arc.c revision 314874
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24 * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26 * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
27 */
28
29/*
30 * DVA-based Adjustable Replacement Cache
31 *
32 * While much of the theory of operation used here is
33 * based on the self-tuning, low overhead replacement cache
34 * presented by Megiddo and Modha at FAST 2003, there are some
35 * significant differences:
36 *
37 * 1. The Megiddo and Modha model assumes any page is evictable.
38 * Pages in its cache cannot be "locked" into memory.  This makes
39 * the eviction algorithm simple: evict the last page in the list.
40 * This also make the performance characteristics easy to reason
41 * about.  Our cache is not so simple.  At any given moment, some
42 * subset of the blocks in the cache are un-evictable because we
43 * have handed out a reference to them.  Blocks are only evictable
44 * when there are no external references active.  This makes
45 * eviction far more problematic:  we choose to evict the evictable
46 * blocks that are the "lowest" in the list.
47 *
48 * There are times when it is not possible to evict the requested
49 * space.  In these circumstances we are unable to adjust the cache
50 * size.  To prevent the cache growing unbounded at these times we
51 * implement a "cache throttle" that slows the flow of new data
52 * into the cache until we can make space available.
53 *
54 * 2. The Megiddo and Modha model assumes a fixed cache size.
55 * Pages are evicted when the cache is full and there is a cache
56 * miss.  Our model has a variable sized cache.  It grows with
57 * high use, but also tries to react to memory pressure from the
58 * operating system: decreasing its size when system memory is
59 * tight.
60 *
61 * 3. The Megiddo and Modha model assumes a fixed page size. All
62 * elements of the cache are therefore exactly the same size.  So
63 * when adjusting the cache size following a cache miss, its simply
64 * a matter of choosing a single page to evict.  In our model, we
65 * have variable sized cache blocks (rangeing from 512 bytes to
66 * 128K bytes).  We therefore choose a set of blocks to evict to make
67 * space for a cache miss that approximates as closely as possible
68 * the space used by the new block.
69 *
70 * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71 * by N. Megiddo & D. Modha, FAST 2003
72 */
73
74/*
75 * The locking model:
76 *
77 * A new reference to a cache buffer can be obtained in two
78 * ways: 1) via a hash table lookup using the DVA as a key,
79 * or 2) via one of the ARC lists.  The arc_read() interface
80 * uses method 1, while the internal arc algorithms for
81 * adjusting the cache use method 2.  We therefore provide two
82 * types of locks: 1) the hash table lock array, and 2) the
83 * arc list locks.
84 *
85 * Buffers do not have their own mutexes, rather they rely on the
86 * hash table mutexes for the bulk of their protection (i.e. most
87 * fields in the arc_buf_hdr_t are protected by these mutexes).
88 *
89 * buf_hash_find() returns the appropriate mutex (held) when it
90 * locates the requested buffer in the hash table.  It returns
91 * NULL for the mutex if the buffer was not in the table.
92 *
93 * buf_hash_remove() expects the appropriate hash mutex to be
94 * already held before it is invoked.
95 *
96 * Each arc state also has a mutex which is used to protect the
97 * buffer list associated with the state.  When attempting to
98 * obtain a hash table lock while holding an arc list lock you
99 * must use: mutex_tryenter() to avoid deadlock.  Also note that
100 * the active state mutex must be held before the ghost state mutex.
101 *
102 * Arc buffers may have an associated eviction callback function.
103 * This function will be invoked prior to removing the buffer (e.g.
104 * in arc_do_user_evicts()).  Note however that the data associated
105 * with the buffer may be evicted prior to the callback.  The callback
106 * must be made with *no locks held* (to prevent deadlock).  Additionally,
107 * the users of callbacks must ensure that their private data is
108 * protected from simultaneous callbacks from arc_clear_callback()
109 * and arc_do_user_evicts().
110 *
111 * Note that the majority of the performance stats are manipulated
112 * with atomic operations.
113 *
114 * The L2ARC uses the l2ad_mtx on each vdev for the following:
115 *
116 *	- L2ARC buflist creation
117 *	- L2ARC buflist eviction
118 *	- L2ARC write completion, which walks L2ARC buflists
119 *	- ARC header destruction, as it removes from L2ARC buflists
120 *	- ARC header release, as it removes from L2ARC buflists
121 */
122
123/*
124 * ARC operation:
125 *
126 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
127 * This structure can point either to a block that is still in the cache or to
128 * one that is only accessible in an L2 ARC device, or it can provide
129 * information about a block that was recently evicted. If a block is
130 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
131 * information to retrieve it from the L2ARC device. This information is
132 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
133 * that is in this state cannot access the data directly.
134 *
135 * Blocks that are actively being referenced or have not been evicted
136 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
137 * the arc_buf_hdr_t that will point to the data block in memory. A block can
138 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
139 * caches data in two ways -- in a list of arc buffers (arc_buf_t) and
140 * also in the arc_buf_hdr_t's private physical data block pointer (b_pdata).
141 * Each arc buffer (arc_buf_t) is being actively accessed by a specific ARC
142 * consumer, and always contains uncompressed data. The ARC will provide
143 * references to this data and will keep it cached until it is no longer in
144 * use. Typically, the arc will try to cache only the L1ARC's physical data
145 * block and will aggressively evict any arc_buf_t that is no longer referenced.
146 * The amount of memory consumed by the arc_buf_t's can be seen via the
147 * "overhead_size" kstat.
148 *
149 *
150 *                arc_buf_hdr_t
151 *                +-----------+
152 *                |           |
153 *                |           |
154 *                |           |
155 *                +-----------+
156 * l2arc_buf_hdr_t|           |
157 *                |           |
158 *                +-----------+
159 * l1arc_buf_hdr_t|           |
160 *                |           |                 arc_buf_t
161 *                |    b_buf  +------------>+---------+      arc_buf_t
162 *                |           |             |b_next   +---->+---------+
163 *                |  b_pdata  +-+           |---------|     |b_next   +-->NULL
164 *                +-----------+ |           |         |     +---------+
165 *                              |           |b_data   +-+   |         |
166 *                              |           +---------+ |   |b_data   +-+
167 *                              +->+------+             |   +---------+ |
168 *                   (potentially) |      |             |               |
169 *                     compressed  |      |             |               |
170 *                        data     +------+             |               v
171 *                                                      +->+------+     +------+
172 *                                            uncompressed |      |     |      |
173 *                                                data     |      |     |      |
174 *                                                         +------+     +------+
175 *
176 * The L1ARC's data pointer, however, may or may not be uncompressed. The
177 * ARC has the ability to store the physical data (b_pdata) associated with
178 * the DVA of the arc_buf_hdr_t. Since the b_pdata is a copy of the on-disk
179 * physical block, it will match its on-disk compression characteristics.
180 * If the block on-disk is compressed, then the physical data block
181 * in the cache will also be compressed and vice-versa. This behavior
182 * can be disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
183 * compressed ARC functionality is disabled, the b_pdata will point to an
184 * uncompressed version of the on-disk data.
185 *
186 * When a consumer reads a block, the ARC must first look to see if the
187 * arc_buf_hdr_t is cached. If the hdr is cached and already has an arc_buf_t,
188 * then an additional arc_buf_t is allocated and the uncompressed data is
189 * bcopied from the existing arc_buf_t. If the hdr is cached but does not
190 * have an arc_buf_t, then the ARC allocates a new arc_buf_t and decompresses
191 * the b_pdata contents into the arc_buf_t's b_data. If the arc_buf_hdr_t's
192 * b_pdata is not compressed, then the block is shared with the newly
193 * allocated arc_buf_t. This block sharing only occurs with one arc_buf_t
194 * in the arc buffer chain. Sharing the block reduces the memory overhead
195 * required when the hdr is caching uncompressed blocks or the compressed
196 * arc functionality has been disabled via 'zfs_compressed_arc_enabled'.
197 *
198 * The diagram below shows an example of an uncompressed ARC hdr that is
199 * sharing its data with an arc_buf_t:
200 *
201 *                arc_buf_hdr_t
202 *                +-----------+
203 *                |           |
204 *                |           |
205 *                |           |
206 *                +-----------+
207 * l2arc_buf_hdr_t|           |
208 *                |           |
209 *                +-----------+
210 * l1arc_buf_hdr_t|           |
211 *                |           |                 arc_buf_t    (shared)
212 *                |    b_buf  +------------>+---------+      arc_buf_t
213 *                |           |             |b_next   +---->+---------+
214 *                |  b_pdata  +-+           |---------|     |b_next   +-->NULL
215 *                +-----------+ |           |         |     +---------+
216 *                              |           |b_data   +-+   |         |
217 *                              |           +---------+ |   |b_data   +-+
218 *                              +->+------+             |   +---------+ |
219 *                                 |      |             |               |
220 *                   uncompressed  |      |             |               |
221 *                        data     +------+             |               |
222 *                                    ^                 +->+------+     |
223 *                                    |       uncompressed |      |     |
224 *                                    |           data     |      |     |
225 *                                    |                    +------+     |
226 *                                    +---------------------------------+
227 *
228 * Writing to the arc requires that the ARC first discard the b_pdata
229 * since the physical block is about to be rewritten. The new data contents
230 * will be contained in the arc_buf_t (uncompressed). As the I/O pipeline
231 * performs the write, it may compress the data before writing it to disk.
232 * The ARC will be called with the transformed data and will bcopy the
233 * transformed on-disk block into a newly allocated b_pdata.
234 *
235 * When the L2ARC is in use, it will also take advantage of the b_pdata. The
236 * L2ARC will always write the contents of b_pdata to the L2ARC. This means
237 * that when compressed arc is enabled that the L2ARC blocks are identical
238 * to the on-disk block in the main data pool. This provides a significant
239 * advantage since the ARC can leverage the bp's checksum when reading from the
240 * L2ARC to determine if the contents are valid. However, if the compressed
241 * arc is disabled, then the L2ARC's block must be transformed to look
242 * like the physical block in the main data pool before comparing the
243 * checksum and determining its validity.
244 */
245
246#include <sys/spa.h>
247#include <sys/zio.h>
248#include <sys/spa_impl.h>
249#include <sys/zio_compress.h>
250#include <sys/zio_checksum.h>
251#include <sys/zfs_context.h>
252#include <sys/arc.h>
253#include <sys/refcount.h>
254#include <sys/vdev.h>
255#include <sys/vdev_impl.h>
256#include <sys/dsl_pool.h>
257#include <sys/multilist.h>
258#ifdef _KERNEL
259#include <sys/dnlc.h>
260#endif
261#include <sys/callb.h>
262#include <sys/kstat.h>
263#include <sys/trim_map.h>
264#include <zfs_fletcher.h>
265#include <sys/sdt.h>
266
267#include <machine/vmparam.h>
268
269#ifdef illumos
270#ifndef _KERNEL
271/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
272boolean_t arc_watch = B_FALSE;
273int arc_procfd;
274#endif
275#endif /* illumos */
276
277static kmutex_t		arc_reclaim_lock;
278static kcondvar_t	arc_reclaim_thread_cv;
279static boolean_t	arc_reclaim_thread_exit;
280static kcondvar_t	arc_reclaim_waiters_cv;
281
282uint_t arc_reduce_dnlc_percent = 3;
283
284/*
285 * The number of headers to evict in arc_evict_state_impl() before
286 * dropping the sublist lock and evicting from another sublist. A lower
287 * value means we're more likely to evict the "correct" header (i.e. the
288 * oldest header in the arc state), but comes with higher overhead
289 * (i.e. more invocations of arc_evict_state_impl()).
290 */
291int zfs_arc_evict_batch_limit = 10;
292
293/*
294 * The number of sublists used for each of the arc state lists. If this
295 * is not set to a suitable value by the user, it will be configured to
296 * the number of CPUs on the system in arc_init().
297 */
298int zfs_arc_num_sublists_per_state = 0;
299
300/* number of seconds before growing cache again */
301static int		arc_grow_retry = 60;
302
303/* shift of arc_c for calculating overflow limit in arc_get_data_buf */
304int		zfs_arc_overflow_shift = 8;
305
306/* shift of arc_c for calculating both min and max arc_p */
307static int		arc_p_min_shift = 4;
308
309/* log2(fraction of arc to reclaim) */
310static int		arc_shrink_shift = 7;
311
312/*
313 * log2(fraction of ARC which must be free to allow growing).
314 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
315 * when reading a new block into the ARC, we will evict an equal-sized block
316 * from the ARC.
317 *
318 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
319 * we will still not allow it to grow.
320 */
321int			arc_no_grow_shift = 5;
322
323
324/*
325 * minimum lifespan of a prefetch block in clock ticks
326 * (initialized in arc_init())
327 */
328static int		arc_min_prefetch_lifespan;
329
330/*
331 * If this percent of memory is free, don't throttle.
332 */
333int arc_lotsfree_percent = 10;
334
335static int arc_dead;
336extern boolean_t zfs_prefetch_disable;
337
338/*
339 * The arc has filled available memory and has now warmed up.
340 */
341static boolean_t arc_warm;
342
343/*
344 * These tunables are for performance analysis.
345 */
346uint64_t zfs_arc_max;
347uint64_t zfs_arc_min;
348uint64_t zfs_arc_meta_limit = 0;
349uint64_t zfs_arc_meta_min = 0;
350int zfs_arc_grow_retry = 0;
351int zfs_arc_shrink_shift = 0;
352int zfs_arc_p_min_shift = 0;
353uint64_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
354u_int zfs_arc_free_target = 0;
355
356/* Absolute min for arc min / max is 16MB. */
357static uint64_t arc_abs_min = 16 << 20;
358
359boolean_t zfs_compressed_arc_enabled = B_TRUE;
360
361static int sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS);
362static int sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS);
363static int sysctl_vfs_zfs_arc_max(SYSCTL_HANDLER_ARGS);
364static int sysctl_vfs_zfs_arc_min(SYSCTL_HANDLER_ARGS);
365
366#if defined(__FreeBSD__) && defined(_KERNEL)
367static void
368arc_free_target_init(void *unused __unused)
369{
370
371	zfs_arc_free_target = vm_pageout_wakeup_thresh;
372}
373SYSINIT(arc_free_target_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_ANY,
374    arc_free_target_init, NULL);
375
376TUNABLE_QUAD("vfs.zfs.arc_max", &zfs_arc_max);
377TUNABLE_QUAD("vfs.zfs.arc_min", &zfs_arc_min);
378TUNABLE_QUAD("vfs.zfs.arc_meta_limit", &zfs_arc_meta_limit);
379TUNABLE_QUAD("vfs.zfs.arc_meta_min", &zfs_arc_meta_min);
380TUNABLE_QUAD("vfs.zfs.arc_average_blocksize", &zfs_arc_average_blocksize);
381TUNABLE_INT("vfs.zfs.arc_shrink_shift", &zfs_arc_shrink_shift);
382SYSCTL_DECL(_vfs_zfs);
383SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_max, CTLTYPE_U64 | CTLFLAG_RWTUN,
384    0, sizeof(uint64_t), sysctl_vfs_zfs_arc_max, "QU", "Maximum ARC size");
385SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_min, CTLTYPE_U64 | CTLFLAG_RWTUN,
386    0, sizeof(uint64_t), sysctl_vfs_zfs_arc_min, "QU", "Minimum ARC size");
387SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_average_blocksize, CTLFLAG_RDTUN,
388    &zfs_arc_average_blocksize, 0,
389    "ARC average blocksize");
390SYSCTL_INT(_vfs_zfs, OID_AUTO, arc_shrink_shift, CTLFLAG_RW,
391    &arc_shrink_shift, 0,
392    "log2(fraction of arc to reclaim)");
393SYSCTL_INT(_vfs_zfs, OID_AUTO, compressed_arc_enabled, CTLFLAG_RDTUN,
394    &zfs_compressed_arc_enabled, 0, "Enable compressed ARC");
395
396/*
397 * We don't have a tunable for arc_free_target due to the dependency on
398 * pagedaemon initialisation.
399 */
400SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_free_target,
401    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(u_int),
402    sysctl_vfs_zfs_arc_free_target, "IU",
403    "Desired number of free pages below which ARC triggers reclaim");
404
405static int
406sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS)
407{
408	u_int val;
409	int err;
410
411	val = zfs_arc_free_target;
412	err = sysctl_handle_int(oidp, &val, 0, req);
413	if (err != 0 || req->newptr == NULL)
414		return (err);
415
416	if (val < minfree)
417		return (EINVAL);
418	if (val > cnt.v_page_count)
419		return (EINVAL);
420
421	zfs_arc_free_target = val;
422
423	return (0);
424}
425
426/*
427 * Must be declared here, before the definition of corresponding kstat
428 * macro which uses the same names will confuse the compiler.
429 */
430SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_meta_limit,
431    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
432    sysctl_vfs_zfs_arc_meta_limit, "QU",
433    "ARC metadata limit");
434#endif
435
436/*
437 * Note that buffers can be in one of 6 states:
438 *	ARC_anon	- anonymous (discussed below)
439 *	ARC_mru		- recently used, currently cached
440 *	ARC_mru_ghost	- recentely used, no longer in cache
441 *	ARC_mfu		- frequently used, currently cached
442 *	ARC_mfu_ghost	- frequently used, no longer in cache
443 *	ARC_l2c_only	- exists in L2ARC but not other states
444 * When there are no active references to the buffer, they are
445 * are linked onto a list in one of these arc states.  These are
446 * the only buffers that can be evicted or deleted.  Within each
447 * state there are multiple lists, one for meta-data and one for
448 * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
449 * etc.) is tracked separately so that it can be managed more
450 * explicitly: favored over data, limited explicitly.
451 *
452 * Anonymous buffers are buffers that are not associated with
453 * a DVA.  These are buffers that hold dirty block copies
454 * before they are written to stable storage.  By definition,
455 * they are "ref'd" and are considered part of arc_mru
456 * that cannot be freed.  Generally, they will aquire a DVA
457 * as they are written and migrate onto the arc_mru list.
458 *
459 * The ARC_l2c_only state is for buffers that are in the second
460 * level ARC but no longer in any of the ARC_m* lists.  The second
461 * level ARC itself may also contain buffers that are in any of
462 * the ARC_m* states - meaning that a buffer can exist in two
463 * places.  The reason for the ARC_l2c_only state is to keep the
464 * buffer header in the hash table, so that reads that hit the
465 * second level ARC benefit from these fast lookups.
466 */
467
468typedef struct arc_state {
469	/*
470	 * list of evictable buffers
471	 */
472	multilist_t arcs_list[ARC_BUFC_NUMTYPES];
473	/*
474	 * total amount of evictable data in this state
475	 */
476	refcount_t arcs_esize[ARC_BUFC_NUMTYPES];
477	/*
478	 * total amount of data in this state; this includes: evictable,
479	 * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA.
480	 */
481	refcount_t arcs_size;
482} arc_state_t;
483
484/* The 6 states: */
485static arc_state_t ARC_anon;
486static arc_state_t ARC_mru;
487static arc_state_t ARC_mru_ghost;
488static arc_state_t ARC_mfu;
489static arc_state_t ARC_mfu_ghost;
490static arc_state_t ARC_l2c_only;
491
492typedef struct arc_stats {
493	kstat_named_t arcstat_hits;
494	kstat_named_t arcstat_misses;
495	kstat_named_t arcstat_demand_data_hits;
496	kstat_named_t arcstat_demand_data_misses;
497	kstat_named_t arcstat_demand_metadata_hits;
498	kstat_named_t arcstat_demand_metadata_misses;
499	kstat_named_t arcstat_prefetch_data_hits;
500	kstat_named_t arcstat_prefetch_data_misses;
501	kstat_named_t arcstat_prefetch_metadata_hits;
502	kstat_named_t arcstat_prefetch_metadata_misses;
503	kstat_named_t arcstat_mru_hits;
504	kstat_named_t arcstat_mru_ghost_hits;
505	kstat_named_t arcstat_mfu_hits;
506	kstat_named_t arcstat_mfu_ghost_hits;
507	kstat_named_t arcstat_allocated;
508	kstat_named_t arcstat_deleted;
509	/*
510	 * Number of buffers that could not be evicted because the hash lock
511	 * was held by another thread.  The lock may not necessarily be held
512	 * by something using the same buffer, since hash locks are shared
513	 * by multiple buffers.
514	 */
515	kstat_named_t arcstat_mutex_miss;
516	/*
517	 * Number of buffers skipped because they have I/O in progress, are
518	 * indrect prefetch buffers that have not lived long enough, or are
519	 * not from the spa we're trying to evict from.
520	 */
521	kstat_named_t arcstat_evict_skip;
522	/*
523	 * Number of times arc_evict_state() was unable to evict enough
524	 * buffers to reach it's target amount.
525	 */
526	kstat_named_t arcstat_evict_not_enough;
527	kstat_named_t arcstat_evict_l2_cached;
528	kstat_named_t arcstat_evict_l2_eligible;
529	kstat_named_t arcstat_evict_l2_ineligible;
530	kstat_named_t arcstat_evict_l2_skip;
531	kstat_named_t arcstat_hash_elements;
532	kstat_named_t arcstat_hash_elements_max;
533	kstat_named_t arcstat_hash_collisions;
534	kstat_named_t arcstat_hash_chains;
535	kstat_named_t arcstat_hash_chain_max;
536	kstat_named_t arcstat_p;
537	kstat_named_t arcstat_c;
538	kstat_named_t arcstat_c_min;
539	kstat_named_t arcstat_c_max;
540	kstat_named_t arcstat_size;
541	/*
542	 * Number of compressed bytes stored in the arc_buf_hdr_t's b_pdata.
543	 * Note that the compressed bytes may match the uncompressed bytes
544	 * if the block is either not compressed or compressed arc is disabled.
545	 */
546	kstat_named_t arcstat_compressed_size;
547	/*
548	 * Uncompressed size of the data stored in b_pdata. If compressed
549	 * arc is disabled then this value will be identical to the stat
550	 * above.
551	 */
552	kstat_named_t arcstat_uncompressed_size;
553	/*
554	 * Number of bytes stored in all the arc_buf_t's. This is classified
555	 * as "overhead" since this data is typically short-lived and will
556	 * be evicted from the arc when it becomes unreferenced unless the
557	 * zfs_keep_uncompressed_metadata or zfs_keep_uncompressed_level
558	 * values have been set (see comment in dbuf.c for more information).
559	 */
560	kstat_named_t arcstat_overhead_size;
561	/*
562	 * Number of bytes consumed by internal ARC structures necessary
563	 * for tracking purposes; these structures are not actually
564	 * backed by ARC buffers. This includes arc_buf_hdr_t structures
565	 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
566	 * caches), and arc_buf_t structures (allocated via arc_buf_t
567	 * cache).
568	 */
569	kstat_named_t arcstat_hdr_size;
570	/*
571	 * Number of bytes consumed by ARC buffers of type equal to
572	 * ARC_BUFC_DATA. This is generally consumed by buffers backing
573	 * on disk user data (e.g. plain file contents).
574	 */
575	kstat_named_t arcstat_data_size;
576	/*
577	 * Number of bytes consumed by ARC buffers of type equal to
578	 * ARC_BUFC_METADATA. This is generally consumed by buffers
579	 * backing on disk data that is used for internal ZFS
580	 * structures (e.g. ZAP, dnode, indirect blocks, etc).
581	 */
582	kstat_named_t arcstat_metadata_size;
583	/*
584	 * Number of bytes consumed by various buffers and structures
585	 * not actually backed with ARC buffers. This includes bonus
586	 * buffers (allocated directly via zio_buf_* functions),
587	 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t
588	 * cache), and dnode_t structures (allocated via dnode_t cache).
589	 */
590	kstat_named_t arcstat_other_size;
591	/*
592	 * Total number of bytes consumed by ARC buffers residing in the
593	 * arc_anon state. This includes *all* buffers in the arc_anon
594	 * state; e.g. data, metadata, evictable, and unevictable buffers
595	 * are all included in this value.
596	 */
597	kstat_named_t arcstat_anon_size;
598	/*
599	 * Number of bytes consumed by ARC buffers that meet the
600	 * following criteria: backing buffers of type ARC_BUFC_DATA,
601	 * residing in the arc_anon state, and are eligible for eviction
602	 * (e.g. have no outstanding holds on the buffer).
603	 */
604	kstat_named_t arcstat_anon_evictable_data;
605	/*
606	 * Number of bytes consumed by ARC buffers that meet the
607	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
608	 * residing in the arc_anon state, and are eligible for eviction
609	 * (e.g. have no outstanding holds on the buffer).
610	 */
611	kstat_named_t arcstat_anon_evictable_metadata;
612	/*
613	 * Total number of bytes consumed by ARC buffers residing in the
614	 * arc_mru state. This includes *all* buffers in the arc_mru
615	 * state; e.g. data, metadata, evictable, and unevictable buffers
616	 * are all included in this value.
617	 */
618	kstat_named_t arcstat_mru_size;
619	/*
620	 * Number of bytes consumed by ARC buffers that meet the
621	 * following criteria: backing buffers of type ARC_BUFC_DATA,
622	 * residing in the arc_mru state, and are eligible for eviction
623	 * (e.g. have no outstanding holds on the buffer).
624	 */
625	kstat_named_t arcstat_mru_evictable_data;
626	/*
627	 * Number of bytes consumed by ARC buffers that meet the
628	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
629	 * residing in the arc_mru state, and are eligible for eviction
630	 * (e.g. have no outstanding holds on the buffer).
631	 */
632	kstat_named_t arcstat_mru_evictable_metadata;
633	/*
634	 * Total number of bytes that *would have been* consumed by ARC
635	 * buffers in the arc_mru_ghost state. The key thing to note
636	 * here, is the fact that this size doesn't actually indicate
637	 * RAM consumption. The ghost lists only consist of headers and
638	 * don't actually have ARC buffers linked off of these headers.
639	 * Thus, *if* the headers had associated ARC buffers, these
640	 * buffers *would have* consumed this number of bytes.
641	 */
642	kstat_named_t arcstat_mru_ghost_size;
643	/*
644	 * Number of bytes that *would have been* consumed by ARC
645	 * buffers that are eligible for eviction, of type
646	 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
647	 */
648	kstat_named_t arcstat_mru_ghost_evictable_data;
649	/*
650	 * Number of bytes that *would have been* consumed by ARC
651	 * buffers that are eligible for eviction, of type
652	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
653	 */
654	kstat_named_t arcstat_mru_ghost_evictable_metadata;
655	/*
656	 * Total number of bytes consumed by ARC buffers residing in the
657	 * arc_mfu state. This includes *all* buffers in the arc_mfu
658	 * state; e.g. data, metadata, evictable, and unevictable buffers
659	 * are all included in this value.
660	 */
661	kstat_named_t arcstat_mfu_size;
662	/*
663	 * Number of bytes consumed by ARC buffers that are eligible for
664	 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
665	 * state.
666	 */
667	kstat_named_t arcstat_mfu_evictable_data;
668	/*
669	 * Number of bytes consumed by ARC buffers that are eligible for
670	 * eviction, of type ARC_BUFC_METADATA, and reside in the
671	 * arc_mfu state.
672	 */
673	kstat_named_t arcstat_mfu_evictable_metadata;
674	/*
675	 * Total number of bytes that *would have been* consumed by ARC
676	 * buffers in the arc_mfu_ghost state. See the comment above
677	 * arcstat_mru_ghost_size for more details.
678	 */
679	kstat_named_t arcstat_mfu_ghost_size;
680	/*
681	 * Number of bytes that *would have been* consumed by ARC
682	 * buffers that are eligible for eviction, of type
683	 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
684	 */
685	kstat_named_t arcstat_mfu_ghost_evictable_data;
686	/*
687	 * Number of bytes that *would have been* consumed by ARC
688	 * buffers that are eligible for eviction, of type
689	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
690	 */
691	kstat_named_t arcstat_mfu_ghost_evictable_metadata;
692	kstat_named_t arcstat_l2_hits;
693	kstat_named_t arcstat_l2_misses;
694	kstat_named_t arcstat_l2_feeds;
695	kstat_named_t arcstat_l2_rw_clash;
696	kstat_named_t arcstat_l2_read_bytes;
697	kstat_named_t arcstat_l2_write_bytes;
698	kstat_named_t arcstat_l2_writes_sent;
699	kstat_named_t arcstat_l2_writes_done;
700	kstat_named_t arcstat_l2_writes_error;
701	kstat_named_t arcstat_l2_writes_lock_retry;
702	kstat_named_t arcstat_l2_evict_lock_retry;
703	kstat_named_t arcstat_l2_evict_reading;
704	kstat_named_t arcstat_l2_evict_l1cached;
705	kstat_named_t arcstat_l2_free_on_write;
706	kstat_named_t arcstat_l2_abort_lowmem;
707	kstat_named_t arcstat_l2_cksum_bad;
708	kstat_named_t arcstat_l2_io_error;
709	kstat_named_t arcstat_l2_size;
710	kstat_named_t arcstat_l2_asize;
711	kstat_named_t arcstat_l2_hdr_size;
712	kstat_named_t arcstat_l2_write_trylock_fail;
713	kstat_named_t arcstat_l2_write_passed_headroom;
714	kstat_named_t arcstat_l2_write_spa_mismatch;
715	kstat_named_t arcstat_l2_write_in_l2;
716	kstat_named_t arcstat_l2_write_hdr_io_in_progress;
717	kstat_named_t arcstat_l2_write_not_cacheable;
718	kstat_named_t arcstat_l2_write_full;
719	kstat_named_t arcstat_l2_write_buffer_iter;
720	kstat_named_t arcstat_l2_write_pios;
721	kstat_named_t arcstat_l2_write_buffer_bytes_scanned;
722	kstat_named_t arcstat_l2_write_buffer_list_iter;
723	kstat_named_t arcstat_l2_write_buffer_list_null_iter;
724	kstat_named_t arcstat_memory_throttle_count;
725	kstat_named_t arcstat_meta_used;
726	kstat_named_t arcstat_meta_limit;
727	kstat_named_t arcstat_meta_max;
728	kstat_named_t arcstat_meta_min;
729	kstat_named_t arcstat_sync_wait_for_async;
730	kstat_named_t arcstat_demand_hit_predictive_prefetch;
731} arc_stats_t;
732
733static arc_stats_t arc_stats = {
734	{ "hits",			KSTAT_DATA_UINT64 },
735	{ "misses",			KSTAT_DATA_UINT64 },
736	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
737	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
738	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
739	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
740	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
741	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
742	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
743	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
744	{ "mru_hits",			KSTAT_DATA_UINT64 },
745	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
746	{ "mfu_hits",			KSTAT_DATA_UINT64 },
747	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
748	{ "allocated",			KSTAT_DATA_UINT64 },
749	{ "deleted",			KSTAT_DATA_UINT64 },
750	{ "mutex_miss",			KSTAT_DATA_UINT64 },
751	{ "evict_skip",			KSTAT_DATA_UINT64 },
752	{ "evict_not_enough",		KSTAT_DATA_UINT64 },
753	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
754	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
755	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
756	{ "evict_l2_skip",		KSTAT_DATA_UINT64 },
757	{ "hash_elements",		KSTAT_DATA_UINT64 },
758	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
759	{ "hash_collisions",		KSTAT_DATA_UINT64 },
760	{ "hash_chains",		KSTAT_DATA_UINT64 },
761	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
762	{ "p",				KSTAT_DATA_UINT64 },
763	{ "c",				KSTAT_DATA_UINT64 },
764	{ "c_min",			KSTAT_DATA_UINT64 },
765	{ "c_max",			KSTAT_DATA_UINT64 },
766	{ "size",			KSTAT_DATA_UINT64 },
767	{ "compressed_size",		KSTAT_DATA_UINT64 },
768	{ "uncompressed_size",		KSTAT_DATA_UINT64 },
769	{ "overhead_size",		KSTAT_DATA_UINT64 },
770	{ "hdr_size",			KSTAT_DATA_UINT64 },
771	{ "data_size",			KSTAT_DATA_UINT64 },
772	{ "metadata_size",		KSTAT_DATA_UINT64 },
773	{ "other_size",			KSTAT_DATA_UINT64 },
774	{ "anon_size",			KSTAT_DATA_UINT64 },
775	{ "anon_evictable_data",	KSTAT_DATA_UINT64 },
776	{ "anon_evictable_metadata",	KSTAT_DATA_UINT64 },
777	{ "mru_size",			KSTAT_DATA_UINT64 },
778	{ "mru_evictable_data",		KSTAT_DATA_UINT64 },
779	{ "mru_evictable_metadata",	KSTAT_DATA_UINT64 },
780	{ "mru_ghost_size",		KSTAT_DATA_UINT64 },
781	{ "mru_ghost_evictable_data",	KSTAT_DATA_UINT64 },
782	{ "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
783	{ "mfu_size",			KSTAT_DATA_UINT64 },
784	{ "mfu_evictable_data",		KSTAT_DATA_UINT64 },
785	{ "mfu_evictable_metadata",	KSTAT_DATA_UINT64 },
786	{ "mfu_ghost_size",		KSTAT_DATA_UINT64 },
787	{ "mfu_ghost_evictable_data",	KSTAT_DATA_UINT64 },
788	{ "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
789	{ "l2_hits",			KSTAT_DATA_UINT64 },
790	{ "l2_misses",			KSTAT_DATA_UINT64 },
791	{ "l2_feeds",			KSTAT_DATA_UINT64 },
792	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
793	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
794	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
795	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
796	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
797	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
798	{ "l2_writes_lock_retry",	KSTAT_DATA_UINT64 },
799	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
800	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
801	{ "l2_evict_l1cached",		KSTAT_DATA_UINT64 },
802	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
803	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
804	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
805	{ "l2_io_error",		KSTAT_DATA_UINT64 },
806	{ "l2_size",			KSTAT_DATA_UINT64 },
807	{ "l2_asize",			KSTAT_DATA_UINT64 },
808	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
809	{ "l2_write_trylock_fail",	KSTAT_DATA_UINT64 },
810	{ "l2_write_passed_headroom",	KSTAT_DATA_UINT64 },
811	{ "l2_write_spa_mismatch",	KSTAT_DATA_UINT64 },
812	{ "l2_write_in_l2",		KSTAT_DATA_UINT64 },
813	{ "l2_write_io_in_progress",	KSTAT_DATA_UINT64 },
814	{ "l2_write_not_cacheable",	KSTAT_DATA_UINT64 },
815	{ "l2_write_full",		KSTAT_DATA_UINT64 },
816	{ "l2_write_buffer_iter",	KSTAT_DATA_UINT64 },
817	{ "l2_write_pios",		KSTAT_DATA_UINT64 },
818	{ "l2_write_buffer_bytes_scanned", KSTAT_DATA_UINT64 },
819	{ "l2_write_buffer_list_iter",	KSTAT_DATA_UINT64 },
820	{ "l2_write_buffer_list_null_iter", KSTAT_DATA_UINT64 },
821	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
822	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
823	{ "arc_meta_limit",		KSTAT_DATA_UINT64 },
824	{ "arc_meta_max",		KSTAT_DATA_UINT64 },
825	{ "arc_meta_min",		KSTAT_DATA_UINT64 },
826	{ "sync_wait_for_async",	KSTAT_DATA_UINT64 },
827	{ "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
828};
829
830#define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
831
832#define	ARCSTAT_INCR(stat, val) \
833	atomic_add_64(&arc_stats.stat.value.ui64, (val))
834
835#define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
836#define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
837
838#define	ARCSTAT_MAX(stat, val) {					\
839	uint64_t m;							\
840	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
841	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
842		continue;						\
843}
844
845#define	ARCSTAT_MAXSTAT(stat) \
846	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
847
848/*
849 * We define a macro to allow ARC hits/misses to be easily broken down by
850 * two separate conditions, giving a total of four different subtypes for
851 * each of hits and misses (so eight statistics total).
