metaslab.c revision 269774
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 */
26
27#include <sys/zfs_context.h>
28#include <sys/dmu.h>
29#include <sys/dmu_tx.h>
30#include <sys/space_map.h>
31#include <sys/metaslab_impl.h>
32#include <sys/vdev_impl.h>
33#include <sys/zio.h>
34#include <sys/spa_impl.h>
35#include <sys/zfeature.h>
36
37SYSCTL_DECL(_vfs_zfs);
38SYSCTL_NODE(_vfs_zfs, OID_AUTO, metaslab, CTLFLAG_RW, 0, "ZFS metaslab");
39
40/*
41 * Allow allocations to switch to gang blocks quickly. We do this to
42 * avoid having to load lots of space_maps in a given txg. There are,
43 * however, some cases where we want to avoid "fast" ganging and instead
44 * we want to do an exhaustive search of all metaslabs on this device.
45 * Currently we don't allow any gang, slog, or dump device related allocations
46 * to "fast" gang.
47 */
48#define	CAN_FASTGANG(flags) \
49	(!((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER | \
50	METASLAB_GANG_AVOID)))
51
52#define	METASLAB_WEIGHT_PRIMARY		(1ULL << 63)
53#define	METASLAB_WEIGHT_SECONDARY	(1ULL << 62)
54#define	METASLAB_ACTIVE_MASK		\
55	(METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY)
56
57uint64_t metaslab_aliquot = 512ULL << 10;
58uint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1;	/* force gang blocks */
59TUNABLE_QUAD("vfs.zfs.metaslab.gang_bang", &metaslab_gang_bang);
60SYSCTL_QUAD(_vfs_zfs_metaslab, OID_AUTO, gang_bang, CTLFLAG_RWTUN,
61    &metaslab_gang_bang, 0,
62    "Force gang block allocation for blocks larger than or equal to this value");
63
64/*
65 * The in-core space map representation is more compact than its on-disk form.
66 * The zfs_condense_pct determines how much more compact the in-core
67 * space_map representation must be before we compact it on-disk.
68 * Values should be greater than or equal to 100.
69 */
70int zfs_condense_pct = 200;
71TUNABLE_INT("vfs.zfs.condense_pct", &zfs_condense_pct);
72SYSCTL_INT(_vfs_zfs, OID_AUTO, condense_pct, CTLFLAG_RWTUN,
73    &zfs_condense_pct, 0,
74    "Condense on-disk spacemap when it is more than this many percents"
75    " of in-memory counterpart");
76
77/*
78 * Condensing a metaslab is not guaranteed to actually reduce the amount of
79 * space used on disk. In particular, a space map uses data in increments of
80 * MAX(1 << ashift, SPACE_MAP_INITIAL_BLOCKSIZE), so a metaslab might use the
81 * same number of blocks after condensing. Since the goal of condensing is to
82 * reduce the number of IOPs required to read the space map, we only want to
83 * condense when we can be sure we will reduce the number of blocks used by the
84 * space map. Unfortunately, we cannot precisely compute whether or not this is
85 * the case in metaslab_should_condense since we are holding ms_lock. Instead,
86 * we apply the following heuristic: do not condense a spacemap unless the
87 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
88 * blocks.
89 */
90int zfs_metaslab_condense_block_threshold = 4;
91
92/*
93 * The zfs_mg_noalloc_threshold defines which metaslab groups should
94 * be eligible for allocation. The value is defined as a percentage of
95 * free space. Metaslab groups that have more free space than
96 * zfs_mg_noalloc_threshold are always eligible for allocations. Once
97 * a metaslab group's free space is less than or equal to the
98 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
99 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
100 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
101 * groups are allowed to accept allocations. Gang blocks are always
102 * eligible to allocate on any metaslab group. The default value of 0 means
103 * no metaslab group will be excluded based on this criterion.
104 */
105int zfs_mg_noalloc_threshold = 0;
106TUNABLE_INT("vfs.zfs.mg_noalloc_threshold", &zfs_mg_noalloc_threshold);
107SYSCTL_INT(_vfs_zfs, OID_AUTO, mg_noalloc_threshold, CTLFLAG_RWTUN,
108    &zfs_mg_noalloc_threshold, 0,
109    "Percentage of metaslab group size that should be free"
110    " to make it eligible for allocation");
111
112/*
113 * Metaslab groups are considered eligible for allocations if their
114 * fragmenation metric (measured as a percentage) is less than or equal to
115 * zfs_mg_fragmentation_threshold. If a metaslab group exceeds this threshold
116 * then it will be skipped unless all metaslab groups within the metaslab
117 * class have also crossed this threshold.
118 */
119int zfs_mg_fragmentation_threshold = 85;
120TUNABLE_INT("vfs.zfs.mg_fragmentation_threshold", &zfs_mg_fragmentation_threshold);
121SYSCTL_INT(_vfs_zfs, OID_AUTO, mg_fragmentation_threshold, CTLFLAG_RWTUN,
122    &zfs_mg_fragmentation_threshold, 0,
123    "Percentage of metaslab group size that should be considered "
124    "eligible for allocations unless all metaslab groups within the metaslab class "
125    "have also crossed this threshold");
126
127/*
128 * Allow metaslabs to keep their active state as long as their fragmentation
129 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
130 * active metaslab that exceeds this threshold will no longer keep its active
131 * status allowing better metaslabs to be selected.
132 */
133int zfs_metaslab_fragmentation_threshold = 70;
134TUNABLE_INT("vfs.zfs.metaslab.fragmentation_threshold",
135    &zfs_metaslab_fragmentation_threshold);
136SYSCTL_INT(_vfs_zfs_metaslab, OID_AUTO, fragmentation_threshold, CTLFLAG_RWTUN,
137    &zfs_metaslab_fragmentation_threshold, 0,
138    "Maximum percentage of metaslab fragmentation level to keep their active state");
139
140/*
141 * When set will load all metaslabs when pool is first opened.
142 */
143int metaslab_debug_load = 0;
144TUNABLE_INT("vfs.zfs.metaslab.debug_load", &metaslab_debug_load);
145SYSCTL_INT(_vfs_zfs_metaslab, OID_AUTO, debug_load, CTLFLAG_RWTUN,
146    &metaslab_debug_load, 0,
147    "Load all metaslabs when pool is first opened");
148
149/*
150 * When set will prevent metaslabs from being unloaded.
151 */
152int metaslab_debug_unload = 0;
153TUNABLE_INT("vfs.zfs.metaslab.debug_unload", &metaslab_debug_unload);
154SYSCTL_INT(_vfs_zfs_metaslab, OID_AUTO, debug_unload, CTLFLAG_RWTUN,
155    &metaslab_debug_unload, 0,
156    "Prevent metaslabs from being unloaded");
157
158/*
159 * Minimum size which forces the dynamic allocator to change
160 * it's allocation strategy.  Once the space map cannot satisfy
161 * an allocation of this size then it switches to using more
162 * aggressive strategy (i.e search by size rather than offset).
163 */
164uint64_t metaslab_df_alloc_threshold = SPA_MAXBLOCKSIZE;
165TUNABLE_QUAD("vfs.zfs.metaslab.df_alloc_threshold",
166    &metaslab_df_alloc_threshold);
167SYSCTL_QUAD(_vfs_zfs_metaslab, OID_AUTO, df_alloc_threshold, CTLFLAG_RWTUN,
168    &metaslab_df_alloc_threshold, 0,
169    "Minimum size which forces the dynamic allocator to change it's allocation strategy");
170
171/*
172 * The minimum free space, in percent, which must be available
173 * in a space map to continue allocations in a first-fit fashion.
174 * Once the space_map's free space drops below this level we dynamically
175 * switch to using best-fit allocations.
176 */
177int metaslab_df_free_pct = 4;
178TUNABLE_INT("vfs.zfs.metaslab.df_free_pct", &metaslab_df_free_pct);
179SYSCTL_INT(_vfs_zfs_metaslab, OID_AUTO, df_free_pct, CTLFLAG_RWTUN,
180    &metaslab_df_free_pct, 0,
181    "The minimum free space, in percent, which must be available in a space map to continue allocations in a first-fit fashion");
182
183/*
184 * A metaslab is considered "free" if it contains a contiguous
185 * segment which is greater than metaslab_min_alloc_size.
186 */
187uint64_t metaslab_min_alloc_size = DMU_MAX_ACCESS;
188TUNABLE_QUAD("vfs.zfs.metaslab.min_alloc_size",
189    &metaslab_min_alloc_size);
190SYSCTL_QUAD(_vfs_zfs_metaslab, OID_AUTO, min_alloc_size, CTLFLAG_RWTUN,
191    &metaslab_min_alloc_size, 0,
192    "A metaslab is considered \"free\" if it contains a contiguous segment which is greater than vfs.zfs.metaslab.min_alloc_size");
193
194/*
195 * Percentage of all cpus that can be used by the metaslab taskq.
196 */
197int metaslab_load_pct = 50;
198TUNABLE_INT("vfs.zfs.metaslab.load_pct", &metaslab_load_pct);
199SYSCTL_INT(_vfs_zfs_metaslab, OID_AUTO, load_pct, CTLFLAG_RWTUN,
200    &metaslab_load_pct, 0,
201    "Percentage of cpus that can be used by the metaslab taskq");
202
203/*
204 * Determines how many txgs a metaslab may remain loaded without having any
205 * allocations from it. As long as a metaslab continues to be used we will
206 * keep it loaded.
207 */
208int metaslab_unload_delay = TXG_SIZE * 2;
209TUNABLE_INT("vfs.zfs.metaslab.unload_delay", &metaslab_unload_delay);
210SYSCTL_INT(_vfs_zfs_metaslab, OID_AUTO, unload_delay, CTLFLAG_RWTUN,
211    &metaslab_unload_delay, 0,
212    "Number of TXGs that an unused metaslab can be kept in memory");
213
214/*
215 * Max number of metaslabs per group to preload.
216 */
217int metaslab_preload_limit = SPA_DVAS_PER_BP;
218TUNABLE_INT("vfs.zfs.metaslab.preload_limit", &metaslab_preload_limit);
219SYSCTL_INT(_vfs_zfs_metaslab, OID_AUTO, preload_limit, CTLFLAG_RWTUN,
220    &metaslab_preload_limit, 0,
221    "Max number of metaslabs per group to preload");
222
223/*
224 * Enable/disable preloading of metaslab.
225 */
226boolean_t metaslab_preload_enabled = B_TRUE;
227TUNABLE_INT("vfs.zfs.metaslab.preload_enabled", &metaslab_preload_enabled);
228SYSCTL_INT(_vfs_zfs_metaslab, OID_AUTO, preload_enabled, CTLFLAG_RWTUN,
229    &metaslab_preload_enabled, 0,
230    "Max number of metaslabs per group to preload");
231
232/*
233 * Enable/disable fragmentation weighting on metaslabs.
234 */
235boolean_t metaslab_fragmentation_factor_enabled = B_TRUE;
236TUNABLE_INT("vfs.zfs.metaslab_fragmentation_factor_enabled",
237    &metaslab_fragmentation_factor_enabled);
238SYSCTL_INT(_vfs_zfs_metaslab, OID_AUTO, fragmentation_factor_enabled, CTLFLAG_RWTUN,
239    &metaslab_fragmentation_factor_enabled, 0,
240    "Enable fragmentation weighting on metaslabs");
241
242/*
243 * Enable/disable lba weighting (i.e. outer tracks are given preference).
244 */
245boolean_t metaslab_lba_weighting_enabled = B_TRUE;
246TUNABLE_INT("vfs.zfs.metaslab.lba_weighting_enabled",
247    &metaslab_lba_weighting_enabled);
248SYSCTL_INT(_vfs_zfs_metaslab, OID_AUTO, lba_weighting_enabled, CTLFLAG_RWTUN,
249    &metaslab_lba_weighting_enabled, 0,
250    "Enable LBA weighting (i.e. outer tracks are given preference)");
251
252/*
253 * Enable/disable metaslab group biasing.
