arc.c revision 314032
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24 * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26 * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
27 */
28
29/*
30 * DVA-based Adjustable Replacement Cache
31 *
32 * While much of the theory of operation used here is
33 * based on the self-tuning, low overhead replacement cache
34 * presented by Megiddo and Modha at FAST 2003, there are some
35 * significant differences:
36 *
37 * 1. The Megiddo and Modha model assumes any page is evictable.
38 * Pages in its cache cannot be "locked" into memory.  This makes
39 * the eviction algorithm simple: evict the last page in the list.
40 * This also make the performance characteristics easy to reason
41 * about.  Our cache is not so simple.  At any given moment, some
42 * subset of the blocks in the cache are un-evictable because we
43 * have handed out a reference to them.  Blocks are only evictable
44 * when there are no external references active.  This makes
45 * eviction far more problematic:  we choose to evict the evictable
46 * blocks that are the "lowest" in the list.
47 *
48 * There are times when it is not possible to evict the requested
49 * space.  In these circumstances we are unable to adjust the cache
50 * size.  To prevent the cache growing unbounded at these times we
51 * implement a "cache throttle" that slows the flow of new data
52 * into the cache until we can make space available.
53 *
54 * 2. The Megiddo and Modha model assumes a fixed cache size.
55 * Pages are evicted when the cache is full and there is a cache
56 * miss.  Our model has a variable sized cache.  It grows with
57 * high use, but also tries to react to memory pressure from the
58 * operating system: decreasing its size when system memory is
59 * tight.
60 *
61 * 3. The Megiddo and Modha model assumes a fixed page size. All
62 * elements of the cache are therefore exactly the same size.  So
63 * when adjusting the cache size following a cache miss, its simply
64 * a matter of choosing a single page to evict.  In our model, we
65 * have variable sized cache blocks (rangeing from 512 bytes to
66 * 128K bytes).  We therefore choose a set of blocks to evict to make
67 * space for a cache miss that approximates as closely as possible
68 * the space used by the new block.
69 *
70 * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71 * by N. Megiddo & D. Modha, FAST 2003
72 */
73
74/*
75 * The locking model:
76 *
77 * A new reference to a cache buffer can be obtained in two
78 * ways: 1) via a hash table lookup using the DVA as a key,
79 * or 2) via one of the ARC lists.  The arc_read() interface
80 * uses method 1, while the internal arc algorithms for
81 * adjusting the cache use method 2.  We therefore provide two
82 * types of locks: 1) the hash table lock array, and 2) the
83 * arc list locks.
84 *
85 * Buffers do not have their own mutexes, rather they rely on the
86 * hash table mutexes for the bulk of their protection (i.e. most
87 * fields in the arc_buf_hdr_t are protected by these mutexes).
88 *
89 * buf_hash_find() returns the appropriate mutex (held) when it
90 * locates the requested buffer in the hash table.  It returns
91 * NULL for the mutex if the buffer was not in the table.
92 *
93 * buf_hash_remove() expects the appropriate hash mutex to be
94 * already held before it is invoked.
95 *
96 * Each arc state also has a mutex which is used to protect the
97 * buffer list associated with the state.  When attempting to
98 * obtain a hash table lock while holding an arc list lock you
99 * must use: mutex_tryenter() to avoid deadlock.  Also note that
100 * the active state mutex must be held before the ghost state mutex.
101 *
102 * Arc buffers may have an associated eviction callback function.
103 * This function will be invoked prior to removing the buffer (e.g.
104 * in arc_do_user_evicts()).  Note however that the data associated
105 * with the buffer may be evicted prior to the callback.  The callback
106 * must be made with *no locks held* (to prevent deadlock).  Additionally,
107 * the users of callbacks must ensure that their private data is
108 * protected from simultaneous callbacks from arc_clear_callback()
109 * and arc_do_user_evicts().
110 *
111 * Note that the majority of the performance stats are manipulated
112 * with atomic operations.
113 *
114 * The L2ARC uses the l2ad_mtx on each vdev for the following:
115 *
116 *	- L2ARC buflist creation
117 *	- L2ARC buflist eviction
118 *	- L2ARC write completion, which walks L2ARC buflists
119 *	- ARC header destruction, as it removes from L2ARC buflists
120 *	- ARC header release, as it removes from L2ARC buflists
121 */
122
123/*
124 * ARC operation:
125 *
126 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
127 * This structure can point either to a block that is still in the cache or to
128 * one that is only accessible in an L2 ARC device, or it can provide
129 * information about a block that was recently evicted. If a block is
130 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
131 * information to retrieve it from the L2ARC device. This information is
132 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
133 * that is in this state cannot access the data directly.
134 *
135 * Blocks that are actively being referenced or have not been evicted
136 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
137 * the arc_buf_hdr_t that will point to the data block in memory. A block can
138 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
139 * caches data in two ways -- in a list of arc buffers (arc_buf_t) and
140 * also in the arc_buf_hdr_t's private physical data block pointer (b_pdata).
141 * Each arc buffer (arc_buf_t) is being actively accessed by a specific ARC
142 * consumer, and always contains uncompressed data. The ARC will provide
143 * references to this data and will keep it cached until it is no longer in
144 * use. Typically, the arc will try to cache only the L1ARC's physical data
145 * block and will aggressively evict any arc_buf_t that is no longer referenced.
146 * The amount of memory consumed by the arc_buf_t's can be seen via the
147 * "overhead_size" kstat.
148 *
149 *
150 *                arc_buf_hdr_t
151 *                +-----------+
152 *                |           |
153 *                |           |
154 *                |           |
155 *                +-----------+
156 * l2arc_buf_hdr_t|           |
157 *                |           |
158 *                +-----------+
159 * l1arc_buf_hdr_t|           |
160 *                |           |                 arc_buf_t
161 *                |    b_buf  +------------>+---------+      arc_buf_t
162 *                |           |             |b_next   +---->+---------+
163 *                |  b_pdata  +-+           |---------|     |b_next   +-->NULL
164 *                +-----------+ |           |         |     +---------+
165 *                              |           |b_data   +-+   |         |
166 *                              |           +---------+ |   |b_data   +-+
167 *                              +->+------+             |   +---------+ |
168 *                   (potentially) |      |             |               |
169 *                     compressed  |      |             |               |
170 *                        data     +------+             |               v
171 *                                                      +->+------+     +------+
172 *                                            uncompressed |      |     |      |
173 *                                                data     |      |     |      |
174 *                                                         +------+     +------+
175 *
176 * The L1ARC's data pointer, however, may or may not be uncompressed. The
177 * ARC has the ability to store the physical data (b_pdata) associated with
178 * the DVA of the arc_buf_hdr_t. Since the b_pdata is a copy of the on-disk
179 * physical block, it will match its on-disk compression characteristics.
180 * If the block on-disk is compressed, then the physical data block
181 * in the cache will also be compressed and vice-versa. This behavior
182 * can be disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
183 * compressed ARC functionality is disabled, the b_pdata will point to an
184 * uncompressed version of the on-disk data.
185 *
186 * When a consumer reads a block, the ARC must first look to see if the
187 * arc_buf_hdr_t is cached. If the hdr is cached and already has an arc_buf_t,
188 * then an additional arc_buf_t is allocated and the uncompressed data is
189 * bcopied from the existing arc_buf_t. If the hdr is cached but does not
190 * have an arc_buf_t, then the ARC allocates a new arc_buf_t and decompresses
191 * the b_pdata contents into the arc_buf_t's b_data. If the arc_buf_hdr_t's
192 * b_pdata is not compressed, then the block is shared with the newly
193 * allocated arc_buf_t. This block sharing only occurs with one arc_buf_t
194 * in the arc buffer chain. Sharing the block reduces the memory overhead
195 * required when the hdr is caching uncompressed blocks or the compressed
196 * arc functionality has been disabled via 'zfs_compressed_arc_enabled'.
197 *
198 * The diagram below shows an example of an uncompressed ARC hdr that is
199 * sharing its data with an arc_buf_t:
200 *
201 *                arc_buf_hdr_t
202 *                +-----------+
203 *                |           |
204 *                |           |
205 *                |           |
206 *                +-----------+
207 * l2arc_buf_hdr_t|           |
208 *                |           |
209 *                +-----------+
210 * l1arc_buf_hdr_t|           |
211 *                |           |                 arc_buf_t    (shared)
212 *                |    b_buf  +------------>+---------+      arc_buf_t
213 *                |           |             |b_next   +---->+---------+
214 *                |  b_pdata  +-+           |---------|     |b_next   +-->NULL
215 *                +-----------+ |           |         |     +---------+
216 *                              |           |b_data   +-+   |         |
217 *                              |           +---------+ |   |b_data   +-+
218 *                              +->+------+             |   +---------+ |
219 *                                 |      |             |               |
220 *                   uncompressed  |      |             |               |
221 *                        data     +------+             |               |
222 *                                    ^                 +->+------+     |
223 *                                    |       uncompressed |      |     |
224 *                                    |           data     |      |     |
225 *                                    |                    +------+     |
226 *                                    +---------------------------------+
227 *
228 * Writing to the arc requires that the ARC first discard the b_pdata
229 * since the physical block is about to be rewritten. The new data contents
230 * will be contained in the arc_buf_t (uncompressed). As the I/O pipeline
231 * performs the write, it may compress the data before writing it to disk.
232 * The ARC will be called with the transformed data and will bcopy the
233 * transformed on-disk block into a newly allocated b_pdata.
234 *
235 * When the L2ARC is in use, it will also take advantage of the b_pdata. The
236 * L2ARC will always write the contents of b_pdata to the L2ARC. This means
237 * that when compressed arc is enabled that the L2ARC blocks are identical
238 * to the on-disk block in the main data pool. This provides a significant
239 * advantage since the ARC can leverage the bp's checksum when reading from the
240 * L2ARC to determine if the contents are valid. However, if the compressed
241 * arc is disabled, then the L2ARC's block must be transformed to look
242 * like the physical block in the main data pool before comparing the
243 * checksum and determining its validity.
244 */
245
246#include <sys/spa.h>
247#include <sys/zio.h>
248#include <sys/spa_impl.h>
249#include <sys/zio_compress.h>
250#include <sys/zio_checksum.h>
251#include <sys/zfs_context.h>
252#include <sys/arc.h>
253#include <sys/refcount.h>
254#include <sys/vdev.h>
255#include <sys/vdev_impl.h>
256#include <sys/dsl_pool.h>
257#include <sys/multilist.h>
258#ifdef _KERNEL
259#include <sys/dnlc.h>
260#endif
261#include <sys/callb.h>
262#include <sys/kstat.h>
263#include <sys/trim_map.h>
264#include <zfs_fletcher.h>
265#include <sys/sdt.h>
266
267#include <machine/vmparam.h>
268
269#ifdef illumos
270#ifndef _KERNEL
271/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
272boolean_t arc_watch = B_FALSE;
273int arc_procfd;
274#endif
275#endif /* illumos */
276
277static kmutex_t		arc_reclaim_lock;
278static kcondvar_t	arc_reclaim_thread_cv;
279static boolean_t	arc_reclaim_thread_exit;
280static kcondvar_t	arc_reclaim_waiters_cv;
281
282uint_t arc_reduce_dnlc_percent = 3;
283
284/*
285 * The number of headers to evict in arc_evict_state_impl() before
286 * dropping the sublist lock and evicting from another sublist. A lower
287 * value means we're more likely to evict the "correct" header (i.e. the
288 * oldest header in the arc state), but comes with higher overhead
289 * (i.e. more invocations of arc_evict_state_impl()).
290 */
291int zfs_arc_evict_batch_limit = 10;
292
293/*
294 * The number of sublists used for each of the arc state lists. If this
295 * is not set to a suitable value by the user, it will be configured to
296 * the number of CPUs on the system in arc_init().
297 */
298int zfs_arc_num_sublists_per_state = 0;
299
300/* number of seconds before growing cache again */
301static int		arc_grow_retry = 60;
302
303/* shift of arc_c for calculating overflow limit in arc_get_data_buf */
304int		zfs_arc_overflow_shift = 8;
305
306/* shift of arc_c for calculating both min and max arc_p */
307static int		arc_p_min_shift = 4;
308
309/* log2(fraction of arc to reclaim) */
310static int		arc_shrink_shift = 7;
311
312/*
313 * log2(fraction of ARC which must be free to allow growing).
314 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
315 * when reading a new block into the ARC, we will evict an equal-sized block
316 * from the ARC.
317 *
318 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
319 * we will still not allow it to grow.
320 */
321int			arc_no_grow_shift = 5;
322
323
324/*
325 * minimum lifespan of a prefetch block in clock ticks
326 * (initialized in arc_init())
327 */
328static int		arc_min_prefetch_lifespan;
329
330/*
331 * If this percent of memory is free, don't throttle.
332 */
333int arc_lotsfree_percent = 10;
334
335static int arc_dead;
336extern boolean_t zfs_prefetch_disable;
337
338/*
339 * The arc has filled available memory and has now warmed up.
340 */
341static boolean_t arc_warm;
342
343/*
344 * These tunables are for performance analysis.
345 */
346uint64_t zfs_arc_max;
347uint64_t zfs_arc_min;
348uint64_t zfs_arc_meta_limit = 0;
349uint64_t zfs_arc_meta_min = 0;
350int zfs_arc_grow_retry = 0;
351int zfs_arc_shrink_shift = 0;
352int zfs_arc_p_min_shift = 0;
353uint64_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
354u_int zfs_arc_free_target = 0;
355
356/* Absolute min for arc min / max is 16MB. */
357static uint64_t arc_abs_min = 16 << 20;
358
359boolean_t zfs_compressed_arc_enabled = B_TRUE;
360
361static int sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS);
362static int sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS);
363static int sysctl_vfs_zfs_arc_max(SYSCTL_HANDLER_ARGS);
364static int sysctl_vfs_zfs_arc_min(SYSCTL_HANDLER_ARGS);
365
366#if defined(__FreeBSD__) && defined(_KERNEL)
367static void
368arc_free_target_init(void *unused __unused)
369{
370
371	zfs_arc_free_target = vm_pageout_wakeup_thresh;
372}
373SYSINIT(arc_free_target_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_ANY,
374    arc_free_target_init, NULL);
375
376TUNABLE_QUAD("vfs.zfs.arc_max", &zfs_arc_max);
377TUNABLE_QUAD("vfs.zfs.arc_min", &zfs_arc_min);
378TUNABLE_QUAD("vfs.zfs.arc_meta_limit", &zfs_arc_meta_limit);
379TUNABLE_QUAD("vfs.zfs.arc_meta_min", &zfs_arc_meta_min);
380TUNABLE_QUAD("vfs.zfs.arc_average_blocksize", &zfs_arc_average_blocksize);
381TUNABLE_INT("vfs.zfs.arc_shrink_shift", &zfs_arc_shrink_shift);
382SYSCTL_DECL(_vfs_zfs);
383SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_max, CTLTYPE_U64 | CTLFLAG_RWTUN,
384    0, sizeof(uint64_t), sysctl_vfs_zfs_arc_max, "QU", "Maximum ARC size");
385SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_min, CTLTYPE_U64 | CTLFLAG_RWTUN,
386    0, sizeof(uint64_t), sysctl_vfs_zfs_arc_min, "QU", "Minimum ARC size");
387SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_average_blocksize, CTLFLAG_RDTUN,
388    &zfs_arc_average_blocksize, 0,
389    "ARC average blocksize");
390SYSCTL_INT(_vfs_zfs, OID_AUTO, arc_shrink_shift, CTLFLAG_RW,
391    &arc_shrink_shift, 0,
392    "log2(fraction of arc to reclaim)");
393SYSCTL_INT(_vfs_zfs, OID_AUTO, compressed_arc_enabled, CTLFLAG_RDTUN,
394    &zfs_compressed_arc_enabled, 0, "Enable compressed ARC");
395
396/*
397 * We don't have a tunable for arc_free_target due to the dependency on
398 * pagedaemon initialisation.
399 */
400SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_free_target,
401    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(u_int),
402    sysctl_vfs_zfs_arc_free_target, "IU",
403    "Desired number of free pages below which ARC triggers reclaim");
404
405static int
406sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS)
407{
408	u_int val;
409	int err;
410
411	val = zfs_arc_free_target;
412	err = sysctl_handle_int(oidp, &val, 0, req);
413	if (err != 0 || req->newptr == NULL)
414		return (err);
415
416	if (val < minfree)
417		return (EINVAL);
418	if (val > cnt.v_page_count)
419		return (EINVAL);
420
421	zfs_arc_free_target = val;
422
423	return (0);
424}
425
426/*
427 * Must be declared here, before the definition of corresponding kstat
428 * macro which uses the same names will confuse the compiler.
429 */
430SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_meta_limit,
431    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
432    sysctl_vfs_zfs_arc_meta_limit, "QU",
433    "ARC metadata limit");
434#endif
435
436/*
437 * Note that buffers can be in one of 6 states:
438 *	ARC_anon	- anonymous (discussed below)
439 *	ARC_mru		- recently used, currently cached
440 *	ARC_mru_ghost	- recentely used, no longer in cache
441 *	ARC_mfu		- frequently used, currently cached
442 *	ARC_mfu_ghost	- frequently used, no longer in cache
443 *	ARC_l2c_only	- exists in L2ARC but not other states
444 * When there are no active references to the buffer, they are
445 * are linked onto a list in one of these arc states.  These are
446 * the only buffers that can be evicted or deleted.  Within each
447 * state there are multiple lists, one for meta-data and one for
448 * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
449 * etc.) is tracked separately so that it can be managed more
450 * explicitly: favored over data, limited explicitly.
451 *
452 * Anonymous buffers are buffers that are not associated with
453 * a DVA.  These are buffers that hold dirty block copies
454 * before they are written to stable storage.  By definition,
455 * they are "ref'd" and are considered part of arc_mru
456 * that cannot be freed.  Generally, they will aquire a DVA
457 * as they are written and migrate onto the arc_mru list.
458 *
459 * The ARC_l2c_only state is for buffers that are in the second
460 * level ARC but no longer in any of the ARC_m* lists.  The second
461 * level ARC itself may also contain buffers that are in any of
462 * the ARC_m* states - meaning that a buffer can exist in two
463 * places.  The reason for the ARC_l2c_only state is to keep the
464 * buffer header in the hash table, so that reads that hit the
465 * second level ARC benefit from these fast lookups.
466 */
467
468typedef struct arc_state {
469	/*
470	 * list of evictable buffers
471	 */
472	multilist_t arcs_list[ARC_BUFC_NUMTYPES];
473	/*
474	 * total amount of evictable data in this state
475	 */
476	refcount_t arcs_esize[ARC_BUFC_NUMTYPES];
477	/*
478	 * total amount of data in this state; this includes: evictable,
479	 * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA.
480	 */
481	refcount_t arcs_size;
482} arc_state_t;
483
484/* The 6 states: */
485static arc_state_t ARC_anon;
486static arc_state_t ARC_mru;
487static arc_state_t ARC_mru_ghost;
488static arc_state_t ARC_mfu;
489static arc_state_t ARC_mfu_ghost;
490static arc_state_t ARC_l2c_only;
491
492typedef struct arc_stats {
493	kstat_named_t arcstat_hits;
494	kstat_named_t arcstat_misses;
495	kstat_named_t arcstat_demand_data_hits;
496	kstat_named_t arcstat_demand_data_misses;
497	kstat_named_t arcstat_demand_metadata_hits;
498	kstat_named_t arcstat_demand_metadata_misses;
499	kstat_named_t arcstat_prefetch_data_hits;
500	kstat_named_t arcstat_prefetch_data_misses;
501	kstat_named_t arcstat_prefetch_metadata_hits;
502	kstat_named_t arcstat_prefetch_metadata_misses;
503	kstat_named_t arcstat_mru_hits;
504	kstat_named_t arcstat_mru_ghost_hits;
505	kstat_named_t arcstat_mfu_hits;
506	kstat_named_t arcstat_mfu_ghost_hits;
507	kstat_named_t arcstat_allocated;
508	kstat_named_t arcstat_deleted;
509	/*
510	 * Number of buffers that could not be evicted because the hash lock
511	 * was held by another thread.  The lock may not necessarily be held
512	 * by something using the same buffer, since hash locks are shared
513	 * by multiple buffers.
514	 */
515	kstat_named_t arcstat_mutex_miss;
516	/*
517	 * Number of buffers skipped because they have I/O in progress, are
518	 * indrect prefetch buffers that have not lived long enough, or are
519	 * not from the spa we're trying to evict from.
520	 */
521	kstat_named_t arcstat_evict_skip;
522	/*
523	 * Number of times arc_evict_state() was unable to evict enough
524	 * buffers to reach it's target amount.
525	 */
526	kstat_named_t arcstat_evict_not_enough;
527	kstat_named_t arcstat_evict_l2_cached;
528	kstat_named_t arcstat_evict_l2_eligible;
529	kstat_named_t arcstat_evict_l2_ineligible;
530	kstat_named_t arcstat_evict_l2_skip;
531	kstat_named_t arcstat_hash_elements;
532	kstat_named_t arcstat_hash_elements_max;
533	kstat_named_t arcstat_hash_collisions;
534	kstat_named_t arcstat_hash_chains;
535	kstat_named_t arcstat_hash_chain_max;
536	kstat_named_t arcstat_p;
537	kstat_named_t arcstat_c;
538	kstat_named_t arcstat_c_min;
539	kstat_named_t arcstat_c_max;
540	kstat_named_t arcstat_size;
541	/*
542	 * Number of compressed bytes stored in the arc_buf_hdr_t's b_pdata.
543	 * Note that the compressed bytes may match the uncompressed bytes
544	 * if the block is either not compressed or compressed arc is disabled.
545	 */
546	kstat_named_t arcstat_compressed_size;
547	/*
548	 * Uncompressed size of the data stored in b_pdata. If compressed
549	 * arc is disabled then this value will be identical to the stat
550	 * above.
551	 */
552	kstat_named_t arcstat_uncompressed_size;
553	/*
554	 * Number of bytes stored in all the arc_buf_t's. This is classified
555	 * as "overhead" since this data is typically short-lived and will
556	 * be evicted from the arc when it becomes unreferenced unless the
557	 * zfs_keep_uncompressed_metadata or zfs_keep_uncompressed_level
558	 * values have been set (see comment in dbuf.c for more information).
559	 */
560	kstat_named_t arcstat_overhead_size;
561	/*
562	 * Number of bytes consumed by internal ARC structures necessary
563	 * for tracking purposes; these structures are not actually
564	 * backed by ARC buffers. This includes arc_buf_hdr_t structures
565	 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
566	 * caches), and arc_buf_t structures (allocated via arc_buf_t
567	 * cache).
568	 */
569	kstat_named_t arcstat_hdr_size;
570	/*
571	 * Number of bytes consumed by ARC buffers of type equal to
572	 * ARC_BUFC_DATA. This is generally consumed by buffers backing
573	 * on disk user data (e.g. plain file contents).
574	 */
575	kstat_named_t arcstat_data_size;
576	/*
577	 * Number of bytes consumed by ARC buffers of type equal to
578	 * ARC_BUFC_METADATA. This is generally consumed by buffers
579	 * backing on disk data that is used for internal ZFS
580	 * structures (e.g. ZAP, dnode, indirect blocks, etc).
581	 */
582	kstat_named_t arcstat_metadata_size;
583	/*
584	 * Number of bytes consumed by various buffers and structures
585	 * not actually backed with ARC buffers. This includes bonus
586	 * buffers (allocated directly via zio_buf_* functions),
587	 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t
588	 * cache), and dnode_t structures (allocated via dnode_t cache).
589	 */
590	kstat_named_t arcstat_other_size;
591	/*
592	 * Total number of bytes consumed by ARC buffers residing in the
593	 * arc_anon state. This includes *all* buffers in the arc_anon
594	 * state; e.g. data, metadata, evictable, and unevictable buffers
595	 * are all included in this value.
596	 */
597	kstat_named_t arcstat_anon_size;
598	/*
599	 * Number of bytes consumed by ARC buffers that meet the
600	 * following criteria: backing buffers of type ARC_BUFC_DATA,
601	 * residing in the arc_anon state, and are eligible for eviction
602	 * (e.g. have no outstanding holds on the buffer).
603	 */
604	kstat_named_t arcstat_anon_evictable_data;
605	/*
606	 * Number of bytes consumed by ARC buffers that meet the
607	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
608	 * residing in the arc_anon state, and are eligible for eviction
609	 * (e.g. have no outstanding holds on the buffer).
610	 */
611	kstat_named_t arcstat_anon_evictable_metadata;
612	/*
613	 * Total number of bytes consumed by ARC buffers residing in the
614	 * arc_mru state. This includes *all* buffers in the arc_mru
615	 * state; e.g. data, metadata, evictable, and unevictable buffers
616	 * are all included in this value.
617	 */
618	kstat_named_t arcstat_mru_size;
619	/*
620	 * Number of bytes consumed by ARC buffers that meet the
621	 * following criteria: backing buffers of type ARC_BUFC_DATA,
622	 * residing in the arc_mru state, and are eligible for eviction
623	 * (e.g. have no outstanding holds on the buffer).
624	 */
625	kstat_named_t arcstat_mru_evictable_data;
626	/*
627	 * Number of bytes consumed by ARC buffers that meet the
628	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
629	 * residing in the arc_mru state, and are eligible for eviction
630	 * (e.g. have no outstanding holds on the buffer).
631	 */
632	kstat_named_t arcstat_mru_evictable_metadata;
633	/*
634	 * Total number of bytes that *would have been* consumed by ARC
635	 * buffers in the arc_mru_ghost state. The key thing to note
636	 * here, is the fact that this size doesn't actually indicate
637	 * RAM consumption. The ghost lists only consist of headers and
638	 * don't actually have ARC buffers linked off of these headers.
639	 * Thus, *if* the headers had associated ARC buffers, these
640	 * buffers *would have* consumed this number of bytes.
641	 */
642	kstat_named_t arcstat_mru_ghost_size;
643	/*
644	 * Number of bytes that *would have been* consumed by ARC
645	 * buffers that are eligible for eviction, of type
646	 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
647	 */
648	kstat_named_t arcstat_mru_ghost_evictable_data;
649	/*
650	 * Number of bytes that *would have been* consumed by ARC
651	 * buffers that are eligible for eviction, of type
652	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
653	 */
654	kstat_named_t arcstat_mru_ghost_evictable_metadata;
655	/*
656	 * Total number of bytes consumed by ARC buffers residing in the
657	 * arc_mfu state. This includes *all* buffers in the arc_mfu
658	 * state; e.g. data, metadata, evictable, and unevictable buffers
659	 * are all included in this value.
660	 */
661	kstat_named_t arcstat_mfu_size;
662	/*
663	 * Number of bytes consumed by ARC buffers that are eligible for
664	 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
665	 * state.
666	 */
667	kstat_named_t arcstat_mfu_evictable_data;
668	/*
669	 * Number of bytes consumed by ARC buffers that are eligible for
670	 * eviction, of type ARC_BUFC_METADATA, and reside in the
671	 * arc_mfu state.
672	 */
673	kstat_named_t arcstat_mfu_evictable_metadata;
674	/*
675	 * Total number of bytes that *would have been* consumed by ARC
676	 * buffers in the arc_mfu_ghost state. See the comment above
677	 * arcstat_mru_ghost_size for more details.