852 */
853#define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
854	if (cond1) {							\
855		if (cond2) {						\
856			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
857		} else {						\
858			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
859		}							\
860	} else {							\
861		if (cond2) {						\
862			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
863		} else {						\
864			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
865		}							\
866	}
867
868kstat_t			*arc_ksp;
869static arc_state_t	*arc_anon;
870static arc_state_t	*arc_mru;
871static arc_state_t	*arc_mru_ghost;
872static arc_state_t	*arc_mfu;
873static arc_state_t	*arc_mfu_ghost;
874static arc_state_t	*arc_l2c_only;
875
876/*
877 * There are several ARC variables that are critical to export as kstats --
878 * but we don't want to have to grovel around in the kstat whenever we wish to
879 * manipulate them.  For these variables, we therefore define them to be in
880 * terms of the statistic variable.  This assures that we are not introducing
881 * the possibility of inconsistency by having shadow copies of the variables,
882 * while still allowing the code to be readable.
883 */
884#define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
885#define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
886#define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
887#define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
888#define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
889#define	arc_meta_limit	ARCSTAT(arcstat_meta_limit) /* max size for metadata */
890#define	arc_meta_min	ARCSTAT(arcstat_meta_min) /* min size for metadata */
891#define	arc_meta_used	ARCSTAT(arcstat_meta_used) /* size of metadata */
892#define	arc_meta_max	ARCSTAT(arcstat_meta_max) /* max size of metadata */
893
894/* compressed size of entire arc */
895#define	arc_compressed_size	ARCSTAT(arcstat_compressed_size)
896/* uncompressed size of entire arc */
897#define	arc_uncompressed_size	ARCSTAT(arcstat_uncompressed_size)
898/* number of bytes in the arc from arc_buf_t's */
899#define	arc_overhead_size	ARCSTAT(arcstat_overhead_size)
900
901static int		arc_no_grow;	/* Don't try to grow cache size */
902static uint64_t		arc_tempreserve;
903static uint64_t		arc_loaned_bytes;
904
905typedef struct arc_callback arc_callback_t;
906
907struct arc_callback {
908	void			*acb_private;
909	arc_done_func_t		*acb_done;
910	arc_buf_t		*acb_buf;
911	zio_t			*acb_zio_dummy;
912	arc_callback_t		*acb_next;
913};
914
915typedef struct arc_write_callback arc_write_callback_t;
916
917struct arc_write_callback {
918	void		*awcb_private;
919	arc_done_func_t	*awcb_ready;
920	arc_done_func_t	*awcb_children_ready;
921	arc_done_func_t	*awcb_physdone;
922	arc_done_func_t	*awcb_done;
923	arc_buf_t	*awcb_buf;
924};
925
926/*
927 * ARC buffers are separated into multiple structs as a memory saving measure:
928 *   - Common fields struct, always defined, and embedded within it:
929 *       - L2-only fields, always allocated but undefined when not in L2ARC
930 *       - L1-only fields, only allocated when in L1ARC
931 *
932 *           Buffer in L1                     Buffer only in L2
933 *    +------------------------+          +------------------------+
934 *    | arc_buf_hdr_t          |          | arc_buf_hdr_t          |
935 *    |                        |          |                        |
936 *    |                        |          |                        |
937 *    |                        |          |                        |
938 *    +------------------------+          +------------------------+
939 *    | l2arc_buf_hdr_t        |          | l2arc_buf_hdr_t        |
940 *    | (undefined if L1-only) |          |                        |
941 *    +------------------------+          +------------------------+
942 *    | l1arc_buf_hdr_t        |
943 *    |                        |
944 *    |                        |
945 *    |                        |
946 *    |                        |
947 *    +------------------------+
948 *
949 * Because it's possible for the L2ARC to become extremely large, we can wind
950 * up eating a lot of memory in L2ARC buffer headers, so the size of a header
951 * is minimized by only allocating the fields necessary for an L1-cached buffer
952 * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and
953 * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple
954 * words in pointers. arc_hdr_realloc() is used to switch a header between
955 * these two allocation states.
956 */
957typedef struct l1arc_buf_hdr {
958	kmutex_t		b_freeze_lock;
959	zio_cksum_t		*b_freeze_cksum;
960#ifdef ZFS_DEBUG
961	/*
962	 * used for debugging wtih kmem_flags - by allocating and freeing
963	 * b_thawed when the buffer is thawed, we get a record of the stack
964	 * trace that thawed it.
965	 */
966	void			*b_thawed;
967#endif
968
969	arc_buf_t		*b_buf;
970	uint32_t		b_bufcnt;
971	/* for waiting on writes to complete */
972	kcondvar_t		b_cv;
973	uint8_t			b_byteswap;
974
975	/* protected by arc state mutex */
976	arc_state_t		*b_state;
977	multilist_node_t	b_arc_node;
978
979	/* updated atomically */
980	clock_t			b_arc_access;
981
982	/* self protecting */
983	refcount_t		b_refcnt;
984
985	arc_callback_t		*b_acb;
986	void			*b_pdata;
987} l1arc_buf_hdr_t;
988
989typedef struct l2arc_dev l2arc_dev_t;
990
991typedef struct l2arc_buf_hdr {
992	/* protected by arc_buf_hdr mutex */
993	l2arc_dev_t		*b_dev;		/* L2ARC device */
994	uint64_t		b_daddr;	/* disk address, offset byte */
995
996	list_node_t		b_l2node;
997} l2arc_buf_hdr_t;
998
999struct arc_buf_hdr {
1000	/* protected by hash lock */
1001	dva_t			b_dva;
1002	uint64_t		b_birth;
1003
1004	arc_buf_contents_t	b_type;
1005	arc_buf_hdr_t		*b_hash_next;
1006	arc_flags_t		b_flags;
1007
1008	/*
1009	 * This field stores the size of the data buffer after
1010	 * compression, and is set in the arc's zio completion handlers.
1011	 * It is in units of SPA_MINBLOCKSIZE (e.g. 1 == 512 bytes).
1012	 *
1013	 * While the block pointers can store up to 32MB in their psize
1014	 * field, we can only store up to 32MB minus 512B. This is due
1015	 * to the bp using a bias of 1, whereas we use a bias of 0 (i.e.
1016	 * a field of zeros represents 512B in the bp). We can't use a
1017	 * bias of 1 since we need to reserve a psize of zero, here, to
1018	 * represent holes and embedded blocks.
1019	 *
1020	 * This isn't a problem in practice, since the maximum size of a
1021	 * buffer is limited to 16MB, so we never need to store 32MB in
1022	 * this field. Even in the upstream illumos code base, the
1023	 * maximum size of a buffer is limited to 16MB.
1024	 */
1025	uint16_t		b_psize;
1026
1027	/*
1028	 * This field stores the size of the data buffer before
1029	 * compression, and cannot change once set. It is in units
1030	 * of SPA_MINBLOCKSIZE (e.g. 2 == 1024 bytes)
1031	 */
1032	uint16_t		b_lsize;	/* immutable */
1033	uint64_t		b_spa;		/* immutable */
1034
1035	/* L2ARC fields. Undefined when not in L2ARC. */
1036	l2arc_buf_hdr_t		b_l2hdr;
1037	/* L1ARC fields. Undefined when in l2arc_only state */
1038	l1arc_buf_hdr_t		b_l1hdr;
1039};
1040
1041#if defined(__FreeBSD__) && defined(_KERNEL)
1042static int
1043sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS)
1044{
1045	uint64_t val;
1046	int err;
1047
1048	val = arc_meta_limit;
1049	err = sysctl_handle_64(oidp, &val, 0, req);
1050	if (err != 0 || req->newptr == NULL)
1051		return (err);
1052
1053        if (val <= 0 || val > arc_c_max)
1054		return (EINVAL);
1055
1056	arc_meta_limit = val;
1057	return (0);
1058}
1059
1060static int
1061sysctl_vfs_zfs_arc_max(SYSCTL_HANDLER_ARGS)
1062{
1063	uint64_t val;
1064	int err;
1065
1066	val = zfs_arc_max;
1067	err = sysctl_handle_64(oidp, &val, 0, req);
1068	if (err != 0 || req->newptr == NULL)
1069		return (err);
1070
1071	if (zfs_arc_max == 0) {
1072		/* Loader tunable so blindly set */
1073		zfs_arc_max = val;
1074		return (0);
1075	}
1076
1077	if (val < arc_abs_min || val > kmem_size())
1078		return (EINVAL);
1079	if (val < arc_c_min)
1080		return (EINVAL);
1081	if (zfs_arc_meta_limit > 0 && val < zfs_arc_meta_limit)
1082		return (EINVAL);
1083
1084	arc_c_max = val;
1085
1086	arc_c = arc_c_max;
1087        arc_p = (arc_c >> 1);
1088
1089	if (zfs_arc_meta_limit == 0) {
1090		/* limit meta-data to 1/4 of the arc capacity */
1091		arc_meta_limit = arc_c_max / 4;
1092	}
1093
1094	/* if kmem_flags are set, lets try to use less memory */
1095	if (kmem_debugging())
1096		arc_c = arc_c / 2;
1097
1098	zfs_arc_max = arc_c;
1099
1100	return (0);
1101}
1102
1103static int
1104sysctl_vfs_zfs_arc_min(SYSCTL_HANDLER_ARGS)
1105{
1106	uint64_t val;
1107	int err;
1108
1109	val = zfs_arc_min;
1110	err = sysctl_handle_64(oidp, &val, 0, req);
1111	if (err != 0 || req->newptr == NULL)
1112		return (err);
1113
1114	if (zfs_arc_min == 0) {
1115		/* Loader tunable so blindly set */
1116		zfs_arc_min = val;
1117		return (0);
1118	}
1119
1120	if (val < arc_abs_min || val > arc_c_max)
1121		return (EINVAL);
1122
1123	arc_c_min = val;
1124
1125	if (zfs_arc_meta_min == 0)
1126                arc_meta_min = arc_c_min / 2;
1127
1128	if (arc_c < arc_c_min)
1129                arc_c = arc_c_min;
1130
1131	zfs_arc_min = arc_c_min;
1132
1133	return (0);
1134}
1135#endif
1136
1137#define	GHOST_STATE(state)	\
1138	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
1139	(state) == arc_l2c_only)
1140
1141#define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
1142#define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
1143#define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_FLAG_IO_ERROR)
1144#define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_FLAG_PREFETCH)
1145#define	HDR_COMPRESSION_ENABLED(hdr)	\
1146	((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
1147
1148#define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_FLAG_L2CACHE)
1149#define	HDR_L2_READING(hdr)	\
1150	(((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&	\
1151	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
1152#define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITING)
1153#define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
1154#define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
1155#define	HDR_SHARED_DATA(hdr)	((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
1156
1157#define	HDR_ISTYPE_METADATA(hdr)	\
1158	((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
1159#define	HDR_ISTYPE_DATA(hdr)	(!HDR_ISTYPE_METADATA(hdr))
1160
1161#define	HDR_HAS_L1HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
1162#define	HDR_HAS_L2HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
1163
1164/* For storing compression mode in b_flags */
1165#define	HDR_COMPRESS_OFFSET	(highbit64(ARC_FLAG_COMPRESS_0) - 1)
1166
1167#define	HDR_GET_COMPRESS(hdr)	((enum zio_compress)BF32_GET((hdr)->b_flags, \
1168	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
1169#define	HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
1170	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
1171
1172#define	ARC_BUF_LAST(buf)	((buf)->b_next == NULL)
1173
1174/*
1175 * Other sizes
1176 */
1177
1178#define	HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
1179#define	HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
1180
1181/*
1182 * Hash table routines
1183 */
1184
1185#define	HT_LOCK_PAD	CACHE_LINE_SIZE
1186
1187struct ht_lock {
1188	kmutex_t	ht_lock;
1189#ifdef _KERNEL
1190	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
1191#endif
1192};
1193
1194#define	BUF_LOCKS 256
1195typedef struct buf_hash_table {
1196	uint64_t ht_mask;
1197	arc_buf_hdr_t **ht_table;
1198	struct ht_lock ht_locks[BUF_LOCKS] __aligned(CACHE_LINE_SIZE);
1199} buf_hash_table_t;
1200
1201static buf_hash_table_t buf_hash_table;
1202
1203#define	BUF_HASH_INDEX(spa, dva, birth) \
1204	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
1205#define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
1206#define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
1207#define	HDR_LOCK(hdr) \
1208	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
1209
1210uint64_t zfs_crc64_table[256];
1211
1212/*
1213 * Level 2 ARC
1214 */
1215
1216#define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
1217#define	L2ARC_HEADROOM		2			/* num of writes */
1218/*
1219 * If we discover during ARC scan any buffers to be compressed, we boost
1220 * our headroom for the next scanning cycle by this percentage multiple.
1221 */
1222#define	L2ARC_HEADROOM_BOOST	200
1223#define	L2ARC_FEED_SECS		1		/* caching interval secs */
1224#define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
1225
1226#define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
1227#define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
1228
1229/* L2ARC Performance Tunables */
1230uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
1231uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
1232uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
1233uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
1234uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
1235uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
1236boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
1237boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
1238boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
1239
1240SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_max, CTLFLAG_RW,
1241    &l2arc_write_max, 0, "max write size");
1242SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_boost, CTLFLAG_RW,
1243    &l2arc_write_boost, 0, "extra write during warmup");
1244SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_headroom, CTLFLAG_RW,
1245    &l2arc_headroom, 0, "number of dev writes");
1246SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_secs, CTLFLAG_RW,
1247    &l2arc_feed_secs, 0, "interval seconds");
1248SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_min_ms, CTLFLAG_RW,
1249    &l2arc_feed_min_ms, 0, "min interval milliseconds");
1250
1251SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_noprefetch, CTLFLAG_RW,
1252    &l2arc_noprefetch, 0, "don't cache prefetch bufs");
1253SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_feed_again, CTLFLAG_RW,
1254    &l2arc_feed_again, 0, "turbo warmup");
1255SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_norw, CTLFLAG_RW,
1256    &l2arc_norw, 0, "no reads during writes");
1257
1258SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_size, CTLFLAG_RD,
1259    &ARC_anon.arcs_size.rc_count, 0, "size of anonymous state");
1260SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_metadata_esize, CTLFLAG_RD,
1261    &ARC_anon.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1262    "size of anonymous state");
1263SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_data_esize, CTLFLAG_RD,
1264    &ARC_anon.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1265    "size of anonymous state");
1266
1267SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_size, CTLFLAG_RD,
1268    &ARC_mru.arcs_size.rc_count, 0, "size of mru state");
1269SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_metadata_esize, CTLFLAG_RD,
1270    &ARC_mru.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1271    "size of metadata in mru state");
1272SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_data_esize, CTLFLAG_RD,
1273    &ARC_mru.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1274    "size of data in mru state");
1275
1276SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_size, CTLFLAG_RD,
1277    &ARC_mru_ghost.arcs_size.rc_count, 0, "size of mru ghost state");
1278SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_metadata_esize, CTLFLAG_RD,
1279    &ARC_mru_ghost.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1280    "size of metadata in mru ghost state");
1281SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_data_esize, CTLFLAG_RD,
1282    &ARC_mru_ghost.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1283    "size of data in mru ghost state");
1284
1285SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_size, CTLFLAG_RD,
1286    &ARC_mfu.arcs_size.rc_count, 0, "size of mfu state");
1287SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_metadata_esize, CTLFLAG_RD,
1288    &ARC_mfu.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1289    "size of metadata in mfu state");
1290SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_data_esize, CTLFLAG_RD,
1291    &ARC_mfu.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1292    "size of data in mfu state");
1293
1294SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_size, CTLFLAG_RD,
1295    &ARC_mfu_ghost.arcs_size.rc_count, 0, "size of mfu ghost state");
1296SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_metadata_esize, CTLFLAG_RD,
1297    &ARC_mfu_ghost.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1298    "size of metadata in mfu ghost state");
1299SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_data_esize, CTLFLAG_RD,
1300    &ARC_mfu_ghost.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1301    "size of data in mfu ghost state");
1302
1303SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2c_only_size, CTLFLAG_RD,
1304    &ARC_l2c_only.arcs_size.rc_count, 0, "size of mru state");
1305
1306/*
1307 * L2ARC Internals
1308 */
1309struct l2arc_dev {
1310	vdev_t			*l2ad_vdev;	/* vdev */
1311	spa_t			*l2ad_spa;	/* spa */
1312	uint64_t		l2ad_hand;	/* next write location */
1313	uint64_t		l2ad_start;	/* first addr on device */
1314	uint64_t		l2ad_end;	/* last addr on device */
1315	boolean_t		l2ad_first;	/* first sweep through */
1316	boolean_t		l2ad_writing;	/* currently writing */
1317	kmutex_t		l2ad_mtx;	/* lock for buffer list */
1318	list_t			l2ad_buflist;	/* buffer list */
1319	list_node_t		l2ad_node;	/* device list node */
1320	refcount_t		l2ad_alloc;	/* allocated bytes */
1321};
1322
1323static list_t L2ARC_dev_list;			/* device list */
1324static list_t *l2arc_dev_list;			/* device list pointer */
1325static kmutex_t l2arc_dev_mtx;			/* device list mutex */
1326static l2arc_dev_t *l2arc_dev_last;		/* last device used */
1327static list_t L2ARC_free_on_write;		/* free after write buf list */
1328static list_t *l2arc_free_on_write;		/* free after write list ptr */
1329static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
1330static uint64_t l2arc_ndev;			/* number of devices */
1331
1332typedef struct l2arc_read_callback {
1333	arc_buf_hdr_t		*l2rcb_hdr;		/* read buffer */
1334	blkptr_t		l2rcb_bp;		/* original blkptr */
1335	zbookmark_phys_t	l2rcb_zb;		/* original bookmark */
1336	int			l2rcb_flags;		/* original flags */
1337	void			*l2rcb_data;		/* temporary buffer */
1338} l2arc_read_callback_t;
1339
1340typedef struct l2arc_write_callback {
1341	l2arc_dev_t	*l2wcb_dev;		/* device info */
1342	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
1343} l2arc_write_callback_t;
1344
1345typedef struct l2arc_data_free {
1346	/* protected by l2arc_free_on_write_mtx */
1347	void		*l2df_data;
1348	size_t		l2df_size;
1349	arc_buf_contents_t l2df_type;
1350	list_node_t	l2df_list_node;
1351} l2arc_data_free_t;
1352
1353static kmutex_t l2arc_feed_thr_lock;
1354static kcondvar_t l2arc_feed_thr_cv;
1355static uint8_t l2arc_thread_exit;
1356
1357static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *);
1358static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *);
1359static void arc_hdr_free_pdata(arc_buf_hdr_t *hdr);
1360static void arc_hdr_alloc_pdata(arc_buf_hdr_t *);
1361static void arc_access(arc_buf_hdr_t *, kmutex_t *);
1362static boolean_t arc_is_overflowing();
1363static void arc_buf_watch(arc_buf_t *);
1364
1365static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
1366static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
1367static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1368static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1369
1370static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
1371static void l2arc_read_done(zio_t *);
1372
1373static void
1374l2arc_trim(const arc_buf_hdr_t *hdr)
1375{
1376	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
1377
1378	ASSERT(HDR_HAS_L2HDR(hdr));
1379	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
1380
1381	if (HDR_GET_PSIZE(hdr) != 0) {
1382		trim_map_free(dev->l2ad_vdev, hdr->b_l2hdr.b_daddr,
1383		    HDR_GET_PSIZE(hdr), 0);
1384	}
1385}
1386
1387static uint64_t
1388buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
1389{
1390	uint8_t *vdva = (uint8_t *)dva;
1391	uint64_t crc = -1ULL;
1392	int i;
1393
1394	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
1395
1396	for (i = 0; i < sizeof (dva_t); i++)
1397		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
1398
1399	crc ^= (spa>>8) ^ birth;
1400
1401	return (crc);
1402}
1403
1404#define	HDR_EMPTY(hdr)						\
1405	((hdr)->b_dva.dva_word[0] == 0 &&			\
1406	(hdr)->b_dva.dva_word[1] == 0)
1407
1408#define	HDR_EQUAL(spa, dva, birth, hdr)				\
1409	((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
1410	((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
1411	((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
1412
1413static void
1414buf_discard_identity(arc_buf_hdr_t *hdr)
1415{
1416	hdr->b_dva.dva_word[0] = 0;
1417	hdr->b_dva.dva_word[1] = 0;
1418	hdr->b_birth = 0;
1419}
1420
1421static arc_buf_hdr_t *
1422buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1423{
1424	const dva_t *dva = BP_IDENTITY(bp);
1425	uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1426	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1427	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1428	arc_buf_hdr_t *hdr;
1429
1430	mutex_enter(hash_lock);
1431	for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1432	    hdr = hdr->b_hash_next) {
1433		if (HDR_EQUAL(spa, dva, birth, hdr)) {
1434			*lockp = hash_lock;
1435			return (hdr);
1436		}
1437	}
1438	mutex_exit(hash_lock);
1439	*lockp = NULL;
1440	return (NULL);
1441}
1442
1443/*
1444 * Insert an entry into the hash table.  If there is already an element
1445 * equal to elem in the hash table, then the already existing element
1446 * will be returned and the new element will not be inserted.
1447 * Otherwise returns NULL.
1448 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1449 */
1450static arc_buf_hdr_t *
1451buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1452{
1453	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1454	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1455	arc_buf_hdr_t *fhdr;
1456	uint32_t i;
1457
1458	ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1459	ASSERT(hdr->b_birth != 0);
1460	ASSERT(!HDR_IN_HASH_TABLE(hdr));
1461
1462	if (lockp != NULL) {
1463		*lockp = hash_lock;
1464		mutex_enter(hash_lock);
1465	} else {
1466		ASSERT(MUTEX_HELD(hash_lock));
1467	}
1468
1469	for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1470	    fhdr = fhdr->b_hash_next, i++) {
1471		if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1472			return (fhdr);
1473	}
1474
1475	hdr->b_hash_next = buf_hash_table.ht_table[idx];
1476	buf_hash_table.ht_table[idx] = hdr;
1477	arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1478
1479	/* collect some hash table performance data */
1480	if (i > 0) {
1481		ARCSTAT_BUMP(arcstat_hash_collisions);
1482		if (i == 1)
1483			ARCSTAT_BUMP(arcstat_hash_chains);
1484
1485		ARCSTAT_MAX(arcstat_hash_chain_max, i);
1486	}
1487
1488	ARCSTAT_BUMP(arcstat_hash_elements);
1489	ARCSTAT_MAXSTAT(arcstat_hash_elements);
1490
1491	return (NULL);
1492}
1493
1494static void
1495buf_hash_remove(arc_buf_hdr_t *hdr)
1496{
1497	arc_buf_hdr_t *fhdr, **hdrp;
1498	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1499
1500	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1501	ASSERT(HDR_IN_HASH_TABLE(hdr));
1502
1503	hdrp = &buf_hash_table.ht_table[idx];
1504	while ((fhdr = *hdrp) != hdr) {
1505		ASSERT3P(fhdr, !=, NULL);
1506		hdrp = &fhdr->b_hash_next;
1507	}
1508	*hdrp = hdr->b_hash_next;
1509	hdr->b_hash_next = NULL;
1510	arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1511
1512	/* collect some hash table performance data */
1513	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1514
1515	if (buf_hash_table.ht_table[idx] &&
1516	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1517		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1518}
1519
1520/*
1521 * Global data structures and functions for the buf kmem cache.
1522 */
1523static kmem_cache_t *hdr_full_cache;
1524static kmem_cache_t *hdr_l2only_cache;
1525static kmem_cache_t *buf_cache;
1526
1527static void
1528buf_fini(void)
1529{
1530	int i;
1531
1532	kmem_free(buf_hash_table.ht_table,
1533	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1534	for (i = 0; i < BUF_LOCKS; i++)
1535		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1536	kmem_cache_destroy(hdr_full_cache);
1537	kmem_cache_destroy(hdr_l2only_cache);
1538	kmem_cache_destroy(buf_cache);
1539}
1540
1541/*
1542 * Constructor callback - called when the cache is empty
1543 * and a new buf is requested.
1544 */
1545/* ARGSUSED */
1546static int
1547hdr_full_cons(void *vbuf, void *unused, int kmflag)
1548{
1549	arc_buf_hdr_t *hdr = vbuf;
1550
1551	bzero(hdr, HDR_FULL_SIZE);
1552	cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1553	refcount_create(&hdr->b_l1hdr.b_refcnt);
1554	mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1555	multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1556	arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1557
1558	return (0);
1559}
1560
1561/* ARGSUSED */
1562static int
1563hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1564{
1565	arc_buf_hdr_t *hdr = vbuf;
1566
1567	bzero(hdr, HDR_L2ONLY_SIZE);
1568	arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1569
1570	return (0);
1571}
1572
1573/* ARGSUSED */
1574static int
1575buf_cons(void *vbuf, void *unused, int kmflag)
1576{
1577	arc_buf_t *buf = vbuf;
1578
1579	bzero(buf, sizeof (arc_buf_t));
1580	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1581	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1582
1583	return (0);
1584}
1585
1586/*
1587 * Destructor callback - called when a cached buf is
1588 * no longer required.
1589 */
1590/* ARGSUSED */
1591static void
1592hdr_full_dest(void *vbuf, void *unused)
1593{
1594	arc_buf_hdr_t *hdr = vbuf;
1595
1596	ASSERT(HDR_EMPTY(hdr));
1597	cv_destroy(&hdr->b_l1hdr.b_cv);
1598	refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1599	mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1600	ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1601	arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1602}
1603
1604/* ARGSUSED */
1605static void
1606hdr_l2only_dest(void *vbuf, void *unused)
1607{
1608	arc_buf_hdr_t *hdr = vbuf;
1609
1610	ASSERT(HDR_EMPTY(hdr));
1611	arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1612}
1613
1614/* ARGSUSED */
1615static void
1616buf_dest(void *vbuf, void *unused)
1617{
1618	arc_buf_t *buf = vbuf;
1619
1620	mutex_destroy(&buf->b_evict_lock);
1621	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1622}
1623
1624/*
1625 * Reclaim callback -- invoked when memory is low.
1626 */
1627/* ARGSUSED */
1628static void
1629hdr_recl(void *unused)
1630{
1631	dprintf("hdr_recl called\n");
1632	/*
1633	 * umem calls the reclaim func when we destroy the buf cache,
1634	 * which is after we do arc_fini().
1635	 */
1636	if (!arc_dead)
1637		cv_signal(&arc_reclaim_thread_cv);
1638}
1639
1640static void
1641buf_init(void)
1642{
1643	uint64_t *ct;
1644	uint64_t hsize = 1ULL << 12;
1645	int i, j;
1646
1647	/*
1648	 * The hash table is big enough to fill all of physical memory
1649	 * with an average block size of zfs_arc_average_blocksize (default 8K).
1650	 * By default, the table will take up
1651	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1652	 */
1653	while (hsize * zfs_arc_average_blocksize < (uint64_t)physmem * PAGESIZE)
1654		hsize <<= 1;
1655retry:
1656	buf_hash_table.ht_mask = hsize - 1;
1657	buf_hash_table.ht_table =
1658	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1659	if (buf_hash_table.ht_table == NULL) {
1660		ASSERT(hsize > (1ULL << 8));
1661		hsize >>= 1;
1662		goto retry;
1663	}
1664
1665	hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1666	    0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1667	hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1668	    HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1669	    NULL, NULL, 0);
1670	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1671	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1672
1673	for (i = 0; i < 256; i++)
1674		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1675			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1676
1677	for (i = 0; i < BUF_LOCKS; i++) {
1678		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1679		    NULL, MUTEX_DEFAULT, NULL);
1680	}
1681}
1682
1683#define	ARC_MINTIME	(hz>>4) /* 62 ms */
1684
1685static inline boolean_t
1686arc_buf_is_shared(arc_buf_t *buf)
1687{
1688	boolean_t shared = (buf->b_data != NULL &&
1689	    buf->b_data == buf->b_hdr->b_l1hdr.b_pdata);
1690	IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1691	return (shared);
1692}
1693
1694static inline void
1695arc_cksum_free(arc_buf_hdr_t *hdr)
1696{
1697	ASSERT(HDR_HAS_L1HDR(hdr));
1698	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1699	if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1700		kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1701		hdr->b_l1hdr.b_freeze_cksum = NULL;
1702	}
1703	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1704}
1705
1706static void
1707arc_cksum_verify(arc_buf_t *buf)
1708{
1709	arc_buf_hdr_t *hdr = buf->b_hdr;
1710	zio_cksum_t zc;
1711
1712	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1713		return;
1714
1715	ASSERT(HDR_HAS_L1HDR(hdr));
1716
1717	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1718	if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1719		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1720		return;
1721	}
1722	fletcher_2_native(buf->b_data, HDR_GET_LSIZE(hdr), NULL, &zc);
1723	if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1724		panic("buffer modified while frozen!");
1725	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1726}
1727
1728static boolean_t
1729arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1730{
1731	enum zio_compress compress = BP_GET_COMPRESS(zio->io_bp);
1732	boolean_t valid_cksum;
1733
1734	ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1735	VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1736
1737	/*
1738	 * We rely on the blkptr's checksum to determine if the block
1739	 * is valid or not. When compressed arc is enabled, the l2arc
1740	 * writes the block to the l2arc just as it appears in the pool.
