1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24 * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26 * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
27 */
28
29/*
30 * DVA-based Adjustable Replacement Cache
31 *
32 * While much of the theory of operation used here is
33 * based on the self-tuning, low overhead replacement cache
34 * presented by Megiddo and Modha at FAST 2003, there are some
35 * significant differences:
36 *
37 * 1. The Megiddo and Modha model assumes any page is evictable.
38 * Pages in its cache cannot be "locked" into memory.  This makes
39 * the eviction algorithm simple: evict the last page in the list.
40 * This also make the performance characteristics easy to reason
41 * about.  Our cache is not so simple.  At any given moment, some
42 * subset of the blocks in the cache are un-evictable because we
43 * have handed out a reference to them.  Blocks are only evictable
44 * when there are no external references active.  This makes
45 * eviction far more problematic:  we choose to evict the evictable
46 * blocks that are the "lowest" in the list.
47 *
48 * There are times when it is not possible to evict the requested
49 * space.  In these circumstances we are unable to adjust the cache
50 * size.  To prevent the cache growing unbounded at these times we
51 * implement a "cache throttle" that slows the flow of new data
52 * into the cache until we can make space available.
53 *
54 * 2. The Megiddo and Modha model assumes a fixed cache size.
55 * Pages are evicted when the cache is full and there is a cache
56 * miss.  Our model has a variable sized cache.  It grows with
57 * high use, but also tries to react to memory pressure from the
58 * operating system: decreasing its size when system memory is
59 * tight.
60 *
61 * 3. The Megiddo and Modha model assumes a fixed page size. All
62 * elements of the cache are therefore exactly the same size.  So
63 * when adjusting the cache size following a cache miss, its simply
64 * a matter of choosing a single page to evict.  In our model, we
65 * have variable sized cache blocks (rangeing from 512 bytes to
66 * 128K bytes).  We therefore choose a set of blocks to evict to make
67 * space for a cache miss that approximates as closely as possible
68 * the space used by the new block.
69 *
70 * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71 * by N. Megiddo & D. Modha, FAST 2003
72 */
73
74/*
75 * The locking model:
76 *
77 * A new reference to a cache buffer can be obtained in two
78 * ways: 1) via a hash table lookup using the DVA as a key,
79 * or 2) via one of the ARC lists.  The arc_read() interface
80 * uses method 1, while the internal arc algorithms for
81 * adjusting the cache use method 2.  We therefore provide two
82 * types of locks: 1) the hash table lock array, and 2) the
83 * arc list locks.
84 *
85 * Buffers do not have their own mutexes, rather they rely on the
86 * hash table mutexes for the bulk of their protection (i.e. most
87 * fields in the arc_buf_hdr_t are protected by these mutexes).
88 *
89 * buf_hash_find() returns the appropriate mutex (held) when it
90 * locates the requested buffer in the hash table.  It returns
91 * NULL for the mutex if the buffer was not in the table.
92 *
93 * buf_hash_remove() expects the appropriate hash mutex to be
94 * already held before it is invoked.
95 *
96 * Each arc state also has a mutex which is used to protect the
97 * buffer list associated with the state.  When attempting to
98 * obtain a hash table lock while holding an arc list lock you
99 * must use: mutex_tryenter() to avoid deadlock.  Also note that
100 * the active state mutex must be held before the ghost state mutex.
101 *
102 * Arc buffers may have an associated eviction callback function.
103 * This function will be invoked prior to removing the buffer (e.g.
104 * in arc_do_user_evicts()).  Note however that the data associated
105 * with the buffer may be evicted prior to the callback.  The callback
106 * must be made with *no locks held* (to prevent deadlock).  Additionally,
107 * the users of callbacks must ensure that their private data is
108 * protected from simultaneous callbacks from arc_clear_callback()
109 * and arc_do_user_evicts().
110 *
111 * Note that the majority of the performance stats are manipulated
112 * with atomic operations.
113 *
114 * The L2ARC uses the l2ad_mtx on each vdev for the following:
115 *
116 *	- L2ARC buflist creation
117 *	- L2ARC buflist eviction
118 *	- L2ARC write completion, which walks L2ARC buflists
119 *	- ARC header destruction, as it removes from L2ARC buflists
120 *	- ARC header release, as it removes from L2ARC buflists
121 */
122
123/*
124 * ARC operation:
125 *
126 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
127 * This structure can point either to a block that is still in the cache or to
128 * one that is only accessible in an L2 ARC device, or it can provide
129 * information about a block that was recently evicted. If a block is
130 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
131 * information to retrieve it from the L2ARC device. This information is
132 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
133 * that is in this state cannot access the data directly.
134 *
135 * Blocks that are actively being referenced or have not been evicted
136 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
137 * the arc_buf_hdr_t that will point to the data block in memory. A block can
138 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
139 * caches data in two ways -- in a list of arc buffers (arc_buf_t) and
140 * also in the arc_buf_hdr_t's private physical data block pointer (b_pdata).
141 * Each arc buffer (arc_buf_t) is being actively accessed by a specific ARC
142 * consumer, and always contains uncompressed data. The ARC will provide
143 * references to this data and will keep it cached until it is no longer in
144 * use. Typically, the arc will try to cache only the L1ARC's physical data
145 * block and will aggressively evict any arc_buf_t that is no longer referenced.
146 * The amount of memory consumed by the arc_buf_t's can be seen via the
147 * "overhead_size" kstat.
148 *
149 *
150 *                arc_buf_hdr_t
151 *                +-----------+
152 *                |           |
153 *                |           |
154 *                |           |
155 *                +-----------+
156 * l2arc_buf_hdr_t|           |
157 *                |           |
158 *                +-----------+
159 * l1arc_buf_hdr_t|           |
160 *                |           |                 arc_buf_t
161 *                |    b_buf  +------------>+---------+      arc_buf_t
162 *                |           |             |b_next   +---->+---------+
163 *                |  b_pdata  +-+           |---------|     |b_next   +-->NULL
164 *                +-----------+ |           |         |     +---------+
165 *                              |           |b_data   +-+   |         |
166 *                              |           +---------+ |   |b_data   +-+
167 *                              +->+------+             |   +---------+ |
168 *                   (potentially) |      |             |               |
169 *                     compressed  |      |             |               |
170 *                        data     +------+             |               v
171 *                                                      +->+------+     +------+
172 *                                            uncompressed |      |     |      |
173 *                                                data     |      |     |      |
174 *                                                         +------+     +------+
175 *
176 * The L1ARC's data pointer, however, may or may not be uncompressed. The
177 * ARC has the ability to store the physical data (b_pdata) associated with
178 * the DVA of the arc_buf_hdr_t. Since the b_pdata is a copy of the on-disk
179 * physical block, it will match its on-disk compression characteristics.
180 * If the block on-disk is compressed, then the physical data block
181 * in the cache will also be compressed and vice-versa. This behavior
182 * can be disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
183 * compressed ARC functionality is disabled, the b_pdata will point to an
184 * uncompressed version of the on-disk data.
185 *
186 * When a consumer reads a block, the ARC must first look to see if the
187 * arc_buf_hdr_t is cached. If the hdr is cached and already has an arc_buf_t,
188 * then an additional arc_buf_t is allocated and the uncompressed data is
189 * bcopied from the existing arc_buf_t. If the hdr is cached but does not
190 * have an arc_buf_t, then the ARC allocates a new arc_buf_t and decompresses
191 * the b_pdata contents into the arc_buf_t's b_data. If the arc_buf_hdr_t's
192 * b_pdata is not compressed, then the block is shared with the newly
193 * allocated arc_buf_t. This block sharing only occurs with one arc_buf_t
194 * in the arc buffer chain. Sharing the block reduces the memory overhead
195 * required when the hdr is caching uncompressed blocks or the compressed
196 * arc functionality has been disabled via 'zfs_compressed_arc_enabled'.
197 *
198 * The diagram below shows an example of an uncompressed ARC hdr that is
199 * sharing its data with an arc_buf_t:
200 *
201 *                arc_buf_hdr_t
202 *                +-----------+
203 *                |           |
204 *                |           |
205 *                |           |
206 *                +-----------+
207 * l2arc_buf_hdr_t|           |
208 *                |           |
209 *                +-----------+
210 * l1arc_buf_hdr_t|           |
211 *                |           |                 arc_buf_t    (shared)
212 *                |    b_buf  +------------>+---------+      arc_buf_t
213 *                |           |             |b_next   +---->+---------+
214 *                |  b_pdata  +-+           |---------|     |b_next   +-->NULL
215 *                +-----------+ |           |         |     +---------+
216 *                              |           |b_data   +-+   |         |
217 *                              |           +---------+ |   |b_data   +-+
218 *                              +->+------+             |   +---------+ |
219 *                                 |      |             |               |
220 *                   uncompressed  |      |             |               |
221 *                        data     +------+             |               |
222 *                                    ^                 +->+------+     |
223 *                                    |       uncompressed |      |     |
224 *                                    |           data     |      |     |
225 *                                    |                    +------+     |
226 *                                    +---------------------------------+
227 *
228 * Writing to the arc requires that the ARC first discard the b_pdata
229 * since the physical block is about to be rewritten. The new data contents
230 * will be contained in the arc_buf_t (uncompressed). As the I/O pipeline
231 * performs the write, it may compress the data before writing it to disk.
232 * The ARC will be called with the transformed data and will bcopy the
233 * transformed on-disk block into a newly allocated b_pdata.
234 *
235 * When the L2ARC is in use, it will also take advantage of the b_pdata. The
236 * L2ARC will always write the contents of b_pdata to the L2ARC. This means
237 * that when compressed arc is enabled that the L2ARC blocks are identical
238 * to the on-disk block in the main data pool. This provides a significant
239 * advantage since the ARC can leverage the bp's checksum when reading from the
240 * L2ARC to determine if the contents are valid. However, if the compressed
241 * arc is disabled, then the L2ARC's block must be transformed to look
242 * like the physical block in the main data pool before comparing the
243 * checksum and determining its validity.
244 */
245
246#include <sys/spa.h>
247#include <sys/zio.h>
248#include <sys/spa_impl.h>
249#include <sys/zio_compress.h>
250#include <sys/zio_checksum.h>
251#include <sys/zfs_context.h>
252#include <sys/arc.h>
253#include <sys/refcount.h>
254#include <sys/vdev.h>
255#include <sys/vdev_impl.h>
256#include <sys/dsl_pool.h>
257#include <sys/multilist.h>
258#ifdef _KERNEL
259#include <sys/dnlc.h>
260#endif
261#include <sys/callb.h>
262#include <sys/kstat.h>
263#include <sys/trim_map.h>
264#include <zfs_fletcher.h>
265#include <sys/sdt.h>
266
267#include <machine/vmparam.h>
268
269#ifdef illumos
270#ifndef _KERNEL
271/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
272boolean_t arc_watch = B_FALSE;
273int arc_procfd;
274#endif
275#endif /* illumos */
276
277static kmutex_t		arc_reclaim_lock;
278static kcondvar_t	arc_reclaim_thread_cv;
279static boolean_t	arc_reclaim_thread_exit;
280static kcondvar_t	arc_reclaim_waiters_cv;
281
282uint_t arc_reduce_dnlc_percent = 3;
283
284/*
285 * The number of headers to evict in arc_evict_state_impl() before
286 * dropping the sublist lock and evicting from another sublist. A lower
287 * value means we're more likely to evict the "correct" header (i.e. the
288 * oldest header in the arc state), but comes with higher overhead
289 * (i.e. more invocations of arc_evict_state_impl()).
290 */
291int zfs_arc_evict_batch_limit = 10;
292
293/*
294 * The number of sublists used for each of the arc state lists. If this
295 * is not set to a suitable value by the user, it will be configured to
296 * the number of CPUs on the system in arc_init().
297 */
298int zfs_arc_num_sublists_per_state = 0;
299
300/* number of seconds before growing cache again */
301static int		arc_grow_retry = 60;
302
303/* shift of arc_c for calculating overflow limit in arc_get_data_buf */
304int		zfs_arc_overflow_shift = 8;
305
306/* shift of arc_c for calculating both min and max arc_p */
307static int		arc_p_min_shift = 4;
308
309/* log2(fraction of arc to reclaim) */
310static int		arc_shrink_shift = 7;
311
312/*
313 * log2(fraction of ARC which must be free to allow growing).
314 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
315 * when reading a new block into the ARC, we will evict an equal-sized block
316 * from the ARC.
317 *
318 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
319 * we will still not allow it to grow.
320 */
321int			arc_no_grow_shift = 5;
322
323
324/*
325 * minimum lifespan of a prefetch block in clock ticks
326 * (initialized in arc_init())
327 */
328static int		arc_min_prefetch_lifespan;
329
330/*
331 * If this percent of memory is free, don't throttle.
332 */
333int arc_lotsfree_percent = 10;
334
335static int arc_dead;
336extern boolean_t zfs_prefetch_disable;
337
338/*
339 * The arc has filled available memory and has now warmed up.
340 */
341static boolean_t arc_warm;
342
343/*
344 * These tunables are for performance analysis.
345 */
346uint64_t zfs_arc_max;
347uint64_t zfs_arc_min;
348uint64_t zfs_arc_meta_limit = 0;
349uint64_t zfs_arc_meta_min = 0;
350int zfs_arc_grow_retry = 0;
351int zfs_arc_shrink_shift = 0;
352int zfs_arc_p_min_shift = 0;
353uint64_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
354u_int zfs_arc_free_target = 0;
355
356/* Absolute min for arc min / max is 16MB. */
357static uint64_t arc_abs_min = 16 << 20;
358
359boolean_t zfs_compressed_arc_enabled = B_TRUE;
360
361static int sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS);
362static int sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS);
363static int sysctl_vfs_zfs_arc_max(SYSCTL_HANDLER_ARGS);
364static int sysctl_vfs_zfs_arc_min(SYSCTL_HANDLER_ARGS);
365
366#if defined(__FreeBSD__) && defined(_KERNEL)
367static void
368arc_free_target_init(void *unused __unused)
369{
370
371	zfs_arc_free_target = vm_pageout_wakeup_thresh;
372}
373SYSINIT(arc_free_target_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_ANY,
374    arc_free_target_init, NULL);
375
376TUNABLE_QUAD("vfs.zfs.arc_max", &zfs_arc_max);
377TUNABLE_QUAD("vfs.zfs.arc_min", &zfs_arc_min);
378TUNABLE_QUAD("vfs.zfs.arc_meta_limit", &zfs_arc_meta_limit);
379TUNABLE_QUAD("vfs.zfs.arc_meta_min", &zfs_arc_meta_min);
380TUNABLE_QUAD("vfs.zfs.arc_average_blocksize", &zfs_arc_average_blocksize);
381TUNABLE_INT("vfs.zfs.arc_shrink_shift", &zfs_arc_shrink_shift);
382SYSCTL_DECL(_vfs_zfs);
383SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_max, CTLTYPE_U64 | CTLFLAG_RWTUN,
384    0, sizeof(uint64_t), sysctl_vfs_zfs_arc_max, "QU", "Maximum ARC size");
385SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_min, CTLTYPE_U64 | CTLFLAG_RWTUN,
386    0, sizeof(uint64_t), sysctl_vfs_zfs_arc_min, "QU", "Minimum ARC size");
387SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_average_blocksize, CTLFLAG_RDTUN,
388    &zfs_arc_average_blocksize, 0,
389    "ARC average blocksize");
390SYSCTL_INT(_vfs_zfs, OID_AUTO, arc_shrink_shift, CTLFLAG_RW,
391    &arc_shrink_shift, 0,
392    "log2(fraction of arc to reclaim)");
393SYSCTL_INT(_vfs_zfs, OID_AUTO, compressed_arc_enabled, CTLFLAG_RDTUN,
394    &zfs_compressed_arc_enabled, 0, "Enable compressed ARC");
395
396/*
397 * We don't have a tunable for arc_free_target due to the dependency on
398 * pagedaemon initialisation.
399 */
400SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_free_target,
401    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(u_int),
402    sysctl_vfs_zfs_arc_free_target, "IU",
403    "Desired number of free pages below which ARC triggers reclaim");
404
405static int
406sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS)
407{
408	u_int val;
409	int err;
410
411	val = zfs_arc_free_target;
412	err = sysctl_handle_int(oidp, &val, 0, req);
413	if (err != 0 || req->newptr == NULL)
414		return (err);
415
416	if (val < minfree)
417		return (EINVAL);
418	if (val > cnt.v_page_count)
419		return (EINVAL);
420
421	zfs_arc_free_target = val;
422
423	return (0);
424}
425
426/*
427 * Must be declared here, before the definition of corresponding kstat
428 * macro which uses the same names will confuse the compiler.
429 */
430SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_meta_limit,
431    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
432    sysctl_vfs_zfs_arc_meta_limit, "QU",
433    "ARC metadata limit");
434#endif
435
436/*
437 * Note that buffers can be in one of 6 states:
438 *	ARC_anon	- anonymous (discussed below)
439 *	ARC_mru		- recently used, currently cached
440 *	ARC_mru_ghost	- recentely used, no longer in cache
441 *	ARC_mfu		- frequently used, currently cached
442 *	ARC_mfu_ghost	- frequently used, no longer in cache
443 *	ARC_l2c_only	- exists in L2ARC but not other states
444 * When there are no active references to the buffer, they are
445 * are linked onto a list in one of these arc states.  These are
446 * the only buffers that can be evicted or deleted.  Within each
447 * state there are multiple lists, one for meta-data and one for
448 * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
449 * etc.) is tracked separately so that it can be managed more
450 * explicitly: favored over data, limited explicitly.
451 *
452 * Anonymous buffers are buffers that are not associated with
453 * a DVA.  These are buffers that hold dirty block copies
454 * before they are written to stable storage.  By definition,
455 * they are "ref'd" and are considered part of arc_mru
456 * that cannot be freed.  Generally, they will aquire a DVA
457 * as they are written and migrate onto the arc_mru list.
458 *
459 * The ARC_l2c_only state is for buffers that are in the second
460 * level ARC but no longer in any of the ARC_m* lists.  The second
461 * level ARC itself may also contain buffers that are in any of
462 * the ARC_m* states - meaning that a buffer can exist in two
463 * places.  The reason for the ARC_l2c_only state is to keep the
464 * buffer header in the hash table, so that reads that hit the
465 * second level ARC benefit from these fast lookups.
466 */
467
468typedef struct arc_state {
469	/*
470	 * list of evictable buffers
471	 */
472	multilist_t arcs_list[ARC_BUFC_NUMTYPES];
473	/*
474	 * total amount of evictable data in this state
475	 */
476	refcount_t arcs_esize[ARC_BUFC_NUMTYPES];
477	/*
478	 * total amount of data in this state; this includes: evictable,
479	 * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA.
480	 */
481	refcount_t arcs_size;
482} arc_state_t;
483
484/* The 6 states: */
485static arc_state_t ARC_anon;
486static arc_state_t ARC_mru;
487static arc_state_t ARC_mru_ghost;
488static arc_state_t ARC_mfu;
489static arc_state_t ARC_mfu_ghost;
490static arc_state_t ARC_l2c_only;
491
492typedef struct arc_stats {
493	kstat_named_t arcstat_hits;
494	kstat_named_t arcstat_misses;
495	kstat_named_t arcstat_demand_data_hits;
496	kstat_named_t arcstat_demand_data_misses;
497	kstat_named_t arcstat_demand_metadata_hits;
498	kstat_named_t arcstat_demand_metadata_misses;
499	kstat_named_t arcstat_prefetch_data_hits;
500	kstat_named_t arcstat_prefetch_data_misses;
501	kstat_named_t arcstat_prefetch_metadata_hits;
502	kstat_named_t arcstat_prefetch_metadata_misses;
503	kstat_named_t arcstat_mru_hits;
504	kstat_named_t arcstat_mru_ghost_hits;
505	kstat_named_t arcstat_mfu_hits;
506	kstat_named_t arcstat_mfu_ghost_hits;
507	kstat_named_t arcstat_allocated;
508	kstat_named_t arcstat_deleted;
509	/*
510	 * Number of buffers that could not be evicted because the hash lock
511	 * was held by another thread.  The lock may not necessarily be held
512	 * by something using the same buffer, since hash locks are shared
513	 * by multiple buffers.
514	 */
515	kstat_named_t arcstat_mutex_miss;
516	/*
517	 * Number of buffers skipped because they have I/O in progress, are
518	 * indrect prefetch buffers that have not lived long enough, or are
519	 * not from the spa we're trying to evict from.
520	 */
521	kstat_named_t arcstat_evict_skip;
522	/*
523	 * Number of times arc_evict_state() was unable to evict enough
524	 * buffers to reach it's target amount.
525	 */
526	kstat_named_t arcstat_evict_not_enough;
527	kstat_named_t arcstat_evict_l2_cached;
528	kstat_named_t arcstat_evict_l2_eligible;
529	kstat_named_t arcstat_evict_l2_ineligible;
530	kstat_named_t arcstat_evict_l2_skip;
531	kstat_named_t arcstat_hash_elements;
532	kstat_named_t arcstat_hash_elements_max;
533	kstat_named_t arcstat_hash_collisions;
534	kstat_named_t arcstat_hash_chains;
535	kstat_named_t arcstat_hash_chain_max;
536	kstat_named_t arcstat_p;
537	kstat_named_t arcstat_c;
538	kstat_named_t arcstat_c_min;
539	kstat_named_t arcstat_c_max;
540	kstat_named_t arcstat_size;
541	/*
542	 * Number of compressed bytes stored in the arc_buf_hdr_t's b_pdata.
543	 * Note that the compressed bytes may match the uncompressed bytes
544	 * if the block is either not compressed or compressed arc is disabled.
545	 */
546	kstat_named_t arcstat_compressed_size;
547	/*
548	 * Uncompressed size of the data stored in b_pdata. If compressed
549	 * arc is disabled then this value will be identical to the stat
550	 * above.
551	 */
552	kstat_named_t arcstat_uncompressed_size;
553	/*
554	 * Number of bytes stored in all the arc_buf_t's. This is classified
555	 * as "overhead" since this data is typically short-lived and will
556	 * be evicted from the arc when it becomes unreferenced unless the
557	 * zfs_keep_uncompressed_metadata or zfs_keep_uncompressed_level
558	 * values have been set (see comment in dbuf.c for more information).
559	 */
560	kstat_named_t arcstat_overhead_size;
561	/*
562	 * Number of bytes consumed by internal ARC structures necessary
563	 * for tracking purposes; these structures are not actually
564	 * backed by ARC buffers. This includes arc_buf_hdr_t structures
565	 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
566	 * caches), and arc_buf_t structures (allocated via arc_buf_t
567	 * cache).
568	 */
569	kstat_named_t arcstat_hdr_size;
570	/*
571	 * Number of bytes consumed by ARC buffers of type equal to
572	 * ARC_BUFC_DATA. This is generally consumed by buffers backing
573	 * on disk user data (e.g. plain file contents).
574	 */
575	kstat_named_t arcstat_data_size;
576	/*
577	 * Number of bytes consumed by ARC buffers of type equal to
578	 * ARC_BUFC_METADATA. This is generally consumed by buffers
579	 * backing on disk data that is used for internal ZFS
580	 * structures (e.g. ZAP, dnode, indirect blocks, etc).
581	 */
582	kstat_named_t arcstat_metadata_size;
583	/*
584	 * Number of bytes consumed by various buffers and structures
585	 * not actually backed with ARC buffers. This includes bonus
586	 * buffers (allocated directly via zio_buf_* functions),
587	 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t
588	 * cache), and dnode_t structures (allocated via dnode_t cache).
589	 */
590	kstat_named_t arcstat_other_size;
591	/*
592	 * Total number of bytes consumed by ARC buffers residing in the
593	 * arc_anon state. This includes *all* buffers in the arc_anon
594	 * state; e.g. data, metadata, evictable, and unevictable buffers
595	 * are all included in this value.
596	 */
597	kstat_named_t arcstat_anon_size;
598	/*
599	 * Number of bytes consumed by ARC buffers that meet the
600	 * following criteria: backing buffers of type ARC_BUFC_DATA,
601	 * residing in the arc_anon state, and are eligible for eviction
602	 * (e.g. have no outstanding holds on the buffer).
603	 */
604	kstat_named_t arcstat_anon_evictable_data;
605	/*
606	 * Number of bytes consumed by ARC buffers that meet the
607	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
608	 * residing in the arc_anon state, and are eligible for eviction
609	 * (e.g. have no outstanding holds on the buffer).
610	 */
611	kstat_named_t arcstat_anon_evictable_metadata;
612	/*
613	 * Total number of bytes consumed by ARC buffers residing in the
614	 * arc_mru state. This includes *all* buffers in the arc_mru
615	 * state; e.g. data, metadata, evictable, and unevictable buffers
616	 * are all included in this value.
617	 */
618	kstat_named_t arcstat_mru_size;
619	/*
620	 * Number of bytes consumed by ARC buffers that meet the
621	 * following criteria: backing buffers of type ARC_BUFC_DATA,
622	 * residing in the arc_mru state, and are eligible for eviction
623	 * (e.g. have no outstanding holds on the buffer).
624	 */
625	kstat_named_t arcstat_mru_evictable_data;
626	/*
627	 * Number of bytes consumed by ARC buffers that meet the
628	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
629	 * residing in the arc_mru state, and are eligible for eviction
630	 * (e.g. have no outstanding holds on the buffer).
631	 */
632	kstat_named_t arcstat_mru_evictable_metadata;
633	/*
634	 * Total number of bytes that *would have been* consumed by ARC
635	 * buffers in the arc_mru_ghost state. The key thing to note
636	 * here, is the fact that this size doesn't actually indicate
637	 * RAM consumption. The ghost lists only consist of headers and
638	 * don't actually have ARC buffers linked off of these headers.
639	 * Thus, *if* the headers had associated ARC buffers, these
640	 * buffers *would have* consumed this number of bytes.
641	 */
642	kstat_named_t arcstat_mru_ghost_size;
643	/*
644	 * Number of bytes that *would have been* consumed by ARC
645	 * buffers that are eligible for eviction, of type
646	 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
647	 */
648	kstat_named_t arcstat_mru_ghost_evictable_data;
649	/*
650	 * Number of bytes that *would have been* consumed by ARC
651	 * buffers that are eligible for eviction, of type
652	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
653	 */
654	kstat_named_t arcstat_mru_ghost_evictable_metadata;
655	/*
656	 * Total number of bytes consumed by ARC buffers residing in the
657	 * arc_mfu state. This includes *all* buffers in the arc_mfu
658	 * state; e.g. data, metadata, evictable, and unevictable buffers
659	 * are all included in this value.
660	 */
661	kstat_named_t arcstat_mfu_size;
662	/*
663	 * Number of bytes consumed by ARC buffers that are eligible for
664	 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
665	 * state.
666	 */
667	kstat_named_t arcstat_mfu_evictable_data;
668	/*
669	 * Number of bytes consumed by ARC buffers that are eligible for
670	 * eviction, of type ARC_BUFC_METADATA, and reside in the
671	 * arc_mfu state.
672	 */
673	kstat_named_t arcstat_mfu_evictable_metadata;
674	/*
675	 * Total number of bytes that *would have been* consumed by ARC
676	 * buffers in the arc_mfu_ghost state. See the comment above
677	 * arcstat_mru_ghost_size for more details.
678	 */
679	kstat_named_t arcstat_mfu_ghost_size;
680	/*
681	 * Number of bytes that *would have been* consumed by ARC
682	 * buffers that are eligible for eviction, of type
683	 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
684	 */
685	kstat_named_t arcstat_mfu_ghost_evictable_data;
686	/*
687	 * Number of bytes that *would have been* consumed by ARC
688	 * buffers that are eligible for eviction, of type
689	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
690	 */
691	kstat_named_t arcstat_mfu_ghost_evictable_metadata;
692	kstat_named_t arcstat_l2_hits;
693	kstat_named_t arcstat_l2_misses;
694	kstat_named_t arcstat_l2_feeds;
695	kstat_named_t arcstat_l2_rw_clash;
696	kstat_named_t arcstat_l2_read_bytes;
697	kstat_named_t arcstat_l2_write_bytes;
698	kstat_named_t arcstat_l2_writes_sent;
699	kstat_named_t arcstat_l2_writes_done;
700	kstat_named_t arcstat_l2_writes_error;
701	kstat_named_t arcstat_l2_writes_lock_retry;
702	kstat_named_t arcstat_l2_evict_lock_retry;
703	kstat_named_t arcstat_l2_evict_reading;
704	kstat_named_t arcstat_l2_evict_l1cached;
705	kstat_named_t arcstat_l2_free_on_write;
706	kstat_named_t arcstat_l2_abort_lowmem;
707	kstat_named_t arcstat_l2_cksum_bad;
708	kstat_named_t arcstat_l2_io_error;
709	kstat_named_t arcstat_l2_size;
710	kstat_named_t arcstat_l2_asize;
711	kstat_named_t arcstat_l2_hdr_size;
712	kstat_named_t arcstat_l2_write_trylock_fail;
713	kstat_named_t arcstat_l2_write_passed_headroom;
714	kstat_named_t arcstat_l2_write_spa_mismatch;
715	kstat_named_t arcstat_l2_write_in_l2;
716	kstat_named_t arcstat_l2_write_hdr_io_in_progress;
717	kstat_named_t arcstat_l2_write_not_cacheable;
718	kstat_named_t arcstat_l2_write_full;
719	kstat_named_t arcstat_l2_write_buffer_iter;
720	kstat_named_t arcstat_l2_write_pios;
721	kstat_named_t arcstat_l2_write_buffer_bytes_scanned;
722	kstat_named_t arcstat_l2_write_buffer_list_iter;
723	kstat_named_t arcstat_l2_write_buffer_list_null_iter;
724	kstat_named_t arcstat_memory_throttle_count;
725	kstat_named_t arcstat_meta_used;
726	kstat_named_t arcstat_meta_limit;
727	kstat_named_t arcstat_meta_max;
728	kstat_named_t arcstat_meta_min;
729	kstat_named_t arcstat_sync_wait_for_async;
730	kstat_named_t arcstat_demand_hit_predictive_prefetch;
731} arc_stats_t;
732
733static arc_stats_t arc_stats = {
734	{ "hits",			KSTAT_DATA_UINT64 },
735	{ "misses",			KSTAT_DATA_UINT64 },
736	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
737	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
738	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
739	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
740	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
741	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
742	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
743	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
744	{ "mru_hits",			KSTAT_DATA_UINT64 },
745	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
746	{ "mfu_hits",			KSTAT_DATA_UINT64 },
747	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
748	{ "allocated",			KSTAT_DATA_UINT64 },
749	{ "deleted",			KSTAT_DATA_UINT64 },
750	{ "mutex_miss",			KSTAT_DATA_UINT64 },
751	{ "evict_skip",			KSTAT_DATA_UINT64 },
752	{ "evict_not_enough",		KSTAT_DATA_UINT64 },
753	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
754	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
755	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
756	{ "evict_l2_skip",		KSTAT_DATA_UINT64 },
757	{ "hash_elements",		KSTAT_DATA_UINT64 },
758	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
759	{ "hash_collisions",		KSTAT_DATA_UINT64 },
760	{ "hash_chains",		KSTAT_DATA_UINT64 },
761	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
762	{ "p",				KSTAT_DATA_UINT64 },
763	{ "c",				KSTAT_DATA_UINT64 },
764	{ "c_min",			KSTAT_DATA_UINT64 },
765	{ "c_max",			KSTAT_DATA_UINT64 },
766	{ "size",			KSTAT_DATA_UINT64 },
767	{ "compressed_size",		KSTAT_DATA_UINT64 },
768	{ "uncompressed_size",		KSTAT_DATA_UINT64 },
769	{ "overhead_size",		KSTAT_DATA_UINT64 },
770	{ "hdr_size",			KSTAT_DATA_UINT64 },
771	{ "data_size",			KSTAT_DATA_UINT64 },
772	{ "metadata_size",		KSTAT_DATA_UINT64 },
773	{ "other_size",			KSTAT_DATA_UINT64 },
774	{ "anon_size",			KSTAT_DATA_UINT64 },
775	{ "anon_evictable_data",	KSTAT_DATA_UINT64 },
776	{ "anon_evictable_metadata",	KSTAT_DATA_UINT64 },
777	{ "mru_size",			KSTAT_DATA_UINT64 },
778	{ "mru_evictable_data",		KSTAT_DATA_UINT64 },
779	{ "mru_evictable_metadata",	KSTAT_DATA_UINT64 },
780	{ "mru_ghost_size",		KSTAT_DATA_UINT64 },
781	{ "mru_ghost_evictable_data",	KSTAT_DATA_UINT64 },
782	{ "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
783	{ "mfu_size",			KSTAT_DATA_UINT64 },
784	{ "mfu_evictable_data",		KSTAT_DATA_UINT64 },
785	{ "mfu_evictable_metadata",	KSTAT_DATA_UINT64 },
786	{ "mfu_ghost_size",		KSTAT_DATA_UINT64 },
787	{ "mfu_ghost_evictable_data",	KSTAT_DATA_UINT64 },
788	{ "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
789	{ "l2_hits",			KSTAT_DATA_UINT64 },
790	{ "l2_misses",			KSTAT_DATA_UINT64 },
791	{ "l2_feeds",			KSTAT_DATA_UINT64 },
792	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
793	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
794	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
795	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
796	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
797	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
798	{ "l2_writes_lock_retry",	KSTAT_DATA_UINT64 },
799	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
800	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
801	{ "l2_evict_l1cached",		KSTAT_DATA_UINT64 },
802	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
803	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
804	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
805	{ "l2_io_error",		KSTAT_DATA_UINT64 },
806	{ "l2_size",			KSTAT_DATA_UINT64 },
807	{ "l2_asize",			KSTAT_DATA_UINT64 },
808	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
809	{ "l2_write_trylock_fail",	KSTAT_DATA_UINT64 },
810	{ "l2_write_passed_headroom",	KSTAT_DATA_UINT64 },
811	{ "l2_write_spa_mismatch",	KSTAT_DATA_UINT64 },
812	{ "l2_write_in_l2",		KSTAT_DATA_UINT64 },
813	{ "l2_write_io_in_progress",	KSTAT_DATA_UINT64 },
814	{ "l2_write_not_cacheable",	KSTAT_DATA_UINT64 },
815	{ "l2_write_full",		KSTAT_DATA_UINT64 },
816	{ "l2_write_buffer_iter",	KSTAT_DATA_UINT64 },
817	{ "l2_write_pios",		KSTAT_DATA_UINT64 },
818	{ "l2_write_buffer_bytes_scanned", KSTAT_DATA_UINT64 },
819	{ "l2_write_buffer_list_iter",	KSTAT_DATA_UINT64 },
820	{ "l2_write_buffer_list_null_iter", KSTAT_DATA_UINT64 },
821	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
822	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
823	{ "arc_meta_limit",		KSTAT_DATA_UINT64 },
824	{ "arc_meta_max",		KSTAT_DATA_UINT64 },
825	{ "arc_meta_min",		KSTAT_DATA_UINT64 },
826	{ "sync_wait_for_async",	KSTAT_DATA_UINT64 },
827	{ "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
828};
829
830#define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
831
832#define	ARCSTAT_INCR(stat, val) \
833	atomic_add_64(&arc_stats.stat.value.ui64, (val))
834
835#define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
836#define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
837
838#define	ARCSTAT_MAX(stat, val) {					\
839	uint64_t m;							\
840	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
841	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
842		continue;						\
843}
844
845#define	ARCSTAT_MAXSTAT(stat) \
846	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
847
848/*
849 * We define a macro to allow ARC hits/misses to be easily broken down by
850 * two separate conditions, giving a total of four different subtypes for
851 * each of hits and misses (so eight statistics total).