254 */
255boolean_t metaslab_bias_enabled = B_TRUE;
256TUNABLE_INT("vfs.zfs.metaslab.bias_enabled",
257    &metaslab_bias_enabled);
258SYSCTL_INT(_vfs_zfs_metaslab, OID_AUTO, bias_enabled, CTLFLAG_RWTUN,
259    &metaslab_bias_enabled, 0,
260    "Enable metaslab group biasing");
261
262static uint64_t metaslab_fragmentation(metaslab_t *);
263
264/*
265 * ==========================================================================
266 * Metaslab classes
267 * ==========================================================================
268 */
269metaslab_class_t *
270metaslab_class_create(spa_t *spa, metaslab_ops_t *ops)
271{
272	metaslab_class_t *mc;
273
274	mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP);
275
276	mc->mc_spa = spa;
277	mc->mc_rotor = NULL;
278	mc->mc_ops = ops;
279
280	return (mc);
281}
282
283void
284metaslab_class_destroy(metaslab_class_t *mc)
285{
286	ASSERT(mc->mc_rotor == NULL);
287	ASSERT(mc->mc_alloc == 0);
288	ASSERT(mc->mc_deferred == 0);
289	ASSERT(mc->mc_space == 0);
290	ASSERT(mc->mc_dspace == 0);
291
292	kmem_free(mc, sizeof (metaslab_class_t));
293}
294
295int
296metaslab_class_validate(metaslab_class_t *mc)
297{
298	metaslab_group_t *mg;
299	vdev_t *vd;
300
301	/*
302	 * Must hold one of the spa_config locks.
303	 */
304	ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
305	    spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
306
307	if ((mg = mc->mc_rotor) == NULL)
308		return (0);
309
310	do {
311		vd = mg->mg_vd;
312		ASSERT(vd->vdev_mg != NULL);
313		ASSERT3P(vd->vdev_top, ==, vd);
314		ASSERT3P(mg->mg_class, ==, mc);
315		ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
316	} while ((mg = mg->mg_next) != mc->mc_rotor);
317
318	return (0);
319}
320
321void
322metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
323    int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
324{
325	atomic_add_64(&mc->mc_alloc, alloc_delta);
326	atomic_add_64(&mc->mc_deferred, defer_delta);
327	atomic_add_64(&mc->mc_space, space_delta);
328	atomic_add_64(&mc->mc_dspace, dspace_delta);
329}
330
331void
332metaslab_class_minblocksize_update(metaslab_class_t *mc)
333{
334	metaslab_group_t *mg;
335	vdev_t *vd;
336	uint64_t minashift = UINT64_MAX;
337
338	if ((mg = mc->mc_rotor) == NULL) {
339		mc->mc_minblocksize = SPA_MINBLOCKSIZE;
340		return;
341	}
342
343	do {
344		vd = mg->mg_vd;
345		if (vd->vdev_ashift < minashift)
346			minashift = vd->vdev_ashift;
347	} while ((mg = mg->mg_next) != mc->mc_rotor);
348
349	mc->mc_minblocksize = 1ULL << minashift;
350}
351
352uint64_t
353metaslab_class_get_alloc(metaslab_class_t *mc)
354{
355	return (mc->mc_alloc);
356}
357
358uint64_t
359metaslab_class_get_deferred(metaslab_class_t *mc)
360{
361	return (mc->mc_deferred);
362}
363
364uint64_t
365metaslab_class_get_space(metaslab_class_t *mc)
366{
367	return (mc->mc_space);
368}
369
370uint64_t
371metaslab_class_get_dspace(metaslab_class_t *mc)
372{
373	return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
374}
375
376uint64_t
377metaslab_class_get_minblocksize(metaslab_class_t *mc)
378{
379	return (mc->mc_minblocksize);
380}
381
382void
383metaslab_class_histogram_verify(metaslab_class_t *mc)
384{
385	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
386	uint64_t *mc_hist;
387	int i;
388
389	if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
390		return;
391
392	mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
393	    KM_SLEEP);
394
395	for (int c = 0; c < rvd->vdev_children; c++) {
396		vdev_t *tvd = rvd->vdev_child[c];
397		metaslab_group_t *mg = tvd->vdev_mg;
398
399		/*
400		 * Skip any holes, uninitialized top-levels, or
401		 * vdevs that are not in this metalab class.
402		 */
403		if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
404		    mg->mg_class != mc) {
405			continue;
406		}
407
408		for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
409			mc_hist[i] += mg->mg_histogram[i];
410	}
411
412	for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
413		VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
414
415	kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
416}
417
418/*
419 * Calculate the metaslab class's fragmentation metric. The metric
420 * is weighted based on the space contribution of each metaslab group.
421 * The return value will be a number between 0 and 100 (inclusive), or
422 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
423 * zfs_frag_table for more information about the metric.
424 */
425uint64_t
426metaslab_class_fragmentation(metaslab_class_t *mc)
427{
428	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
429	uint64_t fragmentation = 0;
430
431	spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
432
433	for (int c = 0; c < rvd->vdev_children; c++) {
434		vdev_t *tvd = rvd->vdev_child[c];
435		metaslab_group_t *mg = tvd->vdev_mg;
436
437		/*
438		 * Skip any holes, uninitialized top-levels, or
439		 * vdevs that are not in this metalab class.
440		 */
441		if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
442		    mg->mg_class != mc) {
443			continue;
444		}
445
446		/*
447		 * If a metaslab group does not contain a fragmentation
448		 * metric then just bail out.
449		 */
450		if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
451			spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
452			return (ZFS_FRAG_INVALID);
453		}
454
455		/*
456		 * Determine how much this metaslab_group is contributing
457		 * to the overall pool fragmentation metric.
458		 */
459		fragmentation += mg->mg_fragmentation *
460		    metaslab_group_get_space(mg);
461	}
462	fragmentation /= metaslab_class_get_space(mc);
463
464	ASSERT3U(fragmentation, <=, 100);
465	spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
466	return (fragmentation);
467}
468
469/*
470 * Calculate the amount of expandable space that is available in
471 * this metaslab class. If a device is expanded then its expandable
472 * space will be the amount of allocatable space that is currently not
473 * part of this metaslab class.
474 */
475uint64_t
476metaslab_class_expandable_space(metaslab_class_t *mc)
477{
478	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
479	uint64_t space = 0;
480
481	spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
482	for (int c = 0; c < rvd->vdev_children; c++) {
483		vdev_t *tvd = rvd->vdev_child[c];
484		metaslab_group_t *mg = tvd->vdev_mg;
485
486		if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
487		    mg->mg_class != mc) {
488			continue;
489		}
490
491		space += tvd->vdev_max_asize - tvd->vdev_asize;
492	}
493	spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
494	return (space);
495}
496
497/*
498 * ==========================================================================
499 * Metaslab groups
500 * ==========================================================================
501 */
502static int
503metaslab_compare(const void *x1, const void *x2)
504{
505	const metaslab_t *m1 = x1;
506	const metaslab_t *m2 = x2;
507
508	if (m1->ms_weight < m2->ms_weight)
509		return (1);
510	if (m1->ms_weight > m2->ms_weight)
511		return (-1);
512
513	/*
514	 * If the weights are identical, use the offset to force uniqueness.
515	 */
516	if (m1->ms_start < m2->ms_start)
517		return (-1);
518	if (m1->ms_start > m2->ms_start)
519		return (1);
520
521	ASSERT3P(m1, ==, m2);
522
523	return (0);
524}
525
526/*
527 * Update the allocatable flag and the metaslab group's capacity.
528 * The allocatable flag is set to true if the capacity is below
529 * the zfs_mg_noalloc_threshold. If a metaslab group transitions
530 * from allocatable to non-allocatable or vice versa then the metaslab
531 * group's class is updated to reflect the transition.
532 */
533static void
534metaslab_group_alloc_update(metaslab_group_t *mg)
535{
536	vdev_t *vd = mg->mg_vd;
537	metaslab_class_t *mc = mg->mg_class;
538	vdev_stat_t *vs = &vd->vdev_stat;
539	boolean_t was_allocatable;
540
541	ASSERT(vd == vd->vdev_top);
542
543	mutex_enter(&mg->mg_lock);
544	was_allocatable = mg->mg_allocatable;
545
546	mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
547	    (vs->vs_space + 1);
548
549	/*
550	 * A metaslab group is considered allocatable if it has plenty
551	 * of free space or is not heavily fragmented. We only take
552	 * fragmentation into account if the metaslab group has a valid
553	 * fragmentation metric (i.e. a value between 0 and 100).
554	 */
555	mg->mg_allocatable = (mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
556	    (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
557	    mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
558
559	/*
560	 * The mc_alloc_groups maintains a count of the number of
561	 * groups in this metaslab class that are still above the
562	 * zfs_mg_noalloc_threshold. This is used by the allocating
563	 * threads to determine if they should avoid allocations to
564	 * a given group. The allocator will avoid allocations to a group
565	 * if that group has reached or is below the zfs_mg_noalloc_threshold
566	 * and there are still other groups that are above the threshold.
567	 * When a group transitions from allocatable to non-allocatable or
568	 * vice versa we update the metaslab class to reflect that change.
569	 * When the mc_alloc_groups value drops to 0 that means that all
570	 * groups have reached the zfs_mg_noalloc_threshold making all groups
571	 * eligible for allocations. This effectively means that all devices
572	 * are balanced again.
573	 */
574	if (was_allocatable && !mg->mg_allocatable)
575		mc->mc_alloc_groups--;
576	else if (!was_allocatable && mg->mg_allocatable)
577		mc->mc_alloc_groups++;
578
579	mutex_exit(&mg->mg_lock);
580}
581
582metaslab_group_t *
583metaslab_group_create(metaslab_class_t *mc, vdev_t *vd)
584{
585	metaslab_group_t *mg;
586
587	mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP);
588	mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
589	avl_create(&mg->mg_metaslab_tree, metaslab_compare,
590	    sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
591	mg->mg_vd = vd;
592	mg->mg_class = mc;
593	mg->mg_activation_count = 0;
594
595	mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
596	    minclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT);
597
598	return (mg);
599}
600
601void
602metaslab_group_destroy(metaslab_group_t *mg)
603{
604	ASSERT(mg->mg_prev == NULL);
605	ASSERT(mg->mg_next == NULL);
606	/*
607	 * We may have gone below zero with the activation count
608	 * either because we never activated in the first place or
609	 * because we're done, and possibly removing the vdev.