1741	 * This allows us to use the blkptr's checksum to validate the
1742	 * data that we just read off of the l2arc without having to store
1743	 * a separate checksum in the arc_buf_hdr_t. However, if compressed
1744	 * arc is disabled, then the data written to the l2arc is always
1745	 * uncompressed and won't match the block as it exists in the main
1746	 * pool. When this is the case, we must first compress it if it is
1747	 * compressed on the main pool before we can validate the checksum.
1748	 */
1749	if (!HDR_COMPRESSION_ENABLED(hdr) && compress != ZIO_COMPRESS_OFF) {
1750		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1751		uint64_t lsize = HDR_GET_LSIZE(hdr);
1752		uint64_t csize;
1753
1754		void *cbuf = zio_buf_alloc(HDR_GET_PSIZE(hdr));
1755		csize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
1756		ASSERT3U(csize, <=, HDR_GET_PSIZE(hdr));
1757		if (csize < HDR_GET_PSIZE(hdr)) {
1758			/*
1759			 * Compressed blocks are always a multiple of the
1760			 * smallest ashift in the pool. Ideally, we would
1761			 * like to round up the csize to the next
1762			 * spa_min_ashift but that value may have changed
1763			 * since the block was last written. Instead,
1764			 * we rely on the fact that the hdr's psize
1765			 * was set to the psize of the block when it was
1766			 * last written. We set the csize to that value
1767			 * and zero out any part that should not contain
1768			 * data.
1769			 */
1770			bzero((char *)cbuf + csize, HDR_GET_PSIZE(hdr) - csize);
1771			csize = HDR_GET_PSIZE(hdr);
1772		}
1773		zio_push_transform(zio, cbuf, csize, HDR_GET_PSIZE(hdr), NULL);
1774	}
1775
1776	/*
1777	 * Block pointers always store the checksum for the logical data.
1778	 * If the block pointer has the gang bit set, then the checksum
1779	 * it represents is for the reconstituted data and not for an
1780	 * individual gang member. The zio pipeline, however, must be able to
1781	 * determine the checksum of each of the gang constituents so it
1782	 * treats the checksum comparison differently than what we need
1783	 * for l2arc blocks. This prevents us from using the
1784	 * zio_checksum_error() interface directly. Instead we must call the
1785	 * zio_checksum_error_impl() so that we can ensure the checksum is
1786	 * generated using the correct checksum algorithm and accounts for the
1787	 * logical I/O size and not just a gang fragment.
1788	 */
1789	valid_cksum = (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1790	    BP_GET_CHECKSUM(zio->io_bp), zio->io_data, zio->io_size,
1791	    zio->io_offset, NULL) == 0);
1792	zio_pop_transforms(zio);
1793	return (valid_cksum);
1794}
1795
1796static void
1797arc_cksum_compute(arc_buf_t *buf)
1798{
1799	arc_buf_hdr_t *hdr = buf->b_hdr;
1800
1801	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1802		return;
1803
1804	ASSERT(HDR_HAS_L1HDR(hdr));
1805	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1806	if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1807		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1808		return;
1809	}
1810	hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1811	    KM_SLEEP);
1812	fletcher_2_native(buf->b_data, HDR_GET_LSIZE(hdr), NULL,
1813	    hdr->b_l1hdr.b_freeze_cksum);
1814	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1815#ifdef illumos
1816	arc_buf_watch(buf);
1817#endif
1818}
1819
1820#ifdef illumos
1821#ifndef _KERNEL
1822typedef struct procctl {
1823	long cmd;
1824	prwatch_t prwatch;
1825} procctl_t;
1826#endif
1827
1828/* ARGSUSED */
1829static void
1830arc_buf_unwatch(arc_buf_t *buf)
1831{
1832#ifndef _KERNEL
1833	if (arc_watch) {
1834		int result;
1835		procctl_t ctl;
1836		ctl.cmd = PCWATCH;
1837		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1838		ctl.prwatch.pr_size = 0;
1839		ctl.prwatch.pr_wflags = 0;
1840		result = write(arc_procfd, &ctl, sizeof (ctl));
1841		ASSERT3U(result, ==, sizeof (ctl));
1842	}
1843#endif
1844}
1845
1846/* ARGSUSED */
1847static void
1848arc_buf_watch(arc_buf_t *buf)
1849{
1850#ifndef _KERNEL
1851	if (arc_watch) {
1852		int result;
1853		procctl_t ctl;
1854		ctl.cmd = PCWATCH;
1855		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1856		ctl.prwatch.pr_size = HDR_GET_LSIZE(buf->b_hdr);
1857		ctl.prwatch.pr_wflags = WA_WRITE;
1858		result = write(arc_procfd, &ctl, sizeof (ctl));
1859		ASSERT3U(result, ==, sizeof (ctl));
1860	}
1861#endif
1862}
1863#endif /* illumos */
1864
1865static arc_buf_contents_t
1866arc_buf_type(arc_buf_hdr_t *hdr)
1867{
1868	arc_buf_contents_t type;
1869	if (HDR_ISTYPE_METADATA(hdr)) {
1870		type = ARC_BUFC_METADATA;
1871	} else {
1872		type = ARC_BUFC_DATA;
1873	}
1874	VERIFY3U(hdr->b_type, ==, type);
1875	return (type);
1876}
1877
1878static uint32_t
1879arc_bufc_to_flags(arc_buf_contents_t type)
1880{
1881	switch (type) {
1882	case ARC_BUFC_DATA:
1883		/* metadata field is 0 if buffer contains normal data */
1884		return (0);
1885	case ARC_BUFC_METADATA:
1886		return (ARC_FLAG_BUFC_METADATA);
1887	default:
1888		break;
1889	}
1890	panic("undefined ARC buffer type!");
1891	return ((uint32_t)-1);
1892}
1893
1894void
1895arc_buf_thaw(arc_buf_t *buf)
1896{
1897	arc_buf_hdr_t *hdr = buf->b_hdr;
1898
1899	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1900		if (hdr->b_l1hdr.b_state != arc_anon)
1901			panic("modifying non-anon buffer!");
1902		if (HDR_IO_IN_PROGRESS(hdr))
1903			panic("modifying buffer while i/o in progress!");
1904		arc_cksum_verify(buf);
1905	}
1906
1907	ASSERT(HDR_HAS_L1HDR(hdr));
1908	arc_cksum_free(hdr);
1909
1910	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1911#ifdef ZFS_DEBUG
1912	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1913		if (hdr->b_l1hdr.b_thawed != NULL)
1914			kmem_free(hdr->b_l1hdr.b_thawed, 1);
1915		hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP);
1916	}
1917#endif
1918
1919	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1920
1921#ifdef illumos
1922	arc_buf_unwatch(buf);
1923#endif
1924}
1925
1926void
1927arc_buf_freeze(arc_buf_t *buf)
1928{
1929	arc_buf_hdr_t *hdr = buf->b_hdr;
1930	kmutex_t *hash_lock;
1931
1932	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1933		return;
1934
1935	hash_lock = HDR_LOCK(hdr);
1936	mutex_enter(hash_lock);
1937
1938	ASSERT(HDR_HAS_L1HDR(hdr));
1939	ASSERT(hdr->b_l1hdr.b_freeze_cksum != NULL ||
1940	    hdr->b_l1hdr.b_state == arc_anon);
1941	arc_cksum_compute(buf);
1942	mutex_exit(hash_lock);
1943
1944}
1945
1946/*
1947 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1948 * the following functions should be used to ensure that the flags are
1949 * updated in a thread-safe way. When manipulating the flags either
1950 * the hash_lock must be held or the hdr must be undiscoverable. This
1951 * ensures that we're not racing with any other threads when updating
1952 * the flags.
1953 */
1954static inline void
1955arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1956{
1957	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1958	hdr->b_flags |= flags;
1959}
1960
1961static inline void
1962arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1963{
1964	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1965	hdr->b_flags &= ~flags;
1966}
1967
1968/*
1969 * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1970 * done in a special way since we have to clear and set bits
1971 * at the same time. Consumers that wish to set the compression bits
1972 * must use this function to ensure that the flags are updated in
1973 * thread-safe manner.
1974 */
1975static void
1976arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1977{
1978	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1979
1980	/*
1981	 * Holes and embedded blocks will always have a psize = 0 so
1982	 * we ignore the compression of the blkptr and set the
1983	 * arc_buf_hdr_t's compression to ZIO_COMPRESS_OFF.
1984	 * Holes and embedded blocks remain anonymous so we don't
1985	 * want to uncompress them. Mark them as uncompressed.
1986	 */
1987	if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1988		arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1989		HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
1990		ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
1991		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1992	} else {
1993		arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1994		HDR_SET_COMPRESS(hdr, cmp);
1995		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
1996		ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1997	}
1998}
1999
2000static int
2001arc_decompress(arc_buf_t *buf)
2002{
2003	arc_buf_hdr_t *hdr = buf->b_hdr;
2004	dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
2005	int error;
2006
2007	if (arc_buf_is_shared(buf)) {
2008		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
2009	} else if (HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) {
2010		/*
2011		 * The arc_buf_hdr_t is either not compressed or is
2012		 * associated with an embedded block or a hole in which
2013		 * case they remain anonymous.
2014		 */
2015		IMPLY(HDR_COMPRESSION_ENABLED(hdr), HDR_GET_PSIZE(hdr) == 0 ||
2016		    HDR_GET_PSIZE(hdr) == HDR_GET_LSIZE(hdr));
2017		ASSERT(!HDR_SHARED_DATA(hdr));
2018		bcopy(hdr->b_l1hdr.b_pdata, buf->b_data, HDR_GET_LSIZE(hdr));
2019	} else {
2020		ASSERT(!HDR_SHARED_DATA(hdr));
2021		ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr));
2022		error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
2023		    hdr->b_l1hdr.b_pdata, buf->b_data, HDR_GET_PSIZE(hdr),
2024		    HDR_GET_LSIZE(hdr));
2025		if (error != 0) {
2026			zfs_dbgmsg("hdr %p, compress %d, psize %d, lsize %d",
2027			    hdr, HDR_GET_COMPRESS(hdr), HDR_GET_PSIZE(hdr),
2028			    HDR_GET_LSIZE(hdr));
2029			return (SET_ERROR(EIO));
2030		}
2031	}
2032	if (bswap != DMU_BSWAP_NUMFUNCS) {
2033		ASSERT(!HDR_SHARED_DATA(hdr));
2034		ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
2035		dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
2036	}
2037	arc_cksum_compute(buf);
2038	return (0);
2039}
2040
2041/*
2042 * Return the size of the block, b_pdata, that is stored in the arc_buf_hdr_t.
2043 */
2044static uint64_t
2045arc_hdr_size(arc_buf_hdr_t *hdr)
2046{
2047	uint64_t size;
2048
2049	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
2050	    HDR_GET_PSIZE(hdr) > 0) {
2051		size = HDR_GET_PSIZE(hdr);
2052	} else {
2053		ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
2054		size = HDR_GET_LSIZE(hdr);
2055	}
2056	return (size);
2057}
2058
2059/*
2060 * Increment the amount of evictable space in the arc_state_t's refcount.
2061 * We account for the space used by the hdr and the arc buf individually
2062 * so that we can add and remove them from the refcount individually.
2063 */
2064static void
2065arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2066{
2067	arc_buf_contents_t type = arc_buf_type(hdr);
2068	uint64_t lsize = HDR_GET_LSIZE(hdr);
2069
2070	ASSERT(HDR_HAS_L1HDR(hdr));
2071
2072	if (GHOST_STATE(state)) {
2073		ASSERT0(hdr->b_l1hdr.b_bufcnt);
2074		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2075		ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
2076		(void) refcount_add_many(&state->arcs_esize[type], lsize, hdr);
2077		return;
2078	}
2079
2080	ASSERT(!GHOST_STATE(state));
2081	if (hdr->b_l1hdr.b_pdata != NULL) {
2082		(void) refcount_add_many(&state->arcs_esize[type],
2083		    arc_hdr_size(hdr), hdr);
2084	}
2085	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2086	    buf = buf->b_next) {
2087		if (arc_buf_is_shared(buf)) {
2088			ASSERT(ARC_BUF_LAST(buf));
2089			continue;
2090		}
2091		(void) refcount_add_many(&state->arcs_esize[type], lsize, buf);
2092	}
2093}
2094
2095/*
2096 * Decrement the amount of evictable space in the arc_state_t's refcount.
2097 * We account for the space used by the hdr and the arc buf individually
2098 * so that we can add and remove them from the refcount individually.
2099 */
2100static void
2101arc_evitable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
2102{
2103	arc_buf_contents_t type = arc_buf_type(hdr);
2104	uint64_t lsize = HDR_GET_LSIZE(hdr);
2105
2106	ASSERT(HDR_HAS_L1HDR(hdr));
2107
2108	if (GHOST_STATE(state)) {
2109		ASSERT0(hdr->b_l1hdr.b_bufcnt);
2110		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2111		ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
2112		(void) refcount_remove_many(&state->arcs_esize[type],
2113		    lsize, hdr);
2114		return;
2115	}
2116
2117	ASSERT(!GHOST_STATE(state));
2118	if (hdr->b_l1hdr.b_pdata != NULL) {
2119		(void) refcount_remove_many(&state->arcs_esize[type],
2120		    arc_hdr_size(hdr), hdr);
2121	}
2122	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2123	    buf = buf->b_next) {
2124		if (arc_buf_is_shared(buf)) {
2125			ASSERT(ARC_BUF_LAST(buf));
2126			continue;
2127		}
2128		(void) refcount_remove_many(&state->arcs_esize[type],
2129		    lsize, buf);
2130	}
2131}
2132
2133/*
2134 * Add a reference to this hdr indicating that someone is actively
2135 * referencing that memory. When the refcount transitions from 0 to 1,
2136 * we remove it from the respective arc_state_t list to indicate that
2137 * it is not evictable.
2138 */
2139static void
2140add_reference(arc_buf_hdr_t *hdr, void *tag)
2141{
2142	ASSERT(HDR_HAS_L1HDR(hdr));
2143	if (!MUTEX_HELD(HDR_LOCK(hdr))) {
2144		ASSERT(hdr->b_l1hdr.b_state == arc_anon);
2145		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2146		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2147	}
2148
2149	arc_state_t *state = hdr->b_l1hdr.b_state;
2150
2151	if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2152	    (state != arc_anon)) {
2153		/* We don't use the L2-only state list. */
2154		if (state != arc_l2c_only) {
2155			multilist_remove(&state->arcs_list[arc_buf_type(hdr)],
2156			    hdr);
2157			arc_evitable_space_decrement(hdr, state);
2158		}
2159		/* remove the prefetch flag if we get a reference */
2160		arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
2161	}
2162}
2163
2164/*
2165 * Remove a reference from this hdr. When the reference transitions from
2166 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2167 * list making it eligible for eviction.
2168 */
2169static int
2170remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
2171{
2172	int cnt;
2173	arc_state_t *state = hdr->b_l1hdr.b_state;
2174
2175	ASSERT(HDR_HAS_L1HDR(hdr));
2176	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
2177	ASSERT(!GHOST_STATE(state));
2178
2179	/*
2180	 * arc_l2c_only counts as a ghost state so we don't need to explicitly
2181	 * check to prevent usage of the arc_l2c_only list.
2182	 */
2183	if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
2184	    (state != arc_anon)) {
2185		multilist_insert(&state->arcs_list[arc_buf_type(hdr)], hdr);
2186		ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
2187		arc_evictable_space_increment(hdr, state);
2188	}
2189	return (cnt);
2190}
2191
2192/*
2193 * Move the supplied buffer to the indicated state. The hash lock
2194 * for the buffer must be held by the caller.
2195 */
2196static void
2197arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
2198    kmutex_t *hash_lock)
2199{
2200	arc_state_t *old_state;
2201	int64_t refcnt;
2202	uint32_t bufcnt;
2203	boolean_t update_old, update_new;
2204	arc_buf_contents_t buftype = arc_buf_type(hdr);
2205
2206	/*
2207	 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2208	 * in arc_read() when bringing a buffer out of the L2ARC.  However, the
2209	 * L1 hdr doesn't always exist when we change state to arc_anon before
2210	 * destroying a header, in which case reallocating to add the L1 hdr is
2211	 * pointless.
2212	 */
2213	if (HDR_HAS_L1HDR(hdr)) {
2214		old_state = hdr->b_l1hdr.b_state;
2215		refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
2216		bufcnt = hdr->b_l1hdr.b_bufcnt;
2217		update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pdata != NULL);
2218	} else {
2219		old_state = arc_l2c_only;
2220		refcnt = 0;
2221		bufcnt = 0;
2222		update_old = B_FALSE;
2223	}
2224	update_new = update_old;
2225
2226	ASSERT(MUTEX_HELD(hash_lock));
2227	ASSERT3P(new_state, !=, old_state);
2228	ASSERT(!GHOST_STATE(new_state) || bufcnt == 0);
2229	ASSERT(old_state != arc_anon || bufcnt <= 1);
2230
2231	/*
2232	 * If this buffer is evictable, transfer it from the
2233	 * old state list to the new state list.
2234	 */
2235	if (refcnt == 0) {
2236		if (old_state != arc_anon && old_state != arc_l2c_only) {
2237			ASSERT(HDR_HAS_L1HDR(hdr));
2238			multilist_remove(&old_state->arcs_list[buftype], hdr);
2239
2240			if (GHOST_STATE(old_state)) {
2241				ASSERT0(bufcnt);
2242				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2243				update_old = B_TRUE;
2244			}
2245			arc_evitable_space_decrement(hdr, old_state);
2246		}
2247		if (new_state != arc_anon && new_state != arc_l2c_only) {
2248
2249			/*
2250			 * An L1 header always exists here, since if we're
2251			 * moving to some L1-cached state (i.e. not l2c_only or
2252			 * anonymous), we realloc the header to add an L1hdr
2253			 * beforehand.
2254			 */
2255			ASSERT(HDR_HAS_L1HDR(hdr));
2256			multilist_insert(&new_state->arcs_list[buftype], hdr);
2257
2258			if (GHOST_STATE(new_state)) {
2259				ASSERT0(bufcnt);
2260				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2261				update_new = B_TRUE;
2262			}
2263			arc_evictable_space_increment(hdr, new_state);
2264		}
2265	}
2266
2267	ASSERT(!HDR_EMPTY(hdr));
2268	if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2269		buf_hash_remove(hdr);
2270
2271	/* adjust state sizes (ignore arc_l2c_only) */
2272
2273	if (update_new && new_state != arc_l2c_only) {
2274		ASSERT(HDR_HAS_L1HDR(hdr));
2275		if (GHOST_STATE(new_state)) {
2276			ASSERT0(bufcnt);
2277
2278			/*
2279			 * When moving a header to a ghost state, we first
2280			 * remove all arc buffers. Thus, we'll have a
2281			 * bufcnt of zero, and no arc buffer to use for
2282			 * the reference. As a result, we use the arc
2283			 * header pointer for the reference.
2284			 */
2285			(void) refcount_add_many(&new_state->arcs_size,
2286			    HDR_GET_LSIZE(hdr), hdr);
2287			ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
2288		} else {
2289			uint32_t buffers = 0;
2290
2291			/*
2292			 * Each individual buffer holds a unique reference,
2293			 * thus we must remove each of these references one
2294			 * at a time.
2295			 */
2296			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2297			    buf = buf->b_next) {
2298				ASSERT3U(bufcnt, !=, 0);
2299				buffers++;
2300
2301				/*
2302				 * When the arc_buf_t is sharing the data
2303				 * block with the hdr, the owner of the
2304				 * reference belongs to the hdr. Only
2305				 * add to the refcount if the arc_buf_t is
2306				 * not shared.
2307				 */
2308				if (arc_buf_is_shared(buf)) {
2309					ASSERT(ARC_BUF_LAST(buf));
2310					continue;
2311				}
2312
2313				(void) refcount_add_many(&new_state->arcs_size,
2314				    HDR_GET_LSIZE(hdr), buf);
2315			}
2316			ASSERT3U(bufcnt, ==, buffers);
2317
2318			if (hdr->b_l1hdr.b_pdata != NULL) {
2319				(void) refcount_add_many(&new_state->arcs_size,
2320				    arc_hdr_size(hdr), hdr);
2321			} else {
2322				ASSERT(GHOST_STATE(old_state));
2323			}
2324		}
2325	}
2326
2327	if (update_old && old_state != arc_l2c_only) {
2328		ASSERT(HDR_HAS_L1HDR(hdr));
2329		if (GHOST_STATE(old_state)) {
2330			ASSERT0(bufcnt);
2331
2332			/*
2333			 * When moving a header off of a ghost state,
2334			 * the header will not contain any arc buffers.
2335			 * We use the arc header pointer for the reference
2336			 * which is exactly what we did when we put the
2337			 * header on the ghost state.
2338			 */
2339
2340			(void) refcount_remove_many(&old_state->arcs_size,
2341			    HDR_GET_LSIZE(hdr), hdr);
2342			ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
2343		} else {
2344			uint32_t buffers = 0;
2345
2346			/*
2347			 * Each individual buffer holds a unique reference,
2348			 * thus we must remove each of these references one
2349			 * at a time.
2350			 */
2351			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2352			    buf = buf->b_next) {
2353				ASSERT3P(bufcnt, !=, 0);
2354				buffers++;
2355
2356				/*
2357				 * When the arc_buf_t is sharing the data
2358				 * block with the hdr, the owner of the
2359				 * reference belongs to the hdr. Only
2360				 * add to the refcount if the arc_buf_t is
2361				 * not shared.
2362				 */
2363				if (arc_buf_is_shared(buf)) {
2364					ASSERT(ARC_BUF_LAST(buf));
2365					continue;
2366				}
2367
2368				(void) refcount_remove_many(
2369				    &old_state->arcs_size, HDR_GET_LSIZE(hdr),
2370				    buf);
2371			}
2372			ASSERT3U(bufcnt, ==, buffers);
2373			ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
2374			(void) refcount_remove_many(
2375			    &old_state->arcs_size, arc_hdr_size(hdr), hdr);
2376		}
2377	}
2378
2379	if (HDR_HAS_L1HDR(hdr))
2380		hdr->b_l1hdr.b_state = new_state;
2381
2382	/*
2383	 * L2 headers should never be on the L2 state list since they don't
2384	 * have L1 headers allocated.
2385	 */
2386	ASSERT(multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
2387	    multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
2388}
2389
2390void
2391arc_space_consume(uint64_t space, arc_space_type_t type)
2392{
2393	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2394
2395	switch (type) {
2396	case ARC_SPACE_DATA:
2397		ARCSTAT_INCR(arcstat_data_size, space);
2398		break;
2399	case ARC_SPACE_META:
2400		ARCSTAT_INCR(arcstat_metadata_size, space);
2401		break;
2402	case ARC_SPACE_OTHER:
2403		ARCSTAT_INCR(arcstat_other_size, space);
2404		break;
2405	case ARC_SPACE_HDRS:
2406		ARCSTAT_INCR(arcstat_hdr_size, space);
2407		break;
2408	case ARC_SPACE_L2HDRS:
2409		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
2410		break;
2411	}
2412
2413	if (type != ARC_SPACE_DATA)
2414		ARCSTAT_INCR(arcstat_meta_used, space);
2415
2416	atomic_add_64(&arc_size, space);
2417}
2418
2419void
2420arc_space_return(uint64_t space, arc_space_type_t type)
2421{
2422	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2423
2424	switch (type) {
2425	case ARC_SPACE_DATA:
2426		ARCSTAT_INCR(arcstat_data_size, -space);
2427		break;
2428	case ARC_SPACE_META:
2429		ARCSTAT_INCR(arcstat_metadata_size, -space);
2430		break;
2431	case ARC_SPACE_OTHER:
2432		ARCSTAT_INCR(arcstat_other_size, -space);
2433		break;
2434	case ARC_SPACE_HDRS:
2435		ARCSTAT_INCR(arcstat_hdr_size, -space);
2436		break;
2437	case ARC_SPACE_L2HDRS:
2438		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
2439		break;
2440	}
2441
2442	if (type != ARC_SPACE_DATA) {
2443		ASSERT(arc_meta_used >= space);
2444		if (arc_meta_max < arc_meta_used)
2445			arc_meta_max = arc_meta_used;
2446		ARCSTAT_INCR(arcstat_meta_used, -space);
2447	}
2448
2449	ASSERT(arc_size >= space);
2450	atomic_add_64(&arc_size, -space);
2451}
2452
2453/*
2454 * Allocate an initial buffer for this hdr, subsequent buffers will
2455 * use arc_buf_clone().
2456 */
2457static arc_buf_t *
2458arc_buf_alloc_impl(arc_buf_hdr_t *hdr, void *tag)
2459{
2460	arc_buf_t *buf;
2461
2462	ASSERT(HDR_HAS_L1HDR(hdr));
2463	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2464	VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2465	    hdr->b_type == ARC_BUFC_METADATA);
2466
2467	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2468	ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2469	ASSERT0(hdr->b_l1hdr.b_bufcnt);
2470
2471	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2472	buf->b_hdr = hdr;
2473	buf->b_data = NULL;
2474	buf->b_next = NULL;
2475
2476	add_reference(hdr, tag);
2477
2478	/*
2479	 * We're about to change the hdr's b_flags. We must either
2480	 * hold the hash_lock or be undiscoverable.
2481	 */
2482	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2483
2484	/*
2485	 * If the hdr's data can be shared (no byteswapping, hdr is
2486	 * uncompressed, hdr's data is not currently being written to the
2487	 * L2ARC write) then we share the data buffer and set the appropriate
2488	 * bit in the hdr's b_flags to indicate the hdr is sharing it's
2489	 * b_pdata with the arc_buf_t. Otherwise, we allocate a new buffer to
2490	 * store the buf's data.
2491	 */
2492	if (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2493	    HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF && !HDR_L2_WRITING(hdr)) {
2494		buf->b_data = hdr->b_l1hdr.b_pdata;
2495		arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2496	} else {
2497		buf->b_data = arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2498		ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
2499		arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2500	}
2501	VERIFY3P(buf->b_data, !=, NULL);
2502
2503	hdr->b_l1hdr.b_buf = buf;
2504	hdr->b_l1hdr.b_bufcnt += 1;
2505
2506	return (buf);
2507}
2508
2509/*
2510 * Used when allocating additional buffers.
2511 */
2512static arc_buf_t *
2513arc_buf_clone(arc_buf_t *from)
2514{
2515	arc_buf_t *buf;
2516	arc_buf_hdr_t *hdr = from->b_hdr;
2517	uint64_t size = HDR_GET_LSIZE(hdr);
2518
2519	ASSERT(HDR_HAS_L1HDR(hdr));
2520	ASSERT(hdr->b_l1hdr.b_state != arc_anon);
2521
2522	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2523	buf->b_hdr = hdr;
2524	buf->b_data = NULL;
2525	buf->b_next = hdr->b_l1hdr.b_buf;
2526	hdr->b_l1hdr.b_buf = buf;
2527	buf->b_data = arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2528	bcopy(from->b_data, buf->b_data, size);
2529	hdr->b_l1hdr.b_bufcnt += 1;
2530
2531	ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
2532	return (buf);
2533}
2534
2535static char *arc_onloan_tag = "onloan";
2536
2537/*
2538 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2539 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2540 * buffers must be returned to the arc before they can be used by the DMU or
2541 * freed.
2542 */
2543arc_buf_t *
2544arc_loan_buf(spa_t *spa, int size)
2545{
2546	arc_buf_t *buf;
2547
2548	buf = arc_alloc_buf(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
2549
2550	atomic_add_64(&arc_loaned_bytes, size);
2551	return (buf);
2552}
2553
2554/*
2555 * Return a loaned arc buffer to the arc.
2556 */
2557void
2558arc_return_buf(arc_buf_t *buf, void *tag)
2559{
2560	arc_buf_hdr_t *hdr = buf->b_hdr;
2561
2562	ASSERT3P(buf->b_data, !=, NULL);
2563	ASSERT(HDR_HAS_L1HDR(hdr));
2564	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2565	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2566
2567	atomic_add_64(&arc_loaned_bytes, -HDR_GET_LSIZE(hdr));
2568}
2569
2570/* Detach an arc_buf from a dbuf (tag) */
2571void
2572arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2573{
2574	arc_buf_hdr_t *hdr = buf->b_hdr;
2575
2576	ASSERT3P(buf->b_data, !=, NULL);
2577	ASSERT(HDR_HAS_L1HDR(hdr));
2578	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2579	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2580
2581	atomic_add_64(&arc_loaned_bytes, HDR_GET_LSIZE(hdr));
2582}
2583
2584static void
2585l2arc_free_data_on_write(void *data, size_t size, arc_buf_contents_t type)
2586{
2587	l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2588
2589	df->l2df_data = data;
2590	df->l2df_size = size;
2591	df->l2df_type = type;
2592	mutex_enter(&l2arc_free_on_write_mtx);
2593	list_insert_head(l2arc_free_on_write, df);
2594	mutex_exit(&l2arc_free_on_write_mtx);
2595}
2596
2597static void
2598arc_hdr_free_on_write(arc_buf_hdr_t *hdr)
2599{
2600	arc_state_t *state = hdr->b_l1hdr.b_state;
2601	arc_buf_contents_t type = arc_buf_type(hdr);
2602	uint64_t size = arc_hdr_size(hdr);
2603
2604	/* protected by hash lock, if in the hash table */
2605	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2606		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2607		ASSERT(state != arc_anon && state != arc_l2c_only);
2608
2609		(void) refcount_remove_many(&state->arcs_esize[type],
2610		    size, hdr);
2611	}
2612	(void) refcount_remove_many(&state->arcs_size, size, hdr);
2613
2614	l2arc_free_data_on_write(hdr->b_l1hdr.b_pdata, size, type);
2615}
2616
2617/*
2618 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2619 * data buffer, we transfer the refcount ownership to the hdr and update
2620 * the appropriate kstats.
2621 */
2622static void
2623arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2624{
2625	arc_state_t *state = hdr->b_l1hdr.b_state;
2626
2627	ASSERT(!HDR_SHARED_DATA(hdr));
2628	ASSERT(!arc_buf_is_shared(buf));
2629	ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
2630	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2631
2632	/*
2633	 * Start sharing the data buffer. We transfer the
2634	 * refcount ownership to the hdr since it always owns
2635	 * the refcount whenever an arc_buf_t is shared.
2636	 */
2637	refcount_transfer_ownership(&state->arcs_size, buf, hdr);
2638	hdr->b_l1hdr.b_pdata = buf->b_data;
2639	arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2640
2641	/*
2642	 * Since we've transferred ownership to the hdr we need
2643	 * to increment its compressed and uncompressed kstats and
2644	 * decrement the overhead size.
2645	 */
2646	ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2647	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2648	ARCSTAT_INCR(arcstat_overhead_size, -HDR_GET_LSIZE(hdr));
2649}
2650
2651static void
2652arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2653{
2654	arc_state_t *state = hdr->b_l1hdr.b_state;
2655
2656	ASSERT(HDR_SHARED_DATA(hdr));
2657	ASSERT(arc_buf_is_shared(buf));
2658	ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
2659	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2660
2661	/*
2662	 * We are no longer sharing this buffer so we need
2663	 * to transfer its ownership to the rightful owner.
2664	 */
2665	refcount_transfer_ownership(&state->arcs_size, hdr, buf);
2666	arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2667	hdr->b_l1hdr.b_pdata = NULL;
2668
2669	/*
2670	 * Since the buffer is no longer shared between
2671	 * the arc buf and the hdr, count it as overhead.
2672	 */
2673	ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2674	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2675	ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
2676}
2677
2678/*
2679 * Free up buf->b_data and if 'remove' is set, then pull the
2680 * arc_buf_t off of the the arc_buf_hdr_t's list and free it.