852 */
853#define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
854	if (cond1) {							\
855		if (cond2) {						\
856			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
857		} else {						\
858			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
859		}							\
860	} else {							\
861		if (cond2) {						\
862			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
863		} else {						\
864			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
865		}							\
866	}
867
868kstat_t			*arc_ksp;
869static arc_state_t	*arc_anon;
870static arc_state_t	*arc_mru;
871static arc_state_t	*arc_mru_ghost;
872static arc_state_t	*arc_mfu;
873static arc_state_t	*arc_mfu_ghost;
874static arc_state_t	*arc_l2c_only;
875
876/*
877 * There are several ARC variables that are critical to export as kstats --
878 * but we don't want to have to grovel around in the kstat whenever we wish to
879 * manipulate them.  For these variables, we therefore define them to be in
880 * terms of the statistic variable.  This assures that we are not introducing
881 * the possibility of inconsistency by having shadow copies of the variables,
882 * while still allowing the code to be readable.
883 */
884#define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
885#define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
886#define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
887#define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
888#define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
889#define	arc_meta_limit	ARCSTAT(arcstat_meta_limit) /* max size for metadata */
890#define	arc_meta_min	ARCSTAT(arcstat_meta_min) /* min size for metadata */
891#define	arc_meta_used	ARCSTAT(arcstat_meta_used) /* size of metadata */
892#define	arc_meta_max	ARCSTAT(arcstat_meta_max) /* max size of metadata */
893
894/* compressed size of entire arc */
895#define	arc_compressed_size	ARCSTAT(arcstat_compressed_size)
896/* uncompressed size of entire arc */
897#define	arc_uncompressed_size	ARCSTAT(arcstat_uncompressed_size)
898/* number of bytes in the arc from arc_buf_t's */
899#define	arc_overhead_size	ARCSTAT(arcstat_overhead_size)
900
901static int		arc_no_grow;	/* Don't try to grow cache size */
902static uint64_t		arc_tempreserve;
903static uint64_t		arc_loaned_bytes;
904
905typedef struct arc_callback arc_callback_t;
906
907struct arc_callback {
908	void			*acb_private;
909	arc_done_func_t		*acb_done;
910	arc_buf_t		*acb_buf;
911	zio_t			*acb_zio_dummy;
912	arc_callback_t		*acb_next;
913};
914
915typedef struct arc_write_callback arc_write_callback_t;
916
917struct arc_write_callback {
918	void		*awcb_private;
919	arc_done_func_t	*awcb_ready;
920	arc_done_func_t	*awcb_children_ready;
921	arc_done_func_t	*awcb_physdone;
922	arc_done_func_t	*awcb_done;
923	arc_buf_t	*awcb_buf;
924};
925
926/*
927 * ARC buffers are separated into multiple structs as a memory saving measure:
928 *   - Common fields struct, always defined, and embedded within it:
929 *       - L2-only fields, always allocated but undefined when not in L2ARC
930 *       - L1-only fields, only allocated when in L1ARC
931 *
932 *           Buffer in L1                     Buffer only in L2
933 *    +------------------------+          +------------------------+
934 *    | arc_buf_hdr_t          |          | arc_buf_hdr_t          |
935 *    |                        |          |                        |
936 *    |                        |          |                        |
937 *    |                        |          |                        |
938 *    +------------------------+          +------------------------+
939 *    | l2arc_buf_hdr_t        |          | l2arc_buf_hdr_t        |
940 *    | (undefined if L1-only) |          |                        |
941 *    +------------------------+          +------------------------+
942 *    | l1arc_buf_hdr_t        |
943 *    |                        |
944 *    |                        |
945 *    |                        |
946 *    |                        |
947 *    +------------------------+
948 *
949 * Because it's possible for the L2ARC to become extremely large, we can wind
950 * up eating a lot of memory in L2ARC buffer headers, so the size of a header
951 * is minimized by only allocating the fields necessary for an L1-cached buffer
952 * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and
953 * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple
954 * words in pointers. arc_hdr_realloc() is used to switch a header between
955 * these two allocation states.
956 */
957typedef struct l1arc_buf_hdr {
958	kmutex_t		b_freeze_lock;
959	zio_cksum_t		*b_freeze_cksum;
960#ifdef ZFS_DEBUG
961	/*
962	 * used for debugging wtih kmem_flags - by allocating and freeing
963	 * b_thawed when the buffer is thawed, we get a record of the stack
964	 * trace that thawed it.
965	 */
966	void			*b_thawed;
967#endif
968
969	arc_buf_t		*b_buf;
970	uint32_t		b_bufcnt;
971	/* for waiting on writes to complete */
972	kcondvar_t		b_cv;
973	uint8_t			b_byteswap;
974
975	/* protected by arc state mutex */
976	arc_state_t		*b_state;
977	multilist_node_t	b_arc_node;
978
979	/* updated atomically */
980	clock_t			b_arc_access;
981
982	/* self protecting */
983	refcount_t		b_refcnt;
984
985	arc_callback_t		*b_acb;
986	void			*b_pdata;
987} l1arc_buf_hdr_t;
988
989typedef struct l2arc_dev l2arc_dev_t;
990
991typedef struct l2arc_buf_hdr {
992	/* protected by arc_buf_hdr mutex */
993	l2arc_dev_t		*b_dev;		/* L2ARC device */
994	uint64_t		b_daddr;	/* disk address, offset byte */
995
996	list_node_t		b_l2node;
997} l2arc_buf_hdr_t;
998
999struct arc_buf_hdr {
1000	/* protected by hash lock */
1001	dva_t			b_dva;
1002	uint64_t		b_birth;
1003
1004	arc_buf_contents_t	b_type;
1005	arc_buf_hdr_t		*b_hash_next;
1006	arc_flags_t		b_flags;
1007
1008	/*
1009	 * This field stores the size of the data buffer after
1010	 * compression, and is set in the arc's zio completion handlers.
1011	 * It is in units of SPA_MINBLOCKSIZE (e.g. 1 == 512 bytes).
1012	 *
1013	 * While the block pointers can store up to 32MB in their psize
1014	 * field, we can only store up to 32MB minus 512B. This is due
1015	 * to the bp using a bias of 1, whereas we use a bias of 0 (i.e.
1016	 * a field of zeros represents 512B in the bp). We can't use a
1017	 * bias of 1 since we need to reserve a psize of zero, here, to
1018	 * represent holes and embedded blocks.
1019	 *
1020	 * This isn't a problem in practice, since the maximum size of a
1021	 * buffer is limited to 16MB, so we never need to store 32MB in
1022	 * this field. Even in the upstream illumos code base, the
1023	 * maximum size of a buffer is limited to 16MB.
1024	 */
1025	uint16_t		b_psize;
1026
1027	/*
1028	 * This field stores the size of the data buffer before
1029	 * compression, and cannot change once set. It is in units
1030	 * of SPA_MINBLOCKSIZE (e.g. 2 == 1024 bytes)
1031	 */
1032	uint16_t		b_lsize;	/* immutable */
1033	uint64_t		b_spa;		/* immutable */
1034
1035	/* L2ARC fields. Undefined when not in L2ARC. */
1036	l2arc_buf_hdr_t		b_l2hdr;
1037	/* L1ARC fields. Undefined when in l2arc_only state */
1038	l1arc_buf_hdr_t		b_l1hdr;
1039};
1040
1041#if defined(__FreeBSD__) && defined(_KERNEL)
1042static int
1043sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS)
1044{
1045	uint64_t val;
1046	int err;
1047
1048	val = arc_meta_limit;
1049	err = sysctl_handle_64(oidp, &val, 0, req);
1050	if (err != 0 || req->newptr == NULL)
1051		return (err);
1052
1053        if (val <= 0 || val > arc_c_max)
1054		return (EINVAL);
1055
1056	arc_meta_limit = val;
1057	return (0);
1058}
1059
1060static int
1061sysctl_vfs_zfs_arc_max(SYSCTL_HANDLER_ARGS)
1062{
1063	uint64_t val;
1064	int err;
1065
1066	val = zfs_arc_max;
1067	err = sysctl_handle_64(oidp, &val, 0, req);
1068	if (err != 0 || req->newptr == NULL)
1069		return (err);
1070
1071	if (zfs_arc_max == 0) {
1072		/* Loader tunable so blindly set */
1073		zfs_arc_max = val;
1074		return (0);
1075	}
1076
1077	if (val < arc_abs_min || val > kmem_size())
1078		return (EINVAL);
1079	if (val < arc_c_min)
1080		return (EINVAL);
1081	if (zfs_arc_meta_limit > 0 && val < zfs_arc_meta_limit)
1082		return (EINVAL);
1083
1084	arc_c_max = val;
1085
1086	arc_c = arc_c_max;
1087        arc_p = (arc_c >> 1);
1088
1089	if (zfs_arc_meta_limit == 0) {
1090		/* limit meta-data to 1/4 of the arc capacity */
1091		arc_meta_limit = arc_c_max / 4;
1092	}
1093
1094	/* if kmem_flags are set, lets try to use less memory */
1095	if (kmem_debugging())
1096		arc_c = arc_c / 2;
1097
1098	zfs_arc_max = arc_c;
1099
1100	return (0);
1101}
1102
1103static int
1104sysctl_vfs_zfs_arc_min(SYSCTL_HANDLER_ARGS)
1105{
1106	uint64_t val;
1107	int err;
1108
1109	val = zfs_arc_min;
1110	err = sysctl_handle_64(oidp, &val, 0, req);
1111	if (err != 0 || req->newptr == NULL)
1112		return (err);
1113
1114	if (zfs_arc_min == 0) {
1115		/* Loader tunable so blindly set */
1116		zfs_arc_min = val;
1117		return (0);
1118	}
1119
1120	if (val < arc_abs_min || val > arc_c_max)
1121		return (EINVAL);
1122
1123	arc_c_min = val;
1124
1125	if (zfs_arc_meta_min == 0)
1126                arc_meta_min = arc_c_min / 2;
1127
1128	if (arc_c < arc_c_min)
1129                arc_c = arc_c_min;
1130
1131	zfs_arc_min = arc_c_min;
1132
1133	return (0);
1134}
1135#endif
1136
1137#define	GHOST_STATE(state)	\
1138	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
1139	(state) == arc_l2c_only)
1140
1141#define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
1142#define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
1143#define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_FLAG_IO_ERROR)
1144#define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_FLAG_PREFETCH)
1145#define	HDR_COMPRESSION_ENABLED(hdr)	\
1146	((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
1147
1148#define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_FLAG_L2CACHE)
1149#define	HDR_L2_READING(hdr)	\
1150	(((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&	\
1151	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
1152#define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITING)
1153#define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
1154#define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
1155#define	HDR_SHARED_DATA(hdr)	((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
1156
1157#define	HDR_ISTYPE_METADATA(hdr)	\
1158	((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
1159#define	HDR_ISTYPE_DATA(hdr)	(!HDR_ISTYPE_METADATA(hdr))
1160
1161#define	HDR_HAS_L1HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
1162#define	HDR_HAS_L2HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
1163
1164/* For storing compression mode in b_flags */
1165#define	HDR_COMPRESS_OFFSET	(highbit64(ARC_FLAG_COMPRESS_0) - 1)
1166
1167#define	HDR_GET_COMPRESS(hdr)	((enum zio_compress)BF32_GET((hdr)->b_flags, \
1168	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
1169#define	HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
1170	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
1171
1172#define	ARC_BUF_LAST(buf)	((buf)->b_next == NULL)
1173
1174/*
1175 * Other sizes
1176 */
1177
1178#define	HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
1179#define	HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
1180
1181/*
1182 * Hash table routines
1183 */
1184
1185#define	HT_LOCK_PAD	CACHE_LINE_SIZE
1186
1187struct ht_lock {
1188	kmutex_t	ht_lock;
1189#ifdef _KERNEL
1190	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
1191#endif
1192};
1193
1194#define	BUF_LOCKS 256
1195typedef struct buf_hash_table {
1196	uint64_t ht_mask;
1197	arc_buf_hdr_t **ht_table;
1198	struct ht_lock ht_locks[BUF_LOCKS] __aligned(CACHE_LINE_SIZE);
1199} buf_hash_table_t;
1200
1201static buf_hash_table_t buf_hash_table;
1202
1203#define	BUF_HASH_INDEX(spa, dva, birth) \
1204	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
1205#define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
1206#define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
1207#define	HDR_LOCK(hdr) \
1208	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
1209
1210uint64_t zfs_crc64_table[256];
1211
1212/*
1213 * Level 2 ARC
1214 */
1215
1216#define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
1217#define	L2ARC_HEADROOM		2			/* num of writes */
1218/*
1219 * If we discover during ARC scan any buffers to be compressed, we boost
1220 * our headroom for the next scanning cycle by this percentage multiple.
1221 */
1222#define	L2ARC_HEADROOM_BOOST	200
1223#define	L2ARC_FEED_SECS		1		/* caching interval secs */
1224#define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
1225
1226#define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
1227#define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
1228
1229/* L2ARC Performance Tunables */
1230uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
1231uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
1232uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
1233uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
1234uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
1235uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
1236boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
1237boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
1238boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
1239
1240SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_max, CTLFLAG_RW,
1241    &l2arc_write_max, 0, "max write size");
1242SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_boost, CTLFLAG_RW,
1243    &l2arc_write_boost, 0, "extra write during warmup");
1244SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_headroom, CTLFLAG_RW,
1245    &l2arc_headroom, 0, "number of dev writes");
1246SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_secs, CTLFLAG_RW,
1247    &l2arc_feed_secs, 0, "interval seconds");
1248SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_min_ms, CTLFLAG_RW,
1249    &l2arc_feed_min_ms, 0, "min interval milliseconds");
1250
1251SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_noprefetch, CTLFLAG_RW,
1252    &l2arc_noprefetch, 0, "don't cache prefetch bufs");
1253SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_feed_again, CTLFLAG_RW,
1254    &l2arc_feed_again, 0, "turbo warmup");
1255SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_norw, CTLFLAG_RW,
1256    &l2arc_norw, 0, "no reads during writes");
1257
1258SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_size, CTLFLAG_RD,
1259    &ARC_anon.arcs_size.rc_count, 0, "size of anonymous state");
1260SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_metadata_esize, CTLFLAG_RD,
1261    &ARC_anon.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1262    "size of anonymous state");
1263SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_data_esize, CTLFLAG_RD,
1264    &ARC_anon.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1265    "size of anonymous state");
1266
1267SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_size, CTLFLAG_RD,
1268    &ARC_mru.arcs_size.rc_count, 0, "size of mru state");
1269SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_metadata_esize, CTLFLAG_RD,
1270    &ARC_mru.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1271    "size of metadata in mru state");
1272SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_data_esize, CTLFLAG_RD,
1273    &ARC_mru.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1274    "size of data in mru state");
1275
1276SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_size, CTLFLAG_RD,
1277    &ARC_mru_ghost.arcs_size.rc_count, 0, "size of mru ghost state");
1278SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_metadata_esize, CTLFLAG_RD,
1279    &ARC_mru_ghost.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1280    "size of metadata in mru ghost state");
1281SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_data_esize, CTLFLAG_RD,
1282    &ARC_mru_ghost.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1283    "size of data in mru ghost state");
1284
1285SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_size, CTLFLAG_RD,
1286    &ARC_mfu.arcs_size.rc_count, 0, "size of mfu state");
1287SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_metadata_esize, CTLFLAG_RD,
1288    &ARC_mfu.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1289    "size of metadata in mfu state");
1290SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_data_esize, CTLFLAG_RD,
1291    &ARC_mfu.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1292    "size of data in mfu state");
1293
1294SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_size, CTLFLAG_RD,
1295    &ARC_mfu_ghost.arcs_size.rc_count, 0, "size of mfu ghost state");
1296SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_metadata_esize, CTLFLAG_RD,
1297    &ARC_mfu_ghost.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1298    "size of metadata in mfu ghost state");
1299SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_data_esize, CTLFLAG_RD,
1300    &ARC_mfu_ghost.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1301    "size of data in mfu ghost state");
1302
1303SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2c_only_size, CTLFLAG_RD,
1304    &ARC_l2c_only.arcs_size.rc_count, 0, "size of mru state");
1305
1306/*
1307 * L2ARC Internals
1308 */
1309struct l2arc_dev {
1310	vdev_t			*l2ad_vdev;	/* vdev */
1311	spa_t			*l2ad_spa;	/* spa */
1312	uint64_t		l2ad_hand;	/* next write location */
1313	uint64_t		l2ad_start;	/* first addr on device */
1314	uint64_t		l2ad_end;	/* last addr on device */
1315	boolean_t		l2ad_first;	/* first sweep through */
1316	boolean_t		l2ad_writing;	/* currently writing */
1317	kmutex_t		l2ad_mtx;	/* lock for buffer list */
1318	list_t			l2ad_buflist;	/* buffer list */
1319	list_node_t		l2ad_node;	/* device list node */
1320	refcount_t		l2ad_alloc;	/* allocated bytes */
1321};
1322
1323static list_t L2ARC_dev_list;			/* device list */
1324static list_t *l2arc_dev_list;			/* device list pointer */
1325static kmutex_t l2arc_dev_mtx;			/* device list mutex */
1326static l2arc_dev_t *l2arc_dev_last;		/* last device used */
1327static list_t L2ARC_free_on_write;		/* free after write buf list */
1328static list_t *l2arc_free_on_write;		/* free after write list ptr */
1329static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
1330static uint64_t l2arc_ndev;			/* number of devices */
1331
1332typedef struct l2arc_read_callback {
1333	arc_buf_hdr_t		*l2rcb_hdr;		/* read buffer */
1334	blkptr_t		l2rcb_bp;		/* original blkptr */
1335	zbookmark_phys_t	l2rcb_zb;		/* original bookmark */
1336	int			l2rcb_flags;		/* original flags */
1337	void			*l2rcb_data;		/* temporary buffer */
1338} l2arc_read_callback_t;
1339
1340typedef struct l2arc_write_callback {
1341	l2arc_dev_t	*l2wcb_dev;		/* device info */
1342	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
1343} l2arc_write_callback_t;
1344
1345typedef struct l2arc_data_free {
1346	/* protected by l2arc_free_on_write_mtx */
1347	void		*l2df_data;
1348	size_t		l2df_size;
1349	arc_buf_contents_t l2df_type;
1350	list_node_t	l2df_list_node;
1351} l2arc_data_free_t;
1352
1353static kmutex_t l2arc_feed_thr_lock;
1354static kcondvar_t l2arc_feed_thr_cv;
1355static uint8_t l2arc_thread_exit;
1356
1357static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *);
1358static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *);
1359static void arc_hdr_free_pdata(arc_buf_hdr_t *hdr);
1360static void arc_hdr_alloc_pdata(arc_buf_hdr_t *);
1361static void arc_access(arc_buf_hdr_t *, kmutex_t *);
1362static boolean_t arc_is_overflowing();
1363static void arc_buf_watch(arc_buf_t *);
1364
1365static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
1366static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
1367static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1368static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1369
1370static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
1371static void l2arc_read_done(zio_t *);
1372
1373static void
1374l2arc_trim(const arc_buf_hdr_t *hdr)
1375{
1376	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
1377
1378	ASSERT(HDR_HAS_L2HDR(hdr));
1379	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
1380
1381	if (HDR_GET_PSIZE(hdr) != 0) {
1382		trim_map_free(dev->l2ad_vdev, hdr->b_l2hdr.b_daddr,
1383		    HDR_GET_PSIZE(hdr), 0);
1384	}
1385}
1386
1387static uint64_t
1388buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
1389{
1390	uint8_t *vdva = (uint8_t *)dva;
1391	uint64_t crc = -1ULL;
1392	int i;
1393
1394	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
1395
1396	for (i = 0; i < sizeof (dva_t); i++)
1397		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
1398
1399	crc ^= (spa>>8) ^ birth;
1400
1401	return (crc);
1402}
1403
1404#define	HDR_EMPTY(hdr)						\
1405	((hdr)->b_dva.dva_word[0] == 0 &&			\
1406	(hdr)->b_dva.dva_word[1] == 0)
1407
1408#define	HDR_EQUAL(spa, dva, birth, hdr)				\
1409	((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
1410	((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
1411	((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
1412
1413static void
1414buf_discard_identity(arc_buf_hdr_t *hdr)
1415{
1416	hdr->b_dva.dva_word[0] = 0;
1417	hdr->b_dva.dva_word[1] = 0;
1418	hdr->b_birth = 0;
1419}
1420
1421static arc_buf_hdr_t *
1422buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1423{
1424	const dva_t *dva = BP_IDENTITY(bp);
1425	uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1426	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1427	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1428	arc_buf_hdr_t *hdr;
1429
1430	mutex_enter(hash_lock);
1431	for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1432	    hdr = hdr->b_hash_next) {
1433		if (HDR_EQUAL(spa, dva, birth, hdr)) {
1434			*lockp = hash_lock;
1435			return (hdr);
1436		}
1437	}
1438	mutex_exit(hash_lock);
1439	*lockp = NULL;
1440	return (NULL);
1441}
1442
1443/*
1444 * Insert an entry into the hash table.  If there is already an element
1445 * equal to elem in the hash table, then the already existing element
1446 * will be returned and the new element will not be inserted.
1447 * Otherwise returns NULL.
1448 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1449 */
1450static arc_buf_hdr_t *
1451buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1452{
1453	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1454	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1455	arc_buf_hdr_t *fhdr;
1456	uint32_t i;
1457
1458	ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1459	ASSERT(hdr->b_birth != 0);
1460	ASSERT(!HDR_IN_HASH_TABLE(hdr));
1461
1462	if (lockp != NULL) {
1463		*lockp = hash_lock;
1464		mutex_enter(hash_lock);
1465	} else {
1466		ASSERT(MUTEX_HELD(hash_lock));
1467	}
1468
1469	for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1470	    fhdr = fhdr->b_hash_next, i++) {
1471		if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1472			return (fhdr);
1473	}
1474
1475	hdr->b_hash_next = buf_hash_table.ht_table[idx];
1476	buf_hash_table.ht_table[idx] = hdr;
1477	arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1478
1479	/* collect some hash table performance data */
1480	if (i > 0) {
1481		ARCSTAT_BUMP(arcstat_hash_collisions);
1482		if (i == 1)
1483			ARCSTAT_BUMP(arcstat_hash_chains);
1484
1485		ARCSTAT_MAX(arcstat_hash_chain_max, i);
1486	}
1487
1488	ARCSTAT_BUMP(arcstat_hash_elements);
1489	ARCSTAT_MAXSTAT(arcstat_hash_elements);
1490
1491	return (NULL);
1492}
1493
1494static void
1495buf_hash_remove(arc_buf_hdr_t *hdr)
1496{
1497	arc_buf_hdr_t *fhdr, **hdrp;
1498	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1499
1500	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1501	ASSERT(HDR_IN_HASH_TABLE(hdr));
1502
1503	hdrp = &buf_hash_table.ht_table[idx];
1504	while ((fhdr = *hdrp) != hdr) {
1505		ASSERT3P(fhdr, !=, NULL);
1506		hdrp = &fhdr->b_hash_next;
1507	}
1508	*hdrp = hdr->b_hash_next;
1509	hdr->b_hash_next = NULL;
1510	arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1511
1512	/* collect some hash table performance data */
1513	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1514
1515	if (buf_hash_table.ht_table[idx] &&
1516	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1517		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1518}
1519
1520/*
1521 * Global data structures and functions for the buf kmem cache.
1522 */
1523static kmem_cache_t *hdr_full_cache;
1524static kmem_cache_t *hdr_l2only_cache;
1525static kmem_cache_t *buf_cache;
1526
1527static void
1528buf_fini(void)
1529{
1530	int i;
1531
1532	kmem_free(buf_hash_table.ht_table,
1533	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1534	for (i = 0; i < BUF_LOCKS; i++)
1535		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1536	kmem_cache_destroy(hdr_full_cache);
1537	kmem_cache_destroy(hdr_l2only_cache);
1538	kmem_cache_destroy(buf_cache);
1539}
1540
1541/*
1542 * Constructor callback - called when the cache is empty
1543 * and a new buf is requested.
1544 */
1545/* ARGSUSED */
1546static int
1547hdr_full_cons(void *vbuf, void *unused, int kmflag)
1548{
1549	arc_buf_hdr_t *hdr = vbuf;
1550
1551	bzero(hdr, HDR_FULL_SIZE);
1552	cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1553	refcount_create(&hdr->b_l1hdr.b_refcnt);
1554	mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1555	multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1556	arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1557
1558	return (0);
1559}
1560
1561/* ARGSUSED */
1562static int
1563hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1564{
1565	arc_buf_hdr_t *hdr = vbuf;
1566
1567	bzero(hdr, HDR_L2ONLY_SIZE);
1568	arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1569
1570	return (0);
1571}
1572
1573/* ARGSUSED */
1574static int
1575buf_cons(void *vbuf, void *unused, int kmflag)
1576{
1577	arc_buf_t *buf = vbuf;
1578
1579	bzero(buf, sizeof (arc_buf_t));
1580	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1581	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1582
1583	return (0);
1584}
1585
1586/*
1587 * Destructor callback - called when a cached buf is
1588 * no longer required.
1589 */
1590/* ARGSUSED */
1591static void
1592hdr_full_dest(void *vbuf, void *unused)
1593{
1594	arc_buf_hdr_t *hdr = vbuf;
1595
1596	ASSERT(HDR_EMPTY(hdr));
1597	cv_destroy(&hdr->b_l1hdr.b_cv);
1598	refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1599	mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1600	ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1601	arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1602}
1603
1604/* ARGSUSED */
1605static void
1606hdr_l2only_dest(void *vbuf, void *unused)
1607{
1608	arc_buf_hdr_t *hdr = vbuf;
1609
1610	ASSERT(HDR_EMPTY(hdr));
1611	arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1612}
1613
1614/* ARGSUSED */
1615static void
1616buf_dest(void *vbuf, void *unused)
1617{
1618	arc_buf_t *buf = vbuf;
1619
1620	mutex_destroy(&buf->b_evict_lock);
1621	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1622}
1623
1624/*
1625 * Reclaim callback -- invoked when memory is low.
1626 */
1627/* ARGSUSED */
1628static void
1629hdr_recl(void *unused)
1630{
1631	dprintf("hdr_recl called\n");
1632	/*
1633	 * umem calls the reclaim func when we destroy the buf cache,
1634	 * which is after we do arc_fini().
1635	 */
1636	if (!arc_dead)
1637		cv_signal(&arc_reclaim_thread_cv);
1638}
1639
1640static void
1641buf_init(void)
1642{
1643	uint64_t *ct;
1644	uint64_t hsize = 1ULL << 12;
1645	int i, j;
1646
1647	/*
1648	 * The hash table is big enough to fill all of physical memory
1649	 * with an average block size of zfs_arc_average_blocksize (default 8K).
1650	 * By default, the table will take up
1651	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1652	 */
1653	while (hsize * zfs_arc_average_blocksize < (uint64_t)physmem * PAGESIZE)
1654		hsize <<= 1;
1655retry:
1656	buf_hash_table.ht_mask = hsize - 1;
1657	buf_hash_table.ht_table =
1658	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1659	if (buf_hash_table.ht_table == NULL) {
1660		ASSERT(hsize > (1ULL << 8));
1661		hsize >>= 1;
1662		goto retry;
1663	}
1664
1665	hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1666	    0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1667	hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1668	    HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1669	    NULL, NULL, 0);
1670	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1671	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1672
1673	for (i = 0; i < 256; i++)
1674		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1675			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1676
1677	for (i = 0; i < BUF_LOCKS; i++) {
1678		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1679		    NULL, MUTEX_DEFAULT, NULL);
1680	}
1681}
1682
1683#define	ARC_MINTIME	(hz>>4) /* 62 ms */
1684
1685static inline boolean_t
1686arc_buf_is_shared(arc_buf_t *buf)
1687{
1688	boolean_t shared = (buf->b_data != NULL &&
1689	    buf->b_data == buf->b_hdr->b_l1hdr.b_pdata);
1690	IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1691	return (shared);
1692}
1693
1694static inline void
1695arc_cksum_free(arc_buf_hdr_t *hdr)
1696{
1697	ASSERT(HDR_HAS_L1HDR(hdr));
1698	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1699	if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1700		kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1701		hdr->b_l1hdr.b_freeze_cksum = NULL;
1702	}
1703	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1704}
1705
1706static void
1707arc_cksum_verify(arc_buf_t *buf)
1708{
1709	arc_buf_hdr_t *hdr = buf->b_hdr;
1710	zio_cksum_t zc;
1711
1712	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1713		return;
1714
1715	ASSERT(HDR_HAS_L1HDR(hdr));
1716
1717	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1718	if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1719		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1720		return;
1721	}
1722	fletcher_2_native(buf->b_data, HDR_GET_LSIZE(hdr), NULL, &zc);
1723	if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1724		panic("buffer modified while frozen!");
1725	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1726}
1727
1728static boolean_t
1729arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1730{
1731	enum zio_compress compress = BP_GET_COMPRESS(zio->io_bp);
1732	boolean_t valid_cksum;
1733
1734	ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1735	VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1736
1737	/*
1738	 * We rely on the blkptr's checksum to determine if the block
1739	 * is valid or not. When compressed arc is enabled, the l2arc
1740	 * writes the block to the l2arc just as it appears in the pool.
