vdev_queue.c revision 276081
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/*
27 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
28 */
29
30#include <sys/zfs_context.h>
31#include <sys/vdev_impl.h>
32#include <sys/spa_impl.h>
33#include <sys/zio.h>
34#include <sys/avl.h>
35#include <sys/dsl_pool.h>
36
37/*
38 * ZFS I/O Scheduler
39 * ---------------
40 *
41 * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios.  The
42 * I/O scheduler determines when and in what order those operations are
43 * issued.  The I/O scheduler divides operations into six I/O classes
44 * prioritized in the following order: sync read, sync write, async read,
45 * async write, scrub/resilver and trim.  Each queue defines the minimum and
46 * maximum number of concurrent operations that may be issued to the device.
47 * In addition, the device has an aggregate maximum. Note that the sum of the
48 * per-queue minimums must not exceed the aggregate maximum, and if the
49 * aggregate maximum is equal to or greater than the sum of the per-queue
50 * maximums, the per-queue minimum has no effect.
51 *
52 * For many physical devices, throughput increases with the number of
53 * concurrent operations, but latency typically suffers. Further, physical
54 * devices typically have a limit at which more concurrent operations have no
55 * effect on throughput or can actually cause it to decrease.
56 *
57 * The scheduler selects the next operation to issue by first looking for an
58 * I/O class whose minimum has not been satisfied. Once all are satisfied and
59 * the aggregate maximum has not been hit, the scheduler looks for classes
60 * whose maximum has not been satisfied. Iteration through the I/O classes is
61 * done in the order specified above. No further operations are issued if the
62 * aggregate maximum number of concurrent operations has been hit or if there
63 * are no operations queued for an I/O class that has not hit its maximum.
64 * Every time an I/O is queued or an operation completes, the I/O scheduler
65 * looks for new operations to issue.
66 *
67 * All I/O classes have a fixed maximum number of outstanding operations
68 * except for the async write class. Asynchronous writes represent the data
69 * that is committed to stable storage during the syncing stage for
70 * transaction groups (see txg.c). Transaction groups enter the syncing state
71 * periodically so the number of queued async writes will quickly burst up and
72 * then bleed down to zero. Rather than servicing them as quickly as possible,
73 * the I/O scheduler changes the maximum number of active async write I/Os
74 * according to the amount of dirty data in the pool (see dsl_pool.c). Since
75 * both throughput and latency typically increase with the number of
76 * concurrent operations issued to physical devices, reducing the burstiness
77 * in the number of concurrent operations also stabilizes the response time of
78 * operations from other -- and in particular synchronous -- queues. In broad
79 * strokes, the I/O scheduler will issue more concurrent operations from the
80 * async write queue as there's more dirty data in the pool.
81 *
82 * Async Writes
83 *
84 * The number of concurrent operations issued for the async write I/O class
85 * follows a piece-wise linear function defined by a few adjustable points.
86 *
87 *        |                   o---------| <-- zfs_vdev_async_write_max_active
88 *   ^    |                  /^         |
89 *   |    |                 / |         |
90 * active |                /  |         |
91 *  I/O   |               /   |         |
92 * count  |              /    |         |
93 *        |             /     |         |
94 *        |------------o      |         | <-- zfs_vdev_async_write_min_active
95 *       0|____________^______|_________|
96 *        0%           |      |       100% of zfs_dirty_data_max
97 *                     |      |
98 *                     |      `-- zfs_vdev_async_write_active_max_dirty_percent
99 *                     `--------- zfs_vdev_async_write_active_min_dirty_percent
100 *
101 * Until the amount of dirty data exceeds a minimum percentage of the dirty
102 * data allowed in the pool, the I/O scheduler will limit the number of
103 * concurrent operations to the minimum. As that threshold is crossed, the
104 * number of concurrent operations issued increases linearly to the maximum at
105 * the specified maximum percentage of the dirty data allowed in the pool.
106 *
107 * Ideally, the amount of dirty data on a busy pool will stay in the sloped
108 * part of the function between zfs_vdev_async_write_active_min_dirty_percent
109 * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the
110 * maximum percentage, this indicates that the rate of incoming data is
111 * greater than the rate that the backend storage can handle. In this case, we
112 * must further throttle incoming writes (see dmu_tx_delay() for details).