2681 */
2682static void
2683arc_buf_destroy_impl(arc_buf_t *buf, boolean_t remove)
2684{
2685	arc_buf_t **bufp;
2686	arc_buf_hdr_t *hdr = buf->b_hdr;
2687	uint64_t size = HDR_GET_LSIZE(hdr);
2688	boolean_t destroyed_buf_is_shared = arc_buf_is_shared(buf);
2689
2690	/*
2691	 * Free up the data associated with the buf but only
2692	 * if we're not sharing this with the hdr. If we are sharing
2693	 * it with the hdr, then hdr will have performed the allocation
2694	 * so allow it to do the free.
2695	 */
2696	if (buf->b_data != NULL) {
2697		/*
2698		 * We're about to change the hdr's b_flags. We must either
2699		 * hold the hash_lock or be undiscoverable.
2700		 */
2701		ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2702
2703		arc_cksum_verify(buf);
2704#ifdef illumos
2705		arc_buf_unwatch(buf);
2706#endif
2707
2708		if (destroyed_buf_is_shared) {
2709			ASSERT(ARC_BUF_LAST(buf));
2710			ASSERT(HDR_SHARED_DATA(hdr));
2711			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2712		} else {
2713			arc_free_data_buf(hdr, buf->b_data, size, buf);
2714			ARCSTAT_INCR(arcstat_overhead_size, -size);
2715		}
2716		buf->b_data = NULL;
2717
2718		ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
2719		hdr->b_l1hdr.b_bufcnt -= 1;
2720	}
2721
2722	/* only remove the buf if requested */
2723	if (!remove)
2724		return;
2725
2726	/* remove the buf from the hdr list */
2727	arc_buf_t *lastbuf = NULL;
2728	bufp = &hdr->b_l1hdr.b_buf;
2729	while (*bufp != NULL) {
2730		if (*bufp == buf)
2731			*bufp = buf->b_next;
2732
2733		/*
2734		 * If we've removed a buffer in the middle of
2735		 * the list then update the lastbuf and update
2736		 * bufp.
2737		 */
2738		if (*bufp != NULL) {
2739			lastbuf = *bufp;
2740			bufp = &(*bufp)->b_next;
2741		}
2742	}
2743	buf->b_next = NULL;
2744	ASSERT3P(lastbuf, !=, buf);
2745
2746	/*
2747	 * If the current arc_buf_t is sharing its data
2748	 * buffer with the hdr, then reassign the hdr's
2749	 * b_pdata to share it with the new buffer at the end
2750	 * of the list. The shared buffer is always the last one
2751	 * on the hdr's buffer list.
2752	 */
2753	if (destroyed_buf_is_shared && lastbuf != NULL) {
2754		ASSERT(ARC_BUF_LAST(buf));
2755		ASSERT(ARC_BUF_LAST(lastbuf));
2756		VERIFY(!arc_buf_is_shared(lastbuf));
2757
2758		ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
2759		arc_hdr_free_pdata(hdr);
2760
2761		/*
2762		 * We must setup a new shared block between the
2763		 * last buffer and the hdr. The data would have
2764		 * been allocated by the arc buf so we need to transfer
2765		 * ownership to the hdr since it's now being shared.
2766		 */
2767		arc_share_buf(hdr, lastbuf);
2768	} else if (HDR_SHARED_DATA(hdr)) {
2769		ASSERT(arc_buf_is_shared(lastbuf));
2770	}
2771
2772	if (hdr->b_l1hdr.b_bufcnt == 0)
2773		arc_cksum_free(hdr);
2774
2775	/* clean up the buf */
2776	buf->b_hdr = NULL;
2777	kmem_cache_free(buf_cache, buf);
2778}
2779
2780static void
2781arc_hdr_alloc_pdata(arc_buf_hdr_t *hdr)
2782{
2783	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2784	ASSERT(HDR_HAS_L1HDR(hdr));
2785	ASSERT(!HDR_SHARED_DATA(hdr));
2786
2787	ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
2788	hdr->b_l1hdr.b_pdata = arc_get_data_buf(hdr, arc_hdr_size(hdr), hdr);
2789	hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
2790	ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
2791
2792	ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2793	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2794}
2795
2796static void
2797arc_hdr_free_pdata(arc_buf_hdr_t *hdr)
2798{
2799	ASSERT(HDR_HAS_L1HDR(hdr));
2800	ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
2801
2802	/*
2803	 * If the hdr is currently being written to the l2arc then
2804	 * we defer freeing the data by adding it to the l2arc_free_on_write
2805	 * list. The l2arc will free the data once it's finished
2806	 * writing it to the l2arc device.
2807	 */
2808	if (HDR_L2_WRITING(hdr)) {
2809		arc_hdr_free_on_write(hdr);
2810		ARCSTAT_BUMP(arcstat_l2_free_on_write);
2811	} else {
2812		arc_free_data_buf(hdr, hdr->b_l1hdr.b_pdata,
2813		    arc_hdr_size(hdr), hdr);
2814	}
2815	hdr->b_l1hdr.b_pdata = NULL;
2816	hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
2817
2818	ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2819	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2820}
2821
2822static arc_buf_hdr_t *
2823arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
2824    enum zio_compress compress, arc_buf_contents_t type)
2825{
2826	arc_buf_hdr_t *hdr;
2827
2828	ASSERT3U(lsize, >, 0);
2829	VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
2830
2831	hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
2832	ASSERT(HDR_EMPTY(hdr));
2833	ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
2834	ASSERT3P(hdr->b_l1hdr.b_thawed, ==, NULL);
2835	HDR_SET_PSIZE(hdr, psize);
2836	HDR_SET_LSIZE(hdr, lsize);
2837	hdr->b_spa = spa;
2838	hdr->b_type = type;
2839	hdr->b_flags = 0;
2840	arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
2841	arc_hdr_set_compress(hdr, compress);
2842
2843	hdr->b_l1hdr.b_state = arc_anon;
2844	hdr->b_l1hdr.b_arc_access = 0;
2845	hdr->b_l1hdr.b_bufcnt = 0;
2846	hdr->b_l1hdr.b_buf = NULL;
2847
2848	/*
2849	 * Allocate the hdr's buffer. This will contain either
2850	 * the compressed or uncompressed data depending on the block
2851	 * it references and compressed arc enablement.
2852	 */
2853	arc_hdr_alloc_pdata(hdr);
2854	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2855
2856	return (hdr);
2857}
2858
2859/*
2860 * Transition between the two allocation states for the arc_buf_hdr struct.
2861 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
2862 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
2863 * version is used when a cache buffer is only in the L2ARC in order to reduce
2864 * memory usage.
2865 */
2866static arc_buf_hdr_t *
2867arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
2868{
2869	ASSERT(HDR_HAS_L2HDR(hdr));
2870
2871	arc_buf_hdr_t *nhdr;
2872	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
2873
2874	ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
2875	    (old == hdr_l2only_cache && new == hdr_full_cache));
2876
2877	nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
2878
2879	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
2880	buf_hash_remove(hdr);
2881
2882	bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
2883
2884	if (new == hdr_full_cache) {
2885		arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
2886		/*
2887		 * arc_access and arc_change_state need to be aware that a
2888		 * header has just come out of L2ARC, so we set its state to
2889		 * l2c_only even though it's about to change.
2890		 */
2891		nhdr->b_l1hdr.b_state = arc_l2c_only;
2892
2893		/* Verify previous threads set to NULL before freeing */
2894		ASSERT3P(nhdr->b_l1hdr.b_pdata, ==, NULL);
2895	} else {
2896		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2897		ASSERT0(hdr->b_l1hdr.b_bufcnt);
2898		ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
2899
2900		/*
2901		 * If we've reached here, We must have been called from
2902		 * arc_evict_hdr(), as such we should have already been
2903		 * removed from any ghost list we were previously on
2904		 * (which protects us from racing with arc_evict_state),
2905		 * thus no locking is needed during this check.
2906		 */
2907		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
2908
2909		/*
2910		 * A buffer must not be moved into the arc_l2c_only
2911		 * state if it's not finished being written out to the
2912		 * l2arc device. Otherwise, the b_l1hdr.b_pdata field
2913		 * might try to be accessed, even though it was removed.
2914		 */
2915		VERIFY(!HDR_L2_WRITING(hdr));
2916		VERIFY3P(hdr->b_l1hdr.b_pdata, ==, NULL);
2917
2918#ifdef ZFS_DEBUG
2919		if (hdr->b_l1hdr.b_thawed != NULL) {
2920			kmem_free(hdr->b_l1hdr.b_thawed, 1);
2921			hdr->b_l1hdr.b_thawed = NULL;
2922		}
2923#endif
2924
2925		arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
2926	}
2927	/*
2928	 * The header has been reallocated so we need to re-insert it into any
2929	 * lists it was on.
2930	 */
2931	(void) buf_hash_insert(nhdr, NULL);
2932
2933	ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
2934
2935	mutex_enter(&dev->l2ad_mtx);
2936
2937	/*
2938	 * We must place the realloc'ed header back into the list at
2939	 * the same spot. Otherwise, if it's placed earlier in the list,
2940	 * l2arc_write_buffers() could find it during the function's
2941	 * write phase, and try to write it out to the l2arc.
2942	 */
2943	list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
2944	list_remove(&dev->l2ad_buflist, hdr);
2945
2946	mutex_exit(&dev->l2ad_mtx);
2947
2948	/*
2949	 * Since we're using the pointer address as the tag when
2950	 * incrementing and decrementing the l2ad_alloc refcount, we
2951	 * must remove the old pointer (that we're about to destroy) and
2952	 * add the new pointer to the refcount. Otherwise we'd remove
2953	 * the wrong pointer address when calling arc_hdr_destroy() later.
2954	 */
2955
2956	(void) refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
2957	(void) refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr), nhdr);
2958
2959	buf_discard_identity(hdr);
2960	kmem_cache_free(old, hdr);
2961
2962	return (nhdr);
2963}
2964
2965/*
2966 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
2967 * The buf is returned thawed since we expect the consumer to modify it.
2968 */
2969arc_buf_t *
2970arc_alloc_buf(spa_t *spa, int32_t size, void *tag, arc_buf_contents_t type)
2971{
2972	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
2973	    ZIO_COMPRESS_OFF, type);
2974	ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
2975	arc_buf_t *buf = arc_buf_alloc_impl(hdr, tag);
2976	arc_buf_thaw(buf);
2977	return (buf);
2978}
2979
2980static void
2981arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
2982{
2983	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
2984	l2arc_dev_t *dev = l2hdr->b_dev;
2985	uint64_t asize = arc_hdr_size(hdr);
2986
2987	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
2988	ASSERT(HDR_HAS_L2HDR(hdr));
2989
2990	list_remove(&dev->l2ad_buflist, hdr);
2991
2992	ARCSTAT_INCR(arcstat_l2_asize, -asize);
2993	ARCSTAT_INCR(arcstat_l2_size, -HDR_GET_LSIZE(hdr));
2994
2995	vdev_space_update(dev->l2ad_vdev, -asize, 0, 0);
2996
2997	(void) refcount_remove_many(&dev->l2ad_alloc, asize, hdr);
2998	arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
2999}
3000
3001static void
3002arc_hdr_destroy(arc_buf_hdr_t *hdr)
3003{
3004	if (HDR_HAS_L1HDR(hdr)) {
3005		ASSERT(hdr->b_l1hdr.b_buf == NULL ||
3006		    hdr->b_l1hdr.b_bufcnt > 0);
3007		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3008		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3009	}
3010	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3011	ASSERT(!HDR_IN_HASH_TABLE(hdr));
3012
3013	if (!HDR_EMPTY(hdr))
3014		buf_discard_identity(hdr);
3015
3016	if (HDR_HAS_L2HDR(hdr)) {
3017		l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3018		boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3019
3020		if (!buflist_held)
3021			mutex_enter(&dev->l2ad_mtx);
3022
3023		/*
3024		 * Even though we checked this conditional above, we
3025		 * need to check this again now that we have the
3026		 * l2ad_mtx. This is because we could be racing with
3027		 * another thread calling l2arc_evict() which might have
3028		 * destroyed this header's L2 portion as we were waiting
3029		 * to acquire the l2ad_mtx. If that happens, we don't
3030		 * want to re-destroy the header's L2 portion.
3031		 */
3032		if (HDR_HAS_L2HDR(hdr)) {
3033			l2arc_trim(hdr);
3034			arc_hdr_l2hdr_destroy(hdr);
3035		}
3036
3037		if (!buflist_held)
3038			mutex_exit(&dev->l2ad_mtx);
3039	}
3040
3041	if (HDR_HAS_L1HDR(hdr)) {
3042		arc_cksum_free(hdr);
3043
3044		while (hdr->b_l1hdr.b_buf != NULL)
3045			arc_buf_destroy_impl(hdr->b_l1hdr.b_buf, B_TRUE);
3046
3047#ifdef ZFS_DEBUG
3048		if (hdr->b_l1hdr.b_thawed != NULL) {
3049			kmem_free(hdr->b_l1hdr.b_thawed, 1);
3050			hdr->b_l1hdr.b_thawed = NULL;
3051		}
3052#endif
3053
3054		if (hdr->b_l1hdr.b_pdata != NULL) {
3055			arc_hdr_free_pdata(hdr);
3056		}
3057	}
3058
3059	ASSERT3P(hdr->b_hash_next, ==, NULL);
3060	if (HDR_HAS_L1HDR(hdr)) {
3061		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3062		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3063		kmem_cache_free(hdr_full_cache, hdr);
3064	} else {
3065		kmem_cache_free(hdr_l2only_cache, hdr);
3066	}
3067}
3068
3069void
3070arc_buf_destroy(arc_buf_t *buf, void* tag)
3071{
3072	arc_buf_hdr_t *hdr = buf->b_hdr;
3073	kmutex_t *hash_lock = HDR_LOCK(hdr);
3074
3075	if (hdr->b_l1hdr.b_state == arc_anon) {
3076		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
3077		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3078		VERIFY0(remove_reference(hdr, NULL, tag));
3079		arc_hdr_destroy(hdr);
3080		return;
3081	}
3082
3083	mutex_enter(hash_lock);
3084	ASSERT3P(hdr, ==, buf->b_hdr);
3085	ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3086	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3087	ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3088	ASSERT3P(buf->b_data, !=, NULL);
3089
3090	(void) remove_reference(hdr, hash_lock, tag);
3091	arc_buf_destroy_impl(buf, B_TRUE);
3092	mutex_exit(hash_lock);
3093}
3094
3095int32_t
3096arc_buf_size(arc_buf_t *buf)
3097{
3098	return (HDR_GET_LSIZE(buf->b_hdr));
3099}
3100
3101/*
3102 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3103 * state of the header is dependent on it's state prior to entering this
3104 * function. The following transitions are possible:
3105 *
3106 *    - arc_mru -> arc_mru_ghost
3107 *    - arc_mfu -> arc_mfu_ghost
3108 *    - arc_mru_ghost -> arc_l2c_only
3109 *    - arc_mru_ghost -> deleted
3110 *    - arc_mfu_ghost -> arc_l2c_only
3111 *    - arc_mfu_ghost -> deleted
3112 */
3113static int64_t
3114arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3115{
3116	arc_state_t *evicted_state, *state;
3117	int64_t bytes_evicted = 0;
3118
3119	ASSERT(MUTEX_HELD(hash_lock));
3120	ASSERT(HDR_HAS_L1HDR(hdr));
3121
3122	state = hdr->b_l1hdr.b_state;
3123	if (GHOST_STATE(state)) {
3124		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3125		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3126
3127		/*
3128		 * l2arc_write_buffers() relies on a header's L1 portion
3129		 * (i.e. its b_pdata field) during its write phase.
3130		 * Thus, we cannot push a header onto the arc_l2c_only
3131		 * state (removing it's L1 piece) until the header is
3132		 * done being written to the l2arc.
3133		 */
3134		if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3135			ARCSTAT_BUMP(arcstat_evict_l2_skip);
3136			return (bytes_evicted);
3137		}
3138
3139		ARCSTAT_BUMP(arcstat_deleted);
3140		bytes_evicted += HDR_GET_LSIZE(hdr);
3141
3142		DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3143
3144		ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
3145		if (HDR_HAS_L2HDR(hdr)) {
3146			ASSERT(hdr->b_l1hdr.b_pdata == NULL);
3147			/*
3148			 * This buffer is cached on the 2nd Level ARC;
3149			 * don't destroy the header.
3150			 */
3151			arc_change_state(arc_l2c_only, hdr, hash_lock);
3152			/*
3153			 * dropping from L1+L2 cached to L2-only,
3154			 * realloc to remove the L1 header.
3155			 */
3156			hdr = arc_hdr_realloc(hdr, hdr_full_cache,
3157			    hdr_l2only_cache);
3158		} else {
3159			ASSERT(hdr->b_l1hdr.b_pdata == NULL);
3160			arc_change_state(arc_anon, hdr, hash_lock);
3161			arc_hdr_destroy(hdr);
3162		}
3163		return (bytes_evicted);
3164	}
3165
3166	ASSERT(state == arc_mru || state == arc_mfu);
3167	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3168
3169	/* prefetch buffers have a minimum lifespan */
3170	if (HDR_IO_IN_PROGRESS(hdr) ||
3171	    ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3172	    ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
3173	    arc_min_prefetch_lifespan)) {
3174		ARCSTAT_BUMP(arcstat_evict_skip);
3175		return (bytes_evicted);
3176	}
3177
3178	ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
3179	while (hdr->b_l1hdr.b_buf) {
3180		arc_buf_t *buf = hdr->b_l1hdr.b_buf;
3181		if (!mutex_tryenter(&buf->b_evict_lock)) {
3182			ARCSTAT_BUMP(arcstat_mutex_miss);
3183			break;
3184		}
3185		if (buf->b_data != NULL)
3186			bytes_evicted += HDR_GET_LSIZE(hdr);
3187		mutex_exit(&buf->b_evict_lock);
3188		arc_buf_destroy_impl(buf, B_TRUE);
3189	}
3190
3191	if (HDR_HAS_L2HDR(hdr)) {
3192		ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3193	} else {
3194		if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3195			ARCSTAT_INCR(arcstat_evict_l2_eligible,
3196			    HDR_GET_LSIZE(hdr));
3197		} else {
3198			ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3199			    HDR_GET_LSIZE(hdr));
3200		}
3201	}
3202
3203	if (hdr->b_l1hdr.b_bufcnt == 0) {
3204		arc_cksum_free(hdr);
3205
3206		bytes_evicted += arc_hdr_size(hdr);
3207
3208		/*
3209		 * If this hdr is being evicted and has a compressed
3210		 * buffer then we discard it here before we change states.
3211		 * This ensures that the accounting is updated correctly
3212		 * in arc_free_data_buf().
3213		 */
3214		arc_hdr_free_pdata(hdr);
3215
3216		arc_change_state(evicted_state, hdr, hash_lock);
3217		ASSERT(HDR_IN_HASH_TABLE(hdr));
3218		arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
3219		DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3220	}
3221
3222	return (bytes_evicted);
3223}
3224
3225static uint64_t
3226arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3227    uint64_t spa, int64_t bytes)
3228{
3229	multilist_sublist_t *mls;
3230	uint64_t bytes_evicted = 0;
3231	arc_buf_hdr_t *hdr;
3232	kmutex_t *hash_lock;
3233	int evict_count = 0;
3234
3235	ASSERT3P(marker, !=, NULL);
3236	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3237
3238	mls = multilist_sublist_lock(ml, idx);
3239
3240	for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
3241	    hdr = multilist_sublist_prev(mls, marker)) {
3242		if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
3243		    (evict_count >= zfs_arc_evict_batch_limit))
3244			break;
3245
3246		/*
3247		 * To keep our iteration location, move the marker
3248		 * forward. Since we're not holding hdr's hash lock, we
3249		 * must be very careful and not remove 'hdr' from the
3250		 * sublist. Otherwise, other consumers might mistake the
3251		 * 'hdr' as not being on a sublist when they call the
3252		 * multilist_link_active() function (they all rely on
3253		 * the hash lock protecting concurrent insertions and
3254		 * removals). multilist_sublist_move_forward() was
3255		 * specifically implemented to ensure this is the case
3256		 * (only 'marker' will be removed and re-inserted).
3257		 */
3258		multilist_sublist_move_forward(mls, marker);
3259
3260		/*
3261		 * The only case where the b_spa field should ever be
3262		 * zero, is the marker headers inserted by
3263		 * arc_evict_state(). It's possible for multiple threads
3264		 * to be calling arc_evict_state() concurrently (e.g.
3265		 * dsl_pool_close() and zio_inject_fault()), so we must
3266		 * skip any markers we see from these other threads.
3267		 */
3268		if (hdr->b_spa == 0)
3269			continue;
3270
3271		/* we're only interested in evicting buffers of a certain spa */
3272		if (spa != 0 && hdr->b_spa != spa) {
3273			ARCSTAT_BUMP(arcstat_evict_skip);
3274			continue;
3275		}
3276
3277		hash_lock = HDR_LOCK(hdr);
3278
3279		/*
3280		 * We aren't calling this function from any code path
3281		 * that would already be holding a hash lock, so we're
3282		 * asserting on this assumption to be defensive in case
3283		 * this ever changes. Without this check, it would be
3284		 * possible to incorrectly increment arcstat_mutex_miss
3285		 * below (e.g. if the code changed such that we called
3286		 * this function with a hash lock held).
3287		 */
3288		ASSERT(!MUTEX_HELD(hash_lock));
3289
3290		if (mutex_tryenter(hash_lock)) {
3291			uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
3292			mutex_exit(hash_lock);
3293
3294			bytes_evicted += evicted;
3295
3296			/*
3297			 * If evicted is zero, arc_evict_hdr() must have
3298			 * decided to skip this header, don't increment
3299			 * evict_count in this case.
3300			 */
3301			if (evicted != 0)
3302				evict_count++;
3303
3304			/*
3305			 * If arc_size isn't overflowing, signal any
3306			 * threads that might happen to be waiting.
3307			 *
3308			 * For each header evicted, we wake up a single
3309			 * thread. If we used cv_broadcast, we could
3310			 * wake up "too many" threads causing arc_size
3311			 * to significantly overflow arc_c; since
3312			 * arc_get_data_buf() doesn't check for overflow
3313			 * when it's woken up (it doesn't because it's
3314			 * possible for the ARC to be overflowing while
3315			 * full of un-evictable buffers, and the
3316			 * function should proceed in this case).
3317			 *
3318			 * If threads are left sleeping, due to not
3319			 * using cv_broadcast, they will be woken up
3320			 * just before arc_reclaim_thread() sleeps.
3321			 */
3322			mutex_enter(&arc_reclaim_lock);
3323			if (!arc_is_overflowing())
3324				cv_signal(&arc_reclaim_waiters_cv);
3325			mutex_exit(&arc_reclaim_lock);
3326		} else {
3327			ARCSTAT_BUMP(arcstat_mutex_miss);
3328		}
3329	}
3330
3331	multilist_sublist_unlock(mls);
3332
3333	return (bytes_evicted);
3334}
3335
3336/*
3337 * Evict buffers from the given arc state, until we've removed the
3338 * specified number of bytes. Move the removed buffers to the
3339 * appropriate evict state.
3340 *
3341 * This function makes a "best effort". It skips over any buffers
3342 * it can't get a hash_lock on, and so, may not catch all candidates.
3343 * It may also return without evicting as much space as requested.
3344 *
3345 * If bytes is specified using the special value ARC_EVICT_ALL, this
3346 * will evict all available (i.e. unlocked and evictable) buffers from
3347 * the given arc state; which is used by arc_flush().
3348 */
3349static uint64_t
3350arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
3351    arc_buf_contents_t type)
3352{
3353	uint64_t total_evicted = 0;
3354	multilist_t *ml = &state->arcs_list[type];
3355	int num_sublists;
3356	arc_buf_hdr_t **markers;
3357
3358	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3359
3360	num_sublists = multilist_get_num_sublists(ml);
3361
3362	/*
3363	 * If we've tried to evict from each sublist, made some
3364	 * progress, but still have not hit the target number of bytes
3365	 * to evict, we want to keep trying. The markers allow us to
3366	 * pick up where we left off for each individual sublist, rather
3367	 * than starting from the tail each time.
3368	 */
3369	markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
3370	for (int i = 0; i < num_sublists; i++) {
3371		markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
3372
3373		/*
3374		 * A b_spa of 0 is used to indicate that this header is
3375		 * a marker. This fact is used in arc_adjust_type() and
3376		 * arc_evict_state_impl().
3377		 */
3378		markers[i]->b_spa = 0;
3379
3380		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3381		multilist_sublist_insert_tail(mls, markers[i]);
3382		multilist_sublist_unlock(mls);
3383	}
3384
3385	/*
3386	 * While we haven't hit our target number of bytes to evict, or
3387	 * we're evicting all available buffers.
3388	 */
3389	while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
3390		/*
3391		 * Start eviction using a randomly selected sublist,
3392		 * this is to try and evenly balance eviction across all
3393		 * sublists. Always starting at the same sublist
3394		 * (e.g. index 0) would cause evictions to favor certain
3395		 * sublists over others.
3396		 */
3397		int sublist_idx = multilist_get_random_index(ml);
3398		uint64_t scan_evicted = 0;
3399
3400		for (int i = 0; i < num_sublists; i++) {
3401			uint64_t bytes_remaining;
3402			uint64_t bytes_evicted;
3403
3404			if (bytes == ARC_EVICT_ALL)
3405				bytes_remaining = ARC_EVICT_ALL;
3406			else if (total_evicted < bytes)
3407				bytes_remaining = bytes - total_evicted;
3408			else
3409				break;
3410
3411			bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
3412			    markers[sublist_idx], spa, bytes_remaining);
3413
3414			scan_evicted += bytes_evicted;
3415			total_evicted += bytes_evicted;
3416
3417			/* we've reached the end, wrap to the beginning */
3418			if (++sublist_idx >= num_sublists)
3419				sublist_idx = 0;
3420		}
3421
3422		/*
3423		 * If we didn't evict anything during this scan, we have
3424		 * no reason to believe we'll evict more during another
3425		 * scan, so break the loop.
3426		 */
3427		if (scan_evicted == 0) {
3428			/* This isn't possible, let's make that obvious */
3429			ASSERT3S(bytes, !=, 0);
3430
3431			/*
3432			 * When bytes is ARC_EVICT_ALL, the only way to
3433			 * break the loop is when scan_evicted is zero.
3434			 * In that case, we actually have evicted enough,
3435			 * so we don't want to increment the kstat.
3436			 */
3437			if (bytes != ARC_EVICT_ALL) {
3438				ASSERT3S(total_evicted, <, bytes);
3439				ARCSTAT_BUMP(arcstat_evict_not_enough);
3440			}
3441
3442			break;
3443		}
3444	}
3445
3446	for (int i = 0; i < num_sublists; i++) {
3447		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3448		multilist_sublist_remove(mls, markers[i]);
3449		multilist_sublist_unlock(mls);
3450
3451		kmem_cache_free(hdr_full_cache, markers[i]);
3452	}
3453	kmem_free(markers, sizeof (*markers) * num_sublists);
3454
3455	return (total_evicted);
3456}
3457
3458/*
3459 * Flush all "evictable" data of the given type from the arc state
3460 * specified. This will not evict any "active" buffers (i.e. referenced).
3461 *
3462 * When 'retry' is set to B_FALSE, the function will make a single pass
3463 * over the state and evict any buffers that it can. Since it doesn't
3464 * continually retry the eviction, it might end up leaving some buffers
3465 * in the ARC due to lock misses.
3466 *
3467 * When 'retry' is set to B_TRUE, the function will continually retry the
3468 * eviction until *all* evictable buffers have been removed from the
3469 * state. As a result, if concurrent insertions into the state are
3470 * allowed (e.g. if the ARC isn't shutting down), this function might
3471 * wind up in an infinite loop, continually trying to evict buffers.
3472 */
3473static uint64_t
3474arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
3475    boolean_t retry)
3476{
3477	uint64_t evicted = 0;
3478
3479	while (refcount_count(&state->arcs_esize[type]) != 0) {
3480		evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
3481
3482		if (!retry)
3483			break;
3484	}
3485
3486	return (evicted);
3487}
3488
3489/*
3490 * Evict the specified number of bytes from the state specified,
3491 * restricting eviction to the spa and type given. This function
3492 * prevents us from trying to evict more from a state's list than
3493 * is "evictable", and to skip evicting altogether when passed a
3494 * negative value for "bytes". In contrast, arc_evict_state() will
3495 * evict everything it can, when passed a negative value for "bytes".
3496 */
3497static uint64_t
3498arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
3499    arc_buf_contents_t type)
3500{
3501	int64_t delta;
3502
3503	if (bytes > 0 && refcount_count(&state->arcs_esize[type]) > 0) {
3504		delta = MIN(refcount_count(&state->arcs_esize[type]), bytes);
3505		return (arc_evict_state(state, spa, delta, type));
3506	}
3507
3508	return (0);
3509}
3510
3511/*
3512 * Evict metadata buffers from the cache, such that arc_meta_used is
3513 * capped by the arc_meta_limit tunable.
3514 */
3515static uint64_t
3516arc_adjust_meta(void)
3517{
3518	uint64_t total_evicted = 0;
3519	int64_t target;
3520
3521	/*
3522	 * If we're over the meta limit, we want to evict enough
3523	 * metadata to get back under the meta limit. We don't want to
3524	 * evict so much that we drop the MRU below arc_p, though. If
3525	 * we're over the meta limit more than we're over arc_p, we
3526	 * evict some from the MRU here, and some from the MFU below.
3527	 */
3528	target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3529	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
3530	    refcount_count(&arc_mru->arcs_size) - arc_p));
3531
3532	total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3533
3534	/*
3535	 * Similar to the above, we want to evict enough bytes to get us
3536	 * below the meta limit, but not so much as to drop us below the
3537	 * space alloted to the MFU (which is defined as arc_c - arc_p).
3538	 */
3539	target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3540	    (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p)));
3541
3542	total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3543
3544	return (total_evicted);
3545}
3546
3547/*
3548 * Return the type of the oldest buffer in the given arc state
3549 *
3550 * This function will select a random sublist of type ARC_BUFC_DATA and
3551 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
3552 * is compared, and the type which contains the "older" buffer will be
3553 * returned.
3554 */
3555static arc_buf_contents_t
3556arc_adjust_type(arc_state_t *state)
3557{
3558	multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA];
3559	multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA];
3560	int data_idx = multilist_get_random_index(data_ml);
3561	int meta_idx = multilist_get_random_index(meta_ml);
3562	multilist_sublist_t *data_mls;
3563	multilist_sublist_t *meta_mls;
3564	arc_buf_contents_t type;
3565	arc_buf_hdr_t *data_hdr;
3566	arc_buf_hdr_t *meta_hdr;
3567
3568	/*
3569	 * We keep the sublist lock until we're finished, to prevent
3570	 * the headers from being destroyed via arc_evict_state().
3571	 */
3572	data_mls = multilist_sublist_lock(data_ml, data_idx);
3573	meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
3574
3575	/*
3576	 * These two loops are to ensure we skip any markers that
3577	 * might be at the tail of the lists due to arc_evict_state().
3578	 */
3579
3580	for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
3581	    data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
3582		if (data_hdr->b_spa != 0)
3583			break;
3584	}
3585
3586	for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
3587	    meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
3588		if (meta_hdr->b_spa != 0)
3589			break;
3590	}
3591
3592	if (data_hdr == NULL && meta_hdr == NULL) {
3593		type = ARC_BUFC_DATA;
3594	} else if (data_hdr == NULL) {
3595		ASSERT3P(meta_hdr, !=, NULL);
3596		type = ARC_BUFC_METADATA;
3597	} else if (meta_hdr == NULL) {
3598		ASSERT3P(data_hdr, !=, NULL);
3599		type = ARC_BUFC_DATA;
3600	} else {
3601		ASSERT3P(data_hdr, !=, NULL);
3602		ASSERT3P(meta_hdr, !=, NULL);
3603
3604		/* The headers can't be on the sublist without an L1 header */
3605		ASSERT(HDR_HAS_L1HDR(data_hdr));
3606		ASSERT(HDR_HAS_L1HDR(meta_hdr));
3607
3608		if (data_hdr->b_l1hdr.b_arc_access <
3609		    meta_hdr->b_l1hdr.b_arc_access) {
3610			type = ARC_BUFC_DATA;
3611		} else {
3612			type = ARC_BUFC_METADATA;
3613		}
3614	}
3615
3616	multilist_sublist_unlock(meta_mls);
3617	multilist_sublist_unlock(data_mls);
3618
3619	return (type);
3620}
3621
3622/*
3623 * Evict buffers from the cache, such that arc_size is capped by arc_c.