678	 */
679	kstat_named_t arcstat_mfu_ghost_size;
680	/*
681	 * Number of bytes that *would have been* consumed by ARC
682	 * buffers that are eligible for eviction, of type
683	 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
684	 */
685	kstat_named_t arcstat_mfu_ghost_evictable_data;
686	/*
687	 * Number of bytes that *would have been* consumed by ARC
688	 * buffers that are eligible for eviction, of type
689	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
690	 */
691	kstat_named_t arcstat_mfu_ghost_evictable_metadata;
692	kstat_named_t arcstat_l2_hits;
693	kstat_named_t arcstat_l2_misses;
694	kstat_named_t arcstat_l2_feeds;
695	kstat_named_t arcstat_l2_rw_clash;
696	kstat_named_t arcstat_l2_read_bytes;
697	kstat_named_t arcstat_l2_write_bytes;
698	kstat_named_t arcstat_l2_writes_sent;
699	kstat_named_t arcstat_l2_writes_done;
700	kstat_named_t arcstat_l2_writes_error;
701	kstat_named_t arcstat_l2_writes_lock_retry;
702	kstat_named_t arcstat_l2_evict_lock_retry;
703	kstat_named_t arcstat_l2_evict_reading;
704	kstat_named_t arcstat_l2_evict_l1cached;
705	kstat_named_t arcstat_l2_free_on_write;
706	kstat_named_t arcstat_l2_abort_lowmem;
707	kstat_named_t arcstat_l2_cksum_bad;
708	kstat_named_t arcstat_l2_io_error;
709	kstat_named_t arcstat_l2_size;
710	kstat_named_t arcstat_l2_asize;
711	kstat_named_t arcstat_l2_hdr_size;
712	kstat_named_t arcstat_l2_write_trylock_fail;
713	kstat_named_t arcstat_l2_write_passed_headroom;
714	kstat_named_t arcstat_l2_write_spa_mismatch;
715	kstat_named_t arcstat_l2_write_in_l2;
716	kstat_named_t arcstat_l2_write_hdr_io_in_progress;
717	kstat_named_t arcstat_l2_write_not_cacheable;
718	kstat_named_t arcstat_l2_write_full;
719	kstat_named_t arcstat_l2_write_buffer_iter;
720	kstat_named_t arcstat_l2_write_pios;
721	kstat_named_t arcstat_l2_write_buffer_bytes_scanned;
722	kstat_named_t arcstat_l2_write_buffer_list_iter;
723	kstat_named_t arcstat_l2_write_buffer_list_null_iter;
724	kstat_named_t arcstat_memory_throttle_count;
725	kstat_named_t arcstat_meta_used;
726	kstat_named_t arcstat_meta_limit;
727	kstat_named_t arcstat_meta_max;
728	kstat_named_t arcstat_meta_min;
729	kstat_named_t arcstat_sync_wait_for_async;
730	kstat_named_t arcstat_demand_hit_predictive_prefetch;
731} arc_stats_t;
732
733static arc_stats_t arc_stats = {
734	{ "hits",			KSTAT_DATA_UINT64 },
735	{ "misses",			KSTAT_DATA_UINT64 },
736	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
737	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
738	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
739	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
740	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
741	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
742	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
743	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
744	{ "mru_hits",			KSTAT_DATA_UINT64 },
745	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
746	{ "mfu_hits",			KSTAT_DATA_UINT64 },
747	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
748	{ "allocated",			KSTAT_DATA_UINT64 },
749	{ "deleted",			KSTAT_DATA_UINT64 },
750	{ "mutex_miss",			KSTAT_DATA_UINT64 },
751	{ "evict_skip",			KSTAT_DATA_UINT64 },
752	{ "evict_not_enough",		KSTAT_DATA_UINT64 },
753	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
754	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
755	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
756	{ "evict_l2_skip",		KSTAT_DATA_UINT64 },
757	{ "hash_elements",		KSTAT_DATA_UINT64 },
758	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
759	{ "hash_collisions",		KSTAT_DATA_UINT64 },
760	{ "hash_chains",		KSTAT_DATA_UINT64 },
761	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
762	{ "p",				KSTAT_DATA_UINT64 },
763	{ "c",				KSTAT_DATA_UINT64 },
764	{ "c_min",			KSTAT_DATA_UINT64 },
765	{ "c_max",			KSTAT_DATA_UINT64 },
766	{ "size",			KSTAT_DATA_UINT64 },
767	{ "compressed_size",		KSTAT_DATA_UINT64 },
768	{ "uncompressed_size",		KSTAT_DATA_UINT64 },
769	{ "overhead_size",		KSTAT_DATA_UINT64 },
770	{ "hdr_size",			KSTAT_DATA_UINT64 },
771	{ "data_size",			KSTAT_DATA_UINT64 },
772	{ "metadata_size",		KSTAT_DATA_UINT64 },
773	{ "other_size",			KSTAT_DATA_UINT64 },
774	{ "anon_size",			KSTAT_DATA_UINT64 },
775	{ "anon_evictable_data",	KSTAT_DATA_UINT64 },
776	{ "anon_evictable_metadata",	KSTAT_DATA_UINT64 },
777	{ "mru_size",			KSTAT_DATA_UINT64 },
778	{ "mru_evictable_data",		KSTAT_DATA_UINT64 },
779	{ "mru_evictable_metadata",	KSTAT_DATA_UINT64 },
780	{ "mru_ghost_size",		KSTAT_DATA_UINT64 },
781	{ "mru_ghost_evictable_data",	KSTAT_DATA_UINT64 },
782	{ "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
783	{ "mfu_size",			KSTAT_DATA_UINT64 },
784	{ "mfu_evictable_data",		KSTAT_DATA_UINT64 },
785	{ "mfu_evictable_metadata",	KSTAT_DATA_UINT64 },
786	{ "mfu_ghost_size",		KSTAT_DATA_UINT64 },
787	{ "mfu_ghost_evictable_data",	KSTAT_DATA_UINT64 },
788	{ "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
789	{ "l2_hits",			KSTAT_DATA_UINT64 },
790	{ "l2_misses",			KSTAT_DATA_UINT64 },
791	{ "l2_feeds",			KSTAT_DATA_UINT64 },
792	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
793	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
794	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
795	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
796	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
797	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
798	{ "l2_writes_lock_retry",	KSTAT_DATA_UINT64 },
799	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
800	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
801	{ "l2_evict_l1cached",		KSTAT_DATA_UINT64 },
802	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
803	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
804	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
805	{ "l2_io_error",		KSTAT_DATA_UINT64 },
806	{ "l2_size",			KSTAT_DATA_UINT64 },
807	{ "l2_asize",			KSTAT_DATA_UINT64 },
808	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
809	{ "l2_write_trylock_fail",	KSTAT_DATA_UINT64 },
810	{ "l2_write_passed_headroom",	KSTAT_DATA_UINT64 },
811	{ "l2_write_spa_mismatch",	KSTAT_DATA_UINT64 },
812	{ "l2_write_in_l2",		KSTAT_DATA_UINT64 },
813	{ "l2_write_io_in_progress",	KSTAT_DATA_UINT64 },
814	{ "l2_write_not_cacheable",	KSTAT_DATA_UINT64 },
815	{ "l2_write_full",		KSTAT_DATA_UINT64 },
816	{ "l2_write_buffer_iter",	KSTAT_DATA_UINT64 },
817	{ "l2_write_pios",		KSTAT_DATA_UINT64 },
818	{ "l2_write_buffer_bytes_scanned", KSTAT_DATA_UINT64 },
819	{ "l2_write_buffer_list_iter",	KSTAT_DATA_UINT64 },
820	{ "l2_write_buffer_list_null_iter", KSTAT_DATA_UINT64 },
821	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
822	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
823	{ "arc_meta_limit",		KSTAT_DATA_UINT64 },
824	{ "arc_meta_max",		KSTAT_DATA_UINT64 },
825	{ "arc_meta_min",		KSTAT_DATA_UINT64 },
826	{ "sync_wait_for_async",	KSTAT_DATA_UINT64 },
827	{ "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
828};
829
830#define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
831
832#define	ARCSTAT_INCR(stat, val) \
833	atomic_add_64(&arc_stats.stat.value.ui64, (val))
834
835#define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
836#define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
837
838#define	ARCSTAT_MAX(stat, val) {					\
839	uint64_t m;							\
840	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
841	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
842		continue;						\
843}
844
845#define	ARCSTAT_MAXSTAT(stat) \
846	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
847
848/*
849 * We define a macro to allow ARC hits/misses to be easily broken down by
850 * two separate conditions, giving a total of four different subtypes for
851 * each of hits and misses (so eight statistics total).
852 */
853#define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
854	if (cond1) {							\
855		if (cond2) {						\
856			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
857		} else {						\
858			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
859		}							\
860	} else {							\
861		if (cond2) {						\
862			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
863		} else {						\
864			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
865		}							\
866	}
867
868kstat_t			*arc_ksp;
869static arc_state_t	*arc_anon;
870static arc_state_t	*arc_mru;
871static arc_state_t	*arc_mru_ghost;
872static arc_state_t	*arc_mfu;
873static arc_state_t	*arc_mfu_ghost;
874static arc_state_t	*arc_l2c_only;
875
876/*
877 * There are several ARC variables that are critical to export as kstats --
878 * but we don't want to have to grovel around in the kstat whenever we wish to
879 * manipulate them.  For these variables, we therefore define them to be in
880 * terms of the statistic variable.  This assures that we are not introducing
881 * the possibility of inconsistency by having shadow copies of the variables,
882 * while still allowing the code to be readable.
883 */
884#define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
885#define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
886#define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
887#define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
888#define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
889#define	arc_meta_limit	ARCSTAT(arcstat_meta_limit) /* max size for metadata */
890#define	arc_meta_min	ARCSTAT(arcstat_meta_min) /* min size for metadata */
891#define	arc_meta_used	ARCSTAT(arcstat_meta_used) /* size of metadata */
892#define	arc_meta_max	ARCSTAT(arcstat_meta_max) /* max size of metadata */
893
894/* compressed size of entire arc */
895#define	arc_compressed_size	ARCSTAT(arcstat_compressed_size)
896/* uncompressed size of entire arc */
897#define	arc_uncompressed_size	ARCSTAT(arcstat_uncompressed_size)
898/* number of bytes in the arc from arc_buf_t's */
899#define	arc_overhead_size	ARCSTAT(arcstat_overhead_size)
900
901static int		arc_no_grow;	/* Don't try to grow cache size */
902static uint64_t		arc_tempreserve;
903static uint64_t		arc_loaned_bytes;
904
905typedef struct arc_callback arc_callback_t;
906
907struct arc_callback {
908	void			*acb_private;
909	arc_done_func_t		*acb_done;
910	arc_buf_t		*acb_buf;
911	zio_t			*acb_zio_dummy;
912	arc_callback_t		*acb_next;
913};
914
915typedef struct arc_write_callback arc_write_callback_t;
916
917struct arc_write_callback {
918	void		*awcb_private;
919	arc_done_func_t	*awcb_ready;
920	arc_done_func_t	*awcb_children_ready;
921	arc_done_func_t	*awcb_physdone;
922	arc_done_func_t	*awcb_done;
923	arc_buf_t	*awcb_buf;
924};
925
926/*
927 * ARC buffers are separated into multiple structs as a memory saving measure:
928 *   - Common fields struct, always defined, and embedded within it:
929 *       - L2-only fields, always allocated but undefined when not in L2ARC
930 *       - L1-only fields, only allocated when in L1ARC
931 *
932 *           Buffer in L1                     Buffer only in L2
933 *    +------------------------+          +------------------------+
934 *    | arc_buf_hdr_t          |          | arc_buf_hdr_t          |
935 *    |                        |          |                        |
936 *    |                        |          |                        |
937 *    |                        |          |                        |
938 *    +------------------------+          +------------------------+
939 *    | l2arc_buf_hdr_t        |          | l2arc_buf_hdr_t        |
940 *    | (undefined if L1-only) |          |                        |
941 *    +------------------------+          +------------------------+
942 *    | l1arc_buf_hdr_t        |
943 *    |                        |
944 *    |                        |
945 *    |                        |
946 *    |                        |
947 *    +------------------------+
948 *
949 * Because it's possible for the L2ARC to become extremely large, we can wind
950 * up eating a lot of memory in L2ARC buffer headers, so the size of a header
951 * is minimized by only allocating the fields necessary for an L1-cached buffer
952 * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and
953 * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple
954 * words in pointers. arc_hdr_realloc() is used to switch a header between
955 * these two allocation states.
956 */
957typedef struct l1arc_buf_hdr {
958	kmutex_t		b_freeze_lock;
959	zio_cksum_t		*b_freeze_cksum;
960#ifdef ZFS_DEBUG
961	/*
962	 * used for debugging wtih kmem_flags - by allocating and freeing
963	 * b_thawed when the buffer is thawed, we get a record of the stack
964	 * trace that thawed it.
965	 */
966	void			*b_thawed;
967#endif
968
969	arc_buf_t		*b_buf;
970	uint32_t		b_bufcnt;
971	/* for waiting on writes to complete */
972	kcondvar_t		b_cv;
973	uint8_t			b_byteswap;
974
975	/* protected by arc state mutex */
976	arc_state_t		*b_state;
977	multilist_node_t	b_arc_node;
978
979	/* updated atomically */
980	clock_t			b_arc_access;
981
982	/* self protecting */
983	refcount_t		b_refcnt;
984
985	arc_callback_t		*b_acb;
986	void			*b_pdata;
987} l1arc_buf_hdr_t;
988
989typedef struct l2arc_dev l2arc_dev_t;
990
991typedef struct l2arc_buf_hdr {
992	/* protected by arc_buf_hdr mutex */
993	l2arc_dev_t		*b_dev;		/* L2ARC device */
994	uint64_t		b_daddr;	/* disk address, offset byte */
995
996	list_node_t		b_l2node;
997} l2arc_buf_hdr_t;
998
999struct arc_buf_hdr {
1000	/* protected by hash lock */
1001	dva_t			b_dva;
1002	uint64_t		b_birth;
1003
1004	arc_buf_contents_t	b_type;
1005	arc_buf_hdr_t		*b_hash_next;
1006	arc_flags_t		b_flags;
1007
1008	/*
1009	 * This field stores the size of the data buffer after
1010	 * compression, and is set in the arc's zio completion handlers.
1011	 * It is in units of SPA_MINBLOCKSIZE (e.g. 1 == 512 bytes).
1012	 *
1013	 * While the block pointers can store up to 32MB in their psize
1014	 * field, we can only store up to 32MB minus 512B. This is due
1015	 * to the bp using a bias of 1, whereas we use a bias of 0 (i.e.
1016	 * a field of zeros represents 512B in the bp). We can't use a
1017	 * bias of 1 since we need to reserve a psize of zero, here, to
1018	 * represent holes and embedded blocks.
1019	 *
1020	 * This isn't a problem in practice, since the maximum size of a
1021	 * buffer is limited to 16MB, so we never need to store 32MB in
1022	 * this field. Even in the upstream illumos code base, the
1023	 * maximum size of a buffer is limited to 16MB.
1024	 */
1025	uint16_t		b_psize;
1026
1027	/*
1028	 * This field stores the size of the data buffer before
1029	 * compression, and cannot change once set. It is in units
1030	 * of SPA_MINBLOCKSIZE (e.g. 2 == 1024 bytes)
1031	 */
1032	uint16_t		b_lsize;	/* immutable */
1033	uint64_t		b_spa;		/* immutable */
1034
1035	/* L2ARC fields. Undefined when not in L2ARC. */
1036	l2arc_buf_hdr_t		b_l2hdr;
1037	/* L1ARC fields. Undefined when in l2arc_only state */
1038	l1arc_buf_hdr_t		b_l1hdr;
1039};
1040
1041#if defined(__FreeBSD__) && defined(_KERNEL)
1042static int
1043sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS)
1044{
1045	uint64_t val;
1046	int err;
1047
1048	val = arc_meta_limit;
1049	err = sysctl_handle_64(oidp, &val, 0, req);
1050	if (err != 0 || req->newptr == NULL)
1051		return (err);
1052
1053        if (val <= 0 || val > arc_c_max)
1054		return (EINVAL);
1055
1056	arc_meta_limit = val;
1057	return (0);
1058}
1059
1060static int
1061sysctl_vfs_zfs_arc_max(SYSCTL_HANDLER_ARGS)
1062{
1063	uint64_t val;
1064	int err;
1065
1066	val = zfs_arc_max;
1067	err = sysctl_handle_64(oidp, &val, 0, req);
1068	if (err != 0 || req->newptr == NULL)
1069		return (err);
1070
1071	if (zfs_arc_max == 0) {
1072		/* Loader tunable so blindly set */
1073		zfs_arc_max = val;
1074		return (0);
1075	}
1076
1077	if (val < arc_abs_min || val > kmem_size())
1078		return (EINVAL);
1079	if (val < arc_c_min)
1080		return (EINVAL);
1081	if (zfs_arc_meta_limit > 0 && val < zfs_arc_meta_limit)
1082		return (EINVAL);
1083
1084	arc_c_max = val;
1085
1086	arc_c = arc_c_max;
1087        arc_p = (arc_c >> 1);
1088
1089	if (zfs_arc_meta_limit == 0) {
1090		/* limit meta-data to 1/4 of the arc capacity */
1091		arc_meta_limit = arc_c_max / 4;
1092	}
1093
1094	/* if kmem_flags are set, lets try to use less memory */
1095	if (kmem_debugging())
1096		arc_c = arc_c / 2;
1097
1098	zfs_arc_max = arc_c;
1099
1100	return (0);
1101}
1102
1103static int
1104sysctl_vfs_zfs_arc_min(SYSCTL_HANDLER_ARGS)
1105{
1106	uint64_t val;
1107	int err;
1108
1109	val = zfs_arc_min;
1110	err = sysctl_handle_64(oidp, &val, 0, req);
1111	if (err != 0 || req->newptr == NULL)
1112		return (err);
1113
1114	if (zfs_arc_min == 0) {
1115		/* Loader tunable so blindly set */
1116		zfs_arc_min = val;
1117		return (0);
1118	}
1119
1120	if (val < arc_abs_min || val > arc_c_max)
1121		return (EINVAL);
1122
1123	arc_c_min = val;
1124
1125	if (zfs_arc_meta_min == 0)
1126                arc_meta_min = arc_c_min / 2;
1127
1128	if (arc_c < arc_c_min)
1129                arc_c = arc_c_min;
1130
1131	zfs_arc_min = arc_c_min;
1132
1133	return (0);
1134}
1135#endif
1136
1137#define	GHOST_STATE(state)	\
1138	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
1139	(state) == arc_l2c_only)
1140
1141#define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
1142#define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
1143#define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_FLAG_IO_ERROR)
1144#define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_FLAG_PREFETCH)
1145#define	HDR_COMPRESSION_ENABLED(hdr)	\
1146	((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
1147
1148#define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_FLAG_L2CACHE)
1149#define	HDR_L2_READING(hdr)	\
1150	(((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&	\
1151	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
1152#define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITING)
1153#define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
1154#define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
1155#define	HDR_SHARED_DATA(hdr)	((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
1156
1157#define	HDR_ISTYPE_METADATA(hdr)	\
1158	((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
1159#define	HDR_ISTYPE_DATA(hdr)	(!HDR_ISTYPE_METADATA(hdr))
1160
1161#define	HDR_HAS_L1HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
1162#define	HDR_HAS_L2HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
1163
1164/* For storing compression mode in b_flags */
1165#define	HDR_COMPRESS_OFFSET	(highbit64(ARC_FLAG_COMPRESS_0) - 1)
1166
1167#define	HDR_GET_COMPRESS(hdr)	((enum zio_compress)BF32_GET((hdr)->b_flags, \
1168	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
1169#define	HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
1170	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
1171
1172#define	ARC_BUF_LAST(buf)	((buf)->b_next == NULL)
1173
1174/*
1175 * Other sizes
1176 */
1177
1178#define	HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
1179#define	HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
1180
1181/*
1182 * Hash table routines
1183 */
1184
1185#define	HT_LOCK_PAD	CACHE_LINE_SIZE
1186
1187struct ht_lock {
1188	kmutex_t	ht_lock;
1189#ifdef _KERNEL
1190	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
1191#endif
1192};
1193
1194#define	BUF_LOCKS 256
1195typedef struct buf_hash_table {
1196	uint64_t ht_mask;
1197	arc_buf_hdr_t **ht_table;
1198	struct ht_lock ht_locks[BUF_LOCKS] __aligned(CACHE_LINE_SIZE);
1199} buf_hash_table_t;
1200
1201static buf_hash_table_t buf_hash_table;
1202
1203#define	BUF_HASH_INDEX(spa, dva, birth) \
1204	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
1205#define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
1206#define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
1207#define	HDR_LOCK(hdr) \
1208	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
1209
1210uint64_t zfs_crc64_table[256];
1211
1212/*
1213 * Level 2 ARC
1214 */
1215
1216#define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
1217#define	L2ARC_HEADROOM		2			/* num of writes */
1218/*
1219 * If we discover during ARC scan any buffers to be compressed, we boost
1220 * our headroom for the next scanning cycle by this percentage multiple.
1221 */
1222#define	L2ARC_HEADROOM_BOOST	200
1223#define	L2ARC_FEED_SECS		1		/* caching interval secs */
1224#define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
1225
1226#define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
1227#define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
1228
1229/* L2ARC Performance Tunables */
1230uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
1231uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
1232uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
1233uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
1234uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
1235uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
1236boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
1237boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
1238boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
1239
1240SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_max, CTLFLAG_RW,
1241    &l2arc_write_max, 0, "max write size");
1242SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_boost, CTLFLAG_RW,
1243    &l2arc_write_boost, 0, "extra write during warmup");
1244SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_headroom, CTLFLAG_RW,
1245    &l2arc_headroom, 0, "number of dev writes");
1246SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_secs, CTLFLAG_RW,
1247    &l2arc_feed_secs, 0, "interval seconds");
1248SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_min_ms, CTLFLAG_RW,
1249    &l2arc_feed_min_ms, 0, "min interval milliseconds");
1250
1251SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_noprefetch, CTLFLAG_RW,
1252    &l2arc_noprefetch, 0, "don't cache prefetch bufs");
1253SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_feed_again, CTLFLAG_RW,
1254    &l2arc_feed_again, 0, "turbo warmup");
1255SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_norw, CTLFLAG_RW,
1256    &l2arc_norw, 0, "no reads during writes");
1257
1258SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_size, CTLFLAG_RD,
1259    &ARC_anon.arcs_size.rc_count, 0, "size of anonymous state");
1260SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_metadata_esize, CTLFLAG_RD,
1261    &ARC_anon.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1262    "size of anonymous state");
1263SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_data_esize, CTLFLAG_RD,
1264    &ARC_anon.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1265    "size of anonymous state");
1266
1267SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_size, CTLFLAG_RD,
1268    &ARC_mru.arcs_size.rc_count, 0, "size of mru state");
1269SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_metadata_esize, CTLFLAG_RD,
1270    &ARC_mru.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1271    "size of metadata in mru state");
1272SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_data_esize, CTLFLAG_RD,
1273    &ARC_mru.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1274    "size of data in mru state");
1275
1276SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_size, CTLFLAG_RD,
1277    &ARC_mru_ghost.arcs_size.rc_count, 0, "size of mru ghost state");
1278SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_metadata_esize, CTLFLAG_RD,
1279    &ARC_mru_ghost.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1280    "size of metadata in mru ghost state");
1281SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_data_esize, CTLFLAG_RD,
1282    &ARC_mru_ghost.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1283    "size of data in mru ghost state");
1284
1285SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_size, CTLFLAG_RD,
1286    &ARC_mfu.arcs_size.rc_count, 0, "size of mfu state");
1287SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_metadata_esize, CTLFLAG_RD,
1288    &ARC_mfu.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1289    "size of metadata in mfu state");
1290SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_data_esize, CTLFLAG_RD,
1291    &ARC_mfu.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1292    "size of data in mfu state");
1293
1294SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_size, CTLFLAG_RD,
1295    &ARC_mfu_ghost.arcs_size.rc_count, 0, "size of mfu ghost state");
1296SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_metadata_esize, CTLFLAG_RD,
1297    &ARC_mfu_ghost.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1298    "size of metadata in mfu ghost state");
1299SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_data_esize, CTLFLAG_RD,
1300    &ARC_mfu_ghost.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1301    "size of data in mfu ghost state");
1302
1303SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2c_only_size, CTLFLAG_RD,
1304    &ARC_l2c_only.arcs_size.rc_count, 0, "size of mru state");
1305
1306/*
1307 * L2ARC Internals
1308 */
1309struct l2arc_dev {
1310	vdev_t			*l2ad_vdev;	/* vdev */
1311	spa_t			*l2ad_spa;	/* spa */
1312	uint64_t		l2ad_hand;	/* next write location */
1313	uint64_t		l2ad_start;	/* first addr on device */
1314	uint64_t		l2ad_end;	/* last addr on device */
1315	boolean_t		l2ad_first;	/* first sweep through */
1316	boolean_t		l2ad_writing;	/* currently writing */
1317	kmutex_t		l2ad_mtx;	/* lock for buffer list */
1318	list_t			l2ad_buflist;	/* buffer list */
1319	list_node_t		l2ad_node;	/* device list node */
1320	refcount_t		l2ad_alloc;	/* allocated bytes */
1321};
1322
1323static list_t L2ARC_dev_list;			/* device list */
1324static list_t *l2arc_dev_list;			/* device list pointer */
1325static kmutex_t l2arc_dev_mtx;			/* device list mutex */
1326static l2arc_dev_t *l2arc_dev_last;		/* last device used */
1327static list_t L2ARC_free_on_write;		/* free after write buf list */
1328static list_t *l2arc_free_on_write;		/* free after write list ptr */
1329static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
1330static uint64_t l2arc_ndev;			/* number of devices */
1331
1332typedef struct l2arc_read_callback {
1333	arc_buf_hdr_t		*l2rcb_hdr;		/* read buffer */
1334	blkptr_t		l2rcb_bp;		/* original blkptr */
1335	zbookmark_phys_t	l2rcb_zb;		/* original bookmark */
1336	int			l2rcb_flags;		/* original flags */
1337	void			*l2rcb_data;		/* temporary buffer */
1338} l2arc_read_callback_t;
1339
1340typedef struct l2arc_write_callback {
1341	l2arc_dev_t	*l2wcb_dev;		/* device info */
1342	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
1343} l2arc_write_callback_t;
1344
1345typedef struct l2arc_data_free {
1346	/* protected by l2arc_free_on_write_mtx */
1347	void		*l2df_data;
1348	size_t		l2df_size;
1349	arc_buf_contents_t l2df_type;
1350	list_node_t	l2df_list_node;
1351} l2arc_data_free_t;
1352
1353static kmutex_t l2arc_feed_thr_lock;
1354static kcondvar_t l2arc_feed_thr_cv;
1355static uint8_t l2arc_thread_exit;
1356
1357static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *);
1358static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *);
1359static void arc_hdr_free_pdata(arc_buf_hdr_t *hdr);
1360static void arc_hdr_alloc_pdata(arc_buf_hdr_t *);
1361static void arc_access(arc_buf_hdr_t *, kmutex_t *);
1362static boolean_t arc_is_overflowing();
1363static void arc_buf_watch(arc_buf_t *);
1364
1365static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
1366static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
1367static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1368static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1369
1370static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
1371static void l2arc_read_done(zio_t *);
1372
1373static void
1374l2arc_trim(const arc_buf_hdr_t *hdr)
1375{
1376	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
1377
1378	ASSERT(HDR_HAS_L2HDR(hdr));
1379	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
1380
1381	if (HDR_GET_PSIZE(hdr) != 0) {
1382		trim_map_free(dev->l2ad_vdev, hdr->b_l2hdr.b_daddr,
1383		    HDR_GET_PSIZE(hdr), 0);
1384	}
1385}
1386
1387static uint64_t
1388buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
1389{
1390	uint8_t *vdva = (uint8_t *)dva;
1391	uint64_t crc = -1ULL;
1392	int i;
1393
1394	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
1395
1396	for (i = 0; i < sizeof (dva_t); i++)
1397		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
1398
1399	crc ^= (spa>>8) ^ birth;
1400
1401	return (crc);
1402}
1403
1404#define	HDR_EMPTY(hdr)						\
1405	((hdr)->b_dva.dva_word[0] == 0 &&			\
1406	(hdr)->b_dva.dva_word[1] == 0)
1407
1408#define	HDR_EQUAL(spa, dva, birth, hdr)				\
1409	((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
1410	((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
1411	((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
1412
1413static void
1414buf_discard_identity(arc_buf_hdr_t *hdr)
1415{
1416	hdr->b_dva.dva_word[0] = 0;
1417	hdr->b_dva.dva_word[1] = 0;
1418	hdr->b_birth = 0;
1419}
1420
1421static arc_buf_hdr_t *
1422buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1423{
1424	const dva_t *dva = BP_IDENTITY(bp);
1425	uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1426	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1427	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1428	arc_buf_hdr_t *hdr;
1429
1430	mutex_enter(hash_lock);
1431	for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1432	    hdr = hdr->b_hash_next) {
1433		if (HDR_EQUAL(spa, dva, birth, hdr)) {
1434			*lockp = hash_lock;
1435			return (hdr);
1436		}
1437	}
1438	mutex_exit(hash_lock);
1439	*lockp = NULL;
1440	return (NULL);
1441}
1442
1443/*
1444 * Insert an entry into the hash table.  If there is already an element
1445 * equal to elem in the hash table, then the already existing element
1446 * will be returned and the new element will not be inserted.
1447 * Otherwise returns NULL.
1448 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1449 */
1450static arc_buf_hdr_t *
1451buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1452{
1453	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1454	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1455	arc_buf_hdr_t *fhdr;
1456	uint32_t i;
1457
1458	ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1459	ASSERT(hdr->b_birth != 0);
1460	ASSERT(!HDR_IN_HASH_TABLE(hdr));
1461
1462	if (lockp != NULL) {
1463		*lockp = hash_lock;
1464		mutex_enter(hash_lock);
1465	} else {
1466		ASSERT(MUTEX_HELD(hash_lock));
1467	}
1468
1469	for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1470	    fhdr = fhdr->b_hash_next, i++) {
1471		if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1472			return (fhdr);
1473	}
1474
1475	hdr->b_hash_next = buf_hash_table.ht_table[idx];
1476	buf_hash_table.ht_table[idx] = hdr;
1477	arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1478
1479	/* collect some hash table performance data */
1480	if (i > 0) {
1481		ARCSTAT_BUMP(arcstat_hash_collisions);
1482		if (i == 1)
1483			ARCSTAT_BUMP(arcstat_hash_chains);
1484
1485		ARCSTAT_MAX(arcstat_hash_chain_max, i);
1486	}
1487
1488	ARCSTAT_BUMP(arcstat_hash_elements);
1489	ARCSTAT_MAXSTAT(arcstat_hash_elements);
1490
1491	return (NULL);
1492}
1493
1494static void
1495buf_hash_remove(arc_buf_hdr_t *hdr)
1496{
1497	arc_buf_hdr_t *fhdr, **hdrp;
1498	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1499
1500	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1501	ASSERT(HDR_IN_HASH_TABLE(hdr));
1502
1503	hdrp = &buf_hash_table.ht_table[idx];
1504	while ((fhdr = *hdrp) != hdr) {
1505		ASSERT3P(fhdr, !=, NULL);
1506		hdrp = &fhdr->b_hash_next;
1507	}
1508	*hdrp = hdr->b_hash_next;
1509	hdr->b_hash_next = NULL;
1510	arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1511
1512	/* collect some hash table performance data */
1513	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1514
1515	if (buf_hash_table.ht_table[idx] &&
1516	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1517		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1518}
1519
1520/*
1521 * Global data structures and functions for the buf kmem cache.