113 */
114
115/*
116 * The maximum number of I/Os active to each device.  Ideally, this will be >=
117 * the sum of each queue's max_active.  It must be at least the sum of each
118 * queue's min_active.
119 */
120uint32_t zfs_vdev_max_active = 1000;
121
122/*
123 * Per-queue limits on the number of I/Os active to each device.  If the
124 * sum of the queue's max_active is < zfs_vdev_max_active, then the
125 * min_active comes into play.  We will send min_active from each queue,
126 * and then select from queues in the order defined by zio_priority_t.
127 *
128 * In general, smaller max_active's will lead to lower latency of synchronous
129 * operations.  Larger max_active's may lead to higher overall throughput,
130 * depending on underlying storage.
131 *
132 * The ratio of the queues' max_actives determines the balance of performance
133 * between reads, writes, and scrubs.  E.g., increasing
134 * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete
135 * more quickly, but reads and writes to have higher latency and lower
136 * throughput.
137 */
138uint32_t zfs_vdev_sync_read_min_active = 10;
139uint32_t zfs_vdev_sync_read_max_active = 10;
140uint32_t zfs_vdev_sync_write_min_active = 10;
141uint32_t zfs_vdev_sync_write_max_active = 10;
142uint32_t zfs_vdev_async_read_min_active = 1;
143uint32_t zfs_vdev_async_read_max_active = 3;
144uint32_t zfs_vdev_async_write_min_active = 1;
145uint32_t zfs_vdev_async_write_max_active = 10;
146uint32_t zfs_vdev_scrub_min_active = 1;
147uint32_t zfs_vdev_scrub_max_active = 2;
148uint32_t zfs_vdev_trim_min_active = 1;
149/*
150 * TRIM max active is large in comparison to the other values due to the fact
151 * that TRIM IOs are coalesced at the device layer. This value is set such
152 * that a typical SSD can process the queued IOs in a single request.
153 */
154uint32_t zfs_vdev_trim_max_active = 64;
155
156
157/*
158 * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent
159 * dirty data, use zfs_vdev_async_write_min_active.  When it has more than
160 * zfs_vdev_async_write_active_max_dirty_percent, use
161 * zfs_vdev_async_write_max_active. The value is linearly interpolated
162 * between min and max.
163 */
164int zfs_vdev_async_write_active_min_dirty_percent = 30;
165int zfs_vdev_async_write_active_max_dirty_percent = 60;
166
167/*
168 * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
169 * For read I/Os, we also aggregate across small adjacency gaps; for writes
170 * we include spans of optional I/Os to aid aggregation at the disk even when
171 * they aren't able to help us aggregate at this level.
172 */
173int zfs_vdev_aggregation_limit = SPA_OLD_MAXBLOCKSIZE;
174int zfs_vdev_read_gap_limit = 32 << 10;
175int zfs_vdev_write_gap_limit = 4 << 10;
176
177#ifdef __FreeBSD__
178SYSCTL_DECL(_vfs_zfs_vdev);
179
180TUNABLE_INT("vfs.zfs.vdev.async_write_active_min_dirty_percent",
181    &zfs_vdev_async_write_active_min_dirty_percent);
182static int sysctl_zfs_async_write_active_min_dirty_percent(SYSCTL_HANDLER_ARGS);
183SYSCTL_PROC(_vfs_zfs_vdev, OID_AUTO, async_write_active_min_dirty_percent,
184    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RWTUN, 0, sizeof(int),
185    sysctl_zfs_async_write_active_min_dirty_percent, "I",
186    "Percentage of async write dirty data below which "