3624 */
3625static uint64_t
3626arc_adjust(void)
3627{
3628	uint64_t total_evicted = 0;
3629	uint64_t bytes;
3630	int64_t target;
3631
3632	/*
3633	 * If we're over arc_meta_limit, we want to correct that before
3634	 * potentially evicting data buffers below.
3635	 */
3636	total_evicted += arc_adjust_meta();
3637
3638	/*
3639	 * Adjust MRU size
3640	 *
3641	 * If we're over the target cache size, we want to evict enough
3642	 * from the list to get back to our target size. We don't want
3643	 * to evict too much from the MRU, such that it drops below
3644	 * arc_p. So, if we're over our target cache size more than
3645	 * the MRU is over arc_p, we'll evict enough to get back to
3646	 * arc_p here, and then evict more from the MFU below.
3647	 */
3648	target = MIN((int64_t)(arc_size - arc_c),
3649	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
3650	    refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p));
3651
3652	/*
3653	 * If we're below arc_meta_min, always prefer to evict data.
3654	 * Otherwise, try to satisfy the requested number of bytes to
3655	 * evict from the type which contains older buffers; in an
3656	 * effort to keep newer buffers in the cache regardless of their
3657	 * type. If we cannot satisfy the number of bytes from this
3658	 * type, spill over into the next type.
3659	 */
3660	if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
3661	    arc_meta_used > arc_meta_min) {
3662		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3663		total_evicted += bytes;
3664
3665		/*
3666		 * If we couldn't evict our target number of bytes from
3667		 * metadata, we try to get the rest from data.
3668		 */
3669		target -= bytes;
3670
3671		total_evicted +=
3672		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3673	} else {
3674		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3675		total_evicted += bytes;
3676
3677		/*
3678		 * If we couldn't evict our target number of bytes from
3679		 * data, we try to get the rest from metadata.
3680		 */
3681		target -= bytes;
3682
3683		total_evicted +=
3684		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3685	}
3686
3687	/*
3688	 * Adjust MFU size
3689	 *
3690	 * Now that we've tried to evict enough from the MRU to get its
3691	 * size back to arc_p, if we're still above the target cache
3692	 * size, we evict the rest from the MFU.
3693	 */
3694	target = arc_size - arc_c;
3695
3696	if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
3697	    arc_meta_used > arc_meta_min) {
3698		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3699		total_evicted += bytes;
3700
3701		/*
3702		 * If we couldn't evict our target number of bytes from
3703		 * metadata, we try to get the rest from data.
3704		 */
3705		target -= bytes;
3706
3707		total_evicted +=
3708		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3709	} else {
3710		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3711		total_evicted += bytes;
3712
3713		/*
3714		 * If we couldn't evict our target number of bytes from
3715		 * data, we try to get the rest from data.
3716		 */
3717		target -= bytes;
3718
3719		total_evicted +=
3720		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3721	}
3722
3723	/*
3724	 * Adjust ghost lists
3725	 *
3726	 * In addition to the above, the ARC also defines target values
3727	 * for the ghost lists. The sum of the mru list and mru ghost
3728	 * list should never exceed the target size of the cache, and
3729	 * the sum of the mru list, mfu list, mru ghost list, and mfu
3730	 * ghost list should never exceed twice the target size of the
3731	 * cache. The following logic enforces these limits on the ghost
3732	 * caches, and evicts from them as needed.
3733	 */
3734	target = refcount_count(&arc_mru->arcs_size) +
3735	    refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
3736
3737	bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
3738	total_evicted += bytes;
3739
3740	target -= bytes;
3741
3742	total_evicted +=
3743	    arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
3744
3745	/*
3746	 * We assume the sum of the mru list and mfu list is less than
3747	 * or equal to arc_c (we enforced this above), which means we
3748	 * can use the simpler of the two equations below:
3749	 *
3750	 *	mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
3751	 *		    mru ghost + mfu ghost <= arc_c
3752	 */
3753	target = refcount_count(&arc_mru_ghost->arcs_size) +
3754	    refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
3755
3756	bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
3757	total_evicted += bytes;
3758
3759	target -= bytes;
3760
3761	total_evicted +=
3762	    arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
3763
3764	return (total_evicted);
3765}
3766
3767void
3768arc_flush(spa_t *spa, boolean_t retry)
3769{
3770	uint64_t guid = 0;
3771
3772	/*
3773	 * If retry is B_TRUE, a spa must not be specified since we have
3774	 * no good way to determine if all of a spa's buffers have been
3775	 * evicted from an arc state.
3776	 */
3777	ASSERT(!retry || spa == 0);
3778
3779	if (spa != NULL)
3780		guid = spa_load_guid(spa);
3781
3782	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
3783	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
3784
3785	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
3786	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
3787
3788	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
3789	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
3790
3791	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
3792	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
3793}
3794
3795void
3796arc_shrink(int64_t to_free)
3797{
3798	if (arc_c > arc_c_min) {
3799		DTRACE_PROBE4(arc__shrink, uint64_t, arc_c, uint64_t,
3800			arc_c_min, uint64_t, arc_p, uint64_t, to_free);
3801		if (arc_c > arc_c_min + to_free)
3802			atomic_add_64(&arc_c, -to_free);
3803		else
3804			arc_c = arc_c_min;
3805
3806		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
3807		if (arc_c > arc_size)
3808			arc_c = MAX(arc_size, arc_c_min);
3809		if (arc_p > arc_c)
3810			arc_p = (arc_c >> 1);
3811
3812		DTRACE_PROBE2(arc__shrunk, uint64_t, arc_c, uint64_t,
3813			arc_p);
3814
3815		ASSERT(arc_c >= arc_c_min);
3816		ASSERT((int64_t)arc_p >= 0);
3817	}
3818
3819	if (arc_size > arc_c) {
3820		DTRACE_PROBE2(arc__shrink_adjust, uint64_t, arc_size,
3821			uint64_t, arc_c);
3822		(void) arc_adjust();
3823	}
3824}
3825
3826static long needfree = 0;
3827
3828typedef enum free_memory_reason_t {
3829	FMR_UNKNOWN,
3830	FMR_NEEDFREE,
3831	FMR_LOTSFREE,
3832	FMR_SWAPFS_MINFREE,
3833	FMR_PAGES_PP_MAXIMUM,
3834	FMR_HEAP_ARENA,
3835	FMR_ZIO_ARENA,
3836	FMR_ZIO_FRAG,
3837} free_memory_reason_t;
3838
3839int64_t last_free_memory;
3840free_memory_reason_t last_free_reason;
3841
3842/*
3843 * Additional reserve of pages for pp_reserve.
3844 */
3845int64_t arc_pages_pp_reserve = 64;
3846
3847/*
3848 * Additional reserve of pages for swapfs.
3849 */
3850int64_t arc_swapfs_reserve = 64;
3851
3852/*
3853 * Return the amount of memory that can be consumed before reclaim will be
3854 * needed.  Positive if there is sufficient free memory, negative indicates
3855 * the amount of memory that needs to be freed up.
3856 */
3857static int64_t
3858arc_available_memory(void)
3859{
3860	int64_t lowest = INT64_MAX;
3861	int64_t n;
3862	free_memory_reason_t r = FMR_UNKNOWN;
3863
3864#ifdef _KERNEL
3865	if (needfree > 0) {
3866		n = PAGESIZE * (-needfree);
3867		if (n < lowest) {
3868			lowest = n;
3869			r = FMR_NEEDFREE;
3870		}
3871	}
3872
3873	/*
3874	 * Cooperate with pagedaemon when it's time for it to scan
3875	 * and reclaim some pages.
3876	 */
3877	n = PAGESIZE * ((int64_t)freemem - zfs_arc_free_target);
3878	if (n < lowest) {
3879		lowest = n;
3880		r = FMR_LOTSFREE;
3881	}
3882
3883#ifdef illumos
3884	/*
3885	 * check that we're out of range of the pageout scanner.  It starts to
3886	 * schedule paging if freemem is less than lotsfree and needfree.
3887	 * lotsfree is the high-water mark for pageout, and needfree is the
3888	 * number of needed free pages.  We add extra pages here to make sure
3889	 * the scanner doesn't start up while we're freeing memory.
3890	 */
3891	n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
3892	if (n < lowest) {
3893		lowest = n;
3894		r = FMR_LOTSFREE;
3895	}
3896
3897	/*
3898	 * check to make sure that swapfs has enough space so that anon
3899	 * reservations can still succeed. anon_resvmem() checks that the
3900	 * availrmem is greater than swapfs_minfree, and the number of reserved
3901	 * swap pages.  We also add a bit of extra here just to prevent
3902	 * circumstances from getting really dire.
3903	 */
3904	n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
3905	    desfree - arc_swapfs_reserve);
3906	if (n < lowest) {
3907		lowest = n;
3908		r = FMR_SWAPFS_MINFREE;
3909	}
3910
3911
3912	/*
3913	 * Check that we have enough availrmem that memory locking (e.g., via
3914	 * mlock(3C) or memcntl(2)) can still succeed.  (pages_pp_maximum
3915	 * stores the number of pages that cannot be locked; when availrmem
3916	 * drops below pages_pp_maximum, page locking mechanisms such as
3917	 * page_pp_lock() will fail.)
3918	 */
3919	n = PAGESIZE * (availrmem - pages_pp_maximum -
3920	    arc_pages_pp_reserve);
3921	if (n < lowest) {
3922		lowest = n;
3923		r = FMR_PAGES_PP_MAXIMUM;
3924	}
3925
3926#endif	/* illumos */
3927#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
3928	/*
3929	 * If we're on an i386 platform, it's possible that we'll exhaust the
3930	 * kernel heap space before we ever run out of available physical
3931	 * memory.  Most checks of the size of the heap_area compare against
3932	 * tune.t_minarmem, which is the minimum available real memory that we
3933	 * can have in the system.  However, this is generally fixed at 25 pages
3934	 * which is so low that it's useless.  In this comparison, we seek to
3935	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
3936	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
3937	 * free)
3938	 */
3939	n = (int64_t)vmem_size(heap_arena, VMEM_FREE) -
3940	    (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
3941	if (n < lowest) {
3942		lowest = n;
3943		r = FMR_HEAP_ARENA;
3944	}
3945#define	zio_arena	NULL
3946#else
3947#define	zio_arena	heap_arena
3948#endif
3949
3950	/*
3951	 * If zio data pages are being allocated out of a separate heap segment,
3952	 * then enforce that the size of available vmem for this arena remains
3953	 * above about 1/16th free.
3954	 *
3955	 * Note: The 1/16th arena free requirement was put in place
3956	 * to aggressively evict memory from the arc in order to avoid
3957	 * memory fragmentation issues.
3958	 */
3959	if (zio_arena != NULL) {
3960		n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
3961		    (vmem_size(zio_arena, VMEM_ALLOC) >> 4);
3962		if (n < lowest) {
3963			lowest = n;
3964			r = FMR_ZIO_ARENA;
3965		}
3966	}
3967
3968	/*
3969	 * Above limits know nothing about real level of KVA fragmentation.
3970	 * Start aggressive reclamation if too little sequential KVA left.
3971	 */
3972	if (lowest > 0) {
3973		n = (vmem_size(heap_arena, VMEM_MAXFREE) < zfs_max_recordsize) ?
3974		    -((int64_t)vmem_size(heap_arena, VMEM_ALLOC) >> 4) :
3975		    INT64_MAX;
3976		if (n < lowest) {
3977			lowest = n;
3978			r = FMR_ZIO_FRAG;
3979		}
3980	}
3981
3982#else	/* _KERNEL */
3983	/* Every 100 calls, free a small amount */
3984	if (spa_get_random(100) == 0)
3985		lowest = -1024;
3986#endif	/* _KERNEL */
3987
3988	last_free_memory = lowest;
3989	last_free_reason = r;
3990	DTRACE_PROBE2(arc__available_memory, int64_t, lowest, int, r);
3991	return (lowest);
3992}
3993
3994
3995/*
3996 * Determine if the system is under memory pressure and is asking
3997 * to reclaim memory. A return value of B_TRUE indicates that the system
3998 * is under memory pressure and that the arc should adjust accordingly.
3999 */
4000static boolean_t
4001arc_reclaim_needed(void)
4002{
4003	return (arc_available_memory() < 0);
4004}
4005
4006extern kmem_cache_t	*zio_buf_cache[];
4007extern kmem_cache_t	*zio_data_buf_cache[];
4008extern kmem_cache_t	*range_seg_cache;
4009
4010static __noinline void
4011arc_kmem_reap_now(void)
4012{
4013	size_t			i;
4014	kmem_cache_t		*prev_cache = NULL;
4015	kmem_cache_t		*prev_data_cache = NULL;
4016
4017	DTRACE_PROBE(arc__kmem_reap_start);
4018#ifdef _KERNEL
4019	if (arc_meta_used >= arc_meta_limit) {
4020		/*
4021		 * We are exceeding our meta-data cache limit.
4022		 * Purge some DNLC entries to release holds on meta-data.
4023		 */
4024		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
4025	}
4026#if defined(__i386)
4027	/*
4028	 * Reclaim unused memory from all kmem caches.
4029	 */
4030	kmem_reap();
4031#endif
4032#endif
4033
4034	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4035		if (zio_buf_cache[i] != prev_cache) {
4036			prev_cache = zio_buf_cache[i];
4037			kmem_cache_reap_now(zio_buf_cache[i]);
4038		}
4039		if (zio_data_buf_cache[i] != prev_data_cache) {
4040			prev_data_cache = zio_data_buf_cache[i];
4041			kmem_cache_reap_now(zio_data_buf_cache[i]);
4042		}
4043	}
4044	kmem_cache_reap_now(buf_cache);
4045	kmem_cache_reap_now(hdr_full_cache);
4046	kmem_cache_reap_now(hdr_l2only_cache);
4047	kmem_cache_reap_now(range_seg_cache);
4048
4049#ifdef illumos
4050	if (zio_arena != NULL) {
4051		/*
4052		 * Ask the vmem arena to reclaim unused memory from its
4053		 * quantum caches.
4054		 */
4055		vmem_qcache_reap(zio_arena);
4056	}
4057#endif
4058	DTRACE_PROBE(arc__kmem_reap_end);
4059}
4060
4061/*
4062 * Threads can block in arc_get_data_buf() waiting for this thread to evict
4063 * enough data and signal them to proceed. When this happens, the threads in
4064 * arc_get_data_buf() are sleeping while holding the hash lock for their
4065 * particular arc header. Thus, we must be careful to never sleep on a
4066 * hash lock in this thread. This is to prevent the following deadlock:
4067 *
4068 *  - Thread A sleeps on CV in arc_get_data_buf() holding hash lock "L",
4069 *    waiting for the reclaim thread to signal it.
4070 *
4071 *  - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
4072 *    fails, and goes to sleep forever.
4073 *
4074 * This possible deadlock is avoided by always acquiring a hash lock
4075 * using mutex_tryenter() from arc_reclaim_thread().
4076 */
4077static void
4078arc_reclaim_thread(void *dummy __unused)
4079{
4080	hrtime_t		growtime = 0;
4081	callb_cpr_t		cpr;
4082
4083	CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
4084
4085	mutex_enter(&arc_reclaim_lock);
4086	while (!arc_reclaim_thread_exit) {
4087		uint64_t evicted = 0;
4088
4089		/*
4090		 * This is necessary in order for the mdb ::arc dcmd to
4091		 * show up to date information. Since the ::arc command
4092		 * does not call the kstat's update function, without
4093		 * this call, the command may show stale stats for the
4094		 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4095		 * with this change, the data might be up to 1 second
4096		 * out of date; but that should suffice. The arc_state_t
4097		 * structures can be queried directly if more accurate
4098		 * information is needed.
4099		 */
4100		if (arc_ksp != NULL)
4101			arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4102
4103		mutex_exit(&arc_reclaim_lock);
4104
4105		/*
4106		 * We call arc_adjust() before (possibly) calling
4107		 * arc_kmem_reap_now(), so that we can wake up
4108		 * arc_get_data_buf() sooner.
4109		 */
4110		evicted = arc_adjust();
4111
4112		int64_t free_memory = arc_available_memory();
4113		if (free_memory < 0) {
4114
4115			arc_no_grow = B_TRUE;
4116			arc_warm = B_TRUE;
4117
4118			/*
4119			 * Wait at least zfs_grow_retry (default 60) seconds
4120			 * before considering growing.
4121			 */
4122			growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
4123
4124			arc_kmem_reap_now();
4125
4126			/*
4127			 * If we are still low on memory, shrink the ARC
4128			 * so that we have arc_shrink_min free space.
4129			 */
4130			free_memory = arc_available_memory();
4131
4132			int64_t to_free =
4133			    (arc_c >> arc_shrink_shift) - free_memory;
4134			if (to_free > 0) {
4135#ifdef _KERNEL
4136				to_free = MAX(to_free, ptob(needfree));
4137#endif
4138				arc_shrink(to_free);
4139			}
4140		} else if (free_memory < arc_c >> arc_no_grow_shift) {
4141			arc_no_grow = B_TRUE;
4142		} else if (gethrtime() >= growtime) {
4143			arc_no_grow = B_FALSE;
4144		}
4145
4146		mutex_enter(&arc_reclaim_lock);
4147
4148		/*
4149		 * If evicted is zero, we couldn't evict anything via
4150		 * arc_adjust(). This could be due to hash lock
4151		 * collisions, but more likely due to the majority of
4152		 * arc buffers being unevictable. Therefore, even if
4153		 * arc_size is above arc_c, another pass is unlikely to
4154		 * be helpful and could potentially cause us to enter an
4155		 * infinite loop.
4156		 */
4157		if (arc_size <= arc_c || evicted == 0) {
4158#ifdef _KERNEL
4159			needfree = 0;
4160#endif
4161			/*
4162			 * We're either no longer overflowing, or we
4163			 * can't evict anything more, so we should wake
4164			 * up any threads before we go to sleep.
4165			 */
4166			cv_broadcast(&arc_reclaim_waiters_cv);
4167
4168			/*
4169			 * Block until signaled, or after one second (we
4170			 * might need to perform arc_kmem_reap_now()
4171			 * even if we aren't being signalled)
4172			 */
4173			CALLB_CPR_SAFE_BEGIN(&cpr);
4174			(void) cv_timedwait_hires(&arc_reclaim_thread_cv,
4175			    &arc_reclaim_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
4176			CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
4177		}
4178	}
4179
4180	arc_reclaim_thread_exit = B_FALSE;
4181	cv_broadcast(&arc_reclaim_thread_cv);
4182	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_lock */
4183	thread_exit();
4184}
4185
4186/*
4187 * Adapt arc info given the number of bytes we are trying to add and
4188 * the state that we are comming from.  This function is only called
4189 * when we are adding new content to the cache.
4190 */
4191static void
4192arc_adapt(int bytes, arc_state_t *state)
4193{
4194	int mult;
4195	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
4196	int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
4197	int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
4198
4199	if (state == arc_l2c_only)
4200		return;
4201
4202	ASSERT(bytes > 0);
4203	/*
4204	 * Adapt the target size of the MRU list:
4205	 *	- if we just hit in the MRU ghost list, then increase
4206	 *	  the target size of the MRU list.
4207	 *	- if we just hit in the MFU ghost list, then increase
4208	 *	  the target size of the MFU list by decreasing the
4209	 *	  target size of the MRU list.
4210	 */
4211	if (state == arc_mru_ghost) {
4212		mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
4213		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
4214
4215		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
4216	} else if (state == arc_mfu_ghost) {
4217		uint64_t delta;
4218
4219		mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
4220		mult = MIN(mult, 10);
4221
4222		delta = MIN(bytes * mult, arc_p);
4223		arc_p = MAX(arc_p_min, arc_p - delta);
4224	}
4225	ASSERT((int64_t)arc_p >= 0);
4226
4227	if (arc_reclaim_needed()) {
4228		cv_signal(&arc_reclaim_thread_cv);
4229		return;
4230	}
4231
4232	if (arc_no_grow)
4233		return;
4234
4235	if (arc_c >= arc_c_max)
4236		return;
4237
4238	/*
4239	 * If we're within (2 * maxblocksize) bytes of the target
4240	 * cache size, increment the target cache size
4241	 */
4242	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
4243		DTRACE_PROBE1(arc__inc_adapt, int, bytes);
4244		atomic_add_64(&arc_c, (int64_t)bytes);
4245		if (arc_c > arc_c_max)
4246			arc_c = arc_c_max;
4247		else if (state == arc_anon)
4248			atomic_add_64(&arc_p, (int64_t)bytes);
4249		if (arc_p > arc_c)
4250			arc_p = arc_c;
4251	}
4252	ASSERT((int64_t)arc_p >= 0);
4253}
4254
4255/*
4256 * Check if arc_size has grown past our upper threshold, determined by
4257 * zfs_arc_overflow_shift.
4258 */
4259static boolean_t
4260arc_is_overflowing(void)
4261{
4262	/* Always allow at least one block of overflow */
4263	uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
4264	    arc_c >> zfs_arc_overflow_shift);
4265
4266	return (arc_size >= arc_c + overflow);
4267}
4268
4269/*
4270 * Allocate a block and return it to the caller. If we are hitting the
4271 * hard limit for the cache size, we must sleep, waiting for the eviction
4272 * thread to catch up. If we're past the target size but below the hard
4273 * limit, we'll only signal the reclaim thread and continue on.
4274 */
4275static void *
4276arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4277{
4278	void *datap = NULL;
4279	arc_state_t		*state = hdr->b_l1hdr.b_state;
4280	arc_buf_contents_t	type = arc_buf_type(hdr);
4281
4282	arc_adapt(size, state);
4283
4284	/*
4285	 * If arc_size is currently overflowing, and has grown past our
4286	 * upper limit, we must be adding data faster than the evict
4287	 * thread can evict. Thus, to ensure we don't compound the
4288	 * problem by adding more data and forcing arc_size to grow even
4289	 * further past it's target size, we halt and wait for the
4290	 * eviction thread to catch up.
4291	 *
4292	 * It's also possible that the reclaim thread is unable to evict
4293	 * enough buffers to get arc_size below the overflow limit (e.g.
4294	 * due to buffers being un-evictable, or hash lock collisions).
4295	 * In this case, we want to proceed regardless if we're
4296	 * overflowing; thus we don't use a while loop here.
4297	 */
4298	if (arc_is_overflowing()) {
4299		mutex_enter(&arc_reclaim_lock);
4300
4301		/*
4302		 * Now that we've acquired the lock, we may no longer be
4303		 * over the overflow limit, lets check.
4304		 *
4305		 * We're ignoring the case of spurious wake ups. If that
4306		 * were to happen, it'd let this thread consume an ARC
4307		 * buffer before it should have (i.e. before we're under
4308		 * the overflow limit and were signalled by the reclaim
4309		 * thread). As long as that is a rare occurrence, it
4310		 * shouldn't cause any harm.
4311		 */
4312		if (arc_is_overflowing()) {
4313			cv_signal(&arc_reclaim_thread_cv);
4314			cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
4315		}
4316
4317		mutex_exit(&arc_reclaim_lock);
4318	}
4319
4320	VERIFY3U(hdr->b_type, ==, type);
4321	if (type == ARC_BUFC_METADATA) {
4322		datap = zio_buf_alloc(size);
4323		arc_space_consume(size, ARC_SPACE_META);
4324	} else {
4325		ASSERT(type == ARC_BUFC_DATA);
4326		datap = zio_data_buf_alloc(size);
4327		arc_space_consume(size, ARC_SPACE_DATA);
4328	}
4329
4330	/*
4331	 * Update the state size.  Note that ghost states have a
4332	 * "ghost size" and so don't need to be updated.
4333	 */
4334	if (!GHOST_STATE(state)) {
4335
4336		(void) refcount_add_many(&state->arcs_size, size, tag);
4337
4338		/*
4339		 * If this is reached via arc_read, the link is
4340		 * protected by the hash lock. If reached via
4341		 * arc_buf_alloc, the header should not be accessed by
4342		 * any other thread. And, if reached via arc_read_done,
4343		 * the hash lock will protect it if it's found in the
4344		 * hash table; otherwise no other thread should be
4345		 * trying to [add|remove]_reference it.
4346		 */
4347		if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4348			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4349			(void) refcount_add_many(&state->arcs_esize[type],
4350			    size, tag);
4351		}
4352
4353		/*
4354		 * If we are growing the cache, and we are adding anonymous
4355		 * data, and we have outgrown arc_p, update arc_p
4356		 */
4357		if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
4358		    (refcount_count(&arc_anon->arcs_size) +
4359		    refcount_count(&arc_mru->arcs_size) > arc_p))
4360			arc_p = MIN(arc_c, arc_p + size);
4361	}
4362	ARCSTAT_BUMP(arcstat_allocated);
4363	return (datap);
4364}
4365
4366/*
4367 * Free the arc data buffer.
4368 */
4369static void
4370arc_free_data_buf(arc_buf_hdr_t *hdr, void *data, uint64_t size, void *tag)
4371{
4372	arc_state_t *state = hdr->b_l1hdr.b_state;
4373	arc_buf_contents_t type = arc_buf_type(hdr);
4374
4375	/* protected by hash lock, if in the hash table */
4376	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4377		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4378		ASSERT(state != arc_anon && state != arc_l2c_only);
4379
4380		(void) refcount_remove_many(&state->arcs_esize[type],
4381		    size, tag);
4382	}
4383	(void) refcount_remove_many(&state->arcs_size, size, tag);
4384
4385	VERIFY3U(hdr->b_type, ==, type);
4386	if (type == ARC_BUFC_METADATA) {
4387		zio_buf_free(data, size);
4388		arc_space_return(size, ARC_SPACE_META);
4389	} else {
4390		ASSERT(type == ARC_BUFC_DATA);
4391		zio_data_buf_free(data, size);
4392		arc_space_return(size, ARC_SPACE_DATA);
4393	}
4394}
4395
4396/*
4397 * This routine is called whenever a buffer is accessed.
4398 * NOTE: the hash lock is dropped in this function.
4399 */
4400static void
4401arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
4402{
4403	clock_t now;
4404
4405	ASSERT(MUTEX_HELD(hash_lock));
4406	ASSERT(HDR_HAS_L1HDR(hdr));
4407
4408	if (hdr->b_l1hdr.b_state == arc_anon) {
4409		/*
4410		 * This buffer is not in the cache, and does not
4411		 * appear in our "ghost" list.  Add the new buffer
4412		 * to the MRU state.
4413		 */
4414
4415		ASSERT0(hdr->b_l1hdr.b_arc_access);
4416		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4417		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4418		arc_change_state(arc_mru, hdr, hash_lock);
4419
4420	} else if (hdr->b_l1hdr.b_state == arc_mru) {
4421		now = ddi_get_lbolt();
4422
4423		/*
4424		 * If this buffer is here because of a prefetch, then either:
4425		 * - clear the flag if this is a "referencing" read
4426		 *   (any subsequent access will bump this into the MFU state).
4427		 * or
4428		 * - move the buffer to the head of the list if this is
4429		 *   another prefetch (to make it less likely to be evicted).
4430		 */
4431		if (HDR_PREFETCH(hdr)) {
4432			if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4433				/* link protected by hash lock */
4434				ASSERT(multilist_link_active(
4435				    &hdr->b_l1hdr.b_arc_node));
4436			} else {
4437				arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
4438				ARCSTAT_BUMP(arcstat_mru_hits);
4439			}
4440			hdr->b_l1hdr.b_arc_access = now;
4441			return;
4442		}
4443
4444		/*
4445		 * This buffer has been "accessed" only once so far,
4446		 * but it is still in the cache. Move it to the MFU
4447		 * state.
4448		 */
4449		if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) {
4450			/*
4451			 * More than 125ms have passed since we
4452			 * instantiated this buffer.  Move it to the
4453			 * most frequently used state.
4454			 */
4455			hdr->b_l1hdr.b_arc_access = now;
4456			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4457			arc_change_state(arc_mfu, hdr, hash_lock);
4458		}
4459		ARCSTAT_BUMP(arcstat_mru_hits);
4460	} else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
4461		arc_state_t	*new_state;
4462		/*
4463		 * This buffer has been "accessed" recently, but
4464		 * was evicted from the cache.  Move it to the
4465		 * MFU state.
4466		 */
4467
4468		if (HDR_PREFETCH(hdr)) {
4469			new_state = arc_mru;
4470			if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
4471				arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
4472			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4473		} else {
4474			new_state = arc_mfu;
4475			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4476		}
4477
4478		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4479		arc_change_state(new_state, hdr, hash_lock);
4480
4481		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
4482	} else if (hdr->b_l1hdr.b_state == arc_mfu) {
4483		/*
4484		 * This buffer has been accessed more than once and is
4485		 * still in the cache.  Keep it in the MFU state.
4486		 *
4487		 * NOTE: an add_reference() that occurred when we did
4488		 * the arc_read() will have kicked this off the list.
4489		 * If it was a prefetch, we will explicitly move it to
4490		 * the head of the list now.
4491		 */
4492		if ((HDR_PREFETCH(hdr)) != 0) {
4493			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4494			/* link protected by hash_lock */
4495			ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4496		}
4497		ARCSTAT_BUMP(arcstat_mfu_hits);
4498		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4499	} else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
4500		arc_state_t	*new_state = arc_mfu;
4501		/*
4502		 * This buffer has been accessed more than once but has
4503		 * been evicted from the cache.  Move it back to the
4504		 * MFU state.
4505		 */
4506
4507		if (HDR_PREFETCH(hdr)) {
4508			/*
4509			 * This is a prefetch access...
4510			 * move this block back to the MRU state.
4511			 */
4512			ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
4513			new_state = arc_mru;
4514		}
4515
4516		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4517		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4518		arc_change_state(new_state, hdr, hash_lock);
4519
4520		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
4521	} else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
4522		/*
4523		 * This buffer is on the 2nd Level ARC.
4524		 */
4525
4526		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4527		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4528		arc_change_state(arc_mfu, hdr, hash_lock);
4529	} else {
4530		ASSERT(!"invalid arc state");
4531	}
4532}
4533
4534/* a generic arc_done_func_t which you can use */
4535/* ARGSUSED */
4536void
4537arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
4538{
4539	if (zio == NULL || zio->io_error == 0)
4540		bcopy(buf->b_data, arg, HDR_GET_LSIZE(buf->b_hdr));
4541	arc_buf_destroy(buf, arg);
4542}
4543
4544/* a generic arc_done_func_t */
4545void
4546arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
4547{
4548	arc_buf_t **bufp = arg;
4549	if (zio && zio->io_error) {
4550		arc_buf_destroy(buf, arg);
4551		*bufp = NULL;
4552	} else {
4553		*bufp = buf;
4554		ASSERT(buf->b_data);
4555	}
4556}
4557
4558static void
4559arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
4560{
4561	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
4562		ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
4563		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
4564	} else {
4565		if (HDR_COMPRESSION_ENABLED(hdr)) {
4566			ASSERT3U(HDR_GET_COMPRESS(hdr), ==,
4567			    BP_GET_COMPRESS(bp));
4568		}
4569		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
4570		ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
4571	}
4572}
4573
4574static void
4575arc_read_done(zio_t *zio)
4576{
4577	arc_buf_hdr_t	*hdr = zio->io_private;
4578	arc_buf_t	*abuf = NULL;	/* buffer we're assigning to callback */
4579	kmutex_t	*hash_lock = NULL;
4580	arc_callback_t	*callback_list, *acb;
4581	int		freeable = B_FALSE;
4582
4583	/*
4584	 * The hdr was inserted into hash-table and removed from lists
4585	 * prior to starting I/O.  We should find this header, since
4586	 * it's in the hash table, and it should be legit since it's
4587	 * not possible to evict it during the I/O.  The only possible
4588	 * reason for it not to be found is if we were freed during the
4589	 * read.