1522 */
1523static kmem_cache_t *hdr_full_cache;
1524static kmem_cache_t *hdr_l2only_cache;
1525static kmem_cache_t *buf_cache;
1526
1527static void
1528buf_fini(void)
1529{
1530	int i;
1531
1532	kmem_free(buf_hash_table.ht_table,
1533	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1534	for (i = 0; i < BUF_LOCKS; i++)
1535		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1536	kmem_cache_destroy(hdr_full_cache);
1537	kmem_cache_destroy(hdr_l2only_cache);
1538	kmem_cache_destroy(buf_cache);
1539}
1540
1541/*
1542 * Constructor callback - called when the cache is empty
1543 * and a new buf is requested.
1544 */
1545/* ARGSUSED */
1546static int
1547hdr_full_cons(void *vbuf, void *unused, int kmflag)
1548{
1549	arc_buf_hdr_t *hdr = vbuf;
1550
1551	bzero(hdr, HDR_FULL_SIZE);
1552	cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1553	refcount_create(&hdr->b_l1hdr.b_refcnt);
1554	mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1555	multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1556	arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1557
1558	return (0);
1559}
1560
1561/* ARGSUSED */
1562static int
1563hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1564{
1565	arc_buf_hdr_t *hdr = vbuf;
1566
1567	bzero(hdr, HDR_L2ONLY_SIZE);
1568	arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1569
1570	return (0);
1571}
1572
1573/* ARGSUSED */
1574static int
1575buf_cons(void *vbuf, void *unused, int kmflag)
1576{
1577	arc_buf_t *buf = vbuf;
1578
1579	bzero(buf, sizeof (arc_buf_t));
1580	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1581	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1582
1583	return (0);
1584}
1585
1586/*
1587 * Destructor callback - called when a cached buf is
1588 * no longer required.
1589 */
1590/* ARGSUSED */
1591static void
1592hdr_full_dest(void *vbuf, void *unused)
1593{
1594	arc_buf_hdr_t *hdr = vbuf;
1595
1596	ASSERT(HDR_EMPTY(hdr));
1597	cv_destroy(&hdr->b_l1hdr.b_cv);
1598	refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1599	mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1600	ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1601	arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1602}
1603
1604/* ARGSUSED */
1605static void
1606hdr_l2only_dest(void *vbuf, void *unused)
1607{
1608	arc_buf_hdr_t *hdr = vbuf;
1609
1610	ASSERT(HDR_EMPTY(hdr));
1611	arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1612}
1613
1614/* ARGSUSED */
1615static void
1616buf_dest(void *vbuf, void *unused)
1617{
1618	arc_buf_t *buf = vbuf;
1619
1620	mutex_destroy(&buf->b_evict_lock);
1621	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1622}
1623
1624/*
1625 * Reclaim callback -- invoked when memory is low.
1626 */
1627/* ARGSUSED */
1628static void
1629hdr_recl(void *unused)
1630{
1631	dprintf("hdr_recl called\n");
1632	/*
1633	 * umem calls the reclaim func when we destroy the buf cache,
1634	 * which is after we do arc_fini().
1635	 */
1636	if (!arc_dead)
1637		cv_signal(&arc_reclaim_thread_cv);
1638}
1639
1640static void
1641buf_init(void)
1642{
1643	uint64_t *ct;
1644	uint64_t hsize = 1ULL << 12;
1645	int i, j;
1646
1647	/*
1648	 * The hash table is big enough to fill all of physical memory
1649	 * with an average block size of zfs_arc_average_blocksize (default 8K).
1650	 * By default, the table will take up
1651	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1652	 */
1653	while (hsize * zfs_arc_average_blocksize < (uint64_t)physmem * PAGESIZE)
1654		hsize <<= 1;
1655retry:
1656	buf_hash_table.ht_mask = hsize - 1;
1657	buf_hash_table.ht_table =
1658	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1659	if (buf_hash_table.ht_table == NULL) {
1660		ASSERT(hsize > (1ULL << 8));
1661		hsize >>= 1;
1662		goto retry;
1663	}
1664
1665	hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1666	    0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1667	hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1668	    HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1669	    NULL, NULL, 0);
1670	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1671	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1672
1673	for (i = 0; i < 256; i++)
1674		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1675			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1676
1677	for (i = 0; i < BUF_LOCKS; i++) {
1678		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1679		    NULL, MUTEX_DEFAULT, NULL);
1680	}
1681}
1682
1683#define	ARC_MINTIME	(hz>>4) /* 62 ms */
1684
1685static inline boolean_t
1686arc_buf_is_shared(arc_buf_t *buf)
1687{
1688	boolean_t shared = (buf->b_data != NULL &&
1689	    buf->b_data == buf->b_hdr->b_l1hdr.b_pdata);
1690	IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1691	return (shared);
1692}
1693
1694static inline void
1695arc_cksum_free(arc_buf_hdr_t *hdr)
1696{
1697	ASSERT(HDR_HAS_L1HDR(hdr));
1698	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1699	if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1700		kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1701		hdr->b_l1hdr.b_freeze_cksum = NULL;
1702	}
1703	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1704}
1705
1706static void
1707arc_cksum_verify(arc_buf_t *buf)
1708{
1709	arc_buf_hdr_t *hdr = buf->b_hdr;
1710	zio_cksum_t zc;
1711
1712	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1713		return;
1714
1715	ASSERT(HDR_HAS_L1HDR(hdr));
1716
1717	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1718	if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1719		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1720		return;
1721	}
1722	fletcher_2_native(buf->b_data, HDR_GET_LSIZE(hdr), NULL, &zc);
1723	if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1724		panic("buffer modified while frozen!");
1725	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1726}
1727
1728static boolean_t
1729arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1730{
1731	enum zio_compress compress = BP_GET_COMPRESS(zio->io_bp);
1732	boolean_t valid_cksum;
1733
1734	ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1735	VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1736
1737	/*
1738	 * We rely on the blkptr's checksum to determine if the block
1739	 * is valid or not. When compressed arc is enabled, the l2arc
1740	 * writes the block to the l2arc just as it appears in the pool.
1741	 * This allows us to use the blkptr's checksum to validate the
1742	 * data that we just read off of the l2arc without having to store
1743	 * a separate checksum in the arc_buf_hdr_t. However, if compressed
1744	 * arc is disabled, then the data written to the l2arc is always
1745	 * uncompressed and won't match the block as it exists in the main
1746	 * pool. When this is the case, we must first compress it if it is
1747	 * compressed on the main pool before we can validate the checksum.
1748	 */
1749	if (!HDR_COMPRESSION_ENABLED(hdr) && compress != ZIO_COMPRESS_OFF) {
1750		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1751		uint64_t lsize = HDR_GET_LSIZE(hdr);
1752		uint64_t csize;
1753
1754		void *cbuf = zio_buf_alloc(HDR_GET_PSIZE(hdr));
1755		csize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
1756		ASSERT3U(csize, <=, HDR_GET_PSIZE(hdr));
1757		if (csize < HDR_GET_PSIZE(hdr)) {
1758			/*
1759			 * Compressed blocks are always a multiple of the
1760			 * smallest ashift in the pool. Ideally, we would
1761			 * like to round up the csize to the next
1762			 * spa_min_ashift but that value may have changed
1763			 * since the block was last written. Instead,
1764			 * we rely on the fact that the hdr's psize
1765			 * was set to the psize of the block when it was
1766			 * last written. We set the csize to that value
1767			 * and zero out any part that should not contain
1768			 * data.
1769			 */
1770			bzero((char *)cbuf + csize, HDR_GET_PSIZE(hdr) - csize);
1771			csize = HDR_GET_PSIZE(hdr);
1772		}
1773		zio_push_transform(zio, cbuf, csize, HDR_GET_PSIZE(hdr), NULL);
1774	}
1775
1776	/*
1777	 * Block pointers always store the checksum for the logical data.
1778	 * If the block pointer has the gang bit set, then the checksum
1779	 * it represents is for the reconstituted data and not for an
1780	 * individual gang member. The zio pipeline, however, must be able to
1781	 * determine the checksum of each of the gang constituents so it
1782	 * treats the checksum comparison differently than what we need
1783	 * for l2arc blocks. This prevents us from using the
1784	 * zio_checksum_error() interface directly. Instead we must call the
1785	 * zio_checksum_error_impl() so that we can ensure the checksum is
1786	 * generated using the correct checksum algorithm and accounts for the
1787	 * logical I/O size and not just a gang fragment.
1788	 */
1789	valid_cksum = (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1790	    BP_GET_CHECKSUM(zio->io_bp), zio->io_data, zio->io_size,
1791	    zio->io_offset, NULL) == 0);
1792	zio_pop_transforms(zio);
1793	return (valid_cksum);
1794}
1795
1796static void
1797arc_cksum_compute(arc_buf_t *buf)
1798{
1799	arc_buf_hdr_t *hdr = buf->b_hdr;
1800
1801	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1802		return;
1803
1804	ASSERT(HDR_HAS_L1HDR(hdr));
1805	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1806	if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1807		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1808		return;
1809	}
1810	hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1811	    KM_SLEEP);
1812	fletcher_2_native(buf->b_data, HDR_GET_LSIZE(hdr), NULL,
1813	    hdr->b_l1hdr.b_freeze_cksum);
1814	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1815#ifdef illumos
1816	arc_buf_watch(buf);
1817#endif
1818}
1819
1820#ifdef illumos
1821#ifndef _KERNEL
1822typedef struct procctl {
1823	long cmd;
1824	prwatch_t prwatch;
1825} procctl_t;
1826#endif
1827
1828/* ARGSUSED */
1829static void
1830arc_buf_unwatch(arc_buf_t *buf)
1831{
1832#ifndef _KERNEL
1833	if (arc_watch) {
1834		int result;
1835		procctl_t ctl;
1836		ctl.cmd = PCWATCH;
1837		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1838		ctl.prwatch.pr_size = 0;
1839		ctl.prwatch.pr_wflags = 0;
1840		result = write(arc_procfd, &ctl, sizeof (ctl));
1841		ASSERT3U(result, ==, sizeof (ctl));
1842	}
1843#endif
1844}
1845
1846/* ARGSUSED */
1847static void
1848arc_buf_watch(arc_buf_t *buf)
1849{
1850#ifndef _KERNEL
1851	if (arc_watch) {
1852		int result;
1853		procctl_t ctl;
1854		ctl.cmd = PCWATCH;
1855		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1856		ctl.prwatch.pr_size = HDR_GET_LSIZE(buf->b_hdr);
1857		ctl.prwatch.pr_wflags = WA_WRITE;
1858		result = write(arc_procfd, &ctl, sizeof (ctl));
1859		ASSERT3U(result, ==, sizeof (ctl));
1860	}
1861#endif
1862}
1863#endif /* illumos */
1864
1865static arc_buf_contents_t
1866arc_buf_type(arc_buf_hdr_t *hdr)
1867{
1868	arc_buf_contents_t type;
1869	if (HDR_ISTYPE_METADATA(hdr)) {
1870		type = ARC_BUFC_METADATA;
1871	} else {
1872		type = ARC_BUFC_DATA;
1873	}
1874	VERIFY3U(hdr->b_type, ==, type);
1875	return (type);
1876}
1877
1878static uint32_t
1879arc_bufc_to_flags(arc_buf_contents_t type)
1880{
1881	switch (type) {
1882	case ARC_BUFC_DATA:
1883		/* metadata field is 0 if buffer contains normal data */
1884		return (0);
1885	case ARC_BUFC_METADATA:
1886		return (ARC_FLAG_BUFC_METADATA);
1887	default:
1888		break;
1889	}
1890	panic("undefined ARC buffer type!");
1891	return ((uint32_t)-1);
1892}
1893
1894void
1895arc_buf_thaw(arc_buf_t *buf)
1896{
1897	arc_buf_hdr_t *hdr = buf->b_hdr;
1898
1899	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1900		if (hdr->b_l1hdr.b_state != arc_anon)
1901			panic("modifying non-anon buffer!");
1902		if (HDR_IO_IN_PROGRESS(hdr))
1903			panic("modifying buffer while i/o in progress!");
1904		arc_cksum_verify(buf);
1905	}
1906
1907	ASSERT(HDR_HAS_L1HDR(hdr));
1908	arc_cksum_free(hdr);
1909
1910	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1911#ifdef ZFS_DEBUG
1912	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1913		if (hdr->b_l1hdr.b_thawed != NULL)
1914			kmem_free(hdr->b_l1hdr.b_thawed, 1);
1915		hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP);
1916	}
1917#endif
1918
1919	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1920
1921#ifdef illumos
1922	arc_buf_unwatch(buf);
1923#endif
1924}
1925
1926void
1927arc_buf_freeze(arc_buf_t *buf)
1928{
1929	arc_buf_hdr_t *hdr = buf->b_hdr;
1930	kmutex_t *hash_lock;
1931
1932	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1933		return;
1934
1935	hash_lock = HDR_LOCK(hdr);
1936	mutex_enter(hash_lock);
1937
1938	ASSERT(HDR_HAS_L1HDR(hdr));
1939	ASSERT(hdr->b_l1hdr.b_freeze_cksum != NULL ||
1940	    hdr->b_l1hdr.b_state == arc_anon);
1941	arc_cksum_compute(buf);
1942	mutex_exit(hash_lock);
1943
1944}
1945
1946/*
1947 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1948 * the following functions should be used to ensure that the flags are
1949 * updated in a thread-safe way. When manipulating the flags either
1950 * the hash_lock must be held or the hdr must be undiscoverable. This
1951 * ensures that we're not racing with any other threads when updating
1952 * the flags.
1953 */
1954static inline void
1955arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1956{
1957	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1958	hdr->b_flags |= flags;
1959}
1960
1961static inline void
1962arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1963{
1964	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1965	hdr->b_flags &= ~flags;
1966}
1967
1968/*
1969 * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1970 * done in a special way since we have to clear and set bits
1971 * at the same time. Consumers that wish to set the compression bits
1972 * must use this function to ensure that the flags are updated in
1973 * thread-safe manner.
1974 */
1975static void
1976arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1977{
1978	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1979
1980	/*
1981	 * Holes and embedded blocks will always have a psize = 0 so
1982	 * we ignore the compression of the blkptr and set the
1983	 * arc_buf_hdr_t's compression to ZIO_COMPRESS_OFF.
1984	 * Holes and embedded blocks remain anonymous so we don't
1985	 * want to uncompress them. Mark them as uncompressed.
1986	 */
1987	if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1988		arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1989		HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
1990		ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
1991		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1992	} else {
1993		arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1994		HDR_SET_COMPRESS(hdr, cmp);
1995		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
1996		ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1997	}
1998}
1999
2000static int
2001arc_decompress(arc_buf_t *buf)
2002{
2003	arc_buf_hdr_t *hdr = buf->b_hdr;
2004	dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
2005	int error;
2006
2007	if (arc_buf_is_shared(buf)) {
2008		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
2009	} else if (HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) {
2010		/*
2011		 * The arc_buf_hdr_t is either not compressed or is
2012		 * associated with an embedded block or a hole in which
2013		 * case they remain anonymous.
2014		 */
2015		IMPLY(HDR_COMPRESSION_ENABLED(hdr), HDR_GET_PSIZE(hdr) == 0 ||
2016		    HDR_GET_PSIZE(hdr) == HDR_GET_LSIZE(hdr));
2017		ASSERT(!HDR_SHARED_DATA(hdr));
2018		bcopy(hdr->b_l1hdr.b_pdata, buf->b_data, HDR_GET_LSIZE(hdr));
2019	} else {
2020		ASSERT(!HDR_SHARED_DATA(hdr));
2021		ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr));
2022		error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
2023		    hdr->b_l1hdr.b_pdata, buf->b_data, HDR_GET_PSIZE(hdr),
2024		    HDR_GET_LSIZE(hdr));
2025		if (error != 0) {
2026			zfs_dbgmsg("hdr %p, compress %d, psize %d, lsize %d",
2027			    hdr, HDR_GET_COMPRESS(hdr), HDR_GET_PSIZE(hdr),
2028			    HDR_GET_LSIZE(hdr));
2029			return (SET_ERROR(EIO));
2030		}
2031	}
2032	if (bswap != DMU_BSWAP_NUMFUNCS) {
2033		ASSERT(!HDR_SHARED_DATA(hdr));
2034		ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
2035		dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
2036	}
2037	arc_cksum_compute(buf);
2038	return (0);
2039}
2040
2041/*
2042 * Return the size of the block, b_pdata, that is stored in the arc_buf_hdr_t.
2043 */
2044static uint64_t
2045arc_hdr_size(arc_buf_hdr_t *hdr)
2046{
2047	uint64_t size;
2048
2049	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
2050	    HDR_GET_PSIZE(hdr) > 0) {
2051		size = HDR_GET_PSIZE(hdr);
2052	} else {
2053		ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
2054		size = HDR_GET_LSIZE(hdr);
2055	}
2056	return (size);
2057}
2058
2059/*
2060 * Increment the amount of evictable space in the arc_state_t's refcount.
2061 * We account for the space used by the hdr and the arc buf individually
2062 * so that we can add and remove them from the refcount individually.
2063 */
2064static void
2065arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2066{
2067	arc_buf_contents_t type = arc_buf_type(hdr);
2068	uint64_t lsize = HDR_GET_LSIZE(hdr);
2069
2070	ASSERT(HDR_HAS_L1HDR(hdr));
2071
2072	if (GHOST_STATE(state)) {
2073		ASSERT0(hdr->b_l1hdr.b_bufcnt);
2074		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2075		ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
2076		(void) refcount_add_many(&state->arcs_esize[type], lsize, hdr);
2077		return;
2078	}
2079
2080	ASSERT(!GHOST_STATE(state));
2081	if (hdr->b_l1hdr.b_pdata != NULL) {
2082		(void) refcount_add_many(&state->arcs_esize[type],
2083		    arc_hdr_size(hdr), hdr);
2084	}
2085	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2086	    buf = buf->b_next) {
2087		if (arc_buf_is_shared(buf)) {
2088			ASSERT(ARC_BUF_LAST(buf));
2089			continue;
2090		}
2091		(void) refcount_add_many(&state->arcs_esize[type], lsize, buf);
2092	}
2093}
2094
2095/*
2096 * Decrement the amount of evictable space in the arc_state_t's refcount.
2097 * We account for the space used by the hdr and the arc buf individually
2098 * so that we can add and remove them from the refcount individually.
2099 */
2100static void
2101arc_evitable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
2102{
2103	arc_buf_contents_t type = arc_buf_type(hdr);
2104	uint64_t lsize = HDR_GET_LSIZE(hdr);
2105
2106	ASSERT(HDR_HAS_L1HDR(hdr));
2107
2108	if (GHOST_STATE(state)) {
2109		ASSERT0(hdr->b_l1hdr.b_bufcnt);
2110		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2111		ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
2112		(void) refcount_remove_many(&state->arcs_esize[type],
2113		    lsize, hdr);
2114		return;
2115	}
2116
2117	ASSERT(!GHOST_STATE(state));
2118	if (hdr->b_l1hdr.b_pdata != NULL) {
2119		(void) refcount_remove_many(&state->arcs_esize[type],
2120		    arc_hdr_size(hdr), hdr);
2121	}
2122	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2123	    buf = buf->b_next) {
2124		if (arc_buf_is_shared(buf)) {
2125			ASSERT(ARC_BUF_LAST(buf));
2126			continue;
2127		}
2128		(void) refcount_remove_many(&state->arcs_esize[type],
2129		    lsize, buf);
2130	}
2131}
2132
2133/*
2134 * Add a reference to this hdr indicating that someone is actively
2135 * referencing that memory. When the refcount transitions from 0 to 1,
2136 * we remove it from the respective arc_state_t list to indicate that
2137 * it is not evictable.
2138 */
2139static void
2140add_reference(arc_buf_hdr_t *hdr, void *tag)
2141{
2142	ASSERT(HDR_HAS_L1HDR(hdr));
2143	if (!MUTEX_HELD(HDR_LOCK(hdr))) {
2144		ASSERT(hdr->b_l1hdr.b_state == arc_anon);
2145		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2146		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2147	}
2148
2149	arc_state_t *state = hdr->b_l1hdr.b_state;
2150
2151	if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2152	    (state != arc_anon)) {
2153		/* We don't use the L2-only state list. */
2154		if (state != arc_l2c_only) {
2155			multilist_remove(&state->arcs_list[arc_buf_type(hdr)],
2156			    hdr);
2157			arc_evitable_space_decrement(hdr, state);
2158		}
2159		/* remove the prefetch flag if we get a reference */
2160		arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
2161	}
2162}
2163
2164/*
2165 * Remove a reference from this hdr. When the reference transitions from
2166 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2167 * list making it eligible for eviction.
2168 */
2169static int
2170remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
2171{
2172	int cnt;
2173	arc_state_t *state = hdr->b_l1hdr.b_state;
2174
2175	ASSERT(HDR_HAS_L1HDR(hdr));
2176	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
2177	ASSERT(!GHOST_STATE(state));
2178
2179	/*
2180	 * arc_l2c_only counts as a ghost state so we don't need to explicitly
2181	 * check to prevent usage of the arc_l2c_only list.
2182	 */
2183	if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
2184	    (state != arc_anon)) {
2185		multilist_insert(&state->arcs_list[arc_buf_type(hdr)], hdr);
2186		ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
2187		arc_evictable_space_increment(hdr, state);
2188	}
2189	return (cnt);
2190}
2191
2192/*
2193 * Move the supplied buffer to the indicated state. The hash lock
2194 * for the buffer must be held by the caller.
2195 */
2196static void
2197arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
2198    kmutex_t *hash_lock)
2199{
2200	arc_state_t *old_state;
2201	int64_t refcnt;
2202	uint32_t bufcnt;
2203	boolean_t update_old, update_new;
2204	arc_buf_contents_t buftype = arc_buf_type(hdr);
2205
2206	/*
2207	 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2208	 * in arc_read() when bringing a buffer out of the L2ARC.  However, the
2209	 * L1 hdr doesn't always exist when we change state to arc_anon before
2210	 * destroying a header, in which case reallocating to add the L1 hdr is
2211	 * pointless.
2212	 */
2213	if (HDR_HAS_L1HDR(hdr)) {
2214		old_state = hdr->b_l1hdr.b_state;
2215		refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
2216		bufcnt = hdr->b_l1hdr.b_bufcnt;
2217		update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pdata != NULL);
2218	} else {
2219		old_state = arc_l2c_only;
2220		refcnt = 0;
2221		bufcnt = 0;
2222		update_old = B_FALSE;
2223	}
2224	update_new = update_old;
2225
2226	ASSERT(MUTEX_HELD(hash_lock));
2227	ASSERT3P(new_state, !=, old_state);
2228	ASSERT(!GHOST_STATE(new_state) || bufcnt == 0);
2229	ASSERT(old_state != arc_anon || bufcnt <= 1);
2230
2231	/*
2232	 * If this buffer is evictable, transfer it from the
2233	 * old state list to the new state list.
2234	 */
2235	if (refcnt == 0) {
2236		if (old_state != arc_anon && old_state != arc_l2c_only) {
2237			ASSERT(HDR_HAS_L1HDR(hdr));
2238			multilist_remove(&old_state->arcs_list[buftype], hdr);
2239
2240			if (GHOST_STATE(old_state)) {
2241				ASSERT0(bufcnt);
2242				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2243				update_old = B_TRUE;
2244			}
2245			arc_evitable_space_decrement(hdr, old_state);
2246		}
2247		if (new_state != arc_anon && new_state != arc_l2c_only) {
2248
2249			/*
2250			 * An L1 header always exists here, since if we're
2251			 * moving to some L1-cached state (i.e. not l2c_only or
2252			 * anonymous), we realloc the header to add an L1hdr
2253			 * beforehand.
2254			 */
2255			ASSERT(HDR_HAS_L1HDR(hdr));
2256			multilist_insert(&new_state->arcs_list[buftype], hdr);
2257
2258			if (GHOST_STATE(new_state)) {
2259				ASSERT0(bufcnt);
2260				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2261				update_new = B_TRUE;
2262			}
2263			arc_evictable_space_increment(hdr, new_state);
2264		}
2265	}
2266
2267	ASSERT(!HDR_EMPTY(hdr));
2268	if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2269		buf_hash_remove(hdr);
2270
2271	/* adjust state sizes (ignore arc_l2c_only) */
2272
2273	if (update_new && new_state != arc_l2c_only) {
2274		ASSERT(HDR_HAS_L1HDR(hdr));
2275		if (GHOST_STATE(new_state)) {
2276			ASSERT0(bufcnt);
2277
2278			/*
2279			 * When moving a header to a ghost state, we first
2280			 * remove all arc buffers. Thus, we'll have a
2281			 * bufcnt of zero, and no arc buffer to use for
2282			 * the reference. As a result, we use the arc
2283			 * header pointer for the reference.
2284			 */
2285			(void) refcount_add_many(&new_state->arcs_size,
2286			    HDR_GET_LSIZE(hdr), hdr);
2287			ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
2288		} else {
2289			uint32_t buffers = 0;
2290
2291			/*
2292			 * Each individual buffer holds a unique reference,
2293			 * thus we must remove each of these references one
2294			 * at a time.
2295			 */
2296			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2297			    buf = buf->b_next) {
2298				ASSERT3U(bufcnt, !=, 0);
2299				buffers++;
2300
2301				/*
2302				 * When the arc_buf_t is sharing the data
2303				 * block with the hdr, the owner of the
2304				 * reference belongs to the hdr. Only
2305				 * add to the refcount if the arc_buf_t is
2306				 * not shared.
2307				 */
2308				if (arc_buf_is_shared(buf)) {
2309					ASSERT(ARC_BUF_LAST(buf));
2310					continue;
2311				}
2312
2313				(void) refcount_add_many(&new_state->arcs_size,
2314				    HDR_GET_LSIZE(hdr), buf);
2315			}
2316			ASSERT3U(bufcnt, ==, buffers);
2317
2318			if (hdr->b_l1hdr.b_pdata != NULL) {
2319				(void) refcount_add_many(&new_state->arcs_size,
2320				    arc_hdr_size(hdr), hdr);
2321			} else {
2322				ASSERT(GHOST_STATE(old_state));
2323			}
2324		}
2325	}
2326
2327	if (update_old && old_state != arc_l2c_only) {
2328		ASSERT(HDR_HAS_L1HDR(hdr));
2329		if (GHOST_STATE(old_state)) {
2330			ASSERT0(bufcnt);
2331
2332			/*
2333			 * When moving a header off of a ghost state,
2334			 * the header will not contain any arc buffers.
2335			 * We use the arc header pointer for the reference
2336			 * which is exactly what we did when we put the
2337			 * header on the ghost state.
2338			 */
2339
2340			(void) refcount_remove_many(&old_state->arcs_size,
2341			    HDR_GET_LSIZE(hdr), hdr);
2342			ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
2343		} else {
2344			uint32_t buffers = 0;
2345
2346			/*
2347			 * Each individual buffer holds a unique reference,
2348			 * thus we must remove each of these references one
2349			 * at a time.
2350			 */
2351			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2352			    buf = buf->b_next) {
2353				ASSERT3P(bufcnt, !=, 0);
2354				buffers++;
2355
2356				/*
2357				 * When the arc_buf_t is sharing the data
2358				 * block with the hdr, the owner of the
2359				 * reference belongs to the hdr. Only
2360				 * add to the refcount if the arc_buf_t is
2361				 * not shared.
2362				 */
2363				if (arc_buf_is_shared(buf)) {
2364					ASSERT(ARC_BUF_LAST(buf));
2365					continue;
2366				}
2367
2368				(void) refcount_remove_many(
2369				    &old_state->arcs_size, HDR_GET_LSIZE(hdr),
2370				    buf);
2371			}
2372			ASSERT3U(bufcnt, ==, buffers);
2373			ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
2374			(void) refcount_remove_many(
2375			    &old_state->arcs_size, arc_hdr_size(hdr), hdr);
2376		}
2377	}
2378
2379	if (HDR_HAS_L1HDR(hdr))
2380		hdr->b_l1hdr.b_state = new_state;
2381
2382	/*
2383	 * L2 headers should never be on the L2 state list since they don't
2384	 * have L1 headers allocated.
2385	 */
2386	ASSERT(multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
2387	    multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
2388}
2389
2390void
2391arc_space_consume(uint64_t space, arc_space_type_t type)
2392{
2393	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2394
2395	switch (type) {
2396	case ARC_SPACE_DATA:
2397		ARCSTAT_INCR(arcstat_data_size, space);
2398		break;
2399	case ARC_SPACE_META:
2400		ARCSTAT_INCR(arcstat_metadata_size, space);
2401		break;
2402	case ARC_SPACE_OTHER:
2403		ARCSTAT_INCR(arcstat_other_size, space);
2404		break;
2405	case ARC_SPACE_HDRS:
2406		ARCSTAT_INCR(arcstat_hdr_size, space);
2407		break;
2408	case ARC_SPACE_L2HDRS:
2409		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
2410		break;
2411	}
2412
2413	if (type != ARC_SPACE_DATA)
2414		ARCSTAT_INCR(arcstat_meta_used, space);
2415
2416	atomic_add_64(&arc_size, space);
2417}
2418
2419void
2420arc_space_return(uint64_t space, arc_space_type_t type)
2421{
2422	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2423
2424	switch (type) {
2425	case ARC_SPACE_DATA:
2426		ARCSTAT_INCR(arcstat_data_size, -space);
2427		break;
2428	case ARC_SPACE_META:
2429		ARCSTAT_INCR(arcstat_metadata_size, -space);
2430		break;
2431	case ARC_SPACE_OTHER:
2432		ARCSTAT_INCR(arcstat_other_size, -space);
2433		break;
2434	case ARC_SPACE_HDRS:
2435		ARCSTAT_INCR(arcstat_hdr_size, -space);
2436		break;
2437	case ARC_SPACE_L2HDRS:
2438		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
2439		break;
2440	}
2441
2442	if (type != ARC_SPACE_DATA) {
2443		ASSERT(arc_meta_used >= space);
2444		if (arc_meta_max < arc_meta_used)
2445			arc_meta_max = arc_meta_used;
2446		ARCSTAT_INCR(arcstat_meta_used, -space);
2447	}
2448
2449	ASSERT(arc_size >= space);
2450	atomic_add_64(&arc_size, -space);
2451}
2452
2453/*
2454 * Allocate an initial buffer for this hdr, subsequent buffers will
2455 * use arc_buf_clone().