187    "async_write_min_active is used.");
188
189TUNABLE_INT("vfs.zfs.vdev.async_write_active_max_dirty_percent",
190    &zfs_vdev_async_write_active_max_dirty_percent);
191static int sysctl_zfs_async_write_active_max_dirty_percent(SYSCTL_HANDLER_ARGS);
192SYSCTL_PROC(_vfs_zfs_vdev, OID_AUTO, async_write_active_max_dirty_percent,
193    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RWTUN, 0, sizeof(int),
194    sysctl_zfs_async_write_active_max_dirty_percent, "I",
195    "Percentage of async write dirty data above which "
196    "async_write_max_active is used.");
197
198TUNABLE_INT("vfs.zfs.vdev.max_active", &zfs_vdev_max_active);
199SYSCTL_UINT(_vfs_zfs_vdev, OID_AUTO, max_active, CTLFLAG_RWTUN,
200    &zfs_vdev_max_active, 0,
201    "The maximum number of I/Os of all types active for each device.");
202
203#define ZFS_VDEV_QUEUE_KNOB_MIN(name)					\
204TUNABLE_INT("vfs.zfs.vdev." #name "_min_active",			\
205    &zfs_vdev_ ## name ## _min_active);					\
206SYSCTL_UINT(_vfs_zfs_vdev, OID_AUTO, name ## _min_active,		\
207    CTLFLAG_RWTUN, &zfs_vdev_ ## name ## _min_active, 0,		\
208    "Initial number of I/O requests of type " #name			\
209    " active for each device");
210
211#define ZFS_VDEV_QUEUE_KNOB_MAX(name)					\
212TUNABLE_INT("vfs.zfs.vdev." #name "_max_active",			\
213    &zfs_vdev_ ## name ## _max_active);					\
214SYSCTL_UINT(_vfs_zfs_vdev, OID_AUTO, name ## _max_active,		\
215    CTLFLAG_RWTUN, &zfs_vdev_ ## name ## _max_active, 0,		\
216    "Maximum number of I/O requests of type " #name			\
217    " active for each device");
218
219ZFS_VDEV_QUEUE_KNOB_MIN(sync_read);
220ZFS_VDEV_QUEUE_KNOB_MAX(sync_read);
221ZFS_VDEV_QUEUE_KNOB_MIN(sync_write);
222ZFS_VDEV_QUEUE_KNOB_MAX(sync_write);
223ZFS_VDEV_QUEUE_KNOB_MIN(async_read);
224ZFS_VDEV_QUEUE_KNOB_MAX(async_read);
225ZFS_VDEV_QUEUE_KNOB_MIN(async_write);
226ZFS_VDEV_QUEUE_KNOB_MAX(async_write);
227ZFS_VDEV_QUEUE_KNOB_MIN(scrub);
228ZFS_VDEV_QUEUE_KNOB_MAX(scrub);
229ZFS_VDEV_QUEUE_KNOB_MIN(trim);
230ZFS_VDEV_QUEUE_KNOB_MAX(trim);
231
232#undef ZFS_VDEV_QUEUE_KNOB
233
234TUNABLE_INT("vfs.zfs.vdev.aggregation_limit", &zfs_vdev_aggregation_limit);
235SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, aggregation_limit, CTLFLAG_RWTUN,
236    &zfs_vdev_aggregation_limit, 0,
237    "I/O requests are aggregated up to this size");
238TUNABLE_INT("vfs.zfs.vdev.read_gap_limit", &zfs_vdev_read_gap_limit);
239SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, read_gap_limit, CTLFLAG_RWTUN,
240    &zfs_vdev_read_gap_limit, 0,
241    "Acceptable gap between two reads being aggregated");
242TUNABLE_INT("vfs.zfs.vdev.write_gap_limit", &zfs_vdev_write_gap_limit);
243SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, write_gap_limit, CTLFLAG_RWTUN,
244    &zfs_vdev_write_gap_limit, 0,
245    "Acceptable gap between two writes being aggregated");
246
247static int
248sysctl_zfs_async_write_active_min_dirty_percent(SYSCTL_HANDLER_ARGS)
249{
250	int val, err;
251
252	val = zfs_vdev_async_write_active_min_dirty_percent;
253	err = sysctl_handle_int(oidp, &val, 0, req);
254	if (err != 0 || req->newptr == NULL)
255		return (err);
256
257	if (val < 0 || val > 100 ||
258	    val >= zfs_vdev_async_write_active_max_dirty_percent)
259		return (EINVAL);
260
