metaslab.c revision 276081
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 */
26
27#include <sys/zfs_context.h>
28#include <sys/dmu.h>
29#include <sys/dmu_tx.h>
30#include <sys/space_map.h>
31#include <sys/metaslab_impl.h>
32#include <sys/vdev_impl.h>
33#include <sys/zio.h>
34#include <sys/spa_impl.h>
35#include <sys/zfeature.h>
36
37SYSCTL_DECL(_vfs_zfs);
38SYSCTL_NODE(_vfs_zfs, OID_AUTO, metaslab, CTLFLAG_RW, 0, "ZFS metaslab");
39
40/*
41 * Allow allocations to switch to gang blocks quickly. We do this to
42 * avoid having to load lots of space_maps in a given txg. There are,
43 * however, some cases where we want to avoid "fast" ganging and instead
44 * we want to do an exhaustive search of all metaslabs on this device.
45 * Currently we don't allow any gang, slog, or dump device related allocations
46 * to "fast" gang.
47 */
48#define	CAN_FASTGANG(flags) \
49	(!((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER | \
50	METASLAB_GANG_AVOID)))
51
52#define	METASLAB_WEIGHT_PRIMARY		(1ULL << 63)
53#define	METASLAB_WEIGHT_SECONDARY	(1ULL << 62)
54#define	METASLAB_ACTIVE_MASK		\
55	(METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY)
56
57uint64_t metaslab_aliquot = 512ULL << 10;
58uint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1;	/* force gang blocks */
59TUNABLE_QUAD("vfs.zfs.metaslab.gang_bang", &metaslab_gang_bang);
60SYSCTL_QUAD(_vfs_zfs_metaslab, OID_AUTO, gang_bang, CTLFLAG_RWTUN,
61    &metaslab_gang_bang, 0,
62    "Force gang block allocation for blocks larger than or equal to this value");
63
64/*
65 * The in-core space map representation is more compact than its on-disk form.
66 * The zfs_condense_pct determines how much more compact the in-core
67 * space_map representation must be before we compact it on-disk.
68 * Values should be greater than or equal to 100.
69 */
70int zfs_condense_pct = 200;
71TUNABLE_INT("vfs.zfs.condense_pct", &zfs_condense_pct);
72SYSCTL_INT(_vfs_zfs, OID_AUTO, condense_pct, CTLFLAG_RWTUN,
73    &zfs_condense_pct, 0,
74    "Condense on-disk spacemap when it is more than this many percents"
75    " of in-memory counterpart");
76
77/*
78 * Condensing a metaslab is not guaranteed to actually reduce the amount of
79 * space used on disk. In particular, a space map uses data in increments of
80 * MAX(1 << ashift, space_map_blksize), so a metaslab might use the
81 * same number of blocks after condensing. Since the goal of condensing is to
82 * reduce the number of IOPs required to read the space map, we only want to
83 * condense when we can be sure we will reduce the number of blocks used by the
84 * space map. Unfortunately, we cannot precisely compute whether or not this is
85 * the case in metaslab_should_condense since we are holding ms_lock. Instead,
86 * we apply the following heuristic: do not condense a spacemap unless the
87 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
88 * blocks.
89 */
90int zfs_metaslab_condense_block_threshold = 4;
91
92/*
93 * The zfs_mg_noalloc_threshold defines which metaslab groups should
94 * be eligible for allocation. The value is defined as a percentage of
95 * free space. Metaslab groups that have more free space than
96 * zfs_mg_noalloc_threshold are always eligible for allocations. Once
97 * a metaslab group's free space is less than or equal to the
98 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
99 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
100 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
101 * groups are allowed to accept allocations. Gang blocks are always
102 * eligible to allocate on any metaslab group. The default value of 0 means
103 * no metaslab group will be excluded based on this criterion.
104 */
105int zfs_mg_noalloc_threshold = 0;
106TUNABLE_INT("vfs.zfs.mg_noalloc_threshold", &zfs_mg_noalloc_threshold);
107SYSCTL_INT(_vfs_zfs, OID_AUTO, mg_noalloc_threshold, CTLFLAG_RWTUN,
108    &zfs_mg_noalloc_threshold, 0,
109    "Percentage of metaslab group size that should be free"
110    " to make it eligible for allocation");
111
112/*
113 * Metaslab groups are considered eligible for allocations if their
114 * fragmenation metric (measured as a percentage) is less than or equal to
115 * zfs_mg_fragmentation_threshold. If a metaslab group exceeds this threshold
116 * then it will be skipped unless all metaslab groups within the metaslab
117 * class have also crossed this threshold.
118 */
119int zfs_mg_fragmentation_threshold = 85;
120TUNABLE_INT("vfs.zfs.mg_fragmentation_threshold", &zfs_mg_fragmentation_threshold);
121SYSCTL_INT(_vfs_zfs, OID_AUTO, mg_fragmentation_threshold, CTLFLAG_RWTUN,
122    &zfs_mg_fragmentation_threshold, 0,
123    "Percentage of metaslab group size that should be considered "
124    "eligible for allocations unless all metaslab groups within the metaslab class "
125    "have also crossed this threshold");
126
127/*
128 * Allow metaslabs to keep their active state as long as their fragmentation
129 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
130 * active metaslab that exceeds this threshold will no longer keep its active
131 * status allowing better metaslabs to be selected.
132 */
133int zfs_metaslab_fragmentation_threshold = 70;
134TUNABLE_INT("vfs.zfs.metaslab.fragmentation_threshold",
135    &zfs_metaslab_fragmentation_threshold);
136SYSCTL_INT(_vfs_zfs_metaslab, OID_AUTO, fragmentation_threshold, CTLFLAG_RWTUN,
137    &zfs_metaslab_fragmentation_threshold, 0,
138    "Maximum percentage of metaslab fragmentation level to keep their active state");
139
140/*
141 * When set will load all metaslabs when pool is first opened.
142 */
143int metaslab_debug_load = 0;
144TUNABLE_INT("vfs.zfs.metaslab.debug_load", &metaslab_debug_load);
145SYSCTL_INT(_vfs_zfs_metaslab, OID_AUTO, debug_load, CTLFLAG_RWTUN,
146    &metaslab_debug_load, 0,
147    "Load all metaslabs when pool is first opened");
148
149/*
150 * When set will prevent metaslabs from being unloaded.
151 */
152int metaslab_debug_unload = 0;
153TUNABLE_INT("vfs.zfs.metaslab.debug_unload", &metaslab_debug_unload);
154SYSCTL_INT(_vfs_zfs_metaslab, OID_AUTO, debug_unload, CTLFLAG_RWTUN,
155    &metaslab_debug_unload, 0,
156    "Prevent metaslabs from being unloaded");
157
158/*
159 * Minimum size which forces the dynamic allocator to change
160 * it's allocation strategy.  Once the space map cannot satisfy
161 * an allocation of this size then it switches to using more
162 * aggressive strategy (i.e search by size rather than offset).
163 */
164uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;
165TUNABLE_QUAD("vfs.zfs.metaslab.df_alloc_threshold",
166    &metaslab_df_alloc_threshold);
167SYSCTL_QUAD(_vfs_zfs_metaslab, OID_AUTO, df_alloc_threshold, CTLFLAG_RWTUN,
168    &metaslab_df_alloc_threshold, 0,
169    "Minimum size which forces the dynamic allocator to change it's allocation strategy");
170
171/*
172 * The minimum free space, in percent, which must be available
173 * in a space map to continue allocations in a first-fit fashion.
174 * Once the space_map's free space drops below this level we dynamically
175 * switch to using best-fit allocations.
176 */
177int metaslab_df_free_pct = 4;
178TUNABLE_INT("vfs.zfs.metaslab.df_free_pct", &metaslab_df_free_pct);
179SYSCTL_INT(_vfs_zfs_metaslab, OID_AUTO, df_free_pct, CTLFLAG_RWTUN,
180    &metaslab_df_free_pct, 0,
181    "The minimum free space, in percent, which must be available in a space map to continue allocations in a first-fit fashion");
182
183/*
184 * A metaslab is considered "free" if it contains a contiguous
185 * segment which is greater than metaslab_min_alloc_size.
186 */
187uint64_t metaslab_min_alloc_size = DMU_MAX_ACCESS;
188TUNABLE_QUAD("vfs.zfs.metaslab.min_alloc_size",
189    &metaslab_min_alloc_size);
190SYSCTL_QUAD(_vfs_zfs_metaslab, OID_AUTO, min_alloc_size, CTLFLAG_RWTUN,
191    &metaslab_min_alloc_size, 0,
192    "A metaslab is considered \"free\" if it contains a contiguous segment which is greater than vfs.zfs.metaslab.min_alloc_size");
193
194/*
195 * Percentage of all cpus that can be used by the metaslab taskq.
196 */
197int metaslab_load_pct = 50;
198TUNABLE_INT("vfs.zfs.metaslab.load_pct", &metaslab_load_pct);
199SYSCTL_INT(_vfs_zfs_metaslab, OID_AUTO, load_pct, CTLFLAG_RWTUN,
200    &metaslab_load_pct, 0,
201    "Percentage of cpus that can be used by the metaslab taskq");
202
203/*
204 * Determines how many txgs a metaslab may remain loaded without having any
205 * allocations from it. As long as a metaslab continues to be used we will
206 * keep it loaded.
207 */
208int metaslab_unload_delay = TXG_SIZE * 2;
209TUNABLE_INT("vfs.zfs.metaslab.unload_delay", &metaslab_unload_delay);
210SYSCTL_INT(_vfs_zfs_metaslab, OID_AUTO, unload_delay, CTLFLAG_RWTUN,
211    &metaslab_unload_delay, 0,
212    "Number of TXGs that an unused metaslab can be kept in memory");
213
214/*
215 * Max number of metaslabs per group to preload.
216 */
217int metaslab_preload_limit = SPA_DVAS_PER_BP;
218TUNABLE_INT("vfs.zfs.metaslab.preload_limit", &metaslab_preload_limit);
219SYSCTL_INT(_vfs_zfs_metaslab, OID_AUTO, preload_limit, CTLFLAG_RWTUN,
220    &metaslab_preload_limit, 0,
221    "Max number of metaslabs per group to preload");
222
223/*
224 * Enable/disable preloading of metaslab.
225 */
226boolean_t metaslab_preload_enabled = B_TRUE;
227TUNABLE_INT("vfs.zfs.metaslab.preload_enabled", &metaslab_preload_enabled);
228SYSCTL_INT(_vfs_zfs_metaslab, OID_AUTO, preload_enabled, CTLFLAG_RWTUN,
229    &metaslab_preload_enabled, 0,
230    "Max number of metaslabs per group to preload");
231
232/*
233 * Enable/disable fragmentation weighting on metaslabs.
234 */
235boolean_t metaslab_fragmentation_factor_enabled = B_TRUE;
236TUNABLE_INT("vfs.zfs.metaslab_fragmentation_factor_enabled",
237    &metaslab_fragmentation_factor_enabled);
238SYSCTL_INT(_vfs_zfs_metaslab, OID_AUTO, fragmentation_factor_enabled, CTLFLAG_RWTUN,
239    &metaslab_fragmentation_factor_enabled, 0,
240    "Enable fragmentation weighting on metaslabs");
241
242/*
243 * Enable/disable lba weighting (i.e. outer tracks are given preference).
244 */
245boolean_t metaslab_lba_weighting_enabled = B_TRUE;
246TUNABLE_INT("vfs.zfs.metaslab.lba_weighting_enabled",
247    &metaslab_lba_weighting_enabled);
248SYSCTL_INT(_vfs_zfs_metaslab, OID_AUTO, lba_weighting_enabled, CTLFLAG_RWTUN,
249    &metaslab_lba_weighting_enabled, 0,
250    "Enable LBA weighting (i.e. outer tracks are given preference)");
251
252/*
253 * Enable/disable metaslab group biasing.