2456 */
2457static arc_buf_t *
2458arc_buf_alloc_impl(arc_buf_hdr_t *hdr, void *tag)
2459{
2460	arc_buf_t *buf;
2461
2462	ASSERT(HDR_HAS_L1HDR(hdr));
2463	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2464	VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2465	    hdr->b_type == ARC_BUFC_METADATA);
2466
2467	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2468	ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2469	ASSERT0(hdr->b_l1hdr.b_bufcnt);
2470
2471	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2472	buf->b_hdr = hdr;
2473	buf->b_data = NULL;
2474	buf->b_next = NULL;
2475
2476	add_reference(hdr, tag);
2477
2478	/*
2479	 * We're about to change the hdr's b_flags. We must either
2480	 * hold the hash_lock or be undiscoverable.
2481	 */
2482	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2483
2484	/*
2485	 * If the hdr's data can be shared (no byteswapping, hdr is
2486	 * uncompressed, hdr's data is not currently being written to the
2487	 * L2ARC write) then we share the data buffer and set the appropriate
2488	 * bit in the hdr's b_flags to indicate the hdr is sharing it's
2489	 * b_pdata with the arc_buf_t. Otherwise, we allocate a new buffer to
2490	 * store the buf's data.
2491	 */
2492	if (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2493	    HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF && !HDR_L2_WRITING(hdr)) {
2494		buf->b_data = hdr->b_l1hdr.b_pdata;
2495		arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2496	} else {
2497		buf->b_data = arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2498		ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
2499		arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2500	}
2501	VERIFY3P(buf->b_data, !=, NULL);
2502
2503	hdr->b_l1hdr.b_buf = buf;
2504	hdr->b_l1hdr.b_bufcnt += 1;
2505
2506	return (buf);
2507}
2508
2509/*
2510 * Used when allocating additional buffers.
2511 */
2512static arc_buf_t *
2513arc_buf_clone(arc_buf_t *from)
2514{
2515	arc_buf_t *buf;
2516	arc_buf_hdr_t *hdr = from->b_hdr;
2517	uint64_t size = HDR_GET_LSIZE(hdr);
2518
2519	ASSERT(HDR_HAS_L1HDR(hdr));
2520	ASSERT(hdr->b_l1hdr.b_state != arc_anon);
2521
2522	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2523	buf->b_hdr = hdr;
2524	buf->b_data = NULL;
2525	buf->b_next = hdr->b_l1hdr.b_buf;
2526	hdr->b_l1hdr.b_buf = buf;
2527	buf->b_data = arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2528	bcopy(from->b_data, buf->b_data, size);
2529	hdr->b_l1hdr.b_bufcnt += 1;
2530
2531	ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
2532	return (buf);
2533}
2534
2535static char *arc_onloan_tag = "onloan";
2536
2537/*
2538 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2539 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2540 * buffers must be returned to the arc before they can be used by the DMU or
2541 * freed.
2542 */
2543arc_buf_t *
2544arc_loan_buf(spa_t *spa, int size)
2545{
2546	arc_buf_t *buf;
2547
2548	buf = arc_alloc_buf(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
2549
2550	atomic_add_64(&arc_loaned_bytes, size);
2551	return (buf);
2552}
2553
2554/*
2555 * Return a loaned arc buffer to the arc.
2556 */
2557void
2558arc_return_buf(arc_buf_t *buf, void *tag)
2559{
2560	arc_buf_hdr_t *hdr = buf->b_hdr;
2561
2562	ASSERT3P(buf->b_data, !=, NULL);
2563	ASSERT(HDR_HAS_L1HDR(hdr));
2564	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2565	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2566
2567	atomic_add_64(&arc_loaned_bytes, -HDR_GET_LSIZE(hdr));
2568}
2569
2570/* Detach an arc_buf from a dbuf (tag) */
2571void
2572arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2573{
2574	arc_buf_hdr_t *hdr = buf->b_hdr;
2575
2576	ASSERT3P(buf->b_data, !=, NULL);
2577	ASSERT(HDR_HAS_L1HDR(hdr));
2578	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2579	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2580
2581	atomic_add_64(&arc_loaned_bytes, HDR_GET_LSIZE(hdr));
2582}
2583
2584static void
2585l2arc_free_data_on_write(void *data, size_t size, arc_buf_contents_t type)
2586{
2587	l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2588
2589	df->l2df_data = data;
2590	df->l2df_size = size;
2591	df->l2df_type = type;
2592	mutex_enter(&l2arc_free_on_write_mtx);
2593	list_insert_head(l2arc_free_on_write, df);
2594	mutex_exit(&l2arc_free_on_write_mtx);
2595}
2596
2597static void
2598arc_hdr_free_on_write(arc_buf_hdr_t *hdr)
2599{
2600	arc_state_t *state = hdr->b_l1hdr.b_state;
2601	arc_buf_contents_t type = arc_buf_type(hdr);
2602	uint64_t size = arc_hdr_size(hdr);
2603
2604	/* protected by hash lock, if in the hash table */
2605	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2606		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2607		ASSERT(state != arc_anon && state != arc_l2c_only);
2608
2609		(void) refcount_remove_many(&state->arcs_esize[type],
2610		    size, hdr);
2611	}
2612	(void) refcount_remove_many(&state->arcs_size, size, hdr);
2613
2614	l2arc_free_data_on_write(hdr->b_l1hdr.b_pdata, size, type);
2615}
2616
2617/*
2618 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2619 * data buffer, we transfer the refcount ownership to the hdr and update
2620 * the appropriate kstats.
2621 */
2622static void
2623arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2624{
2625	arc_state_t *state = hdr->b_l1hdr.b_state;
2626
2627	ASSERT(!HDR_SHARED_DATA(hdr));
2628	ASSERT(!arc_buf_is_shared(buf));
2629	ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
2630	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2631
2632	/*
2633	 * Start sharing the data buffer. We transfer the
2634	 * refcount ownership to the hdr since it always owns
2635	 * the refcount whenever an arc_buf_t is shared.
2636	 */
2637	refcount_transfer_ownership(&state->arcs_size, buf, hdr);
2638	hdr->b_l1hdr.b_pdata = buf->b_data;
2639	arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2640
2641	/*
2642	 * Since we've transferred ownership to the hdr we need
2643	 * to increment its compressed and uncompressed kstats and
2644	 * decrement the overhead size.
2645	 */
2646	ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2647	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2648	ARCSTAT_INCR(arcstat_overhead_size, -HDR_GET_LSIZE(hdr));
2649}
2650
2651static void
2652arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2653{
2654	arc_state_t *state = hdr->b_l1hdr.b_state;
2655
2656	ASSERT(HDR_SHARED_DATA(hdr));
2657	ASSERT(arc_buf_is_shared(buf));
2658	ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
2659	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2660
2661	/*
2662	 * We are no longer sharing this buffer so we need
2663	 * to transfer its ownership to the rightful owner.
2664	 */
2665	refcount_transfer_ownership(&state->arcs_size, hdr, buf);
2666	arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2667	hdr->b_l1hdr.b_pdata = NULL;
2668
2669	/*
2670	 * Since the buffer is no longer shared between
2671	 * the arc buf and the hdr, count it as overhead.
2672	 */
2673	ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2674	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2675	ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
2676}
2677
2678/*
2679 * Free up buf->b_data and if 'remove' is set, then pull the
2680 * arc_buf_t off of the the arc_buf_hdr_t's list and free it.
2681 */
2682static void
2683arc_buf_destroy_impl(arc_buf_t *buf, boolean_t remove)
2684{
2685	arc_buf_t **bufp;
2686	arc_buf_hdr_t *hdr = buf->b_hdr;
2687	uint64_t size = HDR_GET_LSIZE(hdr);
2688	boolean_t destroyed_buf_is_shared = arc_buf_is_shared(buf);
2689
2690	/*
2691	 * Free up the data associated with the buf but only
2692	 * if we're not sharing this with the hdr. If we are sharing
2693	 * it with the hdr, then hdr will have performed the allocation
2694	 * so allow it to do the free.
2695	 */
2696	if (buf->b_data != NULL) {
2697		/*
2698		 * We're about to change the hdr's b_flags. We must either
2699		 * hold the hash_lock or be undiscoverable.
2700		 */
2701		ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2702
2703		arc_cksum_verify(buf);
2704#ifdef illumos
2705		arc_buf_unwatch(buf);
2706#endif
2707
2708		if (destroyed_buf_is_shared) {
2709			ASSERT(ARC_BUF_LAST(buf));
2710			ASSERT(HDR_SHARED_DATA(hdr));
2711			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2712		} else {
2713			arc_free_data_buf(hdr, buf->b_data, size, buf);
2714			ARCSTAT_INCR(arcstat_overhead_size, -size);
2715		}
2716		buf->b_data = NULL;
2717
2718		ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
2719		hdr->b_l1hdr.b_bufcnt -= 1;
2720	}
2721
2722	/* only remove the buf if requested */
2723	if (!remove)
2724		return;
2725
2726	/* remove the buf from the hdr list */
2727	arc_buf_t *lastbuf = NULL;
2728	bufp = &hdr->b_l1hdr.b_buf;
2729	while (*bufp != NULL) {
2730		if (*bufp == buf)
2731			*bufp = buf->b_next;
2732
2733		/*
2734		 * If we've removed a buffer in the middle of
2735		 * the list then update the lastbuf and update
2736		 * bufp.
2737		 */
2738		if (*bufp != NULL) {
2739			lastbuf = *bufp;
2740			bufp = &(*bufp)->b_next;
2741		}
2742	}
2743	buf->b_next = NULL;
2744	ASSERT3P(lastbuf, !=, buf);
2745
2746	/*
2747	 * If the current arc_buf_t is sharing its data
2748	 * buffer with the hdr, then reassign the hdr's
2749	 * b_pdata to share it with the new buffer at the end
2750	 * of the list. The shared buffer is always the last one
2751	 * on the hdr's buffer list.
2752	 */
2753	if (destroyed_buf_is_shared && lastbuf != NULL) {
2754		ASSERT(ARC_BUF_LAST(buf));
2755		ASSERT(ARC_BUF_LAST(lastbuf));
2756		VERIFY(!arc_buf_is_shared(lastbuf));
2757
2758		ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
2759		arc_hdr_free_pdata(hdr);
2760
2761		/*
2762		 * We must setup a new shared block between the
2763		 * last buffer and the hdr. The data would have
2764		 * been allocated by the arc buf so we need to transfer
2765		 * ownership to the hdr since it's now being shared.
2766		 */
2767		arc_share_buf(hdr, lastbuf);
2768	} else if (HDR_SHARED_DATA(hdr)) {
2769		ASSERT(arc_buf_is_shared(lastbuf));
2770	}
2771
2772	if (hdr->b_l1hdr.b_bufcnt == 0)
2773		arc_cksum_free(hdr);
2774
2775	/* clean up the buf */
2776	buf->b_hdr = NULL;
2777	kmem_cache_free(buf_cache, buf);
2778}
2779
2780static void
2781arc_hdr_alloc_pdata(arc_buf_hdr_t *hdr)
2782{
2783	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2784	ASSERT(HDR_HAS_L1HDR(hdr));
2785	ASSERT(!HDR_SHARED_DATA(hdr));
2786
2787	ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
2788	hdr->b_l1hdr.b_pdata = arc_get_data_buf(hdr, arc_hdr_size(hdr), hdr);
2789	hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
2790	ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
2791
2792	ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2793	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2794}
2795
2796static void
2797arc_hdr_free_pdata(arc_buf_hdr_t *hdr)
2798{
2799	ASSERT(HDR_HAS_L1HDR(hdr));
2800	ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
2801
2802	/*
2803	 * If the hdr is currently being written to the l2arc then
2804	 * we defer freeing the data by adding it to the l2arc_free_on_write
2805	 * list. The l2arc will free the data once it's finished
2806	 * writing it to the l2arc device.
2807	 */
2808	if (HDR_L2_WRITING(hdr)) {
2809		arc_hdr_free_on_write(hdr);
2810		ARCSTAT_BUMP(arcstat_l2_free_on_write);
2811	} else {
2812		arc_free_data_buf(hdr, hdr->b_l1hdr.b_pdata,
2813		    arc_hdr_size(hdr), hdr);
2814	}
2815	hdr->b_l1hdr.b_pdata = NULL;
2816	hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
2817
2818	ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2819	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2820}
2821
2822static arc_buf_hdr_t *
2823arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
2824    enum zio_compress compress, arc_buf_contents_t type)
2825{
2826	arc_buf_hdr_t *hdr;
2827
2828	ASSERT3U(lsize, >, 0);
2829	VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
2830
2831	hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
2832	ASSERT(HDR_EMPTY(hdr));
2833	ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
2834	ASSERT3P(hdr->b_l1hdr.b_thawed, ==, NULL);
2835	HDR_SET_PSIZE(hdr, psize);
2836	HDR_SET_LSIZE(hdr, lsize);
2837	hdr->b_spa = spa;
2838	hdr->b_type = type;
2839	hdr->b_flags = 0;
2840	arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
2841	arc_hdr_set_compress(hdr, compress);
2842
2843	hdr->b_l1hdr.b_state = arc_anon;
2844	hdr->b_l1hdr.b_arc_access = 0;
2845	hdr->b_l1hdr.b_bufcnt = 0;
2846	hdr->b_l1hdr.b_buf = NULL;
2847
2848	/*
2849	 * Allocate the hdr's buffer. This will contain either
2850	 * the compressed or uncompressed data depending on the block
2851	 * it references and compressed arc enablement.
2852	 */
2853	arc_hdr_alloc_pdata(hdr);
2854	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2855
2856	return (hdr);
2857}
2858
2859/*
2860 * Transition between the two allocation states for the arc_buf_hdr struct.
2861 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
2862 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
2863 * version is used when a cache buffer is only in the L2ARC in order to reduce
2864 * memory usage.
2865 */
2866static arc_buf_hdr_t *
2867arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
2868{
2869	ASSERT(HDR_HAS_L2HDR(hdr));
2870
2871	arc_buf_hdr_t *nhdr;
2872	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
2873
2874	ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
2875	    (old == hdr_l2only_cache && new == hdr_full_cache));
2876
2877	nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
2878
2879	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
2880	buf_hash_remove(hdr);
2881
2882	bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
2883
2884	if (new == hdr_full_cache) {
2885		arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
2886		/*
2887		 * arc_access and arc_change_state need to be aware that a
2888		 * header has just come out of L2ARC, so we set its state to
2889		 * l2c_only even though it's about to change.
2890		 */
2891		nhdr->b_l1hdr.b_state = arc_l2c_only;
2892
2893		/* Verify previous threads set to NULL before freeing */
2894		ASSERT3P(nhdr->b_l1hdr.b_pdata, ==, NULL);
2895	} else {
2896		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2897		ASSERT0(hdr->b_l1hdr.b_bufcnt);
2898		ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
2899
2900		/*
2901		 * If we've reached here, We must have been called from
2902		 * arc_evict_hdr(), as such we should have already been
2903		 * removed from any ghost list we were previously on
2904		 * (which protects us from racing with arc_evict_state),
2905		 * thus no locking is needed during this check.
2906		 */
2907		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
2908
2909		/*
2910		 * A buffer must not be moved into the arc_l2c_only
2911		 * state if it's not finished being written out to the
2912		 * l2arc device. Otherwise, the b_l1hdr.b_pdata field
2913		 * might try to be accessed, even though it was removed.
2914		 */
2915		VERIFY(!HDR_L2_WRITING(hdr));
2916		VERIFY3P(hdr->b_l1hdr.b_pdata, ==, NULL);
2917
2918#ifdef ZFS_DEBUG
2919		if (hdr->b_l1hdr.b_thawed != NULL) {
2920			kmem_free(hdr->b_l1hdr.b_thawed, 1);
2921			hdr->b_l1hdr.b_thawed = NULL;
2922		}
2923#endif
2924
2925		arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
2926	}
2927	/*
2928	 * The header has been reallocated so we need to re-insert it into any
2929	 * lists it was on.
2930	 */
2931	(void) buf_hash_insert(nhdr, NULL);
2932
2933	ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
2934
2935	mutex_enter(&dev->l2ad_mtx);
2936
2937	/*
2938	 * We must place the realloc'ed header back into the list at
2939	 * the same spot. Otherwise, if it's placed earlier in the list,
2940	 * l2arc_write_buffers() could find it during the function's
2941	 * write phase, and try to write it out to the l2arc.
2942	 */
2943	list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
2944	list_remove(&dev->l2ad_buflist, hdr);
2945
2946	mutex_exit(&dev->l2ad_mtx);
2947
2948	/*
2949	 * Since we're using the pointer address as the tag when
2950	 * incrementing and decrementing the l2ad_alloc refcount, we
2951	 * must remove the old pointer (that we're about to destroy) and
2952	 * add the new pointer to the refcount. Otherwise we'd remove
2953	 * the wrong pointer address when calling arc_hdr_destroy() later.
2954	 */
2955
2956	(void) refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
2957	(void) refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr), nhdr);
2958
2959	buf_discard_identity(hdr);
2960	kmem_cache_free(old, hdr);
2961
2962	return (nhdr);
2963}
2964
2965/*
2966 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
2967 * The buf is returned thawed since we expect the consumer to modify it.
2968 */
2969arc_buf_t *
2970arc_alloc_buf(spa_t *spa, int32_t size, void *tag, arc_buf_contents_t type)
2971{
2972	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
2973	    ZIO_COMPRESS_OFF, type);
2974	ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
2975	arc_buf_t *buf = arc_buf_alloc_impl(hdr, tag);
2976	arc_buf_thaw(buf);
2977	return (buf);
2978}
2979
2980static void
2981arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
2982{
2983	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
2984	l2arc_dev_t *dev = l2hdr->b_dev;
2985	uint64_t asize = arc_hdr_size(hdr);
2986
2987	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
2988	ASSERT(HDR_HAS_L2HDR(hdr));
2989
2990	list_remove(&dev->l2ad_buflist, hdr);
2991
2992	ARCSTAT_INCR(arcstat_l2_asize, -asize);
2993	ARCSTAT_INCR(arcstat_l2_size, -HDR_GET_LSIZE(hdr));
2994
2995	vdev_space_update(dev->l2ad_vdev, -asize, 0, 0);
2996
2997	(void) refcount_remove_many(&dev->l2ad_alloc, asize, hdr);
2998	arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
2999}
3000
3001static void
3002arc_hdr_destroy(arc_buf_hdr_t *hdr)
3003{
3004	if (HDR_HAS_L1HDR(hdr)) {
3005		ASSERT(hdr->b_l1hdr.b_buf == NULL ||
3006		    hdr->b_l1hdr.b_bufcnt > 0);
3007		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3008		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3009	}
3010	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3011	ASSERT(!HDR_IN_HASH_TABLE(hdr));
3012
3013	if (!HDR_EMPTY(hdr))
3014		buf_discard_identity(hdr);
3015
3016	if (HDR_HAS_L2HDR(hdr)) {
3017		l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3018		boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3019
3020		if (!buflist_held)
3021			mutex_enter(&dev->l2ad_mtx);
3022
3023		/*
3024		 * Even though we checked this conditional above, we
3025		 * need to check this again now that we have the
3026		 * l2ad_mtx. This is because we could be racing with
3027		 * another thread calling l2arc_evict() which might have
3028		 * destroyed this header's L2 portion as we were waiting
3029		 * to acquire the l2ad_mtx. If that happens, we don't
3030		 * want to re-destroy the header's L2 portion.
3031		 */
3032		if (HDR_HAS_L2HDR(hdr)) {
3033			l2arc_trim(hdr);
3034			arc_hdr_l2hdr_destroy(hdr);
3035		}
3036
3037		if (!buflist_held)
3038			mutex_exit(&dev->l2ad_mtx);
3039	}
3040
3041	if (HDR_HAS_L1HDR(hdr)) {
3042		arc_cksum_free(hdr);
3043
3044		while (hdr->b_l1hdr.b_buf != NULL)
3045			arc_buf_destroy_impl(hdr->b_l1hdr.b_buf, B_TRUE);
3046
3047#ifdef ZFS_DEBUG
3048		if (hdr->b_l1hdr.b_thawed != NULL) {
3049			kmem_free(hdr->b_l1hdr.b_thawed, 1);
3050			hdr->b_l1hdr.b_thawed = NULL;
3051		}
3052#endif
3053
3054		if (hdr->b_l1hdr.b_pdata != NULL) {
3055			arc_hdr_free_pdata(hdr);
3056		}
3057	}
3058
3059	ASSERT3P(hdr->b_hash_next, ==, NULL);
3060	if (HDR_HAS_L1HDR(hdr)) {
3061		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3062		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3063		kmem_cache_free(hdr_full_cache, hdr);
3064	} else {
3065		kmem_cache_free(hdr_l2only_cache, hdr);
3066	}
3067}
3068
3069void
3070arc_buf_destroy(arc_buf_t *buf, void* tag)
3071{
3072	arc_buf_hdr_t *hdr = buf->b_hdr;
3073	kmutex_t *hash_lock = HDR_LOCK(hdr);
3074
3075	if (hdr->b_l1hdr.b_state == arc_anon) {
3076		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
3077		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3078		VERIFY0(remove_reference(hdr, NULL, tag));
3079		arc_hdr_destroy(hdr);
3080		return;
3081	}
3082
3083	mutex_enter(hash_lock);
3084	ASSERT3P(hdr, ==, buf->b_hdr);
3085	ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3086	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3087	ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3088	ASSERT3P(buf->b_data, !=, NULL);
3089
3090	(void) remove_reference(hdr, hash_lock, tag);
3091	arc_buf_destroy_impl(buf, B_TRUE);
3092	mutex_exit(hash_lock);
3093}
3094
3095int32_t
3096arc_buf_size(arc_buf_t *buf)
3097{
3098	return (HDR_GET_LSIZE(buf->b_hdr));
3099}
3100
3101/*
3102 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3103 * state of the header is dependent on it's state prior to entering this
3104 * function. The following transitions are possible:
3105 *
3106 *    - arc_mru -> arc_mru_ghost
3107 *    - arc_mfu -> arc_mfu_ghost
3108 *    - arc_mru_ghost -> arc_l2c_only
3109 *    - arc_mru_ghost -> deleted
3110 *    - arc_mfu_ghost -> arc_l2c_only
3111 *    - arc_mfu_ghost -> deleted
3112 */
3113static int64_t
3114arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3115{
3116	arc_state_t *evicted_state, *state;
3117	int64_t bytes_evicted = 0;
3118
3119	ASSERT(MUTEX_HELD(hash_lock));
3120	ASSERT(HDR_HAS_L1HDR(hdr));
3121
3122	state = hdr->b_l1hdr.b_state;
3123	if (GHOST_STATE(state)) {
3124		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3125		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3126
3127		/*
3128		 * l2arc_write_buffers() relies on a header's L1 portion
3129		 * (i.e. its b_pdata field) during its write phase.
3130		 * Thus, we cannot push a header onto the arc_l2c_only
3131		 * state (removing it's L1 piece) until the header is
3132		 * done being written to the l2arc.
3133		 */
3134		if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3135			ARCSTAT_BUMP(arcstat_evict_l2_skip);
3136			return (bytes_evicted);
3137		}
3138
3139		ARCSTAT_BUMP(arcstat_deleted);
3140		bytes_evicted += HDR_GET_LSIZE(hdr);
3141
3142		DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3143
3144		ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
3145		if (HDR_HAS_L2HDR(hdr)) {
3146			ASSERT(hdr->b_l1hdr.b_pdata == NULL);
3147			/*
3148			 * This buffer is cached on the 2nd Level ARC;
3149			 * don't destroy the header.
3150			 */
3151			arc_change_state(arc_l2c_only, hdr, hash_lock);
3152			/*
3153			 * dropping from L1+L2 cached to L2-only,
3154			 * realloc to remove the L1 header.
3155			 */
3156			hdr = arc_hdr_realloc(hdr, hdr_full_cache,
3157			    hdr_l2only_cache);
3158		} else {
3159			ASSERT(hdr->b_l1hdr.b_pdata == NULL);
3160			arc_change_state(arc_anon, hdr, hash_lock);
3161			arc_hdr_destroy(hdr);
3162		}
3163		return (bytes_evicted);
3164	}
3165
3166	ASSERT(state == arc_mru || state == arc_mfu);
3167	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3168
3169	/* prefetch buffers have a minimum lifespan */
3170	if (HDR_IO_IN_PROGRESS(hdr) ||
3171	    ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3172	    ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
3173	    arc_min_prefetch_lifespan)) {
3174		ARCSTAT_BUMP(arcstat_evict_skip);
3175		return (bytes_evicted);
3176	}
3177
3178	ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
3179	while (hdr->b_l1hdr.b_buf) {
3180		arc_buf_t *buf = hdr->b_l1hdr.b_buf;
3181		if (!mutex_tryenter(&buf->b_evict_lock)) {
3182			ARCSTAT_BUMP(arcstat_mutex_miss);
3183			break;
3184		}
3185		if (buf->b_data != NULL)
3186			bytes_evicted += HDR_GET_LSIZE(hdr);
3187		mutex_exit(&buf->b_evict_lock);
3188		arc_buf_destroy_impl(buf, B_TRUE);
3189	}
3190
3191	if (HDR_HAS_L2HDR(hdr)) {
3192		ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3193	} else {
3194		if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3195			ARCSTAT_INCR(arcstat_evict_l2_eligible,
3196			    HDR_GET_LSIZE(hdr));
3197		} else {
3198			ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3199			    HDR_GET_LSIZE(hdr));
3200		}
3201	}
3202
3203	if (hdr->b_l1hdr.b_bufcnt == 0) {
3204		arc_cksum_free(hdr);
3205
3206		bytes_evicted += arc_hdr_size(hdr);
3207
3208		/*
3209		 * If this hdr is being evicted and has a compressed
3210		 * buffer then we discard it here before we change states.
3211		 * This ensures that the accounting is updated correctly
3212		 * in arc_free_data_buf().
3213		 */
3214		arc_hdr_free_pdata(hdr);
3215
3216		arc_change_state(evicted_state, hdr, hash_lock);
3217		ASSERT(HDR_IN_HASH_TABLE(hdr));
3218		arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
3219		DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3220	}
3221
3222	return (bytes_evicted);
3223}
3224
3225static uint64_t
3226arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3227    uint64_t spa, int64_t bytes)
3228{
3229	multilist_sublist_t *mls;
3230	uint64_t bytes_evicted = 0;
3231	arc_buf_hdr_t *hdr;
3232	kmutex_t *hash_lock;
3233	int evict_count = 0;
3234
3235	ASSERT3P(marker, !=, NULL);
3236	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3237
3238	mls = multilist_sublist_lock(ml, idx);
3239
3240	for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
3241	    hdr = multilist_sublist_prev(mls, marker)) {
3242		if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
3243		    (evict_count >= zfs_arc_evict_batch_limit))
3244			break;
3245
3246		/*
3247		 * To keep our iteration location, move the marker
3248		 * forward. Since we're not holding hdr's hash lock, we
3249		 * must be very careful and not remove 'hdr' from the
3250		 * sublist. Otherwise, other consumers might mistake the
3251		 * 'hdr' as not being on a sublist when they call the
3252		 * multilist_link_active() function (they all rely on
3253		 * the hash lock protecting concurrent insertions and
3254		 * removals). multilist_sublist_move_forward() was
3255		 * specifically implemented to ensure this is the case
3256		 * (only 'marker' will be removed and re-inserted).
3257		 */
3258		multilist_sublist_move_forward(mls, marker);
3259
3260		/*
3261		 * The only case where the b_spa field should ever be
3262		 * zero, is the marker headers inserted by
3263		 * arc_evict_state(). It's possible for multiple threads
3264		 * to be calling arc_evict_state() concurrently (e.g.
3265		 * dsl_pool_close() and zio_inject_fault()), so we must
3266		 * skip any markers we see from these other threads.
3267		 */
3268		if (hdr->b_spa == 0)
3269			continue;
3270
3271		/* we're only interested in evicting buffers of a certain spa */
3272		if (spa != 0 && hdr->b_spa != spa) {
3273			ARCSTAT_BUMP(arcstat_evict_skip);
3274			continue;
3275		}
3276
3277		hash_lock = HDR_LOCK(hdr);
3278
3279		/*
3280		 * We aren't calling this function from any code path
3281		 * that would already be holding a hash lock, so we're
3282		 * asserting on this assumption to be defensive in case
3283		 * this ever changes. Without this check, it would be
3284		 * possible to incorrectly increment arcstat_mutex_miss
3285		 * below (e.g. if the code changed such that we called
3286		 * this function with a hash lock held).
3287		 */
3288		ASSERT(!MUTEX_HELD(hash_lock));
3289
3290		if (mutex_tryenter(hash_lock)) {
3291			uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
3292			mutex_exit(hash_lock);
3293
3294			bytes_evicted += evicted;
3295
3296			/*
3297			 * If evicted is zero, arc_evict_hdr() must have
3298			 * decided to skip this header, don't increment
3299			 * evict_count in this case.
3300			 */
3301			if (evicted != 0)
3302				evict_count++;
3303
3304			/*
3305			 * If arc_size isn't overflowing, signal any
3306			 * threads that might happen to be waiting.