610	 */
611	ASSERT(mg->mg_activation_count <= 0);
612
613	taskq_destroy(mg->mg_taskq);
614	avl_destroy(&mg->mg_metaslab_tree);
615	mutex_destroy(&mg->mg_lock);
616	kmem_free(mg, sizeof (metaslab_group_t));
617}
618
619void
620metaslab_group_activate(metaslab_group_t *mg)
621{
622	metaslab_class_t *mc = mg->mg_class;
623	metaslab_group_t *mgprev, *mgnext;
624
625	ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
626
627	ASSERT(mc->mc_rotor != mg);
628	ASSERT(mg->mg_prev == NULL);
629	ASSERT(mg->mg_next == NULL);
630	ASSERT(mg->mg_activation_count <= 0);
631
632	if (++mg->mg_activation_count <= 0)
633		return;
634
635	mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
636	metaslab_group_alloc_update(mg);
637
638	if ((mgprev = mc->mc_rotor) == NULL) {
639		mg->mg_prev = mg;
640		mg->mg_next = mg;
641	} else {
642		mgnext = mgprev->mg_next;
643		mg->mg_prev = mgprev;
644		mg->mg_next = mgnext;
645		mgprev->mg_next = mg;
646		mgnext->mg_prev = mg;
647	}
648	mc->mc_rotor = mg;
649	metaslab_class_minblocksize_update(mc);
650}
651
652void
653metaslab_group_passivate(metaslab_group_t *mg)
654{
655	metaslab_class_t *mc = mg->mg_class;
656	metaslab_group_t *mgprev, *mgnext;
657
658	ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
659
660	if (--mg->mg_activation_count != 0) {
661		ASSERT(mc->mc_rotor != mg);
662		ASSERT(mg->mg_prev == NULL);
663		ASSERT(mg->mg_next == NULL);
664		ASSERT(mg->mg_activation_count < 0);
665		return;
666	}
667
668	taskq_wait(mg->mg_taskq);
669	metaslab_group_alloc_update(mg);
670
671	mgprev = mg->mg_prev;
672	mgnext = mg->mg_next;
673
674	if (mg == mgnext) {
675		mc->mc_rotor = NULL;
676	} else {
677		mc->mc_rotor = mgnext;
678		mgprev->mg_next = mgnext;
679		mgnext->mg_prev = mgprev;
680	}
681
682	mg->mg_prev = NULL;
683	mg->mg_next = NULL;
684	metaslab_class_minblocksize_update(mc);
685}
686
687uint64_t
688metaslab_group_get_space(metaslab_group_t *mg)
689{
690	return ((1ULL << mg->mg_vd->vdev_ms_shift) * mg->mg_vd->vdev_ms_count);
691}
692
693void
694metaslab_group_histogram_verify(metaslab_group_t *mg)
695{
696	uint64_t *mg_hist;
697	vdev_t *vd = mg->mg_vd;
698	uint64_t ashift = vd->vdev_ashift;
699	int i;
700
701	if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
702		return;
703
704	mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
705	    KM_SLEEP);
706
707	ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
708	    SPACE_MAP_HISTOGRAM_SIZE + ashift);
709
710	for (int m = 0; m < vd->vdev_ms_count; m++) {
711		metaslab_t *msp = vd->vdev_ms[m];
712
713		if (msp->ms_sm == NULL)
714			continue;
715
716		for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
717			mg_hist[i + ashift] +=
718			    msp->ms_sm->sm_phys->smp_histogram[i];
719	}
720
721	for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
722		VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
723
724	kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
725}
726
727static void
728metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
729{
730	metaslab_class_t *mc = mg->mg_class;
731	uint64_t ashift = mg->mg_vd->vdev_ashift;
732
733	ASSERT(MUTEX_HELD(&msp->ms_lock));
734	if (msp->ms_sm == NULL)
735		return;
736
737	mutex_enter(&mg->mg_lock);
738	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
739		mg->mg_histogram[i + ashift] +=
740		    msp->ms_sm->sm_phys->smp_histogram[i];
741		mc->mc_histogram[i + ashift] +=
742		    msp->ms_sm->sm_phys->smp_histogram[i];
743	}
744	mutex_exit(&mg->mg_lock);
745}
746
747void
748metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
749{
750	metaslab_class_t *mc = mg->mg_class;
751	uint64_t ashift = mg->mg_vd->vdev_ashift;
752
753	ASSERT(MUTEX_HELD(&msp->ms_lock));
754	if (msp->ms_sm == NULL)
755		return;
756
757	mutex_enter(&mg->mg_lock);
758	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
759		ASSERT3U(mg->mg_histogram[i + ashift], >=,
760		    msp->ms_sm->sm_phys->smp_histogram[i]);
761		ASSERT3U(mc->mc_histogram[i + ashift], >=,
762		    msp->ms_sm->sm_phys->smp_histogram[i]);
763
764		mg->mg_histogram[i + ashift] -=
765		    msp->ms_sm->sm_phys->smp_histogram[i];
766		mc->mc_histogram[i + ashift] -=
767		    msp->ms_sm->sm_phys->smp_histogram[i];
768	}
769	mutex_exit(&mg->mg_lock);
770}
771
772static void
773metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
774{
775	ASSERT(msp->ms_group == NULL);
776	mutex_enter(&mg->mg_lock);
777	msp->ms_group = mg;
778	msp->ms_weight = 0;
779	avl_add(&mg->mg_metaslab_tree, msp);
780	mutex_exit(&mg->mg_lock);
781
782	mutex_enter(&msp->ms_lock);
783	metaslab_group_histogram_add(mg, msp);
784	mutex_exit(&msp->ms_lock);
785}
786
787static void
788metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
789{
790	mutex_enter(&msp->ms_lock);
791	metaslab_group_histogram_remove(mg, msp);
792	mutex_exit(&msp->ms_lock);
793
794	mutex_enter(&mg->mg_lock);
795	ASSERT(msp->ms_group == mg);
796	avl_remove(&mg->mg_metaslab_tree, msp);
797	msp->ms_group = NULL;
798	mutex_exit(&mg->mg_lock);
799}
800
801static void
802metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
803{
804	/*
805	 * Although in principle the weight can be any value, in
806	 * practice we do not use values in the range [1, 511].
807	 */
808	ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
809	ASSERT(MUTEX_HELD(&msp->ms_lock));
810
811	mutex_enter(&mg->mg_lock);
812	ASSERT(msp->ms_group == mg);
813	avl_remove(&mg->mg_metaslab_tree, msp);
814	msp->ms_weight = weight;
815	avl_add(&mg->mg_metaslab_tree, msp);
816	mutex_exit(&mg->mg_lock);
817}
818
819/*
820 * Calculate the fragmentation for a given metaslab group. We can use
821 * a simple average here since all metaslabs within the group must have
822 * the same size. The return value will be a value between 0 and 100
823 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
824 * group have a fragmentation metric.
825 */
826uint64_t
827metaslab_group_fragmentation(metaslab_group_t *mg)
828{
829	vdev_t *vd = mg->mg_vd;
830	uint64_t fragmentation = 0;
831	uint64_t valid_ms = 0;
832
833	for (int m = 0; m < vd->vdev_ms_count; m++) {
834		metaslab_t *msp = vd->vdev_ms[m];
835
836		if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
837			continue;
838
839		valid_ms++;
840		fragmentation += msp->ms_fragmentation;
841	}
842
843	if (valid_ms <= vd->vdev_ms_count / 2)
844		return (ZFS_FRAG_INVALID);
845
846	fragmentation /= valid_ms;
847	ASSERT3U(fragmentation, <=, 100);
848	return (fragmentation);
849}
850
851/*
852 * Determine if a given metaslab group should skip allocations. A metaslab
853 * group should avoid allocations if its free capacity is less than the
854 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
855 * zfs_mg_fragmentation_threshold and there is at least one metaslab group
856 * that can still handle allocations.
857 */
858static boolean_t
859metaslab_group_allocatable(metaslab_group_t *mg)
860{
861	vdev_t *vd = mg->mg_vd;
862	spa_t *spa = vd->vdev_spa;
863	metaslab_class_t *mc = mg->mg_class;
864
865	/*
866	 * We use two key metrics to determine if a metaslab group is
867	 * considered allocatable -- free space and fragmentation. If
868	 * the free space is greater than the free space threshold and
869	 * the fragmentation is less than the fragmentation threshold then
870	 * consider the group allocatable. There are two case when we will
871	 * not consider these key metrics. The first is if the group is
872	 * associated with a slog device and the second is if all groups
873	 * in this metaslab class have already been consider ineligible
874	 * for allocations.
875	 */
876	return ((mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
877	    (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
878	    mg->mg_fragmentation <= zfs_mg_fragmentation_threshold)) ||
879	    mc != spa_normal_class(spa) || mc->mc_alloc_groups == 0);
880}
881
882/*
883 * ==========================================================================
884 * Range tree callbacks
885 * ==========================================================================
886 */
887
888/*
889 * Comparison function for the private size-ordered tree. Tree is sorted
890 * by size, larger sizes at the end of the tree.
891 */
892static int
893metaslab_rangesize_compare(const void *x1, const void *x2)
894{
895	const range_seg_t *r1 = x1;
896	const range_seg_t *r2 = x2;
897	uint64_t rs_size1 = r1->rs_end - r1->rs_start;
898	uint64_t rs_size2 = r2->rs_end - r2->rs_start;
899
900	if (rs_size1 < rs_size2)
901		return (-1);
902	if (rs_size1 > rs_size2)
903		return (1);
904
905	if (r1->rs_start < r2->rs_start)
906		return (-1);
907
908	if (r1->rs_start > r2->rs_start)
909		return (1);
910
911	return (0);
912}
913
914/*
915 * Create any block allocator specific components. The current allocators
916 * rely on using both a size-ordered range_tree_t and an array of uint64_t's.
917 */
918static void
919metaslab_rt_create(range_tree_t *rt, void *arg)
920{
921	metaslab_t *msp = arg;
922
923	ASSERT3P(rt->rt_arg, ==, msp);
924	ASSERT(msp->ms_tree == NULL);
925
926	avl_create(&msp->ms_size_tree, metaslab_rangesize_compare,
927	    sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node));
928}
929
930/*
931 * Destroy the block allocator specific components.
932 */
933static void
934metaslab_rt_destroy(range_tree_t *rt, void *arg)
935{
936	metaslab_t *msp = arg;
937
938	ASSERT3P(rt->rt_arg, ==, msp);
939	ASSERT3P(msp->ms_tree, ==, rt);
940	ASSERT0(avl_numnodes(&msp->ms_size_tree));
941
942	avl_destroy(&msp->ms_size_tree);
943}
944
945static void
946metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg)
947{
948	metaslab_t *msp = arg;
949
950	ASSERT3P(rt->rt_arg, ==, msp);
951	ASSERT3P(msp->ms_tree, ==, rt);
952	VERIFY(!msp->ms_condensing);
953	avl_add(&msp->ms_size_tree, rs);
954}
955
956static void
957metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
958{
959	metaslab_t *msp = arg;
960
961	ASSERT3P(rt->rt_arg, ==, msp);
962	ASSERT3P(msp->ms_tree, ==, rt);
963	VERIFY(!msp->ms_condensing);
964	avl_remove(&msp->ms_size_tree, rs);
965}
966
967static void
968metaslab_rt_vacate(range_tree_t *rt, void *arg)
969{
970	metaslab_t *msp = arg;
971
972	ASSERT3P(rt->rt_arg, ==, msp);
973	ASSERT3P(msp->ms_tree, ==, rt);
974
975	/*
976	 * Normally one would walk the tree freeing nodes along the way.
977	 * Since the nodes are shared with the range trees we can avoid
978	 * walking all nodes and just reinitialize the avl tree. The nodes
979	 * will be freed by the range tree, so we don't want to free them here.
980	 */
981	avl_create(&msp->ms_size_tree, metaslab_rangesize_compare,
982	    sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node));
983}
984
985static range_tree_ops_t metaslab_rt_ops = {
986	metaslab_rt_create,
987	metaslab_rt_destroy,
988	metaslab_rt_add,
989	metaslab_rt_remove,
990	metaslab_rt_vacate
991};
992
993/*
994 * ==========================================================================
995 * Metaslab block operations
996 * ==========================================================================
997 */
998
999/*
1000 * Return the maximum contiguous segment within the metaslab.
1001 */
1002uint64_t
1003metaslab_block_maxsize(metaslab_t *msp)
1004{
1005	avl_tree_t *t = &msp->ms_size_tree;
1006	range_seg_t *rs;
1007
1008	if (t == NULL || (rs = avl_last(t)) == NULL)
1009		return (0ULL);
1010
1011	return (rs->rs_end - rs->rs_start);
1012}
1013
1014uint64_t
1015metaslab_block_alloc(metaslab_t *msp, uint64_t size)
1016{
1017	uint64_t start;
1018	range_tree_t *rt = msp->ms_tree;
1019
1020	VERIFY(!msp->ms_condensing);
1021
1022	start = msp->ms_ops->msop_alloc(msp, size);
1023	if (start != -1ULL) {
1024		vdev_t *vd = msp->ms_group->mg_vd;
1025
1026		VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
1027		VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
1028		VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
1029		range_tree_remove(rt, start, size);
1030	}
1031	return (start);
1032}
1033
1034/*
1035 * ==========================================================================
1036 * Common allocator routines
1037 * ==========================================================================
1038 */
1039
1040/*
1041 * This is a helper function that can be used by the allocator to find
1042 * a suitable block to allocate. This will search the specified AVL
1043 * tree looking for a block that matches the specified criteria.
