metaslab.c revision 260768
1216154Snwhitehorn/*
2216154Snwhitehorn * CDDL HEADER START
3216154Snwhitehorn *
4216154Snwhitehorn * The contents of this file are subject to the terms of the
5216154Snwhitehorn * Common Development and Distribution License (the "License").
6216154Snwhitehorn * You may not use this file except in compliance with the License.
7216154Snwhitehorn *
8216154Snwhitehorn * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9216154Snwhitehorn * or http://www.opensolaris.org/os/licensing.
10216154Snwhitehorn * See the License for the specific language governing permissions
11216154Snwhitehorn * and limitations under the License.
12216154Snwhitehorn *
13216154Snwhitehorn * When distributing Covered Code, include this CDDL HEADER in each
14216154Snwhitehorn * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15216154Snwhitehorn * If applicable, add the following below this CDDL HEADER, with the
16216154Snwhitehorn * fields enclosed by brackets "[]" replaced with your own identifying
17216154Snwhitehorn * information: Portions Copyright [yyyy] [name of copyright owner]
18216154Snwhitehorn *
19216154Snwhitehorn * CDDL HEADER END
20216154Snwhitehorn */
21216154Snwhitehorn/*
22216154Snwhitehorn * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23216154Snwhitehorn * Copyright (c) 2013 by Delphix. All rights reserved.
24216154Snwhitehorn * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25216154Snwhitehorn */
26216154Snwhitehorn
27216154Snwhitehorn#include <sys/zfs_context.h>
28216154Snwhitehorn#include <sys/dmu.h>
29216154Snwhitehorn#include <sys/dmu_tx.h>
30216154Snwhitehorn#include <sys/space_map.h>
31216154Snwhitehorn#include <sys/metaslab_impl.h>
32216154Snwhitehorn#include <sys/vdev_impl.h>
33216154Snwhitehorn#include <sys/zio.h>
34216154Snwhitehorn
35216154SnwhitehornSYSCTL_DECL(_vfs_zfs);
36216154SnwhitehornSYSCTL_NODE(_vfs_zfs, OID_AUTO, metaslab, CTLFLAG_RW, 0, "ZFS metaslab");
37216154Snwhitehorn
38216154Snwhitehorn/*
39216154Snwhitehorn * Allow allocations to switch to gang blocks quickly. We do this to
40216154Snwhitehorn * avoid having to load lots of space_maps in a given txg. There are,
41216154Snwhitehorn * however, some cases where we want to avoid "fast" ganging and instead
42216154Snwhitehorn * we want to do an exhaustive search of all metaslabs on this device.
43216154Snwhitehorn * Currently we don't allow any gang, zil, or dump device related allocations
44216154Snwhitehorn * to "fast" gang.
45216154Snwhitehorn */
46216154Snwhitehorn#define	CAN_FASTGANG(flags) \
47216154Snwhitehorn	(!((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER | \
48216154Snwhitehorn	METASLAB_GANG_AVOID)))
49216154Snwhitehorn
50216154Snwhitehornuint64_t metaslab_aliquot = 512ULL << 10;
51216154Snwhitehornuint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1;	/* force gang blocks */
52216154SnwhitehornTUNABLE_QUAD("vfs.zfs.metaslab.gang_bang", &metaslab_gang_bang);
53216154SnwhitehornSYSCTL_QUAD(_vfs_zfs_metaslab, OID_AUTO, gang_bang, CTLFLAG_RWTUN,
54216154Snwhitehorn    &metaslab_gang_bang, 0,
55    "Force gang block allocation for blocks larger than or equal to this value");
56
57/*
58 * The in-core space map representation is more compact than its on-disk form.
59 * The zfs_condense_pct determines how much more compact the in-core
60 * space_map representation must be before we compact it on-disk.
61 * Values should be greater than or equal to 100.
62 */
63int zfs_condense_pct = 200;
64
65/*
66 * This value defines the number of allowed allocation failures per vdev.
67 * If a device reaches this threshold in a given txg then we consider skipping
68 * allocations on that device. The value of zfs_mg_alloc_failures is computed
69 * in zio_init() unless it has been overridden in /etc/system.
70 */
71int zfs_mg_alloc_failures = 0;
72TUNABLE_INT("vfs.zfs.mg_alloc_failures", &zfs_mg_alloc_failures);
73SYSCTL_INT(_vfs_zfs, OID_AUTO, mg_alloc_failures, CTLFLAG_RWTUN,
74    &zfs_mg_alloc_failures, 0,
75    "Number of allowed allocation failures per vdev");
76
77/*
78 * The zfs_mg_noalloc_threshold defines which metaslab groups should
79 * be eligible for allocation. The value is defined as a percentage of
80 * a free space. Metaslab groups that have more free space than
81 * zfs_mg_noalloc_threshold are always eligible for allocations. Once
82 * a metaslab group's free space is less than or equal to the
83 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
84 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
85 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
86 * groups are allowed to accept allocations. Gang blocks are always
87 * eligible to allocate on any metaslab group. The default value of 0 means
88 * no metaslab group will be excluded based on this criterion.
89 */
90int zfs_mg_noalloc_threshold = 0;
91
92/*
93 * Metaslab debugging: when set, keeps all space maps in core to verify frees.
94 */
95static int metaslab_debug = 0;
96TUNABLE_INT("vfs.zfs.metaslab.debug", &metaslab_debug);
97SYSCTL_INT(_vfs_zfs_metaslab, OID_AUTO, debug, CTLFLAG_RWTUN, &metaslab_debug,
98    0,
99    "Metaslab debugging: when set, keeps all space maps in core to verify frees");
100
101/*
102 * Minimum size which forces the dynamic allocator to change
103 * it's allocation strategy.  Once the space map cannot satisfy
104 * an allocation of this size then it switches to using more
105 * aggressive strategy (i.e search by size rather than offset).
106 */
107uint64_t metaslab_df_alloc_threshold = SPA_MAXBLOCKSIZE;
108TUNABLE_QUAD("vfs.zfs.metaslab.df_alloc_threshold",
109    &metaslab_df_alloc_threshold);
110SYSCTL_QUAD(_vfs_zfs_metaslab, OID_AUTO, df_alloc_threshold, CTLFLAG_RWTUN,
111    &metaslab_df_alloc_threshold, 0,
112    "Minimum size which forces the dynamic allocator to change it's allocation strategy");
113
114/*
115 * The minimum free space, in percent, which must be available
116 * in a space map to continue allocations in a first-fit fashion.
117 * Once the space_map's free space drops below this level we dynamically
118 * switch to using best-fit allocations.
119 */
120int metaslab_df_free_pct = 4;
121TUNABLE_INT("vfs.zfs.metaslab.df_free_pct", &metaslab_df_free_pct);
122SYSCTL_INT(_vfs_zfs_metaslab, OID_AUTO, df_free_pct, CTLFLAG_RWTUN,
123    &metaslab_df_free_pct, 0,
124    "The minimum free space, in percent, which must be available in a space map to continue allocations in a first-fit fashion");
125
126/*
127 * A metaslab is considered "free" if it contains a contiguous
128 * segment which is greater than metaslab_min_alloc_size.
129 */
130uint64_t metaslab_min_alloc_size = DMU_MAX_ACCESS;
131TUNABLE_QUAD("vfs.zfs.metaslab.min_alloc_size",
132    &metaslab_min_alloc_size);
133SYSCTL_QUAD(_vfs_zfs_metaslab, OID_AUTO, min_alloc_size, CTLFLAG_RWTUN,
134    &metaslab_min_alloc_size, 0,
135    "A metaslab is considered \"free\" if it contains a contiguous segment which is greater than vfs.zfs.metaslab.min_alloc_size");
136
137/*
138 * Max number of space_maps to prefetch.
139 */
140int metaslab_prefetch_limit = SPA_DVAS_PER_BP;
141TUNABLE_INT("vfs.zfs.metaslab.prefetch_limit", &metaslab_prefetch_limit);
142SYSCTL_INT(_vfs_zfs_metaslab, OID_AUTO, prefetch_limit, CTLFLAG_RWTUN,
143    &metaslab_prefetch_limit, 0, "Maximum number of space_maps to prefetch");
144
145/*
146 * Percentage bonus multiplier for metaslabs that are in the bonus area.
147 */
148int metaslab_smo_bonus_pct = 150;
149TUNABLE_INT("vfs.zfs.metaslab.smo_bonus_pct", &metaslab_smo_bonus_pct);
150SYSCTL_INT(_vfs_zfs_metaslab, OID_AUTO, smo_bonus_pct, CTLFLAG_RWTUN,
151    &metaslab_smo_bonus_pct, 0, "Maximum number of space_maps to prefetch");
152
153/*
154 * Should we be willing to write data to degraded vdevs?
155 */
156boolean_t zfs_write_to_degraded = B_FALSE;
157SYSCTL_INT(_vfs_zfs, OID_AUTO, write_to_degraded, CTLFLAG_RWTUN,
158    &zfs_write_to_degraded, 0, "Allow writing data to degraded vdevs");
159TUNABLE_INT("vfs.zfs.write_to_degraded", &zfs_write_to_degraded);
160
161/*
162 * ==========================================================================
163 * Metaslab classes
164 * ==========================================================================
165 */
166metaslab_class_t *
167metaslab_class_create(spa_t *spa, space_map_ops_t *ops)
168{
169	metaslab_class_t *mc;
170
171	mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP);
172
173	mc->mc_spa = spa;
174	mc->mc_rotor = NULL;
175	mc->mc_ops = ops;
176
177	return (mc);
178}
179
180void
181metaslab_class_destroy(metaslab_class_t *mc)
182{
183	ASSERT(mc->mc_rotor == NULL);
184	ASSERT(mc->mc_alloc == 0);
185	ASSERT(mc->mc_deferred == 0);
186	ASSERT(mc->mc_space == 0);
187	ASSERT(mc->mc_dspace == 0);
188
189	kmem_free(mc, sizeof (metaslab_class_t));
190}
191
192int
193metaslab_class_validate(metaslab_class_t *mc)
194{
195	metaslab_group_t *mg;
196	vdev_t *vd;
197
198	/*
199	 * Must hold one of the spa_config locks.