3307			 *
3308			 * For each header evicted, we wake up a single
3309			 * thread. If we used cv_broadcast, we could
3310			 * wake up "too many" threads causing arc_size
3311			 * to significantly overflow arc_c; since
3312			 * arc_get_data_buf() doesn't check for overflow
3313			 * when it's woken up (it doesn't because it's
3314			 * possible for the ARC to be overflowing while
3315			 * full of un-evictable buffers, and the
3316			 * function should proceed in this case).
3317			 *
3318			 * If threads are left sleeping, due to not
3319			 * using cv_broadcast, they will be woken up
3320			 * just before arc_reclaim_thread() sleeps.
3321			 */
3322			mutex_enter(&arc_reclaim_lock);
3323			if (!arc_is_overflowing())
3324				cv_signal(&arc_reclaim_waiters_cv);
3325			mutex_exit(&arc_reclaim_lock);
3326		} else {
3327			ARCSTAT_BUMP(arcstat_mutex_miss);
3328		}
3329	}
3330
3331	multilist_sublist_unlock(mls);
3332
3333	return (bytes_evicted);
3334}
3335
3336/*
3337 * Evict buffers from the given arc state, until we've removed the
3338 * specified number of bytes. Move the removed buffers to the
3339 * appropriate evict state.
3340 *
3341 * This function makes a "best effort". It skips over any buffers
3342 * it can't get a hash_lock on, and so, may not catch all candidates.
3343 * It may also return without evicting as much space as requested.
3344 *
3345 * If bytes is specified using the special value ARC_EVICT_ALL, this
3346 * will evict all available (i.e. unlocked and evictable) buffers from
3347 * the given arc state; which is used by arc_flush().
3348 */
3349static uint64_t
3350arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
3351    arc_buf_contents_t type)
3352{
3353	uint64_t total_evicted = 0;
3354	multilist_t *ml = &state->arcs_list[type];
3355	int num_sublists;
3356	arc_buf_hdr_t **markers;
3357
3358	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3359
3360	num_sublists = multilist_get_num_sublists(ml);
3361
3362	/*
3363	 * If we've tried to evict from each sublist, made some
3364	 * progress, but still have not hit the target number of bytes
3365	 * to evict, we want to keep trying. The markers allow us to
3366	 * pick up where we left off for each individual sublist, rather
3367	 * than starting from the tail each time.
3368	 */
3369	markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
3370	for (int i = 0; i < num_sublists; i++) {
3371		markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
3372
3373		/*
3374		 * A b_spa of 0 is used to indicate that this header is
3375		 * a marker. This fact is used in arc_adjust_type() and
3376		 * arc_evict_state_impl().
3377		 */
3378		markers[i]->b_spa = 0;
3379
3380		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3381		multilist_sublist_insert_tail(mls, markers[i]);
3382		multilist_sublist_unlock(mls);
3383	}
3384
3385	/*
3386	 * While we haven't hit our target number of bytes to evict, or
3387	 * we're evicting all available buffers.
3388	 */
3389	while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
3390		/*
3391		 * Start eviction using a randomly selected sublist,
3392		 * this is to try and evenly balance eviction across all
3393		 * sublists. Always starting at the same sublist
3394		 * (e.g. index 0) would cause evictions to favor certain
3395		 * sublists over others.
3396		 */
3397		int sublist_idx = multilist_get_random_index(ml);
3398		uint64_t scan_evicted = 0;
3399
3400		for (int i = 0; i < num_sublists; i++) {
3401			uint64_t bytes_remaining;
3402			uint64_t bytes_evicted;
3403
3404			if (bytes == ARC_EVICT_ALL)
3405				bytes_remaining = ARC_EVICT_ALL;
3406			else if (total_evicted < bytes)
3407				bytes_remaining = bytes - total_evicted;
3408			else
3409				break;
3410
3411			bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
3412			    markers[sublist_idx], spa, bytes_remaining);
3413
3414			scan_evicted += bytes_evicted;
3415			total_evicted += bytes_evicted;
3416
3417			/* we've reached the end, wrap to the beginning */
3418			if (++sublist_idx >= num_sublists)
3419				sublist_idx = 0;
3420		}
3421
3422		/*
3423		 * If we didn't evict anything during this scan, we have
3424		 * no reason to believe we'll evict more during another
3425		 * scan, so break the loop.
3426		 */
3427		if (scan_evicted == 0) {
3428			/* This isn't possible, let's make that obvious */
3429			ASSERT3S(bytes, !=, 0);
3430
3431			/*
3432			 * When bytes is ARC_EVICT_ALL, the only way to
3433			 * break the loop is when scan_evicted is zero.
3434			 * In that case, we actually have evicted enough,
3435			 * so we don't want to increment the kstat.
3436			 */
3437			if (bytes != ARC_EVICT_ALL) {
3438				ASSERT3S(total_evicted, <, bytes);
3439				ARCSTAT_BUMP(arcstat_evict_not_enough);
3440			}
3441
3442			break;
3443		}
3444	}
3445
3446	for (int i = 0; i < num_sublists; i++) {
3447		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3448		multilist_sublist_remove(mls, markers[i]);
3449		multilist_sublist_unlock(mls);
3450
3451		kmem_cache_free(hdr_full_cache, markers[i]);
3452	}
3453	kmem_free(markers, sizeof (*markers) * num_sublists);
3454
3455	return (total_evicted);
3456}
3457
3458/*
3459 * Flush all "evictable" data of the given type from the arc state
3460 * specified. This will not evict any "active" buffers (i.e. referenced).
3461 *
3462 * When 'retry' is set to B_FALSE, the function will make a single pass
3463 * over the state and evict any buffers that it can. Since it doesn't
3464 * continually retry the eviction, it might end up leaving some buffers
3465 * in the ARC due to lock misses.
3466 *
3467 * When 'retry' is set to B_TRUE, the function will continually retry the
3468 * eviction until *all* evictable buffers have been removed from the
3469 * state. As a result, if concurrent insertions into the state are
3470 * allowed (e.g. if the ARC isn't shutting down), this function might
3471 * wind up in an infinite loop, continually trying to evict buffers.
3472 */
3473static uint64_t
3474arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
3475    boolean_t retry)
3476{
3477	uint64_t evicted = 0;
3478
3479	while (refcount_count(&state->arcs_esize[type]) != 0) {
3480		evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
3481
3482		if (!retry)
3483			break;
3484	}
3485
3486	return (evicted);
3487}
3488
3489/*
3490 * Evict the specified number of bytes from the state specified,
3491 * restricting eviction to the spa and type given. This function
3492 * prevents us from trying to evict more from a state's list than
3493 * is "evictable", and to skip evicting altogether when passed a
3494 * negative value for "bytes". In contrast, arc_evict_state() will
3495 * evict everything it can, when passed a negative value for "bytes".
3496 */
3497static uint64_t
3498arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
3499    arc_buf_contents_t type)
3500{
3501	int64_t delta;
3502
3503	if (bytes > 0 && refcount_count(&state->arcs_esize[type]) > 0) {
3504		delta = MIN(refcount_count(&state->arcs_esize[type]), bytes);
3505		return (arc_evict_state(state, spa, delta, type));
3506	}
3507
3508	return (0);
3509}
3510
3511/*
3512 * Evict metadata buffers from the cache, such that arc_meta_used is
3513 * capped by the arc_meta_limit tunable.
3514 */
3515static uint64_t
3516arc_adjust_meta(void)
3517{
3518	uint64_t total_evicted = 0;
3519	int64_t target;
3520
3521	/*
3522	 * If we're over the meta limit, we want to evict enough
3523	 * metadata to get back under the meta limit. We don't want to
3524	 * evict so much that we drop the MRU below arc_p, though. If
3525	 * we're over the meta limit more than we're over arc_p, we
3526	 * evict some from the MRU here, and some from the MFU below.
3527	 */
3528	target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3529	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
3530	    refcount_count(&arc_mru->arcs_size) - arc_p));
3531
3532	total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3533
3534	/*
3535	 * Similar to the above, we want to evict enough bytes to get us
3536	 * below the meta limit, but not so much as to drop us below the
3537	 * space alloted to the MFU (which is defined as arc_c - arc_p).
3538	 */
3539	target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3540	    (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p)));
3541
3542	total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3543
3544	return (total_evicted);
3545}
3546
3547/*
3548 * Return the type of the oldest buffer in the given arc state
3549 *
3550 * This function will select a random sublist of type ARC_BUFC_DATA and
3551 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
3552 * is compared, and the type which contains the "older" buffer will be
3553 * returned.
3554 */
3555static arc_buf_contents_t
3556arc_adjust_type(arc_state_t *state)
3557{
3558	multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA];
3559	multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA];
3560	int data_idx = multilist_get_random_index(data_ml);
3561	int meta_idx = multilist_get_random_index(meta_ml);
3562	multilist_sublist_t *data_mls;
3563	multilist_sublist_t *meta_mls;
3564	arc_buf_contents_t type;
3565	arc_buf_hdr_t *data_hdr;
3566	arc_buf_hdr_t *meta_hdr;
3567
3568	/*
3569	 * We keep the sublist lock until we're finished, to prevent
3570	 * the headers from being destroyed via arc_evict_state().
3571	 */
3572	data_mls = multilist_sublist_lock(data_ml, data_idx);
3573	meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
3574
3575	/*
3576	 * These two loops are to ensure we skip any markers that
3577	 * might be at the tail of the lists due to arc_evict_state().
3578	 */
3579
3580	for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
3581	    data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
3582		if (data_hdr->b_spa != 0)
3583			break;
3584	}
3585
3586	for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
3587	    meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
3588		if (meta_hdr->b_spa != 0)
3589			break;
3590	}
3591
3592	if (data_hdr == NULL && meta_hdr == NULL) {
3593		type = ARC_BUFC_DATA;
3594	} else if (data_hdr == NULL) {
3595		ASSERT3P(meta_hdr, !=, NULL);
3596		type = ARC_BUFC_METADATA;
3597	} else if (meta_hdr == NULL) {
3598		ASSERT3P(data_hdr, !=, NULL);
3599		type = ARC_BUFC_DATA;
3600	} else {
3601		ASSERT3P(data_hdr, !=, NULL);
3602		ASSERT3P(meta_hdr, !=, NULL);
3603
3604		/* The headers can't be on the sublist without an L1 header */
3605		ASSERT(HDR_HAS_L1HDR(data_hdr));
3606		ASSERT(HDR_HAS_L1HDR(meta_hdr));
3607
3608		if (data_hdr->b_l1hdr.b_arc_access <
3609		    meta_hdr->b_l1hdr.b_arc_access) {
3610			type = ARC_BUFC_DATA;
3611		} else {
3612			type = ARC_BUFC_METADATA;
3613		}
3614	}
3615
3616	multilist_sublist_unlock(meta_mls);
3617	multilist_sublist_unlock(data_mls);
3618
3619	return (type);
3620}
3621
3622/*
3623 * Evict buffers from the cache, such that arc_size is capped by arc_c.
3624 */
3625static uint64_t
3626arc_adjust(void)
3627{
3628	uint64_t total_evicted = 0;
3629	uint64_t bytes;
3630	int64_t target;
3631
3632	/*
3633	 * If we're over arc_meta_limit, we want to correct that before
3634	 * potentially evicting data buffers below.
3635	 */
3636	total_evicted += arc_adjust_meta();
3637
3638	/*
3639	 * Adjust MRU size
3640	 *
3641	 * If we're over the target cache size, we want to evict enough
3642	 * from the list to get back to our target size. We don't want
3643	 * to evict too much from the MRU, such that it drops below
3644	 * arc_p. So, if we're over our target cache size more than
3645	 * the MRU is over arc_p, we'll evict enough to get back to
3646	 * arc_p here, and then evict more from the MFU below.
3647	 */
3648	target = MIN((int64_t)(arc_size - arc_c),
3649	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
3650	    refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p));
3651
3652	/*
3653	 * If we're below arc_meta_min, always prefer to evict data.
3654	 * Otherwise, try to satisfy the requested number of bytes to
3655	 * evict from the type which contains older buffers; in an
3656	 * effort to keep newer buffers in the cache regardless of their
3657	 * type. If we cannot satisfy the number of bytes from this
3658	 * type, spill over into the next type.
3659	 */
3660	if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
3661	    arc_meta_used > arc_meta_min) {
3662		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3663		total_evicted += bytes;
3664
3665		/*
3666		 * If we couldn't evict our target number of bytes from
3667		 * metadata, we try to get the rest from data.
3668		 */
3669		target -= bytes;
3670
3671		total_evicted +=
3672		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3673	} else {
3674		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3675		total_evicted += bytes;
3676
3677		/*
3678		 * If we couldn't evict our target number of bytes from
3679		 * data, we try to get the rest from metadata.
3680		 */
3681		target -= bytes;
3682
3683		total_evicted +=
3684		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3685	}
3686
3687	/*
3688	 * Adjust MFU size
3689	 *
3690	 * Now that we've tried to evict enough from the MRU to get its
3691	 * size back to arc_p, if we're still above the target cache
3692	 * size, we evict the rest from the MFU.
3693	 */
3694	target = arc_size - arc_c;
3695
3696	if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
3697	    arc_meta_used > arc_meta_min) {
3698		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3699		total_evicted += bytes;
3700
3701		/*
3702		 * If we couldn't evict our target number of bytes from
3703		 * metadata, we try to get the rest from data.
3704		 */
3705		target -= bytes;
3706
3707		total_evicted +=
3708		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3709	} else {
3710		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3711		total_evicted += bytes;
3712
3713		/*
3714		 * If we couldn't evict our target number of bytes from
3715		 * data, we try to get the rest from data.
3716		 */
3717		target -= bytes;
3718
3719		total_evicted +=
3720		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3721	}
3722
3723	/*
3724	 * Adjust ghost lists
3725	 *
3726	 * In addition to the above, the ARC also defines target values
3727	 * for the ghost lists. The sum of the mru list and mru ghost
3728	 * list should never exceed the target size of the cache, and
3729	 * the sum of the mru list, mfu list, mru ghost list, and mfu
3730	 * ghost list should never exceed twice the target size of the
3731	 * cache. The following logic enforces these limits on the ghost
3732	 * caches, and evicts from them as needed.
3733	 */
3734	target = refcount_count(&arc_mru->arcs_size) +
3735	    refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
3736
3737	bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
3738	total_evicted += bytes;
3739
3740	target -= bytes;
3741
3742	total_evicted +=
3743	    arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
3744
3745	/*
3746	 * We assume the sum of the mru list and mfu list is less than
3747	 * or equal to arc_c (we enforced this above), which means we
3748	 * can use the simpler of the two equations below:
3749	 *
3750	 *	mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
3751	 *		    mru ghost + mfu ghost <= arc_c
3752	 */
3753	target = refcount_count(&arc_mru_ghost->arcs_size) +
3754	    refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
3755
3756	bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
3757	total_evicted += bytes;
3758
3759	target -= bytes;
3760
3761	total_evicted +=
3762	    arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
3763
3764	return (total_evicted);
3765}
3766
3767void
3768arc_flush(spa_t *spa, boolean_t retry)
3769{
3770	uint64_t guid = 0;
3771
3772	/*
3773	 * If retry is B_TRUE, a spa must not be specified since we have
3774	 * no good way to determine if all of a spa's buffers have been
3775	 * evicted from an arc state.
3776	 */
3777	ASSERT(!retry || spa == 0);
3778
3779	if (spa != NULL)
3780		guid = spa_load_guid(spa);
3781
3782	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
3783	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
3784
3785	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
3786	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
3787
3788	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
3789	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
3790
3791	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
3792	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
3793}
3794
3795void
3796arc_shrink(int64_t to_free)
3797{
3798	if (arc_c > arc_c_min) {
3799		DTRACE_PROBE4(arc__shrink, uint64_t, arc_c, uint64_t,
3800			arc_c_min, uint64_t, arc_p, uint64_t, to_free);
3801		if (arc_c > arc_c_min + to_free)
3802			atomic_add_64(&arc_c, -to_free);
3803		else
3804			arc_c = arc_c_min;
3805
3806		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
3807		if (arc_c > arc_size)
3808			arc_c = MAX(arc_size, arc_c_min);
3809		if (arc_p > arc_c)
3810			arc_p = (arc_c >> 1);
3811
3812		DTRACE_PROBE2(arc__shrunk, uint64_t, arc_c, uint64_t,
3813			arc_p);
3814
3815		ASSERT(arc_c >= arc_c_min);
3816		ASSERT((int64_t)arc_p >= 0);
3817	}
3818
3819	if (arc_size > arc_c) {
3820		DTRACE_PROBE2(arc__shrink_adjust, uint64_t, arc_size,
3821			uint64_t, arc_c);
3822		(void) arc_adjust();
3823	}
3824}
3825
3826static long needfree = 0;
3827
3828typedef enum free_memory_reason_t {
3829	FMR_UNKNOWN,
3830	FMR_NEEDFREE,
3831	FMR_LOTSFREE,
3832	FMR_SWAPFS_MINFREE,
3833	FMR_PAGES_PP_MAXIMUM,
3834	FMR_HEAP_ARENA,
3835	FMR_ZIO_ARENA,
3836	FMR_ZIO_FRAG,
3837} free_memory_reason_t;
3838
3839int64_t last_free_memory;
3840free_memory_reason_t last_free_reason;
3841
3842/*
3843 * Additional reserve of pages for pp_reserve.
3844 */
3845int64_t arc_pages_pp_reserve = 64;
3846
3847/*
3848 * Additional reserve of pages for swapfs.
3849 */
3850int64_t arc_swapfs_reserve = 64;
3851
3852/*
3853 * Return the amount of memory that can be consumed before reclaim will be
3854 * needed.  Positive if there is sufficient free memory, negative indicates
3855 * the amount of memory that needs to be freed up.
3856 */
3857static int64_t
3858arc_available_memory(void)
3859{
3860	int64_t lowest = INT64_MAX;
3861	int64_t n;
3862	free_memory_reason_t r = FMR_UNKNOWN;
3863
3864#ifdef _KERNEL
3865	if (needfree > 0) {
3866		n = PAGESIZE * (-needfree);
3867		if (n < lowest) {
3868			lowest = n;
3869			r = FMR_NEEDFREE;
3870		}
3871	}
3872
3873	/*
3874	 * Cooperate with pagedaemon when it's time for it to scan
3875	 * and reclaim some pages.
3876	 */
3877	n = PAGESIZE * ((int64_t)freemem - zfs_arc_free_target);
3878	if (n < lowest) {
3879		lowest = n;
3880		r = FMR_LOTSFREE;
3881	}
3882
3883#ifdef illumos
3884	/*
3885	 * check that we're out of range of the pageout scanner.  It starts to
3886	 * schedule paging if freemem is less than lotsfree and needfree.
3887	 * lotsfree is the high-water mark for pageout, and needfree is the
3888	 * number of needed free pages.  We add extra pages here to make sure
3889	 * the scanner doesn't start up while we're freeing memory.
3890	 */
3891	n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
3892	if (n < lowest) {
3893		lowest = n;
3894		r = FMR_LOTSFREE;
3895	}
3896
3897	/*
3898	 * check to make sure that swapfs has enough space so that anon
3899	 * reservations can still succeed. anon_resvmem() checks that the
3900	 * availrmem is greater than swapfs_minfree, and the number of reserved
3901	 * swap pages.  We also add a bit of extra here just to prevent
3902	 * circumstances from getting really dire.
3903	 */
3904	n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
3905	    desfree - arc_swapfs_reserve);
3906	if (n < lowest) {
3907		lowest = n;
3908		r = FMR_SWAPFS_MINFREE;
3909	}
3910
3911
3912	/*
3913	 * Check that we have enough availrmem that memory locking (e.g., via
3914	 * mlock(3C) or memcntl(2)) can still succeed.  (pages_pp_maximum
3915	 * stores the number of pages that cannot be locked; when availrmem
3916	 * drops below pages_pp_maximum, page locking mechanisms such as
3917	 * page_pp_lock() will fail.)
3918	 */
3919	n = PAGESIZE * (availrmem - pages_pp_maximum -
3920	    arc_pages_pp_reserve);
3921	if (n < lowest) {
3922		lowest = n;
3923		r = FMR_PAGES_PP_MAXIMUM;
3924	}
3925
3926#endif	/* illumos */
3927#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
3928	/*
3929	 * If we're on an i386 platform, it's possible that we'll exhaust the
3930	 * kernel heap space before we ever run out of available physical
3931	 * memory.  Most checks of the size of the heap_area compare against
3932	 * tune.t_minarmem, which is the minimum available real memory that we
3933	 * can have in the system.  However, this is generally fixed at 25 pages
3934	 * which is so low that it's useless.  In this comparison, we seek to
3935	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
3936	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
3937	 * free)
3938	 */
3939	n = (int64_t)vmem_size(heap_arena, VMEM_FREE) -
3940	    (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
3941	if (n < lowest) {
3942		lowest = n;
3943		r = FMR_HEAP_ARENA;
3944	}
3945#define	zio_arena	NULL
3946#else
3947#define	zio_arena	heap_arena
3948#endif
3949
3950	/*
3951	 * If zio data pages are being allocated out of a separate heap segment,
3952	 * then enforce that the size of available vmem for this arena remains
3953	 * above about 1/16th free.
3954	 *
3955	 * Note: The 1/16th arena free requirement was put in place
3956	 * to aggressively evict memory from the arc in order to avoid
3957	 * memory fragmentation issues.
3958	 */
3959	if (zio_arena != NULL) {
3960		n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
3961		    (vmem_size(zio_arena, VMEM_ALLOC) >> 4);
3962		if (n < lowest) {
3963			lowest = n;
3964			r = FMR_ZIO_ARENA;
3965		}
3966	}
3967
3968	/*
3969	 * Above limits know nothing about real level of KVA fragmentation.
3970	 * Start aggressive reclamation if too little sequential KVA left.
3971	 */
3972	if (lowest > 0) {
3973		n = (vmem_size(heap_arena, VMEM_MAXFREE) < zfs_max_recordsize) ?
3974		    -((int64_t)vmem_size(heap_arena, VMEM_ALLOC) >> 4) :
3975		    INT64_MAX;
3976		if (n < lowest) {
3977			lowest = n;
3978			r = FMR_ZIO_FRAG;
3979		}
3980	}
3981
3982#else	/* _KERNEL */
3983	/* Every 100 calls, free a small amount */
3984	if (spa_get_random(100) == 0)
3985		lowest = -1024;
3986#endif	/* _KERNEL */
3987
3988	last_free_memory = lowest;
3989	last_free_reason = r;
3990	DTRACE_PROBE2(arc__available_memory, int64_t, lowest, int, r);
3991	return (lowest);
3992}
3993
3994
3995/*
3996 * Determine if the system is under memory pressure and is asking
3997 * to reclaim memory. A return value of B_TRUE indicates that the system
3998 * is under memory pressure and that the arc should adjust accordingly.
3999 */
4000static boolean_t
4001arc_reclaim_needed(void)
4002{
4003	return (arc_available_memory() < 0);
4004}
4005
4006extern kmem_cache_t	*zio_buf_cache[];
4007extern kmem_cache_t	*zio_data_buf_cache[];
4008extern kmem_cache_t	*range_seg_cache;
4009
4010static __noinline void
4011arc_kmem_reap_now(void)
4012{
4013	size_t			i;
4014	kmem_cache_t		*prev_cache = NULL;
4015	kmem_cache_t		*prev_data_cache = NULL;
4016
4017	DTRACE_PROBE(arc__kmem_reap_start);
4018#ifdef _KERNEL
4019	if (arc_meta_used >= arc_meta_limit) {
4020		/*
4021		 * We are exceeding our meta-data cache limit.
4022		 * Purge some DNLC entries to release holds on meta-data.
4023		 */
4024		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
4025	}
4026#if defined(__i386)
4027	/*
4028	 * Reclaim unused memory from all kmem caches.
4029	 */
4030	kmem_reap();
4031#endif
4032#endif
4033
4034	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4035		if (zio_buf_cache[i] != prev_cache) {
4036			prev_cache = zio_buf_cache[i];
4037			kmem_cache_reap_now(zio_buf_cache[i]);
4038		}
4039		if (zio_data_buf_cache[i] != prev_data_cache) {
4040			prev_data_cache = zio_data_buf_cache[i];
4041			kmem_cache_reap_now(zio_data_buf_cache[i]);
4042		}
4043	}
4044	kmem_cache_reap_now(buf_cache);
4045	kmem_cache_reap_now(hdr_full_cache);
4046	kmem_cache_reap_now(hdr_l2only_cache);
4047	kmem_cache_reap_now(range_seg_cache);
4048
4049#ifdef illumos
4050	if (zio_arena != NULL) {
4051		/*
4052		 * Ask the vmem arena to reclaim unused memory from its
4053		 * quantum caches.
4054		 */
4055		vmem_qcache_reap(zio_arena);
4056	}
4057#endif
4058	DTRACE_PROBE(arc__kmem_reap_end);
4059}
4060
4061/*
4062 * Threads can block in arc_get_data_buf() waiting for this thread to evict
4063 * enough data and signal them to proceed. When this happens, the threads in
4064 * arc_get_data_buf() are sleeping while holding the hash lock for their
4065 * particular arc header. Thus, we must be careful to never sleep on a
4066 * hash lock in this thread. This is to prevent the following deadlock:
4067 *
4068 *  - Thread A sleeps on CV in arc_get_data_buf() holding hash lock "L",
4069 *    waiting for the reclaim thread to signal it.
4070 *
4071 *  - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
4072 *    fails, and goes to sleep forever.
4073 *
4074 * This possible deadlock is avoided by always acquiring a hash lock
4075 * using mutex_tryenter() from arc_reclaim_thread().
4076 */
4077static void
4078arc_reclaim_thread(void *dummy __unused)
4079{
4080	hrtime_t		growtime = 0;
4081	callb_cpr_t		cpr;
4082
4083	CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
4084
4085	mutex_enter(&arc_reclaim_lock);
4086	while (!arc_reclaim_thread_exit) {
4087		int64_t free_memory = arc_available_memory();
4088		uint64_t evicted = 0;
4089
4090		/*
4091		 * This is necessary in order for the mdb ::arc dcmd to
4092		 * show up to date information. Since the ::arc command
4093		 * does not call the kstat's update function, without
4094		 * this call, the command may show stale stats for the
4095		 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4096		 * with this change, the data might be up to 1 second
4097		 * out of date; but that should suffice. The arc_state_t
4098		 * structures can be queried directly if more accurate
4099		 * information is needed.
4100		 */
4101		if (arc_ksp != NULL)
4102			arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4103
4104		mutex_exit(&arc_reclaim_lock);
4105
4106		if (free_memory < 0) {
4107
4108			arc_no_grow = B_TRUE;
4109			arc_warm = B_TRUE;
4110
4111			/*
4112			 * Wait at least zfs_grow_retry (default 60) seconds
4113			 * before considering growing.
4114			 */
4115			growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
4116
4117			arc_kmem_reap_now();
4118
4119			/*
4120			 * If we are still low on memory, shrink the ARC
4121			 * so that we have arc_shrink_min free space.
4122			 */
4123			free_memory = arc_available_memory();
4124
4125			int64_t to_free =
4126			    (arc_c >> arc_shrink_shift) - free_memory;
4127			if (to_free > 0) {
4128#ifdef _KERNEL
4129				to_free = MAX(to_free, ptob(needfree));
4130#endif
4131				arc_shrink(to_free);
4132			}
4133		} else if (free_memory < arc_c >> arc_no_grow_shift) {
4134			arc_no_grow = B_TRUE;
4135		} else if (gethrtime() >= growtime) {
4136			arc_no_grow = B_FALSE;
4137		}
4138
4139		evicted = arc_adjust();
4140
4141		mutex_enter(&arc_reclaim_lock);
4142
4143		/*
4144		 * If evicted is zero, we couldn't evict anything via
4145		 * arc_adjust(). This could be due to hash lock
4146		 * collisions, but more likely due to the majority of
4147		 * arc buffers being unevictable. Therefore, even if
4148		 * arc_size is above arc_c, another pass is unlikely to
4149		 * be helpful and could potentially cause us to enter an
4150		 * infinite loop.
4151		 */
4152		if (arc_size <= arc_c || evicted == 0) {
4153#ifdef _KERNEL
4154			needfree = 0;
4155#endif
4156			/*
4157			 * We're either no longer overflowing, or we
4158			 * can't evict anything more, so we should wake
4159			 * up any threads before we go to sleep.
4160			 */
4161			cv_broadcast(&arc_reclaim_waiters_cv);
4162
4163			/*
4164			 * Block until signaled, or after one second (we
4165			 * might need to perform arc_kmem_reap_now()
4166			 * even if we aren't being signalled)
4167			 */
4168			CALLB_CPR_SAFE_BEGIN(&cpr);
4169			(void) cv_timedwait_hires(&arc_reclaim_thread_cv,
4170			    &arc_reclaim_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
4171			CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
4172		}
4173	}
4174
4175	arc_reclaim_thread_exit = B_FALSE;
4176	cv_broadcast(&arc_reclaim_thread_cv);
4177	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_lock */
4178	thread_exit();
4179}
4180
4181/*
4182 * Adapt arc info given the number of bytes we are trying to add and
4183 * the state that we are comming from.  This function is only called
4184 * when we are adding new content to the cache.
4185 */
4186static void
4187arc_adapt(int bytes, arc_state_t *state)
4188{
4189	int mult;
4190	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
4191	int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
4192	int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
4193
4194	if (state == arc_l2c_only)
4195		return;
4196
4197	ASSERT(bytes > 0);
4198	/*
4199	 * Adapt the target size of the MRU list:
4200	 *	- if we just hit in the MRU ghost list, then increase
4201	 *	  the target size of the MRU list.
4202	 *	- if we just hit in the MFU ghost list, then increase
4203	 *	  the target size of the MFU list by decreasing the
4204	 *	  target size of the MRU list.