254 */
255boolean_t metaslab_bias_enabled = B_TRUE;
256TUNABLE_INT("vfs.zfs.metaslab.bias_enabled",
257    &metaslab_bias_enabled);
258SYSCTL_INT(_vfs_zfs_metaslab, OID_AUTO, bias_enabled, CTLFLAG_RWTUN,
259    &metaslab_bias_enabled, 0,
260    "Enable metaslab group biasing");
261
262static uint64_t metaslab_fragmentation(metaslab_t *);
263
264/*
265 * ==========================================================================
266 * Metaslab classes
267 * ==========================================================================
268 */
269metaslab_class_t *
270metaslab_class_create(spa_t *spa, metaslab_ops_t *ops)
271{
272	metaslab_class_t *mc;
273
274	mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP);
275
276	mc->mc_spa = spa;
277	mc->mc_rotor = NULL;
278	mc->mc_ops = ops;
279
280	return (mc);
281}
282
283void
284metaslab_class_destroy(metaslab_class_t *mc)
285{
286	ASSERT(mc->mc_rotor == NULL);
287	ASSERT(mc->mc_alloc == 0);
288	ASSERT(mc->mc_deferred == 0);
289	ASSERT(mc->mc_space == 0);
290	ASSERT(mc->mc_dspace == 0);
291
292	kmem_free(mc, sizeof (metaslab_class_t));
293}
294
295int
296metaslab_class_validate(metaslab_class_t *mc)
297{
298	metaslab_group_t *mg;
299	vdev_t *vd;
300
301	/*
302	 * Must hold one of the spa_config locks.
303	 */
304	ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
305	    spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
306
307	if ((mg = mc->mc_rotor) == NULL)
308		return (0);
309
310	do {
311		vd = mg->mg_vd;
312		ASSERT(vd->vdev_mg != NULL);
313		ASSERT3P(vd->vdev_top, ==, vd);
314		ASSERT3P(mg->mg_class, ==, mc);
315		ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
316	} while ((mg = mg->mg_next) != mc->mc_rotor);
317
318	return (0);
319}
320
321void
322metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
323    int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
324{
325	atomic_add_64(&mc->mc_alloc, alloc_delta);
326	atomic_add_64(&mc->mc_deferred, defer_delta);
327	atomic_add_64(&mc->mc_space, space_delta);
328	atomic_add_64(&mc->mc_dspace, dspace_delta);
329}
330
331void
332metaslab_class_minblocksize_update(metaslab_class_t *mc)
333{
334	metaslab_group_t *mg;
335	vdev_t *vd;
336	uint64_t minashift = UINT64_MAX;
337
338	if ((mg = mc->mc_rotor) == NULL) {
339		mc->mc_minblocksize = SPA_MINBLOCKSIZE;
340		return;
341	}
342
343	do {
344		vd = mg->mg_vd;
345		if (vd->vdev_ashift < minashift)
346			minashift = vd->vdev_ashift;
347	} while ((mg = mg->mg_next) != mc->mc_rotor);
348
349	mc->mc_minblocksize = 1ULL << minashift;
350}
351
352uint64_t
353metaslab_class_get_alloc(metaslab_class_t *mc)
354{
355	return (mc->mc_alloc);
356}
357
358uint64_t
359metaslab_class_get_deferred(metaslab_class_t *mc)
360{
361	return (mc->mc_deferred);
362}
363
364uint64_t
365metaslab_class_get_space(metaslab_class_t *mc)
366{
367	return (mc->mc_space);
368}
369
370uint64_t
371metaslab_class_get_dspace(metaslab_class_t *mc)
372{
373	return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
374}
375
376uint64_t
377metaslab_class_get_minblocksize(metaslab_class_t *mc)
378{
379	return (mc->mc_minblocksize);
380}
381
382void
383metaslab_class_histogram_verify(metaslab_class_t *mc)
384{
385	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
386	uint64_t *mc_hist;
387	int i;
388
389	if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
390		return;
391
392	mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
393	    KM_SLEEP);
394
395	for (int c = 0; c < rvd->vdev_children; c++) {
396		vdev_t *tvd = rvd->vdev_child[c];
397		metaslab_group_t *mg = tvd->vdev_mg;
398
399		/*
400		 * Skip any holes, uninitialized top-levels, or
401		 * vdevs that are not in this metalab class.
402		 */
403		if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
404		    mg->mg_class != mc) {
405			continue;
406		}
407
408		for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
409			mc_hist[i] += mg->mg_histogram[i];
410	}
411
412	for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
413		VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
414
415	kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
416}
417
418/*
419 * Calculate the metaslab class's fragmentation metric. The metric
420 * is weighted based on the space contribution of each metaslab group.
421 * The return value will be a number between 0 and 100 (inclusive), or
422 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
423 * zfs_frag_table for more information about the metric.
424 */
425uint64_t
426metaslab_class_fragmentation(metaslab_class_t *mc)
427{
428	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
429	uint64_t fragmentation = 0;
430
431	spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
432
433	for (int c = 0; c < rvd->vdev_children; c++) {
434		vdev_t *tvd = rvd->vdev_child[c];
435		metaslab_group_t *mg = tvd->vdev_mg;
436
437		/*
438		 * Skip any holes, uninitialized top-levels, or
439		 * vdevs that are not in this metalab class.
440		 */
441		if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
442		    mg->mg_class != mc) {
443			continue;
444		}
445
446		/*
447		 * If a metaslab group does not contain a fragmentation
448		 * metric then just bail out.
449		 */
450		if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
451			spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
452			return (ZFS_FRAG_INVALID);
453		}
454
455		/*
456		 * Determine how much this metaslab_group is contributing
457		 * to the overall pool fragmentation metric.
458		 */
459		fragmentation += mg->mg_fragmentation *
460		    metaslab_group_get_space(mg);
461	}
462	fragmentation /= metaslab_class_get_space(mc);
463
464	ASSERT3U(fragmentation, <=, 100);
465	spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
466	return (fragmentation);
467}
468
469/*
470 * Calculate the amount of expandable space that is available in
471 * this metaslab class. If a device is expanded then its expandable
472 * space will be the amount of allocatable space that is currently not
473 * part of this metaslab class.
474 */
475uint64_t
476metaslab_class_expandable_space(metaslab_class_t *mc)
477{
478	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
479	uint64_t space = 0;
480
481	spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
482	for (int c = 0; c < rvd->vdev_children; c++) {
483		vdev_t *tvd = rvd->vdev_child[c];
484		metaslab_group_t *mg = tvd->vdev_mg;
485
486		if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
487		    mg->mg_class != mc) {
488			continue;
489		}
490
491		space += tvd->vdev_max_asize - tvd->vdev_asize;
492	}
493	spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
494	return (space);
495}
496
497/*
498 * ==========================================================================
499 * Metaslab groups
500 * ==========================================================================
501 */
502static int
503metaslab_compare(const void *x1, const void *x2)
504{
505	const metaslab_t *m1 = x1;
506	const metaslab_t *m2 = x2;
507
508	if (m1->ms_weight < m2->ms_weight)
509		return (1);
510	if (m1->ms_weight > m2->ms_weight)
511		return (-1);
512
513	/*
514	 * If the weights are identical, use the offset to force uniqueness.
515	 */
516	if (m1->ms_start < m2->ms_start)
517		return (-1);
518	if (m1->ms_start > m2->ms_start)
519		return (1);
520
521	ASSERT3P(m1, ==, m2);
522
523	return (0);
524}
525
526/*
527 * Update the allocatable flag and the metaslab group's capacity.
528 * The allocatable flag is set to true if the capacity is below
529 * the zfs_mg_noalloc_threshold. If a metaslab group transitions
530 * from allocatable to non-allocatable or vice versa then the metaslab
531 * group's class is updated to reflect the transition.
532 */
533static void
534metaslab_group_alloc_update(metaslab_group_t *mg)
535{
536	vdev_t *vd = mg->mg_vd;
537	metaslab_class_t *mc = mg->mg_class;
538	vdev_stat_t *vs = &vd->vdev_stat;
539	boolean_t was_allocatable;
540
541	ASSERT(vd == vd->vdev_top);
542
543	mutex_enter(&mg->mg_lock);
544	was_allocatable = mg->mg_allocatable;
545
546	mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
547	    (vs->vs_space + 1);
548
549	/*
550	 * A metaslab group is considered allocatable if it has plenty
551	 * of free space or is not heavily fragmented. We only take
552	 * fragmentation into account if the metaslab group has a valid
553	 * fragmentation metric (i.e. a value between 0 and 100).
554	 */
555	mg->mg_allocatable = (mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
556	    (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
557	    mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
558
559	/*
560	 * The mc_alloc_groups maintains a count of the number of
561	 * groups in this metaslab class that are still above the
562	 * zfs_mg_noalloc_threshold. This is used by the allocating
563	 * threads to determine if they should avoid allocations to
564	 * a given group. The allocator will avoid allocations to a group
565	 * if that group has reached or is below the zfs_mg_noalloc_threshold
566	 * and there are still other groups that are above the threshold.
567	 * When a group transitions from allocatable to non-allocatable or
568	 * vice versa we update the metaslab class to reflect that change.
569	 * When the mc_alloc_groups value drops to 0 that means that all
570	 * groups have reached the zfs_mg_noalloc_threshold making all groups
571	 * eligible for allocations. This effectively means that all devices
572	 * are balanced again.
573	 */
574	if (was_allocatable && !mg->mg_allocatable)
575		mc->mc_alloc_groups--;
576	else if (!was_allocatable && mg->mg_allocatable)
577		mc->mc_alloc_groups++;
578
579	mutex_exit(&mg->mg_lock);
580}
581
582metaslab_group_t *
583metaslab_group_create(metaslab_class_t *mc, vdev_t *vd)
584{
585	metaslab_group_t *mg;
586
587	mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP);
588	mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
589	avl_create(&mg->mg_metaslab_tree, metaslab_compare,
590	    sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
591	mg->mg_vd = vd;
592	mg->mg_class = mc;
593	mg->mg_activation_count = 0;
594
595	mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
596	    minclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT);
597
598	return (mg);
599}
600
601void
602metaslab_group_destroy(metaslab_group_t *mg)
603{
604	ASSERT(mg->mg_prev == NULL);
605	ASSERT(mg->mg_next == NULL);
606	/*
607	 * We may have gone below zero with the activation count
608	 * either because we never activated in the first place or
609	 * because we're done, and possibly removing the vdev.