1044 */
1045static uint64_t
1046metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
1047    uint64_t align)
1048{
1049	range_seg_t *rs, rsearch;
1050	avl_index_t where;
1051
1052	rsearch.rs_start = *cursor;
1053	rsearch.rs_end = *cursor + size;
1054
1055	rs = avl_find(t, &rsearch, &where);
1056	if (rs == NULL)
1057		rs = avl_nearest(t, where, AVL_AFTER);
1058
1059	while (rs != NULL) {
1060		uint64_t offset = P2ROUNDUP(rs->rs_start, align);
1061
1062		if (offset + size <= rs->rs_end) {
1063			*cursor = offset + size;
1064			return (offset);
1065		}
1066		rs = AVL_NEXT(t, rs);
1067	}
1068
1069	/*
1070	 * If we know we've searched the whole map (*cursor == 0), give up.
1071	 * Otherwise, reset the cursor to the beginning and try again.
1072	 */
1073	if (*cursor == 0)
1074		return (-1ULL);
1075
1076	*cursor = 0;
1077	return (metaslab_block_picker(t, cursor, size, align));
1078}
1079
1080/*
1081 * ==========================================================================
1082 * The first-fit block allocator
1083 * ==========================================================================
1084 */
1085static uint64_t
1086metaslab_ff_alloc(metaslab_t *msp, uint64_t size)
1087{
1088	/*
1089	 * Find the largest power of 2 block size that evenly divides the
1090	 * requested size. This is used to try to allocate blocks with similar
1091	 * alignment from the same area of the metaslab (i.e. same cursor
1092	 * bucket) but it does not guarantee that other allocations sizes
1093	 * may exist in the same region.
1094	 */
1095	uint64_t align = size & -size;
1096	uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1097	avl_tree_t *t = &msp->ms_tree->rt_root;
1098
1099	return (metaslab_block_picker(t, cursor, size, align));
1100}
1101
1102static metaslab_ops_t metaslab_ff_ops = {
1103	metaslab_ff_alloc
1104};
1105
1106/*
1107 * ==========================================================================
1108 * Dynamic block allocator -
1109 * Uses the first fit allocation scheme until space get low and then
1110 * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold
1111 * and metaslab_df_free_pct to determine when to switch the allocation scheme.
1112 * ==========================================================================
1113 */
1114static uint64_t
1115metaslab_df_alloc(metaslab_t *msp, uint64_t size)
1116{
1117	/*
1118	 * Find the largest power of 2 block size that evenly divides the
1119	 * requested size. This is used to try to allocate blocks with similar
1120	 * alignment from the same area of the metaslab (i.e. same cursor
1121	 * bucket) but it does not guarantee that other allocations sizes
1122	 * may exist in the same region.
1123	 */
1124	uint64_t align = size & -size;
1125	uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1126	range_tree_t *rt = msp->ms_tree;
1127	avl_tree_t *t = &rt->rt_root;
1128	uint64_t max_size = metaslab_block_maxsize(msp);
1129	int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1130
1131	ASSERT(MUTEX_HELD(&msp->ms_lock));
1132	ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree));
1133
1134	if (max_size < size)
1135		return (-1ULL);
1136
1137	/*
1138	 * If we're running low on space switch to using the size
1139	 * sorted AVL tree (best-fit).
1140	 */
1141	if (max_size < metaslab_df_alloc_threshold ||
1142	    free_pct < metaslab_df_free_pct) {
1143		t = &msp->ms_size_tree;
1144		*cursor = 0;
1145	}
1146
1147	return (metaslab_block_picker(t, cursor, size, 1ULL));
1148}
1149
1150static metaslab_ops_t metaslab_df_ops = {
1151	metaslab_df_alloc
1152};
1153
1154/*
1155 * ==========================================================================
1156 * Cursor fit block allocator -
1157 * Select the largest region in the metaslab, set the cursor to the beginning
1158 * of the range and the cursor_end to the end of the range. As allocations
1159 * are made advance the cursor. Continue allocating from the cursor until
1160 * the range is exhausted and then find a new range.
1161 * ==========================================================================
1162 */
1163static uint64_t
1164metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
1165{
1166	range_tree_t *rt = msp->ms_tree;
1167	avl_tree_t *t = &msp->ms_size_tree;
1168	uint64_t *cursor = &msp->ms_lbas[0];
1169	uint64_t *cursor_end = &msp->ms_lbas[1];
1170	uint64_t offset = 0;
1171
1172	ASSERT(MUTEX_HELD(&msp->ms_lock));
1173	ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&rt->rt_root));
1174
1175	ASSERT3U(*cursor_end, >=, *cursor);
1176
1177	if ((*cursor + size) > *cursor_end) {
1178		range_seg_t *rs;
1179
1180		rs = avl_last(&msp->ms_size_tree);
1181		if (rs == NULL || (rs->rs_end - rs->rs_start) < size)
1182			return (-1ULL);
1183
1184		*cursor = rs->rs_start;
1185		*cursor_end = rs->rs_end;
1186	}
1187
1188	offset = *cursor;
1189	*cursor += size;
1190
1191	return (offset);
1192}
1193
1194static metaslab_ops_t metaslab_cf_ops = {
1195	metaslab_cf_alloc
1196};
1197
1198/*
1199 * ==========================================================================
1200 * New dynamic fit allocator -
1201 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1202 * contiguous blocks. If no region is found then just use the largest segment
1203 * that remains.
1204 * ==========================================================================
1205 */
1206
1207/*
1208 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1209 * to request from the allocator.
1210 */
1211uint64_t metaslab_ndf_clump_shift = 4;
1212
1213static uint64_t
1214metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
1215{
1216	avl_tree_t *t = &msp->ms_tree->rt_root;
1217	avl_index_t where;
1218	range_seg_t *rs, rsearch;
1219	uint64_t hbit = highbit64(size);
1220	uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1221	uint64_t max_size = metaslab_block_maxsize(msp);
1222
1223	ASSERT(MUTEX_HELD(&msp->ms_lock));
1224	ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree));
1225
1226	if (max_size < size)
1227		return (-1ULL);
1228
1229	rsearch.rs_start = *cursor;
1230	rsearch.rs_end = *cursor + size;
1231
1232	rs = avl_find(t, &rsearch, &where);
1233	if (rs == NULL || (rs->rs_end - rs->rs_start) < size) {
1234		t = &msp->ms_size_tree;
1235
1236		rsearch.rs_start = 0;
1237		rsearch.rs_end = MIN(max_size,
1238		    1ULL << (hbit + metaslab_ndf_clump_shift));
1239		rs = avl_find(t, &rsearch, &where);
1240		if (rs == NULL)
1241			rs = avl_nearest(t, where, AVL_AFTER);
1242		ASSERT(rs != NULL);
1243	}
1244
1245	if ((rs->rs_end - rs->rs_start) >= size) {
1246		*cursor = rs->rs_start + size;
1247		return (rs->rs_start);
1248	}
1249	return (-1ULL);
1250}
1251
1252static metaslab_ops_t metaslab_ndf_ops = {
1253	metaslab_ndf_alloc
1254};
1255
1256metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
1257
1258/*
1259 * ==========================================================================
1260 * Metaslabs
1261 * ==========================================================================
1262 */
1263
1264/*
1265 * Wait for any in-progress metaslab loads to complete.
1266 */
1267void
1268metaslab_load_wait(metaslab_t *msp)
1269{
1270	ASSERT(MUTEX_HELD(&msp->ms_lock));
1271
1272	while (msp->ms_loading) {
1273		ASSERT(!msp->ms_loaded);
1274		cv_wait(&msp->ms_load_cv, &msp->ms_lock);
1275	}
1276}
1277
1278int
1279metaslab_load(metaslab_t *msp)
1280{
1281	int error = 0;
1282
1283	ASSERT(MUTEX_HELD(&msp->ms_lock));
1284	ASSERT(!msp->ms_loaded);
1285	ASSERT(!msp->ms_loading);
1286
1287	msp->ms_loading = B_TRUE;
1288
1289	/*
1290	 * If the space map has not been allocated yet, then treat
1291	 * all the space in the metaslab as free and add it to the
1292	 * ms_tree.
1293	 */
1294	if (msp->ms_sm != NULL)
1295		error = space_map_load(msp->ms_sm, msp->ms_tree, SM_FREE);
1296	else
1297		range_tree_add(msp->ms_tree, msp->ms_start, msp->ms_size);
1298
1299	msp->ms_loaded = (error == 0);
1300	msp->ms_loading = B_FALSE;
1301
1302	if (msp->ms_loaded) {
1303		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1304			range_tree_walk(msp->ms_defertree[t],
1305			    range_tree_remove, msp->ms_tree);
1306		}
1307	}
1308	cv_broadcast(&msp->ms_load_cv);
1309	return (error);
1310}
1311
1312void
1313metaslab_unload(metaslab_t *msp)
1314{
1315	ASSERT(MUTEX_HELD(&msp->ms_lock));
1316	range_tree_vacate(msp->ms_tree, NULL, NULL);
1317	msp->ms_loaded = B_FALSE;
1318	msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
1319}
1320
1321metaslab_t *
1322metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, uint64_t txg)
1323{
1324	vdev_t *vd = mg->mg_vd;
1325	objset_t *mos = vd->vdev_spa->spa_meta_objset;
1326	metaslab_t *msp;
1327
1328	msp = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
1329	mutex_init(&msp->ms_lock, NULL, MUTEX_DEFAULT, NULL);
1330	cv_init(&msp->ms_load_cv, NULL, CV_DEFAULT, NULL);
1331	msp->ms_id = id;
1332	msp->ms_start = id << vd->vdev_ms_shift;
1333	msp->ms_size = 1ULL << vd->vdev_ms_shift;
1334
1335	/*
1336	 * We only open space map objects that already exist. All others
1337	 * will be opened when we finally allocate an object for it.
1338	 */
1339	if (object != 0) {
1340		VERIFY0(space_map_open(&msp->ms_sm, mos, object, msp->ms_start,
1341		    msp->ms_size, vd->vdev_ashift, &msp->ms_lock));
1342		ASSERT(msp->ms_sm != NULL);
1343	}
1344
1345	/*
1346	 * We create the main range tree here, but we don't create the
1347	 * alloctree and freetree until metaslab_sync_done().  This serves
1348	 * two purposes: it allows metaslab_sync_done() to detect the
1349	 * addition of new space; and for debugging, it ensures that we'd
1350	 * data fault on any attempt to use this metaslab before it's ready.
1351	 */
1352	msp->ms_tree = range_tree_create(&metaslab_rt_ops, msp, &msp->ms_lock);
1353	metaslab_group_add(mg, msp);
1354
1355	msp->ms_fragmentation = metaslab_fragmentation(msp);
1356	msp->ms_ops = mg->mg_class->mc_ops;
1357
1358	/*
1359	 * If we're opening an existing pool (txg == 0) or creating
1360	 * a new one (txg == TXG_INITIAL), all space is available now.
1361	 * If we're adding space to an existing pool, the new space
1362	 * does not become available until after this txg has synced.
1363	 */
1364	if (txg <= TXG_INITIAL)
1365		metaslab_sync_done(msp, 0);
1366
1367	/*
1368	 * If metaslab_debug_load is set and we're initializing a metaslab
1369	 * that has an allocated space_map object then load the its space
1370	 * map so that can verify frees.