4205	 */
4206	if (state == arc_mru_ghost) {
4207		mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
4208		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
4209
4210		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
4211	} else if (state == arc_mfu_ghost) {
4212		uint64_t delta;
4213
4214		mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
4215		mult = MIN(mult, 10);
4216
4217		delta = MIN(bytes * mult, arc_p);
4218		arc_p = MAX(arc_p_min, arc_p - delta);
4219	}
4220	ASSERT((int64_t)arc_p >= 0);
4221
4222	if (arc_reclaim_needed()) {
4223		cv_signal(&arc_reclaim_thread_cv);
4224		return;
4225	}
4226
4227	if (arc_no_grow)
4228		return;
4229
4230	if (arc_c >= arc_c_max)
4231		return;
4232
4233	/*
4234	 * If we're within (2 * maxblocksize) bytes of the target
4235	 * cache size, increment the target cache size
4236	 */
4237	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
4238		DTRACE_PROBE1(arc__inc_adapt, int, bytes);
4239		atomic_add_64(&arc_c, (int64_t)bytes);
4240		if (arc_c > arc_c_max)
4241			arc_c = arc_c_max;
4242		else if (state == arc_anon)
4243			atomic_add_64(&arc_p, (int64_t)bytes);
4244		if (arc_p > arc_c)
4245			arc_p = arc_c;
4246	}
4247	ASSERT((int64_t)arc_p >= 0);
4248}
4249
4250/*
4251 * Check if arc_size has grown past our upper threshold, determined by
4252 * zfs_arc_overflow_shift.
4253 */
4254static boolean_t
4255arc_is_overflowing(void)
4256{
4257	/* Always allow at least one block of overflow */
4258	uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
4259	    arc_c >> zfs_arc_overflow_shift);
4260
4261	return (arc_size >= arc_c + overflow);
4262}
4263
4264/*
4265 * Allocate a block and return it to the caller. If we are hitting the
4266 * hard limit for the cache size, we must sleep, waiting for the eviction
4267 * thread to catch up. If we're past the target size but below the hard
4268 * limit, we'll only signal the reclaim thread and continue on.
4269 */
4270static void *
4271arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4272{
4273	void *datap = NULL;
4274	arc_state_t		*state = hdr->b_l1hdr.b_state;
4275	arc_buf_contents_t	type = arc_buf_type(hdr);
4276
4277	arc_adapt(size, state);
4278
4279	/*
4280	 * If arc_size is currently overflowing, and has grown past our
4281	 * upper limit, we must be adding data faster than the evict
4282	 * thread can evict. Thus, to ensure we don't compound the
4283	 * problem by adding more data and forcing arc_size to grow even
4284	 * further past it's target size, we halt and wait for the
4285	 * eviction thread to catch up.
4286	 *
4287	 * It's also possible that the reclaim thread is unable to evict
4288	 * enough buffers to get arc_size below the overflow limit (e.g.
4289	 * due to buffers being un-evictable, or hash lock collisions).
4290	 * In this case, we want to proceed regardless if we're
4291	 * overflowing; thus we don't use a while loop here.
4292	 */
4293	if (arc_is_overflowing()) {
4294		mutex_enter(&arc_reclaim_lock);
4295
4296		/*
4297		 * Now that we've acquired the lock, we may no longer be
4298		 * over the overflow limit, lets check.
4299		 *
4300		 * We're ignoring the case of spurious wake ups. If that
4301		 * were to happen, it'd let this thread consume an ARC
4302		 * buffer before it should have (i.e. before we're under
4303		 * the overflow limit and were signalled by the reclaim
4304		 * thread). As long as that is a rare occurrence, it
4305		 * shouldn't cause any harm.
4306		 */
4307		if (arc_is_overflowing()) {
4308			cv_signal(&arc_reclaim_thread_cv);
4309			cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
4310		}
4311
4312		mutex_exit(&arc_reclaim_lock);
4313	}
4314
4315	VERIFY3U(hdr->b_type, ==, type);
4316	if (type == ARC_BUFC_METADATA) {
4317		datap = zio_buf_alloc(size);
4318		arc_space_consume(size, ARC_SPACE_META);
4319	} else {
4320		ASSERT(type == ARC_BUFC_DATA);
4321		datap = zio_data_buf_alloc(size);
4322		arc_space_consume(size, ARC_SPACE_DATA);
4323	}
4324
4325	/*
4326	 * Update the state size.  Note that ghost states have a
4327	 * "ghost size" and so don't need to be updated.
4328	 */
4329	if (!GHOST_STATE(state)) {
4330
4331		(void) refcount_add_many(&state->arcs_size, size, tag);
4332
4333		/*
4334		 * If this is reached via arc_read, the link is
4335		 * protected by the hash lock. If reached via
4336		 * arc_buf_alloc, the header should not be accessed by
4337		 * any other thread. And, if reached via arc_read_done,
4338		 * the hash lock will protect it if it's found in the
4339		 * hash table; otherwise no other thread should be
4340		 * trying to [add|remove]_reference it.
4341		 */
4342		if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4343			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4344			(void) refcount_add_many(&state->arcs_esize[type],
4345			    size, tag);
4346		}
4347
4348		/*
4349		 * If we are growing the cache, and we are adding anonymous
4350		 * data, and we have outgrown arc_p, update arc_p
4351		 */
4352		if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
4353		    (refcount_count(&arc_anon->arcs_size) +
4354		    refcount_count(&arc_mru->arcs_size) > arc_p))
4355			arc_p = MIN(arc_c, arc_p + size);
4356	}
4357	ARCSTAT_BUMP(arcstat_allocated);
4358	return (datap);
4359}
4360
4361/*
4362 * Free the arc data buffer.
4363 */
4364static void
4365arc_free_data_buf(arc_buf_hdr_t *hdr, void *data, uint64_t size, void *tag)
4366{
4367	arc_state_t *state = hdr->b_l1hdr.b_state;
4368	arc_buf_contents_t type = arc_buf_type(hdr);
4369
4370	/* protected by hash lock, if in the hash table */
4371	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4372		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4373		ASSERT(state != arc_anon && state != arc_l2c_only);
4374
4375		(void) refcount_remove_many(&state->arcs_esize[type],
4376		    size, tag);
4377	}
4378	(void) refcount_remove_many(&state->arcs_size, size, tag);
4379
4380	VERIFY3U(hdr->b_type, ==, type);
4381	if (type == ARC_BUFC_METADATA) {
4382		zio_buf_free(data, size);
4383		arc_space_return(size, ARC_SPACE_META);
4384	} else {
4385		ASSERT(type == ARC_BUFC_DATA);
4386		zio_data_buf_free(data, size);
4387		arc_space_return(size, ARC_SPACE_DATA);
4388	}
4389}
4390
4391/*
4392 * This routine is called whenever a buffer is accessed.
4393 * NOTE: the hash lock is dropped in this function.
4394 */
4395static void
4396arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
4397{
4398	clock_t now;
4399
4400	ASSERT(MUTEX_HELD(hash_lock));
4401	ASSERT(HDR_HAS_L1HDR(hdr));
4402
4403	if (hdr->b_l1hdr.b_state == arc_anon) {
4404		/*
4405		 * This buffer is not in the cache, and does not
4406		 * appear in our "ghost" list.  Add the new buffer
4407		 * to the MRU state.
4408		 */
4409
4410		ASSERT0(hdr->b_l1hdr.b_arc_access);
4411		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4412		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4413		arc_change_state(arc_mru, hdr, hash_lock);
4414
4415	} else if (hdr->b_l1hdr.b_state == arc_mru) {
4416		now = ddi_get_lbolt();
4417
4418		/*
4419		 * If this buffer is here because of a prefetch, then either:
4420		 * - clear the flag if this is a "referencing" read
4421		 *   (any subsequent access will bump this into the MFU state).
4422		 * or
4423		 * - move the buffer to the head of the list if this is
4424		 *   another prefetch (to make it less likely to be evicted).
4425		 */
4426		if (HDR_PREFETCH(hdr)) {
4427			if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4428				/* link protected by hash lock */
4429				ASSERT(multilist_link_active(
4430				    &hdr->b_l1hdr.b_arc_node));
4431			} else {
4432				arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
4433				ARCSTAT_BUMP(arcstat_mru_hits);
4434			}
4435			hdr->b_l1hdr.b_arc_access = now;
4436			return;
4437		}
4438
4439		/*
4440		 * This buffer has been "accessed" only once so far,
4441		 * but it is still in the cache. Move it to the MFU
4442		 * state.
4443		 */
4444		if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) {
4445			/*
4446			 * More than 125ms have passed since we
4447			 * instantiated this buffer.  Move it to the
4448			 * most frequently used state.
4449			 */
4450			hdr->b_l1hdr.b_arc_access = now;
4451			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4452			arc_change_state(arc_mfu, hdr, hash_lock);
4453		}
4454		ARCSTAT_BUMP(arcstat_mru_hits);
4455	} else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
4456		arc_state_t	*new_state;
4457		/*
4458		 * This buffer has been "accessed" recently, but
4459		 * was evicted from the cache.  Move it to the
4460		 * MFU state.
4461		 */
4462
4463		if (HDR_PREFETCH(hdr)) {
4464			new_state = arc_mru;
4465			if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
4466				arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
4467			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4468		} else {
4469			new_state = arc_mfu;
4470			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4471		}
4472
4473		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4474		arc_change_state(new_state, hdr, hash_lock);
4475
4476		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
4477	} else if (hdr->b_l1hdr.b_state == arc_mfu) {
4478		/*
4479		 * This buffer has been accessed more than once and is
4480		 * still in the cache.  Keep it in the MFU state.
4481		 *
4482		 * NOTE: an add_reference() that occurred when we did
4483		 * the arc_read() will have kicked this off the list.
4484		 * If it was a prefetch, we will explicitly move it to
4485		 * the head of the list now.
4486		 */
4487		if ((HDR_PREFETCH(hdr)) != 0) {
4488			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4489			/* link protected by hash_lock */
4490			ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4491		}
4492		ARCSTAT_BUMP(arcstat_mfu_hits);
4493		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4494	} else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
4495		arc_state_t	*new_state = arc_mfu;
4496		/*
4497		 * This buffer has been accessed more than once but has
4498		 * been evicted from the cache.  Move it back to the
4499		 * MFU state.
4500		 */
4501
4502		if (HDR_PREFETCH(hdr)) {
4503			/*
4504			 * This is a prefetch access...
4505			 * move this block back to the MRU state.
4506			 */
4507			ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
4508			new_state = arc_mru;
4509		}
4510
4511		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4512		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4513		arc_change_state(new_state, hdr, hash_lock);
4514
4515		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
4516	} else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
4517		/*
4518		 * This buffer is on the 2nd Level ARC.
4519		 */
4520
4521		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4522		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4523		arc_change_state(arc_mfu, hdr, hash_lock);
4524	} else {
4525		ASSERT(!"invalid arc state");
4526	}
4527}
4528
4529/* a generic arc_done_func_t which you can use */
4530/* ARGSUSED */
4531void
4532arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
4533{
4534	if (zio == NULL || zio->io_error == 0)
4535		bcopy(buf->b_data, arg, HDR_GET_LSIZE(buf->b_hdr));
4536	arc_buf_destroy(buf, arg);
4537}
4538
4539/* a generic arc_done_func_t */
4540void
4541arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
4542{
4543	arc_buf_t **bufp = arg;
4544	if (zio && zio->io_error) {
4545		arc_buf_destroy(buf, arg);
4546		*bufp = NULL;
4547	} else {
4548		*bufp = buf;
4549		ASSERT(buf->b_data);
4550	}
4551}
4552
4553static void
4554arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
4555{
4556	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
4557		ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
4558		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
4559	} else {
4560		if (HDR_COMPRESSION_ENABLED(hdr)) {
4561			ASSERT3U(HDR_GET_COMPRESS(hdr), ==,
4562			    BP_GET_COMPRESS(bp));
4563		}
4564		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
4565		ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
4566	}
4567}
4568
4569static void
4570arc_read_done(zio_t *zio)
4571{
4572	arc_buf_hdr_t	*hdr = zio->io_private;
4573	arc_buf_t	*abuf = NULL;	/* buffer we're assigning to callback */
4574	kmutex_t	*hash_lock = NULL;
4575	arc_callback_t	*callback_list, *acb;
4576	int		freeable = B_FALSE;
4577
4578	/*
4579	 * The hdr was inserted into hash-table and removed from lists
4580	 * prior to starting I/O.  We should find this header, since
4581	 * it's in the hash table, and it should be legit since it's
4582	 * not possible to evict it during the I/O.  The only possible
4583	 * reason for it not to be found is if we were freed during the
4584	 * read.
4585	 */
4586	if (HDR_IN_HASH_TABLE(hdr)) {
4587		ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
4588		ASSERT3U(hdr->b_dva.dva_word[0], ==,
4589		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
4590		ASSERT3U(hdr->b_dva.dva_word[1], ==,
4591		    BP_IDENTITY(zio->io_bp)->dva_word[1]);
4592
4593		arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
4594		    &hash_lock);
4595
4596		ASSERT((found == hdr &&
4597		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
4598		    (found == hdr && HDR_L2_READING(hdr)));
4599		ASSERT3P(hash_lock, !=, NULL);
4600	}
4601
4602	if (zio->io_error == 0) {
4603		/* byteswap if necessary */
4604		if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
4605			if (BP_GET_LEVEL(zio->io_bp) > 0) {
4606				hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
4607			} else {
4608				hdr->b_l1hdr.b_byteswap =
4609				    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
4610			}
4611		} else {
4612			hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
4613		}
4614	}
4615
4616	arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
4617	if (l2arc_noprefetch && HDR_PREFETCH(hdr))
4618		arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
4619
4620	callback_list = hdr->b_l1hdr.b_acb;
4621	ASSERT3P(callback_list, !=, NULL);
4622
4623	if (hash_lock && zio->io_error == 0 &&
4624	    hdr->b_l1hdr.b_state == arc_anon) {
4625		/*
4626		 * Only call arc_access on anonymous buffers.  This is because
4627		 * if we've issued an I/O for an evicted buffer, we've already
4628		 * called arc_access (to prevent any simultaneous readers from
4629		 * getting confused).
4630		 */
4631		arc_access(hdr, hash_lock);
4632	}
4633
4634	/* create copies of the data buffer for the callers */
4635	for (acb = callback_list; acb; acb = acb->acb_next) {
4636		if (acb->acb_done != NULL) {
4637			/*
4638			 * If we're here, then this must be a demand read
4639			 * since prefetch requests don't have callbacks.
4640			 * If a read request has a callback (i.e. acb_done is
4641			 * not NULL), then we decompress the data for the
4642			 * first request and clone the rest. This avoids
4643			 * having to waste cpu resources decompressing data
4644			 * that nobody is explicitly waiting to read.
4645			 */
4646			if (abuf == NULL) {
4647				acb->acb_buf = arc_buf_alloc_impl(hdr,
4648				    acb->acb_private);
4649				if (zio->io_error == 0) {
4650					zio->io_error =
4651					    arc_decompress(acb->acb_buf);
4652				}
4653				abuf = acb->acb_buf;
4654			} else {
4655				add_reference(hdr, acb->acb_private);
4656				acb->acb_buf = arc_buf_clone(abuf);
4657			}
4658		}
4659	}
4660	hdr->b_l1hdr.b_acb = NULL;
4661	arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
4662	if (abuf == NULL) {
4663		/*
4664		 * This buffer didn't have a callback so it must
4665		 * be a prefetch.
4666		 */
4667		ASSERT(HDR_PREFETCH(hdr));
4668		ASSERT0(hdr->b_l1hdr.b_bufcnt);
4669		ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
4670	}
4671
4672	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
4673	    callback_list != NULL);
4674
4675	if (zio->io_error == 0) {
4676		arc_hdr_verify(hdr, zio->io_bp);
4677	} else {
4678		arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
4679		if (hdr->b_l1hdr.b_state != arc_anon)
4680			arc_change_state(arc_anon, hdr, hash_lock);
4681		if (HDR_IN_HASH_TABLE(hdr))
4682			buf_hash_remove(hdr);
4683		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4684	}
4685
4686	/*
4687	 * Broadcast before we drop the hash_lock to avoid the possibility
4688	 * that the hdr (and hence the cv) might be freed before we get to
4689	 * the cv_broadcast().
4690	 */
4691	cv_broadcast(&hdr->b_l1hdr.b_cv);
4692
4693	if (hash_lock != NULL) {
4694		mutex_exit(hash_lock);
4695	} else {
4696		/*
4697		 * This block was freed while we waited for the read to
4698		 * complete.  It has been removed from the hash table and
4699		 * moved to the anonymous state (so that it won't show up
4700		 * in the cache).
4701		 */
4702		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
4703		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4704	}
4705
4706	/* execute each callback and free its structure */
4707	while ((acb = callback_list) != NULL) {
4708		if (acb->acb_done)
4709			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
4710
4711		if (acb->acb_zio_dummy != NULL) {
4712			acb->acb_zio_dummy->io_error = zio->io_error;
4713			zio_nowait(acb->acb_zio_dummy);
4714		}
4715
4716		callback_list = acb->acb_next;
4717		kmem_free(acb, sizeof (arc_callback_t));
4718	}
4719
4720	if (freeable)
4721		arc_hdr_destroy(hdr);
4722}
4723
4724/*
4725 * "Read" the block at the specified DVA (in bp) via the
4726 * cache.  If the block is found in the cache, invoke the provided
4727 * callback immediately and return.  Note that the `zio' parameter
4728 * in the callback will be NULL in this case, since no IO was
4729 * required.  If the block is not in the cache pass the read request
4730 * on to the spa with a substitute callback function, so that the
4731 * requested block will be added to the cache.
4732 *
4733 * If a read request arrives for a block that has a read in-progress,
4734 * either wait for the in-progress read to complete (and return the
4735 * results); or, if this is a read with a "done" func, add a record
4736 * to the read to invoke the "done" func when the read completes,
4737 * and return; or just return.
4738 *
4739 * arc_read_done() will invoke all the requested "done" functions
4740 * for readers of this block.
4741 */
4742int
4743arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
4744    void *private, zio_priority_t priority, int zio_flags,
4745    arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
4746{
4747	arc_buf_hdr_t *hdr = NULL;
4748	kmutex_t *hash_lock = NULL;
4749	zio_t *rzio;
4750	uint64_t guid = spa_load_guid(spa);
4751
4752	ASSERT(!BP_IS_EMBEDDED(bp) ||
4753	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
4754
4755top:
4756	if (!BP_IS_EMBEDDED(bp)) {
4757		/*
4758		 * Embedded BP's have no DVA and require no I/O to "read".
4759		 * Create an anonymous arc buf to back it.
4760		 */
4761		hdr = buf_hash_find(guid, bp, &hash_lock);
4762	}
4763
4764	if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_pdata != NULL) {
4765		arc_buf_t *buf = NULL;
4766		*arc_flags |= ARC_FLAG_CACHED;
4767
4768		if (HDR_IO_IN_PROGRESS(hdr)) {
4769
4770			if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
4771			    priority == ZIO_PRIORITY_SYNC_READ) {
4772				/*
4773				 * This sync read must wait for an
4774				 * in-progress async read (e.g. a predictive
4775				 * prefetch).  Async reads are queued
4776				 * separately at the vdev_queue layer, so
4777				 * this is a form of priority inversion.
4778				 * Ideally, we would "inherit" the demand
4779				 * i/o's priority by moving the i/o from
4780				 * the async queue to the synchronous queue,
4781				 * but there is currently no mechanism to do
4782				 * so.  Track this so that we can evaluate
4783				 * the magnitude of this potential performance
4784				 * problem.
4785				 *
4786				 * Note that if the prefetch i/o is already
4787				 * active (has been issued to the device),
4788				 * the prefetch improved performance, because
4789				 * we issued it sooner than we would have
4790				 * without the prefetch.
4791				 */
4792				DTRACE_PROBE1(arc__sync__wait__for__async,
4793				    arc_buf_hdr_t *, hdr);
4794				ARCSTAT_BUMP(arcstat_sync_wait_for_async);
4795			}
4796			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
4797				arc_hdr_clear_flags(hdr,
4798				    ARC_FLAG_PREDICTIVE_PREFETCH);
4799			}
4800
4801			if (*arc_flags & ARC_FLAG_WAIT) {
4802				cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
4803				mutex_exit(hash_lock);
4804				goto top;
4805			}
4806			ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4807
4808			if (done) {
4809				arc_callback_t *acb = NULL;
4810
4811				acb = kmem_zalloc(sizeof (arc_callback_t),
4812				    KM_SLEEP);
4813				acb->acb_done = done;
4814				acb->acb_private = private;
4815				if (pio != NULL)
4816					acb->acb_zio_dummy = zio_null(pio,
4817					    spa, NULL, NULL, NULL, zio_flags);
4818
4819				ASSERT3P(acb->acb_done, !=, NULL);
4820				acb->acb_next = hdr->b_l1hdr.b_acb;
4821				hdr->b_l1hdr.b_acb = acb;
4822				mutex_exit(hash_lock);
4823				return (0);
4824			}
4825			mutex_exit(hash_lock);
4826			return (0);
4827		}
4828
4829		ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4830		    hdr->b_l1hdr.b_state == arc_mfu);
4831
4832		if (done) {
4833			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
4834				/*
4835				 * This is a demand read which does not have to
4836				 * wait for i/o because we did a predictive
4837				 * prefetch i/o for it, which has completed.
4838				 */
4839				DTRACE_PROBE1(
4840				    arc__demand__hit__predictive__prefetch,
4841				    arc_buf_hdr_t *, hdr);
4842				ARCSTAT_BUMP(
4843				    arcstat_demand_hit_predictive_prefetch);
4844				arc_hdr_clear_flags(hdr,
4845				    ARC_FLAG_PREDICTIVE_PREFETCH);
4846			}
4847			ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp));
4848
4849			/*
4850			 * If this block is already in use, create a new
4851			 * copy of the data so that we will be guaranteed
4852			 * that arc_release() will always succeed.
4853			 */
4854			buf = hdr->b_l1hdr.b_buf;
4855			if (buf == NULL) {
4856				ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
4857				ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
4858				buf = arc_buf_alloc_impl(hdr, private);
4859				VERIFY0(arc_decompress(buf));
4860			} else {
4861				add_reference(hdr, private);
4862				buf = arc_buf_clone(buf);
4863			}
4864			ASSERT3P(buf->b_data, !=, NULL);
4865
4866		} else if (*arc_flags & ARC_FLAG_PREFETCH &&
4867		    refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4868			arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
4869		}
4870		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
4871		arc_access(hdr, hash_lock);
4872		if (*arc_flags & ARC_FLAG_L2CACHE)
4873			arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
4874		mutex_exit(hash_lock);
4875		ARCSTAT_BUMP(arcstat_hits);
4876		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4877		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
4878		    data, metadata, hits);
4879
4880		if (done)
4881			done(NULL, buf, private);
4882	} else {
4883		uint64_t lsize = BP_GET_LSIZE(bp);
4884		uint64_t psize = BP_GET_PSIZE(bp);
4885		arc_callback_t *acb;
4886		vdev_t *vd = NULL;
4887		uint64_t addr = 0;
4888		boolean_t devw = B_FALSE;
4889		uint64_t size;
4890
4891		if (hdr == NULL) {
4892			/* this block is not in the cache */
4893			arc_buf_hdr_t *exists = NULL;
4894			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
4895			hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
4896			    BP_GET_COMPRESS(bp), type);
4897
4898			if (!BP_IS_EMBEDDED(bp)) {
4899				hdr->b_dva = *BP_IDENTITY(bp);
4900				hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
4901				exists = buf_hash_insert(hdr, &hash_lock);
4902			}
4903			if (exists != NULL) {
4904				/* somebody beat us to the hash insert */
4905				mutex_exit(hash_lock);
4906				buf_discard_identity(hdr);
4907				arc_hdr_destroy(hdr);
4908				goto top; /* restart the IO request */
4909			}
4910		} else {
4911			/*
4912			 * This block is in the ghost cache. If it was L2-only
4913			 * (and thus didn't have an L1 hdr), we realloc the
4914			 * header to add an L1 hdr.
4915			 */
4916			if (!HDR_HAS_L1HDR(hdr)) {
4917				hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
4918				    hdr_full_cache);
4919			}
4920			ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
4921			ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
4922			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4923			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4924			ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
4925
4926			/*
4927			 * This is a delicate dance that we play here.
4928			 * This hdr is in the ghost list so we access it
4929			 * to move it out of the ghost list before we
4930			 * initiate the read. If it's a prefetch then
4931			 * it won't have a callback so we'll remove the
4932			 * reference that arc_buf_alloc_impl() created. We
4933			 * do this after we've called arc_access() to
4934			 * avoid hitting an assert in remove_reference().
4935			 */
4936			arc_access(hdr, hash_lock);
4937			arc_hdr_alloc_pdata(hdr);
4938		}
4939		ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
4940		size = arc_hdr_size(hdr);
4941
4942		/*
4943		 * If compression is enabled on the hdr, then will do
4944		 * RAW I/O and will store the compressed data in the hdr's
4945		 * data block. Otherwise, the hdr's data block will contain
4946		 * the uncompressed data.
4947		 */
4948		if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
4949			zio_flags |= ZIO_FLAG_RAW;
4950		}
4951
4952		if (*arc_flags & ARC_FLAG_PREFETCH)
4953			arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
4954		if (*arc_flags & ARC_FLAG_L2CACHE)
4955			arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
4956		if (BP_GET_LEVEL(bp) > 0)
4957			arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
4958		if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
4959			arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH);
4960		ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
4961
4962		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
4963		acb->acb_done = done;
4964		acb->acb_private = private;
4965
4966		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
4967		hdr->b_l1hdr.b_acb = acb;
4968		arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
4969
4970		if (HDR_HAS_L2HDR(hdr) &&
4971		    (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
4972			devw = hdr->b_l2hdr.b_dev->l2ad_writing;
4973			addr = hdr->b_l2hdr.b_daddr;
4974			/*
4975			 * Lock out device removal.
4976			 */
4977			if (vdev_is_dead(vd) ||
4978			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
4979				vd = NULL;
4980		}
4981
4982		if (priority == ZIO_PRIORITY_ASYNC_READ)
4983			arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
4984		else
4985			arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
4986
4987		if (hash_lock != NULL)
4988			mutex_exit(hash_lock);
4989
4990		/*
4991		 * At this point, we have a level 1 cache miss.  Try again in
4992		 * L2ARC if possible.
4993		 */
4994		ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
4995
4996		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
4997		    uint64_t, lsize, zbookmark_phys_t *, zb);
4998		ARCSTAT_BUMP(arcstat_misses);
4999		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5000		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5001		    data, metadata, misses);
5002#ifdef _KERNEL
5003		curthread->td_ru.ru_inblock++;
5004#endif
5005
5006		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
5007			/*
5008			 * Read from the L2ARC if the following are true:
5009			 * 1. The L2ARC vdev was previously cached.
5010			 * 2. This buffer still has L2ARC metadata.
5011			 * 3. This buffer isn't currently writing to the L2ARC.
5012			 * 4. The L2ARC entry wasn't evicted, which may
5013			 *    also have invalidated the vdev.
5014			 * 5. This isn't prefetch and l2arc_noprefetch is set.
5015			 */
5016			if (HDR_HAS_L2HDR(hdr) &&
5017			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
5018			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
5019				l2arc_read_callback_t *cb;
5020				void* b_data;
5021
5022				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
5023				ARCSTAT_BUMP(arcstat_l2_hits);
5024
5025				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
5026				    KM_SLEEP);
5027				cb->l2rcb_hdr = hdr;
5028				cb->l2rcb_bp = *bp;
5029				cb->l2rcb_zb = *zb;
5030				cb->l2rcb_flags = zio_flags;
5031				uint64_t asize = vdev_psize_to_asize(vd, size);
5032				if (asize != size) {
5033					b_data = zio_data_buf_alloc(asize);
5034					cb->l2rcb_data = b_data;
5035				} else {
5036					b_data = hdr->b_l1hdr.b_pdata;
5037				}
5038
5039				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
5040				    addr + asize < vd->vdev_psize -
5041				    VDEV_LABEL_END_SIZE);
5042
5043				/*
5044				 * l2arc read.  The SCL_L2ARC lock will be
5045				 * released by l2arc_read_done().
5046				 * Issue a null zio if the underlying buffer
5047				 * was squashed to zero size by compression.
5048				 */
5049				ASSERT3U(HDR_GET_COMPRESS(hdr), !=,
5050				    ZIO_COMPRESS_EMPTY);
5051				rzio = zio_read_phys(pio, vd, addr,
5052				    asize, b_data,
5053				    ZIO_CHECKSUM_OFF,
5054				    l2arc_read_done, cb, priority,
5055				    zio_flags | ZIO_FLAG_DONT_CACHE |
5056				    ZIO_FLAG_CANFAIL |
5057				    ZIO_FLAG_DONT_PROPAGATE |
5058				    ZIO_FLAG_DONT_RETRY, B_FALSE);
5059				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
5060				    zio_t *, rzio);
5061				ARCSTAT_INCR(arcstat_l2_read_bytes, size);
5062
5063				if (*arc_flags & ARC_FLAG_NOWAIT) {
5064					zio_nowait(rzio);
5065					return (0);
5066				}
5067
5068				ASSERT(*arc_flags & ARC_FLAG_WAIT);
5069				if (zio_wait(rzio) == 0)
5070					return (0);
5071
5072				/* l2arc read error; goto zio_read() */
5073			} else {
5074				DTRACE_PROBE1(l2arc__miss,
5075				    arc_buf_hdr_t *, hdr);
5076				ARCSTAT_BUMP(arcstat_l2_misses);
5077				if (HDR_L2_WRITING(hdr))
5078					ARCSTAT_BUMP(arcstat_l2_rw_clash);
5079				spa_config_exit(spa, SCL_L2ARC, vd);
5080			}
5081		} else {
5082			if (vd != NULL)
5083				spa_config_exit(spa, SCL_L2ARC, vd);
5084			if (l2arc_ndev != 0) {
5085				DTRACE_PROBE1(l2arc__miss,
5086				    arc_buf_hdr_t *, hdr);
5087				ARCSTAT_BUMP(arcstat_l2_misses);
5088			}
5089		}
5090
5091		rzio = zio_read(pio, spa, bp, hdr->b_l1hdr.b_pdata, size,
5092		    arc_read_done, hdr, priority, zio_flags, zb);
5093
5094		if (*arc_flags & ARC_FLAG_WAIT)
5095			return (zio_wait(rzio));
5096
5097		ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5098		zio_nowait(rzio);
5099	}
5100	return (0);
5101}
5102
5103/*
5104 * Notify the arc that a block was freed, and thus will never be used again.