4590	 */
4591	if (HDR_IN_HASH_TABLE(hdr)) {
4592		ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
4593		ASSERT3U(hdr->b_dva.dva_word[0], ==,
4594		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
4595		ASSERT3U(hdr->b_dva.dva_word[1], ==,
4596		    BP_IDENTITY(zio->io_bp)->dva_word[1]);
4597
4598		arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
4599		    &hash_lock);
4600
4601		ASSERT((found == hdr &&
4602		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
4603		    (found == hdr && HDR_L2_READING(hdr)));
4604		ASSERT3P(hash_lock, !=, NULL);
4605	}
4606
4607	if (zio->io_error == 0) {
4608		/* byteswap if necessary */
4609		if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
4610			if (BP_GET_LEVEL(zio->io_bp) > 0) {
4611				hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
4612			} else {
4613				hdr->b_l1hdr.b_byteswap =
4614				    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
4615			}
4616		} else {
4617			hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
4618		}
4619	}
4620
4621	arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
4622	if (l2arc_noprefetch && HDR_PREFETCH(hdr))
4623		arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
4624
4625	callback_list = hdr->b_l1hdr.b_acb;
4626	ASSERT3P(callback_list, !=, NULL);
4627
4628	if (hash_lock && zio->io_error == 0 &&
4629	    hdr->b_l1hdr.b_state == arc_anon) {
4630		/*
4631		 * Only call arc_access on anonymous buffers.  This is because
4632		 * if we've issued an I/O for an evicted buffer, we've already
4633		 * called arc_access (to prevent any simultaneous readers from
4634		 * getting confused).
4635		 */
4636		arc_access(hdr, hash_lock);
4637	}
4638
4639	/* create copies of the data buffer for the callers */
4640	for (acb = callback_list; acb; acb = acb->acb_next) {
4641		if (acb->acb_done != NULL) {
4642			/*
4643			 * If we're here, then this must be a demand read
4644			 * since prefetch requests don't have callbacks.
4645			 * If a read request has a callback (i.e. acb_done is
4646			 * not NULL), then we decompress the data for the
4647			 * first request and clone the rest. This avoids
4648			 * having to waste cpu resources decompressing data
4649			 * that nobody is explicitly waiting to read.
4650			 */
4651			if (abuf == NULL) {
4652				acb->acb_buf = arc_buf_alloc_impl(hdr,
4653				    acb->acb_private);
4654				if (zio->io_error == 0) {
4655					zio->io_error =
4656					    arc_decompress(acb->acb_buf);
4657				}
4658				abuf = acb->acb_buf;
4659			} else {
4660				add_reference(hdr, acb->acb_private);
4661				acb->acb_buf = arc_buf_clone(abuf);
4662			}
4663		}
4664	}
4665	hdr->b_l1hdr.b_acb = NULL;
4666	arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
4667	if (abuf == NULL) {
4668		/*
4669		 * This buffer didn't have a callback so it must
4670		 * be a prefetch.
4671		 */
4672		ASSERT(HDR_PREFETCH(hdr));
4673		ASSERT0(hdr->b_l1hdr.b_bufcnt);
4674		ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
4675	}
4676
4677	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
4678	    callback_list != NULL);
4679
4680	if (zio->io_error == 0) {
4681		arc_hdr_verify(hdr, zio->io_bp);
4682	} else {
4683		arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
4684		if (hdr->b_l1hdr.b_state != arc_anon)
4685			arc_change_state(arc_anon, hdr, hash_lock);
4686		if (HDR_IN_HASH_TABLE(hdr))
4687			buf_hash_remove(hdr);
4688		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4689	}
4690
4691	/*
4692	 * Broadcast before we drop the hash_lock to avoid the possibility
4693	 * that the hdr (and hence the cv) might be freed before we get to
4694	 * the cv_broadcast().
4695	 */
4696	cv_broadcast(&hdr->b_l1hdr.b_cv);
4697
4698	if (hash_lock != NULL) {
4699		mutex_exit(hash_lock);
4700	} else {
4701		/*
4702		 * This block was freed while we waited for the read to
4703		 * complete.  It has been removed from the hash table and
4704		 * moved to the anonymous state (so that it won't show up
4705		 * in the cache).
4706		 */
4707		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
4708		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4709	}
4710
4711	/* execute each callback and free its structure */
4712	while ((acb = callback_list) != NULL) {
4713		if (acb->acb_done)
4714			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
4715
4716		if (acb->acb_zio_dummy != NULL) {
4717			acb->acb_zio_dummy->io_error = zio->io_error;
4718			zio_nowait(acb->acb_zio_dummy);
4719		}
4720
4721		callback_list = acb->acb_next;
4722		kmem_free(acb, sizeof (arc_callback_t));
4723	}
4724
4725	if (freeable)
4726		arc_hdr_destroy(hdr);
4727}
4728
4729/*
4730 * "Read" the block at the specified DVA (in bp) via the
4731 * cache.  If the block is found in the cache, invoke the provided
4732 * callback immediately and return.  Note that the `zio' parameter
4733 * in the callback will be NULL in this case, since no IO was
4734 * required.  If the block is not in the cache pass the read request
4735 * on to the spa with a substitute callback function, so that the
4736 * requested block will be added to the cache.
4737 *
4738 * If a read request arrives for a block that has a read in-progress,
4739 * either wait for the in-progress read to complete (and return the
4740 * results); or, if this is a read with a "done" func, add a record
4741 * to the read to invoke the "done" func when the read completes,
4742 * and return; or just return.
4743 *
4744 * arc_read_done() will invoke all the requested "done" functions
4745 * for readers of this block.
4746 */
4747int
4748arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
4749    void *private, zio_priority_t priority, int zio_flags,
4750    arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
4751{
4752	arc_buf_hdr_t *hdr = NULL;
4753	kmutex_t *hash_lock = NULL;
4754	zio_t *rzio;
4755	uint64_t guid = spa_load_guid(spa);
4756
4757	ASSERT(!BP_IS_EMBEDDED(bp) ||
4758	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
4759
4760top:
4761	if (!BP_IS_EMBEDDED(bp)) {
4762		/*
4763		 * Embedded BP's have no DVA and require no I/O to "read".
4764		 * Create an anonymous arc buf to back it.
4765		 */
4766		hdr = buf_hash_find(guid, bp, &hash_lock);
4767	}
4768
4769	if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_pdata != NULL) {
4770		arc_buf_t *buf = NULL;
4771		*arc_flags |= ARC_FLAG_CACHED;
4772
4773		if (HDR_IO_IN_PROGRESS(hdr)) {
4774
4775			if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
4776			    priority == ZIO_PRIORITY_SYNC_READ) {
4777				/*
4778				 * This sync read must wait for an
4779				 * in-progress async read (e.g. a predictive
4780				 * prefetch).  Async reads are queued
4781				 * separately at the vdev_queue layer, so
4782				 * this is a form of priority inversion.
4783				 * Ideally, we would "inherit" the demand
4784				 * i/o's priority by moving the i/o from
4785				 * the async queue to the synchronous queue,
4786				 * but there is currently no mechanism to do
4787				 * so.  Track this so that we can evaluate
4788				 * the magnitude of this potential performance
4789				 * problem.
4790				 *
4791				 * Note that if the prefetch i/o is already
4792				 * active (has been issued to the device),
4793				 * the prefetch improved performance, because
4794				 * we issued it sooner than we would have
4795				 * without the prefetch.
4796				 */
4797				DTRACE_PROBE1(arc__sync__wait__for__async,
4798				    arc_buf_hdr_t *, hdr);
4799				ARCSTAT_BUMP(arcstat_sync_wait_for_async);
4800			}
4801			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
4802				arc_hdr_clear_flags(hdr,
4803				    ARC_FLAG_PREDICTIVE_PREFETCH);
4804			}
4805
4806			if (*arc_flags & ARC_FLAG_WAIT) {
4807				cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
4808				mutex_exit(hash_lock);
4809				goto top;
4810			}
4811			ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4812
4813			if (done) {
4814				arc_callback_t *acb = NULL;
4815
4816				acb = kmem_zalloc(sizeof (arc_callback_t),
4817				    KM_SLEEP);
4818				acb->acb_done = done;
4819				acb->acb_private = private;
4820				if (pio != NULL)
4821					acb->acb_zio_dummy = zio_null(pio,
4822					    spa, NULL, NULL, NULL, zio_flags);
4823
4824				ASSERT3P(acb->acb_done, !=, NULL);
4825				acb->acb_next = hdr->b_l1hdr.b_acb;
4826				hdr->b_l1hdr.b_acb = acb;
4827				mutex_exit(hash_lock);
4828				return (0);
4829			}
4830			mutex_exit(hash_lock);
4831			return (0);
4832		}
4833
4834		ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4835		    hdr->b_l1hdr.b_state == arc_mfu);
4836
4837		if (done) {
4838			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
4839				/*
4840				 * This is a demand read which does not have to
4841				 * wait for i/o because we did a predictive
4842				 * prefetch i/o for it, which has completed.
4843				 */
4844				DTRACE_PROBE1(
4845				    arc__demand__hit__predictive__prefetch,
4846				    arc_buf_hdr_t *, hdr);
4847				ARCSTAT_BUMP(
4848				    arcstat_demand_hit_predictive_prefetch);
4849				arc_hdr_clear_flags(hdr,
4850				    ARC_FLAG_PREDICTIVE_PREFETCH);
4851			}
4852			ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp));
4853
4854			/*
4855			 * If this block is already in use, create a new
4856			 * copy of the data so that we will be guaranteed
4857			 * that arc_release() will always succeed.
4858			 */
4859			buf = hdr->b_l1hdr.b_buf;
4860			if (buf == NULL) {
4861				ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
4862				ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
4863				buf = arc_buf_alloc_impl(hdr, private);
4864				VERIFY0(arc_decompress(buf));
4865			} else {
4866				add_reference(hdr, private);
4867				buf = arc_buf_clone(buf);
4868			}
4869			ASSERT3P(buf->b_data, !=, NULL);
4870
4871		} else if (*arc_flags & ARC_FLAG_PREFETCH &&
4872		    refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4873			arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
4874		}
4875		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
4876		arc_access(hdr, hash_lock);
4877		if (*arc_flags & ARC_FLAG_L2CACHE)
4878			arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
4879		mutex_exit(hash_lock);
4880		ARCSTAT_BUMP(arcstat_hits);
4881		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4882		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
4883		    data, metadata, hits);
4884
4885		if (done)
4886			done(NULL, buf, private);
4887	} else {
4888		uint64_t lsize = BP_GET_LSIZE(bp);
4889		uint64_t psize = BP_GET_PSIZE(bp);
4890		arc_callback_t *acb;
4891		vdev_t *vd = NULL;
4892		uint64_t addr = 0;
4893		boolean_t devw = B_FALSE;
4894		uint64_t size;
4895
4896		if (hdr == NULL) {
4897			/* this block is not in the cache */
4898			arc_buf_hdr_t *exists = NULL;
4899			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
4900			hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
4901			    BP_GET_COMPRESS(bp), type);
4902
4903			if (!BP_IS_EMBEDDED(bp)) {
4904				hdr->b_dva = *BP_IDENTITY(bp);
4905				hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
4906				exists = buf_hash_insert(hdr, &hash_lock);
4907			}
4908			if (exists != NULL) {
4909				/* somebody beat us to the hash insert */
4910				mutex_exit(hash_lock);
4911				buf_discard_identity(hdr);
4912				arc_hdr_destroy(hdr);
4913				goto top; /* restart the IO request */
4914			}
4915		} else {
4916			/*
4917			 * This block is in the ghost cache. If it was L2-only
4918			 * (and thus didn't have an L1 hdr), we realloc the
4919			 * header to add an L1 hdr.
4920			 */
4921			if (!HDR_HAS_L1HDR(hdr)) {
4922				hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
4923				    hdr_full_cache);
4924			}
4925			ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
4926			ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
4927			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4928			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4929			ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
4930
4931			/*
4932			 * This is a delicate dance that we play here.
4933			 * This hdr is in the ghost list so we access it
4934			 * to move it out of the ghost list before we
4935			 * initiate the read. If it's a prefetch then
4936			 * it won't have a callback so we'll remove the
4937			 * reference that arc_buf_alloc_impl() created. We
4938			 * do this after we've called arc_access() to
4939			 * avoid hitting an assert in remove_reference().
4940			 */
4941			arc_access(hdr, hash_lock);
4942			arc_hdr_alloc_pdata(hdr);
4943		}
4944		ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
4945		size = arc_hdr_size(hdr);
4946
4947		/*
4948		 * If compression is enabled on the hdr, then will do
4949		 * RAW I/O and will store the compressed data in the hdr's
4950		 * data block. Otherwise, the hdr's data block will contain
4951		 * the uncompressed data.
4952		 */
4953		if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
4954			zio_flags |= ZIO_FLAG_RAW;
4955		}
4956
4957		if (*arc_flags & ARC_FLAG_PREFETCH)
4958			arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
4959		if (*arc_flags & ARC_FLAG_L2CACHE)
4960			arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
4961		if (BP_GET_LEVEL(bp) > 0)
4962			arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
4963		if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
4964			arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH);
4965		ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
4966
4967		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
4968		acb->acb_done = done;
4969		acb->acb_private = private;
4970
4971		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
4972		hdr->b_l1hdr.b_acb = acb;
4973		arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
4974
4975		if (HDR_HAS_L2HDR(hdr) &&
4976		    (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
4977			devw = hdr->b_l2hdr.b_dev->l2ad_writing;
4978			addr = hdr->b_l2hdr.b_daddr;
4979			/*
4980			 * Lock out device removal.
4981			 */
4982			if (vdev_is_dead(vd) ||
4983			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
4984				vd = NULL;
4985		}
4986
4987		if (priority == ZIO_PRIORITY_ASYNC_READ)
4988			arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
4989		else
4990			arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
4991
4992		if (hash_lock != NULL)
4993			mutex_exit(hash_lock);
4994
4995		/*
4996		 * At this point, we have a level 1 cache miss.  Try again in
4997		 * L2ARC if possible.
4998		 */
4999		ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
5000
5001		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
5002		    uint64_t, lsize, zbookmark_phys_t *, zb);
5003		ARCSTAT_BUMP(arcstat_misses);
5004		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5005		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5006		    data, metadata, misses);
5007#ifdef _KERNEL
5008		curthread->td_ru.ru_inblock++;
5009#endif
5010
5011		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
5012			/*
5013			 * Read from the L2ARC if the following are true:
5014			 * 1. The L2ARC vdev was previously cached.
5015			 * 2. This buffer still has L2ARC metadata.
5016			 * 3. This buffer isn't currently writing to the L2ARC.
5017			 * 4. The L2ARC entry wasn't evicted, which may
5018			 *    also have invalidated the vdev.
5019			 * 5. This isn't prefetch and l2arc_noprefetch is set.
5020			 */
5021			if (HDR_HAS_L2HDR(hdr) &&
5022			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
5023			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
5024				l2arc_read_callback_t *cb;
5025				void* b_data;
5026
5027				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
5028				ARCSTAT_BUMP(arcstat_l2_hits);
5029
5030				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
5031				    KM_SLEEP);
5032				cb->l2rcb_hdr = hdr;
5033				cb->l2rcb_bp = *bp;
5034				cb->l2rcb_zb = *zb;
5035				cb->l2rcb_flags = zio_flags;
5036				uint64_t asize = vdev_psize_to_asize(vd, size);
5037				if (asize != size) {
5038					b_data = zio_data_buf_alloc(asize);
5039					cb->l2rcb_data = b_data;
5040				} else {
5041					b_data = hdr->b_l1hdr.b_pdata;
5042				}
5043
5044				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
5045				    addr + asize < vd->vdev_psize -
5046				    VDEV_LABEL_END_SIZE);
5047
5048				/*
5049				 * l2arc read.  The SCL_L2ARC lock will be
5050				 * released by l2arc_read_done().
5051				 * Issue a null zio if the underlying buffer
5052				 * was squashed to zero size by compression.
5053				 */
5054				ASSERT3U(HDR_GET_COMPRESS(hdr), !=,
5055				    ZIO_COMPRESS_EMPTY);
5056				rzio = zio_read_phys(pio, vd, addr,
5057				    asize, b_data,
5058				    ZIO_CHECKSUM_OFF,
5059				    l2arc_read_done, cb, priority,
5060				    zio_flags | ZIO_FLAG_DONT_CACHE |
5061				    ZIO_FLAG_CANFAIL |
5062				    ZIO_FLAG_DONT_PROPAGATE |
5063				    ZIO_FLAG_DONT_RETRY, B_FALSE);
5064				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
5065				    zio_t *, rzio);
5066				ARCSTAT_INCR(arcstat_l2_read_bytes, size);
5067
5068				if (*arc_flags & ARC_FLAG_NOWAIT) {
5069					zio_nowait(rzio);
5070					return (0);
5071				}
5072
5073				ASSERT(*arc_flags & ARC_FLAG_WAIT);
5074				if (zio_wait(rzio) == 0)
5075					return (0);
5076
5077				/* l2arc read error; goto zio_read() */
5078			} else {
5079				DTRACE_PROBE1(l2arc__miss,
5080				    arc_buf_hdr_t *, hdr);
5081				ARCSTAT_BUMP(arcstat_l2_misses);
5082				if (HDR_L2_WRITING(hdr))
5083					ARCSTAT_BUMP(arcstat_l2_rw_clash);
5084				spa_config_exit(spa, SCL_L2ARC, vd);
5085			}
5086		} else {
5087			if (vd != NULL)
5088				spa_config_exit(spa, SCL_L2ARC, vd);
5089			if (l2arc_ndev != 0) {
5090				DTRACE_PROBE1(l2arc__miss,
5091				    arc_buf_hdr_t *, hdr);
5092				ARCSTAT_BUMP(arcstat_l2_misses);
5093			}
5094		}
5095
5096		rzio = zio_read(pio, spa, bp, hdr->b_l1hdr.b_pdata, size,
5097		    arc_read_done, hdr, priority, zio_flags, zb);
5098
5099		if (*arc_flags & ARC_FLAG_WAIT)
5100			return (zio_wait(rzio));
5101
5102		ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5103		zio_nowait(rzio);
5104	}
5105	return (0);
5106}
5107
5108/*
5109 * Notify the arc that a block was freed, and thus will never be used again.
5110 */
5111void
5112arc_freed(spa_t *spa, const blkptr_t *bp)
5113{
5114	arc_buf_hdr_t *hdr;
5115	kmutex_t *hash_lock;
5116	uint64_t guid = spa_load_guid(spa);
5117
5118	ASSERT(!BP_IS_EMBEDDED(bp));
5119
5120	hdr = buf_hash_find(guid, bp, &hash_lock);
5121	if (hdr == NULL)
5122		return;
5123
5124	/*
5125	 * We might be trying to free a block that is still doing I/O
5126	 * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
5127	 * dmu_sync-ed block). If this block is being prefetched, then it
5128	 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
5129	 * until the I/O completes. A block may also have a reference if it is
5130	 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
5131	 * have written the new block to its final resting place on disk but
5132	 * without the dedup flag set. This would have left the hdr in the MRU
5133	 * state and discoverable. When the txg finally syncs it detects that
5134	 * the block was overridden in open context and issues an override I/O.
5135	 * Since this is a dedup block, the override I/O will determine if the
5136	 * block is already in the DDT. If so, then it will replace the io_bp
5137	 * with the bp from the DDT and allow the I/O to finish. When the I/O
5138	 * reaches the done callback, dbuf_write_override_done, it will
5139	 * check to see if the io_bp and io_bp_override are identical.
5140	 * If they are not, then it indicates that the bp was replaced with
5141	 * the bp in the DDT and the override bp is freed. This allows
5142	 * us to arrive here with a reference on a block that is being
5143	 * freed. So if we have an I/O in progress, or a reference to
5144	 * this hdr, then we don't destroy the hdr.
5145	 */
5146	if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) &&
5147	    refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) {
5148		arc_change_state(arc_anon, hdr, hash_lock);
5149		arc_hdr_destroy(hdr);
5150		mutex_exit(hash_lock);
5151	} else {
5152		mutex_exit(hash_lock);
5153	}
5154
5155}
5156
5157/*
5158 * Release this buffer from the cache, making it an anonymous buffer.  This
5159 * must be done after a read and prior to modifying the buffer contents.
5160 * If the buffer has more than one reference, we must make
5161 * a new hdr for the buffer.
5162 */
5163void
5164arc_release(arc_buf_t *buf, void *tag)
5165{
5166	arc_buf_hdr_t *hdr = buf->b_hdr;
5167
5168	/*
5169	 * It would be nice to assert that if it's DMU metadata (level >
5170	 * 0 || it's the dnode file), then it must be syncing context.
5171	 * But we don't know that information at this level.
5172	 */
5173
5174	mutex_enter(&buf->b_evict_lock);
5175
5176	ASSERT(HDR_HAS_L1HDR(hdr));
5177
5178	/*
5179	 * We don't grab the hash lock prior to this check, because if
5180	 * the buffer's header is in the arc_anon state, it won't be
5181	 * linked into the hash table.
5182	 */
5183	if (hdr->b_l1hdr.b_state == arc_anon) {
5184		mutex_exit(&buf->b_evict_lock);
5185		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5186		ASSERT(!HDR_IN_HASH_TABLE(hdr));
5187		ASSERT(!HDR_HAS_L2HDR(hdr));
5188		ASSERT(HDR_EMPTY(hdr));
5189		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
5190		ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
5191		ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
5192
5193		hdr->b_l1hdr.b_arc_access = 0;
5194
5195		/*
5196		 * If the buf is being overridden then it may already
5197		 * have a hdr that is not empty.
5198		 */
5199		buf_discard_identity(hdr);
5200		arc_buf_thaw(buf);
5201
5202		return;
5203	}
5204
5205	kmutex_t *hash_lock = HDR_LOCK(hdr);
5206	mutex_enter(hash_lock);
5207
5208	/*
5209	 * This assignment is only valid as long as the hash_lock is
5210	 * held, we must be careful not to reference state or the
5211	 * b_state field after dropping the lock.
5212	 */
5213	arc_state_t *state = hdr->b_l1hdr.b_state;
5214	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
5215	ASSERT3P(state, !=, arc_anon);
5216
5217	/* this buffer is not on any list */
5218	ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) > 0);
5219
5220	if (HDR_HAS_L2HDR(hdr)) {
5221		mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
5222
5223		/*
5224		 * We have to recheck this conditional again now that
5225		 * we're holding the l2ad_mtx to prevent a race with
5226		 * another thread which might be concurrently calling
5227		 * l2arc_evict(). In that case, l2arc_evict() might have
5228		 * destroyed the header's L2 portion as we were waiting
5229		 * to acquire the l2ad_mtx.
5230		 */
5231		if (HDR_HAS_L2HDR(hdr)) {
5232			l2arc_trim(hdr);
5233			arc_hdr_l2hdr_destroy(hdr);
5234		}
5235
5236		mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
5237	}
5238
5239	/*
5240	 * Do we have more than one buf?
5241	 */
5242	if (hdr->b_l1hdr.b_bufcnt > 1) {
5243		arc_buf_hdr_t *nhdr;
5244		arc_buf_t **bufp;
5245		uint64_t spa = hdr->b_spa;
5246		uint64_t psize = HDR_GET_PSIZE(hdr);
5247		uint64_t lsize = HDR_GET_LSIZE(hdr);
5248		enum zio_compress compress = HDR_GET_COMPRESS(hdr);
5249		arc_buf_contents_t type = arc_buf_type(hdr);
5250		VERIFY3U(hdr->b_type, ==, type);
5251
5252		ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
5253		(void) remove_reference(hdr, hash_lock, tag);
5254
5255		if (arc_buf_is_shared(buf)) {
5256			ASSERT(HDR_SHARED_DATA(hdr));
5257			ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
5258			ASSERT(ARC_BUF_LAST(buf));
5259		}
5260
5261		/*
5262		 * Pull the data off of this hdr and attach it to
5263		 * a new anonymous hdr. Also find the last buffer
5264		 * in the hdr's buffer list.
5265		 */
5266		arc_buf_t *lastbuf = NULL;
5267		bufp = &hdr->b_l1hdr.b_buf;
5268		while (*bufp != NULL) {
5269			if (*bufp == buf) {
5270				*bufp = buf->b_next;
5271			}
5272
5273			/*
5274			 * If we've removed a buffer in the middle of
5275			 * the list then update the lastbuf and update
5276			 * bufp.
5277			 */
5278			if (*bufp != NULL) {
5279				lastbuf = *bufp;
5280				bufp = &(*bufp)->b_next;
5281			}
5282		}
5283		buf->b_next = NULL;
5284		ASSERT3P(lastbuf, !=, buf);
5285		ASSERT3P(lastbuf, !=, NULL);
5286
5287		/*
5288		 * If the current arc_buf_t and the hdr are sharing their data
5289		 * buffer, then we must stop sharing that block, transfer
5290		 * ownership and setup sharing with a new arc_buf_t at the end
5291		 * of the hdr's b_buf list.
5292		 */
5293		if (arc_buf_is_shared(buf)) {
5294			ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
5295			ASSERT(ARC_BUF_LAST(lastbuf));
5296			VERIFY(!arc_buf_is_shared(lastbuf));
5297
5298			/*
5299			 * First, sever the block sharing relationship between
5300			 * buf and the arc_buf_hdr_t. Then, setup a new
5301			 * block sharing relationship with the last buffer
5302			 * on the arc_buf_t list.
5303			 */
5304			arc_unshare_buf(hdr, buf);
5305			arc_share_buf(hdr, lastbuf);
5306			VERIFY3P(lastbuf->b_data, !=, NULL);
5307		} else if (HDR_SHARED_DATA(hdr)) {
5308			ASSERT(arc_buf_is_shared(lastbuf));
5309		}
5310		ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
5311		ASSERT3P(state, !=, arc_l2c_only);
5312
5313		(void) refcount_remove_many(&state->arcs_size,
5314		    HDR_GET_LSIZE(hdr), buf);
5315
5316		if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
5317			ASSERT3P(state, !=, arc_l2c_only);
5318			(void) refcount_remove_many(&state->arcs_esize[type],
5319			    HDR_GET_LSIZE(hdr), buf);
5320		}
5321
5322		hdr->b_l1hdr.b_bufcnt -= 1;
5323		arc_cksum_verify(buf);
5324#ifdef illumos
5325		arc_buf_unwatch(buf);
5326#endif
5327
5328		mutex_exit(hash_lock);
5329
5330		/*
5331		 * Allocate a new hdr. The new hdr will contain a b_pdata
5332		 * buffer which will be freed in arc_write().
5333		 */
5334		nhdr = arc_hdr_alloc(spa, psize, lsize, compress, type);
5335		ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
5336		ASSERT0(nhdr->b_l1hdr.b_bufcnt);
5337		ASSERT0(refcount_count(&nhdr->b_l1hdr.b_refcnt));
5338		VERIFY3U(nhdr->b_type, ==, type);
5339		ASSERT(!HDR_SHARED_DATA(nhdr));
5340
5341		nhdr->b_l1hdr.b_buf = buf;
5342		nhdr->b_l1hdr.b_bufcnt = 1;
5343		(void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
5344		buf->b_hdr = nhdr;
5345
5346		mutex_exit(&buf->b_evict_lock);
5347		(void) refcount_add_many(&arc_anon->arcs_size,
5348		    HDR_GET_LSIZE(nhdr), buf);
5349	} else {
5350		mutex_exit(&buf->b_evict_lock);
5351		ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
5352		/* protected by hash lock, or hdr is on arc_anon */
5353		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
5354		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5355		arc_change_state(arc_anon, hdr, hash_lock);
5356		hdr->b_l1hdr.b_arc_access = 0;
5357		mutex_exit(hash_lock);
5358
5359		buf_discard_identity(hdr);
5360		arc_buf_thaw(buf);
5361	}
5362}
5363
5364int
5365arc_released(arc_buf_t *buf)
5366{
5367	int released;
5368
5369	mutex_enter(&buf->b_evict_lock);
5370	released = (buf->b_data != NULL &&
5371	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
5372	mutex_exit(&buf->b_evict_lock);
5373	return (released);
5374}
5375
5376#ifdef ZFS_DEBUG
5377int
5378arc_referenced(arc_buf_t *buf)
5379{
5380	int referenced;
5381
5382	mutex_enter(&buf->b_evict_lock);
5383	referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
5384	mutex_exit(&buf->b_evict_lock);
5385	return (referenced);
5386}
5387#endif
5388
5389static void
5390arc_write_ready(zio_t *zio)
5391{
5392	arc_write_callback_t *callback = zio->io_private;
5393	arc_buf_t *buf = callback->awcb_buf;
5394	arc_buf_hdr_t *hdr = buf->b_hdr;
5395	uint64_t psize = BP_IS_HOLE(zio->io_bp) ? 0 : BP_GET_PSIZE(zio->io_bp);
5396
5397	ASSERT(HDR_HAS_L1HDR(hdr));
5398	ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
5399	ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
5400
5401	/*
5402	 * If we're reexecuting this zio because the pool suspended, then
5403	 * cleanup any state that was previously set the first time the
5404	 * callback as invoked.
5405	 */
5406	if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
5407		arc_cksum_free(hdr);
5408#ifdef illumos
5409		arc_buf_unwatch(buf);
5410#endif
5411		if (hdr->b_l1hdr.b_pdata != NULL) {
5412			if (arc_buf_is_shared(buf)) {
5413				ASSERT(HDR_SHARED_DATA(hdr));
5414
5415				arc_unshare_buf(hdr, buf);
5416			} else {
5417				arc_hdr_free_pdata(hdr);
5418			}
5419		}
5420	}
5421	ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
5422	ASSERT(!HDR_SHARED_DATA(hdr));
5423	ASSERT(!arc_buf_is_shared(buf));
5424
5425	callback->awcb_ready(zio, buf, callback->awcb_private);
5426
5427	if (HDR_IO_IN_PROGRESS(hdr))
5428		ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
5429
5430	arc_cksum_compute(buf);
5431	arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5432
5433	enum zio_compress compress;
5434	if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5435		compress = ZIO_COMPRESS_OFF;
5436	} else {
5437		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(zio->io_bp));
5438		compress = BP_GET_COMPRESS(zio->io_bp);
5439	}
5440	HDR_SET_PSIZE(hdr, psize);
5441	arc_hdr_set_compress(hdr, compress);
5442
5443	/*
5444	 * If the hdr is compressed, then copy the compressed
5445	 * zio contents into arc_buf_hdr_t. Otherwise, copy the original
5446	 * data buf into the hdr. Ideally, we would like to always copy the
5447	 * io_data into b_pdata but the user may have disabled compressed
5448	 * arc thus the on-disk block may or may not match what we maintain
5449	 * in the hdr's b_pdata field.
5450	 */
5451	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
5452		ASSERT(BP_GET_COMPRESS(zio->io_bp) != ZIO_COMPRESS_OFF);
5453		ASSERT3U(psize, >, 0);
5454		arc_hdr_alloc_pdata(hdr);
5455		bcopy(zio->io_data, hdr->b_l1hdr.b_pdata, psize);
5456	} else {
5457		ASSERT3P(buf->b_data, ==, zio->io_orig_data);
5458		ASSERT3U(zio->io_orig_size, ==, HDR_GET_LSIZE(hdr));
5459		ASSERT3U(hdr->b_l1hdr.b_byteswap, ==, DMU_BSWAP_NUMFUNCS);
5460		ASSERT(!HDR_SHARED_DATA(hdr));
5461		ASSERT(!arc_buf_is_shared(buf));
5462		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
5463		ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
5464
5465		/*
5466		 * This hdr is not compressed so we're able to share
5467		 * the arc_buf_t data buffer with the hdr.
5468		 */
5469		arc_share_buf(hdr, buf);
5470		VERIFY0(bcmp(zio->io_orig_data, hdr->b_l1hdr.b_pdata,
5471		    HDR_GET_LSIZE(hdr)));
5472	}
5473	arc_hdr_verify(hdr, zio->io_bp);
5474}
5475
5476static void
5477arc_write_children_ready(zio_t *zio)
5478{
5479	arc_write_callback_t *callback = zio->io_private;
5480	arc_buf_t *buf = callback->awcb_buf;
5481
5482	callback->awcb_children_ready(zio, buf, callback->awcb_private);
5483}
5484
5485/*
5486 * The SPA calls this callback for each physical write that happens on behalf
5487 * of a logical write.  See the comment in dbuf_write_physdone() for details.
