vdev_queue.c revision 269418
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/*
27 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
28 */
29
30#include <sys/zfs_context.h>
31#include <sys/vdev_impl.h>
32#include <sys/spa_impl.h>
33#include <sys/zio.h>
34#include <sys/avl.h>
35#include <sys/dsl_pool.h>
36
37/*
38 * ZFS I/O Scheduler
39 * ---------------
40 *
41 * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios.  The
42 * I/O scheduler determines when and in what order those operations are
43 * issued.  The I/O scheduler divides operations into five I/O classes
44 * prioritized in the following order: sync read, sync write, async read,
45 * async write, and scrub/resilver.  Each queue defines the minimum and
46 * maximum number of concurrent operations that may be issued to the device.
47 * In addition, the device has an aggregate maximum. Note that the sum of the
48 * per-queue minimums must not exceed the aggregate maximum, and if the
49 * aggregate maximum is equal to or greater than the sum of the per-queue
50 * maximums, the per-queue minimum has no effect.
51 *
52 * For many physical devices, throughput increases with the number of
53 * concurrent operations, but latency typically suffers. Further, physical
54 * devices typically have a limit at which more concurrent operations have no
55 * effect on throughput or can actually cause it to decrease.
56 *
57 * The scheduler selects the next operation to issue by first looking for an
58 * I/O class whose minimum has not been satisfied. Once all are satisfied and
59 * the aggregate maximum has not been hit, the scheduler looks for classes
60 * whose maximum has not been satisfied. Iteration through the I/O classes is
61 * done in the order specified above. No further operations are issued if the
62 * aggregate maximum number of concurrent operations has been hit or if there
63 * are no operations queued for an I/O class that has not hit its maximum.
64 * Every time an i/o is queued or an operation completes, the I/O scheduler
65 * looks for new operations to issue.
66 *
67 * All I/O classes have a fixed maximum number of outstanding operations
68 * except for the async write class. Asynchronous writes represent the data
69 * that is committed to stable storage during the syncing stage for
70 * transaction groups (see txg.c). Transaction groups enter the syncing state
71 * periodically so the number of queued async writes will quickly burst up and
72 * then bleed down to zero. Rather than servicing them as quickly as possible,
73 * the I/O scheduler changes the maximum number of active async write i/os
74 * according to the amount of dirty data in the pool (see dsl_pool.c). Since
75 * both throughput and latency typically increase with the number of
76 * concurrent operations issued to physical devices, reducing the burstiness
77 * in the number of concurrent operations also stabilizes the response time of
78 * operations from other -- and in particular synchronous -- queues. In broad
79 * strokes, the I/O scheduler will issue more concurrent operations from the
80 * async write queue as there's more dirty data in the pool.
81 *
82 * Async Writes
83 *
84 * The number of concurrent operations issued for the async write I/O class
85 * follows a piece-wise linear function defined by a few adjustable points.
86 *
87 *        |                   o---------| <-- zfs_vdev_async_write_max_active
88 *   ^    |                  /^         |
89 *   |    |                 / |         |
90 * active |                /  |         |
91 *  I/O   |               /   |         |
92 * count  |              /    |         |
93 *        |             /     |         |
94 *        |------------o      |         | <-- zfs_vdev_async_write_min_active
95 *       0|____________^______|_________|
96 *        0%           |      |       100% of zfs_dirty_data_max
97 *                     |      |
98 *                     |      `-- zfs_vdev_async_write_active_max_dirty_percent
99 *                     `--------- zfs_vdev_async_write_active_min_dirty_percent
100 *
101 * Until the amount of dirty data exceeds a minimum percentage of the dirty
102 * data allowed in the pool, the I/O scheduler will limit the number of
103 * concurrent operations to the minimum. As that threshold is crossed, the
104 * number of concurrent operations issued increases linearly to the maximum at
105 * the specified maximum percentage of the dirty data allowed in the pool.
106 *
107 * Ideally, the amount of dirty data on a busy pool will stay in the sloped
108 * part of the function between zfs_vdev_async_write_active_min_dirty_percent
109 * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the
110 * maximum percentage, this indicates that the rate of incoming data is
111 * greater than the rate that the backend storage can handle. In this case, we
112 * must further throttle incoming writes (see dmu_tx_delay() for details).