1741	 * This allows us to use the blkptr's checksum to validate the
1742	 * data that we just read off of the l2arc without having to store
1743	 * a separate checksum in the arc_buf_hdr_t. However, if compressed
1744	 * arc is disabled, then the data written to the l2arc is always
1745	 * uncompressed and won't match the block as it exists in the main
1746	 * pool. When this is the case, we must first compress it if it is
1747	 * compressed on the main pool before we can validate the checksum.
1748	 */
1749	if (!HDR_COMPRESSION_ENABLED(hdr) && compress != ZIO_COMPRESS_OFF) {
1750		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1751		uint64_t lsize = HDR_GET_LSIZE(hdr);
1752		uint64_t csize;
1753
1754		void *cbuf = zio_buf_alloc(HDR_GET_PSIZE(hdr));
1755		csize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
1756		ASSERT3U(csize, <=, HDR_GET_PSIZE(hdr));
1757		if (csize < HDR_GET_PSIZE(hdr)) {
1758			/*
1759			 * Compressed blocks are always a multiple of the
1760			 * smallest ashift in the pool. Ideally, we would
1761			 * like to round up the csize to the next
1762			 * spa_min_ashift but that value may have changed
1763			 * since the block was last written. Instead,
1764			 * we rely on the fact that the hdr's psize
1765			 * was set to the psize of the block when it was
1766			 * last written. We set the csize to that value
1767			 * and zero out any part that should not contain
1768			 * data.
1769			 */
1770			bzero((char *)cbuf + csize, HDR_GET_PSIZE(hdr) - csize);
1771			csize = HDR_GET_PSIZE(hdr);
1772		}
1773		zio_push_transform(zio, cbuf, csize, HDR_GET_PSIZE(hdr), NULL);
1774	}
1775
1776	/*
1777	 * Block pointers always store the checksum for the logical data.
1778	 * If the block pointer has the gang bit set, then the checksum
1779	 * it represents is for the reconstituted data and not for an
1780	 * individual gang member. The zio pipeline, however, must be able to
1781	 * determine the checksum of each of the gang constituents so it
1782	 * treats the checksum comparison differently than what we need
1783	 * for l2arc blocks. This prevents us from using the
1784	 * zio_checksum_error() interface directly. Instead we must call the
1785	 * zio_checksum_error_impl() so that we can ensure the checksum is
1786	 * generated using the correct checksum algorithm and accounts for the
1787	 * logical I/O size and not just a gang fragment.
1788	 */
1789	valid_cksum = (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1790	    BP_GET_CHECKSUM(zio->io_bp), zio->io_data, zio->io_size,
1791	    zio->io_offset, NULL) == 0);
1792	zio_pop_transforms(zio);
1793	return (valid_cksum);
1794}
1795
1796static void
1797arc_cksum_compute(arc_buf_t *buf)
1798{
1799	arc_buf_hdr_t *hdr = buf->b_hdr;
1800
1801	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1802		return;
1803
1804	ASSERT(HDR_HAS_L1HDR(hdr));
1805	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1806	if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1807		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1808		return;
1809	}
1810	hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1811	    KM_SLEEP);
1812	fletcher_2_native(buf->b_data, HDR_GET_LSIZE(hdr), NULL,
1813	    hdr->b_l1hdr.b_freeze_cksum);
1814	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1815#ifdef illumos
1816	arc_buf_watch(buf);
1817#endif
1818}
1819
1820#ifdef illumos
1821#ifndef _KERNEL
1822typedef struct procctl {
1823	long cmd;
1824	prwatch_t prwatch;
1825} procctl_t;
1826#endif
1827
1828/* ARGSUSED */
1829static void
1830arc_buf_unwatch(arc_buf_t *buf)
1831{
1832#ifndef _KERNEL
1833	if (arc_watch) {
1834		int result;
1835		procctl_t ctl;
1836		ctl.cmd = PCWATCH;
1837		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1838		ctl.prwatch.pr_size = 0;
1839		ctl.prwatch.pr_wflags = 0;
1840		result = write(arc_procfd, &ctl, sizeof (ctl));
1841		ASSERT3U(result, ==, sizeof (ctl));
1842	}
1843#endif
1844}
1845
1846/* ARGSUSED */
1847static void
1848arc_buf_watch(arc_buf_t *buf)
1849{
1850#ifndef _KERNEL
1851	if (arc_watch) {
1852		int result;
1853		procctl_t ctl;
1854		ctl.cmd = PCWATCH;
1855		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1856		ctl.prwatch.pr_size = HDR_GET_LSIZE(buf->b_hdr);
1857		ctl.prwatch.pr_wflags = WA_WRITE;
1858		result = write(arc_procfd, &ctl, sizeof (ctl));
1859		ASSERT3U(result, ==, sizeof (ctl));
1860	}
1861#endif
1862}
1863#endif /* illumos */
1864
1865static arc_buf_contents_t
1866arc_buf_type(arc_buf_hdr_t *hdr)
1867{
1868	arc_buf_contents_t type;
1869	if (HDR_ISTYPE_METADATA(hdr)) {
1870		type = ARC_BUFC_METADATA;
1871	} else {
1872		type = ARC_BUFC_DATA;
1873	}
1874	VERIFY3U(hdr->b_type, ==, type);
1875	return (type);
1876}
1877
1878static uint32_t
1879arc_bufc_to_flags(arc_buf_contents_t type)
1880{
1881	switch (type) {
1882	case ARC_BUFC_DATA:
1883		/* metadata field is 0 if buffer contains normal data */
1884		return (0);
1885	case ARC_BUFC_METADATA:
1886		return (ARC_FLAG_BUFC_METADATA);
1887	default:
1888		break;
1889	}
1890	panic("undefined ARC buffer type!");
1891	return ((uint32_t)-1);
1892}
1893
1894void
1895arc_buf_thaw(arc_buf_t *buf)
1896{
1897	arc_buf_hdr_t *hdr = buf->b_hdr;
1898
1899	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1900		if (hdr->b_l1hdr.b_state != arc_anon)
1901			panic("modifying non-anon buffer!");
1902		if (HDR_IO_IN_PROGRESS(hdr))
1903			panic("modifying buffer while i/o in progress!");
1904		arc_cksum_verify(buf);
1905	}
1906
1907	ASSERT(HDR_HAS_L1HDR(hdr));
1908	arc_cksum_free(hdr);
1909
1910	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1911#ifdef ZFS_DEBUG
1912	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1913		if (hdr->b_l1hdr.b_thawed != NULL)
1914			kmem_free(hdr->b_l1hdr.b_thawed, 1);
1915		hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP);
1916	}
1917#endif
1918
1919	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1920
1921#ifdef illumos
1922	arc_buf_unwatch(buf);
1923#endif
1924}
1925
1926void
1927arc_buf_freeze(arc_buf_t *buf)
1928{
1929	arc_buf_hdr_t *hdr = buf->b_hdr;
1930	kmutex_t *hash_lock;
1931
1932	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1933		return;
1934
1935	hash_lock = HDR_LOCK(hdr);
1936	mutex_enter(hash_lock);
1937
1938	ASSERT(HDR_HAS_L1HDR(hdr));
1939	ASSERT(hdr->b_l1hdr.b_freeze_cksum != NULL ||
1940	    hdr->b_l1hdr.b_state == arc_anon);
1941	arc_cksum_compute(buf);
1942	mutex_exit(hash_lock);
1943
1944}
1945
1946/*
1947 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1948 * the following functions should be used to ensure that the flags are
1949 * updated in a thread-safe way. When manipulating the flags either
1950 * the hash_lock must be held or the hdr must be undiscoverable. This
1951 * ensures that we're not racing with any other threads when updating
1952 * the flags.
1953 */
1954static inline void
1955arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1956{
1957	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1958	hdr->b_flags |= flags;
1959}
1960
1961static inline void
1962arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1963{
1964	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1965	hdr->b_flags &= ~flags;
1966}
1967
1968/*
1969 * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1970 * done in a special way since we have to clear and set bits
1971 * at the same time. Consumers that wish to set the compression bits
1972 * must use this function to ensure that the flags are updated in
1973 * thread-safe manner.
1974 */
1975static void
1976arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1977{
1978	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1979
1980	/*
1981	 * Holes and embedded blocks will always have a psize = 0 so
1982	 * we ignore the compression of the blkptr and set the
1983	 * arc_buf_hdr_t's compression to ZIO_COMPRESS_OFF.
1984	 * Holes and embedded blocks remain anonymous so we don't
1985	 * want to uncompress them. Mark them as uncompressed.
1986	 */
1987	if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1988		arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1989		HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
1990		ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
1991		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1992	} else {
1993		arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1994		HDR_SET_COMPRESS(hdr, cmp);
1995		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
1996		ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1997	}
1998}
1999
2000static int
2001arc_decompress(arc_buf_t *buf)
2002{
2003	arc_buf_hdr_t *hdr = buf->b_hdr;
2004	dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
2005	int error;
2006
2007	if (arc_buf_is_shared(buf)) {
2008		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
2009	} else if (HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) {
2010		/*
2011		 * The arc_buf_hdr_t is either not compressed or is
2012		 * associated with an embedded block or a hole in which
2013		 * case they remain anonymous.
2014		 */
2015		IMPLY(HDR_COMPRESSION_ENABLED(hdr), HDR_GET_PSIZE(hdr) == 0 ||
2016		    HDR_GET_PSIZE(hdr) == HDR_GET_LSIZE(hdr));
2017		ASSERT(!HDR_SHARED_DATA(hdr));
2018		bcopy(hdr->b_l1hdr.b_pdata, buf->b_data, HDR_GET_LSIZE(hdr));
2019	} else {
2020		ASSERT(!HDR_SHARED_DATA(hdr));
2021		ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr));
2022		error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
2023		    hdr->b_l1hdr.b_pdata, buf->b_data, HDR_GET_PSIZE(hdr),
2024		    HDR_GET_LSIZE(hdr));
2025		if (error != 0) {
2026			zfs_dbgmsg("hdr %p, compress %d, psize %d, lsize %d",
2027			    hdr, HDR_GET_COMPRESS(hdr), HDR_GET_PSIZE(hdr),
2028			    HDR_GET_LSIZE(hdr));
2029			return (SET_ERROR(EIO));
2030		}
2031	}
2032	if (bswap != DMU_BSWAP_NUMFUNCS) {
2033		ASSERT(!HDR_SHARED_DATA(hdr));
2034		ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
2035		dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
2036	}
2037	arc_cksum_compute(buf);
2038	return (0);
2039}
2040
2041/*
2042 * Return the size of the block, b_pdata, that is stored in the arc_buf_hdr_t.
2043 */
2044static uint64_t
2045arc_hdr_size(arc_buf_hdr_t *hdr)
2046{
2047	uint64_t size;
2048
2049	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
2050	    HDR_GET_PSIZE(hdr) > 0) {
2051		size = HDR_GET_PSIZE(hdr);
2052	} else {
2053		ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
2054		size = HDR_GET_LSIZE(hdr);
2055	}
2056	return (size);
2057}
2058
2059/*
2060 * Increment the amount of evictable space in the arc_state_t's refcount.
2061 * We account for the space used by the hdr and the arc buf individually
2062 * so that we can add and remove them from the refcount individually.
2063 */
2064static void
2065arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2066{
2067	arc_buf_contents_t type = arc_buf_type(hdr);
2068	uint64_t lsize = HDR_GET_LSIZE(hdr);
2069
2070	ASSERT(HDR_HAS_L1HDR(hdr));
2071
2072	if (GHOST_STATE(state)) {
2073		ASSERT0(hdr->b_l1hdr.b_bufcnt);
2074		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2075		ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
2076		(void) refcount_add_many(&state->arcs_esize[type], lsize, hdr);
2077		return;
2078	}
2079
2080	ASSERT(!GHOST_STATE(state));
2081	if (hdr->b_l1hdr.b_pdata != NULL) {
2082		(void) refcount_add_many(&state->arcs_esize[type],
2083		    arc_hdr_size(hdr), hdr);
2084	}
2085	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2086	    buf = buf->b_next) {
2087		if (arc_buf_is_shared(buf)) {
2088			ASSERT(ARC_BUF_LAST(buf));
2089			continue;
2090		}
2091		(void) refcount_add_many(&state->arcs_esize[type], lsize, buf);
2092	}
2093}
2094
2095/*
2096 * Decrement the amount of evictable space in the arc_state_t's refcount.
2097 * We account for the space used by the hdr and the arc buf individually
2098 * so that we can add and remove them from the refcount individually.
2099 */
2100static void
2101arc_evitable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
2102{
2103	arc_buf_contents_t type = arc_buf_type(hdr);
2104	uint64_t lsize = HDR_GET_LSIZE(hdr);
2105
2106	ASSERT(HDR_HAS_L1HDR(hdr));
2107
2108	if (GHOST_STATE(state)) {
2109		ASSERT0(hdr->b_l1hdr.b_bufcnt);
2110		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2111		ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
2112		(void) refcount_remove_many(&state->arcs_esize[type],
2113		    lsize, hdr);
2114		return;
2115	}
2116
2117	ASSERT(!GHOST_STATE(state));
2118	if (hdr->b_l1hdr.b_pdata != NULL) {
2119		(void) refcount_remove_many(&state->arcs_esize[type],
2120		    arc_hdr_size(hdr), hdr);
2121	}
2122	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2123	    buf = buf->b_next) {
2124		if (arc_buf_is_shared(buf)) {
2125			ASSERT(ARC_BUF_LAST(buf));
2126			continue;
2127		}
2128		(void) refcount_remove_many(&state->arcs_esize[type],
2129		    lsize, buf);
2130	}
2131}
2132
2133/*
2134 * Add a reference to this hdr indicating that someone is actively
2135 * referencing that memory. When the refcount transitions from 0 to 1,
2136 * we remove it from the respective arc_state_t list to indicate that
2137 * it is not evictable.
2138 */
2139static void
2140add_reference(arc_buf_hdr_t *hdr, void *tag)
2141{
2142	ASSERT(HDR_HAS_L1HDR(hdr));
2143	if (!MUTEX_HELD(HDR_LOCK(hdr))) {
2144		ASSERT(hdr->b_l1hdr.b_state == arc_anon);
2145		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2146		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2147	}
2148
2149	arc_state_t *state = hdr->b_l1hdr.b_state;
2150
2151	if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2152	    (state != arc_anon)) {
2153		/* We don't use the L2-only state list. */
2154		if (state != arc_l2c_only) {
2155			multilist_remove(&state->arcs_list[arc_buf_type(hdr)],
2156			    hdr);
2157			arc_evitable_space_decrement(hdr, state);
2158		}
2159		/* remove the prefetch flag if we get a reference */
2160		arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
2161	}
2162}
2163
2164/*
2165 * Remove a reference from this hdr. When the reference transitions from
2166 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2167 * list making it eligible for eviction.
2168 */
2169static int
2170remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
2171{
2172	int cnt;
2173	arc_state_t *state = hdr->b_l1hdr.b_state;
2174
2175	ASSERT(HDR_HAS_L1HDR(hdr));
2176	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
2177	ASSERT(!GHOST_STATE(state));
2178
2179	/*
2180	 * arc_l2c_only counts as a ghost state so we don't need to explicitly
2181	 * check to prevent usage of the arc_l2c_only list.
2182	 */
2183	if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
2184	    (state != arc_anon)) {
2185		multilist_insert(&state->arcs_list[arc_buf_type(hdr)], hdr);
2186		ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
2187		arc_evictable_space_increment(hdr, state);
2188	}
2189	return (cnt);
2190}
2191
2192/*
2193 * Move the supplied buffer to the indicated state. The hash lock
2194 * for the buffer must be held by the caller.
2195 */
2196static void
2197arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
2198    kmutex_t *hash_lock)
2199{
2200	arc_state_t *old_state;
2201	int64_t refcnt;
2202	uint32_t bufcnt;
2203	boolean_t update_old, update_new;
2204	arc_buf_contents_t buftype = arc_buf_type(hdr);
2205
2206	/*
2207	 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2208	 * in arc_read() when bringing a buffer out of the L2ARC.  However, the
2209	 * L1 hdr doesn't always exist when we change state to arc_anon before
2210	 * destroying a header, in which case reallocating to add the L1 hdr is
2211	 * pointless.
2212	 */
2213	if (HDR_HAS_L1HDR(hdr)) {
2214		old_state = hdr->b_l1hdr.b_state;
2215		refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
2216		bufcnt = hdr->b_l1hdr.b_bufcnt;
2217		update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pdata != NULL);
2218	} else {
2219		old_state = arc_l2c_only;
2220		refcnt = 0;
2221		bufcnt = 0;
2222		update_old = B_FALSE;
2223	}
2224	update_new = update_old;
2225
2226	ASSERT(MUTEX_HELD(hash_lock));
2227	ASSERT3P(new_state, !=, old_state);
2228	ASSERT(!GHOST_STATE(new_state) || bufcnt == 0);
2229	ASSERT(old_state != arc_anon || bufcnt <= 1);
2230
2231	/*
2232	 * If this buffer is evictable, transfer it from the
2233	 * old state list to the new state list.
2234	 */
2235	if (refcnt == 0) {
2236		if (old_state != arc_anon && old_state != arc_l2c_only) {
2237			ASSERT(HDR_HAS_L1HDR(hdr));
2238			multilist_remove(&old_state->arcs_list[buftype], hdr);
2239
2240			if (GHOST_STATE(old_state)) {
2241				ASSERT0(bufcnt);
2242				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2243				update_old = B_TRUE;
2244			}
2245			arc_evitable_space_decrement(hdr, old_state);
2246		}
2247		if (new_state != arc_anon && new_state != arc_l2c_only) {
2248
2249			/*
2250			 * An L1 header always exists here, since if we're
2251			 * moving to some L1-cached state (i.e. not l2c_only or
2252			 * anonymous), we realloc the header to add an L1hdr
2253			 * beforehand.
2254			 */
2255			ASSERT(HDR_HAS_L1HDR(hdr));
2256			multilist_insert(&new_state->arcs_list[buftype], hdr);
2257
2258			if (GHOST_STATE(new_state)) {
2259				ASSERT0(bufcnt);
2260				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2261				update_new = B_TRUE;
2262			}
2263			arc_evictable_space_increment(hdr, new_state);
2264		}
2265	}
2266
2267	ASSERT(!HDR_EMPTY(hdr));
2268	if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2269		buf_hash_remove(hdr);
2270
2271	/* adjust state sizes (ignore arc_l2c_only) */
2272
2273	if (update_new && new_state != arc_l2c_only) {
2274		ASSERT(HDR_HAS_L1HDR(hdr));
2275		if (GHOST_STATE(new_state)) {
2276			ASSERT0(bufcnt);
2277
2278			/*
2279			 * When moving a header to a ghost state, we first
2280			 * remove all arc buffers. Thus, we'll have a
2281			 * bufcnt of zero, and no arc buffer to use for
2282			 * the reference. As a result, we use the arc
2283			 * header pointer for the reference.
2284			 */
2285			(void) refcount_add_many(&new_state->arcs_size,
2286			    HDR_GET_LSIZE(hdr), hdr);
2287			ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
2288		} else {
2289			uint32_t buffers = 0;
2290
2291			/*
2292			 * Each individual buffer holds a unique reference,
2293			 * thus we must remove each of these references one
2294			 * at a time.
2295			 */
2296			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2297			    buf = buf->b_next) {
2298				ASSERT3U(bufcnt, !=, 0);
2299				buffers++;
2300
2301				/*
2302				 * When the arc_buf_t is sharing the data
2303				 * block with the hdr, the owner of the
2304				 * reference belongs to the hdr. Only
2305				 * add to the refcount if the arc_buf_t is
2306				 * not shared.
2307				 */
2308				if (arc_buf_is_shared(buf)) {
2309					ASSERT(ARC_BUF_LAST(buf));
2310					continue;
2311				}
2312
2313				(void) refcount_add_many(&new_state->arcs_size,
2314				    HDR_GET_LSIZE(hdr), buf);
2315			}
2316			ASSERT3U(bufcnt, ==, buffers);
2317
2318			if (hdr->b_l1hdr.b_pdata != NULL) {
2319				(void) refcount_add_many(&new_state->arcs_size,
2320				    arc_hdr_size(hdr), hdr);
2321			} else {
2322				ASSERT(GHOST_STATE(old_state));
2323			}
2324		}
2325	}
2326
2327	if (update_old && old_state != arc_l2c_only) {
2328		ASSERT(HDR_HAS_L1HDR(hdr));
2329		if (GHOST_STATE(old_state)) {
2330			ASSERT0(bufcnt);
2331
2332			/*
2333			 * When moving a header off of a ghost state,
2334			 * the header will not contain any arc buffers.
2335			 * We use the arc header pointer for the reference
2336			 * which is exactly what we did when we put the
2337			 * header on the ghost state.
2338			 */
2339
2340			(void) refcount_remove_many(&old_state->arcs_size,
2341			    HDR_GET_LSIZE(hdr), hdr);
2342			ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
2343		} else {
2344			uint32_t buffers = 0;
2345
2346			/*
2347			 * Each individual buffer holds a unique reference,
2348			 * thus we must remove each of these references one
2349			 * at a time.
2350			 */
2351			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2352			    buf = buf->b_next) {
2353				ASSERT3P(bufcnt, !=, 0);
2354				buffers++;
2355
2356				/*
2357				 * When the arc_buf_t is sharing the data
2358				 * block with the hdr, the owner of the
2359				 * reference belongs to the hdr. Only
2360				 * add to the refcount if the arc_buf_t is
2361				 * not shared.
2362				 */
2363				if (arc_buf_is_shared(buf)) {
2364					ASSERT(ARC_BUF_LAST(buf));
2365					continue;
2366				}
2367
2368				(void) refcount_remove_many(
2369				    &old_state->arcs_size, HDR_GET_LSIZE(hdr),
2370				    buf);
2371			}
2372			ASSERT3U(bufcnt, ==, buffers);
2373			ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
2374			(void) refcount_remove_many(
2375			    &old_state->arcs_size, arc_hdr_size(hdr), hdr);
2376		}
2377	}
2378
2379	if (HDR_HAS_L1HDR(hdr))
2380		hdr->b_l1hdr.b_state = new_state;
2381
2382	/*
2383	 * L2 headers should never be on the L2 state list since they don't
2384	 * have L1 headers allocated.
2385	 */
2386	ASSERT(multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
2387	    multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
2388}
2389
2390void
2391arc_space_consume(uint64_t space, arc_space_type_t type)
2392{
2393	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2394
2395	switch (type) {
2396	case ARC_SPACE_DATA:
2397		ARCSTAT_INCR(arcstat_data_size, space);
2398		break;
2399	case ARC_SPACE_META:
2400		ARCSTAT_INCR(arcstat_metadata_size, space);
2401		break;
2402	case ARC_SPACE_OTHER:
2403		ARCSTAT_INCR(arcstat_other_size, space);
2404		break;
2405	case ARC_SPACE_HDRS:
2406		ARCSTAT_INCR(arcstat_hdr_size, space);
2407		break;
2408	case ARC_SPACE_L2HDRS:
2409		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
2410		break;
2411	}
2412
2413	if (type != ARC_SPACE_DATA)
2414		ARCSTAT_INCR(arcstat_meta_used, space);
2415
2416	atomic_add_64(&arc_size, space);
2417}
2418
2419void
2420arc_space_return(uint64_t space, arc_space_type_t type)
2421{
2422	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2423
2424	switch (type) {
2425	case ARC_SPACE_DATA:
2426		ARCSTAT_INCR(arcstat_data_size, -space);
2427		break;
2428	case ARC_SPACE_META:
2429		ARCSTAT_INCR(arcstat_metadata_size, -space);
2430		break;
2431	case ARC_SPACE_OTHER:
2432		ARCSTAT_INCR(arcstat_other_size, -space);
2433		break;
2434	case ARC_SPACE_HDRS:
2435		ARCSTAT_INCR(arcstat_hdr_size, -space);
2436		break;
2437	case ARC_SPACE_L2HDRS:
2438		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
2439		break;
2440	}
2441
2442	if (type != ARC_SPACE_DATA) {
2443		ASSERT(arc_meta_used >= space);
2444		if (arc_meta_max < arc_meta_used)
2445			arc_meta_max = arc_meta_used;
2446		ARCSTAT_INCR(arcstat_meta_used, -space);
2447	}
2448
2449	ASSERT(arc_size >= space);
2450	atomic_add_64(&arc_size, -space);
2451}
2452
2453/*
2454 * Allocate an initial buffer for this hdr, subsequent buffers will
2455 * use arc_buf_clone().
2456 */
2457static arc_buf_t *
2458arc_buf_alloc_impl(arc_buf_hdr_t *hdr, void *tag)
2459{
2460	arc_buf_t *buf;
2461
2462	ASSERT(HDR_HAS_L1HDR(hdr));
2463	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2464	VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2465	    hdr->b_type == ARC_BUFC_METADATA);
2466
2467	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2468	ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2469	ASSERT0(hdr->b_l1hdr.b_bufcnt);
2470
2471	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2472	buf->b_hdr = hdr;
2473	buf->b_data = NULL;
2474	buf->b_next = NULL;
2475
2476	add_reference(hdr, tag);
2477
2478	/*
2479	 * We're about to change the hdr's b_flags. We must either
2480	 * hold the hash_lock or be undiscoverable.
2481	 */
2482	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2483
2484	/*
2485	 * If the hdr's data can be shared (no byteswapping, hdr is
2486	 * uncompressed, hdr's data is not currently being written to the
2487	 * L2ARC write) then we share the data buffer and set the appropriate
2488	 * bit in the hdr's b_flags to indicate the hdr is sharing it's
2489	 * b_pdata with the arc_buf_t. Otherwise, we allocate a new buffer to
2490	 * store the buf's data.
2491	 */
2492	if (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2493	    HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF && !HDR_L2_WRITING(hdr)) {
2494		buf->b_data = hdr->b_l1hdr.b_pdata;
2495		arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2496	} else {
2497		buf->b_data = arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2498		ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
2499		arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2500	}
2501	VERIFY3P(buf->b_data, !=, NULL);
2502
2503	hdr->b_l1hdr.b_buf = buf;
2504	hdr->b_l1hdr.b_bufcnt += 1;
2505
2506	return (buf);
2507}
2508
2509/*
2510 * Used when allocating additional buffers.
2511 */
2512static arc_buf_t *
2513arc_buf_clone(arc_buf_t *from)
2514{
2515	arc_buf_t *buf;
2516	arc_buf_hdr_t *hdr = from->b_hdr;
2517	uint64_t size = HDR_GET_LSIZE(hdr);
2518
2519	ASSERT(HDR_HAS_L1HDR(hdr));
2520	ASSERT(hdr->b_l1hdr.b_state != arc_anon);
2521
2522	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2523	buf->b_hdr = hdr;
2524	buf->b_data = NULL;
2525	buf->b_next = hdr->b_l1hdr.b_buf;
2526	hdr->b_l1hdr.b_buf = buf;
2527	buf->b_data = arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2528	bcopy(from->b_data, buf->b_data, size);
2529	hdr->b_l1hdr.b_bufcnt += 1;
2530
2531	ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
2532	return (buf);
2533}
2534
2535static char *arc_onloan_tag = "onloan";
2536
2537/*
2538 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2539 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2540 * buffers must be returned to the arc before they can be used by the DMU or
2541 * freed.
2542 */
2543arc_buf_t *
2544arc_loan_buf(spa_t *spa, int size)
2545{
2546	arc_buf_t *buf;
2547
2548	buf = arc_alloc_buf(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
2549
2550	atomic_add_64(&arc_loaned_bytes, size);
2551	return (buf);
2552}
2553
2554/*
2555 * Return a loaned arc buffer to the arc.
2556 */
2557void
2558arc_return_buf(arc_buf_t *buf, void *tag)
2559{
2560	arc_buf_hdr_t *hdr = buf->b_hdr;
2561
2562	ASSERT3P(buf->b_data, !=, NULL);
2563	ASSERT(HDR_HAS_L1HDR(hdr));
2564	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2565	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2566
2567	atomic_add_64(&arc_loaned_bytes, -HDR_GET_LSIZE(hdr));
2568}
2569
2570/* Detach an arc_buf from a dbuf (tag) */
2571void
2572arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2573{
2574	arc_buf_hdr_t *hdr = buf->b_hdr;
2575
2576	ASSERT3P(buf->b_data, !=, NULL);
2577	ASSERT(HDR_HAS_L1HDR(hdr));
2578	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2579	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2580
2581	atomic_add_64(&arc_loaned_bytes, HDR_GET_LSIZE(hdr));
2582}
2583
2584static void
2585l2arc_free_data_on_write(void *data, size_t size, arc_buf_contents_t type)
2586{
2587	l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2588
2589	df->l2df_data = data;
2590	df->l2df_size = size;
2591	df->l2df_type = type;
2592	mutex_enter(&l2arc_free_on_write_mtx);
2593	list_insert_head(l2arc_free_on_write, df);
2594	mutex_exit(&l2arc_free_on_write_mtx);
2595}
2596
2597static void
2598arc_hdr_free_on_write(arc_buf_hdr_t *hdr)
2599{
2600	arc_state_t *state = hdr->b_l1hdr.b_state;
2601	arc_buf_contents_t type = arc_buf_type(hdr);
2602	uint64_t size = arc_hdr_size(hdr);
2603
2604	/* protected by hash lock, if in the hash table */
2605	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2606		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2607		ASSERT(state != arc_anon && state != arc_l2c_only);
2608
2609		(void) refcount_remove_many(&state->arcs_esize[type],
2610		    size, hdr);
2611	}
2612	(void) refcount_remove_many(&state->arcs_size, size, hdr);
2613	if (type == ARC_BUFC_METADATA) {
2614		arc_space_return(size, ARC_SPACE_META);
2615	} else {
2616		ASSERT(type == ARC_BUFC_DATA);
2617		arc_space_return(size, ARC_SPACE_DATA);
2618	}
2619
2620	l2arc_free_data_on_write(hdr->b_l1hdr.b_pdata, size, type);
2621}
2622
2623/*
2624 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2625 * data buffer, we transfer the refcount ownership to the hdr and update
2626 * the appropriate kstats.
2627 */
2628static void
2629arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2630{
2631	arc_state_t *state = hdr->b_l1hdr.b_state;
2632
2633	ASSERT(!HDR_SHARED_DATA(hdr));
2634	ASSERT(!arc_buf_is_shared(buf));
2635	ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
2636	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2637
2638	/*
2639	 * Start sharing the data buffer. We transfer the
2640	 * refcount ownership to the hdr since it always owns
2641	 * the refcount whenever an arc_buf_t is shared.
2642	 */
2643	refcount_transfer_ownership(&state->arcs_size, buf, hdr);
2644	hdr->b_l1hdr.b_pdata = buf->b_data;
2645	arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2646
2647	/*
2648	 * Since we've transferred ownership to the hdr we need
2649	 * to increment its compressed and uncompressed kstats and
2650	 * decrement the overhead size.
2651	 */
2652	ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2653	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2654	ARCSTAT_INCR(arcstat_overhead_size, -HDR_GET_LSIZE(hdr));
2655}
2656
2657static void
2658arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2659{
2660	arc_state_t *state = hdr->b_l1hdr.b_state;
2661
2662	ASSERT(HDR_SHARED_DATA(hdr));
2663	ASSERT(arc_buf_is_shared(buf));
2664	ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
2665	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2666
2667	/*
2668	 * We are no longer sharing this buffer so we need
2669	 * to transfer its ownership to the rightful owner.
2670	 */
2671	refcount_transfer_ownership(&state->arcs_size, hdr, buf);
2672	arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2673	hdr->b_l1hdr.b_pdata = NULL;
2674
2675	/*
2676	 * Since the buffer is no longer shared between
2677	 * the arc buf and the hdr, count it as overhead.