200	 */
201	ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
202	    spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
203
204	if ((mg = mc->mc_rotor) == NULL)
205		return (0);
206
207	do {
208		vd = mg->mg_vd;
209		ASSERT(vd->vdev_mg != NULL);
210		ASSERT3P(vd->vdev_top, ==, vd);
211		ASSERT3P(mg->mg_class, ==, mc);
212		ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
213	} while ((mg = mg->mg_next) != mc->mc_rotor);
214
215	return (0);
216}
217
218void
219metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
220    int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
221{
222	atomic_add_64(&mc->mc_alloc, alloc_delta);
223	atomic_add_64(&mc->mc_deferred, defer_delta);
224	atomic_add_64(&mc->mc_space, space_delta);
225	atomic_add_64(&mc->mc_dspace, dspace_delta);
226}
227
228void
229metaslab_class_minblocksize_update(metaslab_class_t *mc)
230{
231	metaslab_group_t *mg;
232	vdev_t *vd;
233	uint64_t minashift = UINT64_MAX;
234
235	if ((mg = mc->mc_rotor) == NULL) {
236		mc->mc_minblocksize = SPA_MINBLOCKSIZE;
237		return;
238	}
239
240	do {
241		vd = mg->mg_vd;
242		if (vd->vdev_ashift < minashift)
243			minashift = vd->vdev_ashift;
244	} while ((mg = mg->mg_next) != mc->mc_rotor);
245
246	mc->mc_minblocksize = 1ULL << minashift;
247}
248
249uint64_t
250metaslab_class_get_alloc(metaslab_class_t *mc)
251{
252	return (mc->mc_alloc);
253}
254
255uint64_t
256metaslab_class_get_deferred(metaslab_class_t *mc)
257{
258	return (mc->mc_deferred);
259}
260
261uint64_t
262metaslab_class_get_space(metaslab_class_t *mc)
263{
264	return (mc->mc_space);
265}
266
267uint64_t
268metaslab_class_get_dspace(metaslab_class_t *mc)
269{
270	return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
271}
272
273uint64_t
274metaslab_class_get_minblocksize(metaslab_class_t *mc)
275{
276	return (mc->mc_minblocksize);
277}
278
279/*
280 * ==========================================================================
281 * Metaslab groups
282 * ==========================================================================
283 */
284static int
285metaslab_compare(const void *x1, const void *x2)
286{
287	const metaslab_t *m1 = x1;
288	const metaslab_t *m2 = x2;
289
290	if (m1->ms_weight < m2->ms_weight)
291		return (1);
292	if (m1->ms_weight > m2->ms_weight)
293		return (-1);
294
295	/*
296	 * If the weights are identical, use the offset to force uniqueness.
297	 */
298	if (m1->ms_map->sm_start < m2->ms_map->sm_start)
299		return (-1);
300	if (m1->ms_map->sm_start > m2->ms_map->sm_start)
301		return (1);
302
303	ASSERT3P(m1, ==, m2);
304
305	return (0);
306}
307
308/*
309 * Update the allocatable flag and the metaslab group's capacity.
310 * The allocatable flag is set to true if the capacity is below
311 * the zfs_mg_noalloc_threshold. If a metaslab group transitions
312 * from allocatable to non-allocatable or vice versa then the metaslab
313 * group's class is updated to reflect the transition.
314 */
315static void
316metaslab_group_alloc_update(metaslab_group_t *mg)
317{
318	vdev_t *vd = mg->mg_vd;
319	metaslab_class_t *mc = mg->mg_class;
320	vdev_stat_t *vs = &vd->vdev_stat;
321	boolean_t was_allocatable;
322
323	ASSERT(vd == vd->vdev_top);
324
325	mutex_enter(&mg->mg_lock);
326	was_allocatable = mg->mg_allocatable;
327
328	mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
329	    (vs->vs_space + 1);
330
331	mg->mg_allocatable = (mg->mg_free_capacity > zfs_mg_noalloc_threshold);
332
333	/*
334	 * The mc_alloc_groups maintains a count of the number of
335	 * groups in this metaslab class that are still above the
336	 * zfs_mg_noalloc_threshold. This is used by the allocating
337	 * threads to determine if they should avoid allocations to
338	 * a given group. The allocator will avoid allocations to a group
339	 * if that group has reached or is below the zfs_mg_noalloc_threshold
340	 * and there are still other groups that are above the threshold.
341	 * When a group transitions from allocatable to non-allocatable or
342	 * vice versa we update the metaslab class to reflect that change.
343	 * When the mc_alloc_groups value drops to 0 that means that all
344	 * groups have reached the zfs_mg_noalloc_threshold making all groups
345	 * eligible for allocations. This effectively means that all devices
346	 * are balanced again.
347	 */
348	if (was_allocatable && !mg->mg_allocatable)
349		mc->mc_alloc_groups--;
350	else if (!was_allocatable && mg->mg_allocatable)
351		mc->mc_alloc_groups++;
352	mutex_exit(&mg->mg_lock);
353}
354
355metaslab_group_t *
356metaslab_group_create(metaslab_class_t *mc, vdev_t *vd)
357{
358	metaslab_group_t *mg;
359
360	mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP);
361	mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
362	avl_create(&mg->mg_metaslab_tree, metaslab_compare,
363	    sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
364	mg->mg_vd = vd;
365	mg->mg_class = mc;
366	mg->mg_activation_count = 0;
367
368	return (mg);
369}
370
371void
372metaslab_group_destroy(metaslab_group_t *mg)
373{
374	ASSERT(mg->mg_prev == NULL);
375	ASSERT(mg->mg_next == NULL);
376	/*
377	 * We may have gone below zero with the activation count
378	 * either because we never activated in the first place or
379	 * because we're done, and possibly removing the vdev.
380	 */
381	ASSERT(mg->mg_activation_count <= 0);
382
383	avl_destroy(&mg->mg_metaslab_tree);
384	mutex_destroy(&mg->mg_lock);
385	kmem_free(mg, sizeof (metaslab_group_t));
386}
387
388void
389metaslab_group_activate(metaslab_group_t *mg)
390{
391	metaslab_class_t *mc = mg->mg_class;
392	metaslab_group_t *mgprev, *mgnext;
393
394	ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
395
396	ASSERT(mc->mc_rotor != mg);
397	ASSERT(mg->mg_prev == NULL);
398	ASSERT(mg->mg_next == NULL);
399	ASSERT(mg->mg_activation_count <= 0);
400
401	if (++mg->mg_activation_count <= 0)
402		return;
403
404	mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
405	metaslab_group_alloc_update(mg);
406
407	if ((mgprev = mc->mc_rotor) == NULL) {
408		mg->mg_prev = mg;
409		mg->mg_next = mg;
410	} else {
411		mgnext = mgprev->mg_next;
412		mg->mg_prev = mgprev;
413		mg->mg_next = mgnext;
414		mgprev->mg_next = mg;
415		mgnext->mg_prev = mg;
416	}
417	mc->mc_rotor = mg;
418	metaslab_class_minblocksize_update(mc);
419}
420
421void
422metaslab_group_passivate(metaslab_group_t *mg)
423{
424	metaslab_class_t *mc = mg->mg_class;
425	metaslab_group_t *mgprev, *mgnext;
426
427	ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
428
429	if (--mg->mg_activation_count != 0) {
430		ASSERT(mc->mc_rotor != mg);
431		ASSERT(mg->mg_prev == NULL);
432		ASSERT(mg->mg_next == NULL);
433		ASSERT(mg->mg_activation_count < 0);
434		return;
435	}
436
437	mgprev = mg->mg_prev;
438	mgnext = mg->mg_next;
439
440	if (mg == mgnext) {
441		mc->mc_rotor = NULL;
442	} else {
443		mc->mc_rotor = mgnext;
444		mgprev->mg_next = mgnext;
445		mgnext->mg_prev = mgprev;
446	}
447
448	mg->mg_prev = NULL;
449	mg->mg_next = NULL;
450	metaslab_class_minblocksize_update(mc);
451}
452
453static void
454metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
455{
456	mutex_enter(&mg->mg_lock);
457	ASSERT(msp->ms_group == NULL);
458	msp->ms_group = mg;
459	msp->ms_weight = 0;
460	avl_add(&mg->mg_metaslab_tree, msp);
461	mutex_exit(&mg->mg_lock);
462}
463
464static void
465metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
466{
467	mutex_enter(&mg->mg_lock);
468	ASSERT(msp->ms_group == mg);
469	avl_remove(&mg->mg_metaslab_tree, msp);
470	msp->ms_group = NULL;
471	mutex_exit(&mg->mg_lock);
472}
473
474static void
475metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
476{
477	/*
478	 * Although in principle the weight can be any value, in
479	 * practice we do not use values in the range [1, 510].
480	 */
481	ASSERT(weight >= SPA_MINBLOCKSIZE-1 || weight == 0);
482	ASSERT(MUTEX_HELD(&msp->ms_lock));
483
484	mutex_enter(&mg->mg_lock);
485	ASSERT(msp->ms_group == mg);
486	avl_remove(&mg->mg_metaslab_tree, msp);
487	msp->ms_weight = weight;
488	avl_add(&mg->mg_metaslab_tree, msp);
489	mutex_exit(&mg->mg_lock);
490}
491
492/*
493 * Determine if a given metaslab group should skip allocations. A metaslab
494 * group should avoid allocations if its used capacity has crossed the
495 * zfs_mg_noalloc_threshold and there is at least one metaslab group
496 * that can still handle allocations.