113 */
114
115/*
116 * The maximum number of i/os active to each device.  Ideally, this will be >=
117 * the sum of each queue's max_active.  It must be at least the sum of each
118 * queue's min_active.
119 */
120uint32_t zfs_vdev_max_active = 1000;
121
122/*
123 * Per-queue limits on the number of i/os active to each device.  If the
124 * sum of the queue's max_active is < zfs_vdev_max_active, then the
125 * min_active comes into play.  We will send min_active from each queue,
126 * and then select from queues in the order defined by zio_priority_t.
127 *
128 * In general, smaller max_active's will lead to lower latency of synchronous
129 * operations.  Larger max_active's may lead to higher overall throughput,
130 * depending on underlying storage.
131 *
132 * The ratio of the queues' max_actives determines the balance of performance
133 * between reads, writes, and scrubs.  E.g., increasing
134 * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete
135 * more quickly, but reads and writes to have higher latency and lower
136 * throughput.
137 */
138uint32_t zfs_vdev_sync_read_min_active = 10;
139uint32_t zfs_vdev_sync_read_max_active = 10;
140uint32_t zfs_vdev_sync_write_min_active = 10;
141uint32_t zfs_vdev_sync_write_max_active = 10;
142uint32_t zfs_vdev_async_read_min_active = 1;
143uint32_t zfs_vdev_async_read_max_active = 3;
144uint32_t zfs_vdev_async_write_min_active = 1;
145uint32_t zfs_vdev_async_write_max_active = 10;
146uint32_t zfs_vdev_scrub_min_active = 1;
147uint32_t zfs_vdev_scrub_max_active = 2;
148
149/*
150 * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent
151 * dirty data, use zfs_vdev_async_write_min_active.  When it has more than
152 * zfs_vdev_async_write_active_max_dirty_percent, use
153 * zfs_vdev_async_write_max_active. The value is linearly interpolated
154 * between min and max.
155 */
156int zfs_vdev_async_write_active_min_dirty_percent = 30;
157int zfs_vdev_async_write_active_max_dirty_percent = 60;
158
159/*
160 * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
161 * For read I/Os, we also aggregate across small adjacency gaps; for writes
162 * we include spans of optional I/Os to aid aggregation at the disk even when
163 * they aren't able to help us aggregate at this level.
164 */
165int zfs_vdev_aggregation_limit = SPA_MAXBLOCKSIZE;
166int zfs_vdev_read_gap_limit = 32 << 10;
167int zfs_vdev_write_gap_limit = 4 << 10;
168
169#ifdef __FreeBSD__
170SYSCTL_DECL(_vfs_zfs_vdev);
171TUNABLE_INT("vfs.zfs.vdev.max_active", &zfs_vdev_max_active);
172SYSCTL_UINT(_vfs_zfs_vdev, OID_AUTO, max_active, CTLFLAG_RW,
173    &zfs_vdev_max_active, 0,
174    "The maximum number of i/os of all types active for each device.");
175
176#define ZFS_VDEV_QUEUE_KNOB_MIN(name)					\
177TUNABLE_INT("vfs.zfs.vdev." #name "_min_active",			\
178    &zfs_vdev_ ## name ## _min_active);					\
179SYSCTL_UINT(_vfs_zfs_vdev, OID_AUTO, name ## _min_active, CTLFLAG_RW,	\
180    &zfs_vdev_ ## name ## _min_active, 0,				\