1371	 */
1372	if (metaslab_debug_load && msp->ms_sm != NULL) {
1373		mutex_enter(&msp->ms_lock);
1374		VERIFY0(metaslab_load(msp));
1375		mutex_exit(&msp->ms_lock);
1376	}
1377
1378	if (txg != 0) {
1379		vdev_dirty(vd, 0, NULL, txg);
1380		vdev_dirty(vd, VDD_METASLAB, msp, txg);
1381	}
1382
1383	return (msp);
1384}
1385
1386void
1387metaslab_fini(metaslab_t *msp)
1388{
1389	metaslab_group_t *mg = msp->ms_group;
1390
1391	metaslab_group_remove(mg, msp);
1392
1393	mutex_enter(&msp->ms_lock);
1394
1395	VERIFY(msp->ms_group == NULL);
1396	vdev_space_update(mg->mg_vd, -space_map_allocated(msp->ms_sm),
1397	    0, -msp->ms_size);
1398	space_map_close(msp->ms_sm);
1399
1400	metaslab_unload(msp);
1401	range_tree_destroy(msp->ms_tree);
1402
1403	for (int t = 0; t < TXG_SIZE; t++) {
1404		range_tree_destroy(msp->ms_alloctree[t]);
1405		range_tree_destroy(msp->ms_freetree[t]);
1406	}
1407
1408	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1409		range_tree_destroy(msp->ms_defertree[t]);
1410	}
1411
1412	ASSERT0(msp->ms_deferspace);
1413
1414	mutex_exit(&msp->ms_lock);
1415	cv_destroy(&msp->ms_load_cv);
1416	mutex_destroy(&msp->ms_lock);
1417
1418	kmem_free(msp, sizeof (metaslab_t));
1419}
1420
1421#define	FRAGMENTATION_TABLE_SIZE	17
1422
1423/*
1424 * This table defines a segment size based fragmentation metric that will
1425 * allow each metaslab to derive its own fragmentation value. This is done
1426 * by calculating the space in each bucket of the spacemap histogram and
1427 * multiplying that by the fragmetation metric in this table. Doing
1428 * this for all buckets and dividing it by the total amount of free
1429 * space in this metaslab (i.e. the total free space in all buckets) gives
1430 * us the fragmentation metric. This means that a high fragmentation metric
1431 * equates to most of the free space being comprised of small segments.
1432 * Conversely, if the metric is low, then most of the free space is in
1433 * large segments. A 10% change in fragmentation equates to approximately
1434 * double the number of segments.
1435 *
1436 * This table defines 0% fragmented space using 16MB segments. Testing has
1437 * shown that segments that are greater than or equal to 16MB do not suffer
1438 * from drastic performance problems. Using this value, we derive the rest
1439 * of the table. Since the fragmentation value is never stored on disk, it
1440 * is possible to change these calculations in the future.
1441 */
1442int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
1443	100,	/* 512B	*/
1444	100,	/* 1K	*/
1445	98,	/* 2K	*/
1446	95,	/* 4K	*/
1447	90,	/* 8K	*/
1448	80,	/* 16K	*/
1449	70,	/* 32K	*/
1450	60,	/* 64K	*/
1451	50,	/* 128K	*/
1452	40,	/* 256K	*/
1453	30,	/* 512K	*/
1454	20,	/* 1M	*/
1455	15,	/* 2M	*/
1456	10,	/* 4M	*/
1457	5,	/* 8M	*/
1458	0	/* 16M	*/
1459};
1460
1461/*
1462 * Calclate the metaslab's fragmentation metric. A return value
1463 * of ZFS_FRAG_INVALID means that the metaslab has not been upgraded and does
1464 * not support this metric. Otherwise, the return value should be in the
1465 * range [0, 100].
1466 */
1467static uint64_t
1468metaslab_fragmentation(metaslab_t *msp)
1469{
1470	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1471	uint64_t fragmentation = 0;
1472	uint64_t total = 0;
1473	boolean_t feature_enabled = spa_feature_is_enabled(spa,
1474	    SPA_FEATURE_SPACEMAP_HISTOGRAM);
1475
1476	if (!feature_enabled)
1477		return (ZFS_FRAG_INVALID);
1478
1479	/*
1480	 * A null space map means that the entire metaslab is free
1481	 * and thus is not fragmented.
1482	 */
1483	if (msp->ms_sm == NULL)
1484		return (0);
1485
1486	/*
1487	 * If this metaslab's space_map has not been upgraded, flag it
1488	 * so that we upgrade next time we encounter it.
1489	 */
1490	if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
1491		uint64_t txg = spa_syncing_txg(spa);
1492		vdev_t *vd = msp->ms_group->mg_vd;
1493
1494		msp->ms_condense_wanted = B_TRUE;
1495		vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
1496		spa_dbgmsg(spa, "txg %llu, requesting force condense: "
1497		    "msp %p, vd %p", txg, msp, vd);
1498		return (ZFS_FRAG_INVALID);
1499	}
1500
1501	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1502		uint64_t space = 0;
1503		uint8_t shift = msp->ms_sm->sm_shift;
1504		int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
1505		    FRAGMENTATION_TABLE_SIZE - 1);
1506
1507		if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
1508			continue;
1509
1510		space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
1511		total += space;
1512
1513		ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
1514		fragmentation += space * zfs_frag_table[idx];
1515	}
1516
1517	if (total > 0)
1518		fragmentation /= total;
1519	ASSERT3U(fragmentation, <=, 100);
1520	return (fragmentation);
1521}
1522
1523/*
1524 * Compute a weight -- a selection preference value -- for the given metaslab.
1525 * This is based on the amount of free space, the level of fragmentation,
1526 * the LBA range, and whether the metaslab is loaded.
1527 */
1528static uint64_t
1529metaslab_weight(metaslab_t *msp)
1530{
1531	metaslab_group_t *mg = msp->ms_group;
1532	vdev_t *vd = mg->mg_vd;
1533	uint64_t weight, space;
1534
1535	ASSERT(MUTEX_HELD(&msp->ms_lock));
1536
1537	/*
1538	 * This vdev is in the process of being removed so there is nothing
1539	 * for us to do here.
1540	 */
1541	if (vd->vdev_removing) {
1542		ASSERT0(space_map_allocated(msp->ms_sm));
1543		ASSERT0(vd->vdev_ms_shift);
1544		return (0);
1545	}
1546
1547	/*
1548	 * The baseline weight is the metaslab's free space.
1549	 */
1550	space = msp->ms_size - space_map_allocated(msp->ms_sm);
1551
1552	msp->ms_fragmentation = metaslab_fragmentation(msp);
1553	if (metaslab_fragmentation_factor_enabled &&
1554	    msp->ms_fragmentation != ZFS_FRAG_INVALID) {
1555		/*
1556		 * Use the fragmentation information to inversely scale
1557		 * down the baseline weight. We need to ensure that we
1558		 * don't exclude this metaslab completely when it's 100%
1559		 * fragmented. To avoid this we reduce the fragmented value
1560		 * by 1.
1561		 */
1562		space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
1563
1564		/*
1565		 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
1566		 * this metaslab again. The fragmentation metric may have
1567		 * decreased the space to something smaller than
1568		 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
1569		 * so that we can consume any remaining space.
1570		 */
1571		if (space > 0 && space < SPA_MINBLOCKSIZE)
1572			space = SPA_MINBLOCKSIZE;
1573	}
1574	weight = space;
1575
1576	/*
1577	 * Modern disks have uniform bit density and constant angular velocity.
1578	 * Therefore, the outer recording zones are faster (higher bandwidth)
1579	 * than the inner zones by the ratio of outer to inner track diameter,
1580	 * which is typically around 2:1.  We account for this by assigning
1581	 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
1582	 * In effect, this means that we'll select the metaslab with the most
1583	 * free bandwidth rather than simply the one with the most free space.
1584	 */
1585	if (metaslab_lba_weighting_enabled) {
1586		weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
1587		ASSERT(weight >= space && weight <= 2 * space);
1588	}
1589
1590	/*
1591	 * If this metaslab is one we're actively using, adjust its
1592	 * weight to make it preferable to any inactive metaslab so
1593	 * we'll polish it off. If the fragmentation on this metaslab
1594	 * has exceed our threshold, then don't mark it active.
1595	 */
1596	if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
1597	    msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
1598		weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
1599	}
1600
1601	return (weight);
1602}
1603
1604static int
1605metaslab_activate(metaslab_t *msp, uint64_t activation_weight)
1606{
1607	ASSERT(MUTEX_HELD(&msp->ms_lock));
1608
1609	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
1610		metaslab_load_wait(msp);
1611		if (!msp->ms_loaded) {
1612			int error = metaslab_load(msp);
1613			if (error) {
1614				metaslab_group_sort(msp->ms_group, msp, 0);
1615				return (error);
1616			}
1617		}
1618
1619		metaslab_group_sort(msp->ms_group, msp,
1620		    msp->ms_weight | activation_weight);
1621	}
1622	ASSERT(msp->ms_loaded);
1623	ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
1624
1625	return (0);
1626}
1627
1628static void
1629metaslab_passivate(metaslab_t *msp, uint64_t size)
1630{
1631	/*
1632	 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
1633	 * this metaslab again.  In that case, it had better be empty,
1634	 * or we would be leaving space on the table.
1635	 */
1636	ASSERT(size >= SPA_MINBLOCKSIZE || range_tree_space(msp->ms_tree) == 0);
1637	metaslab_group_sort(msp->ms_group, msp, MIN(msp->ms_weight, size));
1638	ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
1639}
1640
1641static void
1642metaslab_preload(void *arg)
1643{
1644	metaslab_t *msp = arg;
1645	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1646
1647	ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
1648
1649	mutex_enter(&msp->ms_lock);
1650	metaslab_load_wait(msp);
1651	if (!msp->ms_loaded)
1652		(void) metaslab_load(msp);
1653
1654	/*
1655	 * Set the ms_access_txg value so that we don't unload it right away.
1656	 */
1657	msp->ms_access_txg = spa_syncing_txg(spa) + metaslab_unload_delay + 1;
1658	mutex_exit(&msp->ms_lock);
1659}
1660
1661static void
1662metaslab_group_preload(metaslab_group_t *mg)
1663{
1664	spa_t *spa = mg->mg_vd->vdev_spa;
1665	metaslab_t *msp;
1666	avl_tree_t *t = &mg->mg_metaslab_tree;
1667	int m = 0;
1668
1669	if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
1670		taskq_wait(mg->mg_taskq);
1671		return;
1672	}
1673
1674	mutex_enter(&mg->mg_lock);
1675	/*
1676	 * Load the next potential metaslabs
1677	 */
1678	msp = avl_first(t);
1679	while (msp != NULL) {
1680		metaslab_t *msp_next = AVL_NEXT(t, msp);
1681
1682		/*
1683		 * We preload only the maximum number of metaslabs specified
1684		 * by metaslab_preload_limit. If a metaslab is being forced
1685		 * to condense then we preload it too. This will ensure
1686		 * that force condensing happens in the next txg.
1687		 */
1688		if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
1689			msp = msp_next;
1690			continue;
1691		}
1692
1693		/*
1694		 * We must drop the metaslab group lock here to preserve
1695		 * lock ordering with the ms_lock (when grabbing both
1696		 * the mg_lock and the ms_lock, the ms_lock must be taken
1697		 * first).  As a result, it is possible that the ordering
1698		 * of the metaslabs within the avl tree may change before
1699		 * we reacquire the lock. The metaslab cannot be removed from
1700		 * the tree while we're in syncing context so it is safe to
1701		 * drop the mg_lock here. If the metaslabs are reordered
1702		 * nothing will break -- we just may end up loading a
1703		 * less than optimal one.
1704		 */
1705		mutex_exit(&mg->mg_lock);
1706		VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
1707		    msp, TQ_SLEEP) != 0);
1708		mutex_enter(&mg->mg_lock);
1709		msp = msp_next;
1710	}
1711	mutex_exit(&mg->mg_lock);
1712}
1713
1714/*
1715 * Determine if the space map's on-disk footprint is past our tolerance
1716 * for inefficiency. We would like to use the following criteria to make
1717 * our decision:
1718 *
1719 * 1. The size of the space map object should not dramatically increase as a
1720 * result of writing out the free space range tree.