497 */
498static boolean_t
499metaslab_group_allocatable(metaslab_group_t *mg)
500{
501	vdev_t *vd = mg->mg_vd;
502	spa_t *spa = vd->vdev_spa;
503	metaslab_class_t *mc = mg->mg_class;
504
505	/*
506	 * A metaslab group is considered allocatable if its free capacity
507	 * is greater than the set value of zfs_mg_noalloc_threshold, it's
508	 * associated with a slog, or there are no other metaslab groups
509	 * with free capacity greater than zfs_mg_noalloc_threshold.
510	 */
511	return (mg->mg_free_capacity > zfs_mg_noalloc_threshold ||
512	    mc != spa_normal_class(spa) || mc->mc_alloc_groups == 0);
513}
514
515/*
516 * ==========================================================================
517 * Common allocator routines
518 * ==========================================================================
519 */
520static int
521metaslab_segsize_compare(const void *x1, const void *x2)
522{
523	const space_seg_t *s1 = x1;
524	const space_seg_t *s2 = x2;
525	uint64_t ss_size1 = s1->ss_end - s1->ss_start;
526	uint64_t ss_size2 = s2->ss_end - s2->ss_start;
527
528	if (ss_size1 < ss_size2)
529		return (-1);
530	if (ss_size1 > ss_size2)
531		return (1);
532
533	if (s1->ss_start < s2->ss_start)
534		return (-1);
535	if (s1->ss_start > s2->ss_start)
536		return (1);
537
538	return (0);
539}
540
541/*
542 * This is a helper function that can be used by the allocator to find
543 * a suitable block to allocate. This will search the specified AVL
544 * tree looking for a block that matches the specified criteria.
545 */
546static uint64_t
547metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
548    uint64_t align)
549{
550	space_seg_t *ss, ssearch;
551	avl_index_t where;
552
553	ssearch.ss_start = *cursor;
554	ssearch.ss_end = *cursor + size;
555
556	ss = avl_find(t, &ssearch, &where);
557	if (ss == NULL)
558		ss = avl_nearest(t, where, AVL_AFTER);
559
560	while (ss != NULL) {
561		uint64_t offset = P2ROUNDUP(ss->ss_start, align);
562
563		if (offset + size <= ss->ss_end) {
564			*cursor = offset + size;
565			return (offset);
566		}
567		ss = AVL_NEXT(t, ss);
568	}
569
570	/*
571	 * If we know we've searched the whole map (*cursor == 0), give up.
572	 * Otherwise, reset the cursor to the beginning and try again.
573	 */
574	if (*cursor == 0)
575		return (-1ULL);
576
577	*cursor = 0;
578	return (metaslab_block_picker(t, cursor, size, align));
579}
580
581static void
582metaslab_pp_load(space_map_t *sm)
583{
584	space_seg_t *ss;
585
586	ASSERT(sm->sm_ppd == NULL);
587	sm->sm_ppd = kmem_zalloc(64 * sizeof (uint64_t), KM_SLEEP);
588
589	sm->sm_pp_root = kmem_alloc(sizeof (avl_tree_t), KM_SLEEP);
590	avl_create(sm->sm_pp_root, metaslab_segsize_compare,
591	    sizeof (space_seg_t), offsetof(struct space_seg, ss_pp_node));
592
593	for (ss = avl_first(&sm->sm_root); ss; ss = AVL_NEXT(&sm->sm_root, ss))
594		avl_add(sm->sm_pp_root, ss);
595}
596
597static void
598metaslab_pp_unload(space_map_t *sm)
599{
600	void *cookie = NULL;
601
602	kmem_free(sm->sm_ppd, 64 * sizeof (uint64_t));
603	sm->sm_ppd = NULL;
604
605	while (avl_destroy_nodes(sm->sm_pp_root, &cookie) != NULL) {
606		/* tear down the tree */
607	}
608
609	avl_destroy(sm->sm_pp_root);
610	kmem_free(sm->sm_pp_root, sizeof (avl_tree_t));
611	sm->sm_pp_root = NULL;
612}
613
614/* ARGSUSED */
615static void
616metaslab_pp_claim(space_map_t *sm, uint64_t start, uint64_t size)
617{
618	/* No need to update cursor */
619}
620
621/* ARGSUSED */
622static void
623metaslab_pp_free(space_map_t *sm, uint64_t start, uint64_t size)
624{
625	/* No need to update cursor */
626}
627
628/*
629 * Return the maximum contiguous segment within the metaslab.
630 */
631uint64_t
632metaslab_pp_maxsize(space_map_t *sm)
633{
634	avl_tree_t *t = sm->sm_pp_root;
635	space_seg_t *ss;
636
637	if (t == NULL || (ss = avl_last(t)) == NULL)
638		return (0ULL);
639
640	return (ss->ss_end - ss->ss_start);
641}
642
643/*
644 * ==========================================================================
645 * The first-fit block allocator
646 * ==========================================================================
647 */
648static uint64_t
649metaslab_ff_alloc(space_map_t *sm, uint64_t size)
650{
651	avl_tree_t *t = &sm->sm_root;
652	uint64_t align = size & -size;
653	uint64_t *cursor = (uint64_t *)sm->sm_ppd + highbit(align) - 1;
654
655	return (metaslab_block_picker(t, cursor, size, align));
656}
657
658/* ARGSUSED */
659boolean_t
660metaslab_ff_fragmented(space_map_t *sm)
661{
662	return (B_TRUE);
663}
664
665static space_map_ops_t metaslab_ff_ops = {
666	metaslab_pp_load,
667	metaslab_pp_unload,
668	metaslab_ff_alloc,
669	metaslab_pp_claim,
670	metaslab_pp_free,
671	metaslab_pp_maxsize,
672	metaslab_ff_fragmented
673};
674
675/*
676 * ==========================================================================
677 * Dynamic block allocator -
678 * Uses the first fit allocation scheme until space get low and then
679 * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold
680 * and metaslab_df_free_pct to determine when to switch the allocation scheme.
681 * ==========================================================================
682 */
683static uint64_t
684metaslab_df_alloc(space_map_t *sm, uint64_t size)
685{
686	avl_tree_t *t = &sm->sm_root;
687	uint64_t align = size & -size;
688	uint64_t *cursor = (uint64_t *)sm->sm_ppd + highbit(align) - 1;
689	uint64_t max_size = metaslab_pp_maxsize(sm);
690	int free_pct = sm->sm_space * 100 / sm->sm_size;
691
692	ASSERT(MUTEX_HELD(sm->sm_lock));
693	ASSERT3U(avl_numnodes(&sm->sm_root), ==, avl_numnodes(sm->sm_pp_root));
694
695	if (max_size < size)
696		return (-1ULL);
697
698	/*
699	 * If we're running low on space switch to using the size
700	 * sorted AVL tree (best-fit).
701	 */
702	if (max_size < metaslab_df_alloc_threshold ||
703	    free_pct < metaslab_df_free_pct) {
704		t = sm->sm_pp_root;
705		*cursor = 0;
706	}
707
708	return (metaslab_block_picker(t, cursor, size, 1ULL));
709}
710
711static boolean_t
712metaslab_df_fragmented(space_map_t *sm)
713{
714	uint64_t max_size = metaslab_pp_maxsize(sm);
715	int free_pct = sm->sm_space * 100 / sm->sm_size;
716
717	if (max_size >= metaslab_df_alloc_threshold &&
718	    free_pct >= metaslab_df_free_pct)
719		return (B_FALSE);
720
721	return (B_TRUE);
722}
723
724static space_map_ops_t metaslab_df_ops = {
725	metaslab_pp_load,
726	metaslab_pp_unload,
727	metaslab_df_alloc,
728	metaslab_pp_claim,
729	metaslab_pp_free,
730	metaslab_pp_maxsize,
731	metaslab_df_fragmented
732};
733
734/*
735 * ==========================================================================
736 * Other experimental allocators
737 * ==========================================================================
738 */
739static uint64_t
740metaslab_cdf_alloc(space_map_t *sm, uint64_t size)
741{
742	avl_tree_t *t = &sm->sm_root;
743	uint64_t *cursor = (uint64_t *)sm->sm_ppd;
744	uint64_t *extent_end = (uint64_t *)sm->sm_ppd + 1;
745	uint64_t max_size = metaslab_pp_maxsize(sm);
746	uint64_t rsize = size;
747	uint64_t offset = 0;
748
749	ASSERT(MUTEX_HELD(sm->sm_lock));
750	ASSERT3U(avl_numnodes(&sm->sm_root), ==, avl_numnodes(sm->sm_pp_root));
751
752	if (max_size < size)
753		return (-1ULL);
754
755	ASSERT3U(*extent_end, >=, *cursor);
756
757	/*
758	 * If we're running low on space switch to using the size
759	 * sorted AVL tree (best-fit).