261	zfs_vdev_async_write_active_min_dirty_percent = val;
262
263	return (0);
264}
265
266static int
267sysctl_zfs_async_write_active_max_dirty_percent(SYSCTL_HANDLER_ARGS)
268{
269	int val, err;
270
271	val = zfs_vdev_async_write_active_max_dirty_percent;
272	err = sysctl_handle_int(oidp, &val, 0, req);
273	if (err != 0 || req->newptr == NULL)
274		return (err);
275
276	if (val < 0 || val > 100 ||
277	    val <= zfs_vdev_async_write_active_min_dirty_percent)
278		return (EINVAL);
279
280	zfs_vdev_async_write_active_max_dirty_percent = val;
281
282	return (0);
283}
284#endif
285
286int
287vdev_queue_offset_compare(const void *x1, const void *x2)
288{
289	const zio_t *z1 = x1;
290	const zio_t *z2 = x2;
291
292	if (z1->io_offset < z2->io_offset)
293		return (-1);
294	if (z1->io_offset > z2->io_offset)
295		return (1);
296
297	if (z1 < z2)
298		return (-1);
299	if (z1 > z2)
300		return (1);
301
302	return (0);
303}
304
305int
306vdev_queue_timestamp_compare(const void *x1, const void *x2)
307{
308	const zio_t *z1 = x1;
309	const zio_t *z2 = x2;
310
311	if (z1->io_timestamp < z2->io_timestamp)
312		return (-1);
313	if (z1->io_timestamp > z2->io_timestamp)
314		return (1);
315
316	if (z1 < z2)
317		return (-1);
318	if (z1 > z2)
319		return (1);
320
321	return (0);
322}
323
324void
325vdev_queue_init(vdev_t *vd)
326{
327	vdev_queue_t *vq = &vd->vdev_queue;
328
329	mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
330	vq->vq_vdev = vd;
331
332	avl_create(&vq->vq_active_tree, vdev_queue_offset_compare,
333	    sizeof (zio_t), offsetof(struct zio, io_queue_node));
334
335	for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
336		/*
337		 * The synchronous i/o queues are FIFO rather than LBA ordered.
338		 * This provides more consistent latency for these i/os, and
339		 * they tend to not be tightly clustered anyway so there is
340		 * little to no throughput loss.
341		 */
342		boolean_t fifo = (p == ZIO_PRIORITY_SYNC_READ ||
343		    p == ZIO_PRIORITY_SYNC_WRITE);
344		avl_create(&vq->vq_class[p].vqc_queued_tree,
345		    fifo ? vdev_queue_timestamp_compare :
346		    vdev_queue_offset_compare,
347		    sizeof (zio_t), offsetof(struct zio, io_queue_node));
348	}
349
350	vq->vq_lastoffset = 0;
351}
352
353void
354vdev_queue_fini(vdev_t *vd)
355{
356	vdev_queue_t *vq = &vd->vdev_queue;
357
358	for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++)
359		avl_destroy(&vq->vq_class[p].vqc_queued_tree);
360	avl_destroy(&vq->vq_active_tree);
361
362	mutex_destroy(&vq->vq_lock);
363}
364
365static void
366vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
367{
368	spa_t *spa = zio->io_spa;
369	ASSERT(MUTEX_HELD(&vq->vq_lock));
370	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
371	avl_add(&vq->vq_class[zio->io_priority].vqc_queued_tree, zio);
372
373#ifdef illumos
374	mutex_enter(&spa->spa_iokstat_lock);
375	spa->spa_queue_stats[zio->io_priority].spa_queued++;
376	if (spa->spa_iokstat != NULL)
377		kstat_waitq_enter(spa->spa_iokstat->ks_data);
378	mutex_exit(&spa->spa_iokstat_lock);
379#endif
380}
381
382static void
383vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
384{
385	spa_t *spa = zio->io_spa;
386	ASSERT(MUTEX_HELD(&vq->vq_lock));
387	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
388	avl_remove(&vq->vq_class[zio->io_priority].vqc_queued_tree, zio);