5105 */
5106void
5107arc_freed(spa_t *spa, const blkptr_t *bp)
5108{
5109	arc_buf_hdr_t *hdr;
5110	kmutex_t *hash_lock;
5111	uint64_t guid = spa_load_guid(spa);
5112
5113	ASSERT(!BP_IS_EMBEDDED(bp));
5114
5115	hdr = buf_hash_find(guid, bp, &hash_lock);
5116	if (hdr == NULL)
5117		return;
5118
5119	/*
5120	 * We might be trying to free a block that is still doing I/O
5121	 * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
5122	 * dmu_sync-ed block). If this block is being prefetched, then it
5123	 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
5124	 * until the I/O completes. A block may also have a reference if it is
5125	 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
5126	 * have written the new block to its final resting place on disk but
5127	 * without the dedup flag set. This would have left the hdr in the MRU
5128	 * state and discoverable. When the txg finally syncs it detects that
5129	 * the block was overridden in open context and issues an override I/O.
5130	 * Since this is a dedup block, the override I/O will determine if the
5131	 * block is already in the DDT. If so, then it will replace the io_bp
5132	 * with the bp from the DDT and allow the I/O to finish. When the I/O
5133	 * reaches the done callback, dbuf_write_override_done, it will
5134	 * check to see if the io_bp and io_bp_override are identical.
5135	 * If they are not, then it indicates that the bp was replaced with
5136	 * the bp in the DDT and the override bp is freed. This allows
5137	 * us to arrive here with a reference on a block that is being
5138	 * freed. So if we have an I/O in progress, or a reference to
5139	 * this hdr, then we don't destroy the hdr.
5140	 */
5141	if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) &&
5142	    refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) {
5143		arc_change_state(arc_anon, hdr, hash_lock);
5144		arc_hdr_destroy(hdr);
5145		mutex_exit(hash_lock);
5146	} else {
5147		mutex_exit(hash_lock);
5148	}
5149
5150}
5151
5152/*
5153 * Release this buffer from the cache, making it an anonymous buffer.  This
5154 * must be done after a read and prior to modifying the buffer contents.
5155 * If the buffer has more than one reference, we must make
5156 * a new hdr for the buffer.
5157 */
5158void
5159arc_release(arc_buf_t *buf, void *tag)
5160{
5161	arc_buf_hdr_t *hdr = buf->b_hdr;
5162
5163	/*
5164	 * It would be nice to assert that if it's DMU metadata (level >
5165	 * 0 || it's the dnode file), then it must be syncing context.
5166	 * But we don't know that information at this level.
5167	 */
5168
5169	mutex_enter(&buf->b_evict_lock);
5170
5171	ASSERT(HDR_HAS_L1HDR(hdr));
5172
5173	/*
5174	 * We don't grab the hash lock prior to this check, because if
5175	 * the buffer's header is in the arc_anon state, it won't be
5176	 * linked into the hash table.
5177	 */
5178	if (hdr->b_l1hdr.b_state == arc_anon) {
5179		mutex_exit(&buf->b_evict_lock);
5180		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5181		ASSERT(!HDR_IN_HASH_TABLE(hdr));
5182		ASSERT(!HDR_HAS_L2HDR(hdr));
5183		ASSERT(HDR_EMPTY(hdr));
5184		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
5185		ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
5186		ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
5187
5188		hdr->b_l1hdr.b_arc_access = 0;
5189
5190		/*
5191		 * If the buf is being overridden then it may already
5192		 * have a hdr that is not empty.
5193		 */
5194		buf_discard_identity(hdr);
5195		arc_buf_thaw(buf);
5196
5197		return;
5198	}
5199
5200	kmutex_t *hash_lock = HDR_LOCK(hdr);
5201	mutex_enter(hash_lock);
5202
5203	/*
5204	 * This assignment is only valid as long as the hash_lock is
5205	 * held, we must be careful not to reference state or the
5206	 * b_state field after dropping the lock.
5207	 */
5208	arc_state_t *state = hdr->b_l1hdr.b_state;
5209	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
5210	ASSERT3P(state, !=, arc_anon);
5211
5212	/* this buffer is not on any list */
5213	ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) > 0);
5214
5215	if (HDR_HAS_L2HDR(hdr)) {
5216		mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
5217
5218		/*
5219		 * We have to recheck this conditional again now that
5220		 * we're holding the l2ad_mtx to prevent a race with
5221		 * another thread which might be concurrently calling
5222		 * l2arc_evict(). In that case, l2arc_evict() might have
5223		 * destroyed the header's L2 portion as we were waiting
5224		 * to acquire the l2ad_mtx.
5225		 */
5226		if (HDR_HAS_L2HDR(hdr)) {
5227			l2arc_trim(hdr);
5228			arc_hdr_l2hdr_destroy(hdr);
5229		}
5230
5231		mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
5232	}
5233
5234	/*
5235	 * Do we have more than one buf?
5236	 */
5237	if (hdr->b_l1hdr.b_bufcnt > 1) {
5238		arc_buf_hdr_t *nhdr;
5239		arc_buf_t **bufp;
5240		uint64_t spa = hdr->b_spa;
5241		uint64_t psize = HDR_GET_PSIZE(hdr);
5242		uint64_t lsize = HDR_GET_LSIZE(hdr);
5243		enum zio_compress compress = HDR_GET_COMPRESS(hdr);
5244		arc_buf_contents_t type = arc_buf_type(hdr);
5245		VERIFY3U(hdr->b_type, ==, type);
5246
5247		ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
5248		(void) remove_reference(hdr, hash_lock, tag);
5249
5250		if (arc_buf_is_shared(buf)) {
5251			ASSERT(HDR_SHARED_DATA(hdr));
5252			ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
5253			ASSERT(ARC_BUF_LAST(buf));
5254		}
5255
5256		/*
5257		 * Pull the data off of this hdr and attach it to
5258		 * a new anonymous hdr. Also find the last buffer
5259		 * in the hdr's buffer list.
5260		 */
5261		arc_buf_t *lastbuf = NULL;
5262		bufp = &hdr->b_l1hdr.b_buf;
5263		while (*bufp != NULL) {
5264			if (*bufp == buf) {
5265				*bufp = buf->b_next;
5266			}
5267
5268			/*
5269			 * If we've removed a buffer in the middle of
5270			 * the list then update the lastbuf and update
5271			 * bufp.
5272			 */
5273			if (*bufp != NULL) {
5274				lastbuf = *bufp;
5275				bufp = &(*bufp)->b_next;
5276			}
5277		}
5278		buf->b_next = NULL;
5279		ASSERT3P(lastbuf, !=, buf);
5280		ASSERT3P(lastbuf, !=, NULL);
5281
5282		/*
5283		 * If the current arc_buf_t and the hdr are sharing their data
5284		 * buffer, then we must stop sharing that block, transfer
5285		 * ownership and setup sharing with a new arc_buf_t at the end
5286		 * of the hdr's b_buf list.
5287		 */
5288		if (arc_buf_is_shared(buf)) {
5289			ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
5290			ASSERT(ARC_BUF_LAST(lastbuf));
5291			VERIFY(!arc_buf_is_shared(lastbuf));
5292
5293			/*
5294			 * First, sever the block sharing relationship between
5295			 * buf and the arc_buf_hdr_t. Then, setup a new
5296			 * block sharing relationship with the last buffer
5297			 * on the arc_buf_t list.
5298			 */
5299			arc_unshare_buf(hdr, buf);
5300			arc_share_buf(hdr, lastbuf);
5301			VERIFY3P(lastbuf->b_data, !=, NULL);
5302		} else if (HDR_SHARED_DATA(hdr)) {
5303			ASSERT(arc_buf_is_shared(lastbuf));
5304		}
5305		ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
5306		ASSERT3P(state, !=, arc_l2c_only);
5307
5308		(void) refcount_remove_many(&state->arcs_size,
5309		    HDR_GET_LSIZE(hdr), buf);
5310
5311		if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
5312			ASSERT3P(state, !=, arc_l2c_only);
5313			(void) refcount_remove_many(&state->arcs_esize[type],
5314			    HDR_GET_LSIZE(hdr), buf);
5315		}
5316
5317		hdr->b_l1hdr.b_bufcnt -= 1;
5318		arc_cksum_verify(buf);
5319#ifdef illumos
5320		arc_buf_unwatch(buf);
5321#endif
5322
5323		mutex_exit(hash_lock);
5324
5325		/*
5326		 * Allocate a new hdr. The new hdr will contain a b_pdata
5327		 * buffer which will be freed in arc_write().
5328		 */
5329		nhdr = arc_hdr_alloc(spa, psize, lsize, compress, type);
5330		ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
5331		ASSERT0(nhdr->b_l1hdr.b_bufcnt);
5332		ASSERT0(refcount_count(&nhdr->b_l1hdr.b_refcnt));
5333		VERIFY3U(nhdr->b_type, ==, type);
5334		ASSERT(!HDR_SHARED_DATA(nhdr));
5335
5336		nhdr->b_l1hdr.b_buf = buf;
5337		nhdr->b_l1hdr.b_bufcnt = 1;
5338		(void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
5339		buf->b_hdr = nhdr;
5340
5341		mutex_exit(&buf->b_evict_lock);
5342		(void) refcount_add_many(&arc_anon->arcs_size,
5343		    HDR_GET_LSIZE(nhdr), buf);
5344	} else {
5345		mutex_exit(&buf->b_evict_lock);
5346		ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
5347		/* protected by hash lock, or hdr is on arc_anon */
5348		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
5349		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5350		arc_change_state(arc_anon, hdr, hash_lock);
5351		hdr->b_l1hdr.b_arc_access = 0;
5352		mutex_exit(hash_lock);
5353
5354		buf_discard_identity(hdr);
5355		arc_buf_thaw(buf);
5356	}
5357}
5358
5359int
5360arc_released(arc_buf_t *buf)
5361{
5362	int released;
5363
5364	mutex_enter(&buf->b_evict_lock);
5365	released = (buf->b_data != NULL &&
5366	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
5367	mutex_exit(&buf->b_evict_lock);
5368	return (released);
5369}
5370
5371#ifdef ZFS_DEBUG
5372int
5373arc_referenced(arc_buf_t *buf)
5374{
5375	int referenced;
5376
5377	mutex_enter(&buf->b_evict_lock);
5378	referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
5379	mutex_exit(&buf->b_evict_lock);
5380	return (referenced);
5381}
5382#endif
5383
5384static void
5385arc_write_ready(zio_t *zio)
5386{
5387	arc_write_callback_t *callback = zio->io_private;
5388	arc_buf_t *buf = callback->awcb_buf;
5389	arc_buf_hdr_t *hdr = buf->b_hdr;
5390	uint64_t psize = BP_IS_HOLE(zio->io_bp) ? 0 : BP_GET_PSIZE(zio->io_bp);
5391
5392	ASSERT(HDR_HAS_L1HDR(hdr));
5393	ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
5394	ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
5395
5396	/*
5397	 * If we're reexecuting this zio because the pool suspended, then
5398	 * cleanup any state that was previously set the first time the
5399	 * callback as invoked.
5400	 */
5401	if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
5402		arc_cksum_free(hdr);
5403#ifdef illumos
5404		arc_buf_unwatch(buf);
5405#endif
5406		if (hdr->b_l1hdr.b_pdata != NULL) {
5407			if (arc_buf_is_shared(buf)) {
5408				ASSERT(HDR_SHARED_DATA(hdr));
5409
5410				arc_unshare_buf(hdr, buf);
5411			} else {
5412				arc_hdr_free_pdata(hdr);
5413			}
5414		}
5415	}
5416	ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
5417	ASSERT(!HDR_SHARED_DATA(hdr));
5418	ASSERT(!arc_buf_is_shared(buf));
5419
5420	callback->awcb_ready(zio, buf, callback->awcb_private);
5421
5422	if (HDR_IO_IN_PROGRESS(hdr))
5423		ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
5424
5425	arc_cksum_compute(buf);
5426	arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5427
5428	enum zio_compress compress;
5429	if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5430		compress = ZIO_COMPRESS_OFF;
5431	} else {
5432		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(zio->io_bp));
5433		compress = BP_GET_COMPRESS(zio->io_bp);
5434	}
5435	HDR_SET_PSIZE(hdr, psize);
5436	arc_hdr_set_compress(hdr, compress);
5437
5438	/*
5439	 * If the hdr is compressed, then copy the compressed
5440	 * zio contents into arc_buf_hdr_t. Otherwise, copy the original
5441	 * data buf into the hdr. Ideally, we would like to always copy the
5442	 * io_data into b_pdata but the user may have disabled compressed
5443	 * arc thus the on-disk block may or may not match what we maintain
5444	 * in the hdr's b_pdata field.
5445	 */
5446	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
5447		ASSERT(BP_GET_COMPRESS(zio->io_bp) != ZIO_COMPRESS_OFF);
5448		ASSERT3U(psize, >, 0);
5449		arc_hdr_alloc_pdata(hdr);
5450		bcopy(zio->io_data, hdr->b_l1hdr.b_pdata, psize);
5451	} else {
5452		ASSERT3P(buf->b_data, ==, zio->io_orig_data);
5453		ASSERT3U(zio->io_orig_size, ==, HDR_GET_LSIZE(hdr));
5454		ASSERT3U(hdr->b_l1hdr.b_byteswap, ==, DMU_BSWAP_NUMFUNCS);
5455		ASSERT(!HDR_SHARED_DATA(hdr));
5456		ASSERT(!arc_buf_is_shared(buf));
5457		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
5458		ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
5459
5460		/*
5461		 * This hdr is not compressed so we're able to share
5462		 * the arc_buf_t data buffer with the hdr.
5463		 */
5464		arc_share_buf(hdr, buf);
5465		VERIFY0(bcmp(zio->io_orig_data, hdr->b_l1hdr.b_pdata,
5466		    HDR_GET_LSIZE(hdr)));
5467	}
5468	arc_hdr_verify(hdr, zio->io_bp);
5469}
5470
5471static void
5472arc_write_children_ready(zio_t *zio)
5473{
5474	arc_write_callback_t *callback = zio->io_private;
5475	arc_buf_t *buf = callback->awcb_buf;
5476
5477	callback->awcb_children_ready(zio, buf, callback->awcb_private);
5478}
5479
5480/*
5481 * The SPA calls this callback for each physical write that happens on behalf
5482 * of a logical write.  See the comment in dbuf_write_physdone() for details.
5483 */
5484static void
5485arc_write_physdone(zio_t *zio)
5486{
5487	arc_write_callback_t *cb = zio->io_private;
5488	if (cb->awcb_physdone != NULL)
5489		cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
5490}
5491
5492static void
5493arc_write_done(zio_t *zio)
5494{
5495	arc_write_callback_t *callback = zio->io_private;
5496	arc_buf_t *buf = callback->awcb_buf;
5497	arc_buf_hdr_t *hdr = buf->b_hdr;
5498
5499	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5500
5501	if (zio->io_error == 0) {
5502		arc_hdr_verify(hdr, zio->io_bp);
5503
5504		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5505			buf_discard_identity(hdr);
5506		} else {
5507			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
5508			hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
5509		}
5510	} else {
5511		ASSERT(HDR_EMPTY(hdr));
5512	}
5513
5514	/*
5515	 * If the block to be written was all-zero or compressed enough to be
5516	 * embedded in the BP, no write was performed so there will be no
5517	 * dva/birth/checksum.  The buffer must therefore remain anonymous
5518	 * (and uncached).
5519	 */
5520	if (!HDR_EMPTY(hdr)) {
5521		arc_buf_hdr_t *exists;
5522		kmutex_t *hash_lock;
5523
5524		ASSERT(zio->io_error == 0);
5525
5526		arc_cksum_verify(buf);
5527
5528		exists = buf_hash_insert(hdr, &hash_lock);
5529		if (exists != NULL) {
5530			/*
5531			 * This can only happen if we overwrite for
5532			 * sync-to-convergence, because we remove
5533			 * buffers from the hash table when we arc_free().
5534			 */
5535			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
5536				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5537					panic("bad overwrite, hdr=%p exists=%p",
5538					    (void *)hdr, (void *)exists);
5539				ASSERT(refcount_is_zero(
5540				    &exists->b_l1hdr.b_refcnt));
5541				arc_change_state(arc_anon, exists, hash_lock);
5542				mutex_exit(hash_lock);
5543				arc_hdr_destroy(exists);
5544				exists = buf_hash_insert(hdr, &hash_lock);
5545				ASSERT3P(exists, ==, NULL);
5546			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
5547				/* nopwrite */
5548				ASSERT(zio->io_prop.zp_nopwrite);
5549				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5550					panic("bad nopwrite, hdr=%p exists=%p",
5551					    (void *)hdr, (void *)exists);
5552			} else {
5553				/* Dedup */
5554				ASSERT(hdr->b_l1hdr.b_bufcnt == 1);
5555				ASSERT(hdr->b_l1hdr.b_state == arc_anon);
5556				ASSERT(BP_GET_DEDUP(zio->io_bp));
5557				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
5558			}
5559		}
5560		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5561		/* if it's not anon, we are doing a scrub */
5562		if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
5563			arc_access(hdr, hash_lock);
5564		mutex_exit(hash_lock);
5565	} else {
5566		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5567	}
5568
5569	ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5570	callback->awcb_done(zio, buf, callback->awcb_private);
5571
5572	kmem_free(callback, sizeof (arc_write_callback_t));
5573}
5574
5575zio_t *
5576arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
5577    boolean_t l2arc, const zio_prop_t *zp, arc_done_func_t *ready,
5578    arc_done_func_t *children_ready, arc_done_func_t *physdone,
5579    arc_done_func_t *done, void *private, zio_priority_t priority,
5580    int zio_flags, const zbookmark_phys_t *zb)
5581{
5582	arc_buf_hdr_t *hdr = buf->b_hdr;
5583	arc_write_callback_t *callback;
5584	zio_t *zio;
5585
5586	ASSERT3P(ready, !=, NULL);
5587	ASSERT3P(done, !=, NULL);
5588	ASSERT(!HDR_IO_ERROR(hdr));
5589	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5590	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5591	ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
5592	if (l2arc)
5593		arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5594	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
5595	callback->awcb_ready = ready;
5596	callback->awcb_children_ready = children_ready;
5597	callback->awcb_physdone = physdone;
5598	callback->awcb_done = done;
5599	callback->awcb_private = private;
5600	callback->awcb_buf = buf;
5601
5602	/*
5603	 * The hdr's b_pdata is now stale, free it now. A new data block
5604	 * will be allocated when the zio pipeline calls arc_write_ready().
5605	 */
5606	if (hdr->b_l1hdr.b_pdata != NULL) {
5607		/*
5608		 * If the buf is currently sharing the data block with
5609		 * the hdr then we need to break that relationship here.
5610		 * The hdr will remain with a NULL data pointer and the
5611		 * buf will take sole ownership of the block.
5612		 */
5613		if (arc_buf_is_shared(buf)) {
5614			ASSERT(ARC_BUF_LAST(buf));
5615			arc_unshare_buf(hdr, buf);
5616		} else {
5617			arc_hdr_free_pdata(hdr);
5618		}
5619		VERIFY3P(buf->b_data, !=, NULL);
5620		arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
5621	}
5622	ASSERT(!arc_buf_is_shared(buf));
5623	ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL);
5624
5625	zio = zio_write(pio, spa, txg, bp, buf->b_data, HDR_GET_LSIZE(hdr), zp,
5626	    arc_write_ready,
5627	    (children_ready != NULL) ? arc_write_children_ready : NULL,
5628	    arc_write_physdone, arc_write_done, callback,
5629	    priority, zio_flags, zb);
5630
5631	return (zio);
5632}
5633
5634static int
5635arc_memory_throttle(uint64_t reserve, uint64_t txg)
5636{
5637#ifdef _KERNEL
5638	uint64_t available_memory = ptob(freemem);
5639	static uint64_t page_load = 0;
5640	static uint64_t last_txg = 0;
5641
5642#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
5643	available_memory =
5644	    MIN(available_memory, ptob(vmem_size(heap_arena, VMEM_FREE)));
5645#endif
5646
5647	if (freemem > (uint64_t)physmem * arc_lotsfree_percent / 100)
5648		return (0);
5649
5650	if (txg > last_txg) {
5651		last_txg = txg;
5652		page_load = 0;
5653	}
5654	/*
5655	 * If we are in pageout, we know that memory is already tight,
5656	 * the arc is already going to be evicting, so we just want to
5657	 * continue to let page writes occur as quickly as possible.
5658	 */
5659	if (curproc == pageproc) {
5660		if (page_load > MAX(ptob(minfree), available_memory) / 4)
5661			return (SET_ERROR(ERESTART));
5662		/* Note: reserve is inflated, so we deflate */
5663		page_load += reserve / 8;
5664		return (0);
5665	} else if (page_load > 0 && arc_reclaim_needed()) {
5666		/* memory is low, delay before restarting */
5667		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
5668		return (SET_ERROR(EAGAIN));
5669	}
5670	page_load = 0;
5671#endif
5672	return (0);
5673}
5674
5675void
5676arc_tempreserve_clear(uint64_t reserve)
5677{
5678	atomic_add_64(&arc_tempreserve, -reserve);
5679	ASSERT((int64_t)arc_tempreserve >= 0);
5680}
5681
5682int
5683arc_tempreserve_space(uint64_t reserve, uint64_t txg)
5684{
5685	int error;
5686	uint64_t anon_size;
5687
5688	if (reserve > arc_c/4 && !arc_no_grow) {
5689		arc_c = MIN(arc_c_max, reserve * 4);
5690		DTRACE_PROBE1(arc__set_reserve, uint64_t, arc_c);
5691	}
5692	if (reserve > arc_c)
5693		return (SET_ERROR(ENOMEM));
5694
5695	/*
5696	 * Don't count loaned bufs as in flight dirty data to prevent long
5697	 * network delays from blocking transactions that are ready to be
5698	 * assigned to a txg.
5699	 */
5700	anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
5701	    arc_loaned_bytes), 0);
5702
5703	/*
5704	 * Writes will, almost always, require additional memory allocations
5705	 * in order to compress/encrypt/etc the data.  We therefore need to
5706	 * make sure that there is sufficient available memory for this.
5707	 */
5708	error = arc_memory_throttle(reserve, txg);
5709	if (error != 0)
5710		return (error);
5711
5712	/*
5713	 * Throttle writes when the amount of dirty data in the cache
5714	 * gets too large.  We try to keep the cache less than half full
5715	 * of dirty blocks so that our sync times don't grow too large.
5716	 * Note: if two requests come in concurrently, we might let them
5717	 * both succeed, when one of them should fail.  Not a huge deal.
5718	 */
5719
5720	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
5721	    anon_size > arc_c / 4) {
5722		uint64_t meta_esize =
5723		    refcount_count(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
5724		uint64_t data_esize =
5725		    refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
5726		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
5727		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
5728		    arc_tempreserve >> 10, meta_esize >> 10,
5729		    data_esize >> 10, reserve >> 10, arc_c >> 10);
5730		return (SET_ERROR(ERESTART));
5731	}
5732	atomic_add_64(&arc_tempreserve, reserve);
5733	return (0);
5734}
5735
5736static void
5737arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
5738    kstat_named_t *evict_data, kstat_named_t *evict_metadata)
5739{
5740	size->value.ui64 = refcount_count(&state->arcs_size);
5741	evict_data->value.ui64 =
5742	    refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
5743	evict_metadata->value.ui64 =
5744	    refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
5745}
5746
5747static int
5748arc_kstat_update(kstat_t *ksp, int rw)
5749{
5750	arc_stats_t *as = ksp->ks_data;
5751
5752	if (rw == KSTAT_WRITE) {
5753		return (EACCES);
5754	} else {
5755		arc_kstat_update_state(arc_anon,
5756		    &as->arcstat_anon_size,
5757		    &as->arcstat_anon_evictable_data,
5758		    &as->arcstat_anon_evictable_metadata);
5759		arc_kstat_update_state(arc_mru,
5760		    &as->arcstat_mru_size,
5761		    &as->arcstat_mru_evictable_data,
5762		    &as->arcstat_mru_evictable_metadata);
5763		arc_kstat_update_state(arc_mru_ghost,
5764		    &as->arcstat_mru_ghost_size,
5765		    &as->arcstat_mru_ghost_evictable_data,
5766		    &as->arcstat_mru_ghost_evictable_metadata);
5767		arc_kstat_update_state(arc_mfu,
5768		    &as->arcstat_mfu_size,
5769		    &as->arcstat_mfu_evictable_data,
5770		    &as->arcstat_mfu_evictable_metadata);
5771		arc_kstat_update_state(arc_mfu_ghost,
5772		    &as->arcstat_mfu_ghost_size,
5773		    &as->arcstat_mfu_ghost_evictable_data,
5774		    &as->arcstat_mfu_ghost_evictable_metadata);
5775	}
5776
5777	return (0);
5778}
5779
5780/*
5781 * This function *must* return indices evenly distributed between all
5782 * sublists of the multilist. This is needed due to how the ARC eviction
5783 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
5784 * distributed between all sublists and uses this assumption when
5785 * deciding which sublist to evict from and how much to evict from it.
5786 */
5787unsigned int
5788arc_state_multilist_index_func(multilist_t *ml, void *obj)
5789{
5790	arc_buf_hdr_t *hdr = obj;
5791
5792	/*
5793	 * We rely on b_dva to generate evenly distributed index
5794	 * numbers using buf_hash below. So, as an added precaution,
5795	 * let's make sure we never add empty buffers to the arc lists.
5796	 */
5797	ASSERT(!HDR_EMPTY(hdr));
5798
5799	/*
5800	 * The assumption here, is the hash value for a given
5801	 * arc_buf_hdr_t will remain constant throughout it's lifetime
5802	 * (i.e. it's b_spa, b_dva, and b_birth fields don't change).
5803	 * Thus, we don't need to store the header's sublist index
5804	 * on insertion, as this index can be recalculated on removal.
5805	 *
5806	 * Also, the low order bits of the hash value are thought to be
5807	 * distributed evenly. Otherwise, in the case that the multilist
5808	 * has a power of two number of sublists, each sublists' usage
5809	 * would not be evenly distributed.
5810	 */
5811	return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
5812	    multilist_get_num_sublists(ml));
5813}
5814
5815#ifdef _KERNEL
5816static eventhandler_tag arc_event_lowmem = NULL;
5817
5818static void
5819arc_lowmem(void *arg __unused, int howto __unused)
5820{
5821
5822	mutex_enter(&arc_reclaim_lock);
5823	/* XXX: Memory deficit should be passed as argument. */
5824	needfree = btoc(arc_c >> arc_shrink_shift);
5825	DTRACE_PROBE(arc__needfree);
5826	cv_signal(&arc_reclaim_thread_cv);
5827
5828	/*
5829	 * It is unsafe to block here in arbitrary threads, because we can come
5830	 * here from ARC itself and may hold ARC locks and thus risk a deadlock
5831	 * with ARC reclaim thread.
5832	 */
5833	if (curproc == pageproc)
5834		(void) cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
5835	mutex_exit(&arc_reclaim_lock);
5836}
5837#endif
5838
5839static void
5840arc_state_init(void)
5841{
5842	arc_anon = &ARC_anon;
5843	arc_mru = &ARC_mru;
5844	arc_mru_ghost = &ARC_mru_ghost;
5845	arc_mfu = &ARC_mfu;
5846	arc_mfu_ghost = &ARC_mfu_ghost;
5847	arc_l2c_only = &ARC_l2c_only;
5848
5849	multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
5850	    sizeof (arc_buf_hdr_t),
5851	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5852	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5853	multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
5854	    sizeof (arc_buf_hdr_t),
5855	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5856	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5857	multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
5858	    sizeof (arc_buf_hdr_t),
5859	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5860	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5861	multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
5862	    sizeof (arc_buf_hdr_t),
5863	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5864	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5865	multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
5866	    sizeof (arc_buf_hdr_t),
5867	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5868	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5869	multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
5870	    sizeof (arc_buf_hdr_t),
5871	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5872	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5873	multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
5874	    sizeof (arc_buf_hdr_t),
5875	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5876	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5877	multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
5878	    sizeof (arc_buf_hdr_t),
5879	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5880	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5881	multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
5882	    sizeof (arc_buf_hdr_t),
5883	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5884	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5885	multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
5886	    sizeof (arc_buf_hdr_t),
5887	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5888	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5889
5890	refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
5891	refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
5892	refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
5893	refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
5894	refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
5895	refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
5896	refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
5897	refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
5898	refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
5899	refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
5900	refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
5901	refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
5902
5903	refcount_create(&arc_anon->arcs_size);
5904	refcount_create(&arc_mru->arcs_size);
5905	refcount_create(&arc_mru_ghost->arcs_size);
5906	refcount_create(&arc_mfu->arcs_size);
5907	refcount_create(&arc_mfu_ghost->arcs_size);
5908	refcount_create(&arc_l2c_only->arcs_size);
5909}
5910
5911static void
5912arc_state_fini(void)
5913{
5914	refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
5915	refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
5916	refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
5917	refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
5918	refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
5919	refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
5920	refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
5921	refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
5922	refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
5923	refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
5924	refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
5925	refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
5926
5927	refcount_destroy(&arc_anon->arcs_size);
5928	refcount_destroy(&arc_mru->arcs_size);
5929	refcount_destroy(&arc_mru_ghost->arcs_size);
5930	refcount_destroy(&arc_mfu->arcs_size);
5931	refcount_destroy(&arc_mfu_ghost->arcs_size);
5932	refcount_destroy(&arc_l2c_only->arcs_size);
5933
5934	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
5935	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
5936	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
5937	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
5938	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
5939	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
5940	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
5941	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
5942}
5943
5944uint64_t
5945arc_max_bytes(void)
5946{
5947	return (arc_c_max);
5948}
5949
5950void
5951arc_init(void)
5952{
5953	int i, prefetch_tunable_set = 0;
5954
5955	mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
5956	cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
5957	cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
5958
5959	/* Convert seconds to clock ticks */
5960	arc_min_prefetch_lifespan = 1 * hz;
5961
5962	/* Start out with 1/8 of all memory */
5963	arc_c = kmem_size() / 8;
5964
5965#ifdef illumos
5966#ifdef _KERNEL
5967	/*
5968	 * On architectures where the physical memory can be larger
5969	 * than the addressable space (intel in 32-bit mode), we may
5970	 * need to limit the cache to 1/8 of VM size.