760	 */
761	if ((*cursor + size) > *extent_end) {
762
763		t = sm->sm_pp_root;
764		*cursor = *extent_end = 0;
765
766		if (max_size > 2 * SPA_MAXBLOCKSIZE)
767			rsize = MIN(metaslab_min_alloc_size, max_size);
768		offset = metaslab_block_picker(t, extent_end, rsize, 1ULL);
769		if (offset != -1)
770			*cursor = offset + size;
771	} else {
772		offset = metaslab_block_picker(t, cursor, rsize, 1ULL);
773	}
774	ASSERT3U(*cursor, <=, *extent_end);
775	return (offset);
776}
777
778static boolean_t
779metaslab_cdf_fragmented(space_map_t *sm)
780{
781	uint64_t max_size = metaslab_pp_maxsize(sm);
782
783	if (max_size > (metaslab_min_alloc_size * 10))
784		return (B_FALSE);
785	return (B_TRUE);
786}
787
788static space_map_ops_t metaslab_cdf_ops = {
789	metaslab_pp_load,
790	metaslab_pp_unload,
791	metaslab_cdf_alloc,
792	metaslab_pp_claim,
793	metaslab_pp_free,
794	metaslab_pp_maxsize,
795	metaslab_cdf_fragmented
796};
797
798uint64_t metaslab_ndf_clump_shift = 4;
799
800static uint64_t
801metaslab_ndf_alloc(space_map_t *sm, uint64_t size)
802{
803	avl_tree_t *t = &sm->sm_root;
804	avl_index_t where;
805	space_seg_t *ss, ssearch;
806	uint64_t hbit = highbit(size);
807	uint64_t *cursor = (uint64_t *)sm->sm_ppd + hbit - 1;
808	uint64_t max_size = metaslab_pp_maxsize(sm);
809
810	ASSERT(MUTEX_HELD(sm->sm_lock));
811	ASSERT3U(avl_numnodes(&sm->sm_root), ==, avl_numnodes(sm->sm_pp_root));
812
813	if (max_size < size)
814		return (-1ULL);
815
816	ssearch.ss_start = *cursor;
817	ssearch.ss_end = *cursor + size;
818
819	ss = avl_find(t, &ssearch, &where);
820	if (ss == NULL || (ss->ss_start + size > ss->ss_end)) {
821		t = sm->sm_pp_root;
822
823		ssearch.ss_start = 0;
824		ssearch.ss_end = MIN(max_size,
825		    1ULL << (hbit + metaslab_ndf_clump_shift));
826		ss = avl_find(t, &ssearch, &where);
827		if (ss == NULL)
828			ss = avl_nearest(t, where, AVL_AFTER);
829		ASSERT(ss != NULL);
830	}
831
832	if (ss != NULL) {
833		if (ss->ss_start + size <= ss->ss_end) {
834			*cursor = ss->ss_start + size;
835			return (ss->ss_start);
836		}
837	}
838	return (-1ULL);
839}
840
841static boolean_t
842metaslab_ndf_fragmented(space_map_t *sm)
843{
844	uint64_t max_size = metaslab_pp_maxsize(sm);
845
846	if (max_size > (metaslab_min_alloc_size << metaslab_ndf_clump_shift))
847		return (B_FALSE);
848	return (B_TRUE);
849}
850
851
852static space_map_ops_t metaslab_ndf_ops = {
853	metaslab_pp_load,
854	metaslab_pp_unload,
855	metaslab_ndf_alloc,
856	metaslab_pp_claim,
857	metaslab_pp_free,
858	metaslab_pp_maxsize,
859	metaslab_ndf_fragmented
860};
861
862space_map_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
863
864/*
865 * ==========================================================================
866 * Metaslabs
867 * ==========================================================================
868 */
869metaslab_t *
870metaslab_init(metaslab_group_t *mg, space_map_obj_t *smo,
871	uint64_t start, uint64_t size, uint64_t txg)
872{
873	vdev_t *vd = mg->mg_vd;
874	metaslab_t *msp;
875
876	msp = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
877	mutex_init(&msp->ms_lock, NULL, MUTEX_DEFAULT, NULL);
878
879	msp->ms_smo_syncing = *smo;
880
881	/*
882	 * We create the main space map here, but we don't create the
883	 * allocmaps and freemaps until metaslab_sync_done().  This serves
884	 * two purposes: it allows metaslab_sync_done() to detect the
885	 * addition of new space; and for debugging, it ensures that we'd
886	 * data fault on any attempt to use this metaslab before it's ready.
887	 */
888	msp->ms_map = kmem_zalloc(sizeof (space_map_t), KM_SLEEP);
889	space_map_create(msp->ms_map, start, size,
890	    vd->vdev_ashift, &msp->ms_lock);
891
892	metaslab_group_add(mg, msp);
893
894	if (metaslab_debug && smo->smo_object != 0) {
895		mutex_enter(&msp->ms_lock);
896		VERIFY(space_map_load(msp->ms_map, mg->mg_class->mc_ops,
897		    SM_FREE, smo, spa_meta_objset(vd->vdev_spa)) == 0);
898		mutex_exit(&msp->ms_lock);
899	}
900
901	/*
902	 * If we're opening an existing pool (txg == 0) or creating
903	 * a new one (txg == TXG_INITIAL), all space is available now.
904	 * If we're adding space to an existing pool, the new space
905	 * does not become available until after this txg has synced.
906	 */
907	if (txg <= TXG_INITIAL)
908		metaslab_sync_done(msp, 0);
909
910	if (txg != 0) {
911		vdev_dirty(vd, 0, NULL, txg);
912		vdev_dirty(vd, VDD_METASLAB, msp, txg);
913	}
914
915	return (msp);
916}
917
918void
919metaslab_fini(metaslab_t *msp)
920{
921	metaslab_group_t *mg = msp->ms_group;
922
923	vdev_space_update(mg->mg_vd,
924	    -msp->ms_smo.smo_alloc, 0, -msp->ms_map->sm_size);
925
926	metaslab_group_remove(mg, msp);
927
928	mutex_enter(&msp->ms_lock);
929
930	space_map_unload(msp->ms_map);
931	space_map_destroy(msp->ms_map);
932	kmem_free(msp->ms_map, sizeof (*msp->ms_map));
933
934	for (int t = 0; t < TXG_SIZE; t++) {
935		space_map_destroy(msp->ms_allocmap[t]);
936		space_map_destroy(msp->ms_freemap[t]);
937		kmem_free(msp->ms_allocmap[t], sizeof (*msp->ms_allocmap[t]));
938		kmem_free(msp->ms_freemap[t], sizeof (*msp->ms_freemap[t]));
939	}
940
941	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
942		space_map_destroy(msp->ms_defermap[t]);
943		kmem_free(msp->ms_defermap[t], sizeof (*msp->ms_defermap[t]));
944	}
945
946	ASSERT0(msp->ms_deferspace);
947
948	mutex_exit(&msp->ms_lock);
949	mutex_destroy(&msp->ms_lock);
950
951	kmem_free(msp, sizeof (metaslab_t));
952}
953
954#define	METASLAB_WEIGHT_PRIMARY		(1ULL << 63)
955#define	METASLAB_WEIGHT_SECONDARY	(1ULL << 62)
956#define	METASLAB_ACTIVE_MASK		\
957	(METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY)
958
959static uint64_t
960metaslab_weight(metaslab_t *msp)
961{
962	metaslab_group_t *mg = msp->ms_group;
963	space_map_t *sm = msp->ms_map;
964	space_map_obj_t *smo = &msp->ms_smo;
965	vdev_t *vd = mg->mg_vd;
966	uint64_t weight, space;
967
968	ASSERT(MUTEX_HELD(&msp->ms_lock));
969
970	/*
971	 * This vdev is in the process of being removed so there is nothing
972	 * for us to do here.
973	 */
974	if (vd->vdev_removing) {
975		ASSERT0(smo->smo_alloc);
976		ASSERT0(vd->vdev_ms_shift);
977		return (0);
978	}
979
980	/*
981	 * The baseline weight is the metaslab's free space.
982	 */
983	space = sm->sm_size - smo->smo_alloc;
984	weight = space;
985
986	/*
987	 * Modern disks have uniform bit density and constant angular velocity.
988	 * Therefore, the outer recording zones are faster (higher bandwidth)
989	 * than the inner zones by the ratio of outer to inner track diameter,
990	 * which is typically around 2:1.  We account for this by assigning
991	 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
992	 * In effect, this means that we'll select the metaslab with the most
993	 * free bandwidth rather than simply the one with the most free space.
994	 */
995	weight = 2 * weight -
996	    ((sm->sm_start >> vd->vdev_ms_shift) * weight) / vd->vdev_ms_count;
997	ASSERT(weight >= space && weight <= 2 * space);
998
999	/*
1000	 * For locality, assign higher weight to metaslabs which have
1001	 * a lower offset than what we've already activated.
1002	 */
1003	if (sm->sm_start <= mg->mg_bonus_area)
1004		weight *= (metaslab_smo_bonus_pct / 100);
1005	ASSERT(weight >= space &&
1006	    weight <= 2 * (metaslab_smo_bonus_pct / 100) * space);
1007
1008	if (sm->sm_loaded && !sm->sm_ops->smop_fragmented(sm)) {
1009		/*
1010		 * If this metaslab is one we're actively using, adjust its
1011		 * weight to make it preferable to any inactive metaslab so
1012		 * we'll polish it off.
1013		 */
1014		weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
1015	}
1016	return (weight);
1017}
1018
1019static void
1020metaslab_prefetch(metaslab_group_t *mg)
1021{
1022	spa_t *spa = mg->mg_vd->vdev_spa;
1023	metaslab_t *msp;
1024	avl_tree_t *t = &mg->mg_metaslab_tree;
1025	int m;
1026
1027	mutex_enter(&mg->mg_lock);
1028
1029	/*
1030	 * Prefetch the next potential metaslabs
1031	 */
1032	for (msp = avl_first(t), m = 0; msp; msp = AVL_NEXT(t, msp), m++) {
1033		space_map_t *sm = msp->ms_map;
1034		space_map_obj_t *smo = &msp->ms_smo;
1035
1036		/* If we have reached our prefetch limit then we're done */
1037		if (m >= metaslab_prefetch_limit)
1038			break;
1039
1040		if (!sm->sm_loaded && smo->smo_object != 0) {
1041			mutex_exit(&mg->mg_lock);
1042			dmu_prefetch(spa_meta_objset(spa), smo->smo_object,
1043			    0ULL, smo->smo_objsize);
1044			mutex_enter(&mg->mg_lock);
1045		}
1046	}
1047	mutex_exit(&mg->mg_lock);
1048}
1049
1050static int
1051metaslab_activate(metaslab_t *msp, uint64_t activation_weight)
1052{
1053	metaslab_group_t *mg = msp->ms_group;
1054	space_map_t *sm = msp->ms_map;
1055	space_map_ops_t *sm_ops = msp->ms_group->mg_class->mc_ops;
1056
1057	ASSERT(MUTEX_HELD(&msp->ms_lock));
1058
1059	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
1060		space_map_load_wait(sm);
1061		if (!sm->sm_loaded) {
1062			space_map_obj_t *smo = &msp->ms_smo;
1063
1064			int error = space_map_load(sm, sm_ops, SM_FREE, smo,
1065			    spa_meta_objset(msp->ms_group->mg_vd->vdev_spa));
1066			if (error)  {
1067				metaslab_group_sort(msp->ms_group, msp, 0);
1068				return (error);
1069			}
1070			for (int t = 0; t < TXG_DEFER_SIZE; t++)
1071				space_map_walk(msp->ms_defermap[t],
1072				    space_map_claim, sm);
1073
1074		}
1075
1076		/*
1077		 * Track the bonus area as we activate new metaslabs.