389
390#ifdef illumos
391	mutex_enter(&spa->spa_iokstat_lock);
392	ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_queued, >, 0);
393	spa->spa_queue_stats[zio->io_priority].spa_queued--;
394	if (spa->spa_iokstat != NULL)
395		kstat_waitq_exit(spa->spa_iokstat->ks_data);
396	mutex_exit(&spa->spa_iokstat_lock);
397#endif
398}
399
400static void
401vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio)
402{
403	spa_t *spa = zio->io_spa;
404	ASSERT(MUTEX_HELD(&vq->vq_lock));
405	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
406	vq->vq_class[zio->io_priority].vqc_active++;
407	avl_add(&vq->vq_active_tree, zio);
408
409#ifdef illumos
410	mutex_enter(&spa->spa_iokstat_lock);
411	spa->spa_queue_stats[zio->io_priority].spa_active++;
412	if (spa->spa_iokstat != NULL)
413		kstat_runq_enter(spa->spa_iokstat->ks_data);
414	mutex_exit(&spa->spa_iokstat_lock);
415#endif
416}
417
418static void
419vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio)
420{
421	spa_t *spa = zio->io_spa;
422	ASSERT(MUTEX_HELD(&vq->vq_lock));
423	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
424	vq->vq_class[zio->io_priority].vqc_active--;
425	avl_remove(&vq->vq_active_tree, zio);
426
427#ifdef illumos
428	mutex_enter(&spa->spa_iokstat_lock);
429	ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_active, >, 0);
430	spa->spa_queue_stats[zio->io_priority].spa_active--;
431	if (spa->spa_iokstat != NULL) {
432		kstat_io_t *ksio = spa->spa_iokstat->ks_data;
433
434		kstat_runq_exit(spa->spa_iokstat->ks_data);
435		if (zio->io_type == ZIO_TYPE_READ) {
436			ksio->reads++;
437			ksio->nread += zio->io_size;
438		} else if (zio->io_type == ZIO_TYPE_WRITE) {
439			ksio->writes++;
440			ksio->nwritten += zio->io_size;
441		}
442	}
443	mutex_exit(&spa->spa_iokstat_lock);
444#endif
445}
446
447static void
448vdev_queue_agg_io_done(zio_t *aio)
449{
450	if (aio->io_type == ZIO_TYPE_READ) {
451		zio_t *pio;
452		while ((pio = zio_walk_parents(aio)) != NULL) {
453			bcopy((char *)aio->io_data + (pio->io_offset -
454			    aio->io_offset), pio->io_data, pio->io_size);
455		}
456	}
457
458	zio_buf_free(aio->io_data, aio->io_size);
459}
460
461static int
462vdev_queue_class_min_active(zio_priority_t p)
463{
464	switch (p) {
465	case ZIO_PRIORITY_SYNC_READ:
466		return (zfs_vdev_sync_read_min_active);
467	case ZIO_PRIORITY_SYNC_WRITE:
468		return (zfs_vdev_sync_write_min_active);
469	case ZIO_PRIORITY_ASYNC_READ:
470		return (zfs_vdev_async_read_min_active);
471	case ZIO_PRIORITY_ASYNC_WRITE:
472		return (zfs_vdev_async_write_min_active);
473	case ZIO_PRIORITY_SCRUB:
474		return (zfs_vdev_scrub_min_active);
475	case ZIO_PRIORITY_TRIM:
476		return (zfs_vdev_trim_min_active);
477	default:
478		panic("invalid priority %u", p);
479		return (0);
480	}
481}
482
483static int
484vdev_queue_max_async_writes(spa_t *spa)
485{
486	int writes;
487	uint64_t dirty = spa->spa_dsl_pool->dp_dirty_total;
488	uint64_t min_bytes = zfs_dirty_data_max *
489	    zfs_vdev_async_write_active_min_dirty_percent / 100;
490	uint64_t max_bytes = zfs_dirty_data_max *
491	    zfs_vdev_async_write_active_max_dirty_percent / 100;
492
493	/*
494	 * Sync tasks correspond to interactive user actions. To reduce the
495	 * execution time of those actions we push data out as fast as possible.