2678	 */
2679	ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2680	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2681	ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
2682}
2683
2684/*
2685 * Free up buf->b_data and if 'remove' is set, then pull the
2686 * arc_buf_t off of the the arc_buf_hdr_t's list and free it.
2687 */
2688static void
2689arc_buf_destroy_impl(arc_buf_t *buf, boolean_t remove)
2690{
2691	arc_buf_t **bufp;
2692	arc_buf_hdr_t *hdr = buf->b_hdr;
2693	uint64_t size = HDR_GET_LSIZE(hdr);
2694	boolean_t destroyed_buf_is_shared = arc_buf_is_shared(buf);
2695
2696	/*
2697	 * Free up the data associated with the buf but only
2698	 * if we're not sharing this with the hdr. If we are sharing
2699	 * it with the hdr, then hdr will have performed the allocation
2700	 * so allow it to do the free.
2701	 */
2702	if (buf->b_data != NULL) {
2703		/*
2704		 * We're about to change the hdr's b_flags. We must either
2705		 * hold the hash_lock or be undiscoverable.
2706		 */
2707		ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2708
2709		arc_cksum_verify(buf);
2710#ifdef illumos
2711		arc_buf_unwatch(buf);
2712#endif
2713
2714		if (destroyed_buf_is_shared) {
2715			ASSERT(ARC_BUF_LAST(buf));
2716			ASSERT(HDR_SHARED_DATA(hdr));
2717			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2718		} else {
2719			arc_free_data_buf(hdr, buf->b_data, size, buf);
2720			ARCSTAT_INCR(arcstat_overhead_size, -size);
2721		}
2722		buf->b_data = NULL;
2723
2724		ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
2725		hdr->b_l1hdr.b_bufcnt -= 1;
2726	}
2727
2728	/* only remove the buf if requested */
2729	if (!remove)
2730		return;
2731
2732	/* remove the buf from the hdr list */
2733	arc_buf_t *lastbuf = NULL;
2734	bufp = &hdr->b_l1hdr.b_buf;
2735	while (*bufp != NULL) {
2736		if (*bufp == buf)
2737			*bufp = buf->b_next;
2738
2739		/*
2740		 * If we've removed a buffer in the middle of
2741		 * the list then update the lastbuf and update
2742		 * bufp.
2743		 */
2744		if (*bufp != NULL) {
2745			lastbuf = *bufp;
2746			bufp = &(*bufp)->b_next;
2747		}
2748	}
2749	buf->b_next = NULL;
2750	ASSERT3P(lastbuf, !=, buf);
2751
2752	/*
2753	 * If the current arc_buf_t is sharing its data
2754	 * buffer with the hdr, then reassign the hdr's
2755	 * b_pdata to share it with the new buffer at the end
2756	 * of the list. The shared buffer is always the last one
2757	 * on the hdr's buffer list.
2758	 */
2759	if (destroyed_buf_is_shared && lastbuf != NULL) {
2760		ASSERT(ARC_BUF_LAST(buf));
2761		ASSERT(ARC_BUF_LAST(lastbuf));
2762		VERIFY(!arc_buf_is_shared(lastbuf));
2763
2764		ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
2765		arc_hdr_free_pdata(hdr);
2766
2767		/*
2768		 * We must setup a new shared block between the
2769		 * last buffer and the hdr. The data would have
2770		 * been allocated by the arc buf so we need to transfer
2771		 * ownership to the hdr since it's now being shared.
2772		 */
2773		arc_share_buf(hdr, lastbuf);
2774	} else if (HDR_SHARED_DATA(hdr)) {
2775		ASSERT(arc_buf_is_shared(lastbuf));
2776	}
2777
2778	if (hdr->b_l1hdr.b_bufcnt == 0)
2779		arc_cksum_free(hdr);
2780
2781	/* clean up the buf */
2782	buf->b_hdr = NULL;
2783	kmem_cache_free(buf_cache, buf);
2784}
2785
2786static void
2787arc_hdr_alloc_pdata(arc_buf_hdr_t *hdr)
2788{
2789	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2790	ASSERT(HDR_HAS_L1HDR(hdr));
2791	ASSERT(!HDR_SHARED_DATA(hdr));
2792
2793	ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
2794	hdr->b_l1hdr.b_pdata = arc_get_data_buf(hdr, arc_hdr_size(hdr), hdr);
2795	hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
2796	ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
2797
2798	ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2799	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2800}
2801
2802static void
2803arc_hdr_free_pdata(arc_buf_hdr_t *hdr)
2804{
2805	ASSERT(HDR_HAS_L1HDR(hdr));
2806	ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
2807
2808	/*
2809	 * If the hdr is currently being written to the l2arc then
2810	 * we defer freeing the data by adding it to the l2arc_free_on_write
2811	 * list. The l2arc will free the data once it's finished
2812	 * writing it to the l2arc device.
2813	 */
2814	if (HDR_L2_WRITING(hdr)) {
2815		arc_hdr_free_on_write(hdr);
2816		ARCSTAT_BUMP(arcstat_l2_free_on_write);
2817	} else {
2818		arc_free_data_buf(hdr, hdr->b_l1hdr.b_pdata,
2819		    arc_hdr_size(hdr), hdr);
2820	}
2821	hdr->b_l1hdr.b_pdata = NULL;
2822	hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
2823
2824	ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2825	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2826}
2827
2828static arc_buf_hdr_t *
2829arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
2830    enum zio_compress compress, arc_buf_contents_t type)
2831{
2832	arc_buf_hdr_t *hdr;
2833
2834	ASSERT3U(lsize, >, 0);
2835	VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
2836
2837	hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
2838	ASSERT(HDR_EMPTY(hdr));
2839	ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
2840	ASSERT3P(hdr->b_l1hdr.b_thawed, ==, NULL);
2841	HDR_SET_PSIZE(hdr, psize);
2842	HDR_SET_LSIZE(hdr, lsize);
2843	hdr->b_spa = spa;
2844	hdr->b_type = type;
2845	hdr->b_flags = 0;
2846	arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
2847	arc_hdr_set_compress(hdr, compress);
2848
2849	hdr->b_l1hdr.b_state = arc_anon;
2850	hdr->b_l1hdr.b_arc_access = 0;
2851	hdr->b_l1hdr.b_bufcnt = 0;
2852	hdr->b_l1hdr.b_buf = NULL;
2853
2854	/*
2855	 * Allocate the hdr's buffer. This will contain either
2856	 * the compressed or uncompressed data depending on the block
2857	 * it references and compressed arc enablement.
2858	 */
2859	arc_hdr_alloc_pdata(hdr);
2860	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2861
2862	return (hdr);
2863}
2864
2865/*
2866 * Transition between the two allocation states for the arc_buf_hdr struct.
2867 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
2868 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
2869 * version is used when a cache buffer is only in the L2ARC in order to reduce
2870 * memory usage.
2871 */
2872static arc_buf_hdr_t *
2873arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
2874{
2875	ASSERT(HDR_HAS_L2HDR(hdr));
2876
2877	arc_buf_hdr_t *nhdr;
2878	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
2879
2880	ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
2881	    (old == hdr_l2only_cache && new == hdr_full_cache));
2882
2883	nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
2884
2885	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
2886	buf_hash_remove(hdr);
2887
2888	bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
2889
2890	if (new == hdr_full_cache) {
2891		arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
2892		/*
2893		 * arc_access and arc_change_state need to be aware that a
2894		 * header has just come out of L2ARC, so we set its state to
2895		 * l2c_only even though it's about to change.
2896		 */
2897		nhdr->b_l1hdr.b_state = arc_l2c_only;
2898
2899		/* Verify previous threads set to NULL before freeing */
2900		ASSERT3P(nhdr->b_l1hdr.b_pdata, ==, NULL);
2901	} else {
2902		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2903		ASSERT0(hdr->b_l1hdr.b_bufcnt);
2904		ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
2905
2906		/*
2907		 * If we've reached here, We must have been called from
2908		 * arc_evict_hdr(), as such we should have already been
2909		 * removed from any ghost list we were previously on
2910		 * (which protects us from racing with arc_evict_state),
2911		 * thus no locking is needed during this check.
2912		 */
2913		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
2914
2915		/*
2916		 * A buffer must not be moved into the arc_l2c_only
2917		 * state if it's not finished being written out to the
2918		 * l2arc device. Otherwise, the b_l1hdr.b_pdata field
2919		 * might try to be accessed, even though it was removed.
2920		 */
2921		VERIFY(!HDR_L2_WRITING(hdr));
2922		VERIFY3P(hdr->b_l1hdr.b_pdata, ==, NULL);
2923
2924#ifdef ZFS_DEBUG
2925		if (hdr->b_l1hdr.b_thawed != NULL) {
2926			kmem_free(hdr->b_l1hdr.b_thawed, 1);
2927			hdr->b_l1hdr.b_thawed = NULL;
2928		}
2929#endif
2930
2931		arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
2932	}
2933	/*
2934	 * The header has been reallocated so we need to re-insert it into any
2935	 * lists it was on.
2936	 */
2937	(void) buf_hash_insert(nhdr, NULL);
2938
2939	ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
2940
2941	mutex_enter(&dev->l2ad_mtx);
2942
2943	/*
2944	 * We must place the realloc'ed header back into the list at
2945	 * the same spot. Otherwise, if it's placed earlier in the list,
2946	 * l2arc_write_buffers() could find it during the function's
2947	 * write phase, and try to write it out to the l2arc.
2948	 */
2949	list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
2950	list_remove(&dev->l2ad_buflist, hdr);
2951
2952	mutex_exit(&dev->l2ad_mtx);
2953
2954	/*
2955	 * Since we're using the pointer address as the tag when
2956	 * incrementing and decrementing the l2ad_alloc refcount, we
2957	 * must remove the old pointer (that we're about to destroy) and
2958	 * add the new pointer to the refcount. Otherwise we'd remove
2959	 * the wrong pointer address when calling arc_hdr_destroy() later.
2960	 */
2961
2962	(void) refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
2963	(void) refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr), nhdr);
2964
2965	buf_discard_identity(hdr);
2966	kmem_cache_free(old, hdr);
2967
2968	return (nhdr);
2969}
2970
2971/*
2972 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
2973 * The buf is returned thawed since we expect the consumer to modify it.
2974 */
2975arc_buf_t *
2976arc_alloc_buf(spa_t *spa, int32_t size, void *tag, arc_buf_contents_t type)
2977{
2978	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
2979	    ZIO_COMPRESS_OFF, type);
2980	ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
2981	arc_buf_t *buf = arc_buf_alloc_impl(hdr, tag);
2982	arc_buf_thaw(buf);
2983	return (buf);
2984}
2985
2986static void
2987arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
2988{
2989	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
2990	l2arc_dev_t *dev = l2hdr->b_dev;
2991	uint64_t asize = arc_hdr_size(hdr);
2992
2993	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
2994	ASSERT(HDR_HAS_L2HDR(hdr));
2995
2996	list_remove(&dev->l2ad_buflist, hdr);
2997
2998	ARCSTAT_INCR(arcstat_l2_asize, -asize);
2999	ARCSTAT_INCR(arcstat_l2_size, -HDR_GET_LSIZE(hdr));
3000
3001	vdev_space_update(dev->l2ad_vdev, -asize, 0, 0);
3002
3003	(void) refcount_remove_many(&dev->l2ad_alloc, asize, hdr);
3004	arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3005}
3006
3007static void
3008arc_hdr_destroy(arc_buf_hdr_t *hdr)
3009{
3010	if (HDR_HAS_L1HDR(hdr)) {
3011		ASSERT(hdr->b_l1hdr.b_buf == NULL ||
3012		    hdr->b_l1hdr.b_bufcnt > 0);
3013		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3014		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3015	}
3016	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3017	ASSERT(!HDR_IN_HASH_TABLE(hdr));
3018
3019	if (!HDR_EMPTY(hdr))
3020		buf_discard_identity(hdr);
3021
3022	if (HDR_HAS_L2HDR(hdr)) {
3023		l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3024		boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3025
3026		if (!buflist_held)
3027			mutex_enter(&dev->l2ad_mtx);
3028
3029		/*
3030		 * Even though we checked this conditional above, we
3031		 * need to check this again now that we have the
3032		 * l2ad_mtx. This is because we could be racing with
3033		 * another thread calling l2arc_evict() which might have
3034		 * destroyed this header's L2 portion as we were waiting
3035		 * to acquire the l2ad_mtx. If that happens, we don't
3036		 * want to re-destroy the header's L2 portion.
3037		 */
3038		if (HDR_HAS_L2HDR(hdr)) {
3039			l2arc_trim(hdr);
3040			arc_hdr_l2hdr_destroy(hdr);
3041		}
3042
3043		if (!buflist_held)
3044			mutex_exit(&dev->l2ad_mtx);
3045	}
3046
3047	if (HDR_HAS_L1HDR(hdr)) {
3048		arc_cksum_free(hdr);
3049
3050		while (hdr->b_l1hdr.b_buf != NULL)
3051			arc_buf_destroy_impl(hdr->b_l1hdr.b_buf, B_TRUE);
3052
3053#ifdef ZFS_DEBUG
3054		if (hdr->b_l1hdr.b_thawed != NULL) {
3055			kmem_free(hdr->b_l1hdr.b_thawed, 1);
3056			hdr->b_l1hdr.b_thawed = NULL;
3057		}
3058#endif
3059
3060		if (hdr->b_l1hdr.b_pdata != NULL) {
3061			arc_hdr_free_pdata(hdr);
3062		}
3063	}
3064
3065	ASSERT3P(hdr->b_hash_next, ==, NULL);
3066	if (HDR_HAS_L1HDR(hdr)) {
3067		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3068		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3069		kmem_cache_free(hdr_full_cache, hdr);
3070	} else {
3071		kmem_cache_free(hdr_l2only_cache, hdr);
3072	}
3073}
3074
3075void
3076arc_buf_destroy(arc_buf_t *buf, void* tag)
3077{
3078	arc_buf_hdr_t *hdr = buf->b_hdr;
3079	kmutex_t *hash_lock = HDR_LOCK(hdr);
3080
3081	if (hdr->b_l1hdr.b_state == arc_anon) {
3082		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
3083		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3084		VERIFY0(remove_reference(hdr, NULL, tag));
3085		arc_hdr_destroy(hdr);
3086		return;
3087	}
3088
3089	mutex_enter(hash_lock);
3090	ASSERT3P(hdr, ==, buf->b_hdr);
3091	ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3092	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3093	ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3094	ASSERT3P(buf->b_data, !=, NULL);
3095
3096	(void) remove_reference(hdr, hash_lock, tag);
3097	arc_buf_destroy_impl(buf, B_TRUE);
3098	mutex_exit(hash_lock);
3099}
3100
3101int32_t
3102arc_buf_size(arc_buf_t *buf)
3103{
3104	return (HDR_GET_LSIZE(buf->b_hdr));
3105}
3106
3107/*
3108 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3109 * state of the header is dependent on it's state prior to entering this
3110 * function. The following transitions are possible:
3111 *
3112 *    - arc_mru -> arc_mru_ghost
3113 *    - arc_mfu -> arc_mfu_ghost
3114 *    - arc_mru_ghost -> arc_l2c_only
3115 *    - arc_mru_ghost -> deleted
3116 *    - arc_mfu_ghost -> arc_l2c_only
3117 *    - arc_mfu_ghost -> deleted
3118 */
3119static int64_t
3120arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3121{
3122	arc_state_t *evicted_state, *state;
3123	int64_t bytes_evicted = 0;
3124
3125	ASSERT(MUTEX_HELD(hash_lock));
3126	ASSERT(HDR_HAS_L1HDR(hdr));
3127
3128	state = hdr->b_l1hdr.b_state;
3129	if (GHOST_STATE(state)) {
3130		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3131		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3132
3133		/*
3134		 * l2arc_write_buffers() relies on a header's L1 portion
3135		 * (i.e. its b_pdata field) during its write phase.
3136		 * Thus, we cannot push a header onto the arc_l2c_only
3137		 * state (removing it's L1 piece) until the header is
3138		 * done being written to the l2arc.
3139		 */
3140		if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3141			ARCSTAT_BUMP(arcstat_evict_l2_skip);
3142			return (bytes_evicted);
3143		}
3144
3145		ARCSTAT_BUMP(arcstat_deleted);
3146		bytes_evicted += HDR_GET_LSIZE(hdr);
3147
3148		DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3149
3150		ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
3151		if (HDR_HAS_L2HDR(hdr)) {
3152			ASSERT(hdr->b_l1hdr.b_pdata == NULL);
3153			/*
3154			 * This buffer is cached on the 2nd Level ARC;
3155			 * don't destroy the header.
3156			 */
3157			arc_change_state(arc_l2c_only, hdr, hash_lock);
3158			/*
3159			 * dropping from L1+L2 cached to L2-only,
3160			 * realloc to remove the L1 header.
3161			 */
3162			hdr = arc_hdr_realloc(hdr, hdr_full_cache,
3163			    hdr_l2only_cache);
3164		} else {
3165			ASSERT(hdr->b_l1hdr.b_pdata == NULL);
3166			arc_change_state(arc_anon, hdr, hash_lock);
3167			arc_hdr_destroy(hdr);
3168		}
3169		return (bytes_evicted);
3170	}
3171
3172	ASSERT(state == arc_mru || state == arc_mfu);
3173	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3174
3175	/* prefetch buffers have a minimum lifespan */
3176	if (HDR_IO_IN_PROGRESS(hdr) ||
3177	    ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3178	    ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
3179	    arc_min_prefetch_lifespan)) {
3180		ARCSTAT_BUMP(arcstat_evict_skip);
3181		return (bytes_evicted);
3182	}
3183
3184	ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
3185	while (hdr->b_l1hdr.b_buf) {
3186		arc_buf_t *buf = hdr->b_l1hdr.b_buf;
3187		if (!mutex_tryenter(&buf->b_evict_lock)) {
3188			ARCSTAT_BUMP(arcstat_mutex_miss);
3189			break;
3190		}
3191		if (buf->b_data != NULL)
3192			bytes_evicted += HDR_GET_LSIZE(hdr);
3193		mutex_exit(&buf->b_evict_lock);
3194		arc_buf_destroy_impl(buf, B_TRUE);
3195	}
3196
3197	if (HDR_HAS_L2HDR(hdr)) {
3198		ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3199	} else {
3200		if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3201			ARCSTAT_INCR(arcstat_evict_l2_eligible,
3202			    HDR_GET_LSIZE(hdr));
3203		} else {
3204			ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3205			    HDR_GET_LSIZE(hdr));
3206		}
3207	}
3208
3209	if (hdr->b_l1hdr.b_bufcnt == 0) {
3210		arc_cksum_free(hdr);
3211
3212		bytes_evicted += arc_hdr_size(hdr);
3213
3214		/*
3215		 * If this hdr is being evicted and has a compressed
3216		 * buffer then we discard it here before we change states.
3217		 * This ensures that the accounting is updated correctly
3218		 * in arc_free_data_buf().
3219		 */
3220		arc_hdr_free_pdata(hdr);
3221
3222		arc_change_state(evicted_state, hdr, hash_lock);
3223		ASSERT(HDR_IN_HASH_TABLE(hdr));
3224		arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
3225		DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3226	}
3227
3228	return (bytes_evicted);
3229}
3230
3231static uint64_t
3232arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3233    uint64_t spa, int64_t bytes)
3234{
3235	multilist_sublist_t *mls;
3236	uint64_t bytes_evicted = 0;
3237	arc_buf_hdr_t *hdr;
3238	kmutex_t *hash_lock;
3239	int evict_count = 0;
3240
3241	ASSERT3P(marker, !=, NULL);
3242	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3243
3244	mls = multilist_sublist_lock(ml, idx);
3245
3246	for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
3247	    hdr = multilist_sublist_prev(mls, marker)) {
3248		if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
3249		    (evict_count >= zfs_arc_evict_batch_limit))
3250			break;
3251
3252		/*
3253		 * To keep our iteration location, move the marker
3254		 * forward. Since we're not holding hdr's hash lock, we
3255		 * must be very careful and not remove 'hdr' from the
3256		 * sublist. Otherwise, other consumers might mistake the
3257		 * 'hdr' as not being on a sublist when they call the
3258		 * multilist_link_active() function (they all rely on
3259		 * the hash lock protecting concurrent insertions and
3260		 * removals). multilist_sublist_move_forward() was
3261		 * specifically implemented to ensure this is the case
3262		 * (only 'marker' will be removed and re-inserted).
3263		 */
3264		multilist_sublist_move_forward(mls, marker);
3265
3266		/*
3267		 * The only case where the b_spa field should ever be
3268		 * zero, is the marker headers inserted by
3269		 * arc_evict_state(). It's possible for multiple threads
3270		 * to be calling arc_evict_state() concurrently (e.g.
3271		 * dsl_pool_close() and zio_inject_fault()), so we must
3272		 * skip any markers we see from these other threads.
3273		 */
3274		if (hdr->b_spa == 0)
3275			continue;
3276
3277		/* we're only interested in evicting buffers of a certain spa */
3278		if (spa != 0 && hdr->b_spa != spa) {
3279			ARCSTAT_BUMP(arcstat_evict_skip);
3280			continue;
3281		}
3282
3283		hash_lock = HDR_LOCK(hdr);
3284
3285		/*
3286		 * We aren't calling this function from any code path
3287		 * that would already be holding a hash lock, so we're
3288		 * asserting on this assumption to be defensive in case
3289		 * this ever changes. Without this check, it would be
3290		 * possible to incorrectly increment arcstat_mutex_miss
3291		 * below (e.g. if the code changed such that we called
3292		 * this function with a hash lock held).
3293		 */
3294		ASSERT(!MUTEX_HELD(hash_lock));
3295
3296		if (mutex_tryenter(hash_lock)) {
3297			uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
3298			mutex_exit(hash_lock);
3299
3300			bytes_evicted += evicted;
3301
3302			/*
3303			 * If evicted is zero, arc_evict_hdr() must have
3304			 * decided to skip this header, don't increment
3305			 * evict_count in this case.
3306			 */
3307			if (evicted != 0)
3308				evict_count++;
3309
3310			/*
3311			 * If arc_size isn't overflowing, signal any
3312			 * threads that might happen to be waiting.
3313			 *
3314			 * For each header evicted, we wake up a single
3315			 * thread. If we used cv_broadcast, we could
3316			 * wake up "too many" threads causing arc_size
3317			 * to significantly overflow arc_c; since
3318			 * arc_get_data_buf() doesn't check for overflow
3319			 * when it's woken up (it doesn't because it's
3320			 * possible for the ARC to be overflowing while
3321			 * full of un-evictable buffers, and the
3322			 * function should proceed in this case).
3323			 *
3324			 * If threads are left sleeping, due to not
3325			 * using cv_broadcast, they will be woken up
3326			 * just before arc_reclaim_thread() sleeps.
3327			 */
3328			mutex_enter(&arc_reclaim_lock);
3329			if (!arc_is_overflowing())
3330				cv_signal(&arc_reclaim_waiters_cv);
3331			mutex_exit(&arc_reclaim_lock);
3332		} else {
3333			ARCSTAT_BUMP(arcstat_mutex_miss);
3334		}
3335	}
3336
3337	multilist_sublist_unlock(mls);
3338
3339	return (bytes_evicted);
3340}
3341
3342/*
3343 * Evict buffers from the given arc state, until we've removed the
3344 * specified number of bytes. Move the removed buffers to the
3345 * appropriate evict state.
3346 *
3347 * This function makes a "best effort". It skips over any buffers
3348 * it can't get a hash_lock on, and so, may not catch all candidates.
3349 * It may also return without evicting as much space as requested.
3350 *
3351 * If bytes is specified using the special value ARC_EVICT_ALL, this
3352 * will evict all available (i.e. unlocked and evictable) buffers from
3353 * the given arc state; which is used by arc_flush().
3354 */
3355static uint64_t
3356arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
3357    arc_buf_contents_t type)
3358{
3359	uint64_t total_evicted = 0;
3360	multilist_t *ml = &state->arcs_list[type];
3361	int num_sublists;
3362	arc_buf_hdr_t **markers;
3363
3364	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3365
3366	num_sublists = multilist_get_num_sublists(ml);
3367
3368	/*
3369	 * If we've tried to evict from each sublist, made some
3370	 * progress, but still have not hit the target number of bytes
3371	 * to evict, we want to keep trying. The markers allow us to
3372	 * pick up where we left off for each individual sublist, rather
3373	 * than starting from the tail each time.
3374	 */
3375	markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
3376	for (int i = 0; i < num_sublists; i++) {
3377		markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
3378
3379		/*
3380		 * A b_spa of 0 is used to indicate that this header is
3381		 * a marker. This fact is used in arc_adjust_type() and
3382		 * arc_evict_state_impl().
3383		 */
3384		markers[i]->b_spa = 0;
3385
3386		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3387		multilist_sublist_insert_tail(mls, markers[i]);
3388		multilist_sublist_unlock(mls);
3389	}
3390
3391	/*
3392	 * While we haven't hit our target number of bytes to evict, or
3393	 * we're evicting all available buffers.
3394	 */
3395	while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
3396		/*
3397		 * Start eviction using a randomly selected sublist,
3398		 * this is to try and evenly balance eviction across all
3399		 * sublists. Always starting at the same sublist
3400		 * (e.g. index 0) would cause evictions to favor certain
3401		 * sublists over others.
3402		 */
3403		int sublist_idx = multilist_get_random_index(ml);
3404		uint64_t scan_evicted = 0;
3405
3406		for (int i = 0; i < num_sublists; i++) {
3407			uint64_t bytes_remaining;
3408			uint64_t bytes_evicted;
3409
3410			if (bytes == ARC_EVICT_ALL)
3411				bytes_remaining = ARC_EVICT_ALL;
3412			else if (total_evicted < bytes)
3413				bytes_remaining = bytes - total_evicted;
3414			else
3415				break;
3416
3417			bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
3418			    markers[sublist_idx], spa, bytes_remaining);
3419
3420			scan_evicted += bytes_evicted;
3421			total_evicted += bytes_evicted;
3422
3423			/* we've reached the end, wrap to the beginning */
3424			if (++sublist_idx >= num_sublists)
3425				sublist_idx = 0;
3426		}
3427
3428		/*
3429		 * If we didn't evict anything during this scan, we have
3430		 * no reason to believe we'll evict more during another
3431		 * scan, so break the loop.
3432		 */
3433		if (scan_evicted == 0) {
3434			/* This isn't possible, let's make that obvious */
3435			ASSERT3S(bytes, !=, 0);
3436
3437			/*
3438			 * When bytes is ARC_EVICT_ALL, the only way to
3439			 * break the loop is when scan_evicted is zero.
3440			 * In that case, we actually have evicted enough,
3441			 * so we don't want to increment the kstat.
3442			 */
3443			if (bytes != ARC_EVICT_ALL) {
3444				ASSERT3S(total_evicted, <, bytes);
3445				ARCSTAT_BUMP(arcstat_evict_not_enough);
3446			}
3447
3448			break;
3449		}
3450	}
3451
3452	for (int i = 0; i < num_sublists; i++) {
3453		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3454		multilist_sublist_remove(mls, markers[i]);
3455		multilist_sublist_unlock(mls);
3456
3457		kmem_cache_free(hdr_full_cache, markers[i]);
3458	}
3459	kmem_free(markers, sizeof (*markers) * num_sublists);
3460
3461	return (total_evicted);
3462}
3463
3464/*
3465 * Flush all "evictable" data of the given type from the arc state
3466 * specified. This will not evict any "active" buffers (i.e. referenced).
3467 *
3468 * When 'retry' is set to B_FALSE, the function will make a single pass
3469 * over the state and evict any buffers that it can. Since it doesn't
3470 * continually retry the eviction, it might end up leaving some buffers
3471 * in the ARC due to lock misses.
3472 *
3473 * When 'retry' is set to B_TRUE, the function will continually retry the
3474 * eviction until *all* evictable buffers have been removed from the
3475 * state. As a result, if concurrent insertions into the state are
3476 * allowed (e.g. if the ARC isn't shutting down), this function might
3477 * wind up in an infinite loop, continually trying to evict buffers.
3478 */
3479static uint64_t
3480arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
3481    boolean_t retry)
3482{
3483	uint64_t evicted = 0;
3484
3485	while (refcount_count(&state->arcs_esize[type]) != 0) {
3486		evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
3487
3488		if (!retry)
3489			break;
3490	}
3491
3492	return (evicted);
3493}
3494
3495/*
3496 * Evict the specified number of bytes from the state specified,
3497 * restricting eviction to the spa and type given. This function
3498 * prevents us from trying to evict more from a state's list than
3499 * is "evictable", and to skip evicting altogether when passed a
3500 * negative value for "bytes". In contrast, arc_evict_state() will
3501 * evict everything it can, when passed a negative value for "bytes".
3502 */
3503static uint64_t
3504arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
3505    arc_buf_contents_t type)
3506{
3507	int64_t delta;
3508
3509	if (bytes > 0 && refcount_count(&state->arcs_esize[type]) > 0) {
3510		delta = MIN(refcount_count(&state->arcs_esize[type]), bytes);
3511		return (arc_evict_state(state, spa, delta, type));
3512	}
3513
3514	return (0);
3515}
3516
3517/*
3518 * Evict metadata buffers from the cache, such that arc_meta_used is
3519 * capped by the arc_meta_limit tunable.
3520 */
3521static uint64_t
3522arc_adjust_meta(void)
3523{
3524	uint64_t total_evicted = 0;
3525	int64_t target;
3526
3527	/*
3528	 * If we're over the meta limit, we want to evict enough
3529	 * metadata to get back under the meta limit. We don't want to
3530	 * evict so much that we drop the MRU below arc_p, though. If
3531	 * we're over the meta limit more than we're over arc_p, we
3532	 * evict some from the MRU here, and some from the MFU below.
3533	 */
3534	target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3535	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
3536	    refcount_count(&arc_mru->arcs_size) - arc_p));
3537
3538	total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3539
3540	/*
3541	 * Similar to the above, we want to evict enough bytes to get us
3542	 * below the meta limit, but not so much as to drop us below the
3543	 * space alloted to the MFU (which is defined as arc_c - arc_p).
3544	 */
3545	target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3546	    (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p)));
3547
3548	total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3549
3550	return (total_evicted);
3551}
3552
3553/*
3554 * Return the type of the oldest buffer in the given arc state
3555 *
3556 * This function will select a random sublist of type ARC_BUFC_DATA and
3557 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
3558 * is compared, and the type which contains the "older" buffer will be
3559 * returned.
3560 */
3561static arc_buf_contents_t
3562arc_adjust_type(arc_state_t *state)
3563{
3564	multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA];
3565	multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA];
3566	int data_idx = multilist_get_random_index(data_ml);
3567	int meta_idx = multilist_get_random_index(meta_ml);
3568	multilist_sublist_t *data_mls;
3569	multilist_sublist_t *meta_mls;
3570	arc_buf_contents_t type;
3571	arc_buf_hdr_t *data_hdr;
3572	arc_buf_hdr_t *meta_hdr;
3573
3574	/*
3575	 * We keep the sublist lock until we're finished, to prevent
3576	 * the headers from being destroyed via arc_evict_state().
3577	 */
3578	data_mls = multilist_sublist_lock(data_ml, data_idx);
3579	meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
3580
3581	/*
3582	 * These two loops are to ensure we skip any markers that
3583	 * might be at the tail of the lists due to arc_evict_state().
3584	 */
3585
3586	for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
3587	    data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
3588		if (data_hdr->b_spa != 0)
3589			break;
3590	}
3591
3592	for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
3593	    meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
3594		if (meta_hdr->b_spa != 0)
3595			break;
3596	}
3597
3598	if (data_hdr == NULL && meta_hdr == NULL) {
3599		type = ARC_BUFC_DATA;
3600	} else if (data_hdr == NULL) {
3601		ASSERT3P(meta_hdr, !=, NULL);
3602		type = ARC_BUFC_METADATA;
3603	} else if (meta_hdr == NULL) {
3604		ASSERT3P(data_hdr, !=, NULL);
3605		type = ARC_BUFC_DATA;
3606	} else {
3607		ASSERT3P(data_hdr, !=, NULL);
3608		ASSERT3P(meta_hdr, !=, NULL);
3609
3610		/* The headers can't be on the sublist without an L1 header */
3611		ASSERT(HDR_HAS_L1HDR(data_hdr));
3612		ASSERT(HDR_HAS_L1HDR(meta_hdr));
3613
3614		if (data_hdr->b_l1hdr.b_arc_access <
3615		    meta_hdr->b_l1hdr.b_arc_access) {
3616			type = ARC_BUFC_DATA;
3617		} else {
3618			type = ARC_BUFC_METADATA;
3619		}
3620	}
3621
3622	multilist_sublist_unlock(meta_mls);
3623	multilist_sublist_unlock(data_mls);
3624
3625	return (type);
3626}
3627
3628/*
3629 * Evict buffers from the cache, such that arc_size is capped by arc_c.