1078		 */
1079		if (sm->sm_start > mg->mg_bonus_area) {
1080			mutex_enter(&mg->mg_lock);
1081			mg->mg_bonus_area = sm->sm_start;
1082			mutex_exit(&mg->mg_lock);
1083		}
1084
1085		metaslab_group_sort(msp->ms_group, msp,
1086		    msp->ms_weight | activation_weight);
1087	}
1088	ASSERT(sm->sm_loaded);
1089	ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
1090
1091	return (0);
1092}
1093
1094static void
1095metaslab_passivate(metaslab_t *msp, uint64_t size)
1096{
1097	/*
1098	 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
1099	 * this metaslab again.  In that case, it had better be empty,
1100	 * or we would be leaving space on the table.
1101	 */
1102	ASSERT(size >= SPA_MINBLOCKSIZE || msp->ms_map->sm_space == 0);
1103	metaslab_group_sort(msp->ms_group, msp, MIN(msp->ms_weight, size));
1104	ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
1105}
1106
1107/*
1108 * Determine if the in-core space map representation can be condensed on-disk.
1109 * We would like to use the following criteria to make our decision:
1110 *
1111 * 1. The size of the space map object should not dramatically increase as a
1112 * result of writing out our in-core free map.
1113 *
1114 * 2. The minimal on-disk space map representation is zfs_condense_pct/100
1115 * times the size than the in-core representation (i.e. zfs_condense_pct = 110
1116 * and in-core = 1MB, minimal = 1.1.MB).
1117 *
1118 * Checking the first condition is tricky since we don't want to walk
1119 * the entire AVL tree calculating the estimated on-disk size. Instead we
1120 * use the size-ordered AVL tree in the space map and calculate the
1121 * size required for the largest segment in our in-core free map. If the
1122 * size required to represent that segment on disk is larger than the space
1123 * map object then we avoid condensing this map.
1124 *
1125 * To determine the second criterion we use a best-case estimate and assume
1126 * each segment can be represented on-disk as a single 64-bit entry. We refer
1127 * to this best-case estimate as the space map's minimal form.
1128 */
1129static boolean_t
1130metaslab_should_condense(metaslab_t *msp)
1131{
1132	space_map_t *sm = msp->ms_map;
1133	space_map_obj_t *smo = &msp->ms_smo_syncing;
1134	space_seg_t *ss;
1135	uint64_t size, entries, segsz;
1136
1137	ASSERT(MUTEX_HELD(&msp->ms_lock));
1138	ASSERT(sm->sm_loaded);
1139
1140	/*
1141	 * Use the sm_pp_root AVL tree, which is ordered by size, to obtain
1142	 * the largest segment in the in-core free map. If the tree is
1143	 * empty then we should condense the map.
1144	 */
1145	ss = avl_last(sm->sm_pp_root);
1146	if (ss == NULL)
1147		return (B_TRUE);
1148
1149	/*
1150	 * Calculate the number of 64-bit entries this segment would
1151	 * require when written to disk. If this single segment would be
1152	 * larger on-disk than the entire current on-disk structure, then
1153	 * clearly condensing will increase the on-disk structure size.
1154	 */
1155	size = (ss->ss_end - ss->ss_start) >> sm->sm_shift;
1156	entries = size / (MIN(size, SM_RUN_MAX));
1157	segsz = entries * sizeof (uint64_t);
1158
1159	return (segsz <= smo->smo_objsize &&
1160	    smo->smo_objsize >= (zfs_condense_pct *
1161	    sizeof (uint64_t) * avl_numnodes(&sm->sm_root)) / 100);
1162}
1163
1164/*
1165 * Condense the on-disk space map representation to its minimized form.
1166 * The minimized form consists of a small number of allocations followed by
1167 * the in-core free map.
1168 */
1169static void
1170metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx)
1171{
1172	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1173	space_map_t *freemap = msp->ms_freemap[txg & TXG_MASK];
1174	space_map_t condense_map;
1175	space_map_t *sm = msp->ms_map;
1176	objset_t *mos = spa_meta_objset(spa);
1177	space_map_obj_t *smo = &msp->ms_smo_syncing;
1178
1179	ASSERT(MUTEX_HELD(&msp->ms_lock));
1180	ASSERT3U(spa_sync_pass(spa), ==, 1);
1181	ASSERT(sm->sm_loaded);
1182
1183	spa_dbgmsg(spa, "condensing: txg %llu, msp[%llu] %p, "
1184	    "smo size %llu, segments %lu", txg,
1185	    (msp->ms_map->sm_start / msp->ms_map->sm_size), msp,
1186	    smo->smo_objsize, avl_numnodes(&sm->sm_root));
1187
1188	/*
1189	 * Create an map that is a 100% allocated map. We remove segments
1190	 * that have been freed in this txg, any deferred frees that exist,
1191	 * and any allocation in the future. Removing segments should be
1192	 * a relatively inexpensive operation since we expect these maps to
1193	 * a small number of nodes.
1194	 */
1195	space_map_create(&condense_map, sm->sm_start, sm->sm_size,
1196	    sm->sm_shift, sm->sm_lock);
1197	space_map_add(&condense_map, condense_map.sm_start,
1198	    condense_map.sm_size);
1199
1200	/*
1201	 * Remove what's been freed in this txg from the condense_map.
1202	 * Since we're in sync_pass 1, we know that all the frees from
1203	 * this txg are in the freemap.
1204	 */
1205	space_map_walk(freemap, space_map_remove, &condense_map);
1206
1207	for (int t = 0; t < TXG_DEFER_SIZE; t++)
1208		space_map_walk(msp->ms_defermap[t],
1209		    space_map_remove, &condense_map);
1210
1211	for (int t = 1; t < TXG_CONCURRENT_STATES; t++)
1212		space_map_walk(msp->ms_allocmap[(txg + t) & TXG_MASK],
1213		    space_map_remove, &condense_map);
1214
1215	/*
1216	 * We're about to drop the metaslab's lock thus allowing
1217	 * other consumers to change it's content. Set the
1218	 * space_map's sm_condensing flag to ensure that
1219	 * allocations on this metaslab do not occur while we're
1220	 * in the middle of committing it to disk. This is only critical
1221	 * for the ms_map as all other space_maps use per txg
1222	 * views of their content.
1223	 */
1224	sm->sm_condensing = B_TRUE;
1225
1226	mutex_exit(&msp->ms_lock);
1227	space_map_truncate(smo, mos, tx);
1228	mutex_enter(&msp->ms_lock);
1229
1230	/*
1231	 * While we would ideally like to create a space_map representation
1232	 * that consists only of allocation records, doing so can be
1233	 * prohibitively expensive because the in-core free map can be
1234	 * large, and therefore computationally expensive to subtract
1235	 * from the condense_map. Instead we sync out two maps, a cheap
1236	 * allocation only map followed by the in-core free map. While not
1237	 * optimal, this is typically close to optimal, and much cheaper to
1238	 * compute.
1239	 */
1240	space_map_sync(&condense_map, SM_ALLOC, smo, mos, tx);
1241	space_map_vacate(&condense_map, NULL, NULL);
1242	space_map_destroy(&condense_map);
1243
1244	space_map_sync(sm, SM_FREE, smo, mos, tx);
1245	sm->sm_condensing = B_FALSE;
1246
1247	spa_dbgmsg(spa, "condensed: txg %llu, msp[%llu] %p, "
1248	    "smo size %llu", txg,
1249	    (msp->ms_map->sm_start / msp->ms_map->sm_size), msp,
1250	    smo->smo_objsize);
1251}
1252
1253/*
1254 * Write a metaslab to disk in the context of the specified transaction group.
1255 */
1256void
1257metaslab_sync(metaslab_t *msp, uint64_t txg)
1258{
1259	vdev_t *vd = msp->ms_group->mg_vd;
1260	spa_t *spa = vd->vdev_spa;
1261	objset_t *mos = spa_meta_objset(spa);
1262	space_map_t *allocmap = msp->ms_allocmap[txg & TXG_MASK];
1263	space_map_t **freemap = &msp->ms_freemap[txg & TXG_MASK];
1264	space_map_t **freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK];
1265	space_map_t *sm = msp->ms_map;
1266	space_map_obj_t *smo = &msp->ms_smo_syncing;
1267	dmu_buf_t *db;
1268	dmu_tx_t *tx;
1269
1270	ASSERT(!vd->vdev_ishole);
1271
1272	/*
1273	 * This metaslab has just been added so there's no work to do now.
1274	 */
1275	if (*freemap == NULL) {
1276		ASSERT3P(allocmap, ==, NULL);
1277		return;
1278	}
1279
1280	ASSERT3P(allocmap, !=, NULL);
1281	ASSERT3P(*freemap, !=, NULL);
1282	ASSERT3P(*freed_map, !=, NULL);
1283
1284	if (allocmap->sm_space == 0 && (*freemap)->sm_space == 0)
1285		return;
1286
1287	/*
1288	 * The only state that can actually be changing concurrently with
1289	 * metaslab_sync() is the metaslab's ms_map.  No other thread can
1290	 * be modifying this txg's allocmap, freemap, freed_map, or smo.