181    "Initial number of I/O requests of type " #name			\
182    " active for each device");
183
184#define ZFS_VDEV_QUEUE_KNOB_MAX(name)					\
185TUNABLE_INT("vfs.zfs.vdev." #name "_max_active",			\
186    &zfs_vdev_ ## name ## _max_active);					\
187SYSCTL_UINT(_vfs_zfs_vdev, OID_AUTO, name ## _max_active, CTLFLAG_RW,	\
188    &zfs_vdev_ ## name ## _max_active, 0,				\
189    "Maximum number of I/O requests of type " #name			\
190    " active for each device");
191
192ZFS_VDEV_QUEUE_KNOB_MIN(sync_read);
193ZFS_VDEV_QUEUE_KNOB_MAX(sync_read);
194ZFS_VDEV_QUEUE_KNOB_MIN(sync_write);
195ZFS_VDEV_QUEUE_KNOB_MAX(sync_write);
196ZFS_VDEV_QUEUE_KNOB_MIN(async_read);
197ZFS_VDEV_QUEUE_KNOB_MAX(async_read);
198ZFS_VDEV_QUEUE_KNOB_MIN(async_write);
199ZFS_VDEV_QUEUE_KNOB_MAX(async_write);
200ZFS_VDEV_QUEUE_KNOB_MIN(scrub);
201ZFS_VDEV_QUEUE_KNOB_MAX(scrub);
202
203#undef ZFS_VDEV_QUEUE_KNOB
204
205TUNABLE_INT("vfs.zfs.vdev.aggregation_limit", &zfs_vdev_aggregation_limit);
206SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, aggregation_limit, CTLFLAG_RW,
207    &zfs_vdev_aggregation_limit, 0,
208    "I/O requests are aggregated up to this size");
209TUNABLE_INT("vfs.zfs.vdev.read_gap_limit", &zfs_vdev_read_gap_limit);
210SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, read_gap_limit, CTLFLAG_RW,
211    &zfs_vdev_read_gap_limit, 0,
212    "Acceptable gap between two reads being aggregated");
213TUNABLE_INT("vfs.zfs.vdev.write_gap_limit", &zfs_vdev_write_gap_limit);
214SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, write_gap_limit, CTLFLAG_RW,
215    &zfs_vdev_write_gap_limit, 0,
216    "Acceptable gap between two writes being aggregated");
217#endif
218
219int
220vdev_queue_offset_compare(const void *x1, const void *x2)
221{
222	const zio_t *z1 = x1;
223	const zio_t *z2 = x2;
224
225	if (z1->io_offset < z2->io_offset)
226		return (-1);
227	if (z1->io_offset > z2->io_offset)
228		return (1);
229
230	if (z1 < z2)
231		return (-1);
232	if (z1 > z2)
233		return (1);
234
235	return (0);
236}
237
238int
239vdev_queue_timestamp_compare(const void *x1, const void *x2)
240{
241	const zio_t *z1 = x1;
242	const zio_t *z2 = x2;
243
244	if (z1->io_timestamp < z2->io_timestamp)
245		return (-1);
246	if (z1->io_timestamp > z2->io_timestamp)
247		return (1);
248
249	if (z1 < z2)
250		return (-1);
251	if (z1 > z2)
252		return (1);
253
254	return (0);
255}
256
257void
258vdev_queue_init(vdev_t *vd)
259{
260	vdev_queue_t *vq = &vd->vdev_queue;
261
262	mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
263	vq->vq_vdev = vd;
264
265	avl_create(&vq->vq_active_tree, vdev_queue_offset_compare,
266	    sizeof (zio_t), offsetof(struct zio, io_queue_node));
267
268	for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
269		/*
270		 * The synchronous i/o queues are FIFO rather than LBA ordered.
271		 * This provides more consistent latency for these i/os, and
272		 * they tend to not be tightly clustered anyway so there is
273		 * little to no throughput loss.