5488 */
5489static void
5490arc_write_physdone(zio_t *zio)
5491{
5492	arc_write_callback_t *cb = zio->io_private;
5493	if (cb->awcb_physdone != NULL)
5494		cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
5495}
5496
5497static void
5498arc_write_done(zio_t *zio)
5499{
5500	arc_write_callback_t *callback = zio->io_private;
5501	arc_buf_t *buf = callback->awcb_buf;
5502	arc_buf_hdr_t *hdr = buf->b_hdr;
5503
5504	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5505
5506	if (zio->io_error == 0) {
5507		arc_hdr_verify(hdr, zio->io_bp);
5508
5509		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5510			buf_discard_identity(hdr);
5511		} else {
5512			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
5513			hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
5514		}
5515	} else {
5516		ASSERT(HDR_EMPTY(hdr));
5517	}
5518
5519	/*
5520	 * If the block to be written was all-zero or compressed enough to be
5521	 * embedded in the BP, no write was performed so there will be no
5522	 * dva/birth/checksum.  The buffer must therefore remain anonymous
5523	 * (and uncached).
5524	 */
5525	if (!HDR_EMPTY(hdr)) {
5526		arc_buf_hdr_t *exists;
5527		kmutex_t *hash_lock;
5528
5529		ASSERT(zio->io_error == 0);
5530
5531		arc_cksum_verify(buf);
5532
5533		exists = buf_hash_insert(hdr, &hash_lock);
5534		if (exists != NULL) {
5535			/*
5536			 * This can only happen if we overwrite for
5537			 * sync-to-convergence, because we remove
5538			 * buffers from the hash table when we arc_free().
5539			 */
5540			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
5541				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5542					panic("bad overwrite, hdr=%p exists=%p",
5543					    (void *)hdr, (void *)exists);
5544				ASSERT(refcount_is_zero(
5545				    &exists->b_l1hdr.b_refcnt));
5546				arc_change_state(arc_anon, exists, hash_lock);
5547				mutex_exit(hash_lock);
5548				arc_hdr_destroy(exists);
5549				exists = buf_hash_insert(hdr, &hash_lock);
5550				ASSERT3P(exists, ==, NULL);
5551			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
5552				/* nopwrite */
5553				ASSERT(zio->io_prop.zp_nopwrite);
5554				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5555					panic("bad nopwrite, hdr=%p exists=%p",
5556					    (void *)hdr, (void *)exists);
5557			} else {
5558				/* Dedup */
5559				ASSERT(hdr->b_l1hdr.b_bufcnt == 1);
5560				ASSERT(hdr->b_l1hdr.b_state == arc_anon);
5561				ASSERT(BP_GET_DEDUP(zio->io_bp));
5562				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
5563			}
5564		}
5565		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5566		/* if it's not anon, we are doing a scrub */
5567		if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
5568			arc_access(hdr, hash_lock);
5569		mutex_exit(hash_lock);
5570	} else {
5571		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5572	}
5573
5574	ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5575	callback->awcb_done(zio, buf, callback->awcb_private);
5576
5577	kmem_free(callback, sizeof (arc_write_callback_t));
5578}
5579
5580zio_t *
5581arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
5582    boolean_t l2arc, const zio_prop_t *zp, arc_done_func_t *ready,
5583    arc_done_func_t *children_ready, arc_done_func_t *physdone,
5584    arc_done_func_t *done, void *private, zio_priority_t priority,
5585    int zio_flags, const zbookmark_phys_t *zb)
5586{
5587	arc_buf_hdr_t *hdr = buf->b_hdr;
5588	arc_write_callback_t *callback;
5589	zio_t *zio;
5590
5591	ASSERT3P(ready, !=, NULL);
5592	ASSERT3P(done, !=, NULL);
5593	ASSERT(!HDR_IO_ERROR(hdr));
5594	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5595	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5596	ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
5597	if (l2arc)
5598		arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5599	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
5600	callback->awcb_ready = ready;
5601	callback->awcb_children_ready = children_ready;
5602	callback->awcb_physdone = physdone;
5603	callback->awcb_done = done;
5604	callback->awcb_private = private;
5605	callback->awcb_buf = buf;
5606
5607	/*
5608	 * The hdr's b_pdata is now stale, free it now. A new data block
5609	 * will be allocated when the zio pipeline calls arc_write_ready().
5610	 */
5611	if (hdr->b_l1hdr.b_pdata != NULL) {
5612		/*
5613		 * If the buf is currently sharing the data block with
5614		 * the hdr then we need to break that relationship here.
5615		 * The hdr will remain with a NULL data pointer and the
5616		 * buf will take sole ownership of the block.
5617		 */
5618		if (arc_buf_is_shared(buf)) {
5619			ASSERT(ARC_BUF_LAST(buf));
5620			arc_unshare_buf(hdr, buf);
5621		} else {
5622			arc_hdr_free_pdata(hdr);
5623		}
5624		VERIFY3P(buf->b_data, !=, NULL);
5625		arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
5626	}
5627	ASSERT(!arc_buf_is_shared(buf));
5628	ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
5629
5630	zio = zio_write(pio, spa, txg, bp, buf->b_data, HDR_GET_LSIZE(hdr), zp,
5631	    arc_write_ready,
5632	    (children_ready != NULL) ? arc_write_children_ready : NULL,
5633	    arc_write_physdone, arc_write_done, callback,
5634	    priority, zio_flags, zb);
5635
5636	return (zio);
5637}
5638
5639static int
5640arc_memory_throttle(uint64_t reserve, uint64_t txg)
5641{
5642#ifdef _KERNEL
5643	uint64_t available_memory = ptob(freemem);
5644	static uint64_t page_load = 0;
5645	static uint64_t last_txg = 0;
5646
5647#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
5648	available_memory =
5649	    MIN(available_memory, ptob(vmem_size(heap_arena, VMEM_FREE)));
5650#endif
5651
5652	if (freemem > (uint64_t)physmem * arc_lotsfree_percent / 100)
5653		return (0);
5654
5655	if (txg > last_txg) {
5656		last_txg = txg;
5657		page_load = 0;
5658	}
5659	/*
5660	 * If we are in pageout, we know that memory is already tight,
5661	 * the arc is already going to be evicting, so we just want to
5662	 * continue to let page writes occur as quickly as possible.
5663	 */
5664	if (curproc == pageproc) {
5665		if (page_load > MAX(ptob(minfree), available_memory) / 4)
5666			return (SET_ERROR(ERESTART));
5667		/* Note: reserve is inflated, so we deflate */
5668		page_load += reserve / 8;
5669		return (0);
5670	} else if (page_load > 0 && arc_reclaim_needed()) {
5671		/* memory is low, delay before restarting */
5672		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
5673		return (SET_ERROR(EAGAIN));
5674	}
5675	page_load = 0;
5676#endif
5677	return (0);
5678}
5679
5680void
5681arc_tempreserve_clear(uint64_t reserve)
5682{
5683	atomic_add_64(&arc_tempreserve, -reserve);
5684	ASSERT((int64_t)arc_tempreserve >= 0);
5685}
5686
5687int
5688arc_tempreserve_space(uint64_t reserve, uint64_t txg)
5689{
5690	int error;
5691	uint64_t anon_size;
5692
5693	if (reserve > arc_c/4 && !arc_no_grow) {
5694		arc_c = MIN(arc_c_max, reserve * 4);
5695		DTRACE_PROBE1(arc__set_reserve, uint64_t, arc_c);
5696	}
5697	if (reserve > arc_c)
5698		return (SET_ERROR(ENOMEM));
5699
5700	/*
5701	 * Don't count loaned bufs as in flight dirty data to prevent long
5702	 * network delays from blocking transactions that are ready to be
5703	 * assigned to a txg.
5704	 */
5705	anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
5706	    arc_loaned_bytes), 0);
5707
5708	/*
5709	 * Writes will, almost always, require additional memory allocations
5710	 * in order to compress/encrypt/etc the data.  We therefore need to
5711	 * make sure that there is sufficient available memory for this.
5712	 */
5713	error = arc_memory_throttle(reserve, txg);
5714	if (error != 0)
5715		return (error);
5716
5717	/*
5718	 * Throttle writes when the amount of dirty data in the cache
5719	 * gets too large.  We try to keep the cache less than half full
5720	 * of dirty blocks so that our sync times don't grow too large.
5721	 * Note: if two requests come in concurrently, we might let them
5722	 * both succeed, when one of them should fail.  Not a huge deal.
5723	 */
5724
5725	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
5726	    anon_size > arc_c / 4) {
5727		uint64_t meta_esize =
5728		    refcount_count(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
5729		uint64_t data_esize =
5730		    refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
5731		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
5732		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
5733		    arc_tempreserve >> 10, meta_esize >> 10,
5734		    data_esize >> 10, reserve >> 10, arc_c >> 10);
5735		return (SET_ERROR(ERESTART));
5736	}
5737	atomic_add_64(&arc_tempreserve, reserve);
5738	return (0);
5739}
5740
5741static void
5742arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
5743    kstat_named_t *evict_data, kstat_named_t *evict_metadata)
5744{
5745	size->value.ui64 = refcount_count(&state->arcs_size);
5746	evict_data->value.ui64 =
5747	    refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
5748	evict_metadata->value.ui64 =
5749	    refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
5750}
5751
5752static int
5753arc_kstat_update(kstat_t *ksp, int rw)
5754{
5755	arc_stats_t *as = ksp->ks_data;
5756
5757	if (rw == KSTAT_WRITE) {
5758		return (EACCES);
5759	} else {
5760		arc_kstat_update_state(arc_anon,
5761		    &as->arcstat_anon_size,
5762		    &as->arcstat_anon_evictable_data,
5763		    &as->arcstat_anon_evictable_metadata);
5764		arc_kstat_update_state(arc_mru,
5765		    &as->arcstat_mru_size,
5766		    &as->arcstat_mru_evictable_data,
5767		    &as->arcstat_mru_evictable_metadata);
5768		arc_kstat_update_state(arc_mru_ghost,
5769		    &as->arcstat_mru_ghost_size,
5770		    &as->arcstat_mru_ghost_evictable_data,
5771		    &as->arcstat_mru_ghost_evictable_metadata);
5772		arc_kstat_update_state(arc_mfu,
5773		    &as->arcstat_mfu_size,
5774		    &as->arcstat_mfu_evictable_data,
5775		    &as->arcstat_mfu_evictable_metadata);
5776		arc_kstat_update_state(arc_mfu_ghost,
5777		    &as->arcstat_mfu_ghost_size,
5778		    &as->arcstat_mfu_ghost_evictable_data,
5779		    &as->arcstat_mfu_ghost_evictable_metadata);
5780	}
5781
5782	return (0);
5783}
5784
5785/*
5786 * This function *must* return indices evenly distributed between all
5787 * sublists of the multilist. This is needed due to how the ARC eviction
5788 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
5789 * distributed between all sublists and uses this assumption when
5790 * deciding which sublist to evict from and how much to evict from it.
5791 */
5792unsigned int
5793arc_state_multilist_index_func(multilist_t *ml, void *obj)
5794{
5795	arc_buf_hdr_t *hdr = obj;
5796
5797	/*
5798	 * We rely on b_dva to generate evenly distributed index
5799	 * numbers using buf_hash below. So, as an added precaution,
5800	 * let's make sure we never add empty buffers to the arc lists.
5801	 */
5802	ASSERT(!HDR_EMPTY(hdr));
5803
5804	/*
5805	 * The assumption here, is the hash value for a given
5806	 * arc_buf_hdr_t will remain constant throughout it's lifetime
5807	 * (i.e. it's b_spa, b_dva, and b_birth fields don't change).
5808	 * Thus, we don't need to store the header's sublist index
5809	 * on insertion, as this index can be recalculated on removal.
5810	 *
5811	 * Also, the low order bits of the hash value are thought to be
5812	 * distributed evenly. Otherwise, in the case that the multilist
5813	 * has a power of two number of sublists, each sublists' usage
5814	 * would not be evenly distributed.
5815	 */
5816	return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
5817	    multilist_get_num_sublists(ml));
5818}
5819
5820#ifdef _KERNEL
5821static eventhandler_tag arc_event_lowmem = NULL;
5822
5823static void
5824arc_lowmem(void *arg __unused, int howto __unused)
5825{
5826
5827	mutex_enter(&arc_reclaim_lock);
5828	/* XXX: Memory deficit should be passed as argument. */
5829	needfree = btoc(arc_c >> arc_shrink_shift);
5830	DTRACE_PROBE(arc__needfree);
5831	cv_signal(&arc_reclaim_thread_cv);
5832
5833	/*
5834	 * It is unsafe to block here in arbitrary threads, because we can come
5835	 * here from ARC itself and may hold ARC locks and thus risk a deadlock
5836	 * with ARC reclaim thread.
5837	 */
5838	if (curproc == pageproc)
5839		(void) cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
5840	mutex_exit(&arc_reclaim_lock);
5841}
5842#endif
5843
5844static void
5845arc_state_init(void)
5846{
5847	arc_anon = &ARC_anon;
5848	arc_mru = &ARC_mru;
5849	arc_mru_ghost = &ARC_mru_ghost;
5850	arc_mfu = &ARC_mfu;
5851	arc_mfu_ghost = &ARC_mfu_ghost;
5852	arc_l2c_only = &ARC_l2c_only;
5853
5854	multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
5855	    sizeof (arc_buf_hdr_t),
5856	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5857	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5858	multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
5859	    sizeof (arc_buf_hdr_t),
5860	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5861	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5862	multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
5863	    sizeof (arc_buf_hdr_t),
5864	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5865	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5866	multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
5867	    sizeof (arc_buf_hdr_t),
5868	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5869	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5870	multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
5871	    sizeof (arc_buf_hdr_t),
5872	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5873	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5874	multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
5875	    sizeof (arc_buf_hdr_t),
5876	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5877	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5878	multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
5879	    sizeof (arc_buf_hdr_t),
5880	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5881	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5882	multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
5883	    sizeof (arc_buf_hdr_t),
5884	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5885	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5886	multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
5887	    sizeof (arc_buf_hdr_t),
5888	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5889	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5890	multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
5891	    sizeof (arc_buf_hdr_t),
5892	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5893	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5894
5895	refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
5896	refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
5897	refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
5898	refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
5899	refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
5900	refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
5901	refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
5902	refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
5903	refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
5904	refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
5905	refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
5906	refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
5907
5908	refcount_create(&arc_anon->arcs_size);
5909	refcount_create(&arc_mru->arcs_size);
5910	refcount_create(&arc_mru_ghost->arcs_size);
5911	refcount_create(&arc_mfu->arcs_size);
5912	refcount_create(&arc_mfu_ghost->arcs_size);
5913	refcount_create(&arc_l2c_only->arcs_size);
5914}
5915
5916static void
5917arc_state_fini(void)
5918{
5919	refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
5920	refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
5921	refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
5922	refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
5923	refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
5924	refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
5925	refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
5926	refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
5927	refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
5928	refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
5929	refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
5930	refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
5931
5932	refcount_destroy(&arc_anon->arcs_size);
5933	refcount_destroy(&arc_mru->arcs_size);
5934	refcount_destroy(&arc_mru_ghost->arcs_size);
5935	refcount_destroy(&arc_mfu->arcs_size);
5936	refcount_destroy(&arc_mfu_ghost->arcs_size);
5937	refcount_destroy(&arc_l2c_only->arcs_size);
5938
5939	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
5940	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
5941	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
5942	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
5943	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
5944	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
5945	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
5946	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
5947}
5948
5949uint64_t
5950arc_max_bytes(void)
5951{
5952	return (arc_c_max);
5953}
5954
5955void
5956arc_init(void)
5957{
5958	int i, prefetch_tunable_set = 0;
5959
5960	mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
5961	cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
5962	cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
5963
5964	/* Convert seconds to clock ticks */
5965	arc_min_prefetch_lifespan = 1 * hz;
5966
5967	/* Start out with 1/8 of all memory */
5968	arc_c = kmem_size() / 8;
5969
5970#ifdef illumos
5971#ifdef _KERNEL
5972	/*
5973	 * On architectures where the physical memory can be larger
5974	 * than the addressable space (intel in 32-bit mode), we may
5975	 * need to limit the cache to 1/8 of VM size.
5976	 */
5977	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
5978#endif
5979#endif	/* illumos */
5980	/* set min cache to 1/32 of all memory, or arc_abs_min, whichever is more */
5981	arc_c_min = MAX(arc_c / 4, arc_abs_min);
5982	/* set max to 1/2 of all memory, or all but 1GB, whichever is more */
5983	if (arc_c * 8 >= 1 << 30)
5984		arc_c_max = (arc_c * 8) - (1 << 30);
5985	else
5986		arc_c_max = arc_c_min;
5987	arc_c_max = MAX(arc_c * 5, arc_c_max);
5988
5989	/*
5990	 * In userland, there's only the memory pressure that we artificially
5991	 * create (see arc_available_memory()).  Don't let arc_c get too
5992	 * small, because it can cause transactions to be larger than
5993	 * arc_c, causing arc_tempreserve_space() to fail.
5994	 */
5995#ifndef _KERNEL
5996	arc_c_min = arc_c_max / 2;
5997#endif
5998
5999#ifdef _KERNEL
6000	/*
6001	 * Allow the tunables to override our calculations if they are
6002	 * reasonable.
6003	 */
6004	if (zfs_arc_max > arc_abs_min && zfs_arc_max < kmem_size()) {
6005		arc_c_max = zfs_arc_max;
6006		arc_c_min = MIN(arc_c_min, arc_c_max);
6007	}
6008	if (zfs_arc_min > arc_abs_min && zfs_arc_min <= arc_c_max)
6009		arc_c_min = zfs_arc_min;
6010#endif
6011
6012	arc_c = arc_c_max;
6013	arc_p = (arc_c >> 1);
6014	arc_size = 0;
6015
6016	/* limit meta-data to 1/4 of the arc capacity */
6017	arc_meta_limit = arc_c_max / 4;
6018
6019	/* Allow the tunable to override if it is reasonable */
6020	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
6021		arc_meta_limit = zfs_arc_meta_limit;
6022
6023	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
6024		arc_c_min = arc_meta_limit / 2;
6025
6026	if (zfs_arc_meta_min > 0) {
6027		arc_meta_min = zfs_arc_meta_min;
6028	} else {
6029		arc_meta_min = arc_c_min / 2;
6030	}
6031
6032	if (zfs_arc_grow_retry > 0)
6033		arc_grow_retry = zfs_arc_grow_retry;
6034
6035	if (zfs_arc_shrink_shift > 0)
6036		arc_shrink_shift = zfs_arc_shrink_shift;
6037
6038	/*
6039	 * Ensure that arc_no_grow_shift is less than arc_shrink_shift.
6040	 */
6041	if (arc_no_grow_shift >= arc_shrink_shift)
6042		arc_no_grow_shift = arc_shrink_shift - 1;
6043
6044	if (zfs_arc_p_min_shift > 0)
6045		arc_p_min_shift = zfs_arc_p_min_shift;
6046
6047	if (zfs_arc_num_sublists_per_state < 1)
6048		zfs_arc_num_sublists_per_state = MAX(max_ncpus, 1);
6049
6050	/* if kmem_flags are set, lets try to use less memory */
6051	if (kmem_debugging())
6052		arc_c = arc_c / 2;
6053	if (arc_c < arc_c_min)
6054		arc_c = arc_c_min;
6055
6056	zfs_arc_min = arc_c_min;
6057	zfs_arc_max = arc_c_max;
6058
6059	arc_state_init();
6060	buf_init();
6061
6062	arc_reclaim_thread_exit = B_FALSE;
6063
6064	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
6065	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
6066
6067	if (arc_ksp != NULL) {
6068		arc_ksp->ks_data = &arc_stats;
6069		arc_ksp->ks_update = arc_kstat_update;
6070		kstat_install(arc_ksp);
6071	}
6072
6073	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
6074	    TS_RUN, minclsyspri);
6075
6076#ifdef _KERNEL
6077	arc_event_lowmem = EVENTHANDLER_REGISTER(vm_lowmem, arc_lowmem, NULL,
6078	    EVENTHANDLER_PRI_FIRST);
6079#endif
6080
6081	arc_dead = B_FALSE;
6082	arc_warm = B_FALSE;
6083
6084	/*
6085	 * Calculate maximum amount of dirty data per pool.
6086	 *
6087	 * If it has been set by /etc/system, take that.
6088	 * Otherwise, use a percentage of physical memory defined by
6089	 * zfs_dirty_data_max_percent (default 10%) with a cap at
6090	 * zfs_dirty_data_max_max (default 4GB).
6091	 */
6092	if (zfs_dirty_data_max == 0) {
6093		zfs_dirty_data_max = ptob(physmem) *
6094		    zfs_dirty_data_max_percent / 100;
6095		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
6096		    zfs_dirty_data_max_max);
6097	}
6098
6099#ifdef _KERNEL
6100	if (TUNABLE_INT_FETCH("vfs.zfs.prefetch_disable", &zfs_prefetch_disable))
6101		prefetch_tunable_set = 1;
6102
6103#ifdef __i386__
6104	if (prefetch_tunable_set == 0) {
6105		printf("ZFS NOTICE: Prefetch is disabled by default on i386 "
6106		    "-- to enable,\n");
6107		printf("            add \"vfs.zfs.prefetch_disable=0\" "
6108		    "to /boot/loader.conf.\n");
6109		zfs_prefetch_disable = 1;
6110	}
6111#else
6112	if ((((uint64_t)physmem * PAGESIZE) < (1ULL << 32)) &&
6113	    prefetch_tunable_set == 0) {
6114		printf("ZFS NOTICE: Prefetch is disabled by default if less "
6115		    "than 4GB of RAM is present;\n"
6116		    "            to enable, add \"vfs.zfs.prefetch_disable=0\" "
6117		    "to /boot/loader.conf.\n");
6118		zfs_prefetch_disable = 1;
6119	}
6120#endif
6121	/* Warn about ZFS memory and address space requirements. */
6122	if (((uint64_t)physmem * PAGESIZE) < (256 + 128 + 64) * (1 << 20)) {
6123		printf("ZFS WARNING: Recommended minimum RAM size is 512MB; "
6124		    "expect unstable behavior.\n");
6125	}
6126	if (kmem_size() < 512 * (1 << 20)) {
6127		printf("ZFS WARNING: Recommended minimum kmem_size is 512MB; "
6128		    "expect unstable behavior.\n");
6129		printf("             Consider tuning vm.kmem_size and "
6130		    "vm.kmem_size_max\n");
6131		printf("             in /boot/loader.conf.\n");
6132	}
6133#endif
6134}
6135
6136void
6137arc_fini(void)
6138{
6139	mutex_enter(&arc_reclaim_lock);
6140	arc_reclaim_thread_exit = B_TRUE;
6141	/*
6142	 * The reclaim thread will set arc_reclaim_thread_exit back to
6143	 * B_FALSE when it is finished exiting; we're waiting for that.
6144	 */
6145	while (arc_reclaim_thread_exit) {
6146		cv_signal(&arc_reclaim_thread_cv);
6147		cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
6148	}
6149	mutex_exit(&arc_reclaim_lock);
6150
6151	/* Use B_TRUE to ensure *all* buffers are evicted */
6152	arc_flush(NULL, B_TRUE);
6153
6154	arc_dead = B_TRUE;
6155
6156	if (arc_ksp != NULL) {
6157		kstat_delete(arc_ksp);
6158		arc_ksp = NULL;
6159	}
6160
6161	mutex_destroy(&arc_reclaim_lock);
6162	cv_destroy(&arc_reclaim_thread_cv);
6163	cv_destroy(&arc_reclaim_waiters_cv);
6164
6165	arc_state_fini();
6166	buf_fini();
6167
6168	ASSERT0(arc_loaned_bytes);
6169
6170#ifdef _KERNEL
6171	if (arc_event_lowmem != NULL)
6172		EVENTHANDLER_DEREGISTER(vm_lowmem, arc_event_lowmem);
6173#endif
6174}
6175
6176/*
6177 * Level 2 ARC
6178 *
6179 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
6180 * It uses dedicated storage devices to hold cached data, which are populated
6181 * using large infrequent writes.  The main role of this cache is to boost
6182 * the performance of random read workloads.  The intended L2ARC devices
6183 * include short-stroked disks, solid state disks, and other media with
6184 * substantially faster read latency than disk.
6185 *
6186 *                 +-----------------------+
6187 *                 |         ARC           |
6188 *                 +-----------------------+
6189 *                    |         ^     ^
6190 *                    |         |     |
6191 *      l2arc_feed_thread()    arc_read()
6192 *                    |         |     |
6193 *                    |  l2arc read   |
6194 *                    V         |     |
6195 *               +---------------+    |
6196 *               |     L2ARC     |    |
6197 *               +---------------+    |
6198 *                   |    ^           |
6199 *          l2arc_write() |           |
6200 *                   |    |           |
6201 *                   V    |           |
6202 *                 +-------+      +-------+
6203 *                 | vdev  |      | vdev  |
6204 *                 | cache |      | cache |
6205 *                 +-------+      +-------+
6206 *                 +=========+     .-----.
6207 *                 :  L2ARC  :    |-_____-|
6208 *                 : devices :    | Disks |
6209 *                 +=========+    `-_____-'
6210 *
6211 * Read requests are satisfied from the following sources, in order:
6212 *
6213 *	1) ARC
6214 *	2) vdev cache of L2ARC devices
6215 *	3) L2ARC devices
6216 *	4) vdev cache of disks
6217 *	5) disks
6218 *
6219 * Some L2ARC device types exhibit extremely slow write performance.
6220 * To accommodate for this there are some significant differences between
6221 * the L2ARC and traditional cache design:
6222 *
6223 * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
6224 * the ARC behave as usual, freeing buffers and placing headers on ghost
6225 * lists.  The ARC does not send buffers to the L2ARC during eviction as
6226 * this would add inflated write latencies for all ARC memory pressure.
6227 *
6228 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
6229 * It does this by periodically scanning buffers from the eviction-end of
6230 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
6231 * not already there. It scans until a headroom of buffers is satisfied,
6232 * which itself is a buffer for ARC eviction. If a compressible buffer is
6233 * found during scanning and selected for writing to an L2ARC device, we
6234 * temporarily boost scanning headroom during the next scan cycle to make
6235 * sure we adapt to compression effects (which might significantly reduce
6236 * the data volume we write to L2ARC). The thread that does this is
6237 * l2arc_feed_thread(), illustrated below; example sizes are included to
6238 * provide a better sense of ratio than this diagram:
6239 *
6240 *	       head -->                        tail
6241 *	        +---------------------+----------+
6242 *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
6243 *	        +---------------------+----------+   |   o L2ARC eligible
6244 *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
6245 *	        +---------------------+----------+   |
6246 *	             15.9 Gbytes      ^ 32 Mbytes    |
6247 *	                           headroom          |
6248 *	                                      l2arc_feed_thread()
6249 *	                                             |
6250 *	                 l2arc write hand <--[oooo]--'
6251 *	                         |           8 Mbyte
6252 *	                         |          write max
6253 *	                         V
6254 *		  +==============================+
6255 *	L2ARC dev |####|#|###|###|    |####| ... |
6256 *	          +==============================+
6257 *	                     32 Gbytes
6258 *
6259 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
6260 * evicted, then the L2ARC has cached a buffer much sooner than it probably
6261 * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
6262 * safe to say that this is an uncommon case, since buffers at the end of
6263 * the ARC lists have moved there due to inactivity.
6264 *
6265 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
6266 * then the L2ARC simply misses copying some buffers.  This serves as a
6267 * pressure valve to prevent heavy read workloads from both stalling the ARC
6268 * with waits and clogging the L2ARC with writes.  This also helps prevent
6269 * the potential for the L2ARC to churn if it attempts to cache content too
6270 * quickly, such as during backups of the entire pool.
6271 *
6272 * 5. After system boot and before the ARC has filled main memory, there are
6273 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
6274 * lists can remain mostly static.  Instead of searching from tail of these
6275 * lists as pictured, the l2arc_feed_thread() will search from the list heads
6276 * for eligible buffers, greatly increasing its chance of finding them.
6277 *
6278 * The L2ARC device write speed is also boosted during this time so that
6279 * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
6280 * there are no L2ARC reads, and no fear of degrading read performance
6281 * through increased writes.
6282 *
6283 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
6284 * the vdev queue can aggregate them into larger and fewer writes.  Each
6285 * device is written to in a rotor fashion, sweeping writes through
6286 * available space then repeating.
6287 *
6288 * 7. The L2ARC does not store dirty content.  It never needs to flush
6289 * write buffers back to disk based storage.
6290 *
6291 * 8. If an ARC buffer is written (and dirtied) which also exists in the
6292 * L2ARC, the now stale L2ARC buffer is immediately dropped.
6293 *
6294 * The performance of the L2ARC can be tweaked by a number of tunables, which
6295 * may be necessary for different workloads:
6296 *
6297 *	l2arc_write_max		max write bytes per interval
6298 *	l2arc_write_boost	extra write bytes during device warmup
6299 *	l2arc_noprefetch	skip caching prefetched buffers
6300 *	l2arc_headroom		number of max device writes to precache
6301 *	l2arc_headroom_boost	when we find compressed buffers during ARC
6302 *				scanning, we multiply headroom by this
6303 *				percentage factor for the next scan cycle,
6304 *				since more compressed buffers are likely to
6305 *				be present
6306 *	l2arc_feed_secs		seconds between L2ARC writing
6307 *
6308 * Tunables may be removed or added as future performance improvements are
6309 * integrated, and also may become zpool properties.
6310 *
6311 * There are three key functions that control how the L2ARC warms up:
6312 *
6313 *	l2arc_write_eligible()	check if a buffer is eligible to cache
6314 *	l2arc_write_size()	calculate how much to write
6315 *	l2arc_write_interval()	calculate sleep delay between writes
6316 *
6317 * These three functions determine what to write, how much, and how quickly
6318 * to send writes.
6319 */
6320
6321static boolean_t
6322l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
6323{
6324	/*
6325	 * A buffer is *not* eligible for the L2ARC if it:
6326	 * 1. belongs to a different spa.
6327	 * 2. is already cached on the L2ARC.
6328	 * 3. has an I/O in progress (it may be an incomplete read).
6329	 * 4. is flagged not eligible (zfs property).
6330	 */
6331	if (hdr->b_spa != spa_guid) {
6332		ARCSTAT_BUMP(arcstat_l2_write_spa_mismatch);
6333		return (B_FALSE);
6334	}
6335	if (HDR_HAS_L2HDR(hdr)) {
6336		ARCSTAT_BUMP(arcstat_l2_write_in_l2);
6337		return (B_FALSE);
6338	}
6339	if (HDR_IO_IN_PROGRESS(hdr)) {
6340		ARCSTAT_BUMP(arcstat_l2_write_hdr_io_in_progress);
6341		return (B_FALSE);
6342	}
6343	if (!HDR_L2CACHE(hdr)) {
6344		ARCSTAT_BUMP(arcstat_l2_write_not_cacheable);
6345		return (B_FALSE);
6346	}
6347
6348	return (B_TRUE);
6349}
6350
6351static uint64_t
6352l2arc_write_size(void)
6353{
6354	uint64_t size;
6355
6356	/*
6357	 * Make sure our globals have meaningful values in case the user
6358	 * altered them.
6359	 */
6360	size = l2arc_write_max;
6361	if (size == 0) {
6362		cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
6363		    "be greater than zero, resetting it to the default (%d)",
6364		    L2ARC_WRITE_SIZE);
6365		size = l2arc_write_max = L2ARC_WRITE_SIZE;
6366	}
6367
6368	if (arc_warm == B_FALSE)
6369		size += l2arc_write_boost;
6370
6371	return (size);
6372
6373}
6374
6375static clock_t
6376l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
6377{
6378	clock_t interval, next, now;
6379
6380	/*
6381	 * If the ARC lists are busy, increase our write rate; if the
6382	 * lists are stale, idle back.  This is achieved by checking
6383	 * how much we previously wrote - if it was more than half of
6384	 * what we wanted, schedule the next write much sooner.