1291	 * Therefore, we only hold ms_lock to satify space_map ASSERTs.
1292	 * We drop it whenever we call into the DMU, because the DMU
1293	 * can call down to us (e.g. via zio_free()) at any time.
1294	 */
1295
1296	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
1297
1298	if (smo->smo_object == 0) {
1299		ASSERT(smo->smo_objsize == 0);
1300		ASSERT(smo->smo_alloc == 0);
1301		smo->smo_object = dmu_object_alloc(mos,
1302		    DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1303		    DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1304		ASSERT(smo->smo_object != 0);
1305		dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
1306		    (sm->sm_start >> vd->vdev_ms_shift),
1307		    sizeof (uint64_t), &smo->smo_object, tx);
1308	}
1309
1310	mutex_enter(&msp->ms_lock);
1311
1312	if (sm->sm_loaded && spa_sync_pass(spa) == 1 &&
1313	    metaslab_should_condense(msp)) {
1314		metaslab_condense(msp, txg, tx);
1315	} else {
1316		space_map_sync(allocmap, SM_ALLOC, smo, mos, tx);
1317		space_map_sync(*freemap, SM_FREE, smo, mos, tx);
1318	}
1319
1320	space_map_vacate(allocmap, NULL, NULL);
1321
1322	/*
1323	 * For sync pass 1, we avoid walking the entire space map and
1324	 * instead will just swap the pointers for freemap and
1325	 * freed_map. We can safely do this since the freed_map is
1326	 * guaranteed to be empty on the initial pass.
1327	 */
1328	if (spa_sync_pass(spa) == 1) {
1329		ASSERT0((*freed_map)->sm_space);
1330		ASSERT0(avl_numnodes(&(*freed_map)->sm_root));
1331		space_map_swap(freemap, freed_map);
1332	} else {
1333		space_map_vacate(*freemap, space_map_add, *freed_map);
1334	}
1335
1336	ASSERT0(msp->ms_allocmap[txg & TXG_MASK]->sm_space);
1337	ASSERT0(msp->ms_freemap[txg & TXG_MASK]->sm_space);
1338
1339	mutex_exit(&msp->ms_lock);
1340
1341	VERIFY0(dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1342	dmu_buf_will_dirty(db, tx);
1343	ASSERT3U(db->db_size, >=, sizeof (*smo));
1344	bcopy(smo, db->db_data, sizeof (*smo));
1345	dmu_buf_rele(db, FTAG);
1346
1347	dmu_tx_commit(tx);
1348}
1349
1350/*
1351 * Called after a transaction group has completely synced to mark
1352 * all of the metaslab's free space as usable.
1353 */
1354void
1355metaslab_sync_done(metaslab_t *msp, uint64_t txg)
1356{
1357	space_map_obj_t *smo = &msp->ms_smo;
1358	space_map_obj_t *smosync = &msp->ms_smo_syncing;
1359	space_map_t *sm = msp->ms_map;
1360	space_map_t **freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK];
1361	space_map_t **defer_map = &msp->ms_defermap[txg % TXG_DEFER_SIZE];
1362	metaslab_group_t *mg = msp->ms_group;
1363	vdev_t *vd = mg->mg_vd;
1364	int64_t alloc_delta, defer_delta;
1365
1366	ASSERT(!vd->vdev_ishole);
1367
1368	mutex_enter(&msp->ms_lock);
1369
1370	/*
1371	 * If this metaslab is just becoming available, initialize its
1372	 * allocmaps, freemaps, and defermap and add its capacity to the vdev.
1373	 */
1374	if (*freed_map == NULL) {
1375		ASSERT(*defer_map == NULL);
1376		for (int t = 0; t < TXG_SIZE; t++) {
1377			msp->ms_allocmap[t] = kmem_zalloc(sizeof (space_map_t),
1378			    KM_SLEEP);
1379			space_map_create(msp->ms_allocmap[t], sm->sm_start,
1380			    sm->sm_size, sm->sm_shift, sm->sm_lock);
1381			msp->ms_freemap[t] = kmem_zalloc(sizeof (space_map_t),
1382			    KM_SLEEP);
1383			space_map_create(msp->ms_freemap[t], sm->sm_start,
1384			    sm->sm_size, sm->sm_shift, sm->sm_lock);
1385		}
1386
1387		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1388			msp->ms_defermap[t] = kmem_zalloc(sizeof (space_map_t),
1389			    KM_SLEEP);
1390			space_map_create(msp->ms_defermap[t], sm->sm_start,
1391			    sm->sm_size, sm->sm_shift, sm->sm_lock);
1392		}
1393
1394		freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK];
1395		defer_map = &msp->ms_defermap[txg % TXG_DEFER_SIZE];
1396
1397		vdev_space_update(vd, 0, 0, sm->sm_size);
1398	}
1399
1400	alloc_delta = smosync->smo_alloc - smo->smo_alloc;
1401	defer_delta = (*freed_map)->sm_space - (*defer_map)->sm_space;
1402
1403	vdev_space_update(vd, alloc_delta + defer_delta, defer_delta, 0);
1404
1405	ASSERT(msp->ms_allocmap[txg & TXG_MASK]->sm_space == 0);
1406	ASSERT(msp->ms_freemap[txg & TXG_MASK]->sm_space == 0);
1407
1408	/*
1409	 * If there's a space_map_load() in progress, wait for it to complete
1410	 * so that we have a consistent view of the in-core space map.
1411	 */
1412	space_map_load_wait(sm);
1413
1414	/*
1415	 * Move the frees from the defer_map to this map (if it's loaded).
1416	 * Swap the freed_map and the defer_map -- this is safe to do
1417	 * because we've just emptied out the defer_map.
1418	 */
1419	space_map_vacate(*defer_map, sm->sm_loaded ? space_map_free : NULL, sm);
1420	ASSERT0((*defer_map)->sm_space);
1421	ASSERT0(avl_numnodes(&(*defer_map)->sm_root));
1422	space_map_swap(freed_map, defer_map);
1423
1424	*smo = *smosync;
1425
1426	msp->ms_deferspace += defer_delta;
1427	ASSERT3S(msp->ms_deferspace, >=, 0);
1428	ASSERT3S(msp->ms_deferspace, <=, sm->sm_size);
1429	if (msp->ms_deferspace != 0) {
1430		/*
1431		 * Keep syncing this metaslab until all deferred frees
1432		 * are back in circulation.
1433		 */
1434		vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
1435	}
1436
1437	/*
1438	 * If the map is loaded but no longer active, evict it as soon as all
1439	 * future allocations have synced.  (If we unloaded it now and then
1440	 * loaded a moment later, the map wouldn't reflect those allocations.)
1441	 */
1442	if (sm->sm_loaded && (msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
1443		int evictable = 1;
1444
1445		for (int t = 1; t < TXG_CONCURRENT_STATES; t++)
1446			if (msp->ms_allocmap[(txg + t) & TXG_MASK]->sm_space)
1447				evictable = 0;
1448
1449		if (evictable && !metaslab_debug)
1450			space_map_unload(sm);
1451	}
1452
1453	metaslab_group_sort(mg, msp, metaslab_weight(msp));
1454
1455	mutex_exit(&msp->ms_lock);
1456}
1457
1458void
1459metaslab_sync_reassess(metaslab_group_t *mg)
1460{
1461	vdev_t *vd = mg->mg_vd;
1462	int64_t failures = mg->mg_alloc_failures;
1463
1464	metaslab_group_alloc_update(mg);
1465
1466	/*
1467	 * Re-evaluate all metaslabs which have lower offsets than the
1468	 * bonus area.
1469	 */
1470	for (int m = 0; m < vd->vdev_ms_count; m++) {
1471		metaslab_t *msp = vd->vdev_ms[m];
1472
1473		if (msp->ms_map->sm_start > mg->mg_bonus_area)
1474			break;
1475
1476		mutex_enter(&msp->ms_lock);
1477		metaslab_group_sort(mg, msp, metaslab_weight(msp));
1478		mutex_exit(&msp->ms_lock);
1479	}
1480
1481	atomic_add_64(&mg->mg_alloc_failures, -failures);
1482
1483	/*
1484	 * Prefetch the next potential metaslabs
1485	 */
1486	metaslab_prefetch(mg);
1487}
1488
1489static uint64_t
1490metaslab_distance(metaslab_t *msp, dva_t *dva)
1491{
1492	uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift;
1493	uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift;
1494	uint64_t start = msp->ms_map->sm_start >> ms_shift;
1495
1496	if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
1497		return (1ULL << 63);
1498
1499	if (offset < start)
1500		return ((start - offset) << ms_shift);
1501	if (offset > start)
1502		return ((offset - start) << ms_shift);
1503	return (0);
1504}
1505
1506static uint64_t
1507metaslab_group_alloc(metaslab_group_t *mg, uint64_t psize, uint64_t asize,
1508    uint64_t txg, uint64_t min_distance, dva_t *dva, int d, int flags)
1509{
1510	spa_t *spa = mg->mg_vd->vdev_spa;
1511	metaslab_t *msp = NULL;
1512	uint64_t offset = -1ULL;
1513	avl_tree_t *t = &mg->mg_metaslab_tree;
1514	uint64_t activation_weight;
1515	uint64_t target_distance;
1516	int i;
1517
1518	activation_weight = METASLAB_WEIGHT_PRIMARY;
1519	for (i = 0; i < d; i++) {
1520		if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
1521			activation_weight = METASLAB_WEIGHT_SECONDARY;
1522			break;
1523		}
1524	}
1525
1526	for (;;) {
1527		boolean_t was_active;
1528
1529		mutex_enter(&mg->mg_lock);
1530		for (msp = avl_first(t); msp; msp = AVL_NEXT(t, msp)) {
1531			if (msp->ms_weight < asize) {
1532				spa_dbgmsg(spa, "%s: failed to meet weight "
1533				    "requirement: vdev %llu, txg %llu, mg %p, "
1534				    "msp %p, psize %llu, asize %llu, "
1535				    "failures %llu, weight %llu",
1536				    spa_name(spa), mg->mg_vd->vdev_id, txg,
1537				    mg, msp, psize, asize,
1538				    mg->mg_alloc_failures, msp->ms_weight);
1539				mutex_exit(&mg->mg_lock);
1540				return (-1ULL);
1541			}
1542
1543			/*
1544			 * If the selected metaslab is condensing, skip it.