274		 */
275		boolean_t fifo = (p == ZIO_PRIORITY_SYNC_READ ||
276		    p == ZIO_PRIORITY_SYNC_WRITE);
277		avl_create(&vq->vq_class[p].vqc_queued_tree,
278		    fifo ? vdev_queue_timestamp_compare :
279		    vdev_queue_offset_compare,
280		    sizeof (zio_t), offsetof(struct zio, io_queue_node));
281	}
282}
283
284void
285vdev_queue_fini(vdev_t *vd)
286{
287	vdev_queue_t *vq = &vd->vdev_queue;
288
289	for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++)
290		avl_destroy(&vq->vq_class[p].vqc_queued_tree);
291	avl_destroy(&vq->vq_active_tree);
292
293	mutex_destroy(&vq->vq_lock);
294}
295
296static void
297vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
298{
299	spa_t *spa = zio->io_spa;
300	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
301	avl_add(&vq->vq_class[zio->io_priority].vqc_queued_tree, zio);
302
303#ifdef illumos
304	mutex_enter(&spa->spa_iokstat_lock);
305	spa->spa_queue_stats[zio->io_priority].spa_queued++;
306	if (spa->spa_iokstat != NULL)
307		kstat_waitq_enter(spa->spa_iokstat->ks_data);
308	mutex_exit(&spa->spa_iokstat_lock);
309#endif
310}
311
312static void
313vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
314{
315	spa_t *spa = zio->io_spa;
316	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
317	avl_remove(&vq->vq_class[zio->io_priority].vqc_queued_tree, zio);
318
319#ifdef illumos
320	mutex_enter(&spa->spa_iokstat_lock);
321	ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_queued, >, 0);
322	spa->spa_queue_stats[zio->io_priority].spa_queued--;
323	if (spa->spa_iokstat != NULL)
324		kstat_waitq_exit(spa->spa_iokstat->ks_data);
325	mutex_exit(&spa->spa_iokstat_lock);
326#endif
327}
328
329static void
330vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio)
331{
332	spa_t *spa = zio->io_spa;
333	ASSERT(MUTEX_HELD(&vq->vq_lock));
334	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
335	vq->vq_class[zio->io_priority].vqc_active++;
336	avl_add(&vq->vq_active_tree, zio);
337
338#ifdef illumos
339	mutex_enter(&spa->spa_iokstat_lock);
340	spa->spa_queue_stats[zio->io_priority].spa_active++;
341	if (spa->spa_iokstat != NULL)
342		kstat_runq_enter(spa->spa_iokstat->ks_data);
343	mutex_exit(&spa->spa_iokstat_lock);
344#endif
345}
346
347static void
348vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio)
349{
350	spa_t *spa = zio->io_spa;
351	ASSERT(MUTEX_HELD(&vq->vq_lock));
352	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
353	vq->vq_class[zio->io_priority].vqc_active--;
354	avl_remove(&vq->vq_active_tree, zio);
355
356#ifdef illumos
357	mutex_enter(&spa->spa_iokstat_lock);
358	ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_active, >, 0);
359	spa->spa_queue_stats[zio->io_priority].spa_active--;
360	if (spa->spa_iokstat != NULL) {
361		kstat_io_t *ksio = spa->spa_iokstat->ks_data;
362
363		kstat_runq_exit(spa->spa_iokstat->ks_data);
364		if (zio->io_type == ZIO_TYPE_READ) {
365			ksio->reads++;
366			ksio->nread += zio->io_size;
367		} else if (zio->io_type == ZIO_TYPE_WRITE) {
368			ksio->writes++;
369			ksio->nwritten += zio->io_size;
370		}
371	}
372	mutex_exit(&spa->spa_iokstat_lock);
373#endif
374}
375
376static void
377vdev_queue_agg_io_done(zio_t *aio)
378{
379	if (aio->io_type == ZIO_TYPE_READ) {
380		zio_t *pio;
381		while ((pio = zio_walk_parents(aio)) != NULL) {
382			bcopy((char *)aio->io_data + (pio->io_offset -
383			    aio->io_offset), pio->io_data, pio->io_size);
384		}
385	}
386
387	zio_buf_free(aio->io_data, aio->io_size);
388}
389
390static int
391vdev_queue_class_min_active(zio_priority_t p)
392{
393	switch (p) {
394	case ZIO_PRIORITY_SYNC_READ:
395		return (zfs_vdev_sync_read_min_active);
396	case ZIO_PRIORITY_SYNC_WRITE:
397		return (zfs_vdev_sync_write_min_active);
398	case ZIO_PRIORITY_ASYNC_READ:
399		return (zfs_vdev_async_read_min_active);
400	case ZIO_PRIORITY_ASYNC_WRITE:
401		return (zfs_vdev_async_write_min_active);
402	case ZIO_PRIORITY_SCRUB:
403		return (zfs_vdev_scrub_min_active);
404	default:
405		panic("invalid priority %u", p);
406		return (0);
407	}
408}
409
410static int
411vdev_queue_max_async_writes(spa_t *spa)
412{
413	int writes;
414	uint64_t dirty = spa->spa_dsl_pool->dp_dirty_total;
415	uint64_t min_bytes = zfs_dirty_data_max *
416	    zfs_vdev_async_write_active_min_dirty_percent / 100;
417	uint64_t max_bytes = zfs_dirty_data_max *
418	    zfs_vdev_async_write_active_max_dirty_percent / 100;
419
420	/*
421	 * Sync tasks correspond to interactive user actions. To reduce the
422	 * execution time of those actions we push data out as fast as possible.