1721 *
1722 * 2. The minimal on-disk space map representation is zfs_condense_pct/100
1723 * times the size than the free space range tree representation
1724 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, minimal = 1.1.MB).
1725 *
1726 * 3. The on-disk size of the space map should actually decrease.
1727 *
1728 * Checking the first condition is tricky since we don't want to walk
1729 * the entire AVL tree calculating the estimated on-disk size. Instead we
1730 * use the size-ordered range tree in the metaslab and calculate the
1731 * size required to write out the largest segment in our free tree. If the
1732 * size required to represent that segment on disk is larger than the space
1733 * map object then we avoid condensing this map.
1734 *
1735 * To determine the second criterion we use a best-case estimate and assume
1736 * each segment can be represented on-disk as a single 64-bit entry. We refer
1737 * to this best-case estimate as the space map's minimal form.
1738 *
1739 * Unfortunately, we cannot compute the on-disk size of the space map in this
1740 * context because we cannot accurately compute the effects of compression, etc.
1741 * Instead, we apply the heuristic described in the block comment for
1742 * zfs_metaslab_condense_block_threshold - we only condense if the space used
1743 * is greater than a threshold number of blocks.
1744 */
1745static boolean_t
1746metaslab_should_condense(metaslab_t *msp)
1747{
1748	space_map_t *sm = msp->ms_sm;
1749	range_seg_t *rs;
1750	uint64_t size, entries, segsz, object_size, optimal_size, record_size;
1751	dmu_object_info_t doi;
1752	uint64_t vdev_blocksize = 1 << msp->ms_group->mg_vd->vdev_ashift;
1753
1754	ASSERT(MUTEX_HELD(&msp->ms_lock));
1755	ASSERT(msp->ms_loaded);
1756
1757	/*
1758	 * Use the ms_size_tree range tree, which is ordered by size, to
1759	 * obtain the largest segment in the free tree. We always condense
1760	 * metaslabs that are empty and metaslabs for which a condense
1761	 * request has been made.
1762	 */
1763	rs = avl_last(&msp->ms_size_tree);
1764	if (rs == NULL || msp->ms_condense_wanted)
1765		return (B_TRUE);
1766
1767	/*
1768	 * Calculate the number of 64-bit entries this segment would
1769	 * require when written to disk. If this single segment would be
1770	 * larger on-disk than the entire current on-disk structure, then
1771	 * clearly condensing will increase the on-disk structure size.
1772	 */
1773	size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
1774	entries = size / (MIN(size, SM_RUN_MAX));
1775	segsz = entries * sizeof (uint64_t);
1776
1777	optimal_size = sizeof (uint64_t) * avl_numnodes(&msp->ms_tree->rt_root);
1778	object_size = space_map_length(msp->ms_sm);
1779
1780	dmu_object_info_from_db(sm->sm_dbuf, &doi);
1781	record_size = MAX(doi.doi_data_block_size, vdev_blocksize);
1782
1783	return (segsz <= object_size &&
1784	    object_size >= (optimal_size * zfs_condense_pct / 100) &&
1785	    object_size > zfs_metaslab_condense_block_threshold * record_size);
1786}
1787
1788/*
1789 * Condense the on-disk space map representation to its minimized form.
1790 * The minimized form consists of a small number of allocations followed by
1791 * the entries of the free range tree.
1792 */
1793static void
1794metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx)
1795{
1796	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1797	range_tree_t *freetree = msp->ms_freetree[txg & TXG_MASK];
1798	range_tree_t *condense_tree;
1799	space_map_t *sm = msp->ms_sm;
1800
1801	ASSERT(MUTEX_HELD(&msp->ms_lock));
1802	ASSERT3U(spa_sync_pass(spa), ==, 1);
1803	ASSERT(msp->ms_loaded);
1804
1805
1806	spa_dbgmsg(spa, "condensing: txg %llu, msp[%llu] %p, "
1807	    "smp size %llu, segments %lu, forcing condense=%s", txg,
1808	    msp->ms_id, msp, space_map_length(msp->ms_sm),
1809	    avl_numnodes(&msp->ms_tree->rt_root),
1810	    msp->ms_condense_wanted ? "TRUE" : "FALSE");
1811
1812	msp->ms_condense_wanted = B_FALSE;
1813
1814	/*
1815	 * Create an range tree that is 100% allocated. We remove segments
1816	 * that have been freed in this txg, any deferred frees that exist,
1817	 * and any allocation in the future. Removing segments should be
1818	 * a relatively inexpensive operation since we expect these trees to
1819	 * have a small number of nodes.
1820	 */
1821	condense_tree = range_tree_create(NULL, NULL, &msp->ms_lock);
1822	range_tree_add(condense_tree, msp->ms_start, msp->ms_size);
1823
1824	/*
1825	 * Remove what's been freed in this txg from the condense_tree.
1826	 * Since we're in sync_pass 1, we know that all the frees from
1827	 * this txg are in the freetree.
1828	 */
1829	range_tree_walk(freetree, range_tree_remove, condense_tree);
1830
1831	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1832		range_tree_walk(msp->ms_defertree[t],
1833		    range_tree_remove, condense_tree);
1834	}
1835
1836	for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
1837		range_tree_walk(msp->ms_alloctree[(txg + t) & TXG_MASK],
1838		    range_tree_remove, condense_tree);
1839	}
1840
1841	/*
1842	 * We're about to drop the metaslab's lock thus allowing
1843	 * other consumers to change it's content. Set the
1844	 * metaslab's ms_condensing flag to ensure that
1845	 * allocations on this metaslab do not occur while we're
1846	 * in the middle of committing it to disk. This is only critical
1847	 * for the ms_tree as all other range trees use per txg
1848	 * views of their content.
1849	 */
1850	msp->ms_condensing = B_TRUE;
1851
1852	mutex_exit(&msp->ms_lock);
1853	space_map_truncate(sm, tx);
1854	mutex_enter(&msp->ms_lock);
1855
1856	/*
1857	 * While we would ideally like to create a space_map representation
1858	 * that consists only of allocation records, doing so can be
1859	 * prohibitively expensive because the in-core free tree can be
1860	 * large, and therefore computationally expensive to subtract
1861	 * from the condense_tree. Instead we sync out two trees, a cheap
1862	 * allocation only tree followed by the in-core free tree. While not
1863	 * optimal, this is typically close to optimal, and much cheaper to
1864	 * compute.
1865	 */
1866	space_map_write(sm, condense_tree, SM_ALLOC, tx);
1867	range_tree_vacate(condense_tree, NULL, NULL);
1868	range_tree_destroy(condense_tree);
1869
1870	space_map_write(sm, msp->ms_tree, SM_FREE, tx);
1871	msp->ms_condensing = B_FALSE;
1872}
1873
1874/*
1875 * Write a metaslab to disk in the context of the specified transaction group.
1876 */
1877void
1878metaslab_sync(metaslab_t *msp, uint64_t txg)
1879{
1880	metaslab_group_t *mg = msp->ms_group;
1881	vdev_t *vd = mg->mg_vd;
1882	spa_t *spa = vd->vdev_spa;
1883	objset_t *mos = spa_meta_objset(spa);
1884	range_tree_t *alloctree = msp->ms_alloctree[txg & TXG_MASK];
1885	range_tree_t **freetree = &msp->ms_freetree[txg & TXG_MASK];
1886	range_tree_t **freed_tree =
1887	    &msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK];
1888	dmu_tx_t *tx;
1889	uint64_t object = space_map_object(msp->ms_sm);
1890
1891	ASSERT(!vd->vdev_ishole);
1892
1893	/*
1894	 * This metaslab has just been added so there's no work to do now.
1895	 */
1896	if (*freetree == NULL) {
1897		ASSERT3P(alloctree, ==, NULL);
1898		return;
1899	}
1900
1901	ASSERT3P(alloctree, !=, NULL);
1902	ASSERT3P(*freetree, !=, NULL);
1903	ASSERT3P(*freed_tree, !=, NULL);
1904
1905	/*
1906	 * Normally, we don't want to process a metaslab if there
1907	 * are no allocations or frees to perform. However, if the metaslab
1908	 * is being forced to condense we need to let it through.
1909	 */
1910	if (range_tree_space(alloctree) == 0 &&
1911	    range_tree_space(*freetree) == 0 &&
1912	    !msp->ms_condense_wanted)
1913		return;
1914
1915	/*
1916	 * The only state that can actually be changing concurrently with
1917	 * metaslab_sync() is the metaslab's ms_tree.  No other thread can
1918	 * be modifying this txg's alloctree, freetree, freed_tree, or
1919	 * space_map_phys_t. Therefore, we only hold ms_lock to satify
1920	 * space_map ASSERTs. We drop it whenever we call into the DMU,
1921	 * because the DMU can call down to us (e.g. via zio_free()) at
1922	 * any time.
1923	 */
1924
1925	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
1926
1927	if (msp->ms_sm == NULL) {
1928		uint64_t new_object;
1929
1930		new_object = space_map_alloc(mos, tx);
1931		VERIFY3U(new_object, !=, 0);
1932
1933		VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
1934		    msp->ms_start, msp->ms_size, vd->vdev_ashift,
1935		    &msp->ms_lock));
1936		ASSERT(msp->ms_sm != NULL);
1937	}
1938
1939	mutex_enter(&msp->ms_lock);
1940
1941	if (msp->ms_loaded && spa_sync_pass(spa) == 1 &&
1942	    metaslab_should_condense(msp)) {
1943		metaslab_condense(msp, txg, tx);
1944	} else {
1945		space_map_write(msp->ms_sm, alloctree, SM_ALLOC, tx);
1946		space_map_write(msp->ms_sm, *freetree, SM_FREE, tx);
1947	}
1948
1949	metaslab_group_histogram_verify(mg);
1950	metaslab_class_histogram_verify(mg->mg_class);
1951	metaslab_group_histogram_remove(mg, msp);
1952	if (msp->ms_loaded) {
1953		/*
1954		 * When the space map is loaded, we have an accruate
1955		 * histogram in the range tree. This gives us an opportunity
1956		 * to bring the space map's histogram up-to-date so we clear
1957		 * it first before updating it.
1958		 */
1959		space_map_histogram_clear(msp->ms_sm);
1960		space_map_histogram_add(msp->ms_sm, msp->ms_tree, tx);
1961	} else {
1962		/*
1963		 * Since the space map is not loaded we simply update the
1964		 * exisiting histogram with what was freed in this txg. This
1965		 * means that the on-disk histogram may not have an accurate
1966		 * view of the free space but it's close enough to allow
1967		 * us to make allocation decisions.
1968		 */
1969		space_map_histogram_add(msp->ms_sm, *freetree, tx);
1970	}
1971	metaslab_group_histogram_add(mg, msp);
1972	metaslab_group_histogram_verify(mg);
1973	metaslab_class_histogram_verify(mg->mg_class);
1974
1975	/*
1976	 * For sync pass 1, we avoid traversing this txg's free range tree
1977	 * and instead will just swap the pointers for freetree and
1978	 * freed_tree. We can safely do this since the freed_tree is
1979	 * guaranteed to be empty on the initial pass.
1980	 */
1981	if (spa_sync_pass(spa) == 1) {
1982		range_tree_swap(freetree, freed_tree);
1983	} else {
1984		range_tree_vacate(*freetree, range_tree_add, *freed_tree);
1985	}
1986	range_tree_vacate(alloctree, NULL, NULL);
1987
1988	ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK]));
1989	ASSERT0(range_tree_space(msp->ms_freetree[txg & TXG_MASK]));
1990
1991	mutex_exit(&msp->ms_lock);
1992
1993	if (object != space_map_object(msp->ms_sm)) {
1994		object = space_map_object(msp->ms_sm);
1995		dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
1996		    msp->ms_id, sizeof (uint64_t), &object, tx);
1997	}
1998	dmu_tx_commit(tx);
1999}
2000
2001/*
2002 * Called after a transaction group has completely synced to mark
2003 * all of the metaslab's free space as usable.