1545			 */
1546			if (msp->ms_map->sm_condensing)
1547				continue;
1548
1549			was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
1550			if (activation_weight == METASLAB_WEIGHT_PRIMARY)
1551				break;
1552
1553			target_distance = min_distance +
1554			    (msp->ms_smo.smo_alloc ? 0 : min_distance >> 1);
1555
1556			for (i = 0; i < d; i++)
1557				if (metaslab_distance(msp, &dva[i]) <
1558				    target_distance)
1559					break;
1560			if (i == d)
1561				break;
1562		}
1563		mutex_exit(&mg->mg_lock);
1564		if (msp == NULL)
1565			return (-1ULL);
1566
1567		mutex_enter(&msp->ms_lock);
1568
1569		/*
1570		 * If we've already reached the allowable number of failed
1571		 * allocation attempts on this metaslab group then we
1572		 * consider skipping it. We skip it only if we're allowed
1573		 * to "fast" gang, the physical size is larger than
1574		 * a gang block, and we're attempting to allocate from
1575		 * the primary metaslab.
1576		 */
1577		if (mg->mg_alloc_failures > zfs_mg_alloc_failures &&
1578		    CAN_FASTGANG(flags) && psize > SPA_GANGBLOCKSIZE &&
1579		    activation_weight == METASLAB_WEIGHT_PRIMARY) {
1580			spa_dbgmsg(spa, "%s: skipping metaslab group: "
1581			    "vdev %llu, txg %llu, mg %p, psize %llu, "
1582			    "asize %llu, failures %llu", spa_name(spa),
1583			    mg->mg_vd->vdev_id, txg, mg, psize, asize,
1584			    mg->mg_alloc_failures);
1585			mutex_exit(&msp->ms_lock);
1586			return (-1ULL);
1587		}
1588
1589		/*
1590		 * Ensure that the metaslab we have selected is still
1591		 * capable of handling our request. It's possible that
1592		 * another thread may have changed the weight while we
1593		 * were blocked on the metaslab lock.
1594		 */
1595		if (msp->ms_weight < asize || (was_active &&
1596		    !(msp->ms_weight & METASLAB_ACTIVE_MASK) &&
1597		    activation_weight == METASLAB_WEIGHT_PRIMARY)) {
1598			mutex_exit(&msp->ms_lock);
1599			continue;
1600		}
1601
1602		if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) &&
1603		    activation_weight == METASLAB_WEIGHT_PRIMARY) {
1604			metaslab_passivate(msp,
1605			    msp->ms_weight & ~METASLAB_ACTIVE_MASK);
1606			mutex_exit(&msp->ms_lock);
1607			continue;
1608		}
1609
1610		if (metaslab_activate(msp, activation_weight) != 0) {
1611			mutex_exit(&msp->ms_lock);
1612			continue;
1613		}
1614
1615		/*
1616		 * If this metaslab is currently condensing then pick again as
1617		 * we can't manipulate this metaslab until it's committed
1618		 * to disk.
1619		 */
1620		if (msp->ms_map->sm_condensing) {
1621			mutex_exit(&msp->ms_lock);
1622			continue;
1623		}
1624
1625		if ((offset = space_map_alloc(msp->ms_map, asize)) != -1ULL)
1626			break;
1627
1628		atomic_inc_64(&mg->mg_alloc_failures);
1629
1630		metaslab_passivate(msp, space_map_maxsize(msp->ms_map));
1631
1632		mutex_exit(&msp->ms_lock);
1633	}
1634
1635	if (msp->ms_allocmap[txg & TXG_MASK]->sm_space == 0)
1636		vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
1637
1638	space_map_add(msp->ms_allocmap[txg & TXG_MASK], offset, asize);
1639
1640	mutex_exit(&msp->ms_lock);
1641
1642	return (offset);
1643}
1644
1645/*
1646 * Allocate a block for the specified i/o.
1647 */
1648static int
1649metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
1650    dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags)
1651{
1652	metaslab_group_t *mg, *rotor;
1653	vdev_t *vd;
1654	int dshift = 3;
1655	int all_zero;
1656	int zio_lock = B_FALSE;
1657	boolean_t allocatable;
1658	uint64_t offset = -1ULL;
1659	uint64_t asize;
1660	uint64_t distance;
1661
1662	ASSERT(!DVA_IS_VALID(&dva[d]));
1663
1664	/*
1665	 * For testing, make some blocks above a certain size be gang blocks.
1666	 */
1667	if (psize >= metaslab_gang_bang && (ddi_get_lbolt() & 3) == 0)
1668		return (SET_ERROR(ENOSPC));
1669
1670	/*
1671	 * Start at the rotor and loop through all mgs until we find something.
1672	 * Note that there's no locking on mc_rotor or mc_aliquot because
1673	 * nothing actually breaks if we miss a few updates -- we just won't
1674	 * allocate quite as evenly.  It all balances out over time.
1675	 *
1676	 * If we are doing ditto or log blocks, try to spread them across
1677	 * consecutive vdevs.  If we're forced to reuse a vdev before we've
1678	 * allocated all of our ditto blocks, then try and spread them out on
1679	 * that vdev as much as possible.  If it turns out to not be possible,
1680	 * gradually lower our standards until anything becomes acceptable.
1681	 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
1682	 * gives us hope of containing our fault domains to something we're
1683	 * able to reason about.  Otherwise, any two top-level vdev failures
1684	 * will guarantee the loss of data.  With consecutive allocation,
1685	 * only two adjacent top-level vdev failures will result in data loss.
1686	 *
1687	 * If we are doing gang blocks (hintdva is non-NULL), try to keep
1688	 * ourselves on the same vdev as our gang block header.  That
1689	 * way, we can hope for locality in vdev_cache, plus it makes our
1690	 * fault domains something tractable.
1691	 */
1692	if (hintdva) {
1693		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
1694
1695		/*
1696		 * It's possible the vdev we're using as the hint no
1697		 * longer exists (i.e. removed). Consult the rotor when
1698		 * all else fails.
1699		 */
1700		if (vd != NULL) {
1701			mg = vd->vdev_mg;
1702
1703			if (flags & METASLAB_HINTBP_AVOID &&
1704			    mg->mg_next != NULL)
1705				mg = mg->mg_next;
1706		} else {
1707			mg = mc->mc_rotor;
1708		}
1709	} else if (d != 0) {
1710		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
1711		mg = vd->vdev_mg->mg_next;
1712	} else {
1713		mg = mc->mc_rotor;
1714	}
1715
1716	/*
1717	 * If the hint put us into the wrong metaslab class, or into a
1718	 * metaslab group that has been passivated, just follow the rotor.
1719	 */
1720	if (mg->mg_class != mc || mg->mg_activation_count <= 0)
1721		mg = mc->mc_rotor;
1722
1723	rotor = mg;
1724top:
1725	all_zero = B_TRUE;
1726	do {
1727		ASSERT(mg->mg_activation_count == 1);
1728
1729		vd = mg->mg_vd;
1730
1731		/*
1732		 * Don't allocate from faulted devices.
1733		 */
1734		if (zio_lock) {
1735			spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
1736			allocatable = vdev_allocatable(vd);
1737			spa_config_exit(spa, SCL_ZIO, FTAG);
1738		} else {
1739			allocatable = vdev_allocatable(vd);
1740		}
1741
1742		/*
1743		 * Determine if the selected metaslab group is eligible
1744		 * for allocations. If we're ganging or have requested
1745		 * an allocation for the smallest gang block size
1746		 * then we don't want to avoid allocating to the this
1747		 * metaslab group. If we're in this condition we should
1748		 * try to allocate from any device possible so that we
1749		 * don't inadvertently return ENOSPC and suspend the pool
1750		 * even though space is still available.
1751		 */
1752		if (allocatable && CAN_FASTGANG(flags) &&
1753		    psize > SPA_GANGBLOCKSIZE)
1754			allocatable = metaslab_group_allocatable(mg);
1755
1756		if (!allocatable)
1757			goto next;
1758
1759		/*
1760		 * Avoid writing single-copy data to a failing vdev
1761		 * unless the user instructs us that it is okay.
1762		 */
1763		if ((vd->vdev_stat.vs_write_errors > 0 ||
1764		    vd->vdev_state < VDEV_STATE_HEALTHY) &&
1765		    d == 0 && dshift == 3 &&
1766		    !(zfs_write_to_degraded && vd->vdev_state ==
1767		    VDEV_STATE_DEGRADED)) {
1768			all_zero = B_FALSE;
1769			goto next;
1770		}
1771
1772		ASSERT(mg->mg_class == mc);
1773
1774		distance = vd->vdev_asize >> dshift;
1775		if (distance <= (1ULL << vd->vdev_ms_shift))
1776			distance = 0;
1777		else
1778			all_zero = B_FALSE;
1779
1780		asize = vdev_psize_to_asize(vd, psize);
1781		ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
1782
1783		offset = metaslab_group_alloc(mg, psize, asize, txg, distance,
1784		    dva, d, flags);
1785		if (offset != -1ULL) {
1786			/*
1787			 * If we've just selected this metaslab group,
1788			 * figure out whether the corresponding vdev is
1789			 * over- or under-used relative to the pool,
1790			 * and set an allocation bias to even it out.