3630 */
3631static uint64_t
3632arc_adjust(void)
3633{
3634	uint64_t total_evicted = 0;
3635	uint64_t bytes;
3636	int64_t target;
3637
3638	/*
3639	 * If we're over arc_meta_limit, we want to correct that before
3640	 * potentially evicting data buffers below.
3641	 */
3642	total_evicted += arc_adjust_meta();
3643
3644	/*
3645	 * Adjust MRU size
3646	 *
3647	 * If we're over the target cache size, we want to evict enough
3648	 * from the list to get back to our target size. We don't want
3649	 * to evict too much from the MRU, such that it drops below
3650	 * arc_p. So, if we're over our target cache size more than
3651	 * the MRU is over arc_p, we'll evict enough to get back to
3652	 * arc_p here, and then evict more from the MFU below.
3653	 */
3654	target = MIN((int64_t)(arc_size - arc_c),
3655	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
3656	    refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p));
3657
3658	/*
3659	 * If we're below arc_meta_min, always prefer to evict data.
3660	 * Otherwise, try to satisfy the requested number of bytes to
3661	 * evict from the type which contains older buffers; in an
3662	 * effort to keep newer buffers in the cache regardless of their
3663	 * type. If we cannot satisfy the number of bytes from this
3664	 * type, spill over into the next type.
3665	 */
3666	if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
3667	    arc_meta_used > arc_meta_min) {
3668		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3669		total_evicted += bytes;
3670
3671		/*
3672		 * If we couldn't evict our target number of bytes from
3673		 * metadata, we try to get the rest from data.
3674		 */
3675		target -= bytes;
3676
3677		total_evicted +=
3678		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3679	} else {
3680		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3681		total_evicted += bytes;
3682
3683		/*
3684		 * If we couldn't evict our target number of bytes from
3685		 * data, we try to get the rest from metadata.
3686		 */
3687		target -= bytes;
3688
3689		total_evicted +=
3690		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3691	}
3692
3693	/*
3694	 * Adjust MFU size
3695	 *
3696	 * Now that we've tried to evict enough from the MRU to get its
3697	 * size back to arc_p, if we're still above the target cache
3698	 * size, we evict the rest from the MFU.
3699	 */
3700	target = arc_size - arc_c;
3701
3702	if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
3703	    arc_meta_used > arc_meta_min) {
3704		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3705		total_evicted += bytes;
3706
3707		/*
3708		 * If we couldn't evict our target number of bytes from
3709		 * metadata, we try to get the rest from data.
3710		 */
3711		target -= bytes;
3712
3713		total_evicted +=
3714		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3715	} else {
3716		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3717		total_evicted += bytes;
3718
3719		/*
3720		 * If we couldn't evict our target number of bytes from
3721		 * data, we try to get the rest from data.
3722		 */
3723		target -= bytes;
3724
3725		total_evicted +=
3726		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3727	}
3728
3729	/*
3730	 * Adjust ghost lists
3731	 *
3732	 * In addition to the above, the ARC also defines target values
3733	 * for the ghost lists. The sum of the mru list and mru ghost
3734	 * list should never exceed the target size of the cache, and
3735	 * the sum of the mru list, mfu list, mru ghost list, and mfu
3736	 * ghost list should never exceed twice the target size of the
3737	 * cache. The following logic enforces these limits on the ghost
3738	 * caches, and evicts from them as needed.
3739	 */
3740	target = refcount_count(&arc_mru->arcs_size) +
3741	    refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
3742
3743	bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
3744	total_evicted += bytes;
3745
3746	target -= bytes;
3747
3748	total_evicted +=
3749	    arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
3750
3751	/*
3752	 * We assume the sum of the mru list and mfu list is less than
3753	 * or equal to arc_c (we enforced this above), which means we
3754	 * can use the simpler of the two equations below:
3755	 *
3756	 *	mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
3757	 *		    mru ghost + mfu ghost <= arc_c
3758	 */
3759	target = refcount_count(&arc_mru_ghost->arcs_size) +
3760	    refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
3761
3762	bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
3763	total_evicted += bytes;
3764
3765	target -= bytes;
3766
3767	total_evicted +=
3768	    arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
3769
3770	return (total_evicted);
3771}
3772
3773void
3774arc_flush(spa_t *spa, boolean_t retry)
3775{
3776	uint64_t guid = 0;
3777
3778	/*
3779	 * If retry is B_TRUE, a spa must not be specified since we have
3780	 * no good way to determine if all of a spa's buffers have been
3781	 * evicted from an arc state.
3782	 */
3783	ASSERT(!retry || spa == 0);
3784
3785	if (spa != NULL)
3786		guid = spa_load_guid(spa);
3787
3788	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
3789	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
3790
3791	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
3792	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
3793
3794	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
3795	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
3796
3797	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
3798	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
3799}
3800
3801void
3802arc_shrink(int64_t to_free)
3803{
3804	if (arc_c > arc_c_min) {
3805		DTRACE_PROBE4(arc__shrink, uint64_t, arc_c, uint64_t,
3806			arc_c_min, uint64_t, arc_p, uint64_t, to_free);
3807		if (arc_c > arc_c_min + to_free)
3808			atomic_add_64(&arc_c, -to_free);
3809		else
3810			arc_c = arc_c_min;
3811
3812		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
3813		if (arc_c > arc_size)
3814			arc_c = MAX(arc_size, arc_c_min);
3815		if (arc_p > arc_c)
3816			arc_p = (arc_c >> 1);
3817
3818		DTRACE_PROBE2(arc__shrunk, uint64_t, arc_c, uint64_t,
3819			arc_p);
3820
3821		ASSERT(arc_c >= arc_c_min);
3822		ASSERT((int64_t)arc_p >= 0);
3823	}
3824
3825	if (arc_size > arc_c) {
3826		DTRACE_PROBE2(arc__shrink_adjust, uint64_t, arc_size,
3827			uint64_t, arc_c);
3828		(void) arc_adjust();
3829	}
3830}
3831
3832static long needfree = 0;
3833
3834typedef enum free_memory_reason_t {
3835	FMR_UNKNOWN,
3836	FMR_NEEDFREE,
3837	FMR_LOTSFREE,
3838	FMR_SWAPFS_MINFREE,
3839	FMR_PAGES_PP_MAXIMUM,
3840	FMR_HEAP_ARENA,
3841	FMR_ZIO_ARENA,
3842	FMR_ZIO_FRAG,
3843} free_memory_reason_t;
3844
3845int64_t last_free_memory;
3846free_memory_reason_t last_free_reason;
3847
3848/*
3849 * Additional reserve of pages for pp_reserve.
3850 */
3851int64_t arc_pages_pp_reserve = 64;
3852
3853/*
3854 * Additional reserve of pages for swapfs.
3855 */
3856int64_t arc_swapfs_reserve = 64;
3857
3858/*
3859 * Return the amount of memory that can be consumed before reclaim will be
3860 * needed.  Positive if there is sufficient free memory, negative indicates
3861 * the amount of memory that needs to be freed up.
3862 */
3863static int64_t
3864arc_available_memory(void)
3865{
3866	int64_t lowest = INT64_MAX;
3867	int64_t n;
3868	free_memory_reason_t r = FMR_UNKNOWN;
3869
3870#ifdef _KERNEL
3871	if (needfree > 0) {
3872		n = PAGESIZE * (-needfree);
3873		if (n < lowest) {
3874			lowest = n;
3875			r = FMR_NEEDFREE;
3876		}
3877	}
3878
3879	/*
3880	 * Cooperate with pagedaemon when it's time for it to scan
3881	 * and reclaim some pages.
3882	 */
3883	n = PAGESIZE * ((int64_t)freemem - zfs_arc_free_target);
3884	if (n < lowest) {
3885		lowest = n;
3886		r = FMR_LOTSFREE;
3887	}
3888
3889#ifdef illumos
3890	/*
3891	 * check that we're out of range of the pageout scanner.  It starts to
3892	 * schedule paging if freemem is less than lotsfree and needfree.
3893	 * lotsfree is the high-water mark for pageout, and needfree is the
3894	 * number of needed free pages.  We add extra pages here to make sure
3895	 * the scanner doesn't start up while we're freeing memory.
3896	 */
3897	n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
3898	if (n < lowest) {
3899		lowest = n;
3900		r = FMR_LOTSFREE;
3901	}
3902
3903	/*
3904	 * check to make sure that swapfs has enough space so that anon
3905	 * reservations can still succeed. anon_resvmem() checks that the
3906	 * availrmem is greater than swapfs_minfree, and the number of reserved
3907	 * swap pages.  We also add a bit of extra here just to prevent
3908	 * circumstances from getting really dire.
3909	 */
3910	n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
3911	    desfree - arc_swapfs_reserve);
3912	if (n < lowest) {
3913		lowest = n;
3914		r = FMR_SWAPFS_MINFREE;
3915	}
3916
3917
3918	/*
3919	 * Check that we have enough availrmem that memory locking (e.g., via
3920	 * mlock(3C) or memcntl(2)) can still succeed.  (pages_pp_maximum
3921	 * stores the number of pages that cannot be locked; when availrmem
3922	 * drops below pages_pp_maximum, page locking mechanisms such as
3923	 * page_pp_lock() will fail.)
3924	 */
3925	n = PAGESIZE * (availrmem - pages_pp_maximum -
3926	    arc_pages_pp_reserve);
3927	if (n < lowest) {
3928		lowest = n;
3929		r = FMR_PAGES_PP_MAXIMUM;
3930	}
3931
3932#endif	/* illumos */
3933#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
3934	/*
3935	 * If we're on an i386 platform, it's possible that we'll exhaust the
3936	 * kernel heap space before we ever run out of available physical
3937	 * memory.  Most checks of the size of the heap_area compare against
3938	 * tune.t_minarmem, which is the minimum available real memory that we
3939	 * can have in the system.  However, this is generally fixed at 25 pages
3940	 * which is so low that it's useless.  In this comparison, we seek to
3941	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
3942	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
3943	 * free)
3944	 */
3945	n = (int64_t)vmem_size(heap_arena, VMEM_FREE) -
3946	    (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
3947	if (n < lowest) {
3948		lowest = n;
3949		r = FMR_HEAP_ARENA;
3950	}
3951#define	zio_arena	NULL
3952#else
3953#define	zio_arena	heap_arena
3954#endif
3955
3956	/*
3957	 * If zio data pages are being allocated out of a separate heap segment,
3958	 * then enforce that the size of available vmem for this arena remains
3959	 * above about 1/16th free.
3960	 *
3961	 * Note: The 1/16th arena free requirement was put in place
3962	 * to aggressively evict memory from the arc in order to avoid
3963	 * memory fragmentation issues.
3964	 */
3965	if (zio_arena != NULL) {
3966		n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
3967		    (vmem_size(zio_arena, VMEM_ALLOC) >> 4);
3968		if (n < lowest) {
3969			lowest = n;
3970			r = FMR_ZIO_ARENA;
3971		}
3972	}
3973
3974	/*
3975	 * Above limits know nothing about real level of KVA fragmentation.
3976	 * Start aggressive reclamation if too little sequential KVA left.
3977	 */
3978	if (lowest > 0) {
3979		n = (vmem_size(heap_arena, VMEM_MAXFREE) < zfs_max_recordsize) ?
3980		    -((int64_t)vmem_size(heap_arena, VMEM_ALLOC) >> 4) :
3981		    INT64_MAX;
3982		if (n < lowest) {
3983			lowest = n;
3984			r = FMR_ZIO_FRAG;
3985		}
3986	}
3987
3988#else	/* _KERNEL */
3989	/* Every 100 calls, free a small amount */
3990	if (spa_get_random(100) == 0)
3991		lowest = -1024;
3992#endif	/* _KERNEL */
3993
3994	last_free_memory = lowest;
3995	last_free_reason = r;
3996	DTRACE_PROBE2(arc__available_memory, int64_t, lowest, int, r);
3997	return (lowest);
3998}
3999
4000
4001/*
4002 * Determine if the system is under memory pressure and is asking
4003 * to reclaim memory. A return value of B_TRUE indicates that the system
4004 * is under memory pressure and that the arc should adjust accordingly.
4005 */
4006static boolean_t
4007arc_reclaim_needed(void)
4008{
4009	return (arc_available_memory() < 0);
4010}
4011
4012extern kmem_cache_t	*zio_buf_cache[];
4013extern kmem_cache_t	*zio_data_buf_cache[];
4014extern kmem_cache_t	*range_seg_cache;
4015
4016static __noinline void
4017arc_kmem_reap_now(void)
4018{
4019	size_t			i;
4020	kmem_cache_t		*prev_cache = NULL;
4021	kmem_cache_t		*prev_data_cache = NULL;
4022
4023	DTRACE_PROBE(arc__kmem_reap_start);
4024#ifdef _KERNEL
4025	if (arc_meta_used >= arc_meta_limit) {
4026		/*
4027		 * We are exceeding our meta-data cache limit.
4028		 * Purge some DNLC entries to release holds on meta-data.
4029		 */
4030		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
4031	}
4032#if defined(__i386)
4033	/*
4034	 * Reclaim unused memory from all kmem caches.
4035	 */
4036	kmem_reap();
4037#endif
4038#endif
4039
4040	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4041		if (zio_buf_cache[i] != prev_cache) {
4042			prev_cache = zio_buf_cache[i];
4043			kmem_cache_reap_now(zio_buf_cache[i]);
4044		}
4045		if (zio_data_buf_cache[i] != prev_data_cache) {
4046			prev_data_cache = zio_data_buf_cache[i];
4047			kmem_cache_reap_now(zio_data_buf_cache[i]);
4048		}
4049	}
4050	kmem_cache_reap_now(buf_cache);
4051	kmem_cache_reap_now(hdr_full_cache);
4052	kmem_cache_reap_now(hdr_l2only_cache);
4053	kmem_cache_reap_now(range_seg_cache);
4054
4055#ifdef illumos
4056	if (zio_arena != NULL) {
4057		/*
4058		 * Ask the vmem arena to reclaim unused memory from its
4059		 * quantum caches.
4060		 */
4061		vmem_qcache_reap(zio_arena);
4062	}
4063#endif
4064	DTRACE_PROBE(arc__kmem_reap_end);
4065}
4066
4067/*
4068 * Threads can block in arc_get_data_buf() waiting for this thread to evict
4069 * enough data and signal them to proceed. When this happens, the threads in
4070 * arc_get_data_buf() are sleeping while holding the hash lock for their
4071 * particular arc header. Thus, we must be careful to never sleep on a
4072 * hash lock in this thread. This is to prevent the following deadlock:
4073 *
4074 *  - Thread A sleeps on CV in arc_get_data_buf() holding hash lock "L",
4075 *    waiting for the reclaim thread to signal it.
4076 *
4077 *  - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
4078 *    fails, and goes to sleep forever.
4079 *
4080 * This possible deadlock is avoided by always acquiring a hash lock
4081 * using mutex_tryenter() from arc_reclaim_thread().
4082 */
4083static void
4084arc_reclaim_thread(void *dummy __unused)
4085{
4086	hrtime_t		growtime = 0;
4087	callb_cpr_t		cpr;
4088
4089	CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
4090
4091	mutex_enter(&arc_reclaim_lock);
4092	while (!arc_reclaim_thread_exit) {
4093		uint64_t evicted = 0;
4094
4095		/*
4096		 * This is necessary in order for the mdb ::arc dcmd to
4097		 * show up to date information. Since the ::arc command
4098		 * does not call the kstat's update function, without
4099		 * this call, the command may show stale stats for the
4100		 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4101		 * with this change, the data might be up to 1 second
4102		 * out of date; but that should suffice. The arc_state_t
4103		 * structures can be queried directly if more accurate
4104		 * information is needed.
4105		 */
4106		if (arc_ksp != NULL)
4107			arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4108
4109		mutex_exit(&arc_reclaim_lock);
4110
4111		/*
4112		 * We call arc_adjust() before (possibly) calling
4113		 * arc_kmem_reap_now(), so that we can wake up
4114		 * arc_get_data_buf() sooner.
4115		 */
4116		evicted = arc_adjust();
4117
4118		int64_t free_memory = arc_available_memory();
4119		if (free_memory < 0) {
4120
4121			arc_no_grow = B_TRUE;
4122			arc_warm = B_TRUE;
4123
4124			/*
4125			 * Wait at least zfs_grow_retry (default 60) seconds
4126			 * before considering growing.
4127			 */
4128			growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
4129
4130			arc_kmem_reap_now();
4131
4132			/*
4133			 * If we are still low on memory, shrink the ARC
4134			 * so that we have arc_shrink_min free space.
4135			 */
4136			free_memory = arc_available_memory();
4137
4138			int64_t to_free =
4139			    (arc_c >> arc_shrink_shift) - free_memory;
4140			if (to_free > 0) {
4141#ifdef _KERNEL
4142				to_free = MAX(to_free, ptob(needfree));
4143#endif
4144				arc_shrink(to_free);
4145			}
4146		} else if (free_memory < arc_c >> arc_no_grow_shift) {
4147			arc_no_grow = B_TRUE;
4148		} else if (gethrtime() >= growtime) {
4149			arc_no_grow = B_FALSE;
4150		}
4151
4152		mutex_enter(&arc_reclaim_lock);
4153
4154		/*
4155		 * If evicted is zero, we couldn't evict anything via
4156		 * arc_adjust(). This could be due to hash lock
4157		 * collisions, but more likely due to the majority of
4158		 * arc buffers being unevictable. Therefore, even if
4159		 * arc_size is above arc_c, another pass is unlikely to
4160		 * be helpful and could potentially cause us to enter an
4161		 * infinite loop.
4162		 */
4163		if (arc_size <= arc_c || evicted == 0) {
4164#ifdef _KERNEL
4165			needfree = 0;
4166#endif
4167			/*
4168			 * We're either no longer overflowing, or we
4169			 * can't evict anything more, so we should wake
4170			 * up any threads before we go to sleep.
4171			 */
4172			cv_broadcast(&arc_reclaim_waiters_cv);
4173
4174			/*
4175			 * Block until signaled, or after one second (we
4176			 * might need to perform arc_kmem_reap_now()
4177			 * even if we aren't being signalled)
4178			 */
4179			CALLB_CPR_SAFE_BEGIN(&cpr);
4180			(void) cv_timedwait_hires(&arc_reclaim_thread_cv,
4181			    &arc_reclaim_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
4182			CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
4183		}
4184	}
4185
4186	arc_reclaim_thread_exit = B_FALSE;
4187	cv_broadcast(&arc_reclaim_thread_cv);
4188	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_lock */
4189	thread_exit();
4190}
4191
4192/*
4193 * Adapt arc info given the number of bytes we are trying to add and
4194 * the state that we are comming from.  This function is only called
4195 * when we are adding new content to the cache.
4196 */
4197static void
4198arc_adapt(int bytes, arc_state_t *state)
4199{
4200	int mult;
4201	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
4202	int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
4203	int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
4204
4205	if (state == arc_l2c_only)
4206		return;
4207
4208	ASSERT(bytes > 0);
4209	/*
4210	 * Adapt the target size of the MRU list:
4211	 *	- if we just hit in the MRU ghost list, then increase
4212	 *	  the target size of the MRU list.
4213	 *	- if we just hit in the MFU ghost list, then increase
4214	 *	  the target size of the MFU list by decreasing the
4215	 *	  target size of the MRU list.
4216	 */
4217	if (state == arc_mru_ghost) {
4218		mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
4219		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
4220
4221		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
4222	} else if (state == arc_mfu_ghost) {
4223		uint64_t delta;
4224
4225		mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
4226		mult = MIN(mult, 10);
4227
4228		delta = MIN(bytes * mult, arc_p);
4229		arc_p = MAX(arc_p_min, arc_p - delta);
4230	}
4231	ASSERT((int64_t)arc_p >= 0);
4232
4233	if (arc_reclaim_needed()) {
4234		cv_signal(&arc_reclaim_thread_cv);
4235		return;
4236	}
4237
4238	if (arc_no_grow)
4239		return;
4240
4241	if (arc_c >= arc_c_max)
4242		return;
4243
4244	/*
4245	 * If we're within (2 * maxblocksize) bytes of the target
4246	 * cache size, increment the target cache size
4247	 */
4248	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
4249		DTRACE_PROBE1(arc__inc_adapt, int, bytes);
4250		atomic_add_64(&arc_c, (int64_t)bytes);
4251		if (arc_c > arc_c_max)
4252			arc_c = arc_c_max;
4253		else if (state == arc_anon)
4254			atomic_add_64(&arc_p, (int64_t)bytes);
4255		if (arc_p > arc_c)
4256			arc_p = arc_c;
4257	}
4258	ASSERT((int64_t)arc_p >= 0);
4259}
4260
4261/*
4262 * Check if arc_size has grown past our upper threshold, determined by
4263 * zfs_arc_overflow_shift.
4264 */
4265static boolean_t
4266arc_is_overflowing(void)
4267{
4268	/* Always allow at least one block of overflow */
4269	uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
4270	    arc_c >> zfs_arc_overflow_shift);
4271
4272	return (arc_size >= arc_c + overflow);
4273}
4274
4275/*
4276 * Allocate a block and return it to the caller. If we are hitting the
4277 * hard limit for the cache size, we must sleep, waiting for the eviction
4278 * thread to catch up. If we're past the target size but below the hard
4279 * limit, we'll only signal the reclaim thread and continue on.
4280 */
4281static void *
4282arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4283{
4284	void *datap = NULL;
4285	arc_state_t		*state = hdr->b_l1hdr.b_state;
4286	arc_buf_contents_t	type = arc_buf_type(hdr);
4287
4288	arc_adapt(size, state);
4289
4290	/*
4291	 * If arc_size is currently overflowing, and has grown past our
4292	 * upper limit, we must be adding data faster than the evict
4293	 * thread can evict. Thus, to ensure we don't compound the
4294	 * problem by adding more data and forcing arc_size to grow even
4295	 * further past it's target size, we halt and wait for the
4296	 * eviction thread to catch up.
4297	 *
4298	 * It's also possible that the reclaim thread is unable to evict
4299	 * enough buffers to get arc_size below the overflow limit (e.g.
4300	 * due to buffers being un-evictable, or hash lock collisions).
4301	 * In this case, we want to proceed regardless if we're
4302	 * overflowing; thus we don't use a while loop here.
4303	 */
4304	if (arc_is_overflowing()) {
4305		mutex_enter(&arc_reclaim_lock);
4306
4307		/*
4308		 * Now that we've acquired the lock, we may no longer be
4309		 * over the overflow limit, lets check.
4310		 *
4311		 * We're ignoring the case of spurious wake ups. If that
4312		 * were to happen, it'd let this thread consume an ARC
4313		 * buffer before it should have (i.e. before we're under
4314		 * the overflow limit and were signalled by the reclaim
4315		 * thread). As long as that is a rare occurrence, it
4316		 * shouldn't cause any harm.
4317		 */
4318		if (arc_is_overflowing()) {
4319			cv_signal(&arc_reclaim_thread_cv);
4320			cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
4321		}
4322
4323		mutex_exit(&arc_reclaim_lock);
4324	}
4325
4326	VERIFY3U(hdr->b_type, ==, type);
4327	if (type == ARC_BUFC_METADATA) {
4328		datap = zio_buf_alloc(size);
4329		arc_space_consume(size, ARC_SPACE_META);
4330	} else {
4331		ASSERT(type == ARC_BUFC_DATA);
4332		datap = zio_data_buf_alloc(size);
4333		arc_space_consume(size, ARC_SPACE_DATA);
4334	}
4335
4336	/*
4337	 * Update the state size.  Note that ghost states have a
4338	 * "ghost size" and so don't need to be updated.
4339	 */
4340	if (!GHOST_STATE(state)) {
4341
4342		(void) refcount_add_many(&state->arcs_size, size, tag);
4343
4344		/*
4345		 * If this is reached via arc_read, the link is
4346		 * protected by the hash lock. If reached via
4347		 * arc_buf_alloc, the header should not be accessed by
4348		 * any other thread. And, if reached via arc_read_done,
4349		 * the hash lock will protect it if it's found in the
4350		 * hash table; otherwise no other thread should be
4351		 * trying to [add|remove]_reference it.
4352		 */
4353		if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4354			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4355			(void) refcount_add_many(&state->arcs_esize[type],
4356			    size, tag);
4357		}
4358
4359		/*
4360		 * If we are growing the cache, and we are adding anonymous
4361		 * data, and we have outgrown arc_p, update arc_p
4362		 */
4363		if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
4364		    (refcount_count(&arc_anon->arcs_size) +
4365		    refcount_count(&arc_mru->arcs_size) > arc_p))
4366			arc_p = MIN(arc_c, arc_p + size);
4367	}
4368	ARCSTAT_BUMP(arcstat_allocated);
4369	return (datap);
4370}
4371
4372/*
4373 * Free the arc data buffer.
4374 */
4375static void
4376arc_free_data_buf(arc_buf_hdr_t *hdr, void *data, uint64_t size, void *tag)
4377{
4378	arc_state_t *state = hdr->b_l1hdr.b_state;
4379	arc_buf_contents_t type = arc_buf_type(hdr);
4380
4381	/* protected by hash lock, if in the hash table */
4382	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4383		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4384		ASSERT(state != arc_anon && state != arc_l2c_only);
4385
4386		(void) refcount_remove_many(&state->arcs_esize[type],
4387		    size, tag);
4388	}
4389	(void) refcount_remove_many(&state->arcs_size, size, tag);
4390
4391	VERIFY3U(hdr->b_type, ==, type);
4392	if (type == ARC_BUFC_METADATA) {
4393		zio_buf_free(data, size);
4394		arc_space_return(size, ARC_SPACE_META);
4395	} else {
4396		ASSERT(type == ARC_BUFC_DATA);
4397		zio_data_buf_free(data, size);
4398		arc_space_return(size, ARC_SPACE_DATA);
4399	}
4400}
4401
4402/*
4403 * This routine is called whenever a buffer is accessed.
4404 * NOTE: the hash lock is dropped in this function.
4405 */
4406static void
4407arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
4408{
4409	clock_t now;
4410
4411	ASSERT(MUTEX_HELD(hash_lock));
4412	ASSERT(HDR_HAS_L1HDR(hdr));
4413
4414	if (hdr->b_l1hdr.b_state == arc_anon) {
4415		/*
4416		 * This buffer is not in the cache, and does not
4417		 * appear in our "ghost" list.  Add the new buffer
4418		 * to the MRU state.
4419		 */
4420
4421		ASSERT0(hdr->b_l1hdr.b_arc_access);
4422		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4423		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4424		arc_change_state(arc_mru, hdr, hash_lock);
4425
4426	} else if (hdr->b_l1hdr.b_state == arc_mru) {
4427		now = ddi_get_lbolt();
4428
4429		/*
4430		 * If this buffer is here because of a prefetch, then either:
4431		 * - clear the flag if this is a "referencing" read
4432		 *   (any subsequent access will bump this into the MFU state).
4433		 * or
4434		 * - move the buffer to the head of the list if this is
4435		 *   another prefetch (to make it less likely to be evicted).
4436		 */
4437		if (HDR_PREFETCH(hdr)) {
4438			if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4439				/* link protected by hash lock */
4440				ASSERT(multilist_link_active(
4441				    &hdr->b_l1hdr.b_arc_node));
4442			} else {
4443				arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
4444				ARCSTAT_BUMP(arcstat_mru_hits);
4445			}
4446			hdr->b_l1hdr.b_arc_access = now;
4447			return;
4448		}
4449
4450		/*
4451		 * This buffer has been "accessed" only once so far,
4452		 * but it is still in the cache. Move it to the MFU
4453		 * state.
4454		 */
4455		if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) {
4456			/*
4457			 * More than 125ms have passed since we
4458			 * instantiated this buffer.  Move it to the
4459			 * most frequently used state.
4460			 */
4461			hdr->b_l1hdr.b_arc_access = now;
4462			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4463			arc_change_state(arc_mfu, hdr, hash_lock);
4464		}
4465		ARCSTAT_BUMP(arcstat_mru_hits);
4466	} else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
4467		arc_state_t	*new_state;
4468		/*
4469		 * This buffer has been "accessed" recently, but
4470		 * was evicted from the cache.  Move it to the
4471		 * MFU state.
4472		 */
4473
4474		if (HDR_PREFETCH(hdr)) {
4475			new_state = arc_mru;
4476			if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
4477				arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
4478			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4479		} else {
4480			new_state = arc_mfu;
4481			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4482		}
4483
4484		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4485		arc_change_state(new_state, hdr, hash_lock);
4486
4487		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
4488	} else if (hdr->b_l1hdr.b_state == arc_mfu) {
4489		/*
4490		 * This buffer has been accessed more than once and is
4491		 * still in the cache.  Keep it in the MFU state.
4492		 *
4493		 * NOTE: an add_reference() that occurred when we did
4494		 * the arc_read() will have kicked this off the list.
4495		 * If it was a prefetch, we will explicitly move it to
4496		 * the head of the list now.
4497		 */
4498		if ((HDR_PREFETCH(hdr)) != 0) {
4499			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4500			/* link protected by hash_lock */
4501			ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4502		}
4503		ARCSTAT_BUMP(arcstat_mfu_hits);
4504		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4505	} else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
4506		arc_state_t	*new_state = arc_mfu;
4507		/*
4508		 * This buffer has been accessed more than once but has
4509		 * been evicted from the cache.  Move it back to the
4510		 * MFU state.
4511		 */
4512
4513		if (HDR_PREFETCH(hdr)) {
4514			/*
4515			 * This is a prefetch access...
4516			 * move this block back to the MRU state.
4517			 */
4518			ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
4519			new_state = arc_mru;
4520		}
4521
4522		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4523		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4524		arc_change_state(new_state, hdr, hash_lock);
4525
4526		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
4527	} else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
4528		/*
4529		 * This buffer is on the 2nd Level ARC.
4530		 */
4531
4532		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4533		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4534		arc_change_state(arc_mfu, hdr, hash_lock);
4535	} else {
4536		ASSERT(!"invalid arc state");
4537	}
4538}
4539
4540/* a generic arc_done_func_t which you can use */
4541/* ARGSUSED */
4542void
4543arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
4544{
4545	if (zio == NULL || zio->io_error == 0)
4546		bcopy(buf->b_data, arg, HDR_GET_LSIZE(buf->b_hdr));
4547	arc_buf_destroy(buf, arg);
4548}
4549
4550/* a generic arc_done_func_t */
4551void
4552arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
4553{
4554	arc_buf_t **bufp = arg;
4555	if (zio && zio->io_error) {
4556		arc_buf_destroy(buf, arg);
4557		*bufp = NULL;
4558	} else {
4559		*bufp = buf;
4560		ASSERT(buf->b_data);
4561	}
4562}
4563
4564static void
4565arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
4566{
4567	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
4568		ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
4569		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
4570	} else {
4571		if (HDR_COMPRESSION_ENABLED(hdr)) {
4572			ASSERT3U(HDR_GET_COMPRESS(hdr), ==,
4573			    BP_GET_COMPRESS(bp));
4574		}
4575		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
4576		ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
4577	}
4578}
4579
4580static void
4581arc_read_done(zio_t *zio)
4582{
4583	arc_buf_hdr_t	*hdr = zio->io_private;
4584	arc_buf_t	*abuf = NULL;	/* buffer we're assigning to callback */
4585	kmutex_t	*hash_lock = NULL;
4586	arc_callback_t	*callback_list, *acb;
4587	int		freeable = B_FALSE;
4588
4589	/*
4590	 * The hdr was inserted into hash-table and removed from lists
4591	 * prior to starting I/O.  We should find this header, since
4592	 * it's in the hash table, and it should be legit since it's
4593	 * not possible to evict it during the I/O.  The only possible
4594	 * reason for it not to be found is if we were freed during the
4595	 * read.