423	 */
424	if (spa_has_pending_synctask(spa)) {
425		return (zfs_vdev_async_write_max_active);
426	}
427
428	if (dirty < min_bytes)
429		return (zfs_vdev_async_write_min_active);
430	if (dirty > max_bytes)
431		return (zfs_vdev_async_write_max_active);
432
433	/*
434	 * linear interpolation:
435	 * slope = (max_writes - min_writes) / (max_bytes - min_bytes)
436	 * move right by min_bytes
437	 * move up by min_writes
438	 */
439	writes = (dirty - min_bytes) *
440	    (zfs_vdev_async_write_max_active -
441	    zfs_vdev_async_write_min_active) /
442	    (max_bytes - min_bytes) +
443	    zfs_vdev_async_write_min_active;
444	ASSERT3U(writes, >=, zfs_vdev_async_write_min_active);
445	ASSERT3U(writes, <=, zfs_vdev_async_write_max_active);
446	return (writes);
447}
448
449static int
450vdev_queue_class_max_active(spa_t *spa, zio_priority_t p)
451{
452	switch (p) {
453	case ZIO_PRIORITY_SYNC_READ:
454		return (zfs_vdev_sync_read_max_active);
455	case ZIO_PRIORITY_SYNC_WRITE:
456		return (zfs_vdev_sync_write_max_active);
457	case ZIO_PRIORITY_ASYNC_READ:
458		return (zfs_vdev_async_read_max_active);
459	case ZIO_PRIORITY_ASYNC_WRITE:
460		return (vdev_queue_max_async_writes(spa));
461	case ZIO_PRIORITY_SCRUB:
462		return (zfs_vdev_scrub_max_active);
463	default:
464		panic("invalid priority %u", p);
465		return (0);
466	}
467}
468
469/*
470 * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if
471 * there is no eligible class.
472 */
473static zio_priority_t
474vdev_queue_class_to_issue(vdev_queue_t *vq)
475{
476	spa_t *spa = vq->vq_vdev->vdev_spa;
477	zio_priority_t p;
478
479	if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active)
480		return (ZIO_PRIORITY_NUM_QUEUEABLE);
481
482	/* find a queue that has not reached its minimum # outstanding i/os */
483	for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
484		if (avl_numnodes(&vq->vq_class[p].vqc_queued_tree) > 0 &&
485		    vq->vq_class[p].vqc_active <
486		    vdev_queue_class_min_active(p))
487			return (p);
488	}
489
490	/*
491	 * If we haven't found a queue, look for one that hasn't reached its
492	 * maximum # outstanding i/os.
493	 */
494	for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
495		if (avl_numnodes(&vq->vq_class[p].vqc_queued_tree) > 0 &&
496		    vq->vq_class[p].vqc_active <
497		    vdev_queue_class_max_active(spa, p))
498			return (p);
499	}
500
501	/* No eligible queued i/os */
502	return (ZIO_PRIORITY_NUM_QUEUEABLE);
503}
504
505/*
506 * Compute the range spanned by two i/os, which is the endpoint of the last
507 * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
508 * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
509 * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
510 */
511#define	IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
512#define	IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
513
514static zio_t *
515vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
516{
517	zio_t *first, *last, *aio, *dio, *mandatory, *nio;
518	uint64_t maxgap = 0;
519	uint64_t size;
520	boolean_t stretch = B_FALSE;
521	vdev_queue_class_t *vqc = &vq->vq_class[zio->io_priority];
522	avl_tree_t *t = &vqc->vqc_queued_tree;
523	enum zio_flag flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT;
524
525	if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE)
526		return (NULL);
527
528	/*
529	 * The synchronous i/o queues are not sorted by LBA, so we can't
530	 * find adjacent i/os.  These i/os tend to not be tightly clustered,
531	 * or too large to aggregate, so this has little impact on performance.
532	 */
533	if (zio->io_priority == ZIO_PRIORITY_SYNC_READ ||
534	    zio->io_priority == ZIO_PRIORITY_SYNC_WRITE)
535		return (NULL);
536
537	first = last = zio;
538
539	if (zio->io_type == ZIO_TYPE_READ)
540		maxgap = zfs_vdev_read_gap_limit;
541
542	/*
543	 * We can aggregate I/Os that are sufficiently adjacent and of
544	 * the same flavor, as expressed by the AGG_INHERIT flags.