610	 */
611	ASSERT(mg->mg_activation_count <= 0);
612
613	taskq_destroy(mg->mg_taskq);
614	avl_destroy(&mg->mg_metaslab_tree);
615	mutex_destroy(&mg->mg_lock);
616	kmem_free(mg, sizeof (metaslab_group_t));
617}
618
619void
620metaslab_group_activate(metaslab_group_t *mg)
621{
622	metaslab_class_t *mc = mg->mg_class;
623	metaslab_group_t *mgprev, *mgnext;
624
625	ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
626
627	ASSERT(mc->mc_rotor != mg);
628	ASSERT(mg->mg_prev == NULL);
629	ASSERT(mg->mg_next == NULL);
630	ASSERT(mg->mg_activation_count <= 0);
631
632	if (++mg->mg_activation_count <= 0)
633		return;
634
635	mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
636	metaslab_group_alloc_update(mg);
637
638	if ((mgprev = mc->mc_rotor) == NULL) {
639		mg->mg_prev = mg;
640		mg->mg_next = mg;
641	} else {
642		mgnext = mgprev->mg_next;
643		mg->mg_prev = mgprev;
644		mg->mg_next = mgnext;
645		mgprev->mg_next = mg;
646		mgnext->mg_prev = mg;
647	}
648	mc->mc_rotor = mg;
649	metaslab_class_minblocksize_update(mc);
650}
651
652void
653metaslab_group_passivate(metaslab_group_t *mg)
654{
655	metaslab_class_t *mc = mg->mg_class;
656	metaslab_group_t *mgprev, *mgnext;
657
658	ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
659
660	if (--mg->mg_activation_count != 0) {
661		ASSERT(mc->mc_rotor != mg);
662		ASSERT(mg->mg_prev == NULL);
663		ASSERT(mg->mg_next == NULL);
664		ASSERT(mg->mg_activation_count < 0);
665		return;
666	}
667
668	taskq_wait(mg->mg_taskq);
669	metaslab_group_alloc_update(mg);
670
671	mgprev = mg->mg_prev;
672	mgnext = mg->mg_next;
673
674	if (mg == mgnext) {
675		mc->mc_rotor = NULL;
676	} else {
677		mc->mc_rotor = mgnext;
678		mgprev->mg_next = mgnext;
679		mgnext->mg_prev = mgprev;
680	}
681
682	mg->mg_prev = NULL;
683	mg->mg_next = NULL;
684	metaslab_class_minblocksize_update(mc);
685}
686
687uint64_t
688metaslab_group_get_space(metaslab_group_t *mg)
689{
690	return ((1ULL << mg->mg_vd->vdev_ms_shift) * mg->mg_vd->vdev_ms_count);
691}
692
693void
694metaslab_group_histogram_verify(metaslab_group_t *mg)
695{
696	uint64_t *mg_hist;
697	vdev_t *vd = mg->mg_vd;
698	uint64_t ashift = vd->vdev_ashift;
699	int i;
700
701	if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
702		return;
703
704	mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
705	    KM_SLEEP);
706
707	ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
708	    SPACE_MAP_HISTOGRAM_SIZE + ashift);
709
710	for (int m = 0; m < vd->vdev_ms_count; m++) {
711		metaslab_t *msp = vd->vdev_ms[m];
712
713		if (msp->ms_sm == NULL)
714			continue;
715
716		for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
717			mg_hist[i + ashift] +=
718			    msp->ms_sm->sm_phys->smp_histogram[i];
719	}
720
721	for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
722		VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
723
724	kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
725}
726
727static void
728metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
729{
730	metaslab_class_t *mc = mg->mg_class;
731	uint64_t ashift = mg->mg_vd->vdev_ashift;
732
733	ASSERT(MUTEX_HELD(&msp->ms_lock));
734	if (msp->ms_sm == NULL)
735		return;
736
737	mutex_enter(&mg->mg_lock);
738	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
739		mg->mg_histogram[i + ashift] +=
740		    msp->ms_sm->sm_phys->smp_histogram[i];
741		mc->mc_histogram[i + ashift] +=
742		    msp->ms_sm->sm_phys->smp_histogram[i];
743	}
744	mutex_exit(&mg->mg_lock);
745}
746
747void
748metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
749{
750	metaslab_class_t *mc = mg->mg_class;
751	uint64_t ashift = mg->mg_vd->vdev_ashift;
752
753	ASSERT(MUTEX_HELD(&msp->ms_lock));
754	if (msp->ms_sm == NULL)
755		return;
756
757	mutex_enter(&mg->mg_lock);
758	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
759		ASSERT3U(mg->mg_histogram[i + ashift], >=,
760		    msp->ms_sm->sm_phys->smp_histogram[i]);
761		ASSERT3U(mc->mc_histogram[i + ashift], >=,
762		    msp->ms_sm->sm_phys->smp_histogram[i]);
763
764		mg->mg_histogram[i + ashift] -=
765		    msp->ms_sm->sm_phys->smp_histogram[i];
766		mc->mc_histogram[i + ashift] -=
767		    msp->ms_sm->sm_phys->smp_histogram[i];
768	}
769	mutex_exit(&mg->mg_lock);
770}
771
772static void
773metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
774{
775	ASSERT(msp->ms_group == NULL);
776	mutex_enter(&mg->mg_lock);
777	msp->ms_group = mg;
778	msp->ms_weight = 0;
779	avl_add(&mg->mg_metaslab_tree, msp);
780	mutex_exit(&mg->mg_lock);
781
782	mutex_enter(&msp->ms_lock);
783	metaslab_group_histogram_add(mg, msp);
784	mutex_exit(&msp->ms_lock);
785}
786
787static void
788metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
789{
790	mutex_enter(&msp->ms_lock);
791	metaslab_group_histogram_remove(mg, msp);
792	mutex_exit(&msp->ms_lock);
793
794	mutex_enter(&mg->mg_lock);
795	ASSERT(msp->ms_group == mg);
796	avl_remove(&mg->mg_metaslab_tree, msp);
797	msp->ms_group = NULL;
798	mutex_exit(&mg->mg_lock);
799}
800
801static void
802metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
803{
804	/*
805	 * Although in principle the weight can be any value, in
806	 * practice we do not use values in the range [1, 511].
807	 */
808	ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
809	ASSERT(MUTEX_HELD(&msp->ms_lock));
810
811	mutex_enter(&mg->mg_lock);
812	ASSERT(msp->ms_group == mg);
813	avl_remove(&mg->mg_metaslab_tree, msp);
814	msp->ms_weight = weight;
815	avl_add(&mg->mg_metaslab_tree, msp);
816	mutex_exit(&mg->mg_lock);
817}
818
819/*
820 * Calculate the fragmentation for a given metaslab group. We can use
821 * a simple average here since all metaslabs within the group must have
822 * the same size. The return value will be a value between 0 and 100
823 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
824 * group have a fragmentation metric.
825 */
826uint64_t
827metaslab_group_fragmentation(metaslab_group_t *mg)
828{
829	vdev_t *vd = mg->mg_vd;
830	uint64_t fragmentation = 0;
831	uint64_t valid_ms = 0;
832
833	for (int m = 0; m < vd->vdev_ms_count; m++) {
834		metaslab_t *msp = vd->vdev_ms[m];
835
836		if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
837			continue;
838
839		valid_ms++;
840		fragmentation += msp->ms_fragmentation;
841	}
842
843	if (valid_ms <= vd->vdev_ms_count / 2)
844		return (ZFS_FRAG_INVALID);
845
846	fragmentation /= valid_ms;
847	ASSERT3U(fragmentation, <=, 100);
848	return (fragmentation);
849}
850
851/*
852 * Determine if a given metaslab group should skip allocations. A metaslab
853 * group should avoid allocations if its free capacity is less than the
854 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
855 * zfs_mg_fragmentation_threshold and there is at least one metaslab group
856 * that can still handle allocations.
857 */
858static boolean_t
859metaslab_group_allocatable(metaslab_group_t *mg)
860{
861	vdev_t *vd = mg->mg_vd;
862	spa_t *spa = vd->vdev_spa;
863	metaslab_class_t *mc = mg->mg_class;
864
865	/*
866	 * We use two key metrics to determine if a metaslab group is
867	 * considered allocatable -- free space and fragmentation. If
868	 * the free space is greater than the free space threshold and
869	 * the fragmentation is less than the fragmentation threshold then
870	 * consider the group allocatable. There are two case when we will
871	 * not consider these key metrics. The first is if the group is
872	 * associated with a slog device and the second is if all groups
873	 * in this metaslab class have already been consider ineligible
874	 * for allocations.
875	 */
876	return ((mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
877	    (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
878	    mg->mg_fragmentation <= zfs_mg_fragmentation_threshold)) ||
879	    mc != spa_normal_class(spa) || mc->mc_alloc_groups == 0);
880}
881
882/*
883 * ==========================================================================
884 * Range tree callbacks
885 * ==========================================================================
886 */
887
888/*
889 * Comparison function for the private size-ordered tree. Tree is sorted
890 * by size, larger sizes at the end of the tree.
891 */
892static int
893metaslab_rangesize_compare(const void *x1, const void *x2)
894{
895	const range_seg_t *r1 = x1;
896	const range_seg_t *r2 = x2;
897	uint64_t rs_size1 = r1->rs_end - r1->rs_start;
898	uint64_t rs_size2 = r2->rs_end - r2->rs_start;
899
900	if (rs_size1 < rs_size2)
901		return (-1);
902	if (rs_size1 > rs_size2)
903		return (1);
904
905	if (r1->rs_start < r2->rs_start)
906		return (-1);
907
908	if (r1->rs_start > r2->rs_start)
909		return (1);
910
911	return (0);
912}
913
914/*
915 * Create any block allocator specific components. The current allocators
916 * rely on using both a size-ordered range_tree_t and an array of uint64_t's.
917 */
918static void
919metaslab_rt_create(range_tree_t *rt, void *arg)
920{
921	metaslab_t *msp = arg;
922
923	ASSERT3P(rt->rt_arg, ==, msp);
924	ASSERT(msp->ms_tree == NULL);
925
926	avl_create(&msp->ms_size_tree, metaslab_rangesize_compare,
927	    sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node));
928}
929
930/*
931 * Destroy the block allocator specific components.
932 */
933static void
934metaslab_rt_destroy(range_tree_t *rt, void *arg)
935{
936	metaslab_t *msp = arg;
937
938	ASSERT3P(rt->rt_arg, ==, msp);
939	ASSERT3P(msp->ms_tree, ==, rt);
940	ASSERT0(avl_numnodes(&msp->ms_size_tree));
941
942	avl_destroy(&msp->ms_size_tree);
943}
944
945static void
946metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg)
947{
948	metaslab_t *msp = arg;
949
950	ASSERT3P(rt->rt_arg, ==, msp);
951	ASSERT3P(msp->ms_tree, ==, rt);
952	VERIFY(!msp->ms_condensing);
953	avl_add(&msp->ms_size_tree, rs);
954}
955
956static void
957metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
958{
959	metaslab_t *msp = arg;
960
961	ASSERT3P(rt->rt_arg, ==, msp);
962	ASSERT3P(msp->ms_tree, ==, rt);
963	VERIFY(!msp->ms_condensing);
964	avl_remove(&msp->ms_size_tree, rs);
965}
966
967static void
968metaslab_rt_vacate(range_tree_t *rt, void *arg)
969{
970	metaslab_t *msp = arg;
971
972	ASSERT3P(rt->rt_arg, ==, msp);
973	ASSERT3P(msp->ms_tree, ==, rt);
974
975	/*
976	 * Normally one would walk the tree freeing nodes along the way.
977	 * Since the nodes are shared with the range trees we can avoid
978	 * walking all nodes and just reinitialize the avl tree. The nodes
979	 * will be freed by the range tree, so we don't want to free them here.
980	 */
981	avl_create(&msp->ms_size_tree, metaslab_rangesize_compare,
982	    sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node));
983}
984
985static range_tree_ops_t metaslab_rt_ops = {
986	metaslab_rt_create,
987	metaslab_rt_destroy,
988	metaslab_rt_add,
989	metaslab_rt_remove,
990	metaslab_rt_vacate
991};
992
993/*
994 * ==========================================================================
995 * Metaslab block operations
996 * ==========================================================================
997 */
998
999/*
1000 * Return the maximum contiguous segment within the metaslab.
1001 */
1002uint64_t
1003metaslab_block_maxsize(metaslab_t *msp)
1004{
1005	avl_tree_t *t = &msp->ms_size_tree;
1006	range_seg_t *rs;
1007
1008	if (t == NULL || (rs = avl_last(t)) == NULL)
1009		return (0ULL);
1010
1011	return (rs->rs_end - rs->rs_start);
1012}
1013
1014uint64_t
1015metaslab_block_alloc(metaslab_t *msp, uint64_t size)
1016{
1017	uint64_t start;
1018	range_tree_t *rt = msp->ms_tree;
1019
1020	VERIFY(!msp->ms_condensing);
1021
1022	start = msp->ms_ops->msop_alloc(msp, size);
1023	if (start != -1ULL) {
1024		vdev_t *vd = msp->ms_group->mg_vd;
1025
1026		VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
1027		VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
1028		VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
1029		range_tree_remove(rt, start, size);
1030	}
1031	return (start);
1032}
1033
1034/*
1035 * ==========================================================================
1036 * Common allocator routines
1037 * ==========================================================================
1038 */
1039
1040/*
1041 * This is a helper function that can be used by the allocator to find
1042 * a suitable block to allocate. This will search the specified AVL
1043 * tree looking for a block that matches the specified criteria.
