os */
584	return (ZIO_PRIORITY_NUM_QUEUEABLE);
585}
586
587/*
588 * Compute the range spanned by two i/os, which is the endpoint of the last
589 * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
590 * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
591 * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
592 */
593#define	IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
594#define	IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
595
596static zio_t *
597vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
598{
599	zio_t *first, *last, *aio, *dio, *mandatory, *nio;
600	uint64_t maxgap = 0;
601	uint64_t size;
602	boolean_t stretch;
603	avl_tree_t *t;
604	enum zio_flag flags;
605
606	ASSERT(MUTEX_HELD(&vq->vq_lock));
607
608	if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE)
609		return (NULL);
610
611	/*
612	 * The synchronous i/o queues are not sorted by LBA, so we can't
613	 * find adjacent i/os.  These i/os tend to not be tightly clustered,
614	 * or too large to aggregate, so this has little impact on performance.
615	 */
616	if (zio->io_priority == ZIO_PRIORITY_SYNC_READ ||
617	    zio->io_priority == ZIO_PRIORITY_SYNC_WRITE)
618		return (NULL);
619
620	first = last = zio;
621
622	if (zio->io_type == ZIO_TYPE_READ)
623		maxgap = zfs_vdev_read_gap_limit;
624
625	/*
626	 * We can aggregate I/Os that are sufficiently adjacent and of
627	 * the same flavor, as expressed by the AGG_INHERIT flags.
628	 * The latter requirement is necessary so that certain
629	 * attributes of the I/O, such as whether it's a normal I/O
630	 * or a scrub/resilver, can be preserved in the aggregate.
631	 * We can include optional I/Os, but don't allow them
632	 * to begin a range as they add no benefit in that situation.
633	 */
634
635	/*
636	 * We keep track of the last non-optional I/O.
637	 */
638	mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first;
639
640	/*
641	 * Walk backwards through sufficiently contiguous I/Os
642	 * recording the last non-option I/O.
643	 */
644	flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT;
645	t = &vq->vq_class[zio->io_priority].vqc_queued_tree;
646	while ((dio = AVL_PREV(t, first)) != NULL &&
647	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
648	    IO_SPAN(dio, last) <= zfs_vdev_aggregation_limit &&
649	    IO_GAP(dio, first) <= maxgap) {
650		first = dio;
651		if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL))
652			mandatory = first;
653	}
654
655	/*
656	 * Skip any initial optional I/Os.
657	 */
658	while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) {
659		first = AVL_NEXT(t, first);
660		ASSERT(first != NULL);
661	}
662
663	/*
664	 * Walk forward through sufficiently contiguous I/Os.
665	 */
666	while ((dio = AVL_NEXT(t, last)) != NULL &&
667	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
668	    IO_SPAN(first, dio) <= zfs_vdev_aggregation_limit &&
669	    IO_GAP(last, dio) <= maxgap) {
670		last = dio;
671		if (!(last->io_flags & ZIO_FLAG_OPTIONAL))
672			mandatory = last;
673	}
674
675	/*
676	 * Now that we've established the range of the I/O aggregation
677	 * we must decide what to do with trailing optional I/Os.
678	 * For reads, there's nothing to do. While we are unable to
679	 * aggregate further, it's possible that a trailing optional
680	 * I/O would allow the underlying device to aggregate with
681	 * subsequent I/Os. We must therefore determine if the next
682	 * non-optional I/O is close enough to make aggregation
683	 * worthwhile.
684	 */
685	stretch = B_FALSE;
686	if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) {
687		zio_t *nio = last;
688		while ((dio = AVL_NEXT(t, nio)) != NULL &&
689		    IO_GAP(nio, dio) == 0 &&
690		    IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) {
691			nio = dio;
692			if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
693				stretch = B_TRUE;
694				break;
695			}
696		}
697	}
698
699	if (stretch) {
700		/* This may be a no-op. */
701		dio = AVL_NEXT(t, last);
702		dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
703	} else {
704		while (last != mandatory && last != first) {
705			ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL);
706			last = AVL_PREV(t, last);
707			ASSERT(last != NULL);
708		}
709	}
710
711	if (first == last)
712		return (NULL);
713
714	size = IO_SPAN(first, last);
715	ASSERT3U(size, <=, zfs_vdev_aggregation_limit);
716
717	aio = zio_vdev_delegated_io(first->io_vd, first->io_offset,
718	    zio_buf_alloc(size), size, first->io_type, zio->io_priority,
719	    flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
720	    vdev_queue_agg_io_done, NULL);
721	aio->io_timestamp = first->io_timestamp;
722
723	nio = first;
724	do {
725		dio = nio;
726		nio = AVL_NEXT(t, dio);
727		ASSERT3U(dio->io_type, ==, aio->io_type);
728
729		if (dio->io_flags & ZIO_FLAG_NODATA) {
730			ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE);
731			bzero((char *)aio->io_data + (dio->io_offset -
732			    aio->io_offset), dio->io_size);
733		} else if (dio->io_type == ZIO_TYPE_WRITE) {
734			bcopy(dio->io_data, (char *)aio->io_data +
735			    (dio->io_offset - aio->io_offset),
736			    dio->io_size);
737		}
738
739		zio_add_child(dio, aio);
740		vdev_queue_io_remove(vq, dio);
741		zio_vdev_io_bypass(dio);
742		zio_execute(dio);
743	} while (dio != last);
744
745	return (aio);
746}
747
748static zio_t *
749vdev_queue_io_to_issue(vdev_queue_t *vq)
750{
751	zio_t *zio, *aio;
752	zio_priority_t p;
753	avl_index_t idx;
754	vdev_queue_class_t *vqc;
755	zio_t search;
756
757again:
758	ASSERT(MUTEX_HELD(&vq->vq_lock));
759
760	p = vdev_queue_class_to_issue(vq);
761
762	if (p == ZIO_PRIORITY_NUM_QUEUEABLE) {
763		/* No eligible queued i/os */
764		return (NULL);
765	}
766
767	/*
768	 * For LBA-ordered queues (async / scrub), issue the i/o which follows
769	 * the most recently issued i/o in LBA (offset) order.