545	 * The latter requirement is necessary so that certain
546	 * attributes of the I/O, such as whether it's a normal I/O
547	 * or a scrub/resilver, can be preserved in the aggregate.
548	 * We can include optional I/Os, but don't allow them
549	 * to begin a range as they add no benefit in that situation.
550	 */
551
552	/*
553	 * We keep track of the last non-optional I/O.
554	 */
555	mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first;
556
557	/*
558	 * Walk backwards through sufficiently contiguous I/Os
559	 * recording the last non-option I/O.
560	 */
561	while ((dio = AVL_PREV(t, first)) != NULL &&
562	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
563	    IO_SPAN(dio, last) <= zfs_vdev_aggregation_limit &&
564	    IO_GAP(dio, first) <= maxgap) {
565		first = dio;
566		if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL))
567			mandatory = first;
568	}
569
570	/*
571	 * Skip any initial optional I/Os.
572	 */
573	while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) {
574		first = AVL_NEXT(t, first);
575		ASSERT(first != NULL);
576	}
577
578	/*
579	 * Walk forward through sufficiently contiguous I/Os.
580	 */
581	while ((dio = AVL_NEXT(t, last)) != NULL &&
582	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
583	    IO_SPAN(first, dio) <= zfs_vdev_aggregation_limit &&
584	    IO_GAP(last, dio) <= maxgap) {
585		last = dio;
586		if (!(last->io_flags & ZIO_FLAG_OPTIONAL))
587			mandatory = last;
588	}
589
590	/*
591	 * Now that we've established the range of the I/O aggregation
592	 * we must decide what to do with trailing optional I/Os.
593	 * For reads, there's nothing to do. While we are unable to
594	 * aggregate further, it's possible that a trailing optional
595	 * I/O would allow the underlying device to aggregate with
596	 * subsequent I/Os. We must therefore determine if the next
597	 * non-optional I/O is close enough to make aggregation
598	 * worthwhile.
599	 */
600	if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) {
601		zio_t *nio = last;
602		while ((dio = AVL_NEXT(t, nio)) != NULL &&
603		    IO_GAP(nio, dio) == 0 &&
604		    IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) {
605			nio = dio;
606			if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
607				stretch = B_TRUE;
608				break;
609			}
610		}
611	}
612
613	if (stretch) {
614		/* This may be a no-op. */
615		dio = AVL_NEXT(t, last);
616		dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
617	} else {
618		while (last != mandatory && last != first) {
619			ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL);
620			last = AVL_PREV(t, last);
621			ASSERT(last != NULL);
622		}
623	}
624
625	if (first == last)
626		return (NULL);
627
628	size = IO_SPAN(first, last);
629	ASSERT3U(size, <=, zfs_vdev_aggregation_limit);
630
631	aio = zio_vdev_delegated_io(first->io_vd, first->io_offset,
632	    zio_buf_alloc(size), size, first->io_type, zio->io_priority,
633	    flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
634	    vdev_queue_agg_io_done, NULL);
635	aio->io_timestamp = first->io_timestamp;
636
637	nio = first;
638	do {
639		dio = nio;
640		nio = AVL_NEXT(t, dio);
641		ASSERT3U(dio->io_type, ==, aio->io_type);
642
643		if (dio->io_flags & ZIO_FLAG_NODATA) {
644			ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE);
645			bzero((char *)aio->io_data + (dio->io_offset -
646			    aio->io_offset), dio->io_size);
647		} else if (dio->io_type == ZIO_TYPE_WRITE) {
648			bcopy(dio->io_data, (char *)aio->io_data +
649			    (dio->io_offset - aio->io_offset),
650			    dio->io_size);
651		}
652
653		zio_add_child(dio, aio);
654		vdev_queue_io_remove(vq, dio);
655		zio_vdev_io_bypass(dio);
656		zio_execute(dio);
657	} while (dio != last);
658
659	return (aio);
660}
661
662static zio_t *
663vdev_queue_io_to_issue(vdev_queue_t *vq)
664{
665	zio_t *zio, *aio;
666	zio_priority_t p;
667	avl_index_t idx;
668	vdev_queue_class_t *vqc;
669	zio_t search;
670
671again:
672	ASSERT(MUTEX_HELD(&vq->vq_lock));
673
674	p = vdev_queue_class_to_issue(vq);
675
676	if (p == ZIO_PRIORITY_NUM_QUEUEABLE) {
677		/* No eligible queued i/os */
678		return (NULL);
679	}
680
681	/*
682	 * For LBA-ordered queues (async / scrub), issue the i/o which follows
683	 * the most recently issued i/o in LBA (offset) order.