2004 */
2005void
2006metaslab_sync_done(metaslab_t *msp, uint64_t txg)
2007{
2008	metaslab_group_t *mg = msp->ms_group;
2009	vdev_t *vd = mg->mg_vd;
2010	range_tree_t **freed_tree;
2011	range_tree_t **defer_tree;
2012	int64_t alloc_delta, defer_delta;
2013
2014	ASSERT(!vd->vdev_ishole);
2015
2016	mutex_enter(&msp->ms_lock);
2017
2018	/*
2019	 * If this metaslab is just becoming available, initialize its
2020	 * alloctrees, freetrees, and defertree and add its capacity to
2021	 * the vdev.
2022	 */
2023	if (msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK] == NULL) {
2024		for (int t = 0; t < TXG_SIZE; t++) {
2025			ASSERT(msp->ms_alloctree[t] == NULL);
2026			ASSERT(msp->ms_freetree[t] == NULL);
2027
2028			msp->ms_alloctree[t] = range_tree_create(NULL, msp,
2029			    &msp->ms_lock);
2030			msp->ms_freetree[t] = range_tree_create(NULL, msp,
2031			    &msp->ms_lock);
2032		}
2033
2034		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2035			ASSERT(msp->ms_defertree[t] == NULL);
2036
2037			msp->ms_defertree[t] = range_tree_create(NULL, msp,
2038			    &msp->ms_lock);
2039		}
2040
2041		vdev_space_update(vd, 0, 0, msp->ms_size);
2042	}
2043
2044	freed_tree = &msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK];
2045	defer_tree = &msp->ms_defertree[txg % TXG_DEFER_SIZE];
2046
2047	alloc_delta = space_map_alloc_delta(msp->ms_sm);
2048	defer_delta = range_tree_space(*freed_tree) -
2049	    range_tree_space(*defer_tree);
2050
2051	vdev_space_update(vd, alloc_delta + defer_delta, defer_delta, 0);
2052
2053	ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK]));
2054	ASSERT0(range_tree_space(msp->ms_freetree[txg & TXG_MASK]));
2055
2056	/*
2057	 * If there's a metaslab_load() in progress, wait for it to complete
2058	 * so that we have a consistent view of the in-core space map.
2059	 */
2060	metaslab_load_wait(msp);
2061
2062	/*
2063	 * Move the frees from the defer_tree back to the free
2064	 * range tree (if it's loaded). Swap the freed_tree and the
2065	 * defer_tree -- this is safe to do because we've just emptied out
2066	 * the defer_tree.
2067	 */
2068	range_tree_vacate(*defer_tree,
2069	    msp->ms_loaded ? range_tree_add : NULL, msp->ms_tree);
2070	range_tree_swap(freed_tree, defer_tree);
2071
2072	space_map_update(msp->ms_sm);
2073
2074	msp->ms_deferspace += defer_delta;
2075	ASSERT3S(msp->ms_deferspace, >=, 0);
2076	ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
2077	if (msp->ms_deferspace != 0) {
2078		/*
2079		 * Keep syncing this metaslab until all deferred frees
2080		 * are back in circulation.
2081		 */
2082		vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
2083	}
2084
2085	if (msp->ms_loaded && msp->ms_access_txg < txg) {
2086		for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
2087			VERIFY0(range_tree_space(
2088			    msp->ms_alloctree[(txg + t) & TXG_MASK]));
2089		}
2090
2091		if (!metaslab_debug_unload)
2092			metaslab_unload(msp);
2093	}
2094
2095	metaslab_group_sort(mg, msp, metaslab_weight(msp));
2096	mutex_exit(&msp->ms_lock);
2097}
2098
2099void
2100metaslab_sync_reassess(metaslab_group_t *mg)
2101{
2102	metaslab_group_alloc_update(mg);
2103	mg->mg_fragmentation = metaslab_group_fragmentation(mg);
2104
2105	/*
2106	 * Preload the next potential metaslabs
2107	 */
2108	metaslab_group_preload(mg);
2109}
2110
2111static uint64_t
2112metaslab_distance(metaslab_t *msp, dva_t *dva)
2113{
2114	uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift;
2115	uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift;
2116	uint64_t start = msp->ms_id;
2117
2118	if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
2119		return (1ULL << 63);
2120
2121	if (offset < start)
2122		return ((start - offset) << ms_shift);
2123	if (offset > start)
2124		return ((offset - start) << ms_shift);
2125	return (0);
2126}
2127
2128static uint64_t
2129metaslab_group_alloc(metaslab_group_t *mg, uint64_t psize, uint64_t asize,
2130    uint64_t txg, uint64_t min_distance, dva_t *dva, int d)
2131{
2132	spa_t *spa = mg->mg_vd->vdev_spa;
2133	metaslab_t *msp = NULL;
2134	uint64_t offset = -1ULL;
2135	avl_tree_t *t = &mg->mg_metaslab_tree;
2136	uint64_t activation_weight;
2137	uint64_t target_distance;
2138	int i;
2139
2140	activation_weight = METASLAB_WEIGHT_PRIMARY;
2141	for (i = 0; i < d; i++) {
2142		if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
2143			activation_weight = METASLAB_WEIGHT_SECONDARY;
2144			break;
2145		}
2146	}
2147
2148	for (;;) {
2149		boolean_t was_active;
2150
2151		mutex_enter(&mg->mg_lock);
2152		for (msp = avl_first(t); msp; msp = AVL_NEXT(t, msp)) {
2153			if (msp->ms_weight < asize) {
2154				spa_dbgmsg(spa, "%s: failed to meet weight "
2155				    "requirement: vdev %llu, txg %llu, mg %p, "
2156				    "msp %p, psize %llu, asize %llu, "
2157				    "weight %llu", spa_name(spa),
2158				    mg->mg_vd->vdev_id, txg,
2159				    mg, msp, psize, asize, msp->ms_weight);
2160				mutex_exit(&mg->mg_lock);
2161				return (-1ULL);
2162			}
2163
2164			/*
2165			 * If the selected metaslab is condensing, skip it.
2166			 */
2167			if (msp->ms_condensing)
2168				continue;
2169
2170			was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
2171			if (activation_weight == METASLAB_WEIGHT_PRIMARY)
2172				break;
2173
2174			target_distance = min_distance +
2175			    (space_map_allocated(msp->ms_sm) != 0 ? 0 :
2176			    min_distance >> 1);
2177
2178			for (i = 0; i < d; i++)
2179				if (metaslab_distance(msp, &dva[i]) <
2180				    target_distance)
2181					break;
2182			if (i == d)
2183				break;
2184		}
2185		mutex_exit(&mg->mg_lock);
2186		if (msp == NULL)
2187			return (-1ULL);
2188
2189		mutex_enter(&msp->ms_lock);
2190
2191		/*
2192		 * Ensure that the metaslab we have selected is still
2193		 * capable of handling our request. It's possible that
2194		 * another thread may have changed the weight while we
2195		 * were blocked on the metaslab lock.
2196		 */
2197		if (msp->ms_weight < asize || (was_active &&
2198		    !(msp->ms_weight & METASLAB_ACTIVE_MASK) &&
2199		    activation_weight == METASLAB_WEIGHT_PRIMARY)) {
2200			mutex_exit(&msp->ms_lock);
2201			continue;
2202		}
2203
2204		if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) &&
2205		    activation_weight == METASLAB_WEIGHT_PRIMARY) {
2206			metaslab_passivate(msp,
2207			    msp->ms_weight & ~METASLAB_ACTIVE_MASK);
2208			mutex_exit(&msp->ms_lock);
2209			continue;
2210		}
2211
2212		if (metaslab_activate(msp, activation_weight) != 0) {
2213			mutex_exit(&msp->ms_lock);
2214			continue;
2215		}
2216
2217		/*
2218		 * If this metaslab is currently condensing then pick again as
2219		 * we can't manipulate this metaslab until it's committed
2220		 * to disk.
2221		 */
2222		if (msp->ms_condensing) {
2223			mutex_exit(&msp->ms_lock);
2224			continue;
2225		}
2226
2227		if ((offset = metaslab_block_alloc(msp, asize)) != -1ULL)
2228			break;
2229
2230		metaslab_passivate(msp, metaslab_block_maxsize(msp));
2231		mutex_exit(&msp->ms_lock);
2232	}
2233
2234	if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0)
2235		vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
2236
2237	range_tree_add(msp->ms_alloctree[txg & TXG_MASK], offset, asize);
2238	msp->ms_access_txg = txg + metaslab_unload_delay;
2239
2240	mutex_exit(&msp->ms_lock);
2241
2242	return (offset);
2243}
2244
2245/*
2246 * Allocate a block for the specified i/o.
2247 */
2248static int
2249metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
2250    dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags)
2251{
2252	metaslab_group_t *mg, *rotor;
2253	vdev_t *vd;
2254	int dshift = 3;
2255	int all_zero;
2256	int zio_lock = B_FALSE;
2257	boolean_t allocatable;
2258	uint64_t offset = -1ULL;
2259	uint64_t asize;
2260	uint64_t distance;
2261
2262	ASSERT(!DVA_IS_VALID(&dva[d]));
2263
2264	/*
2265	 * For testing, make some blocks above a certain size be gang blocks.
2266	 */
2267	if (psize >= metaslab_gang_bang && (ddi_get_lbolt() & 3) == 0)
2268		return (SET_ERROR(ENOSPC));
2269
2270	/*
2271	 * Start at the rotor and loop through all mgs until we find something.
2272	 * Note that there's no locking on mc_rotor or mc_aliquot because
2273	 * nothing actually breaks if we miss a few updates -- we just won't
2274	 * allocate quite as evenly.  It all balances out over time.
2275	 *
2276	 * If we are doing ditto or log blocks, try to spread them across
2277	 * consecutive vdevs.  If we're forced to reuse a vdev before we've
2278	 * allocated all of our ditto blocks, then try and spread them out on
2279	 * that vdev as much as possible.  If it turns out to not be possible,
2280	 * gradually lower our standards until anything becomes acceptable.
2281	 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
2282	 * gives us hope of containing our fault domains to something we're
2283	 * able to reason about.  Otherwise, any two top-level vdev failures
2284	 * will guarantee the loss of data.  With consecutive allocation,
2285	 * only two adjacent top-level vdev failures will result in data loss.
2286	 *
2287	 * If we are doing gang blocks (hintdva is non-NULL), try to keep
2288	 * ourselves on the same vdev as our gang block header.  That
2289	 * way, we can hope for locality in vdev_cache, plus it makes our
2290	 * fault domains something tractable.
2291	 */
2292	if (hintdva) {
2293		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
2294
2295		/*
2296		 * It's possible the vdev we're using as the hint no
2297		 * longer exists (i.e. removed). Consult the rotor when
2298		 * all else fails.
2299		 */
2300		if (vd != NULL) {
2301			mg = vd->vdev_mg;
2302
2303			if (flags & METASLAB_HINTBP_AVOID &&
2304			    mg->mg_next != NULL)
2305				mg = mg->mg_next;
2306		} else {
2307			mg = mc->mc_rotor;
2308		}
2309	} else if (d != 0) {
2310		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
2311		mg = vd->vdev_mg->mg_next;
2312	} else {
2313		mg = mc->mc_rotor;
2314	}
2315
2316	/*
2317	 * If the hint put us into the wrong metaslab class, or into a
2318	 * metaslab group that has been passivated, just follow the rotor.