770	 *
771	 * For FIFO queues (sync), issue the i/o with the lowest timestamp.
772	 */
773	vqc = &vq->vq_class[p];
774	search.io_timestamp = 0;
775	search.io_offset = vq->vq_last_offset + 1;
776	VERIFY3P(avl_find(&vqc->vqc_queued_tree, &search, &idx), ==, NULL);
777	zio = avl_nearest(&vqc->vqc_queued_tree, idx, AVL_AFTER);
778	if (zio == NULL)
779		zio = avl_first(&vqc->vqc_queued_tree);
780	ASSERT3U(zio->io_priority, ==, p);
781
782	aio = vdev_queue_aggregate(vq, zio);
783	if (aio != NULL)
784		zio = aio;
785	else
786		vdev_queue_io_remove(vq, zio);
787
788	/*
789	 * If the I/O is or was optional and therefore has no data, we need to
790	 * simply discard it. We need to drop the vdev queue's lock to avoid a
791	 * deadlock that we could encounter since this I/O will complete
792	 * immediately.
793	 */
794	if (zio->io_flags & ZIO_FLAG_NODATA) {
795		mutex_exit(&vq->vq_lock);
796		zio_vdev_io_bypass(zio);
797		zio_execute(zio);
798		mutex_enter(&vq->vq_lock);
799		goto again;
800	}
801
802	vdev_queue_pending_add(vq, zio);
803	vq->vq_last_offset = zio->io_offset;
804
805	return (zio);
806}
807
808zio_t *
809vdev_queue_io(zio_t *zio)
810{
811	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
812	zio_t *nio;
813
814	if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
815		return (zio);
816
817	/*
818	 * Children i/os inherent their parent's priority, which might
819	 * not match the child's i/o type.  Fix it up here.
820	 */
821	if (zio->io_type == ZIO_TYPE_READ) {
822		if (zio->io_priority != ZIO_PRIORITY_SYNC_READ &&
823		    zio->io_priority != ZIO_PRIORITY_ASYNC_READ &&
824		    zio->io_priority != ZIO_PRIORITY_SCRUB)
825			zio->io_priority = ZIO_PRIORITY_ASYNC_READ;
826	} else if (zio->io_type == ZIO_TYPE_WRITE) {
827		if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE &&
828		    zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE)
829			zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE;
830	} else {
831		ASSERT(zio->io_type == ZIO_TYPE_FREE);
832		zio->io_priority = ZIO_PRIORITY_TRIM;
833	}
834
835	zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE;
836
837	mutex_enter(&vq->vq_lock);
838	zio->io_timestamp = gethrtime();
839	vdev_queue_io_add(vq, zio);
840	nio = vdev_queue_io_to_issue(vq);
841	mutex_exit(&vq->vq_lock);
842
843	if (nio == NULL)
844		return (NULL);
845
846	if (nio->io_done == vdev_queue_agg_io_done) {
847		zio_nowait(nio);
848		return (NULL);
849	}
850
851	return (nio);
852}
853
854void
855vdev_queue_io_done(zio_t *zio)
856{
857	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
858	zio_t *nio;
859
860	if (zio_injection_enabled)
861		delay(SEC_TO_TICK(zio_handle_io_delay(zio)));
862
863	mutex_enter(&vq->vq_lock);
864
865	vdev_queue_pending_remove(vq, zio);
866
867	vq->vq_io_complete_ts = gethrtime();
868
869	while ((nio = vdev_queue_io_to_issue(vq)) != NULL) {
870		mutex_exit(&vq->vq_lock);
871		if (nio->io_done == vdev_queue_agg_io_done) {
872			zio_nowait(nio);
873		} else {
874			zio_vdev_io_reissue(nio);
875			zio_execute(nio);
876		}
877		mutex_enter(&vq->vq_lock);
878	}
879
880	mutex_exit(&vq->vq_lock);
881}
882
883/*
884 * As these three methods are only used for load calculations we're not concerned
885 * if we get an incorrect value on 32bit platforms due to lack of vq_lock mutex
886 * use here, instead we prefer to keep it lock free for performance.
887 */
888int
889vdev_queue_length(vdev_t *vd)
890{
891	return (avl_numnodes(&vd->vdev_queue.vq_active_tree));
892}
893
894uint64_t
895vdev_queue_lastoffset(vdev_t *vd)
896{
897	return (vd->vdev_queue.vq_lastoffset);
898}
899
900void
901vdev_queue_register_lastoffset(vdev_t *vd, zio_t *zio)
902{
903	vd->vdev_queue.vq_lastoffset = zio->io_offset + zio->io_size;
904}
905