1791			 */
1792			if (mc->mc_aliquot == 0) {
1793				vdev_stat_t *vs = &vd->vdev_stat;
1794				int64_t vu, cu;
1795
1796				vu = (vs->vs_alloc * 100) / (vs->vs_space + 1);
1797				cu = (mc->mc_alloc * 100) / (mc->mc_space + 1);
1798
1799				/*
1800				 * Calculate how much more or less we should
1801				 * try to allocate from this device during
1802				 * this iteration around the rotor.
1803				 * For example, if a device is 80% full
1804				 * and the pool is 20% full then we should
1805				 * reduce allocations by 60% on this device.
1806				 *
1807				 * mg_bias = (20 - 80) * 512K / 100 = -307K
1808				 *
1809				 * This reduces allocations by 307K for this
1810				 * iteration.
1811				 */
1812				mg->mg_bias = ((cu - vu) *
1813				    (int64_t)mg->mg_aliquot) / 100;
1814			}
1815
1816			if (atomic_add_64_nv(&mc->mc_aliquot, asize) >=
1817			    mg->mg_aliquot + mg->mg_bias) {
1818				mc->mc_rotor = mg->mg_next;
1819				mc->mc_aliquot = 0;
1820			}
1821
1822			DVA_SET_VDEV(&dva[d], vd->vdev_id);
1823			DVA_SET_OFFSET(&dva[d], offset);
1824			DVA_SET_GANG(&dva[d], !!(flags & METASLAB_GANG_HEADER));
1825			DVA_SET_ASIZE(&dva[d], asize);
1826
1827			return (0);
1828		}
1829next:
1830		mc->mc_rotor = mg->mg_next;
1831		mc->mc_aliquot = 0;
1832	} while ((mg = mg->mg_next) != rotor);
1833
1834	if (!all_zero) {
1835		dshift++;
1836		ASSERT(dshift < 64);
1837		goto top;
1838	}
1839
1840	if (!allocatable && !zio_lock) {
1841		dshift = 3;
1842		zio_lock = B_TRUE;
1843		goto top;
1844	}
1845
1846	bzero(&dva[d], sizeof (dva_t));
1847
1848	return (SET_ERROR(ENOSPC));
1849}
1850
1851/*
1852 * Free the block represented by DVA in the context of the specified
1853 * transaction group.
1854 */
1855static void
1856metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now)
1857{
1858	uint64_t vdev = DVA_GET_VDEV(dva);
1859	uint64_t offset = DVA_GET_OFFSET(dva);
1860	uint64_t size = DVA_GET_ASIZE(dva);
1861	vdev_t *vd;
1862	metaslab_t *msp;
1863
1864	ASSERT(DVA_IS_VALID(dva));
1865
1866	if (txg > spa_freeze_txg(spa))
1867		return;
1868
1869	if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
1870	    (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
1871		cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu",
1872		    (u_longlong_t)vdev, (u_longlong_t)offset);
1873		ASSERT(0);
1874		return;
1875	}
1876
1877	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
1878
1879	if (DVA_GET_GANG(dva))
1880		size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
1881
1882	mutex_enter(&msp->ms_lock);
1883
1884	if (now) {
1885		space_map_remove(msp->ms_allocmap[txg & TXG_MASK],
1886		    offset, size);
1887		space_map_free(msp->ms_map, offset, size);
1888	} else {
1889		if (msp->ms_freemap[txg & TXG_MASK]->sm_space == 0)
1890			vdev_dirty(vd, VDD_METASLAB, msp, txg);
1891		space_map_add(msp->ms_freemap[txg & TXG_MASK], offset, size);
1892	}
1893
1894	mutex_exit(&msp->ms_lock);
1895}
1896
1897/*
1898 * Intent log support: upon opening the pool after a crash, notify the SPA
1899 * of blocks that the intent log has allocated for immediate write, but
1900 * which are still considered free by the SPA because the last transaction
1901 * group didn't commit yet.
1902 */
1903static int
1904metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
1905{
1906	uint64_t vdev = DVA_GET_VDEV(dva);
1907	uint64_t offset = DVA_GET_OFFSET(dva);
1908	uint64_t size = DVA_GET_ASIZE(dva);
1909	vdev_t *vd;
1910	metaslab_t *msp;
1911	int error = 0;
1912
1913	ASSERT(DVA_IS_VALID(dva));
1914
1915	if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
1916	    (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count)
1917		return (SET_ERROR(ENXIO));
1918
1919	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
1920
1921	if (DVA_GET_GANG(dva))
1922		size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
1923
1924	mutex_enter(&msp->ms_lock);
1925
1926	if ((txg != 0 && spa_writeable(spa)) || !msp->ms_map->sm_loaded)
1927		error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY);
1928
1929	if (error == 0 && !space_map_contains(msp->ms_map, offset, size))
1930		error = SET_ERROR(ENOENT);
1931
1932	if (error || txg == 0) {	/* txg == 0 indicates dry run */
1933		mutex_exit(&msp->ms_lock);
1934		return (error);
1935	}
1936
1937	space_map_claim(msp->ms_map, offset, size);
1938
1939	if (spa_writeable(spa)) {	/* don't dirty if we're zdb(1M) */
1940		if (msp->ms_allocmap[txg & TXG_MASK]->sm_space == 0)
1941			vdev_dirty(vd, VDD_METASLAB, msp, txg);
1942		space_map_add(msp->ms_allocmap[txg & TXG_MASK], offset, size);
1943	}
1944
1945	mutex_exit(&msp->ms_lock);
1946
1947	return (0);
1948}
1949
1950int
1951metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
1952    int ndvas, uint64_t txg, blkptr_t *hintbp, int flags)
1953{
1954	dva_t *dva = bp->blk_dva;
1955	dva_t *hintdva = hintbp->blk_dva;
1956	int error = 0;
1957
1958	ASSERT(bp->blk_birth == 0);
1959	ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
1960
1961	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
1962
1963	if (mc->mc_rotor == NULL) {	/* no vdevs in this class */
1964		spa_config_exit(spa, SCL_ALLOC, FTAG);
1965		return (SET_ERROR(ENOSPC));
1966	}
1967
1968	ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
1969	ASSERT(BP_GET_NDVAS(bp) == 0);
1970	ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
1971
1972	for (int d = 0; d < ndvas; d++) {
1973		error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
1974		    txg, flags);
1975		if (error) {
1976			for (d--; d >= 0; d--) {
1977				metaslab_free_dva(spa, &dva[d], txg, B_TRUE);
1978				bzero(&dva[d], sizeof (dva_t));
1979			}
1980			spa_config_exit(spa, SCL_ALLOC, FTAG);
1981			return (error);
1982		}
1983	}
1984	ASSERT(error == 0);
1985	ASSERT(BP_GET_NDVAS(bp) == ndvas);
1986
1987	spa_config_exit(spa, SCL_ALLOC, FTAG);
1988
1989	BP_SET_BIRTH(bp, txg, txg);
1990
1991	return (0);
1992}
1993
1994void
1995metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
1996{
1997	const dva_t *dva = bp->blk_dva;
1998	int ndvas = BP_GET_NDVAS(bp);
1999
2000	ASSERT(!BP_IS_HOLE(bp));
2001	ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
2002
2003	spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
2004
2005	for (int d = 0; d < ndvas; d++)
2006		metaslab_free_dva(spa, &dva[d], txg, now);
2007
2008	spa_config_exit(spa, SCL_FREE, FTAG);
2009}
2010
2011int
2012metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
2013{
2014	const dva_t *dva = bp->blk_dva;
2015	int ndvas = BP_GET_NDVAS(bp);
2016	int error = 0;
2017
2018	ASSERT(!BP_IS_HOLE(bp));
2019
2020	if (txg != 0) {
2021		/*
2022		 * First do a dry run to make sure all DVAs are claimable,
2023		 * so we don't have to unwind from partial failures below.
2024		 */
2025		if ((error = metaslab_claim(spa, bp, 0)) != 0)
2026			return (error);
2027	}
2028
2029	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
2030
2031	for (int d = 0; d < ndvas; d++)
2032		if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0)
2033			break;
2034
2035	spa_config_exit(spa, SCL_ALLOC, FTAG);
2036
2037	ASSERT(error == 0 || txg == 0);
2038
2039	return (error);
2040}
2041
2042static void
2043checkmap(space_map_t *sm, uint64_t off, uint64_t size)
2044{
2045	space_seg_t *ss;
2046	avl_index_t where;
2047
2048	mutex_enter(sm->sm_lock);
2049	ss = space_map_find(sm, off, size, &where);
2050	if (ss != NULL)
2051		panic("freeing free block; ss=%p", (void *)ss);
2052	mutex_exit(sm->sm_lock);
2053}
2054
2055void
2056metaslab_check_free(spa_t *spa, const blkptr_t *bp)
2057{
2058	if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
2059		return;
2060
2061	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2062	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
2063		uint64_t vdid = DVA_GET_VDEV(&bp->blk_dva[i]);
2064		vdev_t *vd = vdev_lookup_top(spa, vdid);
2065		uint64_t off = DVA_GET_OFFSET(&bp->blk_dva[i]);
2066		uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
2067		metaslab_t *ms = vd->vdev_ms[off >> vd->vdev_ms_shift];
2068
2069		if (ms->ms_map->sm_loaded)
2070			checkmap(ms->ms_map, off, size);
2071
2072		for (int j = 0; j < TXG_SIZE; j++)
2073			checkmap(ms->ms_freemap[j], off, size);
2074		for (int j = 0; j < TXG_DEFER_SIZE; j++)
2075			checkmap(ms->ms_defermap[j], off, size);
2076	}
2077	spa_config_exit(spa, SCL_VDEV, FTAG);
2078}
2079