496	 */
497	if (spa_has_pending_synctask(spa)) {
498		return (zfs_vdev_async_write_max_active);
499	}
500
501	if (dirty < min_bytes)
502		return (zfs_vdev_async_write_min_active);
503	if (dirty > max_bytes)
504		return (zfs_vdev_async_write_max_active);
505
506	/*
507	 * linear interpolation:
508	 * slope = (max_writes - min_writes) / (max_bytes - min_bytes)
509	 * move right by min_bytes
510	 * move up by min_writes
511	 */
512	writes = (dirty - min_bytes) *
513	    (zfs_vdev_async_write_max_active -
514	    zfs_vdev_async_write_min_active) /
515	    (max_bytes - min_bytes) +
516	    zfs_vdev_async_write_min_active;
517	ASSERT3U(writes, >=, zfs_vdev_async_write_min_active);
518	ASSERT3U(writes, <=, zfs_vdev_async_write_max_active);
519	return (writes);
520}
521
522static int
523vdev_queue_class_max_active(spa_t *spa, zio_priority_t p)
524{
525	switch (p) {
526	case ZIO_PRIORITY_SYNC_READ:
527		return (zfs_vdev_sync_read_max_active);
528	case ZIO_PRIORITY_SYNC_WRITE:
529		return (zfs_vdev_sync_write_max_active);
530	case ZIO_PRIORITY_ASYNC_READ:
531		return (zfs_vdev_async_read_max_active);
532	case ZIO_PRIORITY_ASYNC_WRITE:
533		return (vdev_queue_max_async_writes(spa));
534	case ZIO_PRIORITY_SCRUB:
535		return (zfs_vdev_scrub_max_active);
536	case ZIO_PRIORITY_TRIM:
537		return (zfs_vdev_trim_max_active);
538	default:
539		panic("invalid priority %u", p);
540		return (0);
541	}
542}
543
544/*
545 * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if
546 * there is no eligible class.
547 */
548static zio_priority_t
549vdev_queue_class_to_issue(vdev_queue_t *vq)
550{
551	spa_t *spa = vq->vq_vdev->vdev_spa;
552	zio_priority_t p;
553
554	ASSERT(MUTEX_HELD(&vq->vq_lock));
555
556	if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active)
557		return (ZIO_PRIORITY_NUM_QUEUEABLE);
558
559	/* find a queue that has not reached its minimum # outstanding i/os */
560	for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
561		if (avl_numnodes(&vq->vq_class[p].vqc_queued_tree) > 0 &&
562		    vq->vq_class[p].vqc_active <
563		    vdev_queue_class_min_active(p))
564			return (p);
565	}
566
567	/*
568	 * If we haven't found a queue, look for one that hasn't reached its
569	 * maximum # outstanding i/os.
570	 */
571	for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
572		if (avl_numnodes(&vq->vq_class[p].vqc_queued_tree) > 0 &&
573		    vq->vq_class[p].vqc_active <
574		    vdev_queue_class_max_active(spa, p))
575			return (p);
576	}
577
578	/* No eligible queued i/os */
579	return (ZIO_PRIORITY_NUM_QUEUEABLE);
580}
581
582/*
583 * Compute the range spanned by two i/os, which is the endpoint of the last
584 * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
585 * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
586 * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
587 */
588#define	IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
589#define	IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
590
591static zio_t *
592vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
593{
594	zio_t *first, *last, *aio, *dio, *mandatory, *nio;
595	uint64_t maxgap = 0;
596	uint64_t size;
597	boolean_t stretch;
598	avl_tree_t *t;
599	enum zio_flag flags;
600
601	ASSERT(MUTEX_HELD(&vq->vq_lock));
602
603	if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE)
604		return (NULL);
605
606	/*
607	 * The synchronous i/o queues are not sorted by LBA, so we can't
608	 * find adjacent i/os.  These i/os tend to not be tightly clustered,
609	 * or too large to aggregate, so this has little impact on performance.
610	 */
611	if (zio->io_priority == ZIO_PRIORITY_SYNC_READ ||
612	    zio->io_priority == ZIO_PRIORITY_SYNC_WRITE)
613		return (NULL);
614
615	first = last = zio;
616
617	if (zio->io_type == ZIO_TYPE_READ)
618		maxgap = zfs_vdev_read_gap_limit;
619
620	/*
621	 * We can aggregate I/Os that are sufficiently adjacent and of
622	 * the same flavor, as expressed by the AGG_INHERIT flags.
623	 * The latter requirement is necessary so that certain
624	 * attributes of the I/O, such as whether it's a normal I/O
625	 * or a scrub/resilver, can be preserved in the aggregate.
626	 * We can include optional I/Os, but don't allow them
627	 * to begin a range as they add no benefit in that situation.
628	 */
629
630	/*
631	 * We keep track of the last non-optional I/O.
632	 */
633	mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first;
634
635	/*
636	 * Walk backwards through sufficiently contiguous I/Os
637	 * recording the last non-option I/O.
638	 */
639	flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT;
640	t = &vq->vq_class[zio->io_priority].vqc_queued_tree;
641	while ((dio = AVL_PREV(t, first)) != NULL &&
642	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
643	    IO_SPAN(dio, last) <= zfs_vdev_aggregation_limit &&
644	    IO_GAP(dio, first) <= maxgap) {
645		first = dio;
646		if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL))
647			mandatory = first;
648	}
649
650	/*
651	 * Skip any initial optional I/Os.