1044 */
1045static uint64_t
1046metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
1047    uint64_t align)
1048{
1049	range_seg_t *rs, rsearch;
1050	avl_index_t where;
1051
1052	rsearch.rs_start = *cursor;
1053	rsearch.rs_end = *cursor + size;
1054
1055	rs = avl_find(t, &rsearch, &where);
1056	if (rs == NULL)
1057		rs = avl_nearest(t, where, AVL_AFTER);
1058
1059	while (rs != NULL) {
1060		uint64_t offset = P2ROUNDUP(rs->rs_start, align);
1061
1062		if (offset + size <= rs->rs_end) {
1063			*cursor = offset + size;
1064			return (offset);
1065		}
1066		rs = AVL_NEXT(t, rs);
1067	}
1068
1069	/*
1070	 * If we know we've searched the whole map (*cursor == 0), give up.
1071	 * Otherwise, reset the cursor to the beginning and try again.
1072	 */
1073	if (*cursor == 0)
1074		return (-1ULL);
1075
1076	*cursor = 0;
1077	return (metaslab_block_picker(t, cursor, size, align));
1078}
1079
1080/*
1081 * ==========================================================================
1082 * The first-fit block allocator
1083 * ==========================================================================
1084 */
1085static uint64_t
1086metaslab_ff_alloc(metaslab_t *msp, uint64_t size)
1087{
1088	/*
1089	 * Find the largest power of 2 block size that evenly divides the
1090	 * requested size. This is used to try to allocate blocks with similar
1091	 * alignment from the same area of the metaslab (i.e. same cursor
1092	 * bucket) but it does not guarantee that other allocations sizes
1093	 * may exist in the same region.
1094	 */
1095	uint64_t align = size & -size;
1096	uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1097	avl_tree_t *t = &msp->ms_tree->rt_root;
1098
1099	return (metaslab_block_picker(t, cursor, size, align));
1100}
1101
1102static metaslab_ops_t metaslab_ff_ops = {
1103	metaslab_ff_alloc
1104};
1105
1106/*
1107 * ==========================================================================
1108 * Dynamic block allocator -
1109 * Uses the first fit allocation scheme until space get low and then
1110 * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold
1111 * and metaslab_df_free_pct to determine when to switch the allocation scheme.
1112 * ==========================================================================
1113 */
1114static uint64_t
1115metaslab_df_alloc(metaslab_t *msp, uint64_t size)
1116{
1117	/*
1118	 * Find the largest power of 2 block size that evenly divides the
1119	 * requested size. This is used to try to allocate blocks with similar
1120	 * alignment from the same area of the metaslab (i.e. same cursor
1121	 * bucket) but it does not guarantee that other allocations sizes
1122	 * may exist in the same region.
1123	 */
1124	uint64_t align = size & -size;
1125	uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1126	range_tree_t *rt = msp->ms_tree;
1127	avl_tree_t *t = &rt->rt_root;
1128	uint64_t max_size = metaslab_block_maxsize(msp);
1129	int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1130
1131	ASSERT(MUTEX_HELD(&msp->ms_lock));
1132	ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree));
1133
1134	if (max_size < size)
1135		return (-1ULL);
1136
1137	/*
1138	 * If we're running low on space switch to using the size
1139	 * sorted AVL tree (best-fit).
1140	 */
1141	if (max_size < metaslab_df_alloc_threshold ||
1142	    free_pct < metaslab_df_free_pct) {
1143		t = &msp->ms_size_tree;
1144		*cursor = 0;
1145	}
1146
1147	return (metaslab_block_picker(t, cursor, size, 1ULL));
1148}
1149
1150static metaslab_ops_t metaslab_df_ops = {
1151	metaslab_df_alloc
1152};
1153
1154/*
1155 * ==========================================================================
1156 * Cursor fit block allocator -
1157 * Select the largest region in the metaslab, set the cursor to the beginning
1158 * of the range and the cursor_end to the end of the range. As allocations
1159 * are made advance the cursor. Continue allocating from the cursor until
1160 * the range is exhausted and then find a new range.
1161 * ==========================================================================
1162 */
1163static uint64_t
1164metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
1165{
1166	range_tree_t *rt = msp->ms_tree;
1167	avl_tree_t *t = &msp->ms_size_tree;
1168	uint64_t *cursor = &msp->ms_lbas[0];
1169	uint64_t *cursor_end = &msp->ms_lbas[1];
1170	uint64_t offset = 0;
1171
1172	ASSERT(MUTEX_HELD(&msp->ms_lock));
1173	ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&rt->rt_root));
1174
1175	ASSERT3U(*cursor_end, >=, *cursor);
1176
1177	if ((*cursor + size) > *cursor_end) {
1178		range_seg_t *rs;
1179
1180		rs = avl_last(&msp->ms_size_tree);
1181		if (rs == NULL || (rs->rs_end - rs->rs_start) < size)
1182			return (-1ULL);
1183
1184		*cursor = rs->rs_start;
1185		*cursor_end = rs->rs_end;
1186	}
1187
1188	offset = *cursor;
1189	*cursor += size;
1190
1191	return (offset);
1192}
1193
1194static metaslab_ops_t metaslab_cf_ops = {
1195	metaslab_cf_alloc
1196};
1197
1198/*
1199 * ==========================================================================
1200 * New dynamic fit allocator -
1201 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1202 * contiguous blocks. If no region is found then just use the largest segment
1203 * that remains.
1204 * ==========================================================================
1205 */
1206
1207/*
1208 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1209 * to request from the allocator.
1210 */
1211uint64_t metaslab_ndf_clump_shift = 4;
1212
1213static uint64_t
1214metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
1215{
1216	avl_tree_t *t = &msp->ms_tree->rt_root;
1217	avl_index_t where;
1218	range_seg_t *rs, rsearch;
1219	uint64_t hbit = highbit64(size);
1220	uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1221	uint64_t max_size = metaslab_block_maxsize(msp);
1222
1223	ASSERT(MUTEX_HELD(&msp->ms_lock));
1224	ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree));
1225
1226	if (max_size < size)
1227		return (-1ULL);
1228
1229	rsearch.rs_start = *cursor;
1230	rsearch.rs_end = *cursor + size;
1231
1232	rs = avl_find(t, &rsearch, &where);
1233	if (rs == NULL || (rs->rs_end - rs->rs_start) < size) {
1234		t = &msp->ms_size_tree;
1235
1236		rsearch.rs_start = 0;
1237		rsearch.rs_end = MIN(max_size,
1238		    1ULL << (hbit + metaslab_ndf_clump_shift));
1239		rs = avl_find(t, &rsearch, &where);
1240		if (rs == NULL)
1241			rs = avl_nearest(t, where, AVL_AFTER);
1242		ASSERT(rs != NULL);
1243	}
1244
1245	if ((rs->rs_end - rs->rs_start) >= size) {
1246		*cursor = rs->rs_start + size;
1247		return (rs->rs_start);
1248	}
1249	return (-1ULL);
1250}
1251
1252static metaslab_ops_t metaslab_ndf_ops = {
1253	metaslab_ndf_alloc
1254};
1255
1256metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
1257
1258/*
1259 * ==========================================================================
1260 * Metaslabs
1261 * ==========================================================================
1262 */
1263
1264/*
1265 * Wait for any in-progress metaslab loads to complete.
1266 */
1267void
1268metaslab_load_wait(metaslab_t *msp)
1269{
1270	ASSERT(MUTEX_HELD(&msp->ms_lock));
1271
1272	while (msp->ms_loading) {
1273		ASSERT(!msp->ms_loaded);
1274		cv_wait(&msp->ms_load_cv, &msp->ms_lock);
1275	}
1276}
1277
1278int
1279metaslab_load(metaslab_t *msp)
1280{
1281	int error = 0;
1282
1283	ASSERT(MUTEX_HELD(&msp->ms_lock));
1284	ASSERT(!msp->ms_loaded);
1285	ASSERT(!msp->ms_loading);
1286
1287	msp->ms_loading = B_TRUE;
1288
1289	/*
1290	 * If the space map has not been allocated yet, then treat
1291	 * all the space in the metaslab as free and add it to the
1292	 * ms_tree.
1293	 */
1294	if (msp->ms_sm != NULL)
1295		error = space_map_load(msp->ms_sm, msp->ms_tree, SM_FREE);
1296	else
1297		range_tree_add(msp->ms_tree, msp->ms_start, msp->ms_size);
1298
1299	msp->ms_loaded = (error == 0);
1300	msp->ms_loading = B_FALSE;
1301
1302	if (msp->ms_loaded) {
1303		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1304			range_tree_walk(msp->ms_defertree[t],
1305			    range_tree_remove, msp->ms_tree);
1306		}
1307	}
1308	cv_broadcast(&msp->ms_load_cv);
1309	return (error);
1310}
1311
1312void
1313metaslab_unload(metaslab_t *msp)
1314{
1315	ASSERT(MUTEX_HELD(&msp->ms_lock));
1316	range_tree_vacate(msp->ms_tree, NULL, NULL);
1317	msp->ms_loaded = B_FALSE;
1318	msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
1319}
1320
1321metaslab_t *
1322metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, uint64_t txg)
1323{
1324	vdev_t *vd = mg->mg_vd;
1325	objset_t *mos = vd->vdev_spa->spa_meta_objset;
1326	metaslab_t *msp;
1327
1328	msp = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
1329	mutex_init(&msp->ms_lock, NULL, MUTEX_DEFAULT, NULL);
1330	cv_init(&msp->ms_load_cv, NULL, CV_DEFAULT, NULL);
1331	msp->ms_id = id;
1332	msp->ms_start = id << vd->vdev_ms_shift;
1333	msp->ms_size = 1ULL << vd->vdev_ms_shift;
1334
1335	/*
1336	 * We only open space map objects that already exist. All others
1337	 * will be opened when we finally allocate an object for it.
1338	 */
1339	if (object != 0) {
1340		VERIFY0(space_map_open(&msp->ms_sm, mos, object, msp->ms_start,
1341		    msp->ms_size, vd->vdev_ashift, &msp->ms_lock));
1342		ASSERT(msp->ms_sm != NULL);
1343	}
1344
1345	/*
1346	 * We create the main range tree here, but we don't create the
1347	 * alloctree and freetree until metaslab_sync_done().  This serves
1348	 * two purposes: it allows metaslab_sync_done() to detect the
1349	 * addition of new space; and for debugging, it ensures that we'd
1350	 * data fault on any attempt to use this metaslab before it's ready.
1351	 */
1352	msp->ms_tree = range_tree_create(&metaslab_rt_ops, msp, &msp->ms_lock);
1353	metaslab_group_add(mg, msp);
1354
1355	msp->ms_fragmentation = metaslab_fragmentation(msp);
1356	msp->ms_ops = mg->mg_class->mc_ops;
1357
1358	/*
1359	 * If we're opening an existing pool (txg == 0) or creating
1360	 * a new one (txg == TXG_INITIAL), all space is available now.
1361	 * If we're adding space to an existing pool, the new space
1362	 * does not become available until after this txg has synced.
1363	 */
1364	if (txg <= TXG_INITIAL)
1365		metaslab_sync_done(msp, 0);
1366
1367	/*
1368	 * If metaslab_debug_load is set and we're initializing a metaslab
1369	 * that has an allocated space_map object then load the its space
1370	 * map so that can verify frees.