684	 *
685	 * For FIFO queues (sync), issue the i/o with the lowest timestamp.
686	 */
687	vqc = &vq->vq_class[p];
688	search.io_timestamp = 0;
689	search.io_offset = vq->vq_last_offset + 1;
690	VERIFY3P(avl_find(&vqc->vqc_queued_tree, &search, &idx), ==, NULL);
691	zio = avl_nearest(&vqc->vqc_queued_tree, idx, AVL_AFTER);
692	if (zio == NULL)
693		zio = avl_first(&vqc->vqc_queued_tree);
694	ASSERT3U(zio->io_priority, ==, p);
695
696	aio = vdev_queue_aggregate(vq, zio);
697	if (aio != NULL)
698		zio = aio;
699	else
700		vdev_queue_io_remove(vq, zio);
701
702	/*
703	 * If the I/O is or was optional and therefore has no data, we need to
704	 * simply discard it. We need to drop the vdev queue's lock to avoid a
705	 * deadlock that we could encounter since this I/O will complete
706	 * immediately.
707	 */
708	if (zio->io_flags & ZIO_FLAG_NODATA) {
709		mutex_exit(&vq->vq_lock);
710		zio_vdev_io_bypass(zio);
711		zio_execute(zio);
712		mutex_enter(&vq->vq_lock);
713		goto again;
714	}
715
716	vdev_queue_pending_add(vq, zio);
717	vq->vq_last_offset = zio->io_offset;
718
719	return (zio);
720}
721
722zio_t *
723vdev_queue_io(zio_t *zio)
724{
725	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
726	zio_t *nio;
727
728	if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
729		return (zio);
730
731	/*
732	 * Children i/os inherent their parent's priority, which might
733	 * not match the child's i/o type.  Fix it up here.
734	 */
735	if (zio->io_type == ZIO_TYPE_READ) {
736		if (zio->io_priority != ZIO_PRIORITY_SYNC_READ &&
737		    zio->io_priority != ZIO_PRIORITY_ASYNC_READ &&
738		    zio->io_priority != ZIO_PRIORITY_SCRUB)
739			zio->io_priority = ZIO_PRIORITY_ASYNC_READ;
740	} else {
741		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
742		if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE &&
743		    zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE)
744			zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE;
745	}
746
747	zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE;
748
749	mutex_enter(&vq->vq_lock);
750	zio->io_timestamp = gethrtime();
751	vdev_queue_io_add(vq, zio);
752	nio = vdev_queue_io_to_issue(vq);
753	mutex_exit(&vq->vq_lock);
754
755	if (nio == NULL)
756		return (NULL);
757
758	if (nio->io_done == vdev_queue_agg_io_done) {
759		zio_nowait(nio);
760		return (NULL);
761	}
762
763	return (nio);
764}
765
766void
767vdev_queue_io_done(zio_t *zio)
768{
769	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
770	zio_t *nio;
771
772	if (zio_injection_enabled)
773		delay(SEC_TO_TICK(zio_handle_io_delay(zio)));
774
775	mutex_enter(&vq->vq_lock);
776
777	vdev_queue_pending_remove(vq, zio);
778
779	vq->vq_io_complete_ts = gethrtime();
780
781	while ((nio = vdev_queue_io_to_issue(vq)) != NULL) {
782		mutex_exit(&vq->vq_lock);
783		if (nio->io_done == vdev_queue_agg_io_done) {
784			zio_nowait(nio);
785		} else {
786			zio_vdev_io_reissue(nio);
787			zio_execute(nio);
788		}
789		mutex_enter(&vq->vq_lock);
790	}
791
792	mutex_exit(&vq->vq_lock);
793}
794