652	 */
653	while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) {
654		first = AVL_NEXT(t, first);
655		ASSERT(first != NULL);
656	}
657
658	/*
659	 * Walk forward through sufficiently contiguous I/Os.
660	 */
661	while ((dio = AVL_NEXT(t, last)) != NULL &&
662	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
663	    IO_SPAN(first, dio) <= zfs_vdev_aggregation_limit &&
664	    IO_GAP(last, dio) <= maxgap) {
665		last = dio;
666		if (!(last->io_flags & ZIO_FLAG_OPTIONAL))
667			mandatory = last;
668	}
669
670	/*
671	 * Now that we've established the range of the I/O aggregation
672	 * we must decide what to do with trailing optional I/Os.
673	 * For reads, there's nothing to do. While we are unable to
674	 * aggregate further, it's possible that a trailing optional
675	 * I/O would allow the underlying device to aggregate with
676	 * subsequent I/Os. We must therefore determine if the next
677	 * non-optional I/O is close enough to make aggregation
678	 * worthwhile.
679	 */
680	stretch = B_FALSE;
681	if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) {
682		zio_t *nio = last;
683		while ((dio = AVL_NEXT(t, nio)) != NULL &&
684		    IO_GAP(nio, dio) == 0 &&
685		    IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) {
686			nio = dio;
687			if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
688				stretch = B_TRUE;
689				break;
690			}
691		}
692	}
693
694	if (stretch) {
695		/* This may be a no-op. */
696		dio = AVL_NEXT(t, last);
697		dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
698	} else {
699		while (last != mandatory && last != first) {
700			ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL);
701			last = AVL_PREV(t, last);
702			ASSERT(last != NULL);
703		}
704	}
705
706	if (first == last)
707		return (NULL);
708
709	size = IO_SPAN(first, last);
710	ASSERT3U(size, <=, zfs_vdev_aggregation_limit);
711
712	aio = zio_vdev_delegated_io(first->io_vd, first->io_offset,
713	    zio_buf_alloc(size), size, first->io_type, zio->io_priority,
714	    flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
715	    vdev_queue_agg_io_done, NULL);
716	aio->io_timestamp = first->io_timestamp;
717
718	nio = first;
719	do {
720		dio = nio;
721		nio = AVL_NEXT(t, dio);
722		ASSERT3U(dio->io_type, ==, aio->io_type);
723
724		if (dio->io_flags & ZIO_FLAG_NODATA) {
725			ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE);
726			bzero((char *)aio->io_data + (dio->io_offset -
727			    aio->io_offset), dio->io_size);
728		} else if (dio->io_type == ZIO_TYPE_WRITE) {
729			bcopy(dio->io_data, (char *)aio->io_data +
730			    (dio->io_offset - aio->io_offset),
731			    dio->io_size);
732		}
733
734		zio_add_child(dio, aio);
735		vdev_queue_io_remove(vq, dio);
736		zio_vdev_io_bypass(dio);
737		zio_execute(dio);
738	} while (dio != last);
739
740	return (aio);
741}
742
743static zio_t *
744vdev_queue_io_to_issue(vdev_queue_t *vq)
745{
746	zio_t *zio, *aio;
747	zio_priority_t p;
748	avl_index_t idx;
749	vdev_queue_class_t *vqc;
750	zio_t search;
751
752again:
753	ASSERT(MUTEX_HELD(&vq->vq_lock));
754
755	p = vdev_queue_class_to_issue(vq);
756
757	if (p == ZIO_PRIORITY_NUM_QUEUEABLE) {
758		/* No eligible queued i/os */
759		return (NULL);
760	}
761
762	/*
763	 * For LBA-ordered queues (async / scrub), issue the i/o which follows
764	 * the most recently issued i/o in LBA (offset) order.
765	 *
766	 * For FIFO queues (sync), issue the i/o with the lowest timestamp.