6385	 */
6386	if (l2arc_feed_again && wrote > (wanted / 2))
6387		interval = (hz * l2arc_feed_min_ms) / 1000;
6388	else
6389		interval = hz * l2arc_feed_secs;
6390
6391	now = ddi_get_lbolt();
6392	next = MAX(now, MIN(now + interval, began + interval));
6393
6394	return (next);
6395}
6396
6397/*
6398 * Cycle through L2ARC devices.  This is how L2ARC load balances.
6399 * If a device is returned, this also returns holding the spa config lock.
6400 */
6401static l2arc_dev_t *
6402l2arc_dev_get_next(void)
6403{
6404	l2arc_dev_t *first, *next = NULL;
6405
6406	/*
6407	 * Lock out the removal of spas (spa_namespace_lock), then removal
6408	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
6409	 * both locks will be dropped and a spa config lock held instead.
6410	 */
6411	mutex_enter(&spa_namespace_lock);
6412	mutex_enter(&l2arc_dev_mtx);
6413
6414	/* if there are no vdevs, there is nothing to do */
6415	if (l2arc_ndev == 0)
6416		goto out;
6417
6418	first = NULL;
6419	next = l2arc_dev_last;
6420	do {
6421		/* loop around the list looking for a non-faulted vdev */
6422		if (next == NULL) {
6423			next = list_head(l2arc_dev_list);
6424		} else {
6425			next = list_next(l2arc_dev_list, next);
6426			if (next == NULL)
6427				next = list_head(l2arc_dev_list);
6428		}
6429
6430		/* if we have come back to the start, bail out */
6431		if (first == NULL)
6432			first = next;
6433		else if (next == first)
6434			break;
6435
6436	} while (vdev_is_dead(next->l2ad_vdev));
6437
6438	/* if we were unable to find any usable vdevs, return NULL */
6439	if (vdev_is_dead(next->l2ad_vdev))
6440		next = NULL;
6441
6442	l2arc_dev_last = next;
6443
6444out:
6445	mutex_exit(&l2arc_dev_mtx);
6446
6447	/*
6448	 * Grab the config lock to prevent the 'next' device from being
6449	 * removed while we are writing to it.
6450	 */
6451	if (next != NULL)
6452		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
6453	mutex_exit(&spa_namespace_lock);
6454
6455	return (next);
6456}
6457
6458/*
6459 * Free buffers that were tagged for destruction.
6460 */
6461static void
6462l2arc_do_free_on_write()
6463{
6464	list_t *buflist;
6465	l2arc_data_free_t *df, *df_prev;
6466
6467	mutex_enter(&l2arc_free_on_write_mtx);
6468	buflist = l2arc_free_on_write;
6469
6470	for (df = list_tail(buflist); df; df = df_prev) {
6471		df_prev = list_prev(buflist, df);
6472		ASSERT3P(df->l2df_data, !=, NULL);
6473		if (df->l2df_type == ARC_BUFC_METADATA) {
6474			zio_buf_free(df->l2df_data, df->l2df_size);
6475		} else {
6476			ASSERT(df->l2df_type == ARC_BUFC_DATA);
6477			zio_data_buf_free(df->l2df_data, df->l2df_size);
6478		}
6479		list_remove(buflist, df);
6480		kmem_free(df, sizeof (l2arc_data_free_t));
6481	}
6482
6483	mutex_exit(&l2arc_free_on_write_mtx);
6484}
6485
6486/*
6487 * A write to a cache device has completed.  Update all headers to allow
6488 * reads from these buffers to begin.
6489 */
6490static void
6491l2arc_write_done(zio_t *zio)
6492{
6493	l2arc_write_callback_t *cb;
6494	l2arc_dev_t *dev;
6495	list_t *buflist;
6496	arc_buf_hdr_t *head, *hdr, *hdr_prev;
6497	kmutex_t *hash_lock;
6498	int64_t bytes_dropped = 0;
6499
6500	cb = zio->io_private;
6501	ASSERT3P(cb, !=, NULL);
6502	dev = cb->l2wcb_dev;
6503	ASSERT3P(dev, !=, NULL);
6504	head = cb->l2wcb_head;
6505	ASSERT3P(head, !=, NULL);
6506	buflist = &dev->l2ad_buflist;
6507	ASSERT3P(buflist, !=, NULL);
6508	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
6509	    l2arc_write_callback_t *, cb);
6510
6511	if (zio->io_error != 0)
6512		ARCSTAT_BUMP(arcstat_l2_writes_error);
6513
6514	/*
6515	 * All writes completed, or an error was hit.
6516	 */
6517top:
6518	mutex_enter(&dev->l2ad_mtx);
6519	for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
6520		hdr_prev = list_prev(buflist, hdr);
6521
6522		hash_lock = HDR_LOCK(hdr);
6523
6524		/*
6525		 * We cannot use mutex_enter or else we can deadlock
6526		 * with l2arc_write_buffers (due to swapping the order
6527		 * the hash lock and l2ad_mtx are taken).
6528		 */
6529		if (!mutex_tryenter(hash_lock)) {
6530			/*
6531			 * Missed the hash lock. We must retry so we
6532			 * don't leave the ARC_FLAG_L2_WRITING bit set.
6533			 */
6534			ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
6535
6536			/*
6537			 * We don't want to rescan the headers we've
6538			 * already marked as having been written out, so
6539			 * we reinsert the head node so we can pick up
6540			 * where we left off.
6541			 */
6542			list_remove(buflist, head);
6543			list_insert_after(buflist, hdr, head);
6544
6545			mutex_exit(&dev->l2ad_mtx);
6546
6547			/*
6548			 * We wait for the hash lock to become available
6549			 * to try and prevent busy waiting, and increase
6550			 * the chance we'll be able to acquire the lock
6551			 * the next time around.
6552			 */
6553			mutex_enter(hash_lock);
6554			mutex_exit(hash_lock);
6555			goto top;
6556		}
6557
6558		/*
6559		 * We could not have been moved into the arc_l2c_only
6560		 * state while in-flight due to our ARC_FLAG_L2_WRITING
6561		 * bit being set. Let's just ensure that's being enforced.
6562		 */
6563		ASSERT(HDR_HAS_L1HDR(hdr));
6564
6565		if (zio->io_error != 0) {
6566			/*
6567			 * Error - drop L2ARC entry.
6568			 */
6569			list_remove(buflist, hdr);
6570			l2arc_trim(hdr);
6571			arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
6572
6573			ARCSTAT_INCR(arcstat_l2_asize, -arc_hdr_size(hdr));
6574			ARCSTAT_INCR(arcstat_l2_size, -HDR_GET_LSIZE(hdr));
6575
6576			bytes_dropped += arc_hdr_size(hdr);
6577			(void) refcount_remove_many(&dev->l2ad_alloc,
6578			    arc_hdr_size(hdr), hdr);
6579		}
6580
6581		/*
6582		 * Allow ARC to begin reads and ghost list evictions to
6583		 * this L2ARC entry.
6584		 */
6585		arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
6586
6587		mutex_exit(hash_lock);
6588	}
6589
6590	atomic_inc_64(&l2arc_writes_done);
6591	list_remove(buflist, head);
6592	ASSERT(!HDR_HAS_L1HDR(head));
6593	kmem_cache_free(hdr_l2only_cache, head);
6594	mutex_exit(&dev->l2ad_mtx);
6595
6596	vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
6597
6598	l2arc_do_free_on_write();
6599
6600	kmem_free(cb, sizeof (l2arc_write_callback_t));
6601}
6602
6603/*
6604 * A read to a cache device completed.  Validate buffer contents before
6605 * handing over to the regular ARC routines.
6606 */
6607static void
6608l2arc_read_done(zio_t *zio)
6609{
6610	l2arc_read_callback_t *cb;
6611	arc_buf_hdr_t *hdr;
6612	kmutex_t *hash_lock;
6613	boolean_t valid_cksum;
6614
6615	ASSERT3P(zio->io_vd, !=, NULL);
6616	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
6617
6618	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
6619
6620	cb = zio->io_private;
6621	ASSERT3P(cb, !=, NULL);
6622	hdr = cb->l2rcb_hdr;
6623	ASSERT3P(hdr, !=, NULL);
6624
6625	hash_lock = HDR_LOCK(hdr);
6626	mutex_enter(hash_lock);
6627	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6628
6629	/*
6630	 * If the data was read into a temporary buffer,
6631	 * move it and free the buffer.
6632	 */
6633	if (cb->l2rcb_data != NULL) {
6634		ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
6635		if (zio->io_error == 0) {
6636			bcopy(cb->l2rcb_data, hdr->b_l1hdr.b_pdata,
6637			    arc_hdr_size(hdr));
6638		}
6639
6640		/*
6641		 * The following must be done regardless of whether
6642		 * there was an error:
6643		 * - free the temporary buffer
6644		 * - point zio to the real ARC buffer
6645		 * - set zio size accordingly
6646		 * These are required because zio is either re-used for
6647		 * an I/O of the block in the case of the error
6648		 * or the zio is passed to arc_read_done() and it
6649		 * needs real data.
6650		 */
6651		zio_data_buf_free(cb->l2rcb_data, zio->io_size);
6652		zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
6653		zio->io_data = zio->io_orig_data = hdr->b_l1hdr.b_pdata;
6654	}
6655
6656	ASSERT3P(zio->io_data, !=, NULL);
6657
6658	/*
6659	 * Check this survived the L2ARC journey.
6660	 */
6661	ASSERT3P(zio->io_data, ==, hdr->b_l1hdr.b_pdata);
6662	zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
6663	zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
6664
6665	valid_cksum = arc_cksum_is_equal(hdr, zio);
6666	if (valid_cksum && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
6667		mutex_exit(hash_lock);
6668		zio->io_private = hdr;
6669		arc_read_done(zio);
6670	} else {
6671		mutex_exit(hash_lock);
6672		/*
6673		 * Buffer didn't survive caching.  Increment stats and
6674		 * reissue to the original storage device.
6675		 */
6676		if (zio->io_error != 0) {
6677			ARCSTAT_BUMP(arcstat_l2_io_error);
6678		} else {
6679			zio->io_error = SET_ERROR(EIO);
6680		}
6681		if (!valid_cksum)
6682			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
6683
6684		/*
6685		 * If there's no waiter, issue an async i/o to the primary
6686		 * storage now.  If there *is* a waiter, the caller must
6687		 * issue the i/o in a context where it's OK to block.
6688		 */
6689		if (zio->io_waiter == NULL) {
6690			zio_t *pio = zio_unique_parent(zio);
6691
6692			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
6693
6694			zio_nowait(zio_read(pio, zio->io_spa, zio->io_bp,
6695			    hdr->b_l1hdr.b_pdata, zio->io_size, arc_read_done,
6696			    hdr, zio->io_priority, cb->l2rcb_flags,
6697			    &cb->l2rcb_zb));
6698		}
6699	}
6700
6701	kmem_free(cb, sizeof (l2arc_read_callback_t));
6702}
6703
6704/*
6705 * This is the list priority from which the L2ARC will search for pages to
6706 * cache.  This is used within loops (0..3) to cycle through lists in the
6707 * desired order.  This order can have a significant effect on cache
6708 * performance.
6709 *
6710 * Currently the metadata lists are hit first, MFU then MRU, followed by
6711 * the data lists.  This function returns a locked list, and also returns
6712 * the lock pointer.
6713 */
6714static multilist_sublist_t *
6715l2arc_sublist_lock(int list_num)
6716{
6717	multilist_t *ml = NULL;
6718	unsigned int idx;
6719
6720	ASSERT(list_num >= 0 && list_num <= 3);
6721
6722	switch (list_num) {
6723	case 0:
6724		ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
6725		break;
6726	case 1:
6727		ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
6728		break;
6729	case 2:
6730		ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
6731		break;
6732	case 3:
6733		ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
6734		break;
6735	}
6736
6737	/*
6738	 * Return a randomly-selected sublist. This is acceptable
6739	 * because the caller feeds only a little bit of data for each
6740	 * call (8MB). Subsequent calls will result in different
6741	 * sublists being selected.
6742	 */
6743	idx = multilist_get_random_index(ml);
6744	return (multilist_sublist_lock(ml, idx));
6745}
6746
6747/*
6748 * Evict buffers from the device write hand to the distance specified in
6749 * bytes.  This distance may span populated buffers, it may span nothing.
6750 * This is clearing a region on the L2ARC device ready for writing.
6751 * If the 'all' boolean is set, every buffer is evicted.
6752 */
6753static void
6754l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
6755{
6756	list_t *buflist;
6757	arc_buf_hdr_t *hdr, *hdr_prev;
6758	kmutex_t *hash_lock;
6759	uint64_t taddr;
6760
6761	buflist = &dev->l2ad_buflist;
6762
6763	if (!all && dev->l2ad_first) {
6764		/*
6765		 * This is the first sweep through the device.  There is
6766		 * nothing to evict.
6767		 */
6768		return;
6769	}
6770
6771	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
6772		/*
6773		 * When nearing the end of the device, evict to the end
6774		 * before the device write hand jumps to the start.
6775		 */
6776		taddr = dev->l2ad_end;
6777	} else {
6778		taddr = dev->l2ad_hand + distance;
6779	}
6780	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
6781	    uint64_t, taddr, boolean_t, all);
6782
6783top:
6784	mutex_enter(&dev->l2ad_mtx);
6785	for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
6786		hdr_prev = list_prev(buflist, hdr);
6787
6788		hash_lock = HDR_LOCK(hdr);
6789
6790		/*
6791		 * We cannot use mutex_enter or else we can deadlock
6792		 * with l2arc_write_buffers (due to swapping the order
6793		 * the hash lock and l2ad_mtx are taken).
6794		 */
6795		if (!mutex_tryenter(hash_lock)) {
6796			/*
6797			 * Missed the hash lock.  Retry.
6798			 */
6799			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
6800			mutex_exit(&dev->l2ad_mtx);
6801			mutex_enter(hash_lock);
6802			mutex_exit(hash_lock);
6803			goto top;
6804		}
6805
6806		if (HDR_L2_WRITE_HEAD(hdr)) {
6807			/*
6808			 * We hit a write head node.  Leave it for
6809			 * l2arc_write_done().
6810			 */
6811			list_remove(buflist, hdr);
6812			mutex_exit(hash_lock);
6813			continue;
6814		}
6815
6816		if (!all && HDR_HAS_L2HDR(hdr) &&
6817		    (hdr->b_l2hdr.b_daddr > taddr ||
6818		    hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
6819			/*
6820			 * We've evicted to the target address,
6821			 * or the end of the device.
6822			 */
6823			mutex_exit(hash_lock);
6824			break;
6825		}
6826
6827		ASSERT(HDR_HAS_L2HDR(hdr));
6828		if (!HDR_HAS_L1HDR(hdr)) {
6829			ASSERT(!HDR_L2_READING(hdr));
6830			/*
6831			 * This doesn't exist in the ARC.  Destroy.
6832			 * arc_hdr_destroy() will call list_remove()
6833			 * and decrement arcstat_l2_size.
6834			 */
6835			arc_change_state(arc_anon, hdr, hash_lock);
6836			arc_hdr_destroy(hdr);
6837		} else {
6838			ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
6839			ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
6840			/*
6841			 * Invalidate issued or about to be issued
6842			 * reads, since we may be about to write
6843			 * over this location.
6844			 */
6845			if (HDR_L2_READING(hdr)) {
6846				ARCSTAT_BUMP(arcstat_l2_evict_reading);
6847				arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
6848			}
6849
6850			/* Ensure this header has finished being written */
6851			ASSERT(!HDR_L2_WRITING(hdr));
6852
6853			arc_hdr_l2hdr_destroy(hdr);
6854		}
6855		mutex_exit(hash_lock);
6856	}
6857	mutex_exit(&dev->l2ad_mtx);
6858}
6859
6860/*
6861 * Find and write ARC buffers to the L2ARC device.
6862 *
6863 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
6864 * for reading until they have completed writing.
6865 * The headroom_boost is an in-out parameter used to maintain headroom boost
6866 * state between calls to this function.
6867 *
6868 * Returns the number of bytes actually written (which may be smaller than
6869 * the delta by which the device hand has changed due to alignment).
6870 */
6871static uint64_t
6872l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
6873{
6874	arc_buf_hdr_t *hdr, *hdr_prev, *head;
6875	uint64_t write_asize, write_psize, write_sz, headroom;
6876	boolean_t full;
6877	l2arc_write_callback_t *cb;
6878	zio_t *pio, *wzio;
6879	uint64_t guid = spa_load_guid(spa);
6880	int try;
6881
6882	ASSERT3P(dev->l2ad_vdev, !=, NULL);
6883
6884	pio = NULL;
6885	write_sz = write_asize = write_psize = 0;
6886	full = B_FALSE;
6887	head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
6888	arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
6889
6890	ARCSTAT_BUMP(arcstat_l2_write_buffer_iter);
6891	/*
6892	 * Copy buffers for L2ARC writing.
6893	 */
6894	for (try = 0; try <= 3; try++) {
6895		multilist_sublist_t *mls = l2arc_sublist_lock(try);
6896		uint64_t passed_sz = 0;
6897
6898		ARCSTAT_BUMP(arcstat_l2_write_buffer_list_iter);
6899
6900		/*
6901		 * L2ARC fast warmup.
6902		 *
6903		 * Until the ARC is warm and starts to evict, read from the
6904		 * head of the ARC lists rather than the tail.
6905		 */
6906		if (arc_warm == B_FALSE)
6907			hdr = multilist_sublist_head(mls);
6908		else
6909			hdr = multilist_sublist_tail(mls);
6910		if (hdr == NULL)
6911			ARCSTAT_BUMP(arcstat_l2_write_buffer_list_null_iter);
6912
6913		headroom = target_sz * l2arc_headroom;
6914		if (zfs_compressed_arc_enabled)
6915			headroom = (headroom * l2arc_headroom_boost) / 100;
6916
6917		for (; hdr; hdr = hdr_prev) {
6918			kmutex_t *hash_lock;
6919
6920			if (arc_warm == B_FALSE)
6921				hdr_prev = multilist_sublist_next(mls, hdr);
6922			else
6923				hdr_prev = multilist_sublist_prev(mls, hdr);
6924			ARCSTAT_INCR(arcstat_l2_write_buffer_bytes_scanned,
6925			    HDR_GET_LSIZE(hdr));
6926
6927			hash_lock = HDR_LOCK(hdr);
6928			if (!mutex_tryenter(hash_lock)) {
6929				ARCSTAT_BUMP(arcstat_l2_write_trylock_fail);
6930				/*
6931				 * Skip this buffer rather than waiting.
6932				 */
6933				continue;
6934			}
6935
6936			passed_sz += HDR_GET_LSIZE(hdr);
6937			if (passed_sz > headroom) {
6938				/*
6939				 * Searched too far.
6940				 */
6941				mutex_exit(hash_lock);
6942				ARCSTAT_BUMP(arcstat_l2_write_passed_headroom);
6943				break;
6944			}
6945
6946			if (!l2arc_write_eligible(guid, hdr)) {
6947				mutex_exit(hash_lock);
6948				continue;
6949			}
6950
6951			if ((write_asize + HDR_GET_LSIZE(hdr)) > target_sz) {
6952				full = B_TRUE;
6953				mutex_exit(hash_lock);
6954				ARCSTAT_BUMP(arcstat_l2_write_full);
6955				break;
6956			}
6957
6958			if (pio == NULL) {
6959				/*
6960				 * Insert a dummy header on the buflist so
6961				 * l2arc_write_done() can find where the
6962				 * write buffers begin without searching.
6963				 */
6964				mutex_enter(&dev->l2ad_mtx);
6965				list_insert_head(&dev->l2ad_buflist, head);
6966				mutex_exit(&dev->l2ad_mtx);
6967
6968				cb = kmem_alloc(
6969				    sizeof (l2arc_write_callback_t), KM_SLEEP);
6970				cb->l2wcb_dev = dev;
6971				cb->l2wcb_head = head;
6972				pio = zio_root(spa, l2arc_write_done, cb,
6973				    ZIO_FLAG_CANFAIL);
6974				ARCSTAT_BUMP(arcstat_l2_write_pios);
6975			}
6976
6977			hdr->b_l2hdr.b_dev = dev;
6978			hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
6979			arc_hdr_set_flags(hdr,
6980			    ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR);
6981
6982			mutex_enter(&dev->l2ad_mtx);
6983			list_insert_head(&dev->l2ad_buflist, hdr);
6984			mutex_exit(&dev->l2ad_mtx);
6985
6986			/*
6987			 * We rely on the L1 portion of the header below, so
6988			 * it's invalid for this header to have been evicted out
6989			 * of the ghost cache, prior to being written out. The
6990			 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
6991			 */
6992			ASSERT(HDR_HAS_L1HDR(hdr));
6993
6994			ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
6995			ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
6996			ASSERT3U(arc_hdr_size(hdr), >, 0);
6997			uint64_t size = arc_hdr_size(hdr);
6998			uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
6999			    size);
7000
7001			(void) refcount_add_many(&dev->l2ad_alloc, size, hdr);
7002
7003			/*
7004			 * Normally the L2ARC can use the hdr's data, but if
7005			 * we're sharing data between the hdr and one of its
7006			 * bufs, L2ARC needs its own copy of the data so that
7007			 * the ZIO below can't race with the buf consumer. To
7008			 * ensure that this copy will be available for the
7009			 * lifetime of the ZIO and be cleaned up afterwards, we
7010			 * add it to the l2arc_free_on_write queue.
7011			 */
7012			void *to_write;
7013			if (!HDR_SHARED_DATA(hdr) && size == asize) {
7014				to_write = hdr->b_l1hdr.b_pdata;
7015			} else {
7016				arc_buf_contents_t type = arc_buf_type(hdr);
7017				if (type == ARC_BUFC_METADATA) {
7018					to_write = zio_buf_alloc(asize);
7019				} else {
7020					ASSERT3U(type, ==, ARC_BUFC_DATA);
7021					to_write = zio_data_buf_alloc(asize);
7022				}
7023
7024				bcopy(hdr->b_l1hdr.b_pdata, to_write, size);
7025				if (asize != size)
7026					bzero(to_write + size, asize - size);
7027				l2arc_free_data_on_write(to_write, asize, type);
7028			}
7029			wzio = zio_write_phys(pio, dev->l2ad_vdev,
7030			    hdr->b_l2hdr.b_daddr, asize, to_write,
7031			    ZIO_CHECKSUM_OFF, NULL, hdr,
7032			    ZIO_PRIORITY_ASYNC_WRITE,
7033			    ZIO_FLAG_CANFAIL, B_FALSE);
7034
7035			write_sz += HDR_GET_LSIZE(hdr);
7036			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
7037			    zio_t *, wzio);
7038
7039			write_asize += size;
7040			write_psize += asize;
7041			dev->l2ad_hand += asize;
7042
7043			mutex_exit(hash_lock);
7044
7045			(void) zio_nowait(wzio);
7046		}
7047
7048		multilist_sublist_unlock(mls);
7049
7050		if (full == B_TRUE)
7051			break;
7052	}
7053
7054	/* No buffers selected for writing? */
7055	if (pio == NULL) {
7056		ASSERT0(write_sz);
7057		ASSERT(!HDR_HAS_L1HDR(head));
7058		kmem_cache_free(hdr_l2only_cache, head);
7059		return (0);
7060	}
7061
7062	ASSERT3U(write_asize, <=, target_sz);
7063	ARCSTAT_BUMP(arcstat_l2_writes_sent);
7064	ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
7065	ARCSTAT_INCR(arcstat_l2_size, write_sz);
7066	ARCSTAT_INCR(arcstat_l2_asize, write_asize);
7067	vdev_space_update(dev->l2ad_vdev, write_asize, 0, 0);
7068
7069	/*
7070	 * Bump device hand to the device start if it is approaching the end.
7071	 * l2arc_evict() will already have evicted ahead for this case.
7072	 */
7073	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
7074		dev->l2ad_hand = dev->l2ad_start;
7075		dev->l2ad_first = B_FALSE;
7076	}
7077
7078	dev->l2ad_writing = B_TRUE;
7079	(void) zio_wait(pio);
7080	dev->l2ad_writing = B_FALSE;
7081
7082	return (write_asize);
7083}
7084
7085/*
7086 * This thread feeds the L2ARC at regular intervals.  This is the beating
7087 * heart of the L2ARC.
7088 */
7089static void
7090l2arc_feed_thread(void *dummy __unused)
7091{
7092	callb_cpr_t cpr;
7093	l2arc_dev_t *dev;
7094	spa_t *spa;
7095	uint64_t size, wrote;
7096	clock_t begin, next = ddi_get_lbolt();
7097
7098	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
7099
7100	mutex_enter(&l2arc_feed_thr_lock);
7101
7102	while (l2arc_thread_exit == 0) {
7103		CALLB_CPR_SAFE_BEGIN(&cpr);
7104		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
7105		    next - ddi_get_lbolt());
7106		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
7107		next = ddi_get_lbolt() + hz;
7108
7109		/*
7110		 * Quick check for L2ARC devices.
7111		 */
7112		mutex_enter(&l2arc_dev_mtx);
7113		if (l2arc_ndev == 0) {
7114			mutex_exit(&l2arc_dev_mtx);
7115			continue;
7116		}
7117		mutex_exit(&l2arc_dev_mtx);
7118		begin = ddi_get_lbolt();
7119
7120		/*
7121		 * This selects the next l2arc device to write to, and in
7122		 * doing so the next spa to feed from: dev->l2ad_spa.   This
7123		 * will return NULL if there are now no l2arc devices or if
7124		 * they are all faulted.
7125		 *
7126		 * If a device is returned, its spa's config lock is also
7127		 * held to prevent device removal.  l2arc_dev_get_next()
7128		 * will grab and release l2arc_dev_mtx.
7129		 */
7130		if ((dev = l2arc_dev_get_next()) == NULL)
7131			continue;
7132
7133		spa = dev->l2ad_spa;
7134		ASSERT3P(spa, !=, NULL);
7135
7136		/*
7137		 * If the pool is read-only then force the feed thread to
7138		 * sleep a little longer.
7139		 */
7140		if (!spa_writeable(spa)) {
7141			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
7142			spa_config_exit(spa, SCL_L2ARC, dev);
7143			continue;
7144		}
7145
7146		/*
7147		 * Avoid contributing to memory pressure.
7148		 */
7149		if (arc_reclaim_needed()) {
7150			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
7151			spa_config_exit(spa, SCL_L2ARC, dev);
7152			continue;
7153		}
7154
7155		ARCSTAT_BUMP(arcstat_l2_feeds);
7156
7157		size = l2arc_write_size();
7158
7159		/*
7160		 * Evict L2ARC buffers that will be overwritten.
7161		 */
7162		l2arc_evict(dev, size, B_FALSE);
7163
7164		/*
7165		 * Write ARC buffers.
7166		 */
7167		wrote = l2arc_write_buffers(spa, dev, size);
7168
7169		/*
7170		 * Calculate interval between writes.
7171		 */
7172		next = l2arc_write_interval(begin, size, wrote);
7173		spa_config_exit(spa, SCL_L2ARC, dev);
7174	}
7175
7176	l2arc_thread_exit = 0;
7177	cv_broadcast(&l2arc_feed_thr_cv);
7178	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
7179	thread_exit();
7180}
7181
7182boolean_t
7183l2arc_vdev_present(vdev_t *vd)
7184{
7185	l2arc_dev_t *dev;
7186
7187	mutex_enter(&l2arc_dev_mtx);
7188	for (dev = list_head(l2arc_dev_list); dev != NULL;
7189	    dev = list_next(l2arc_dev_list, dev)) {
7190		if (dev->l2ad_vdev == vd)
7191			break;
7192	}
7193	mutex_exit(&l2arc_dev_mtx);
7194
7195	return (dev != NULL);
7196}
7197
7198/*
7199 * Add a vdev for use by the L2ARC.  By this point the spa has already
7200 * validated the vdev and opened it.
7201 */
7202void
7203l2arc_add_vdev(spa_t *spa, vdev_t *vd)
7204{
7205	l2arc_dev_t *adddev;
7206
7207	ASSERT(!l2arc_vdev_present(vd));
7208
7209	vdev_ashift_optimize(vd);
7210
7211	/*
7212	 * Create a new l2arc device entry.
7213	 */
7214	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
7215	adddev->l2ad_spa = spa;
7216	adddev->l2ad_vdev = vd;
7217	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
7218	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
7219	adddev->l2ad_hand = adddev->l2ad_start;
7220	adddev->l2ad_first = B_TRUE;
7221	adddev->l2ad_writing = B_FALSE;
7222
7223	mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
7224	/*
7225	 * This is a list of all ARC buffers that are still valid on the
7226	 * device.
7227	 */
7228	list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
7229	    offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
7230
7231	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
7232	refcount_create(&adddev->l2ad_alloc);
7233
7234	/*
7235	 * Add device to global list
7236	 */
7237	mutex_enter(&l2arc_dev_mtx);
7238	list_insert_head(l2arc_dev_list, adddev);
7239	atomic_inc_64(&l2arc_ndev);
7240	mutex_exit(&l2arc_dev_mtx);
7241}
7242
7243/*
7244 * Remove a vdev from the L2ARC.
7245 */
7246void
7247l2arc_remove_vdev(vdev_t *vd)
7248{
7249	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
7250
7251	/*
7252	 * Find the device by vdev
7253	 */
7254	mutex_enter(&l2arc_dev_mtx);
7255	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
7256		nextdev = list_next(l2arc_dev_list, dev);
7257		if (vd == dev->l2ad_vdev) {
7258			remdev = dev;
7259			break;
7260		}
7261	}
7262	ASSERT3P(remdev, !=, NULL);
7263
7264	/*
7265	 * Remove device from global list
7266	 */
7267	list_remove(l2arc_dev_list, remdev);
7268	l2arc_dev_last = NULL;		/* may have been invalidated */
7269	atomic_dec_64(&l2arc_ndev);
7270	mutex_exit(&l2arc_dev_mtx);
7271
7272	/*
7273	 * Clear all buflists and ARC references.  L2ARC device flush.
7274	 */
7275	l2arc_evict(remdev, 0, B_TRUE);
7276	list_destroy(&remdev->l2ad_buflist);
7277	mutex_destroy(&remdev->l2ad_mtx);
7278	refcount_destroy(&remdev->l2ad_alloc);
7279	kmem_free(remdev, sizeof (l2arc_dev_t));
7280}
7281
7282void
7283l2arc_init(void)
7284{
7285	l2arc_thread_exit = 0;
7286	l2arc_ndev = 0;
7287	l2arc_writes_sent = 0;
7288	l2arc_writes_done = 0;
7289
7290	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
7291	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
7292	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
7293	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
7294
7295	l2arc_dev_list = &L2ARC_dev_list;
7296	l2arc_free_on_write = &L2ARC_free_on_write;
7297	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
7298	    offsetof(l2arc_dev_t, l2ad_node));
7299	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
7300	    offsetof(l2arc_data_free_t, l2df_list_node));
7301}
7302
7303void
7304l2arc_fini(void)
7305{
7306	/*
7307	 * This is called from dmu_fini(), which is called from spa_fini();
7308	 * Because of this, we can assume that all l2arc devices have
7309	 * already been removed when the pools themselves were removed.
7310	 */
7311
7312	l2arc_do_free_on_write();
7313
7314	mutex_destroy(&l2arc_feed_thr_lock);
7315	cv_destroy(&l2arc_feed_thr_cv);
7316	mutex_destroy(&l2arc_dev_mtx);
7317	mutex_destroy(&l2arc_free_on_write_mtx);
7318
7319	list_destroy(l2arc_dev_list);
7320	list_destroy(l2arc_free_on_write);
7321}
7322
7323void
7324l2arc_start(void)
7325{
7326	if (!(spa_mode_global & FWRITE))
7327		return;
7328
7329	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
7330	    TS_RUN, minclsyspri);
7331}
7332
7333void
7334l2arc_stop(void)
7335{
7336	if (!(spa_mode_global & FWRITE))
7337		return;
7338
7339	mutex_enter(&l2arc_feed_thr_lock);
7340	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
7341	l2arc_thread_exit = 1;
7342	while (l2arc_thread_exit != 0)
7343		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
7344	mutex_exit(&l2arc_feed_thr_lock);
7345}
7346