2319	 */
2320	if (mg->mg_class != mc || mg->mg_activation_count <= 0)
2321		mg = mc->mc_rotor;
2322
2323	rotor = mg;
2324top:
2325	all_zero = B_TRUE;
2326	do {
2327		ASSERT(mg->mg_activation_count == 1);
2328
2329		vd = mg->mg_vd;
2330
2331		/*
2332		 * Don't allocate from faulted devices.
2333		 */
2334		if (zio_lock) {
2335			spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
2336			allocatable = vdev_allocatable(vd);
2337			spa_config_exit(spa, SCL_ZIO, FTAG);
2338		} else {
2339			allocatable = vdev_allocatable(vd);
2340		}
2341
2342		/*
2343		 * Determine if the selected metaslab group is eligible
2344		 * for allocations. If we're ganging or have requested
2345		 * an allocation for the smallest gang block size
2346		 * then we don't want to avoid allocating to the this
2347		 * metaslab group. If we're in this condition we should
2348		 * try to allocate from any device possible so that we
2349		 * don't inadvertently return ENOSPC and suspend the pool
2350		 * even though space is still available.
2351		 */
2352		if (allocatable && CAN_FASTGANG(flags) &&
2353		    psize > SPA_GANGBLOCKSIZE)
2354			allocatable = metaslab_group_allocatable(mg);
2355
2356		if (!allocatable)
2357			goto next;
2358
2359		/*
2360		 * Avoid writing single-copy data to a failing vdev
2361		 * unless the user instructs us that it is okay.
2362		 */
2363		if ((vd->vdev_stat.vs_write_errors > 0 ||
2364		    vd->vdev_state < VDEV_STATE_HEALTHY) &&
2365		    d == 0 && dshift == 3 && vd->vdev_children == 0) {
2366			all_zero = B_FALSE;
2367			goto next;
2368		}
2369
2370		ASSERT(mg->mg_class == mc);
2371
2372		distance = vd->vdev_asize >> dshift;
2373		if (distance <= (1ULL << vd->vdev_ms_shift))
2374			distance = 0;
2375		else
2376			all_zero = B_FALSE;
2377
2378		asize = vdev_psize_to_asize(vd, psize);
2379		ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
2380
2381		offset = metaslab_group_alloc(mg, psize, asize, txg, distance,
2382		    dva, d);
2383		if (offset != -1ULL) {
2384			/*
2385			 * If we've just selected this metaslab group,
2386			 * figure out whether the corresponding vdev is
2387			 * over- or under-used relative to the pool,
2388			 * and set an allocation bias to even it out.
2389			 */
2390			if (mc->mc_aliquot == 0 && metaslab_bias_enabled) {
2391				vdev_stat_t *vs = &vd->vdev_stat;
2392				int64_t vu, cu;
2393
2394				vu = (vs->vs_alloc * 100) / (vs->vs_space + 1);
2395				cu = (mc->mc_alloc * 100) / (mc->mc_space + 1);
2396
2397				/*
2398				 * Calculate how much more or less we should
2399				 * try to allocate from this device during
2400				 * this iteration around the rotor.
2401				 * For example, if a device is 80% full
2402				 * and the pool is 20% full then we should
2403				 * reduce allocations by 60% on this device.
2404				 *
2405				 * mg_bias = (20 - 80) * 512K / 100 = -307K
2406				 *
2407				 * This reduces allocations by 307K for this
2408				 * iteration.
2409				 */
2410				mg->mg_bias = ((cu - vu) *
2411				    (int64_t)mg->mg_aliquot) / 100;
2412			} else if (!metaslab_bias_enabled) {
2413				mg->mg_bias = 0;
2414			}
2415
2416			if (atomic_add_64_nv(&mc->mc_aliquot, asize) >=
2417			    mg->mg_aliquot + mg->mg_bias) {
2418				mc->mc_rotor = mg->mg_next;
2419				mc->mc_aliquot = 0;
2420			}
2421
2422			DVA_SET_VDEV(&dva[d], vd->vdev_id);
2423			DVA_SET_OFFSET(&dva[d], offset);
2424			DVA_SET_GANG(&dva[d], !!(flags & METASLAB_GANG_HEADER));
2425			DVA_SET_ASIZE(&dva[d], asize);
2426
2427			return (0);
2428		}
2429next:
2430		mc->mc_rotor = mg->mg_next;
2431		mc->mc_aliquot = 0;
2432	} while ((mg = mg->mg_next) != rotor);
2433
2434	if (!all_zero) {
2435		dshift++;
2436		ASSERT(dshift < 64);
2437		goto top;
2438	}
2439
2440	if (!allocatable && !zio_lock) {
2441		dshift = 3;
2442		zio_lock = B_TRUE;
2443		goto top;
2444	}
2445
2446	bzero(&dva[d], sizeof (dva_t));
2447
2448	return (SET_ERROR(ENOSPC));
2449}
2450
2451/*
2452 * Free the block represented by DVA in the context of the specified
2453 * transaction group.
2454 */
2455static void
2456metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now)
2457{
2458	uint64_t vdev = DVA_GET_VDEV(dva);
2459	uint64_t offset = DVA_GET_OFFSET(dva);
2460	uint64_t size = DVA_GET_ASIZE(dva);
2461	vdev_t *vd;
2462	metaslab_t *msp;
2463
2464	ASSERT(DVA_IS_VALID(dva));
2465
2466	if (txg > spa_freeze_txg(spa))
2467		return;
2468
2469	if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
2470	    (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
2471		cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu",
2472		    (u_longlong_t)vdev, (u_longlong_t)offset);
2473		ASSERT(0);
2474		return;
2475	}
2476
2477	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
2478
2479	if (DVA_GET_GANG(dva))
2480		size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
2481
2482	mutex_enter(&msp->ms_lock);
2483
2484	if (now) {
2485		range_tree_remove(msp->ms_alloctree[txg & TXG_MASK],
2486		    offset, size);
2487
2488		VERIFY(!msp->ms_condensing);
2489		VERIFY3U(offset, >=, msp->ms_start);
2490		VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
2491		VERIFY3U(range_tree_space(msp->ms_tree) + size, <=,
2492		    msp->ms_size);
2493		VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
2494		VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
2495		range_tree_add(msp->ms_tree, offset, size);
2496	} else {
2497		if (range_tree_space(msp->ms_freetree[txg & TXG_MASK]) == 0)
2498			vdev_dirty(vd, VDD_METASLAB, msp, txg);
2499		range_tree_add(msp->ms_freetree[txg & TXG_MASK],
2500		    offset, size);
2501	}
2502
2503	mutex_exit(&msp->ms_lock);
2504}
2505
2506/*
2507 * Intent log support: upon opening the pool after a crash, notify the SPA
2508 * of blocks that the intent log has allocated for immediate write, but
2509 * which are still considered free by the SPA because the last transaction
2510 * group didn't commit yet.
2511 */
2512static int
2513metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
2514{
2515	uint64_t vdev = DVA_GET_VDEV(dva);
2516	uint64_t offset = DVA_GET_OFFSET(dva);
2517	uint64_t size = DVA_GET_ASIZE(dva);
2518	vdev_t *vd;
2519	metaslab_t *msp;
2520	int error = 0;
2521
2522	ASSERT(DVA_IS_VALID(dva));
2523
2524	if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
2525	    (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count)
2526		return (SET_ERROR(ENXIO));
2527
2528	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
2529
2530	if (DVA_GET_GANG(dva))
2531		size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
2532
2533	mutex_enter(&msp->ms_lock);
2534
2535	if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded)
2536		error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY);
2537
2538	if (error == 0 && !range_tree_contains(msp->ms_tree, offset, size))
2539		error = SET_ERROR(ENOENT);
2540
2541	if (error || txg == 0) {	/* txg == 0 indicates dry run */
2542		mutex_exit(&msp->ms_lock);
2543		return (error);
2544	}
2545
2546	VERIFY(!msp->ms_condensing);
2547	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
2548	VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
2549	VERIFY3U(range_tree_space(msp->ms_tree) - size, <=, msp->ms_size);
2550	range_tree_remove(msp->ms_tree, offset, size);
2551
2552	if (spa_writeable(spa)) {	/* don't dirty if we're zdb(1M) */
2553		if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0)
2554			vdev_dirty(vd, VDD_METASLAB, msp, txg);
2555		range_tree_add(msp->ms_alloctree[txg & TXG_MASK], offset, size);
2556	}
2557
2558	mutex_exit(&msp->ms_lock);
2559
2560	return (0);
2561}
2562
2563int
2564metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
2565    int ndvas, uint64_t txg, blkptr_t *hintbp, int flags)
2566{
2567	dva_t *dva = bp->blk_dva;
2568	dva_t *hintdva = hintbp->blk_dva;
2569	int error = 0;
2570
2571	ASSERT(bp->blk_birth == 0);
2572	ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
2573
2574	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
2575
2576	if (mc->mc_rotor == NULL) {	/* no vdevs in this class */
2577		spa_config_exit(spa, SCL_ALLOC, FTAG);
2578		return (SET_ERROR(ENOSPC));
2579	}
2580
2581	ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
2582	ASSERT(BP_GET_NDVAS(bp) == 0);
2583	ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
2584
2585	for (int d = 0; d < ndvas; d++) {
2586		error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
2587		    txg, flags);
2588		if (error != 0) {
2589			for (d--; d >= 0; d--) {
2590				metaslab_free_dva(spa, &dva[d], txg, B_TRUE);
2591				bzero(&dva[d], sizeof (dva_t));
2592			}
2593			spa_config_exit(spa, SCL_ALLOC, FTAG);
2594			return (error);
2595		}
2596	}
2597	ASSERT(error == 0);
2598	ASSERT(BP_GET_NDVAS(bp) == ndvas);
2599
2600	spa_config_exit(spa, SCL_ALLOC, FTAG);
2601
2602	BP_SET_BIRTH(bp, txg, txg);
2603
2604	return (0);
2605}
2606
2607void
2608metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
2609{
2610	const dva_t *dva = bp->blk_dva;
2611	int ndvas = BP_GET_NDVAS(bp);
2612
2613	ASSERT(!BP_IS_HOLE(bp));
2614	ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
2615
2616	spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
2617
2618	for (int d = 0; d < ndvas; d++)
2619		metaslab_free_dva(spa, &dva[d], txg, now);
2620
2621	spa_config_exit(spa, SCL_FREE, FTAG);
2622}
2623
2624int
2625metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
2626{
2627	const dva_t *dva = bp->blk_dva;
2628	int ndvas = BP_GET_NDVAS(bp);
2629	int error = 0;
2630
2631	ASSERT(!BP_IS_HOLE(bp));
2632
2633	if (txg != 0) {
2634		/*
2635		 * First do a dry run to make sure all DVAs are claimable,
2636		 * so we don't have to unwind from partial failures below.
2637		 */
2638		if ((error = metaslab_claim(spa, bp, 0)) != 0)
2639			return (error);
2640	}
2641
2642	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
2643
2644	for (int d = 0; d < ndvas; d++)
2645		if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0)
2646			break;
2647
2648	spa_config_exit(spa, SCL_ALLOC, FTAG);
2649
2650	ASSERT(error == 0 || txg == 0);
2651
2652	return (error);
2653}
2654
2655void
2656metaslab_check_free(spa_t *spa, const blkptr_t *bp)
2657{
2658	if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
2659		return;
2660
2661	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2662	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
2663		uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
2664		vdev_t *vd = vdev_lookup_top(spa, vdev);
2665		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
2666		uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
2667		metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
2668
2669		if (msp->ms_loaded)
2670			range_tree_verify(msp->ms_tree, offset, size);
2671
2672		for (int j = 0; j < TXG_SIZE; j++)
2673			range_tree_verify(msp->ms_freetree[j], offset, size);
2674		for (int j = 0; j < TXG_DEFER_SIZE; j++)
2675			range_tree_verify(msp->ms_defertree[j], offset, size);
2676	}
2677	spa_config_exit(spa, SCL_VDEV, FTAG);
2678}
2679