767	 */
768	vqc = &vq->vq_class[p];
769	search.io_timestamp = 0;
770	search.io_offset = vq->vq_last_offset + 1;
771	VERIFY3P(avl_find(&vqc->vqc_queued_tree, &search, &idx), ==, NULL);
772	zio = avl_nearest(&vqc->vqc_queued_tree, idx, AVL_AFTER);
773	if (zio == NULL)
774		zio = avl_first(&vqc->vqc_queued_tree);
775	ASSERT3U(zio->io_priority, ==, p);
776
777	aio = vdev_queue_aggregate(vq, zio);
778	if (aio != NULL)
779		zio = aio;
780	else
781		vdev_queue_io_remove(vq, zio);
782
783	/*
784	 * If the I/O is or was optional and therefore has no data, we need to
785	 * simply discard it. We need to drop the vdev queue's lock to avoid a
786	 * deadlock that we could encounter since this I/O will complete
787	 * immediately.
788	 */
789	if (zio->io_flags & ZIO_FLAG_NODATA) {
790		mutex_exit(&vq->vq_lock);
791		zio_vdev_io_bypass(zio);
792		zio_execute(zio);
793		mutex_enter(&vq->vq_lock);
794		goto again;
795	}
796
797	vdev_queue_pending_add(vq, zio);
798	vq->vq_last_offset = zio->io_offset;
799
800	return (zio);
801}
802
803zio_t *
804vdev_queue_io(zio_t *zio)
805{
806	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
807	zio_t *nio;
808
809	if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
810		return (zio);
811
812	/*
813	 * Children i/os inherent their parent's priority, which might
814	 * not match the child's i/o type.  Fix it up here.
815	 */
816	if (zio->io_type == ZIO_TYPE_READ) {
817		if (zio->io_priority != ZIO_PRIORITY_SYNC_READ &&
818		    zio->io_priority != ZIO_PRIORITY_ASYNC_READ &&
819		    zio->io_priority != ZIO_PRIORITY_SCRUB)
820			zio->io_priority = ZIO_PRIORITY_ASYNC_READ;
821	} else if (zio->io_type == ZIO_TYPE_WRITE) {
822		if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE &&
823		    zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE)
824			zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE;
825	} else {
826		ASSERT(zio->io_type == ZIO_TYPE_FREE);
827		zio->io_priority = ZIO_PRIORITY_TRIM;
828	}
829
830	zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE;
831
832	mutex_enter(&vq->vq_lock);
833	zio->io_timestamp = gethrtime();
834	vdev_queue_io_add(vq, zio);
835	nio = vdev_queue_io_to_issue(vq);
836	mutex_exit(&vq->vq_lock);
837
838	if (nio == NULL)
839		return (NULL);
840
841	if (nio->io_done == vdev_queue_agg_io_done) {
842		zio_nowait(nio);
843		return (NULL);
844	}
845
846	return (nio);
847}
848
849void
850vdev_queue_io_done(zio_t *zio)
851{
852	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
853	zio_t *nio;
854
855	if (zio_injection_enabled)
856		delay(SEC_TO_TICK(zio_handle_io_delay(zio)));
857
858	mutex_enter(&vq->vq_lock);
859
860	vdev_queue_pending_remove(vq, zio);
861
862	vq->vq_io_complete_ts = gethrtime();
863
864	while ((nio = vdev_queue_io_to_issue(vq)) != NULL) {
865		mutex_exit(&vq->vq_lock);
866		if (nio->io_done == vdev_queue_agg_io_done) {
867			zio_nowait(nio);
868		} else {
869			zio_vdev_io_reissue(nio);
870			zio_execute(nio);
871		}
872		mutex_enter(&vq->vq_lock);
873	}
874
875	mutex_exit(&vq->vq_lock);
876}
877
878/*
879 * As these three methods are only used for load calculations we're not concerned
880 * if we get an incorrect value on 32bit platforms due to lack of vq_lock mutex
881 * use here, instead we prefer to keep it lock free for performance.
882 */
883int
884vdev_queue_length(vdev_t *vd)
885{
886	return (avl_numnodes(&vd->vdev_queue.vq_active_tree));
887}
888
889uint64_t
890vdev_queue_lastoffset(vdev_t *vd)
891{
892	return (vd->vdev_queue.vq_lastoffset);
893}
894
895void
896vdev_queue_register_lastoffset(vdev_t *vd, zio_t *zio)
897{
898	vd->vdev_queue.vq_lastoffset = zio->io_offset + zio->io_size;
899}
900