4596	 */
4597	if (HDR_IN_HASH_TABLE(hdr)) {
4598		ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
4599		ASSERT3U(hdr->b_dva.dva_word[0], ==,
4600		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
4601		ASSERT3U(hdr->b_dva.dva_word[1], ==,
4602		    BP_IDENTITY(zio->io_bp)->dva_word[1]);
4603
4604		arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
4605		    &hash_lock);
4606
4607		ASSERT((found == hdr &&
4608		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
4609		    (found == hdr && HDR_L2_READING(hdr)));
4610		ASSERT3P(hash_lock, !=, NULL);
4611	}
4612
4613	if (zio->io_error == 0) {
4614		/* byteswap if necessary */
4615		if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
4616			if (BP_GET_LEVEL(zio->io_bp) > 0) {
4617				hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
4618			} else {
4619				hdr->b_l1hdr.b_byteswap =
4620				    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
4621			}
4622		} else {
4623			hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
4624		}
4625	}
4626
4627	arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
4628	if (l2arc_noprefetch && HDR_PREFETCH(hdr))
4629		arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
4630
4631	callback_list = hdr->b_l1hdr.b_acb;
4632	ASSERT3P(callback_list, !=, NULL);
4633
4634	if (hash_lock && zio->io_error == 0 &&
4635	    hdr->b_l1hdr.b_state == arc_anon) {
4636		/*
4637		 * Only call arc_access on anonymous buffers.  This is because
4638		 * if we've issued an I/O for an evicted buffer, we've already
4639		 * called arc_access (to prevent any simultaneous readers from
4640		 * getting confused).
4641		 */
4642		arc_access(hdr, hash_lock);
4643	}
4644
4645	/* create copies of the data buffer for the callers */
4646	for (acb = callback_list; acb; acb = acb->acb_next) {
4647		if (acb->acb_done != NULL) {
4648			/*
4649			 * If we're here, then this must be a demand read
4650			 * since prefetch requests don't have callbacks.
4651			 * If a read request has a callback (i.e. acb_done is
4652			 * not NULL), then we decompress the data for the
4653			 * first request and clone the rest. This avoids
4654			 * having to waste cpu resources decompressing data
4655			 * that nobody is explicitly waiting to read.
4656			 */
4657			if (abuf == NULL) {
4658				acb->acb_buf = arc_buf_alloc_impl(hdr,
4659				    acb->acb_private);
4660				if (zio->io_error == 0) {
4661					zio->io_error =
4662					    arc_decompress(acb->acb_buf);
4663				}
4664				abuf = acb->acb_buf;
4665			} else {
4666				add_reference(hdr, acb->acb_private);
4667				acb->acb_buf = arc_buf_clone(abuf);
4668			}
4669		}
4670	}
4671	hdr->b_l1hdr.b_acb = NULL;
4672	arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
4673	if (abuf == NULL) {
4674		/*
4675		 * This buffer didn't have a callback so it must
4676		 * be a prefetch.
4677		 */
4678		ASSERT(HDR_PREFETCH(hdr));
4679		ASSERT0(hdr->b_l1hdr.b_bufcnt);
4680		ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
4681	}
4682
4683	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
4684	    callback_list != NULL);
4685
4686	if (zio->io_error == 0) {
4687		arc_hdr_verify(hdr, zio->io_bp);
4688	} else {
4689		arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
4690		if (hdr->b_l1hdr.b_state != arc_anon)
4691			arc_change_state(arc_anon, hdr, hash_lock);
4692		if (HDR_IN_HASH_TABLE(hdr))
4693			buf_hash_remove(hdr);
4694		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4695	}
4696
4697	/*
4698	 * Broadcast before we drop the hash_lock to avoid the possibility
4699	 * that the hdr (and hence the cv) might be freed before we get to
4700	 * the cv_broadcast().
4701	 */
4702	cv_broadcast(&hdr->b_l1hdr.b_cv);
4703
4704	if (hash_lock != NULL) {
4705		mutex_exit(hash_lock);
4706	} else {
4707		/*
4708		 * This block was freed while we waited for the read to
4709		 * complete.  It has been removed from the hash table and
4710		 * moved to the anonymous state (so that it won't show up
4711		 * in the cache).
4712		 */
4713		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
4714		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4715	}
4716
4717	/* execute each callback and free its structure */
4718	while ((acb = callback_list) != NULL) {
4719		if (acb->acb_done)
4720			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
4721
4722		if (acb->acb_zio_dummy != NULL) {
4723			acb->acb_zio_dummy->io_error = zio->io_error;
4724			zio_nowait(acb->acb_zio_dummy);
4725		}
4726
4727		callback_list = acb->acb_next;
4728		kmem_free(acb, sizeof (arc_callback_t));
4729	}
4730
4731	if (freeable)
4732		arc_hdr_destroy(hdr);
4733}
4734
4735/*
4736 * "Read" the block at the specified DVA (in bp) via the
4737 * cache.  If the block is found in the cache, invoke the provided
4738 * callback immediately and return.  Note that the `zio' parameter
4739 * in the callback will be NULL in this case, since no IO was
4740 * required.  If the block is not in the cache pass the read request
4741 * on to the spa with a substitute callback function, so that the
4742 * requested block will be added to the cache.
4743 *
4744 * If a read request arrives for a block that has a read in-progress,
4745 * either wait for the in-progress read to complete (and return the
4746 * results); or, if this is a read with a "done" func, add a record
4747 * to the read to invoke the "done" func when the read completes,
4748 * and return; or just return.
4749 *
4750 * arc_read_done() will invoke all the requested "done" functions
4751 * for readers of this block.
4752 */
4753int
4754arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
4755    void *private, zio_priority_t priority, int zio_flags,
4756    arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
4757{
4758	arc_buf_hdr_t *hdr = NULL;
4759	kmutex_t *hash_lock = NULL;
4760	zio_t *rzio;
4761	uint64_t guid = spa_load_guid(spa);
4762
4763	ASSERT(!BP_IS_EMBEDDED(bp) ||
4764	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
4765
4766top:
4767	if (!BP_IS_EMBEDDED(bp)) {
4768		/*
4769		 * Embedded BP's have no DVA and require no I/O to "read".
4770		 * Create an anonymous arc buf to back it.
4771		 */
4772		hdr = buf_hash_find(guid, bp, &hash_lock);
4773	}
4774
4775	if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_pdata != NULL) {
4776		arc_buf_t *buf = NULL;
4777		*arc_flags |= ARC_FLAG_CACHED;
4778
4779		if (HDR_IO_IN_PROGRESS(hdr)) {
4780
4781			if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
4782			    priority == ZIO_PRIORITY_SYNC_READ) {
4783				/*
4784				 * This sync read must wait for an
4785				 * in-progress async read (e.g. a predictive
4786				 * prefetch).  Async reads are queued
4787				 * separately at the vdev_queue layer, so
4788				 * this is a form of priority inversion.
4789				 * Ideally, we would "inherit" the demand
4790				 * i/o's priority by moving the i/o from
4791				 * the async queue to the synchronous queue,
4792				 * but there is currently no mechanism to do
4793				 * so.  Track this so that we can evaluate
4794				 * the magnitude of this potential performance
4795				 * problem.
4796				 *
4797				 * Note that if the prefetch i/o is already
4798				 * active (has been issued to the device),
4799				 * the prefetch improved performance, because
4800				 * we issued it sooner than we would have
4801				 * without the prefetch.
4802				 */
4803				DTRACE_PROBE1(arc__sync__wait__for__async,
4804				    arc_buf_hdr_t *, hdr);
4805				ARCSTAT_BUMP(arcstat_sync_wait_for_async);
4806			}
4807			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
4808				arc_hdr_clear_flags(hdr,
4809				    ARC_FLAG_PREDICTIVE_PREFETCH);
4810			}
4811
4812			if (*arc_flags & ARC_FLAG_WAIT) {
4813				cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
4814				mutex_exit(hash_lock);
4815				goto top;
4816			}
4817			ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4818
4819			if (done) {
4820				arc_callback_t *acb = NULL;
4821
4822				acb = kmem_zalloc(sizeof (arc_callback_t),
4823				    KM_SLEEP);
4824				acb->acb_done = done;
4825				acb->acb_private = private;
4826				if (pio != NULL)
4827					acb->acb_zio_dummy = zio_null(pio,
4828					    spa, NULL, NULL, NULL, zio_flags);
4829
4830				ASSERT3P(acb->acb_done, !=, NULL);
4831				acb->acb_next = hdr->b_l1hdr.b_acb;
4832				hdr->b_l1hdr.b_acb = acb;
4833				mutex_exit(hash_lock);
4834				return (0);
4835			}
4836			mutex_exit(hash_lock);
4837			return (0);
4838		}
4839
4840		ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4841		    hdr->b_l1hdr.b_state == arc_mfu);
4842
4843		if (done) {
4844			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
4845				/*
4846				 * This is a demand read which does not have to
4847				 * wait for i/o because we did a predictive
4848				 * prefetch i/o for it, which has completed.
4849				 */
4850				DTRACE_PROBE1(
4851				    arc__demand__hit__predictive__prefetch,
4852				    arc_buf_hdr_t *, hdr);
4853				ARCSTAT_BUMP(
4854				    arcstat_demand_hit_predictive_prefetch);
4855				arc_hdr_clear_flags(hdr,
4856				    ARC_FLAG_PREDICTIVE_PREFETCH);
4857			}
4858			ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp));
4859
4860			/*
4861			 * If this block is already in use, create a new
4862			 * copy of the data so that we will be guaranteed
4863			 * that arc_release() will always succeed.
4864			 */
4865			buf = hdr->b_l1hdr.b_buf;
4866			if (buf == NULL) {
4867				ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
4868				ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
4869				buf = arc_buf_alloc_impl(hdr, private);
4870				VERIFY0(arc_decompress(buf));
4871			} else {
4872				add_reference(hdr, private);
4873				buf = arc_buf_clone(buf);
4874			}
4875			ASSERT3P(buf->b_data, !=, NULL);
4876
4877		} else if (*arc_flags & ARC_FLAG_PREFETCH &&
4878		    refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4879			arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
4880		}
4881		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
4882		arc_access(hdr, hash_lock);
4883		if (*arc_flags & ARC_FLAG_L2CACHE)
4884			arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
4885		mutex_exit(hash_lock);
4886		ARCSTAT_BUMP(arcstat_hits);
4887		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4888		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
4889		    data, metadata, hits);
4890
4891		if (done)
4892			done(NULL, buf, private);
4893	} else {
4894		uint64_t lsize = BP_GET_LSIZE(bp);
4895		uint64_t psize = BP_GET_PSIZE(bp);
4896		arc_callback_t *acb;
4897		vdev_t *vd = NULL;
4898		uint64_t addr = 0;
4899		boolean_t devw = B_FALSE;
4900		uint64_t size;
4901
4902		if (hdr == NULL) {
4903			/* this block is not in the cache */
4904			arc_buf_hdr_t *exists = NULL;
4905			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
4906			hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
4907			    BP_GET_COMPRESS(bp), type);
4908
4909			if (!BP_IS_EMBEDDED(bp)) {
4910				hdr->b_dva = *BP_IDENTITY(bp);
4911				hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
4912				exists = buf_hash_insert(hdr, &hash_lock);
4913			}
4914			if (exists != NULL) {
4915				/* somebody beat us to the hash insert */
4916				mutex_exit(hash_lock);
4917				buf_discard_identity(hdr);
4918				arc_hdr_destroy(hdr);
4919				goto top; /* restart the IO request */
4920			}
4921		} else {
4922			/*
4923			 * This block is in the ghost cache. If it was L2-only
4924			 * (and thus didn't have an L1 hdr), we realloc the
4925			 * header to add an L1 hdr.
4926			 */
4927			if (!HDR_HAS_L1HDR(hdr)) {
4928				hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
4929				    hdr_full_cache);
4930			}
4931			ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
4932			ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
4933			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4934			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4935			ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
4936
4937			/*
4938			 * This is a delicate dance that we play here.
4939			 * This hdr is in the ghost list so we access it
4940			 * to move it out of the ghost list before we
4941			 * initiate the read. If it's a prefetch then
4942			 * it won't have a callback so we'll remove the
4943			 * reference that arc_buf_alloc_impl() created. We
4944			 * do this after we've called arc_access() to
4945			 * avoid hitting an assert in remove_reference().
4946			 */
4947			arc_access(hdr, hash_lock);
4948			arc_hdr_alloc_pdata(hdr);
4949		}
4950		ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
4951		size = arc_hdr_size(hdr);
4952
4953		/*
4954		 * If compression is enabled on the hdr, then will do
4955		 * RAW I/O and will store the compressed data in the hdr's
4956		 * data block. Otherwise, the hdr's data block will contain
4957		 * the uncompressed data.
4958		 */
4959		if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
4960			zio_flags |= ZIO_FLAG_RAW;
4961		}
4962
4963		if (*arc_flags & ARC_FLAG_PREFETCH)
4964			arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
4965		if (*arc_flags & ARC_FLAG_L2CACHE)
4966			arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
4967		if (BP_GET_LEVEL(bp) > 0)
4968			arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
4969		if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
4970			arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH);
4971		ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
4972
4973		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
4974		acb->acb_done = done;
4975		acb->acb_private = private;
4976
4977		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
4978		hdr->b_l1hdr.b_acb = acb;
4979		arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
4980
4981		if (HDR_HAS_L2HDR(hdr) &&
4982		    (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
4983			devw = hdr->b_l2hdr.b_dev->l2ad_writing;
4984			addr = hdr->b_l2hdr.b_daddr;
4985			/*
4986			 * Lock out device removal.
4987			 */
4988			if (vdev_is_dead(vd) ||
4989			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
4990				vd = NULL;
4991		}
4992
4993		if (priority == ZIO_PRIORITY_ASYNC_READ)
4994			arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
4995		else
4996			arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
4997
4998		if (hash_lock != NULL)
4999			mutex_exit(hash_lock);
5000
5001		/*
5002		 * At this point, we have a level 1 cache miss.  Try again in
5003		 * L2ARC if possible.
5004		 */
5005		ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
5006
5007		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
5008		    uint64_t, lsize, zbookmark_phys_t *, zb);
5009		ARCSTAT_BUMP(arcstat_misses);
5010		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5011		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5012		    data, metadata, misses);
5013#ifdef _KERNEL
5014		curthread->td_ru.ru_inblock++;
5015#endif
5016
5017		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
5018			/*
5019			 * Read from the L2ARC if the following are true:
5020			 * 1. The L2ARC vdev was previously cached.
5021			 * 2. This buffer still has L2ARC metadata.
5022			 * 3. This buffer isn't currently writing to the L2ARC.
5023			 * 4. The L2ARC entry wasn't evicted, which may
5024			 *    also have invalidated the vdev.
5025			 * 5. This isn't prefetch and l2arc_noprefetch is set.
5026			 */
5027			if (HDR_HAS_L2HDR(hdr) &&
5028			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
5029			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
5030				l2arc_read_callback_t *cb;
5031				void* b_data;
5032
5033				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
5034				ARCSTAT_BUMP(arcstat_l2_hits);
5035
5036				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
5037				    KM_SLEEP);
5038				cb->l2rcb_hdr = hdr;
5039				cb->l2rcb_bp = *bp;
5040				cb->l2rcb_zb = *zb;
5041				cb->l2rcb_flags = zio_flags;
5042				uint64_t asize = vdev_psize_to_asize(vd, size);
5043				if (asize != size) {
5044					b_data = zio_data_buf_alloc(asize);
5045					cb->l2rcb_data = b_data;
5046				} else {
5047					b_data = hdr->b_l1hdr.b_pdata;
5048				}
5049
5050				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
5051				    addr + asize < vd->vdev_psize -
5052				    VDEV_LABEL_END_SIZE);
5053
5054				/*
5055				 * l2arc read.  The SCL_L2ARC lock will be
5056				 * released by l2arc_read_done().
5057				 * Issue a null zio if the underlying buffer
5058				 * was squashed to zero size by compression.
5059				 */
5060				ASSERT3U(HDR_GET_COMPRESS(hdr), !=,
5061				    ZIO_COMPRESS_EMPTY);
5062				rzio = zio_read_phys(pio, vd, addr,
5063				    asize, b_data,
5064				    ZIO_CHECKSUM_OFF,
5065				    l2arc_read_done, cb, priority,
5066				    zio_flags | ZIO_FLAG_DONT_CACHE |
5067				    ZIO_FLAG_CANFAIL |
5068				    ZIO_FLAG_DONT_PROPAGATE |
5069				    ZIO_FLAG_DONT_RETRY, B_FALSE);
5070				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
5071				    zio_t *, rzio);
5072				ARCSTAT_INCR(arcstat_l2_read_bytes, size);
5073
5074				if (*arc_flags & ARC_FLAG_NOWAIT) {
5075					zio_nowait(rzio);
5076					return (0);
5077				}
5078
5079				ASSERT(*arc_flags & ARC_FLAG_WAIT);
5080				if (zio_wait(rzio) == 0)
5081					return (0);
5082
5083				/* l2arc read error; goto zio_read() */
5084			} else {
5085				DTRACE_PROBE1(l2arc__miss,
5086				    arc_buf_hdr_t *, hdr);
5087				ARCSTAT_BUMP(arcstat_l2_misses);
5088				if (HDR_L2_WRITING(hdr))
5089					ARCSTAT_BUMP(arcstat_l2_rw_clash);
5090				spa_config_exit(spa, SCL_L2ARC, vd);
5091			}
5092		} else {
5093			if (vd != NULL)
5094				spa_config_exit(spa, SCL_L2ARC, vd);
5095			if (l2arc_ndev != 0) {
5096				DTRACE_PROBE1(l2arc__miss,
5097				    arc_buf_hdr_t *, hdr);
5098				ARCSTAT_BUMP(arcstat_l2_misses);
5099			}
5100		}
5101
5102		rzio = zio_read(pio, spa, bp, hdr->b_l1hdr.b_pdata, size,
5103		    arc_read_done, hdr, priority, zio_flags, zb);
5104
5105		if (*arc_flags & ARC_FLAG_WAIT)
5106			return (zio_wait(rzio));
5107
5108		ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5109		zio_nowait(rzio);
5110	}
5111	return (0);
5112}
5113
5114/*
5115 * Notify the arc that a block was freed, and thus will never be used again.
5116 */
5117void
5118arc_freed(spa_t *spa, const blkptr_t *bp)
5119{
5120	arc_buf_hdr_t *hdr;
5121	kmutex_t *hash_lock;
5122	uint64_t guid = spa_load_guid(spa);
5123
5124	ASSERT(!BP_IS_EMBEDDED(bp));
5125
5126	hdr = buf_hash_find(guid, bp, &hash_lock);
5127	if (hdr == NULL)
5128		return;
5129
5130	/*
5131	 * We might be trying to free a block that is still doing I/O
5132	 * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
5133	 * dmu_sync-ed block). If this block is being prefetched, then it
5134	 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
5135	 * until the I/O completes. A block may also have a reference if it is
5136	 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
5137	 * have written the new block to its final resting place on disk but
5138	 * without the dedup flag set. This would have left the hdr in the MRU
5139	 * state and discoverable. When the txg finally syncs it detects that
5140	 * the block was overridden in open context and issues an override I/O.
5141	 * Since this is a dedup block, the override I/O will determine if the
5142	 * block is already in the DDT. If so, then it will replace the io_bp
5143	 * with the bp from the DDT and allow the I/O to finish. When the I/O
5144	 * reaches the done callback, dbuf_write_override_done, it will
5145	 * check to see if the io_bp and io_bp_override are identical.
5146	 * If they are not, then it indicates that the bp was replaced with
5147	 * the bp in the DDT and the override bp is freed. This allows
5148	 * us to arrive here with a reference on a block that is being
5149	 * freed. So if we have an I/O in progress, or a reference to
5150	 * this hdr, then we don't destroy the hdr.
5151	 */
5152	if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) &&
5153	    refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) {
5154		arc_change_state(arc_anon, hdr, hash_lock);
5155		arc_hdr_destroy(hdr);
5156		mutex_exit(hash_lock);
5157	} else {
5158		mutex_exit(hash_lock);
5159	}
5160
5161}
5162
5163/*
5164 * Release this buffer from the cache, making it an anonymous buffer.  This
5165 * must be done after a read and prior to modifying the buffer contents.
5166 * If the buffer has more than one reference, we must make
5167 * a new hdr for the buffer.
5168 */
5169void
5170arc_release(arc_buf_t *buf, void *tag)
5171{
5172	arc_buf_hdr_t *hdr = buf->b_hdr;
5173
5174	/*
5175	 * It would be nice to assert that if it's DMU metadata (level >
5176	 * 0 || it's the dnode file), then it must be syncing context.
5177	 * But we don't know that information at this level.
5178	 */
5179
5180	mutex_enter(&buf->b_evict_lock);
5181
5182	ASSERT(HDR_HAS_L1HDR(hdr));
5183
5184	/*
5185	 * We don't grab the hash lock prior to this check, because if
5186	 * the buffer's header is in the arc_anon state, it won't be
5187	 * linked into the hash table.
5188	 */
5189	if (hdr->b_l1hdr.b_state == arc_anon) {
5190		mutex_exit(&buf->b_evict_lock);
5191		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5192		ASSERT(!HDR_IN_HASH_TABLE(hdr));
5193		ASSERT(!HDR_HAS_L2HDR(hdr));
5194		ASSERT(HDR_EMPTY(hdr));
5195		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
5196		ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
5197		ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
5198
5199		hdr->b_l1hdr.b_arc_access = 0;
5200
5201		/*
5202		 * If the buf is being overridden then it may already
5203		 * have a hdr that is not empty.
5204		 */
5205		buf_discard_identity(hdr);
5206		arc_buf_thaw(buf);
5207
5208		return;
5209	}
5210
5211	kmutex_t *hash_lock = HDR_LOCK(hdr);
5212	mutex_enter(hash_lock);
5213
5214	/*
5215	 * This assignment is only valid as long as the hash_lock is
5216	 * held, we must be careful not to reference state or the
5217	 * b_state field after dropping the lock.
5218	 */
5219	arc_state_t *state = hdr->b_l1hdr.b_state;
5220	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
5221	ASSERT3P(state, !=, arc_anon);
5222
5223	/* this buffer is not on any list */
5224	ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) > 0);
5225
5226	if (HDR_HAS_L2HDR(hdr)) {
5227		mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
5228
5229		/*
5230		 * We have to recheck this conditional again now that
5231		 * we're holding the l2ad_mtx to prevent a race with
5232		 * another thread which might be concurrently calling
5233		 * l2arc_evict(). In that case, l2arc_evict() might have
5234		 * destroyed the header's L2 portion as we were waiting
5235		 * to acquire the l2ad_mtx.
5236		 */
5237		if (HDR_HAS_L2HDR(hdr)) {
5238			l2arc_trim(hdr);
5239			arc_hdr_l2hdr_destroy(hdr);
5240		}
5241
5242		mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
5243	}
5244
5245	/*
5246	 * Do we have more than one buf?
5247	 */
5248	if (hdr->b_l1hdr.b_bufcnt > 1) {
5249		arc_buf_hdr_t *nhdr;
5250		arc_buf_t **bufp;
5251		uint64_t spa = hdr->b_spa;
5252		uint64_t psize = HDR_GET_PSIZE(hdr);
5253		uint64_t lsize = HDR_GET_LSIZE(hdr);
5254		enum zio_compress compress = HDR_GET_COMPRESS(hdr);
5255		arc_buf_contents_t type = arc_buf_type(hdr);
5256		VERIFY3U(hdr->b_type, ==, type);
5257
5258		ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
5259		(void) remove_reference(hdr, hash_lock, tag);
5260
5261		if (arc_buf_is_shared(buf)) {
5262			ASSERT(HDR_SHARED_DATA(hdr));
5263			ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
5264			ASSERT(ARC_BUF_LAST(buf));
5265		}
5266
5267		/*
5268		 * Pull the data off of this hdr and attach it to
5269		 * a new anonymous hdr. Also find the last buffer
5270		 * in the hdr's buffer list.
5271		 */
5272		arc_buf_t *lastbuf = NULL;
5273		bufp = &hdr->b_l1hdr.b_buf;
5274		while (*bufp != NULL) {
5275			if (*bufp == buf) {
5276				*bufp = buf->b_next;
5277			}
5278
5279			/*
5280			 * If we've removed a buffer in the middle of
5281			 * the list then update the lastbuf and update
5282			 * bufp.
5283			 */
5284			if (*bufp != NULL) {
5285				lastbuf = *bufp;
5286				bufp = &(*bufp)->b_next;
5287			}
5288		}
5289		buf->b_next = NULL;
5290		ASSERT3P(lastbuf, !=, buf);
5291		ASSERT3P(lastbuf, !=, NULL);
5292
5293		/*
5294		 * If the current arc_buf_t and the hdr are sharing their data
5295		 * buffer, then we must stop sharing that block, transfer
5296		 * ownership and setup sharing with a new arc_buf_t at the end
5297		 * of the hdr's b_buf list.
5298		 */
5299		if (arc_buf_is_shared(buf)) {
5300			ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
5301			ASSERT(ARC_BUF_LAST(lastbuf));
5302			VERIFY(!arc_buf_is_shared(lastbuf));
5303
5304			/*
5305			 * First, sever the block sharing relationship between
5306			 * buf and the arc_buf_hdr_t. Then, setup a new
5307			 * block sharing relationship with the last buffer
5308			 * on the arc_buf_t list.
5309			 */
5310			arc_unshare_buf(hdr, buf);
5311			arc_share_buf(hdr, lastbuf);
5312			VERIFY3P(lastbuf->b_data, !=, NULL);
5313		} else if (HDR_SHARED_DATA(hdr)) {
5314			ASSERT(arc_buf_is_shared(lastbuf));
5315		}
5316		ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
5317		ASSERT3P(state, !=, arc_l2c_only);
5318
5319		(void) refcount_remove_many(&state->arcs_size,
5320		    HDR_GET_LSIZE(hdr), buf);
5321
5322		if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
5323			ASSERT3P(state, !=, arc_l2c_only);
5324			(void) refcount_remove_many(&state->arcs_esize[type],
5325			    HDR_GET_LSIZE(hdr), buf);
5326		}
5327
5328		hdr->b_l1hdr.b_bufcnt -= 1;
5329		arc_cksum_verify(buf);
5330#ifdef illumos
5331		arc_buf_unwatch(buf);
5332#endif
5333
5334		mutex_exit(hash_lock);
5335
5336		/*
5337		 * Allocate a new hdr. The new hdr will contain a b_pdata
5338		 * buffer which will be freed in arc_write().
5339		 */
5340		nhdr = arc_hdr_alloc(spa, psize, lsize, compress, type);
5341		ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
5342		ASSERT0(nhdr->b_l1hdr.b_bufcnt);
5343		ASSERT0(refcount_count(&nhdr->b_l1hdr.b_refcnt));
5344		VERIFY3U(nhdr->b_type, ==, type);
5345		ASSERT(!HDR_SHARED_DATA(nhdr));
5346
5347		nhdr->b_l1hdr.b_buf = buf;
5348		nhdr->b_l1hdr.b_bufcnt = 1;
5349		(void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
5350		buf->b_hdr = nhdr;
5351
5352		mutex_exit(&buf->b_evict_lock);
5353		(void) refcount_add_many(&arc_anon->arcs_size,
5354		    HDR_GET_LSIZE(nhdr), buf);
5355	} else {
5356		mutex_exit(&buf->b_evict_lock);
5357		ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
5358		/* protected by hash lock, or hdr is on arc_anon */
5359		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
5360		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5361		arc_change_state(arc_anon, hdr, hash_lock);
5362		hdr->b_l1hdr.b_arc_access = 0;
5363		mutex_exit(hash_lock);
5364
5365		buf_discard_identity(hdr);
5366		arc_buf_thaw(buf);
5367	}
5368}
5369
5370int
5371arc_released(arc_buf_t *buf)
5372{
5373	int released;
5374
5375	mutex_enter(&buf->b_evict_lock);
5376	released = (buf->b_data != NULL &&
5377	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
5378	mutex_exit(&buf->b_evict_lock);
5379	return (released);
5380}
5381
5382#ifdef ZFS_DEBUG
5383int
5384arc_referenced(arc_buf_t *buf)
5385{
5386	int referenced;
5387
5388	mutex_enter(&buf->b_evict_lock);
5389	referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
5390	mutex_exit(&buf->b_evict_lock);
5391	return (referenced);
5392}
5393#endif
5394
5395static void
5396arc_write_ready(zio_t *zio)
5397{
5398	arc_write_callback_t *callback = zio->io_private;
5399	arc_buf_t *buf = callback->awcb_buf;
5400	arc_buf_hdr_t *hdr = buf->b_hdr;
5401	uint64_t psize = BP_IS_HOLE(zio->io_bp) ? 0 : BP_GET_PSIZE(zio->io_bp);
5402
5403	ASSERT(HDR_HAS_L1HDR(hdr));
5404	ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
5405	ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
5406
5407	/*
5408	 * If we're reexecuting this zio because the pool suspended, then
5409	 * cleanup any state that was previously set the first time the
5410	 * callback as invoked.
5411	 */
5412	if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
5413		arc_cksum_free(hdr);
5414#ifdef illumos
5415		arc_buf_unwatch(buf);
5416#endif
5417		if (hdr->b_l1hdr.b_pdata != NULL) {
5418			if (arc_buf_is_shared(buf)) {
5419				ASSERT(HDR_SHARED_DATA(hdr));
5420
5421				arc_unshare_buf(hdr, buf);
5422			} else {
5423				arc_hdr_free_pdata(hdr);
5424			}
5425		}
5426	}
5427	ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
5428	ASSERT(!HDR_SHARED_DATA(hdr));
5429	ASSERT(!arc_buf_is_shared(buf));
5430
5431	callback->awcb_ready(zio, buf, callback->awcb_private);
5432
5433	if (HDR_IO_IN_PROGRESS(hdr))
5434		ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
5435
5436	arc_cksum_compute(buf);
5437	arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5438
5439	enum zio_compress compress;
5440	if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5441		compress = ZIO_COMPRESS_OFF;
5442	} else {
5443		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(zio->io_bp));
5444		compress = BP_GET_COMPRESS(zio->io_bp);
5445	}
5446	HDR_SET_PSIZE(hdr, psize);
5447	arc_hdr_set_compress(hdr, compress);
5448
5449	/*
5450	 * If the hdr is compressed, then copy the compressed
5451	 * zio contents into arc_buf_hdr_t. Otherwise, copy the original
5452	 * data buf into the hdr. Ideally, we would like to always copy the
5453	 * io_data into b_pdata but the user may have disabled compressed
5454	 * arc thus the on-disk block may or may not match what we maintain
5455	 * in the hdr's b_pdata field.
5456	 */
5457	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
5458		ASSERT(BP_GET_COMPRESS(zio->io_bp) != ZIO_COMPRESS_OFF);
5459		ASSERT3U(psize, >, 0);
5460		arc_hdr_alloc_pdata(hdr);
5461		bcopy(zio->io_data, hdr->b_l1hdr.b_pdata, psize);
5462	} else {
5463		ASSERT3P(buf->b_data, ==, zio->io_orig_data);
5464		ASSERT3U(zio->io_orig_size, ==, HDR_GET_LSIZE(hdr));
5465		ASSERT3U(hdr->b_l1hdr.b_byteswap, ==, DMU_BSWAP_NUMFUNCS);
5466		ASSERT(!HDR_SHARED_DATA(hdr));
5467		ASSERT(!arc_buf_is_shared(buf));
5468		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
5469		ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
5470
5471		/*
5472		 * This hdr is not compressed so we're able to share
5473		 * the arc_buf_t data buffer with the hdr.
5474		 */
5475		arc_share_buf(hdr, buf);
5476		VERIFY0(bcmp(zio->io_orig_data, hdr->b_l1hdr.b_pdata,
5477		    HDR_GET_LSIZE(hdr)));
5478	}
5479	arc_hdr_verify(hdr, zio->io_bp);
5480}
5481
5482static void
5483arc_write_children_ready(zio_t *zio)
5484{
5485	arc_write_callback_t *callback = zio->io_private;
5486	arc_buf_t *buf = callback->awcb_buf;
5487
5488	callback->awcb_children_ready(zio, buf, callback->awcb_private);
5489}
5490
5491/*
5492 * The SPA calls this callback for each physical write that happens on behalf
5493 * of a logical write.  See the comment in dbuf_write_physdone() for details.