1371	 */
1372	if (metaslab_debug_load && msp->ms_sm != NULL) {
1373		mutex_enter(&msp->ms_lock);
1374		VERIFY0(metaslab_load(msp));
1375		mutex_exit(&msp->ms_lock);
1376	}
1377
1378	if (txg != 0) {
1379		vdev_dirty(vd, 0, NULL, txg);
1380		vdev_dirty(vd, VDD_METASLAB, msp, txg);
1381	}
1382
1383	return (msp);
1384}
1385
1386void
1387metaslab_fini(metaslab_t *msp)
1388{
1389	metaslab_group_t *mg = msp->ms_group;
1390
1391	metaslab_group_remove(mg, msp);
1392
1393	mutex_enter(&msp->ms_lock);
1394
1395	VERIFY(msp->ms_group == NULL);
1396	vdev_space_update(mg->mg_vd, -space_map_allocated(msp->ms_sm),
1397	    0, -msp->ms_size);
1398	space_map_close(msp->ms_sm);
1399
1400	metaslab_unload(msp);
1401	range_tree_destroy(msp->ms_tree);
1402
1403	for (int t = 0; t < TXG_SIZE; t++) {
1404		range_tree_destroy(msp->ms_alloctree[t]);
1405		range_tree_destroy(msp->ms_freetree[t]);
1406	}
1407
1408	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1409		range_tree_destroy(msp->ms_defertree[t]);
1410	}
1411
1412	ASSERT0(msp->ms_deferspace);
1413
1414	mutex_exit(&msp->ms_lock);
1415	cv_destroy(&msp->ms_load_cv);
1416	mutex_destroy(&msp->ms_lock);
1417
1418	kmem_free(msp, sizeof (metaslab_t));
1419}
1420
1421#define	FRAGMENTATION_TABLE_SIZE	17
1422
1423/*
1424 * This table defines a segment size based fragmentation metric that will
1425 * allow each metaslab to derive its own fragmentation value. This is done
1426 * by calculating the space in each bucket of the spacemap histogram and
1427 * multiplying that by the fragmetation metric in this table. Doing
1428 * this for all buckets and dividing it by the total amount of free
1429 * space in this metaslab (i.e. the total free space in all buckets) gives
1430 * us the fragmentation metric. This means that a high fragmentation metric
1431 * equates to most of the free space being comprised of small segments.
1432 * Conversely, if the metric is low, then most of the free space is in
1433 * large segments. A 10% change in fragmentation equates to approximately
1434 * double the number of segments.
1435 *
1436 * This table defines 0% fragmented space using 16MB segments. Testing has
1437 * shown that segments that are greater than or equal to 16MB do not suffer
1438 * from drastic performance problems. Using this value, we derive the rest
1439 * of the table. Since the fragmentation value is never stored on disk, it
1440 * is possible to change these calculations in the future.
1441 */
1442int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
1443	100,	/* 512B	*/
1444	100,	/* 1K	*/
1445	98,	/* 2K	*/
1446	95,	/* 4K	*/
1447	90,	/* 8K	*/
1448	80,	/* 16K	*/
1449	70,	/* 32K	*/
1450	60,	/* 64K	*/
1451	50,	/* 128K	*/
1452	40,	/* 256K	*/
1453	30,	/* 512K	*/
1454	20,	/* 1M	*/
1455	15,	/* 2M	*/
1456	10,	/* 4M	*/
1457	5,	/* 8M	*/
1458	0	/* 16M	*/
1459};
1460
1461/*
1462 * Calclate the metaslab's fragmentation metric. A return value
1463 * of ZFS_FRAG_INVALID means that the metaslab has not been upgraded and does
1464 * not support this metric. Otherwise, the return value should be in the
1465 * range [0, 100].
1466 */
1467static uint64_t
1468metaslab_fragmentation(metaslab_t *msp)
1469{
1470	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1471	uint64_t fragmentation = 0;
1472	uint64_t total = 0;
1473	boolean_t feature_enabled = spa_feature_is_enabled(spa,
1474	    SPA_FEATURE_SPACEMAP_HISTOGRAM);
1475
1476	if (!feature_enabled)
1477		return (ZFS_FRAG_INVALID);
1478
1479	/*
1480	 * A null space map means that the entire metaslab is free
1481	 * and thus is not fragmented.
1482	 */
1483	if (msp->ms_sm == NULL)
1484		return (0);
1485
1486	/*
1487	 * If this metaslab's space_map has not been upgraded, flag it
1488	 * so that we upgrade next time we encounter it.
1489	 */
1490	if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
1491		uint64_t txg = spa_syncing_txg(spa);
1492		vdev_t *vd = msp->ms_group->mg_vd;
1493
1494		if (spa_writeable(spa)) {
1495			msp->ms_condense_wanted = B_TRUE;
1496			vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
1497			spa_dbgmsg(spa, "txg %llu, requesting force condense: "
1498			    "msp %p, vd %p", txg, msp, vd);
1499		}
1500		return (ZFS_FRAG_INVALID);
1501	}
1502
1503	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1504		uint64_t space = 0;
1505		uint8_t shift = msp->ms_sm->sm_shift;
1506		int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
1507		    FRAGMENTATION_TABLE_SIZE - 1);
1508
1509		if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
1510			continue;
1511
1512		space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
1513		total += space;
1514
1515		ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
1516		fragmentation += space * zfs_frag_table[idx];
1517	}
1518
1519	if (total > 0)
1520		fragmentation /= total;
1521	ASSERT3U(fragmentation, <=, 100);
1522	return (fragmentation);
1523}
1524
1525/*
1526 * Compute a weight -- a selection preference value -- for the given metaslab.
1527 * This is based on the amount of free space, the level of fragmentation,
1528 * the LBA range, and whether the metaslab is loaded.
1529 */
1530static uint64_t
1531metaslab_weight(metaslab_t *msp)
1532{
1533	metaslab_group_t *mg = msp->ms_group;
1534	vdev_t *vd = mg->mg_vd;
1535	uint64_t weight, space;
1536
1537	ASSERT(MUTEX_HELD(&msp->ms_lock));
1538
1539	/*
1540	 * This vdev is in the process of being removed so there is nothing
1541	 * for us to do here.
1542	 */
1543	if (vd->vdev_removing) {
1544		ASSERT0(space_map_allocated(msp->ms_sm));
1545		ASSERT0(vd->vdev_ms_shift);
1546		return (0);
1547	}
1548
1549	/*
1550	 * The baseline weight is the metaslab's free space.
1551	 */
1552	space = msp->ms_size - space_map_allocated(msp->ms_sm);
1553
1554	msp->ms_fragmentation = metaslab_fragmentation(msp);
1555	if (metaslab_fragmentation_factor_enabled &&
1556	    msp->ms_fragmentation != ZFS_FRAG_INVALID) {
1557		/*
1558		 * Use the fragmentation information to inversely scale
1559		 * down the baseline weight. We need to ensure that we
1560		 * don't exclude this metaslab completely when it's 100%
1561		 * fragmented. To avoid this we reduce the fragmented value
1562		 * by 1.
1563		 */
1564		space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
1565
1566		/*
1567		 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
1568		 * this metaslab again. The fragmentation metric may have
1569		 * decreased the space to something smaller than
1570		 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
1571		 * so that we can consume any remaining space.
1572		 */
1573		if (space > 0 && space < SPA_MINBLOCKSIZE)
1574			space = SPA_MINBLOCKSIZE;
1575	}
1576	weight = space;
1577
1578	/*
1579	 * Modern disks have uniform bit density and constant angular velocity.
1580	 * Therefore, the outer recording zones are faster (higher bandwidth)
1581	 * than the inner zones by the ratio of outer to inner track diameter,
1582	 * which is typically around 2:1.  We account for this by assigning
1583	 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
1584	 * In effect, this means that we'll select the metaslab with the most
1585	 * free bandwidth rather than simply the one with the most free space.
1586	 */
1587	if (metaslab_lba_weighting_enabled) {
1588		weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
1589		ASSERT(weight >= space && weight <= 2 * space);
1590	}
1591
1592	/*
1593	 * If this metaslab is one we're actively using, adjust its
1594	 * weight to make it preferable to any inactive metaslab so
1595	 * we'll polish it off. If the fragmentation on this metaslab
1596	 * has exceed our threshold, then don't mark it active.
1597	 */
1598	if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
1599	    msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
1600		weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
1601	}
1602
1603	return (weight);
1604}
1605
1606static int
1607metaslab_activate(metaslab_t *msp, uint64_t activation_weight)
1608{
1609	ASSERT(MUTEX_HELD(&msp->ms_lock));
1610
1611	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
1612		metaslab_load_wait(msp);
1613		if (!msp->ms_loaded) {
1614			int error = metaslab_load(msp);
1615			if (error) {
1616				metaslab_group_sort(msp->ms_group, msp, 0);
1617				return (error);
1618			}
1619		}
1620
1621		metaslab_group_sort(msp->ms_group, msp,
1622		    msp->ms_weight | activation_weight);
1623	}
1624	ASSERT(msp->ms_loaded);
1625	ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
1626
1627	return (0);
1628}
1629
1630static void
1631metaslab_passivate(metaslab_t *msp, uint64_t size)
1632{
1633	/*
1634	 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
1635	 * this metaslab again.  In that case, it had better be empty,
1636	 * or we would be leaving space on the table.
1637	 */
1638	ASSERT(size >= SPA_MINBLOCKSIZE || range_tree_space(msp->ms_tree) == 0);
1639	metaslab_group_sort(msp->ms_group, msp, MIN(msp->ms_weight, size));
1640	ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
1641}
1642
1643static void
1644metaslab_preload(void *arg)
1645{
1646	metaslab_t *msp = arg;
1647	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1648
1649	ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
1650
1651	mutex_enter(&msp->ms_lock);
1652	metaslab_load_wait(msp);
1653	if (!msp->ms_loaded)
1654		(void) metaslab_load(msp);
1655
1656	/*
1657	 * Set the ms_access_txg value so that we don't unload it right away.
1658	 */
1659	msp->ms_access_txg = spa_syncing_txg(spa) + metaslab_unload_delay + 1;
1660	mutex_exit(&msp->ms_lock);
1661}
1662
1663static void
1664metaslab_group_preload(metaslab_group_t *mg)
1665{
1666	spa_t *spa = mg->mg_vd->vdev_spa;
1667	metaslab_t *msp;
1668	avl_tree_t *t = &mg->mg_metaslab_tree;
1669	int m = 0;
1670
1671	if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
1672		taskq_wait(mg->mg_taskq);
1673		return;
1674	}
1675
1676	mutex_enter(&mg->mg_lock);
1677	/*
1678	 * Load the next potential metaslabs
1679	 */
1680	msp = avl_first(t);
1681	while (msp != NULL) {
1682		metaslab_t *msp_next = AVL_NEXT(t, msp);
1683
1684		/*
1685		 * We preload only the maximum number of metaslabs specified
1686		 * by metaslab_preload_limit. If a metaslab is being forced
1687		 * to condense then we preload it too. This will ensure
1688		 * that force condensing happens in the next txg.
1689		 */
1690		if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
1691			msp = msp_next;
1692			continue;
1693		}
1694
1695		/*
1696		 * We must drop the metaslab group lock here to preserve
1697		 * lock ordering with the ms_lock (when grabbing both
1698		 * the mg_lock and the ms_lock, the ms_lock must be taken
1699		 * first).  As a result, it is possible that the ordering
1700		 * of the metaslabs within the avl tree may change before
1701		 * we reacquire the lock. The metaslab cannot be removed from
1702		 * the tree while we're in syncing context so it is safe to
1703		 * drop the mg_lock here. If the metaslabs are reordered
1704		 * nothing will break -- we just may end up loading a
1705		 * less than optimal one.
1706		 */
1707		mutex_exit(&mg->mg_lock);
1708		VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
1709		    msp, TQ_SLEEP) != 0);
1710		mutex_enter(&mg->mg_lock);
1711		msp = msp_next;
1712	}
1713	mutex_exit(&mg->mg_lock);
1714}
1715
1716/*
1717 * Determine if the space map's on-disk footprint is past our tolerance
1718 * for inefficiency. We would like to use the following criteria to make
1719 * our decision:
1720 *
1721 * 1. The size of the space map object should not dramatically increase as a
1722 * result of writing out the free space range tree.
1723 *
1724 * 2. The minimal on-disk space map representation is zfs_condense_pct/100
1725 * times the size than the free space range tree representation
1726 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, minimal = 1.1.MB).
1727 *
1728 * 3. The on-disk size of the space map should actually decrease.
1729 *
1730 * Checking the first condition is tricky since we don't want to walk
1731 * the entire AVL tree calculating the estimated on-disk size. Instead we
1732 * use the size-ordered range tree in the metaslab and calculate the
1733 * size required to write out the largest segment in our free tree. If the
1734 * size required to represent that segment on disk is larger than the space
1735 * map object then we avoid condensing this map.
1736 *
1737 * To determine the second criterion we use a best-case estimate and assume
1738 * each segment can be represented on-disk as a single 64-bit entry. We refer
1739 * to this best-case estimate as the space map's minimal form.
1740 *
1741 * Unfortunately, we cannot compute the on-disk size of the space map in this
1742 * context because we cannot accurately compute the effects of compression, etc.
1743 * Instead, we apply the heuristic described in the block comment for
1744 * zfs_metaslab_condense_block_threshold - we only condense if the space used
1745 * is greater than a threshold number of blocks.
1746 */
1747static boolean_t
1748metaslab_should_condense(metaslab_t *msp)
1749{
1750	space_map_t *sm = msp->ms_sm;
1751	range_seg_t *rs;
1752	uint64_t size, entries, segsz, object_size, optimal_size, record_size;
1753	dmu_object_info_t doi;
1754	uint64_t vdev_blocksize = 1 << msp->ms_group->mg_vd->vdev_ashift;
1755
1756	ASSERT(MUTEX_HELD(&msp->ms_lock));
1757	ASSERT(msp->ms_loaded);
1758
1759	/*
1760	 * Use the ms_size_tree range tree, which is ordered by size, to
1761	 * obtain the largest segment in the free tree. We always condense
1762	 * metaslabs that are empty and metaslabs for which a condense
1763	 * request has been made.
1764	 */
1765	rs = avl_last(&msp->ms_size_tree);
1766	if (rs == NULL || msp->ms_condense_wanted)
1767		return (B_TRUE);
1768
1769	/*
1770	 * Calculate the number of 64-bit entries this segment would
1771	 * require when written to disk. If this single segment would be
1772	 * larger on-disk than the entire current on-disk structure, then
1773	 * clearly condensing will increase the on-disk structure size.
1774	 */
1775	size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
1776	entries = size / (MIN(size, SM_RUN_MAX));
1777	segsz = entries * sizeof (uint64_t);
1778
1779	optimal_size = sizeof (uint64_t) * avl_numnodes(&msp->ms_tree->rt_root);
1780	object_size = space_map_length(msp->ms_sm);
1781
1782	dmu_object_info_from_db(sm->sm_dbuf, &doi);
1783	record_size = MAX(doi.doi_data_block_size, vdev_blocksize);
1784
1785	return (segsz <= object_size &&
1786	    object_size >= (optimal_size * zfs_condense_pct / 100) &&
1787	    object_size > zfs_metaslab_condense_block_threshold * record_size);
1788}
1789
1790/*
1791 * Condense the on-disk space map representation to its minimized form.
1792 * The minimized form consists of a small number of allocations followed by
1793 * the entries of the free range tree.
1794 */
1795static void
1796metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx)
1797{
1798	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1799	range_tree_t *freetree = msp->ms_freetree[txg & TXG_MASK];
1800	range_tree_t *condense_tree;
1801	space_map_t *sm = msp->ms_sm;
1802
1803	ASSERT(MUTEX_HELD(&msp->ms_lock));
1804	ASSERT3U(spa_sync_pass(spa), ==, 1);
1805	ASSERT(msp->ms_loaded);
1806
1807
1808	spa_dbgmsg(spa, "condensing: txg %llu, msp[%llu] %p, "
1809	    "smp size %llu, segments %lu, forcing condense=%s", txg,
1810	    msp->ms_id, msp, space_map_length(msp->ms_sm),
1811	    avl_numnodes(&msp->ms_tree->rt_root),
1812	    msp->ms_condense_wanted ? "TRUE" : "FALSE");
1813
1814	msp->ms_condense_wanted = B_FALSE;
1815
1816	/*
1817	 * Create an range tree that is 100% allocated. We remove segments
1818	 * that have been freed in this txg, any deferred frees that exist,
1819	 * and any allocation in the future. Removing segments should be
1820	 * a relatively inexpensive operation since we expect these trees to
1821	 * have a small number of nodes.
1822	 */
1823	condense_tree = range_tree_create(NULL, NULL, &msp->ms_lock);
1824	range_tree_add(condense_tree, msp->ms_start, msp->ms_size);
1825
1826	/*
1827	 * Remove what's been freed in this txg from the condense_tree.
1828	 * Since we're in sync_pass 1, we know that all the frees from
1829	 * this txg are in the freetree.
1830	 */
1831	range_tree_walk(freetree, range_tree_remove, condense_tree);
1832
1833	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1834		range_tree_walk(msp->ms_defertree[t],
1835		    range_tree_remove, condense_tree);
1836	}
1837
1838	for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
1839		range_tree_walk(msp->ms_alloctree[(txg + t) & TXG_MASK],
1840		    range_tree_remove, condense_tree);
1841	}
1842
1843	/*
1844	 * We're about to drop the metaslab's lock thus allowing
1845	 * other consumers to change it's content. Set the
1846	 * metaslab's ms_condensing flag to ensure that
1847	 * allocations on this metaslab do not occur while we're
1848	 * in the middle of committing it to disk. This is only critical
1849	 * for the ms_tree as all other range trees use per txg
1850	 * views of their content.
1851	 */
1852	msp->ms_condensing = B_TRUE;
1853
1854	mutex_exit(&msp->ms_lock);
1855	space_map_truncate(sm, tx);
1856	mutex_enter(&msp->ms_lock);
1857
1858	/*
1859	 * While we would ideally like to create a space_map representation
1860	 * that consists only of allocation records, doing so can be
1861	 * prohibitively expensive because the in-core free tree can be
1862	 * large, and therefore computationally expensive to subtract
1863	 * from the condense_tree. Instead we sync out two trees, a cheap
1864	 * allocation only tree followed by the in-core free tree. While not
1865	 * optimal, this is typically close to optimal, and much cheaper to
1866	 * compute.
1867	 */
1868	space_map_write(sm, condense_tree, SM_ALLOC, tx);
1869	range_tree_vacate(condense_tree, NULL, NULL);
1870	range_tree_destroy(condense_tree);
1871
1872	space_map_write(sm, msp->ms_tree, SM_FREE, tx);
1873	msp->ms_condensing = B_FALSE;
1874}
1875
1876/*
1877 * Write a metaslab to disk in the context of the specified transaction group.
1878 */
1879void
1880metaslab_sync(metaslab_t *msp, uint64_t txg)
1881{
1882	metaslab_group_t *mg = msp->ms_group;
1883	vdev_t *vd = mg->mg_vd;
1884	spa_t *spa = vd->vdev_spa;
1885	objset_t *mos = spa_meta_objset(spa);
1886	range_tree_t *alloctree = msp->ms_alloctree[txg & TXG_MASK];
1887	range_tree_t **freetree = &msp->ms_freetree[txg & TXG_MASK];
1888	range_tree_t **freed_tree =
1889	    &msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK];
1890	dmu_tx_t *tx;
1891	uint64_t object = space_map_object(msp->ms_sm);
1892
1893	ASSERT(!vd->vdev_ishole);
1894
1895	/*
1896	 * This metaslab has just been added so there's no work to do now.
1897	 */
1898	if (*freetree == NULL) {
1899		ASSERT3P(alloctree, ==, NULL);
1900		return;
1901	}
1902
1903	ASSERT3P(alloctree, !=, NULL);
1904	ASSERT3P(*freetree, !=, NULL);
1905	ASSERT3P(*freed_tree, !=, NULL);
1906
1907	/*
1908	 * Normally, we don't want to process a metaslab if there
1909	 * are no allocations or frees to perform. However, if the metaslab
1910	 * is being forced to condense we need to let it through.
1911	 */
1912	if (range_tree_space(alloctree) == 0 &&
1913	    range_tree_space(*freetree) == 0 &&
1914	    !msp->ms_condense_wanted)
1915		return;
1916
1917	/*
1918	 * The only state that can actually be changing concurrently with
1919	 * metaslab_sync() is the metaslab's ms_tree.  No other thread can
1920	 * be modifying this txg's alloctree, freetree, freed_tree, or
1921	 * space_map_phys_t. Therefore, we only hold ms_lock to satify
1922	 * space_map ASSERTs. We drop it whenever we call into the DMU,
1923	 * because the DMU can call down to us (e.g. via zio_free()) at
1924	 * any time.
1925	 */
1926
1927	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
1928
1929	if (msp->ms_sm == NULL) {
1930		uint64_t new_object;
1931
1932		new_object = space_map_alloc(mos, tx);
1933		VERIFY3U(new_object, !=, 0);
1934
1935		VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
1936		    msp->ms_start, msp->ms_size, vd->vdev_ashift,
1937		    &msp->ms_lock));
1938		ASSERT(msp->ms_sm != NULL);
1939	}
1940
1941	mutex_enter(&msp->ms_lock);
1942
1943	/*
1944	 * Note: metaslab_condense() clears the space_map's histogram.
1945	 * Therefore we must verify and remove this histogram before
1946	 * condensing.
1947	 */
1948	metaslab_group_histogram_verify(mg);
1949	metaslab_class_histogram_verify(mg->mg_class);
1950	metaslab_group_histogram_remove(mg, msp);
1951
1952	if (msp->ms_loaded && spa_sync_pass(spa) == 1 &&
1953	    metaslab_should_condense(msp)) {
1954		metaslab_condense(msp, txg, tx);
1955	} else {
1956		space_map_write(msp->ms_sm, alloctree, SM_ALLOC, tx);
1957		space_map_write(msp->ms_sm, *freetree, SM_FREE, tx);
1958	}
1959
1960	if (msp->ms_loaded) {
1961		/*
1962		 * When the space map is loaded, we have an accruate
1963		 * histogram in the range tree. This gives us an opportunity
1964		 * to bring the space map's histogram up-to-date so we clear
1965		 * it first before updating it.
1966		 */
1967		space_map_histogram_clear(msp->ms_sm);
1968		space_map_histogram_add(msp->ms_sm, msp->ms_tree, tx);
1969	} else {
1970		/*
1971		 * Since the space map is not loaded we simply update the
1972		 * exisiting histogram with what was freed in this txg. This
1973		 * means that the on-disk histogram may not have an accurate
1974		 * view of the free space but it's close enough to allow
1975		 * us to make allocation decisions.
1976		 */
1977		space_map_histogram_add(msp->ms_sm, *freetree, tx);
1978	}
1979	metaslab_group_histogram_add(mg, msp);
1980	metaslab_group_histogram_verify(mg);
1981	metaslab_class_histogram_verify(mg->mg_class);
1982
1983	/*
1984	 * For sync pass 1, we avoid traversing this txg's free range tree
1985	 * and instead will just swap the pointers for freetree and
1986	 * freed_tree. We can safely do this since the freed_tree is
1987	 * guaranteed to be empty on the initial pass.
1988	 */
1989	if (spa_sync_pass(spa) == 1) {
1990		range_tree_swap(freetree, freed_tree);
1991	} else {
1992		range_tree_vacate(*freetree, range_tree_add, *freed_tree);
1993	}
1994	range_tree_vacate(alloctree, NULL, NULL);
1995
1996	ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK]));
1997	ASSERT0(range_tree_space(msp->ms_freetree[txg & TXG_MASK]));
1998
1999	mutex_exit(&msp->ms_lock);
2000
2001	if (object != space_map_object(msp->ms_sm)) {
2002		object = space_map_object(msp->ms_sm);
2003		dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
2004		    msp->ms_id, sizeof (uint64_t), &object, tx);
2005	}
2006	dmu_tx_commit(tx);
2007}
2008
2009/*
2010 * Called after a transaction group has completely synced to mark
2011 * all of the metaslab's free space as usable.