5494 */
5495static void
5496arc_write_physdone(zio_t *zio)
5497{
5498	arc_write_callback_t *cb = zio->io_private;
5499	if (cb->awcb_physdone != NULL)
5500		cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
5501}
5502
5503static void
5504arc_write_done(zio_t *zio)
5505{
5506	arc_write_callback_t *callback = zio->io_private;
5507	arc_buf_t *buf = callback->awcb_buf;
5508	arc_buf_hdr_t *hdr = buf->b_hdr;
5509
5510	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5511
5512	if (zio->io_error == 0) {
5513		arc_hdr_verify(hdr, zio->io_bp);
5514
5515		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5516			buf_discard_identity(hdr);
5517		} else {
5518			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
5519			hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
5520		}
5521	} else {
5522		ASSERT(HDR_EMPTY(hdr));
5523	}
5524
5525	/*
5526	 * If the block to be written was all-zero or compressed enough to be
5527	 * embedded in the BP, no write was performed so there will be no
5528	 * dva/birth/checksum.  The buffer must therefore remain anonymous
5529	 * (and uncached).
5530	 */
5531	if (!HDR_EMPTY(hdr)) {
5532		arc_buf_hdr_t *exists;
5533		kmutex_t *hash_lock;
5534
5535		ASSERT(zio->io_error == 0);
5536
5537		arc_cksum_verify(buf);
5538
5539		exists = buf_hash_insert(hdr, &hash_lock);
5540		if (exists != NULL) {
5541			/*
5542			 * This can only happen if we overwrite for
5543			 * sync-to-convergence, because we remove
5544			 * buffers from the hash table when we arc_free().
5545			 */
5546			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
5547				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5548					panic("bad overwrite, hdr=%p exists=%p",
5549					    (void *)hdr, (void *)exists);
5550				ASSERT(refcount_is_zero(
5551				    &exists->b_l1hdr.b_refcnt));
5552				arc_change_state(arc_anon, exists, hash_lock);
5553				mutex_exit(hash_lock);
5554				arc_hdr_destroy(exists);
5555				exists = buf_hash_insert(hdr, &hash_lock);
5556				ASSERT3P(exists, ==, NULL);
5557			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
5558				/* nopwrite */
5559				ASSERT(zio->io_prop.zp_nopwrite);
5560				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5561					panic("bad nopwrite, hdr=%p exists=%p",
5562					    (void *)hdr, (void *)exists);
5563			} else {
5564				/* Dedup */
5565				ASSERT(hdr->b_l1hdr.b_bufcnt == 1);
5566				ASSERT(hdr->b_l1hdr.b_state == arc_anon);
5567				ASSERT(BP_GET_DEDUP(zio->io_bp));
5568				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
5569			}
5570		}
5571		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5572		/* if it's not anon, we are doing a scrub */
5573		if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
5574			arc_access(hdr, hash_lock);
5575		mutex_exit(hash_lock);
5576	} else {
5577		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5578	}
5579
5580	ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5581	callback->awcb_done(zio, buf, callback->awcb_private);
5582
5583	kmem_free(callback, sizeof (arc_write_callback_t));
5584}
5585
5586zio_t *
5587arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
5588    boolean_t l2arc, const zio_prop_t *zp, arc_done_func_t *ready,
5589    arc_done_func_t *children_ready, arc_done_func_t *physdone,
5590    arc_done_func_t *done, void *private, zio_priority_t priority,
5591    int zio_flags, const zbookmark_phys_t *zb)
5592{
5593	arc_buf_hdr_t *hdr = buf->b_hdr;
5594	arc_write_callback_t *callback;
5595	zio_t *zio;
5596
5597	ASSERT3P(ready, !=, NULL);
5598	ASSERT3P(done, !=, NULL);
5599	ASSERT(!HDR_IO_ERROR(hdr));
5600	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5601	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5602	ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
5603	if (l2arc)
5604		arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5605	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
5606	callback->awcb_ready = ready;
5607	callback->awcb_children_ready = children_ready;
5608	callback->awcb_physdone = physdone;
5609	callback->awcb_done = done;
5610	callback->awcb_private = private;
5611	callback->awcb_buf = buf;
5612
5613	/*
5614	 * The hdr's b_pdata is now stale, free it now. A new data block
5615	 * will be allocated when the zio pipeline calls arc_write_ready().
5616	 */
5617	if (hdr->b_l1hdr.b_pdata != NULL) {
5618		/*
5619		 * If the buf is currently sharing the data block with
5620		 * the hdr then we need to break that relationship here.
5621		 * The hdr will remain with a NULL data pointer and the
5622		 * buf will take sole ownership of the block.
5623		 */
5624		if (arc_buf_is_shared(buf)) {
5625			ASSERT(ARC_BUF_LAST(buf));
5626			arc_unshare_buf(hdr, buf);
5627		} else {
5628			arc_hdr_free_pdata(hdr);
5629		}
5630		VERIFY3P(buf->b_data, !=, NULL);
5631		arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
5632	}
5633	ASSERT(!arc_buf_is_shared(buf));
5634	ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
5635
5636	zio = zio_write(pio, spa, txg, bp, buf->b_data, HDR_GET_LSIZE(hdr), zp,
5637	    arc_write_ready,
5638	    (children_ready != NULL) ? arc_write_children_ready : NULL,
5639	    arc_write_physdone, arc_write_done, callback,
5640	    priority, zio_flags, zb);
5641
5642	return (zio);
5643}
5644
5645static int
5646arc_memory_throttle(uint64_t reserve, uint64_t txg)
5647{
5648#ifdef _KERNEL
5649	uint64_t available_memory = ptob(freemem);
5650	static uint64_t page_load = 0;
5651	static uint64_t last_txg = 0;
5652
5653#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
5654	available_memory =
5655	    MIN(available_memory, ptob(vmem_size(heap_arena, VMEM_FREE)));
5656#endif
5657
5658	if (freemem > (uint64_t)physmem * arc_lotsfree_percent / 100)
5659		return (0);
5660
5661	if (txg > last_txg) {
5662		last_txg = txg;
5663		page_load = 0;
5664	}
5665	/*
5666	 * If we are in pageout, we know that memory is already tight,
5667	 * the arc is already going to be evicting, so we just want to
5668	 * continue to let page writes occur as quickly as possible.
5669	 */
5670	if (curproc == pageproc) {
5671		if (page_load > MAX(ptob(minfree), available_memory) / 4)
5672			return (SET_ERROR(ERESTART));
5673		/* Note: reserve is inflated, so we deflate */
5674		page_load += reserve / 8;
5675		return (0);
5676	} else if (page_load > 0 && arc_reclaim_needed()) {
5677		/* memory is low, delay before restarting */
5678		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
5679		return (SET_ERROR(EAGAIN));
5680	}
5681	page_load = 0;
5682#endif
5683	return (0);
5684}
5685
5686void
5687arc_tempreserve_clear(uint64_t reserve)
5688{
5689	atomic_add_64(&arc_tempreserve, -reserve);
5690	ASSERT((int64_t)arc_tempreserve >= 0);
5691}
5692
5693int
5694arc_tempreserve_space(uint64_t reserve, uint64_t txg)
5695{
5696	int error;
5697	uint64_t anon_size;
5698
5699	if (reserve > arc_c/4 && !arc_no_grow) {
5700		arc_c = MIN(arc_c_max, reserve * 4);
5701		DTRACE_PROBE1(arc__set_reserve, uint64_t, arc_c);
5702	}
5703	if (reserve > arc_c)
5704		return (SET_ERROR(ENOMEM));
5705
5706	/*
5707	 * Don't count loaned bufs as in flight dirty data to prevent long
5708	 * network delays from blocking transactions that are ready to be
5709	 * assigned to a txg.
5710	 */
5711	anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
5712	    arc_loaned_bytes), 0);
5713
5714	/*
5715	 * Writes will, almost always, require additional memory allocations
5716	 * in order to compress/encrypt/etc the data.  We therefore need to
5717	 * make sure that there is sufficient available memory for this.
5718	 */
5719	error = arc_memory_throttle(reserve, txg);
5720	if (error != 0)
5721		return (error);
5722
5723	/*
5724	 * Throttle writes when the amount of dirty data in the cache
5725	 * gets too large.  We try to keep the cache less than half full
5726	 * of dirty blocks so that our sync times don't grow too large.
5727	 * Note: if two requests come in concurrently, we might let them
5728	 * both succeed, when one of them should fail.  Not a huge deal.
5729	 */
5730
5731	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
5732	    anon_size > arc_c / 4) {
5733		uint64_t meta_esize =
5734		    refcount_count(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
5735		uint64_t data_esize =
5736		    refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
5737		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
5738		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
5739		    arc_tempreserve >> 10, meta_esize >> 10,
5740		    data_esize >> 10, reserve >> 10, arc_c >> 10);
5741		return (SET_ERROR(ERESTART));
5742	}
5743	atomic_add_64(&arc_tempreserve, reserve);
5744	return (0);
5745}
5746
5747static void
5748arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
5749    kstat_named_t *evict_data, kstat_named_t *evict_metadata)
5750{
5751	size->value.ui64 = refcount_count(&state->arcs_size);
5752	evict_data->value.ui64 =
5753	    refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
5754	evict_metadata->value.ui64 =
5755	    refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
5756}
5757
5758static int
5759arc_kstat_update(kstat_t *ksp, int rw)
5760{
5761	arc_stats_t *as = ksp->ks_data;
5762
5763	if (rw == KSTAT_WRITE) {
5764		return (EACCES);
5765	} else {
5766		arc_kstat_update_state(arc_anon,
5767		    &as->arcstat_anon_size,
5768		    &as->arcstat_anon_evictable_data,
5769		    &as->arcstat_anon_evictable_metadata);
5770		arc_kstat_update_state(arc_mru,
5771		    &as->arcstat_mru_size,
5772		    &as->arcstat_mru_evictable_data,
5773		    &as->arcstat_mru_evictable_metadata);
5774		arc_kstat_update_state(arc_mru_ghost,
5775		    &as->arcstat_mru_ghost_size,
5776		    &as->arcstat_mru_ghost_evictable_data,
5777		    &as->arcstat_mru_ghost_evictable_metadata);
5778		arc_kstat_update_state(arc_mfu,
5779		    &as->arcstat_mfu_size,
5780		    &as->arcstat_mfu_evictable_data,
5781		    &as->arcstat_mfu_evictable_metadata);
5782		arc_kstat_update_state(arc_mfu_ghost,
5783		    &as->arcstat_mfu_ghost_size,
5784		    &as->arcstat_mfu_ghost_evictable_data,
5785		    &as->arcstat_mfu_ghost_evictable_metadata);
5786	}
5787
5788	return (0);
5789}
5790
5791/*
5792 * This function *must* return indices evenly distributed between all
5793 * sublists of the multilist. This is needed due to how the ARC eviction
5794 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
5795 * distributed between all sublists and uses this assumption when
5796 * deciding which sublist to evict from and how much to evict from it.
5797 */
5798unsigned int
5799arc_state_multilist_index_func(multilist_t *ml, void *obj)
5800{
5801	arc_buf_hdr_t *hdr = obj;
5802
5803	/*
5804	 * We rely on b_dva to generate evenly distributed index
5805	 * numbers using buf_hash below. So, as an added precaution,
5806	 * let's make sure we never add empty buffers to the arc lists.
5807	 */
5808	ASSERT(!HDR_EMPTY(hdr));
5809
5810	/*
5811	 * The assumption here, is the hash value for a given
5812	 * arc_buf_hdr_t will remain constant throughout it's lifetime
5813	 * (i.e. it's b_spa, b_dva, and b_birth fields don't change).
5814	 * Thus, we don't need to store the header's sublist index
5815	 * on insertion, as this index can be recalculated on removal.
5816	 *
5817	 * Also, the low order bits of the hash value are thought to be
5818	 * distributed evenly. Otherwise, in the case that the multilist
5819	 * has a power of two number of sublists, each sublists' usage
5820	 * would not be evenly distributed.
5821	 */
5822	return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
5823	    multilist_get_num_sublists(ml));
5824}
5825
5826#ifdef _KERNEL
5827static eventhandler_tag arc_event_lowmem = NULL;
5828
5829static void
5830arc_lowmem(void *arg __unused, int howto __unused)
5831{
5832
5833	mutex_enter(&arc_reclaim_lock);
5834	/* XXX: Memory deficit should be passed as argument. */
5835	needfree = btoc(arc_c >> arc_shrink_shift);
5836	DTRACE_PROBE(arc__needfree);
5837	cv_signal(&arc_reclaim_thread_cv);
5838
5839	/*
5840	 * It is unsafe to block here in arbitrary threads, because we can come
5841	 * here from ARC itself and may hold ARC locks and thus risk a deadlock
5842	 * with ARC reclaim thread.
5843	 */
5844	if (curproc == pageproc)
5845		(void) cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
5846	mutex_exit(&arc_reclaim_lock);
5847}
5848#endif
5849
5850static void
5851arc_state_init(void)
5852{
5853	arc_anon = &ARC_anon;
5854	arc_mru = &ARC_mru;
5855	arc_mru_ghost = &ARC_mru_ghost;
5856	arc_mfu = &ARC_mfu;
5857	arc_mfu_ghost = &ARC_mfu_ghost;
5858	arc_l2c_only = &ARC_l2c_only;
5859
5860	multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
5861	    sizeof (arc_buf_hdr_t),
5862	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5863	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5864	multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
5865	    sizeof (arc_buf_hdr_t),
5866	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5867	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5868	multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
5869	    sizeof (arc_buf_hdr_t),
5870	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5871	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5872	multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
5873	    sizeof (arc_buf_hdr_t),
5874	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5875	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5876	multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
5877	    sizeof (arc_buf_hdr_t),
5878	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5879	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5880	multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
5881	    sizeof (arc_buf_hdr_t),
5882	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5883	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5884	multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
5885	    sizeof (arc_buf_hdr_t),
5886	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5887	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5888	multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
5889	    sizeof (arc_buf_hdr_t),
5890	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5891	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5892	multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
5893	    sizeof (arc_buf_hdr_t),
5894	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5895	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5896	multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
5897	    sizeof (arc_buf_hdr_t),
5898	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5899	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5900
5901	refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
5902	refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
5903	refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
5904	refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
5905	refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
5906	refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
5907	refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
5908	refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
5909	refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
5910	refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
5911	refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
5912	refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
5913
5914	refcount_create(&arc_anon->arcs_size);
5915	refcount_create(&arc_mru->arcs_size);
5916	refcount_create(&arc_mru_ghost->arcs_size);
5917	refcount_create(&arc_mfu->arcs_size);
5918	refcount_create(&arc_mfu_ghost->arcs_size);
5919	refcount_create(&arc_l2c_only->arcs_size);
5920}
5921
5922static void
5923arc_state_fini(void)
5924{
5925	refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
5926	refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
5927	refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
5928	refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
5929	refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
5930	refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
5931	refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
5932	refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
5933	refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
5934	refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
5935	refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
5936	refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
5937
5938	refcount_destroy(&arc_anon->arcs_size);
5939	refcount_destroy(&arc_mru->arcs_size);
5940	refcount_destroy(&arc_mru_ghost->arcs_size);
5941	refcount_destroy(&arc_mfu->arcs_size);
5942	refcount_destroy(&arc_mfu_ghost->arcs_size);
5943	refcount_destroy(&arc_l2c_only->arcs_size);
5944
5945	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
5946	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
5947	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
5948	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
5949	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
5950	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
5951	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
5952	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
5953}
5954
5955uint64_t
5956arc_max_bytes(void)
5957{
5958	return (arc_c_max);
5959}
5960
5961void
5962arc_init(void)
5963{
5964	int i, prefetch_tunable_set = 0;
5965
5966	mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
5967	cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
5968	cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
5969
5970	/* Convert seconds to clock ticks */
5971	arc_min_prefetch_lifespan = 1 * hz;
5972
5973	/* Start out with 1/8 of all memory */
5974	arc_c = kmem_size() / 8;
5975
5976#ifdef illumos
5977#ifdef _KERNEL
5978	/*
5979	 * On architectures where the physical memory can be larger
5980	 * than the addressable space (intel in 32-bit mode), we may
5981	 * need to limit the cache to 1/8 of VM size.
5982	 */
5983	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
5984#endif
5985#endif	/* illumos */
5986	/* set min cache to 1/32 of all memory, or arc_abs_min, whichever is more */
5987	arc_c_min = MAX(arc_c / 4, arc_abs_min);
5988	/* set max to 1/2 of all memory, or all but 1GB, whichever is more */
5989	if (arc_c * 8 >= 1 << 30)
5990		arc_c_max = (arc_c * 8) - (1 << 30);
5991	else
5992		arc_c_max = arc_c_min;
5993	arc_c_max = MAX(arc_c * 5, arc_c_max);
5994
5995	/*
5996	 * In userland, there's only the memory pressure that we artificially
5997	 * create (see arc_available_memory()).  Don't let arc_c get too
5998	 * small, because it can cause transactions to be larger than
5999	 * arc_c, causing arc_tempreserve_space() to fail.
6000	 */
6001#ifndef _KERNEL
6002	arc_c_min = arc_c_max / 2;
6003#endif
6004
6005#ifdef _KERNEL
6006	/*
6007	 * Allow the tunables to override our calculations if they are
6008	 * reasonable.
6009	 */
6010	if (zfs_arc_max > arc_abs_min && zfs_arc_max < kmem_size()) {
6011		arc_c_max = zfs_arc_max;
6012		arc_c_min = MIN(arc_c_min, arc_c_max);
6013	}
6014	if (zfs_arc_min > arc_abs_min && zfs_arc_min <= arc_c_max)
6015		arc_c_min = zfs_arc_min;
6016#endif
6017
6018	arc_c = arc_c_max;
6019	arc_p = (arc_c >> 1);
6020	arc_size = 0;
6021
6022	/* limit meta-data to 1/4 of the arc capacity */
6023	arc_meta_limit = arc_c_max / 4;
6024
6025	/* Allow the tunable to override if it is reasonable */
6026	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
6027		arc_meta_limit = zfs_arc_meta_limit;
6028
6029	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
6030		arc_c_min = arc_meta_limit / 2;
6031
6032	if (zfs_arc_meta_min > 0) {
6033		arc_meta_min = zfs_arc_meta_min;
6034	} else {
6035		arc_meta_min = arc_c_min / 2;
6036	}
6037
6038	if (zfs_arc_grow_retry > 0)
6039		arc_grow_retry = zfs_arc_grow_retry;
6040
6041	if (zfs_arc_shrink_shift > 0)
6042		arc_shrink_shift = zfs_arc_shrink_shift;
6043
6044	/*
6045	 * Ensure that arc_no_grow_shift is less than arc_shrink_shift.
6046	 */
6047	if (arc_no_grow_shift >= arc_shrink_shift)
6048		arc_no_grow_shift = arc_shrink_shift - 1;
6049
6050	if (zfs_arc_p_min_shift > 0)
6051		arc_p_min_shift = zfs_arc_p_min_shift;
6052
6053	if (zfs_arc_num_sublists_per_state < 1)
6054		zfs_arc_num_sublists_per_state = MAX(max_ncpus, 1);
6055
6056	/* if kmem_flags are set, lets try to use less memory */
6057	if (kmem_debugging())
6058		arc_c = arc_c / 2;
6059	if (arc_c < arc_c_min)
6060		arc_c = arc_c_min;
6061
6062	zfs_arc_min = arc_c_min;
6063	zfs_arc_max = arc_c_max;
6064
6065	arc_state_init();
6066	buf_init();
6067
6068	arc_reclaim_thread_exit = B_FALSE;
6069
6070	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
6071	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
6072
6073	if (arc_ksp != NULL) {
6074		arc_ksp->ks_data = &arc_stats;
6075		arc_ksp->ks_update = arc_kstat_update;
6076		kstat_install(arc_ksp);
6077	}
6078
6079	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
6080	    TS_RUN, minclsyspri);
6081
6082#ifdef _KERNEL
6083	arc_event_lowmem = EVENTHANDLER_REGISTER(vm_lowmem, arc_lowmem, NULL,
6084	    EVENTHANDLER_PRI_FIRST);
6085#endif
6086
6087	arc_dead = B_FALSE;
6088	arc_warm = B_FALSE;
6089
6090	/*
6091	 * Calculate maximum amount of dirty data per pool.
6092	 *
6093	 * If it has been set by /etc/system, take that.
6094	 * Otherwise, use a percentage of physical memory defined by
6095	 * zfs_dirty_data_max_percent (default 10%) with a cap at
6096	 * zfs_dirty_data_max_max (default 4GB).
6097	 */
6098	if (zfs_dirty_data_max == 0) {
6099		zfs_dirty_data_max = ptob(physmem) *
6100		    zfs_dirty_data_max_percent / 100;
6101		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
6102		    zfs_dirty_data_max_max);
6103	}
6104
6105#ifdef _KERNEL
6106	if (TUNABLE_INT_FETCH("vfs.zfs.prefetch_disable", &zfs_prefetch_disable))
6107		prefetch_tunable_set = 1;
6108
6109#ifdef __i386__
6110	if (prefetch_tunable_set == 0) {
6111		printf("ZFS NOTICE: Prefetch is disabled by default on i386 "
6112		    "-- to enable,\n");
6113		printf("            add \"vfs.zfs.prefetch_disable=0\" "
6114		    "to /boot/loader.conf.\n");
6115		zfs_prefetch_disable = 1;
6116	}
6117#else
6118	if ((((uint64_t)physmem * PAGESIZE) < (1ULL << 32)) &&
6119	    prefetch_tunable_set == 0) {
6120		printf("ZFS NOTICE: Prefetch is disabled by default if less "
6121		    "than 4GB of RAM is present;\n"
6122		    "            to enable, add \"vfs.zfs.prefetch_disable=0\" "
6123		    "to /boot/loader.conf.\n");
6124		zfs_prefetch_disable = 1;
6125	}
6126#endif
6127	/* Warn about ZFS memory and address space requirements. */
6128	if (((uint64_t)physmem * PAGESIZE) < (256 + 128 + 64) * (1 << 20)) {
6129		printf("ZFS WARNING: Recommended minimum RAM size is 512MB; "
6130		    "expect unstable behavior.\n");
6131	}
6132	if (kmem_size() < 512 * (1 << 20)) {
6133		printf("ZFS WARNING: Recommended minimum kmem_size is 512MB; "
6134		    "expect unstable behavior.\n");
6135		printf("             Consider tuning vm.kmem_size and "
6136		    "vm.kmem_size_max\n");
6137		printf("             in /boot/loader.conf.\n");
6138	}
6139#endif
6140}
6141
6142void
6143arc_fini(void)
6144{
6145	mutex_enter(&arc_reclaim_lock);
6146	arc_reclaim_thread_exit = B_TRUE;
6147	/*
6148	 * The reclaim thread will set arc_reclaim_thread_exit back to
6149	 * B_FALSE when it is finished exiting; we're waiting for that.
6150	 */
6151	while (arc_reclaim_thread_exit) {
6152		cv_signal(&arc_reclaim_thread_cv);
6153		cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
6154	}
6155	mutex_exit(&arc_reclaim_lock);
6156
6157	/* Use B_TRUE to ensure *all* buffers are evicted */
6158	arc_flush(NULL, B_TRUE);
6159
6160	arc_dead = B_TRUE;
6161
6162	if (arc_ksp != NULL) {
6163		kstat_delete(arc_ksp);
6164		arc_ksp = NULL;
6165	}
6166
6167	mutex_destroy(&arc_reclaim_lock);
6168	cv_destroy(&arc_reclaim_thread_cv);
6169	cv_destroy(&arc_reclaim_waiters_cv);
6170
6171	arc_state_fini();
6172	buf_fini();
6173
6174	ASSERT0(arc_loaned_bytes);
6175
6176#ifdef _KERNEL
6177	if (arc_event_lowmem != NULL)
6178		EVENTHANDLER_DEREGISTER(vm_lowmem, arc_event_lowmem);
6179#endif
6180}
6181
6182/*
6183 * Level 2 ARC
6184 *
6185 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
6186 * It uses dedicated storage devices to hold cached data, which are populated
6187 * using large infrequent writes.  The main role of this cache is to boost
6188 * the performance of random read workloads.  The intended L2ARC devices
6189 * include short-stroked disks, solid state disks, and other media with
6190 * substantially faster read latency than disk.
6191 *
6192 *                 +-----------------------+
6193 *                 |         ARC           |
6194 *                 +-----------------------+
6195 *                    |         ^     ^
6196 *                    |         |     |
6197 *      l2arc_feed_thread()    arc_read()
6198 *                    |         |     |
6199 *                    |  l2arc read   |
6200 *                    V         |     |
6201 *               +---------------+    |
6202 *               |     L2ARC     |    |
6203 *               +---------------+    |
6204 *                   |    ^           |
6205 *          l2arc_write() |           |
6206 *                   |    |           |
6207 *                   V    |           |
6208 *                 +-------+      +-------+
6209 *                 | vdev  |      | vdev  |
6210 *                 | cache |      | cache |
6211 *                 +-------+      +-------+
6212 *                 +=========+     .-----.
6213 *                 :  L2ARC  :    |-_____-|
6214 *                 : devices :    | Disks |
6215 *                 +=========+    `-_____-'
6216 *
6217 * Read requests are satisfied from the following sources, in order:
6218 *
6219 *	1) ARC
6220 *	2) vdev cache of L2ARC devices
6221 *	3) L2ARC devices
6222 *	4) vdev cache of disks
6223 *	5) disks
6224 *
6225 * Some L2ARC device types exhibit extremely slow write performance.
6226 * To accommodate for this there are some significant differences between
6227 * the L2ARC and traditional cache design:
6228 *
6229 * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
6230 * the ARC behave as usual, freeing buffers and placing headers on ghost
6231 * lists.  The ARC does not send buffers to the L2ARC during eviction as
6232 * this would add inflated write latencies for all ARC memory pressure.
6233 *
6234 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
6235 * It does this by periodically scanning buffers from the eviction-end of
6236 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
6237 * not already there. It scans until a headroom of buffers is satisfied,
6238 * which itself is a buffer for ARC eviction. If a compressible buffer is
6239 * found during scanning and selected for writing to an L2ARC device, we
6240 * temporarily boost scanning headroom during the next scan cycle to make
6241 * sure we adapt to compression effects (which might significantly reduce
6242 * the data volume we write to L2ARC). The thread that does this is
6243 * l2arc_feed_thread(), illustrated below; example sizes are included to
6244 * provide a better sense of ratio than this diagram:
6245 *
6246 *	       head -->                        tail
6247 *	        +---------------------+----------+
6248 *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
6249 *	        +---------------------+----------+   |   o L2ARC eligible
6250 *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
6251 *	        +---------------------+----------+   |
6252 *	             15.9 Gbytes      ^ 32 Mbytes    |
6253 *	                           headroom          |
6254 *	                                      l2arc_feed_thread()
6255 *	                                             |
6256 *	                 l2arc write hand <--[oooo]--'
6257 *	                         |           8 Mbyte
6258 *	                         |          write max
6259 *	                         V
6260 *		  +==============================+
6261 *	L2ARC dev |####|#|###|###|    |####| ... |
6262 *	          +==============================+
6263 *	                     32 Gbytes
6264 *
6265 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
6266 * evicted, then the L2ARC has cached a buffer much sooner than it probably
6267 * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
6268 * safe to say that this is an uncommon case, since buffers at the end of
6269 * the ARC lists have moved there due to inactivity.
6270 *
6271 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
6272 * then the L2ARC simply misses copying some buffers.  This serves as a
6273 * pressure valve to prevent heavy read workloads from both stalling the ARC
6274 * with waits and clogging the L2ARC with writes.  This also helps prevent
6275 * the potential for the L2ARC to churn if it attempts to cache content too
6276 * quickly, such as during backups of the entire pool.
6277 *
6278 * 5. After system boot and before the ARC has filled main memory, there are
6279 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
6280 * lists can remain mostly static.  Instead of searching from tail of these
6281 * lists as pictured, the l2arc_feed_thread() will search from the list heads
6282 * for eligible buffers, greatly increasing its chance of finding them.
6283 *
6284 * The L2ARC device write speed is also boosted during this time so that
6285 * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
6286 * there are no L2ARC reads, and no fear of degrading read performance
6287 * through increased writes.
6288 *
6289 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
6290 * the vdev queue can aggregate them into larger and fewer writes.  Each
6291 * device is written to in a rotor fashion, sweeping writes through
6292 * available space then repeating.
6293 *
6294 * 7. The L2ARC does not store dirty content.  It never needs to flush
6295 * write buffers back to disk based storage.
6296 *
6297 * 8. If an ARC buffer is written (and dirtied) which also exists in the
6298 * L2ARC, the now stale L2ARC buffer is immediately dropped.
6299 *
6300 * The performance of the L2ARC can be tweaked by a number of tunables, which
6301 * may be necessary for different workloads:
6302 *
6303 *	l2arc_write_max		max write bytes per interval
6304 *	l2arc_write_boost	extra write bytes during device warmup
6305 *	l2arc_noprefetch	skip caching prefetched buffers
6306 *	l2arc_headroom		number of max device writes to precache
6307 *	l2arc_headroom_boost	when we find compressed buffers during ARC
6308 *				scanning, we multiply headroom by this
6309 *				percentage factor for the next scan cycle,
6310 *				since more compressed buffers are likely to
6311 *				be present
6312 *	l2arc_feed_secs		seconds between L2ARC writing
6313 *
6314 * Tunables may be removed or added as future performance improvements are
6315 * integrated, and also may become zpool properties.
6316 *
6317 * There are three key functions that control how the L2ARC warms up:
6318 *
6319 *	l2arc_write_eligible()	check if a buffer is eligible to cache
6320 *	l2arc_write_size()	calculate how much to write
6321 *	l2arc_write_interval()	calculate sleep delay between writes
6322 *
6323 * These three functions determine what to write, how much, and how quickly
6324 * to send writes.
6325 */
6326
6327static boolean_t
6328l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
6329{
6330	/*
6331	 * A buffer is *not* eligible for the L2ARC if it:
6332	 * 1. belongs to a different spa.
6333	 * 2. is already cached on the L2ARC.
6334	 * 3. has an I/O in progress (it may be an incomplete read).
6335	 * 4. is flagged not eligible (zfs property).
6336	 */
6337	if (hdr->b_spa != spa_guid) {
6338		ARCSTAT_BUMP(arcstat_l2_write_spa_mismatch);
6339		return (B_FALSE);
6340	}
6341	if (HDR_HAS_L2HDR(hdr)) {
6342		ARCSTAT_BUMP(arcstat_l2_write_in_l2);
6343		return (B_FALSE);
6344	}
6345	if (HDR_IO_IN_PROGRESS(hdr)) {
6346		ARCSTAT_BUMP(arcstat_l2_write_hdr_io_in_progress);
6347		return (B_FALSE);
6348	}
6349	if (!HDR_L2CACHE(hdr)) {
6350		ARCSTAT_BUMP(arcstat_l2_write_not_cacheable);
6351		return (B_FALSE);
6352	}
6353
6354	return (B_TRUE);
6355}
6356
6357static uint64_t
6358l2arc_write_size(void)
6359{
6360	uint64_t size;
6361
6362	/*
6363	 * Make sure our globals have meaningful values in case the user
6364	 * altered them.
6365	 */
6366	size = l2arc_write_max;
6367	if (size == 0) {
6368		cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
6369		    "be greater than zero, resetting it to the default (%d)",
6370		    L2ARC_WRITE_SIZE);
6371		size = l2arc_write_max = L2ARC_WRITE_SIZE;
6372	}
6373
6374	if (arc_warm == B_FALSE)
6375		size += l2arc_write_boost;
6376
6377	return (size);
6378
6379}
6380
6381static clock_t
6382l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
6383{
6384	clock_t interval, next, now;
6385
6386	/*
6387	 * If the ARC lists are busy, increase our write rate; if the
6388	 * lists are stale, idle back.  This is achieved by checking
6389	 * how much we previously wrote - if it was more than half of
6390	 * what we wanted, schedule the next write much sooner.