2012 */
2013void
2014metaslab_sync_done(metaslab_t *msp, uint64_t txg)
2015{
2016	metaslab_group_t *mg = msp->ms_group;
2017	vdev_t *vd = mg->mg_vd;
2018	range_tree_t **freed_tree;
2019	range_tree_t **defer_tree;
2020	int64_t alloc_delta, defer_delta;
2021
2022	ASSERT(!vd->vdev_ishole);
2023
2024	mutex_enter(&msp->ms_lock);
2025
2026	/*
2027	 * If this metaslab is just becoming available, initialize its
2028	 * alloctrees, freetrees, and defertree and add its capacity to
2029	 * the vdev.
2030	 */
2031	if (msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK] == NULL) {
2032		for (int t = 0; t < TXG_SIZE; t++) {
2033			ASSERT(msp->ms_alloctree[t] == NULL);
2034			ASSERT(msp->ms_freetree[t] == NULL);
2035
2036			msp->ms_alloctree[t] = range_tree_create(NULL, msp,
2037			    &msp->ms_lock);
2038			msp->ms_freetree[t] = range_tree_create(NULL, msp,
2039			    &msp->ms_lock);
2040		}
2041
2042		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2043			ASSERT(msp->ms_defertree[t] == NULL);
2044
2045			msp->ms_defertree[t] = range_tree_create(NULL, msp,
2046			    &msp->ms_lock);
2047		}
2048
2049		vdev_space_update(vd, 0, 0, msp->ms_size);
2050	}
2051
2052	freed_tree = &msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK];
2053	defer_tree = &msp->ms_defertree[txg % TXG_DEFER_SIZE];
2054
2055	alloc_delta = space_map_alloc_delta(msp->ms_sm);
2056	defer_delta = range_tree_space(*freed_tree) -
2057	    range_tree_space(*defer_tree);
2058
2059	vdev_space_update(vd, alloc_delta + defer_delta, defer_delta, 0);
2060
2061	ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK]));
2062	ASSERT0(range_tree_space(msp->ms_freetree[txg & TXG_MASK]));
2063
2064	/*
2065	 * If there's a metaslab_load() in progress, wait for it to complete
2066	 * so that we have a consistent view of the in-core space map.
2067	 */
2068	metaslab_load_wait(msp);
2069
2070	/*
2071	 * Move the frees from the defer_tree back to the free
2072	 * range tree (if it's loaded). Swap the freed_tree and the
2073	 * defer_tree -- this is safe to do because we've just emptied out
2074	 * the defer_tree.
2075	 */
2076	range_tree_vacate(*defer_tree,
2077	    msp->ms_loaded ? range_tree_add : NULL, msp->ms_tree);
2078	range_tree_swap(freed_tree, defer_tree);
2079
2080	space_map_update(msp->ms_sm);
2081
2082	msp->ms_deferspace += defer_delta;
2083	ASSERT3S(msp->ms_deferspace, >=, 0);
2084	ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
2085	if (msp->ms_deferspace != 0) {
2086		/*
2087		 * Keep syncing this metaslab until all deferred frees
2088		 * are back in circulation.
2089		 */
2090		vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
2091	}
2092
2093	if (msp->ms_loaded && msp->ms_access_txg < txg) {
2094		for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
2095			VERIFY0(range_tree_space(
2096			    msp->ms_alloctree[(txg + t) & TXG_MASK]));
2097		}
2098
2099		if (!metaslab_debug_unload)
2100			metaslab_unload(msp);
2101	}
2102
2103	metaslab_group_sort(mg, msp, metaslab_weight(msp));
2104	mutex_exit(&msp->ms_lock);
2105}
2106
2107void
2108metaslab_sync_reassess(metaslab_group_t *mg)
2109{
2110	metaslab_group_alloc_update(mg);
2111	mg->mg_fragmentation = metaslab_group_fragmentation(mg);
2112
2113	/*
2114	 * Preload the next potential metaslabs
2115	 */
2116	metaslab_group_preload(mg);
2117}
2118
2119static uint64_t
2120metaslab_distance(metaslab_t *msp, dva_t *dva)
2121{
2122	uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift;
2123	uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift;
2124	uint64_t start = msp->ms_id;
2125
2126	if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
2127		return (1ULL << 63);
2128
2129	if (offset < start)
2130		return ((start - offset) << ms_shift);
2131	if (offset > start)
2132		return ((offset - start) << ms_shift);
2133	return (0);
2134}
2135
2136static uint64_t
2137metaslab_group_alloc(metaslab_group_t *mg, uint64_t psize, uint64_t asize,
2138    uint64_t txg, uint64_t min_distance, dva_t *dva, int d)
2139{
2140	spa_t *spa = mg->mg_vd->vdev_spa;
2141	metaslab_t *msp = NULL;
2142	uint64_t offset = -1ULL;
2143	avl_tree_t *t = &mg->mg_metaslab_tree;
2144	uint64_t activation_weight;
2145	uint64_t target_distance;
2146	int i;
2147
2148	activation_weight = METASLAB_WEIGHT_PRIMARY;
2149	for (i = 0; i < d; i++) {
2150		if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
2151			activation_weight = METASLAB_WEIGHT_SECONDARY;
2152			break;
2153		}
2154	}
2155
2156	for (;;) {
2157		boolean_t was_active;
2158
2159		mutex_enter(&mg->mg_lock);
2160		for (msp = avl_first(t); msp; msp = AVL_NEXT(t, msp)) {
2161			if (msp->ms_weight < asize) {
2162				spa_dbgmsg(spa, "%s: failed to meet weight "
2163				    "requirement: vdev %llu, txg %llu, mg %p, "
2164				    "msp %p, psize %llu, asize %llu, "
2165				    "weight %llu", spa_name(spa),
2166				    mg->mg_vd->vdev_id, txg,
2167				    mg, msp, psize, asize, msp->ms_weight);
2168				mutex_exit(&mg->mg_lock);
2169				return (-1ULL);
2170			}
2171
2172			/*
2173			 * If the selected metaslab is condensing, skip it.
2174			 */
2175			if (msp->ms_condensing)
2176				continue;
2177
2178			was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
2179			if (activation_weight == METASLAB_WEIGHT_PRIMARY)
2180				break;
2181
2182			target_distance = min_distance +
2183			    (space_map_allocated(msp->ms_sm) != 0 ? 0 :
2184			    min_distance >> 1);
2185
2186			for (i = 0; i < d; i++)
2187				if (metaslab_distance(msp, &dva[i]) <
2188				    target_distance)
2189					break;
2190			if (i == d)
2191				break;
2192		}
2193		mutex_exit(&mg->mg_lock);
2194		if (msp == NULL)
2195			return (-1ULL);
2196
2197		mutex_enter(&msp->ms_lock);
2198
2199		/*
2200		 * Ensure that the metaslab we have selected is still
2201		 * capable of handling our request. It's possible that
2202		 * another thread may have changed the weight while we
2203		 * were blocked on the metaslab lock.
2204		 */
2205		if (msp->ms_weight < asize || (was_active &&
2206		    !(msp->ms_weight & METASLAB_ACTIVE_MASK) &&
2207		    activation_weight == METASLAB_WEIGHT_PRIMARY)) {
2208			mutex_exit(&msp->ms_lock);
2209			continue;
2210		}
2211
2212		if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) &&
2213		    activation_weight == METASLAB_WEIGHT_PRIMARY) {
2214			metaslab_passivate(msp,
2215			    msp->ms_weight & ~METASLAB_ACTIVE_MASK);
2216			mutex_exit(&msp->ms_lock);
2217			continue;
2218		}
2219
2220		if (metaslab_activate(msp, activation_weight) != 0) {
2221			mutex_exit(&msp->ms_lock);
2222			continue;
2223		}
2224
2225		/*
2226		 * If this metaslab is currently condensing then pick again as
2227		 * we can't manipulate this metaslab until it's committed
2228		 * to disk.
2229		 */
2230		if (msp->ms_condensing) {
2231			mutex_exit(&msp->ms_lock);
2232			continue;
2233		}
2234
2235		if ((offset = metaslab_block_alloc(msp, asize)) != -1ULL)
2236			break;
2237
2238		metaslab_passivate(msp, metaslab_block_maxsize(msp));
2239		mutex_exit(&msp->ms_lock);
2240	}
2241
2242	if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0)
2243		vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
2244
2245	range_tree_add(msp->ms_alloctree[txg & TXG_MASK], offset, asize);
2246	msp->ms_access_txg = txg + metaslab_unload_delay;
2247
2248	mutex_exit(&msp->ms_lock);
2249
2250	return (offset);
2251}
2252
2253/*
2254 * Allocate a block for the specified i/o.
2255 */
2256static int
2257metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
2258    dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags)
2259{
2260	metaslab_group_t *mg, *rotor;
2261	vdev_t *vd;
2262	int dshift = 3;
2263	int all_zero;
2264	int zio_lock = B_FALSE;
2265	boolean_t allocatable;
2266	uint64_t offset = -1ULL;
2267	uint64_t asize;
2268	uint64_t distance;
2269
2270	ASSERT(!DVA_IS_VALID(&dva[d]));
2271
2272	/*
2273	 * For testing, make some blocks above a certain size be gang blocks.
2274	 */
2275	if (psize >= metaslab_gang_bang && (ddi_get_lbolt() & 3) == 0)
2276		return (SET_ERROR(ENOSPC));
2277
2278	/*
2279	 * Start at the rotor and loop through all mgs until we find something.
2280	 * Note that there's no locking on mc_rotor or mc_aliquot because
2281	 * nothing actually breaks if we miss a few updates -- we just won't
2282	 * allocate quite as evenly.  It all balances out over time.
2283	 *
2284	 * If we are doing ditto or log blocks, try to spread them across
2285	 * consecutive vdevs.  If we're forced to reuse a vdev before we've
2286	 * allocated all of our ditto blocks, then try and spread them out on
2287	 * that vdev as much as possible.  If it turns out to not be possible,
2288	 * gradually lower our standards until anything becomes acceptable.
2289	 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
2290	 * gives us hope of containing our fault domains to something we're
2291	 * able to reason about.  Otherwise, any two top-level vdev failures
2292	 * will guarantee the loss of data.  With consecutive allocation,
2293	 * only two adjacent top-level vdev failures will result in data loss.
2294	 *
2295	 * If we are doing gang blocks (hintdva is non-NULL), try to keep
2296	 * ourselves on the same vdev as our gang block header.  That
2297	 * way, we can hope for locality in vdev_cache, plus it makes our
2298	 * fault domains something tractable.
2299	 */
2300	if (hintdva) {
2301		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
2302
2303		/*
2304		 * It's possible the vdev we're using as the hint no
2305		 * longer exists (i.e. removed). Consult the rotor when
2306		 * all else fails.
2307		 */
2308		if (vd != NULL) {
2309			mg = vd->vdev_mg;
2310
2311			if (flags & METASLAB_HINTBP_AVOID &&
2312			    mg->mg_next != NULL)
2313				mg = mg->mg_next;
2314		} else {
2315			mg = mc->mc_rotor;
2316		}
2317	} else if (d != 0) {
2318		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
2319		mg = vd->vdev_mg->mg_next;
2320	} else {
2321		mg = mc->mc_rotor;
2322	}
2323
2324	/*
2325	 * If the hint put us into the wrong metaslab class, or into a
2326	 * metaslab group that has been passivated, just follow the rotor.
2327	 */
2328	if (mg->mg_class != mc || mg->mg_activation_count <= 0)
2329		mg = mc->mc_rotor;
2330
2331	rotor = mg;
2332top:
2333	all_zero = B_TRUE;
2334	do {
2335		ASSERT(mg->mg_activation_count == 1);
2336
2337		vd = mg->mg_vd;
2338
2339		/*
2340		 * Don't allocate from faulted devices.
2341		 */
2342		if (zio_lock) {
2343			spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
2344			allocatable = vdev_allocatable(vd);
2345			spa_config_exit(spa, SCL_ZIO, FTAG);
2346		} else {
2347			allocatable = vdev_allocatable(vd);
2348		}
2349
2350		/*
2351		 * Determine if the selected metaslab group is eligible
2352		 * for allocations. If we're ganging or have requested
2353		 * an allocation for the smallest gang block size
2354		 * then we don't want to avoid allocating to the this
2355		 * metaslab group. If we're in this condition we should
2356		 * try to allocate from any device possible so that we
2357		 * don't inadvertently return ENOSPC and suspend the pool
2358		 * even though space is still available.
2359		 */
2360		if (allocatable && CAN_FASTGANG(flags) &&
2361		    psize > SPA_GANGBLOCKSIZE)
2362			allocatable = metaslab_group_allocatable(mg);
2363
2364		if (!allocatable)
2365			goto next;
2366
2367		/*
2368		 * Avoid writing single-copy data to a failing vdev
2369		 * unless the user instructs us that it is okay.
2370		 */
2371		if ((vd->vdev_stat.vs_write_errors > 0 ||
2372		    vd->vdev_state < VDEV_STATE_HEALTHY) &&
2373		    d == 0 && dshift == 3 && vd->vdev_children == 0) {
2374			all_zero = B_FALSE;
2375			goto next;
2376		}
2377
2378		ASSERT(mg->mg_class == mc);
2379
2380		distance = vd->vdev_asize >> dshift;
2381		if (distance <= (1ULL << vd->vdev_ms_shift))
2382			distance = 0;
2383		else
2384			all_zero = B_FALSE;
2385
2386		asize = vdev_psize_to_asize(vd, psize);
2387		ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
2388
2389		offset = metaslab_group_alloc(mg, psize, asize, txg, distance,
2390		    dva, d);
2391		if (offset != -1ULL) {
2392			/*
2393			 * If we've just selected this metaslab group,
2394			 * figure out whether the corresponding vdev is
2395			 * over- or under-used relative to the pool,
2396			 * and set an allocation bias to even it out.
2397			 */
2398			if (mc->mc_aliquot == 0 && metaslab_bias_enabled) {
2399				vdev_stat_t *vs = &vd->vdev_stat;
2400				int64_t vu, cu;
2401
2402				vu = (vs->vs_alloc * 100) / (vs->vs_space + 1);
2403				cu = (mc->mc_alloc * 100) / (mc->mc_space + 1);
2404
2405				/*
2406				 * Calculate how much more or less we should
2407				 * try to allocate from this device during
2408				 * this iteration around the rotor.
2409				 * For example, if a device is 80% full
2410				 * and the pool is 20% full then we should
2411				 * reduce allocations by 60% on this device.
2412				 *
2413				 * mg_bias = (20 - 80) * 512K / 100 = -307K
2414				 *
2415				 * This reduces allocations by 307K for this
2416				 * iteration.
2417				 */
2418				mg->mg_bias = ((cu - vu) *
2419				    (int64_t)mg->mg_aliquot) / 100;
2420			} else if (!metaslab_bias_enabled) {
2421				mg->mg_bias = 0;
2422			}
2423
2424			if (atomic_add_64_nv(&mc->mc_aliquot, asize) >=
2425			    mg->mg_aliquot + mg->mg_bias) {
2426				mc->mc_rotor = mg->mg_next;
2427				mc->mc_aliquot = 0;
2428			}
2429
2430			DVA_SET_VDEV(&dva[d], vd->vdev_id);
2431			DVA_SET_OFFSET(&dva[d], offset);
2432			DVA_SET_GANG(&dva[d], !!(flags & METASLAB_GANG_HEADER));
2433			DVA_SET_ASIZE(&dva[d], asize);
2434
2435			return (0);
2436		}
2437next:
2438		mc->mc_rotor = mg->mg_next;
2439		mc->mc_aliquot = 0;
2440	} while ((mg = mg->mg_next) != rotor);
2441
2442	if (!all_zero) {
2443		dshift++;
2444		ASSERT(dshift < 64);
2445		goto top;
2446	}
2447
2448	if (!allocatable && !zio_lock) {
2449		dshift = 3;
2450		zio_lock = B_TRUE;
2451		goto top;
2452	}
2453
2454	bzero(&dva[d], sizeof (dva_t));
2455
2456	return (SET_ERROR(ENOSPC));
2457}
2458
2459/*
2460 * Free the block represented by DVA in the context of the specified
2461 * transaction group.
2462 */
2463static void
2464metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now)
2465{
2466	uint64_t vdev = DVA_GET_VDEV(dva);
2467	uint64_t offset = DVA_GET_OFFSET(dva);
2468	uint64_t size = DVA_GET_ASIZE(dva);
2469	vdev_t *vd;
2470	metaslab_t *msp;
2471
2472	ASSERT(DVA_IS_VALID(dva));
2473
2474	if (txg > spa_freeze_txg(spa))
2475		return;
2476
2477	if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
2478	    (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
2479		cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu",
2480		    (u_longlong_t)vdev, (u_longlong_t)offset);
2481		ASSERT(0);
2482		return;
2483	}
2484
2485	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
2486
2487	if (DVA_GET_GANG(dva))
2488		size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
2489
2490	mutex_enter(&msp->ms_lock);
2491
2492	if (now) {
2493		range_tree_remove(msp->ms_alloctree[txg & TXG_MASK],
2494		    offset, size);
2495
2496		VERIFY(!msp->ms_condensing);
2497		VERIFY3U(offset, >=, msp->ms_start);
2498		VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
2499		VERIFY3U(range_tree_space(msp->ms_tree) + size, <=,
2500		    msp->ms_size);
2501		VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
2502		VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
2503		range_tree_add(msp->ms_tree, offset, size);
2504	} else {
2505		if (range_tree_space(msp->ms_freetree[txg & TXG_MASK]) == 0)
2506			vdev_dirty(vd, VDD_METASLAB, msp, txg);
2507		range_tree_add(msp->ms_freetree[txg & TXG_MASK],
2508		    offset, size);
2509	}
2510
2511	mutex_exit(&msp->ms_lock);
2512}
2513
2514/*
2515 * Intent log support: upon opening the pool after a crash, notify the SPA
2516 * of blocks that the intent log has allocated for immediate write, but
2517 * which are still considered free by the SPA because the last transaction
2518 * group didn't commit yet.
2519 */
2520static int
2521metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
2522{
2523	uint64_t vdev = DVA_GET_VDEV(dva);
2524	uint64_t offset = DVA_GET_OFFSET(dva);
2525	uint64_t size = DVA_GET_ASIZE(dva);
2526	vdev_t *vd;
2527	metaslab_t *msp;
2528	int error = 0;
2529
2530	ASSERT(DVA_IS_VALID(dva));
2531
2532	if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
2533	    (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count)
2534		return (SET_ERROR(ENXIO));
2535
2536	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
2537
2538	if (DVA_GET_GANG(dva))
2539		size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
2540
2541	mutex_enter(&msp->ms_lock);
2542
2543	if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded)
2544		error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY);
2545
2546	if (error == 0 && !range_tree_contains(msp->ms_tree, offset, size))
2547		error = SET_ERROR(ENOENT);
2548
2549	if (error || txg == 0) {	/* txg == 0 indicates dry run */
2550		mutex_exit(&msp->ms_lock);
2551		return (error);
2552	}
2553
2554	VERIFY(!msp->ms_condensing);
2555	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
2556	VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
2557	VERIFY3U(range_tree_space(msp->ms_tree) - size, <=, msp->ms_size);
2558	range_tree_remove(msp->ms_tree, offset, size);
2559
2560	if (spa_writeable(spa)) {	/* don't dirty if we're zdb(1M) */
2561		if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0)
2562			vdev_dirty(vd, VDD_METASLAB, msp, txg);
2563		range_tree_add(msp->ms_alloctree[txg & TXG_MASK], offset, size);
2564	}
2565
2566	mutex_exit(&msp->ms_lock);
2567
2568	return (0);
2569}
2570
2571int
2572metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
2573    int ndvas, uint64_t txg, blkptr_t *hintbp, int flags)
2574{
2575	dva_t *dva = bp->blk_dva;
2576	dva_t *hintdva = hintbp->blk_dva;
2577	int error = 0;
2578
2579	ASSERT(bp->blk_birth == 0);
2580	ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
2581
2582	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
2583
2584	if (mc->mc_rotor == NULL) {	/* no vdevs in this class */
2585		spa_config_exit(spa, SCL_ALLOC, FTAG);
2586		return (SET_ERROR(ENOSPC));
2587	}
2588
2589	ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
2590	ASSERT(BP_GET_NDVAS(bp) == 0);
2591	ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
2592
2593	for (int d = 0; d < ndvas; d++) {
2594		error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
2595		    txg, flags);
2596		if (error != 0) {
2597			for (d--; d >= 0; d--) {
2598				metaslab_free_dva(spa, &dva[d], txg, B_TRUE);
2599				bzero(&dva[d], sizeof (dva_t));
2600			}
2601			spa_config_exit(spa, SCL_ALLOC, FTAG);
2602			return (error);
2603		}
2604	}
2605	ASSERT(error == 0);
2606	ASSERT(BP_GET_NDVAS(bp) == ndvas);
2607
2608	spa_config_exit(spa, SCL_ALLOC, FTAG);
2609
2610	BP_SET_BIRTH(bp, txg, txg);
2611
2612	return (0);
2613}
2614
2615void
2616metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
2617{
2618	const dva_t *dva = bp->blk_dva;
2619	int ndvas = BP_GET_NDVAS(bp);
2620
2621	ASSERT(!BP_IS_HOLE(bp));
2622	ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
2623
2624	spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
2625
2626	for (int d = 0; d < ndvas; d++)
2627		metaslab_free_dva(spa, &dva[d], txg, now);
2628
2629	spa_config_exit(spa, SCL_FREE, FTAG);
2630}
2631
2632int
2633metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
2634{
2635	const dva_t *dva = bp->blk_dva;
2636	int ndvas = BP_GET_NDVAS(bp);
2637	int error = 0;
2638
2639	ASSERT(!BP_IS_HOLE(bp));
2640
2641	if (txg != 0) {
2642		/*
2643		 * First do a dry run to make sure all DVAs are claimable,
2644		 * so we don't have to unwind from partial failures below.
2645		 */
2646		if ((error = metaslab_claim(spa, bp, 0)) != 0)
2647			return (error);
2648	}
2649
2650	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
2651
2652	for (int d = 0; d < ndvas; d++)
2653		if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0)
2654			break;
2655
2656	spa_config_exit(spa, SCL_ALLOC, FTAG);
2657
2658	ASSERT(error == 0 || txg == 0);
2659
2660	return (error);
2661}
2662
2663void
2664metaslab_check_free(spa_t *spa, const blkptr_t *bp)
2665{
2666	if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
2667		return;
2668
2669	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2670	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
2671		uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
2672		vdev_t *vd = vdev_lookup_top(spa, vdev);
2673		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
2674		uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
2675		metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
2676
2677		if (msp->ms_loaded)
2678			range_tree_verify(msp->ms_tree, offset, size);
2679
2680		for (int j = 0; j < TXG_SIZE; j++)
2681			range_tree_verify(msp->ms_freetree[j], offset, size);
2682		for (int j = 0; j < TXG_DEFER_SIZE; j++)
2683			range_tree_verify(msp->ms_defertree[j], offset, size);
2684	}
2685	spa_config_exit(spa, SCL_VDEV, FTAG);
2686}
2687