6391	 */
6392	if (l2arc_feed_again && wrote > (wanted / 2))
6393		interval = (hz * l2arc_feed_min_ms) / 1000;
6394	else
6395		interval = hz * l2arc_feed_secs;
6396
6397	now = ddi_get_lbolt();
6398	next = MAX(now, MIN(now + interval, began + interval));
6399
6400	return (next);
6401}
6402
6403/*
6404 * Cycle through L2ARC devices.  This is how L2ARC load balances.
6405 * If a device is returned, this also returns holding the spa config lock.
6406 */
6407static l2arc_dev_t *
6408l2arc_dev_get_next(void)
6409{
6410	l2arc_dev_t *first, *next = NULL;
6411
6412	/*
6413	 * Lock out the removal of spas (spa_namespace_lock), then removal
6414	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
6415	 * both locks will be dropped and a spa config lock held instead.
6416	 */
6417	mutex_enter(&spa_namespace_lock);
6418	mutex_enter(&l2arc_dev_mtx);
6419
6420	/* if there are no vdevs, there is nothing to do */
6421	if (l2arc_ndev == 0)
6422		goto out;
6423
6424	first = NULL;
6425	next = l2arc_dev_last;
6426	do {
6427		/* loop around the list looking for a non-faulted vdev */
6428		if (next == NULL) {
6429			next = list_head(l2arc_dev_list);
6430		} else {
6431			next = list_next(l2arc_dev_list, next);
6432			if (next == NULL)
6433				next = list_head(l2arc_dev_list);
6434		}
6435
6436		/* if we have come back to the start, bail out */
6437		if (first == NULL)
6438			first = next;
6439		else if (next == first)
6440			break;
6441
6442	} while (vdev_is_dead(next->l2ad_vdev));
6443
6444	/* if we were unable to find any usable vdevs, return NULL */
6445	if (vdev_is_dead(next->l2ad_vdev))
6446		next = NULL;
6447
6448	l2arc_dev_last = next;
6449
6450out:
6451	mutex_exit(&l2arc_dev_mtx);
6452
6453	/*
6454	 * Grab the config lock to prevent the 'next' device from being
6455	 * removed while we are writing to it.
6456	 */
6457	if (next != NULL)
6458		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
6459	mutex_exit(&spa_namespace_lock);
6460
6461	return (next);
6462}
6463
6464/*
6465 * Free buffers that were tagged for destruction.
6466 */
6467static void
6468l2arc_do_free_on_write()
6469{
6470	list_t *buflist;
6471	l2arc_data_free_t *df, *df_prev;
6472
6473	mutex_enter(&l2arc_free_on_write_mtx);
6474	buflist = l2arc_free_on_write;
6475
6476	for (df = list_tail(buflist); df; df = df_prev) {
6477		df_prev = list_prev(buflist, df);
6478		ASSERT3P(df->l2df_data, !=, NULL);
6479		if (df->l2df_type == ARC_BUFC_METADATA) {
6480			zio_buf_free(df->l2df_data, df->l2df_size);
6481		} else {
6482			ASSERT(df->l2df_type == ARC_BUFC_DATA);
6483			zio_data_buf_free(df->l2df_data, df->l2df_size);
6484		}
6485		list_remove(buflist, df);
6486		kmem_free(df, sizeof (l2arc_data_free_t));
6487	}
6488
6489	mutex_exit(&l2arc_free_on_write_mtx);
6490}
6491
6492/*
6493 * A write to a cache device has completed.  Update all headers to allow
6494 * reads from these buffers to begin.
6495 */
6496static void
6497l2arc_write_done(zio_t *zio)
6498{
6499	l2arc_write_callback_t *cb;
6500	l2arc_dev_t *dev;
6501	list_t *buflist;
6502	arc_buf_hdr_t *head, *hdr, *hdr_prev;
6503	kmutex_t *hash_lock;
6504	int64_t bytes_dropped = 0;
6505
6506	cb = zio->io_private;
6507	ASSERT3P(cb, !=, NULL);
6508	dev = cb->l2wcb_dev;
6509	ASSERT3P(dev, !=, NULL);
6510	head = cb->l2wcb_head;
6511	ASSERT3P(head, !=, NULL);
6512	buflist = &dev->l2ad_buflist;
6513	ASSERT3P(buflist, !=, NULL);
6514	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
6515	    l2arc_write_callback_t *, cb);
6516
6517	if (zio->io_error != 0)
6518		ARCSTAT_BUMP(arcstat_l2_writes_error);
6519
6520	/*
6521	 * All writes completed, or an error was hit.
6522	 */
6523top:
6524	mutex_enter(&dev->l2ad_mtx);
6525	for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
6526		hdr_prev = list_prev(buflist, hdr);
6527
6528		hash_lock = HDR_LOCK(hdr);
6529
6530		/*
6531		 * We cannot use mutex_enter or else we can deadlock
6532		 * with l2arc_write_buffers (due to swapping the order
6533		 * the hash lock and l2ad_mtx are taken).
6534		 */
6535		if (!mutex_tryenter(hash_lock)) {
6536			/*
6537			 * Missed the hash lock. We must retry so we
6538			 * don't leave the ARC_FLAG_L2_WRITING bit set.
6539			 */
6540			ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
6541
6542			/*
6543			 * We don't want to rescan the headers we've
6544			 * already marked as having been written out, so
6545			 * we reinsert the head node so we can pick up
6546			 * where we left off.
6547			 */
6548			list_remove(buflist, head);
6549			list_insert_after(buflist, hdr, head);
6550
6551			mutex_exit(&dev->l2ad_mtx);
6552
6553			/*
6554			 * We wait for the hash lock to become available
6555			 * to try and prevent busy waiting, and increase
6556			 * the chance we'll be able to acquire the lock
6557			 * the next time around.
6558			 */
6559			mutex_enter(hash_lock);
6560			mutex_exit(hash_lock);
6561			goto top;
6562		}
6563
6564		/*
6565		 * We could not have been moved into the arc_l2c_only
6566		 * state while in-flight due to our ARC_FLAG_L2_WRITING
6567		 * bit being set. Let's just ensure that's being enforced.
6568		 */
6569		ASSERT(HDR_HAS_L1HDR(hdr));
6570
6571		if (zio->io_error != 0) {
6572			/*
6573			 * Error - drop L2ARC entry.
6574			 */
6575			list_remove(buflist, hdr);
6576			l2arc_trim(hdr);
6577			arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
6578
6579			ARCSTAT_INCR(arcstat_l2_asize, -arc_hdr_size(hdr));
6580			ARCSTAT_INCR(arcstat_l2_size, -HDR_GET_LSIZE(hdr));
6581
6582			bytes_dropped += arc_hdr_size(hdr);
6583			(void) refcount_remove_many(&dev->l2ad_alloc,
6584			    arc_hdr_size(hdr), hdr);
6585		}
6586
6587		/*
6588		 * Allow ARC to begin reads and ghost list evictions to
6589		 * this L2ARC entry.
6590		 */
6591		arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
6592
6593		mutex_exit(hash_lock);
6594	}
6595
6596	atomic_inc_64(&l2arc_writes_done);
6597	list_remove(buflist, head);
6598	ASSERT(!HDR_HAS_L1HDR(head));
6599	kmem_cache_free(hdr_l2only_cache, head);
6600	mutex_exit(&dev->l2ad_mtx);
6601
6602	vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
6603
6604	l2arc_do_free_on_write();
6605
6606	kmem_free(cb, sizeof (l2arc_write_callback_t));
6607}
6608
6609/*
6610 * A read to a cache device completed.  Validate buffer contents before
6611 * handing over to the regular ARC routines.
6612 */
6613static void
6614l2arc_read_done(zio_t *zio)
6615{
6616	l2arc_read_callback_t *cb;
6617	arc_buf_hdr_t *hdr;
6618	kmutex_t *hash_lock;
6619	boolean_t valid_cksum;
6620
6621	ASSERT3P(zio->io_vd, !=, NULL);
6622	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
6623
6624	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
6625
6626	cb = zio->io_private;
6627	ASSERT3P(cb, !=, NULL);
6628	hdr = cb->l2rcb_hdr;
6629	ASSERT3P(hdr, !=, NULL);
6630
6631	hash_lock = HDR_LOCK(hdr);
6632	mutex_enter(hash_lock);
6633	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6634
6635	/*
6636	 * If the data was read into a temporary buffer,
6637	 * move it and free the buffer.
6638	 */
6639	if (cb->l2rcb_data != NULL) {
6640		ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
6641		if (zio->io_error == 0) {
6642			bcopy(cb->l2rcb_data, hdr->b_l1hdr.b_pdata,
6643			    arc_hdr_size(hdr));
6644		}
6645
6646		/*
6647		 * The following must be done regardless of whether
6648		 * there was an error:
6649		 * - free the temporary buffer
6650		 * - point zio to the real ARC buffer
6651		 * - set zio size accordingly
6652		 * These are required because zio is either re-used for
6653		 * an I/O of the block in the case of the error
6654		 * or the zio is passed to arc_read_done() and it
6655		 * needs real data.
6656		 */
6657		zio_data_buf_free(cb->l2rcb_data, zio->io_size);
6658		zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
6659		zio->io_data = zio->io_orig_data = hdr->b_l1hdr.b_pdata;
6660	}
6661
6662	ASSERT3P(zio->io_data, !=, NULL);
6663
6664	/*
6665	 * Check this survived the L2ARC journey.
6666	 */
6667	ASSERT3P(zio->io_data, ==, hdr->b_l1hdr.b_pdata);
6668	zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
6669	zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
6670
6671	valid_cksum = arc_cksum_is_equal(hdr, zio);
6672	if (valid_cksum && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
6673		mutex_exit(hash_lock);
6674		zio->io_private = hdr;
6675		arc_read_done(zio);
6676	} else {
6677		mutex_exit(hash_lock);
6678		/*
6679		 * Buffer didn't survive caching.  Increment stats and
6680		 * reissue to the original storage device.
6681		 */
6682		if (zio->io_error != 0) {
6683			ARCSTAT_BUMP(arcstat_l2_io_error);
6684		} else {
6685			zio->io_error = SET_ERROR(EIO);
6686		}
6687		if (!valid_cksum)
6688			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
6689
6690		/*
6691		 * If there's no waiter, issue an async i/o to the primary
6692		 * storage now.  If there *is* a waiter, the caller must
6693		 * issue the i/o in a context where it's OK to block.
6694		 */
6695		if (zio->io_waiter == NULL) {
6696			zio_t *pio = zio_unique_parent(zio);
6697
6698			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
6699
6700			zio_nowait(zio_read(pio, zio->io_spa, zio->io_bp,
6701			    hdr->b_l1hdr.b_pdata, zio->io_size, arc_read_done,
6702			    hdr, zio->io_priority, cb->l2rcb_flags,
6703			    &cb->l2rcb_zb));
6704		}
6705	}
6706
6707	kmem_free(cb, sizeof (l2arc_read_callback_t));
6708}
6709
6710/*
6711 * This is the list priority from which the L2ARC will search for pages to
6712 * cache.  This is used within loops (0..3) to cycle through lists in the
6713 * desired order.  This order can have a significant effect on cache
6714 * performance.
6715 *
6716 * Currently the metadata lists are hit first, MFU then MRU, followed by
6717 * the data lists.  This function returns a locked list, and also returns
6718 * the lock pointer.
6719 */
6720static multilist_sublist_t *
6721l2arc_sublist_lock(int list_num)
6722{
6723	multilist_t *ml = NULL;
6724	unsigned int idx;
6725
6726	ASSERT(list_num >= 0 && list_num <= 3);
6727
6728	switch (list_num) {
6729	case 0:
6730		ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
6731		break;
6732	case 1:
6733		ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
6734		break;
6735	case 2:
6736		ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
6737		break;
6738	case 3:
6739		ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
6740		break;
6741	}
6742
6743	/*
6744	 * Return a randomly-selected sublist. This is acceptable
6745	 * because the caller feeds only a little bit of data for each
6746	 * call (8MB). Subsequent calls will result in different
6747	 * sublists being selected.
6748	 */
6749	idx = multilist_get_random_index(ml);
6750	return (multilist_sublist_lock(ml, idx));
6751}
6752
6753/*
6754 * Evict buffers from the device write hand to the distance specified in
6755 * bytes.  This distance may span populated buffers, it may span nothing.
6756 * This is clearing a region on the L2ARC device ready for writing.
6757 * If the 'all' boolean is set, every buffer is evicted.
6758 */
6759static void
6760l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
6761{
6762	list_t *buflist;
6763	arc_buf_hdr_t *hdr, *hdr_prev;
6764	kmutex_t *hash_lock;
6765	uint64_t taddr;
6766
6767	buflist = &dev->l2ad_buflist;
6768
6769	if (!all && dev->l2ad_first) {
6770		/*
6771		 * This is the first sweep through the device.  There is
6772		 * nothing to evict.
6773		 */
6774		return;
6775	}
6776
6777	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
6778		/*
6779		 * When nearing the end of the device, evict to the end
6780		 * before the device write hand jumps to the start.
6781		 */
6782		taddr = dev->l2ad_end;
6783	} else {
6784		taddr = dev->l2ad_hand + distance;
6785	}
6786	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
6787	    uint64_t, taddr, boolean_t, all);
6788
6789top:
6790	mutex_enter(&dev->l2ad_mtx);
6791	for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
6792		hdr_prev = list_prev(buflist, hdr);
6793
6794		hash_lock = HDR_LOCK(hdr);
6795
6796		/*
6797		 * We cannot use mutex_enter or else we can deadlock
6798		 * with l2arc_write_buffers (due to swapping the order
6799		 * the hash lock and l2ad_mtx are taken).
6800		 */
6801		if (!mutex_tryenter(hash_lock)) {
6802			/*
6803			 * Missed the hash lock.  Retry.
6804			 */
6805			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
6806			mutex_exit(&dev->l2ad_mtx);
6807			mutex_enter(hash_lock);
6808			mutex_exit(hash_lock);
6809			goto top;
6810		}
6811
6812		if (HDR_L2_WRITE_HEAD(hdr)) {
6813			/*
6814			 * We hit a write head node.  Leave it for
6815			 * l2arc_write_done().
6816			 */
6817			list_remove(buflist, hdr);
6818			mutex_exit(hash_lock);
6819			continue;
6820		}
6821
6822		if (!all && HDR_HAS_L2HDR(hdr) &&
6823		    (hdr->b_l2hdr.b_daddr >= taddr ||
6824		    hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
6825			/*
6826			 * We've evicted to the target address,
6827			 * or the end of the device.
6828			 */
6829			mutex_exit(hash_lock);
6830			break;
6831		}
6832
6833		ASSERT(HDR_HAS_L2HDR(hdr));
6834		if (!HDR_HAS_L1HDR(hdr)) {
6835			ASSERT(!HDR_L2_READING(hdr));
6836			/*
6837			 * This doesn't exist in the ARC.  Destroy.
6838			 * arc_hdr_destroy() will call list_remove()
6839			 * and decrement arcstat_l2_size.
6840			 */
6841			arc_change_state(arc_anon, hdr, hash_lock);
6842			arc_hdr_destroy(hdr);
6843		} else {
6844			ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
6845			ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
6846			/*
6847			 * Invalidate issued or about to be issued
6848			 * reads, since we may be about to write
6849			 * over this location.
6850			 */
6851			if (HDR_L2_READING(hdr)) {
6852				ARCSTAT_BUMP(arcstat_l2_evict_reading);
6853				arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
6854			}
6855
6856			/* Ensure this header has finished being written */
6857			ASSERT(!HDR_L2_WRITING(hdr));
6858
6859			arc_hdr_l2hdr_destroy(hdr);
6860		}
6861		mutex_exit(hash_lock);
6862	}
6863	mutex_exit(&dev->l2ad_mtx);
6864}
6865
6866/*
6867 * Find and write ARC buffers to the L2ARC device.
6868 *
6869 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
6870 * for reading until they have completed writing.
6871 * The headroom_boost is an in-out parameter used to maintain headroom boost
6872 * state between calls to this function.
6873 *
6874 * Returns the number of bytes actually written (which may be smaller than
6875 * the delta by which the device hand has changed due to alignment).
6876 */
6877static uint64_t
6878l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
6879{
6880	arc_buf_hdr_t *hdr, *hdr_prev, *head;
6881	uint64_t write_asize, write_psize, write_sz, headroom;
6882	boolean_t full;
6883	l2arc_write_callback_t *cb;
6884	zio_t *pio, *wzio;
6885	uint64_t guid = spa_load_guid(spa);
6886	int try;
6887
6888	ASSERT3P(dev->l2ad_vdev, !=, NULL);
6889
6890	pio = NULL;
6891	write_sz = write_asize = write_psize = 0;
6892	full = B_FALSE;
6893	head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
6894	arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
6895
6896	ARCSTAT_BUMP(arcstat_l2_write_buffer_iter);
6897	/*
6898	 * Copy buffers for L2ARC writing.
6899	 */
6900	for (try = 0; try <= 3; try++) {
6901		multilist_sublist_t *mls = l2arc_sublist_lock(try);
6902		uint64_t passed_sz = 0;
6903
6904		ARCSTAT_BUMP(arcstat_l2_write_buffer_list_iter);
6905
6906		/*
6907		 * L2ARC fast warmup.
6908		 *
6909		 * Until the ARC is warm and starts to evict, read from the
6910		 * head of the ARC lists rather than the tail.
6911		 */
6912		if (arc_warm == B_FALSE)
6913			hdr = multilist_sublist_head(mls);
6914		else
6915			hdr = multilist_sublist_tail(mls);
6916		if (hdr == NULL)
6917			ARCSTAT_BUMP(arcstat_l2_write_buffer_list_null_iter);
6918
6919		headroom = target_sz * l2arc_headroom;
6920		if (zfs_compressed_arc_enabled)
6921			headroom = (headroom * l2arc_headroom_boost) / 100;
6922
6923		for (; hdr; hdr = hdr_prev) {
6924			kmutex_t *hash_lock;
6925
6926			if (arc_warm == B_FALSE)
6927				hdr_prev = multilist_sublist_next(mls, hdr);
6928			else
6929				hdr_prev = multilist_sublist_prev(mls, hdr);
6930			ARCSTAT_INCR(arcstat_l2_write_buffer_bytes_scanned,
6931			    HDR_GET_LSIZE(hdr));
6932
6933			hash_lock = HDR_LOCK(hdr);
6934			if (!mutex_tryenter(hash_lock)) {
6935				ARCSTAT_BUMP(arcstat_l2_write_trylock_fail);
6936				/*
6937				 * Skip this buffer rather than waiting.
6938				 */
6939				continue;
6940			}
6941
6942			passed_sz += HDR_GET_LSIZE(hdr);
6943			if (passed_sz > headroom) {
6944				/*
6945				 * Searched too far.
6946				 */
6947				mutex_exit(hash_lock);
6948				ARCSTAT_BUMP(arcstat_l2_write_passed_headroom);
6949				break;
6950			}
6951
6952			if (!l2arc_write_eligible(guid, hdr)) {
6953				mutex_exit(hash_lock);
6954				continue;
6955			}
6956
6957			/*
6958			 * We rely on the L1 portion of the header below, so
6959			 * it's invalid for this header to have been evicted out
6960			 * of the ghost cache, prior to being written out. The
6961			 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
6962			 */
6963			ASSERT(HDR_HAS_L1HDR(hdr));
6964
6965			ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
6966			ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
6967			ASSERT3U(arc_hdr_size(hdr), >, 0);
6968			uint64_t size = arc_hdr_size(hdr);
6969			uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
6970			    size);
6971
6972			if ((write_psize + asize) > target_sz) {
6973				full = B_TRUE;
6974				mutex_exit(hash_lock);
6975				ARCSTAT_BUMP(arcstat_l2_write_full);
6976				break;
6977			}
6978
6979			if (pio == NULL) {
6980				/*
6981				 * Insert a dummy header on the buflist so
6982				 * l2arc_write_done() can find where the
6983				 * write buffers begin without searching.
6984				 */
6985				mutex_enter(&dev->l2ad_mtx);
6986				list_insert_head(&dev->l2ad_buflist, head);
6987				mutex_exit(&dev->l2ad_mtx);
6988
6989				cb = kmem_alloc(
6990				    sizeof (l2arc_write_callback_t), KM_SLEEP);
6991				cb->l2wcb_dev = dev;
6992				cb->l2wcb_head = head;
6993				pio = zio_root(spa, l2arc_write_done, cb,
6994				    ZIO_FLAG_CANFAIL);
6995				ARCSTAT_BUMP(arcstat_l2_write_pios);
6996			}
6997
6998			hdr->b_l2hdr.b_dev = dev;
6999			hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
7000			arc_hdr_set_flags(hdr,
7001			    ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR);
7002
7003			mutex_enter(&dev->l2ad_mtx);
7004			list_insert_head(&dev->l2ad_buflist, hdr);
7005			mutex_exit(&dev->l2ad_mtx);
7006
7007			(void) refcount_add_many(&dev->l2ad_alloc, size, hdr);
7008
7009			/*
7010			 * Normally the L2ARC can use the hdr's data, but if
7011			 * we're sharing data between the hdr and one of its
7012			 * bufs, L2ARC needs its own copy of the data so that
7013			 * the ZIO below can't race with the buf consumer. To
7014			 * ensure that this copy will be available for the
7015			 * lifetime of the ZIO and be cleaned up afterwards, we
7016			 * add it to the l2arc_free_on_write queue.
7017			 */
7018			void *to_write;
7019			if (!HDR_SHARED_DATA(hdr) && size == asize) {
7020				to_write = hdr->b_l1hdr.b_pdata;
7021			} else {
7022				arc_buf_contents_t type = arc_buf_type(hdr);
7023				if (type == ARC_BUFC_METADATA) {
7024					to_write = zio_buf_alloc(asize);
7025				} else {
7026					ASSERT3U(type, ==, ARC_BUFC_DATA);
7027					to_write = zio_data_buf_alloc(asize);
7028				}
7029
7030				bcopy(hdr->b_l1hdr.b_pdata, to_write, size);
7031				if (asize != size)
7032					bzero(to_write + size, asize - size);
7033				l2arc_free_data_on_write(to_write, asize, type);
7034			}
7035			wzio = zio_write_phys(pio, dev->l2ad_vdev,
7036			    hdr->b_l2hdr.b_daddr, asize, to_write,
7037			    ZIO_CHECKSUM_OFF, NULL, hdr,
7038			    ZIO_PRIORITY_ASYNC_WRITE,
7039			    ZIO_FLAG_CANFAIL, B_FALSE);
7040
7041			write_sz += HDR_GET_LSIZE(hdr);
7042			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
7043			    zio_t *, wzio);
7044
7045			write_asize += size;
7046			write_psize += asize;
7047			dev->l2ad_hand += asize;
7048
7049			mutex_exit(hash_lock);
7050
7051			(void) zio_nowait(wzio);
7052		}
7053
7054		multilist_sublist_unlock(mls);
7055
7056		if (full == B_TRUE)
7057			break;
7058	}
7059
7060	/* No buffers selected for writing? */
7061	if (pio == NULL) {
7062		ASSERT0(write_sz);
7063		ASSERT(!HDR_HAS_L1HDR(head));
7064		kmem_cache_free(hdr_l2only_cache, head);
7065		return (0);
7066	}
7067
7068	ASSERT3U(write_psize, <=, target_sz);
7069	ARCSTAT_BUMP(arcstat_l2_writes_sent);
7070	ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
7071	ARCSTAT_INCR(arcstat_l2_size, write_sz);
7072	ARCSTAT_INCR(arcstat_l2_asize, write_asize);
7073	vdev_space_update(dev->l2ad_vdev, write_asize, 0, 0);
7074
7075	/*
7076	 * Bump device hand to the device start if it is approaching the end.
7077	 * l2arc_evict() will already have evicted ahead for this case.
7078	 */
7079	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
7080		dev->l2ad_hand = dev->l2ad_start;
7081		dev->l2ad_first = B_FALSE;
7082	}
7083
7084	dev->l2ad_writing = B_TRUE;
7085	(void) zio_wait(pio);
7086	dev->l2ad_writing = B_FALSE;
7087
7088	return (write_asize);
7089}
7090
7091/*
7092 * This thread feeds the L2ARC at regular intervals.  This is the beating
7093 * heart of the L2ARC.
7094 */
7095static void
7096l2arc_feed_thread(void *dummy __unused)
7097{
7098	callb_cpr_t cpr;
7099	l2arc_dev_t *dev;
7100	spa_t *spa;
7101	uint64_t size, wrote;
7102	clock_t begin, next = ddi_get_lbolt();
7103
7104	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
7105
7106	mutex_enter(&l2arc_feed_thr_lock);
7107
7108	while (l2arc_thread_exit == 0) {
7109		CALLB_CPR_SAFE_BEGIN(&cpr);
7110		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
7111		    next - ddi_get_lbolt());
7112		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
7113		next = ddi_get_lbolt() + hz;
7114
7115		/*
7116		 * Quick check for L2ARC devices.
7117		 */
7118		mutex_enter(&l2arc_dev_mtx);
7119		if (l2arc_ndev == 0) {
7120			mutex_exit(&l2arc_dev_mtx);
7121			continue;
7122		}
7123		mutex_exit(&l2arc_dev_mtx);
7124		begin = ddi_get_lbolt();
7125
7126		/*
7127		 * This selects the next l2arc device to write to, and in
7128		 * doing so the next spa to feed from: dev->l2ad_spa.   This
7129		 * will return NULL if there are now no l2arc devices or if
7130		 * they are all faulted.
7131		 *
7132		 * If a device is returned, its spa's config lock is also
7133		 * held to prevent device removal.  l2arc_dev_get_next()
7134		 * will grab and release l2arc_dev_mtx.
7135		 */
7136		if ((dev = l2arc_dev_get_next()) == NULL)
7137			continue;
7138
7139		spa = dev->l2ad_spa;
7140		ASSERT3P(spa, !=, NULL);
7141
7142		/*
7143		 * If the pool is read-only then force the feed thread to
7144		 * sleep a little longer.
7145		 */
7146		if (!spa_writeable(spa)) {
7147			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
7148			spa_config_exit(spa, SCL_L2ARC, dev);
7149			continue;
7150		}
7151
7152		/*
7153		 * Avoid contributing to memory pressure.
7154		 */
7155		if (arc_reclaim_needed()) {
7156			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
7157			spa_config_exit(spa, SCL_L2ARC, dev);
7158			continue;
7159		}
7160
7161		ARCSTAT_BUMP(arcstat_l2_feeds);
7162
7163		size = l2arc_write_size();
7164
7165		/*
7166		 * Evict L2ARC buffers that will be overwritten.
7167		 */
7168		l2arc_evict(dev, size, B_FALSE);
7169
7170		/*
7171		 * Write ARC buffers.
7172		 */
7173		wrote = l2arc_write_buffers(spa, dev, size);
7174
7175		/*
7176		 * Calculate interval between writes.
7177		 */
7178		next = l2arc_write_interval(begin, size, wrote);
7179		spa_config_exit(spa, SCL_L2ARC, dev);
7180	}
7181
7182	l2arc_thread_exit = 0;
7183	cv_broadcast(&l2arc_feed_thr_cv);
7184	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
7185	thread_exit();
7186}
7187
7188boolean_t
7189l2arc_vdev_present(vdev_t *vd)
7190{
7191	l2arc_dev_t *dev;
7192
7193	mutex_enter(&l2arc_dev_mtx);
7194	for (dev = list_head(l2arc_dev_list); dev != NULL;
7195	    dev = list_next(l2arc_dev_list, dev)) {
7196		if (dev->l2ad_vdev == vd)
7197			break;
7198	}
7199	mutex_exit(&l2arc_dev_mtx);
7200
7201	return (dev != NULL);
7202}
7203
7204/*
7205 * Add a vdev for use by the L2ARC.  By this point the spa has already
7206 * validated the vdev and opened it.
7207 */
7208void
7209l2arc_add_vdev(spa_t *spa, vdev_t *vd)
7210{
7211	l2arc_dev_t *adddev;
7212
7213	ASSERT(!l2arc_vdev_present(vd));
7214
7215	vdev_ashift_optimize(vd);
7216
7217	/*
7218	 * Create a new l2arc device entry.
7219	 */
7220	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
7221	adddev->l2ad_spa = spa;
7222	adddev->l2ad_vdev = vd;
7223	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
7224	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
7225	adddev->l2ad_hand = adddev->l2ad_start;
7226	adddev->l2ad_first = B_TRUE;
7227	adddev->l2ad_writing = B_FALSE;
7228
7229	mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
7230	/*
7231	 * This is a list of all ARC buffers that are still valid on the
7232	 * device.
7233	 */
7234	list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
7235	    offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
7236
7237	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
7238	refcount_create(&adddev->l2ad_alloc);
7239
7240	/*
7241	 * Add device to global list
7242	 */
7243	mutex_enter(&l2arc_dev_mtx);
7244	list_insert_head(l2arc_dev_list, adddev);
7245	atomic_inc_64(&l2arc_ndev);
7246	mutex_exit(&l2arc_dev_mtx);
7247}
7248
7249/*
7250 * Remove a vdev from the L2ARC.
7251 */
7252void
7253l2arc_remove_vdev(vdev_t *vd)
7254{
7255	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
7256
7257	/*
7258	 * Find the device by vdev
7259	 */
7260	mutex_enter(&l2arc_dev_mtx);
7261	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
7262		nextdev = list_next(l2arc_dev_list, dev);
7263		if (vd == dev->l2ad_vdev) {
7264			remdev = dev;
7265			break;
7266		}
7267	}
7268	ASSERT3P(remdev, !=, NULL);
7269
7270	/*
7271	 * Remove device from global list
7272	 */
7273	list_remove(l2arc_dev_list, remdev);
7274	l2arc_dev_last = NULL;		/* may have been invalidated */
7275	atomic_dec_64(&l2arc_ndev);
7276	mutex_exit(&l2arc_dev_mtx);
7277
7278	/*
7279	 * Clear all buflists and ARC references.  L2ARC device flush.
7280	 */
7281	l2arc_evict(remdev, 0, B_TRUE);
7282	list_destroy(&remdev->l2ad_buflist);
7283	mutex_destroy(&remdev->l2ad_mtx);
7284	refcount_destroy(&remdev->l2ad_alloc);
7285	kmem_free(remdev, sizeof (l2arc_dev_t));
7286}
7287
7288void
7289l2arc_init(void)
7290{
7291	l2arc_thread_exit = 0;
7292	l2arc_ndev = 0;
7293	l2arc_writes_sent = 0;
7294	l2arc_writes_done = 0;
7295
7296	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
7297	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
7298	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
7299	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
7300
7301	l2arc_dev_list = &L2ARC_dev_list;
7302	l2arc_free_on_write = &L2ARC_free_on_write;
7303	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
7304	    offsetof(l2arc_dev_t, l2ad_node));
7305	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
7306	    offsetof(l2arc_data_free_t, l2df_list_node));
7307}
7308
7309void
7310l2arc_fini(void)
7311{
7312	/*
7313	 * This is called from dmu_fini(), which is called from spa_fini();
7314	 * Because of this, we can assume that all l2arc devices have
7315	 * already been removed when the pools themselves were removed.
7316	 */
7317
7318	l2arc_do_free_on_write();
7319
7320	mutex_destroy(&l2arc_feed_thr_lock);
7321	cv_destroy(&l2arc_feed_thr_cv);
7322	mutex_destroy(&l2arc_dev_mtx);
7323	mutex_destroy(&l2arc_free_on_write_mtx);
7324
7325	list_destroy(l2arc_dev_list);
7326	list_destroy(l2arc_free_on_write);
7327}
7328
7329void
7330l2arc_start(void)
7331{
7332	if (!(spa_mode_global & FWRITE))
7333		return;
7334
7335	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
7336	    TS_RUN, minclsyspri);
7337}
7338
7339void
7340l2arc_stop(void)
7341{
7342	if (!(spa_mode_global & FWRITE))
7343		return;
7344
7345	mutex_enter(&l2arc_feed_thr_lock);
7346	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
7347	l2arc_thread_exit = 1;
7348	while (l2arc_thread_exit != 0)
7349		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
7350	mutex_exit(&l2arc_feed_thr_lock);
7351}
7352