5971	 */
5972	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
5973#endif
5974#endif	/* illumos */
5975	/* set min cache to 1/32 of all memory, or arc_abs_min, whichever is more */
5976	arc_c_min = MAX(arc_c / 4, arc_abs_min);
5977	/* set max to 1/2 of all memory, or all but 1GB, whichever is more */
5978	if (arc_c * 8 >= 1 << 30)
5979		arc_c_max = (arc_c * 8) - (1 << 30);
5980	else
5981		arc_c_max = arc_c_min;
5982	arc_c_max = MAX(arc_c * 5, arc_c_max);
5983
5984	/*
5985	 * In userland, there's only the memory pressure that we artificially
5986	 * create (see arc_available_memory()).  Don't let arc_c get too
5987	 * small, because it can cause transactions to be larger than
5988	 * arc_c, causing arc_tempreserve_space() to fail.
5989	 */
5990#ifndef _KERNEL
5991	arc_c_min = arc_c_max / 2;
5992#endif
5993
5994#ifdef _KERNEL
5995	/*
5996	 * Allow the tunables to override our calculations if they are
5997	 * reasonable.
5998	 */
5999	if (zfs_arc_max > arc_abs_min && zfs_arc_max < kmem_size()) {
6000		arc_c_max = zfs_arc_max;
6001		arc_c_min = MIN(arc_c_min, arc_c_max);
6002	}
6003	if (zfs_arc_min > arc_abs_min && zfs_arc_min <= arc_c_max)
6004		arc_c_min = zfs_arc_min;
6005#endif
6006
6007	arc_c = arc_c_max;
6008	arc_p = (arc_c >> 1);
6009	arc_size = 0;
6010
6011	/* limit meta-data to 1/4 of the arc capacity */
6012	arc_meta_limit = arc_c_max / 4;
6013
6014	/* Allow the tunable to override if it is reasonable */
6015	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
6016		arc_meta_limit = zfs_arc_meta_limit;
6017
6018	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
6019		arc_c_min = arc_meta_limit / 2;
6020
6021	if (zfs_arc_meta_min > 0) {
6022		arc_meta_min = zfs_arc_meta_min;
6023	} else {
6024		arc_meta_min = arc_c_min / 2;
6025	}
6026
6027	if (zfs_arc_grow_retry > 0)
6028		arc_grow_retry = zfs_arc_grow_retry;
6029
6030	if (zfs_arc_shrink_shift > 0)
6031		arc_shrink_shift = zfs_arc_shrink_shift;
6032
6033	/*
6034	 * Ensure that arc_no_grow_shift is less than arc_shrink_shift.
6035	 */
6036	if (arc_no_grow_shift >= arc_shrink_shift)
6037		arc_no_grow_shift = arc_shrink_shift - 1;
6038
6039	if (zfs_arc_p_min_shift > 0)
6040		arc_p_min_shift = zfs_arc_p_min_shift;
6041
6042	if (zfs_arc_num_sublists_per_state < 1)
6043		zfs_arc_num_sublists_per_state = MAX(max_ncpus, 1);
6044
6045	/* if kmem_flags are set, lets try to use less memory */
6046	if (kmem_debugging())
6047		arc_c = arc_c / 2;
6048	if (arc_c < arc_c_min)
6049		arc_c = arc_c_min;
6050
6051	zfs_arc_min = arc_c_min;
6052	zfs_arc_max = arc_c_max;
6053
6054	arc_state_init();
6055	buf_init();
6056
6057	arc_reclaim_thread_exit = B_FALSE;
6058
6059	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
6060	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
6061
6062	if (arc_ksp != NULL) {
6063		arc_ksp->ks_data = &arc_stats;
6064		arc_ksp->ks_update = arc_kstat_update;
6065		kstat_install(arc_ksp);
6066	}
6067
6068	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
6069	    TS_RUN, minclsyspri);
6070
6071#ifdef _KERNEL
6072	arc_event_lowmem = EVENTHANDLER_REGISTER(vm_lowmem, arc_lowmem, NULL,
6073	    EVENTHANDLER_PRI_FIRST);
6074#endif
6075
6076	arc_dead = B_FALSE;
6077	arc_warm = B_FALSE;
6078
6079	/*
6080	 * Calculate maximum amount of dirty data per pool.
6081	 *
6082	 * If it has been set by /etc/system, take that.
6083	 * Otherwise, use a percentage of physical memory defined by
6084	 * zfs_dirty_data_max_percent (default 10%) with a cap at
6085	 * zfs_dirty_data_max_max (default 4GB).
6086	 */
6087	if (zfs_dirty_data_max == 0) {
6088		zfs_dirty_data_max = ptob(physmem) *
6089		    zfs_dirty_data_max_percent / 100;
6090		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
6091		    zfs_dirty_data_max_max);
6092	}
6093
6094#ifdef _KERNEL
6095	if (TUNABLE_INT_FETCH("vfs.zfs.prefetch_disable", &zfs_prefetch_disable))
6096		prefetch_tunable_set = 1;
6097
6098#ifdef __i386__
6099	if (prefetch_tunable_set == 0) {
6100		printf("ZFS NOTICE: Prefetch is disabled by default on i386 "
6101		    "-- to enable,\n");
6102		printf("            add \"vfs.zfs.prefetch_disable=0\" "
6103		    "to /boot/loader.conf.\n");
6104		zfs_prefetch_disable = 1;
6105	}
6106#else
6107	if ((((uint64_t)physmem * PAGESIZE) < (1ULL << 32)) &&
6108	    prefetch_tunable_set == 0) {
6109		printf("ZFS NOTICE: Prefetch is disabled by default if less "
6110		    "than 4GB of RAM is present;\n"
6111		    "            to enable, add \"vfs.zfs.prefetch_disable=0\" "
6112		    "to /boot/loader.conf.\n");
6113		zfs_prefetch_disable = 1;
6114	}
6115#endif
6116	/* Warn about ZFS memory and address space requirements. */
6117	if (((uint64_t)physmem * PAGESIZE) < (256 + 128 + 64) * (1 << 20)) {
6118		printf("ZFS WARNING: Recommended minimum RAM size is 512MB; "
6119		    "expect unstable behavior.\n");
6120	}
6121	if (kmem_size() < 512 * (1 << 20)) {
6122		printf("ZFS WARNING: Recommended minimum kmem_size is 512MB; "
6123		    "expect unstable behavior.\n");
6124		printf("             Consider tuning vm.kmem_size and "
6125		    "vm.kmem_size_max\n");
6126		printf("             in /boot/loader.conf.\n");
6127	}
6128#endif
6129}
6130
6131void
6132arc_fini(void)
6133{
6134	mutex_enter(&arc_reclaim_lock);
6135	arc_reclaim_thread_exit = B_TRUE;
6136	/*
6137	 * The reclaim thread will set arc_reclaim_thread_exit back to
6138	 * B_FALSE when it is finished exiting; we're waiting for that.
6139	 */
6140	while (arc_reclaim_thread_exit) {
6141		cv_signal(&arc_reclaim_thread_cv);
6142		cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
6143	}
6144	mutex_exit(&arc_reclaim_lock);
6145
6146	/* Use B_TRUE to ensure *all* buffers are evicted */
6147	arc_flush(NULL, B_TRUE);
6148
6149	arc_dead = B_TRUE;
6150
6151	if (arc_ksp != NULL) {
6152		kstat_delete(arc_ksp);
6153		arc_ksp = NULL;
6154	}
6155
6156	mutex_destroy(&arc_reclaim_lock);
6157	cv_destroy(&arc_reclaim_thread_cv);
6158	cv_destroy(&arc_reclaim_waiters_cv);
6159
6160	arc_state_fini();
6161	buf_fini();
6162
6163	ASSERT0(arc_loaned_bytes);
6164
6165#ifdef _KERNEL
6166	if (arc_event_lowmem != NULL)
6167		EVENTHANDLER_DEREGISTER(vm_lowmem, arc_event_lowmem);
6168#endif
6169}
6170
6171/*
6172 * Level 2 ARC
6173 *
6174 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
6175 * It uses dedicated storage devices to hold cached data, which are populated
6176 * using large infrequent writes.  The main role of this cache is to boost
6177 * the performance of random read workloads.  The intended L2ARC devices
6178 * include short-stroked disks, solid state disks, and other media with
6179 * substantially faster read latency than disk.
6180 *
6181 *                 +-----------------------+
6182 *                 |         ARC           |
6183 *                 +-----------------------+
6184 *                    |         ^     ^
6185 *                    |         |     |
6186 *      l2arc_feed_thread()    arc_read()
6187 *                    |         |     |
6188 *                    |  l2arc read   |
6189 *                    V         |     |
6190 *               +---------------+    |
6191 *               |     L2ARC     |    |
6192 *               +---------------+    |
6193 *                   |    ^           |
6194 *          l2arc_write() |           |
6195 *                   |    |           |
6196 *                   V    |           |
6197 *                 +-------+      +-------+
6198 *                 | vdev  |      | vdev  |
6199 *                 | cache |      | cache |
6200 *                 +-------+      +-------+
6201 *                 +=========+     .-----.
6202 *                 :  L2ARC  :    |-_____-|
6203 *                 : devices :    | Disks |
6204 *                 +=========+    `-_____-'
6205 *
6206 * Read requests are satisfied from the following sources, in order:
6207 *
6208 *	1) ARC
6209 *	2) vdev cache of L2ARC devices
6210 *	3) L2ARC devices
6211 *	4) vdev cache of disks
6212 *	5) disks
6213 *
6214 * Some L2ARC device types exhibit extremely slow write performance.
6215 * To accommodate for this there are some significant differences between
6216 * the L2ARC and traditional cache design:
6217 *
6218 * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
6219 * the ARC behave as usual, freeing buffers and placing headers on ghost
6220 * lists.  The ARC does not send buffers to the L2ARC during eviction as
6221 * this would add inflated write latencies for all ARC memory pressure.
6222 *
6223 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
6224 * It does this by periodically scanning buffers from the eviction-end of
6225 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
6226 * not already there. It scans until a headroom of buffers is satisfied,
6227 * which itself is a buffer for ARC eviction. If a compressible buffer is
6228 * found during scanning and selected for writing to an L2ARC device, we
6229 * temporarily boost scanning headroom during the next scan cycle to make
6230 * sure we adapt to compression effects (which might significantly reduce
6231 * the data volume we write to L2ARC). The thread that does this is
6232 * l2arc_feed_thread(), illustrated below; example sizes are included to
6233 * provide a better sense of ratio than this diagram:
6234 *
6235 *	       head -->                        tail
6236 *	        +---------------------+----------+
6237 *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
6238 *	        +---------------------+----------+   |   o L2ARC eligible
6239 *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
6240 *	        +---------------------+----------+   |
6241 *	             15.9 Gbytes      ^ 32 Mbytes    |
6242 *	                           headroom          |
6243 *	                                      l2arc_feed_thread()
6244 *	                                             |
6245 *	                 l2arc write hand <--[oooo]--'
6246 *	                         |           8 Mbyte
6247 *	                         |          write max
6248 *	                         V
6249 *		  +==============================+
6250 *	L2ARC dev |####|#|###|###|    |####| ... |
6251 *	          +==============================+
6252 *	                     32 Gbytes
6253 *
6254 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
6255 * evicted, then the L2ARC has cached a buffer much sooner than it probably
6256 * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
6257 * safe to say that this is an uncommon case, since buffers at the end of
6258 * the ARC lists have moved there due to inactivity.
6259 *
6260 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
6261 * then the L2ARC simply misses copying some buffers.  This serves as a
6262 * pressure valve to prevent heavy read workloads from both stalling the ARC
6263 * with waits and clogging the L2ARC with writes.  This also helps prevent
6264 * the potential for the L2ARC to churn if it attempts to cache content too
6265 * quickly, such as during backups of the entire pool.
6266 *
6267 * 5. After system boot and before the ARC has filled main memory, there are
6268 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
6269 * lists can remain mostly static.  Instead of searching from tail of these
6270 * lists as pictured, the l2arc_feed_thread() will search from the list heads
6271 * for eligible buffers, greatly increasing its chance of finding them.
6272 *
6273 * The L2ARC device write speed is also boosted during this time so that
6274 * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
6275 * there are no L2ARC reads, and no fear of degrading read performance
6276 * through increased writes.
6277 *
6278 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
6279 * the vdev queue can aggregate them into larger and fewer writes.  Each
6280 * device is written to in a rotor fashion, sweeping writes through
6281 * available space then repeating.
6282 *
6283 * 7. The L2ARC does not store dirty content.  It never needs to flush
6284 * write buffers back to disk based storage.
6285 *
6286 * 8. If an ARC buffer is written (and dirtied) which also exists in the
6287 * L2ARC, the now stale L2ARC buffer is immediately dropped.
6288 *
6289 * The performance of the L2ARC can be tweaked by a number of tunables, which
6290 * may be necessary for different workloads:
6291 *
6292 *	l2arc_write_max		max write bytes per interval
6293 *	l2arc_write_boost	extra write bytes during device warmup
6294 *	l2arc_noprefetch	skip caching prefetched buffers
6295 *	l2arc_headroom		number of max device writes to precache
6296 *	l2arc_headroom_boost	when we find compressed buffers during ARC
6297 *				scanning, we multiply headroom by this
6298 *				percentage factor for the next scan cycle,
6299 *				since more compressed buffers are likely to
6300 *				be present
6301 *	l2arc_feed_secs		seconds between L2ARC writing
6302 *
6303 * Tunables may be removed or added as future performance improvements are
6304 * integrated, and also may become zpool properties.
6305 *
6306 * There are three key functions that control how the L2ARC warms up:
6307 *
6308 *	l2arc_write_eligible()	check if a buffer is eligible to cache
6309 *	l2arc_write_size()	calculate how much to write
6310 *	l2arc_write_interval()	calculate sleep delay between writes
6311 *
6312 * These three functions determine what to write, how much, and how quickly
6313 * to send writes.
6314 */
6315
6316static boolean_t
6317l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
6318{
6319	/*
6320	 * A buffer is *not* eligible for the L2ARC if it:
6321	 * 1. belongs to a different spa.
6322	 * 2. is already cached on the L2ARC.
6323	 * 3. has an I/O in progress (it may be an incomplete read).
6324	 * 4. is flagged not eligible (zfs property).
6325	 */
6326	if (hdr->b_spa != spa_guid) {
6327		ARCSTAT_BUMP(arcstat_l2_write_spa_mismatch);
6328		return (B_FALSE);
6329	}
6330	if (HDR_HAS_L2HDR(hdr)) {
6331		ARCSTAT_BUMP(arcstat_l2_write_in_l2);
6332		return (B_FALSE);
6333	}
6334	if (HDR_IO_IN_PROGRESS(hdr)) {
6335		ARCSTAT_BUMP(arcstat_l2_write_hdr_io_in_progress);
6336		return (B_FALSE);
6337	}
6338	if (!HDR_L2CACHE(hdr)) {
6339		ARCSTAT_BUMP(arcstat_l2_write_not_cacheable);
6340		return (B_FALSE);
6341	}
6342
6343	return (B_TRUE);
6344}
6345
6346static uint64_t
6347l2arc_write_size(void)
6348{
6349	uint64_t size;
6350
6351	/*
6352	 * Make sure our globals have meaningful values in case the user
6353	 * altered them.
6354	 */
6355	size = l2arc_write_max;
6356	if (size == 0) {
6357		cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
6358		    "be greater than zero, resetting it to the default (%d)",
6359		    L2ARC_WRITE_SIZE);
6360		size = l2arc_write_max = L2ARC_WRITE_SIZE;
6361	}
6362
6363	if (arc_warm == B_FALSE)
6364		size += l2arc_write_boost;
6365
6366	return (size);
6367
6368}
6369
6370static clock_t
6371l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
6372{
6373	clock_t interval, next, now;
6374
6375	/*
6376	 * If the ARC lists are busy, increase our write rate; if the
6377	 * lists are stale, idle back.  This is achieved by checking
6378	 * how much we previously wrote - if it was more than half of
6379	 * what we wanted, schedule the next write much sooner.
6380	 */
6381	if (l2arc_feed_again && wrote > (wanted / 2))
6382		interval = (hz * l2arc_feed_min_ms) / 1000;
6383	else
6384		interval = hz * l2arc_feed_secs;
6385
6386	now = ddi_get_lbolt();
6387	next = MAX(now, MIN(now + interval, began + interval));
6388
6389	return (next);
6390}
6391
6392/*
6393 * Cycle through L2ARC devices.  This is how L2ARC load balances.
6394 * If a device is returned, this also returns holding the spa config lock.
6395 */
6396static l2arc_dev_t *
6397l2arc_dev_get_next(void)
6398{
6399	l2arc_dev_t *first, *next = NULL;
6400
6401	/*
6402	 * Lock out the removal of spas (spa_namespace_lock), then removal
6403	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
6404	 * both locks will be dropped and a spa config lock held instead.
6405	 */
6406	mutex_enter(&spa_namespace_lock);
6407	mutex_enter(&l2arc_dev_mtx);
6408
6409	/* if there are no vdevs, there is nothing to do */
6410	if (l2arc_ndev == 0)
6411		goto out;
6412
6413	first = NULL;
6414	next = l2arc_dev_last;
6415	do {
6416		/* loop around the list looking for a non-faulted vdev */
6417		if (next == NULL) {
6418			next = list_head(l2arc_dev_list);
6419		} else {
6420			next = list_next(l2arc_dev_list, next);
6421			if (next == NULL)
6422				next = list_head(l2arc_dev_list);
6423		}
6424
6425		/* if we have come back to the start, bail out */
6426		if (first == NULL)
6427			first = next;
6428		else if (next == first)
6429			break;
6430
6431	} while (vdev_is_dead(next->l2ad_vdev));
6432
6433	/* if we were unable to find any usable vdevs, return NULL */
6434	if (vdev_is_dead(next->l2ad_vdev))
6435		next = NULL;
6436
6437	l2arc_dev_last = next;
6438
6439out:
6440	mutex_exit(&l2arc_dev_mtx);
6441
6442	/*
6443	 * Grab the config lock to prevent the 'next' device from being
6444	 * removed while we are writing to it.
6445	 */
6446	if (next != NULL)
6447		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
6448	mutex_exit(&spa_namespace_lock);
6449
6450	return (next);
6451}
6452
6453/*
6454 * Free buffers that were tagged for destruction.
6455 */
6456static void
6457l2arc_do_free_on_write()
6458{
6459	list_t *buflist;
6460	l2arc_data_free_t *df, *df_prev;
6461
6462	mutex_enter(&l2arc_free_on_write_mtx);
6463	buflist = l2arc_free_on_write;
6464
6465	for (df = list_tail(buflist); df; df = df_prev) {
6466		df_prev = list_prev(buflist, df);
6467		ASSERT3P(df->l2df_data, !=, NULL);
6468		if (df->l2df_type == ARC_BUFC_METADATA) {
6469			zio_buf_free(df->l2df_data, df->l2df_size);
6470		} else {
6471			ASSERT(df->l2df_type == ARC_BUFC_DATA);
6472			zio_data_buf_free(df->l2df_data, df->l2df_size);
6473		}
6474		list_remove(buflist, df);
6475		kmem_free(df, sizeof (l2arc_data_free_t));
6476	}
6477
6478	mutex_exit(&l2arc_free_on_write_mtx);
6479}
6480
6481/*
6482 * A write to a cache device has completed.  Update all headers to allow
6483 * reads from these buffers to begin.
6484 */
6485static void
6486l2arc_write_done(zio_t *zio)
6487{
6488	l2arc_write_callback_t *cb;
6489	l2arc_dev_t *dev;
6490	list_t *buflist;
6491	arc_buf_hdr_t *head, *hdr, *hdr_prev;
6492	kmutex_t *hash_lock;
6493	int64_t bytes_dropped = 0;
6494
6495	cb = zio->io_private;
6496	ASSERT3P(cb, !=, NULL);
6497	dev = cb->l2wcb_dev;
6498	ASSERT3P(dev, !=, NULL);
6499	head = cb->l2wcb_head;
6500	ASSERT3P(head, !=, NULL);
6501	buflist = &dev->l2ad_buflist;
6502	ASSERT3P(buflist, !=, NULL);
6503	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
6504	    l2arc_write_callback_t *, cb);
6505
6506	if (zio->io_error != 0)
6507		ARCSTAT_BUMP(arcstat_l2_writes_error);
6508
6509	/*
6510	 * All writes completed, or an error was hit.
6511	 */
6512top:
6513	mutex_enter(&dev->l2ad_mtx);
6514	for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
6515		hdr_prev = list_prev(buflist, hdr);
6516
6517		hash_lock = HDR_LOCK(hdr);
6518
6519		/*
6520		 * We cannot use mutex_enter or else we can deadlock
6521		 * with l2arc_write_buffers (due to swapping the order
6522		 * the hash lock and l2ad_mtx are taken).
6523		 */
6524		if (!mutex_tryenter(hash_lock)) {
6525			/*
6526			 * Missed the hash lock. We must retry so we
6527			 * don't leave the ARC_FLAG_L2_WRITING bit set.
6528			 */
6529			ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
6530
6531			/*
6532			 * We don't want to rescan the headers we've
6533			 * already marked as having been written out, so
6534			 * we reinsert the head node so we can pick up
6535			 * where we left off.
6536			 */
6537			list_remove(buflist, head);
6538			list_insert_after(buflist, hdr, head);
6539
6540			mutex_exit(&dev->l2ad_mtx);
6541
6542			/*
6543			 * We wait for the hash lock to become available
6544			 * to try and prevent busy waiting, and increase
6545			 * the chance we'll be able to acquire the lock
6546			 * the next time around.
6547			 */
6548			mutex_enter(hash_lock);
6549			mutex_exit(hash_lock);
6550			goto top;
6551		}
6552
6553		/*
6554		 * We could not have been moved into the arc_l2c_only
6555		 * state while in-flight due to our ARC_FLAG_L2_WRITING
6556		 * bit being set. Let's just ensure that's being enforced.
6557		 */
6558		ASSERT(HDR_HAS_L1HDR(hdr));
6559
6560		if (zio->io_error != 0) {
6561			/*
6562			 * Error - drop L2ARC entry.
6563			 */
6564			list_remove(buflist, hdr);
6565			l2arc_trim(hdr);
6566			arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
6567
6568			ARCSTAT_INCR(arcstat_l2_asize, -arc_hdr_size(hdr));
6569			ARCSTAT_INCR(arcstat_l2_size, -HDR_GET_LSIZE(hdr));
6570
6571			bytes_dropped += arc_hdr_size(hdr);
6572			(void) refcount_remove_many(&dev->l2ad_alloc,
6573			    arc_hdr_size(hdr), hdr);
6574		}
6575
6576		/*
6577		 * Allow ARC to begin reads and ghost list evictions to
6578		 * this L2ARC entry.
6579		 */
6580		arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
6581
6582		mutex_exit(hash_lock);
6583	}
6584
6585	atomic_inc_64(&l2arc_writes_done);
6586	list_remove(buflist, head);
6587	ASSERT(!HDR_HAS_L1HDR(head));
6588	kmem_cache_free(hdr_l2only_cache, head);
6589	mutex_exit(&dev->l2ad_mtx);
6590
6591	vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
6592
6593	l2arc_do_free_on_write();
6594
6595	kmem_free(cb, sizeof (l2arc_write_callback_t));
6596}
6597
6598/*
6599 * A read to a cache device completed.  Validate buffer contents before
6600 * handing over to the regular ARC routines.
6601 */
6602static void
6603l2arc_read_done(zio_t *zio)
6604{
6605	l2arc_read_callback_t *cb;
6606	arc_buf_hdr_t *hdr;
6607	kmutex_t *hash_lock;
6608	boolean_t valid_cksum;
6609
6610	ASSERT3P(zio->io_vd, !=, NULL);
6611	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
6612
6613	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
6614
6615	cb = zio->io_private;
6616	ASSERT3P(cb, !=, NULL);
6617	hdr = cb->l2rcb_hdr;
6618	ASSERT3P(hdr, !=, NULL);
6619
6620	hash_lock = HDR_LOCK(hdr);
6621	mutex_enter(hash_lock);
6622	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6623
6624	/*
6625	 * If the data was read into a temporary buffer,
6626	 * move it and free the buffer.
6627	 */
6628	if (cb->l2rcb_data != NULL) {
6629		ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
6630		if (zio->io_error == 0) {
6631			bcopy(cb->l2rcb_data, hdr->b_l1hdr.b_pdata,
6632			    arc_hdr_size(hdr));
6633		}
6634
6635		/*
6636		 * The following must be done regardless of whether
6637		 * there was an error:
6638		 * - free the temporary buffer
6639		 * - point zio to the real ARC buffer
6640		 * - set zio size accordingly
6641		 * These are required because zio is either re-used for
6642		 * an I/O of the block in the case of the error
6643		 * or the zio is passed to arc_read_done() and it
6644		 * needs real data.
6645		 */
6646		zio_data_buf_free(cb->l2rcb_data, zio->io_size);
6647		zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
6648		zio->io_data = zio->io_orig_data = hdr->b_l1hdr.b_pdata;
6649	}
6650
6651	ASSERT3P(zio->io_data, !=, NULL);
6652
6653	/*
6654	 * Check this survived the L2ARC journey.
6655	 */
6656	ASSERT3P(zio->io_data, ==, hdr->b_l1hdr.b_pdata);
6657	zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
6658	zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
6659
6660	valid_cksum = arc_cksum_is_equal(hdr, zio);
6661	if (valid_cksum && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
6662		mutex_exit(hash_lock);
6663		zio->io_private = hdr;
6664		arc_read_done(zio);
6665	} else {
6666		mutex_exit(hash_lock);
6667		/*
6668		 * Buffer didn't survive caching.  Increment stats and
6669		 * reissue to the original storage device.
6670		 */
6671		if (zio->io_error != 0) {
6672			ARCSTAT_BUMP(arcstat_l2_io_error);
6673		} else {
6674			zio->io_error = SET_ERROR(EIO);
6675		}
6676		if (!valid_cksum)
6677			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
6678
6679		/*
6680		 * If there's no waiter, issue an async i/o to the primary
6681		 * storage now.  If there *is* a waiter, the caller must
6682		 * issue the i/o in a context where it's OK to block.
6683		 */
6684		if (zio->io_waiter == NULL) {
6685			zio_t *pio = zio_unique_parent(zio);
6686
6687			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
6688
6689			zio_nowait(zio_read(pio, zio->io_spa, zio->io_bp,
6690			    hdr->b_l1hdr.b_pdata, zio->io_size, arc_read_done,
6691			    hdr, zio->io_priority, cb->l2rcb_flags,
6692			    &cb->l2rcb_zb));
6693		}
6694	}
6695
6696	kmem_free(cb, sizeof (l2arc_read_callback_t));
6697}
6698
6699/*
6700 * This is the list priority from which the L2ARC will search for pages to
6701 * cache.  This is used within loops (0..3) to cycle through lists in the
6702 * desired order.  This order can have a significant effect on cache
6703 * performance.
6704 *
6705 * Currently the metadata lists are hit first, MFU then MRU, followed by
6706 * the data lists.  This function returns a locked list, and also returns
6707 * the lock pointer.
6708 */
6709static multilist_sublist_t *
6710l2arc_sublist_lock(int list_num)
6711{
6712	multilist_t *ml = NULL;
6713	unsigned int idx;
6714
6715	ASSERT(list_num >= 0 && list_num <= 3);
6716
6717	switch (list_num) {
6718	case 0:
6719		ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
6720		break;
6721	case 1:
6722		ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
6723		break;
6724	case 2:
6725		ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
6726		break;
6727	case 3:
6728		ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
6729		break;
6730	}
6731
6732	/*
6733	 * Return a randomly-selected sublist. This is acceptable
6734	 * because the caller feeds only a little bit of data for each
6735	 * call (8MB). Subsequent calls will result in different
6736	 * sublists being selected.
6737	 */
6738	idx = multilist_get_random_index(ml);
6739	return (multilist_sublist_lock(ml, idx));
6740}
6741
6742/*
6743 * Evict buffers from the device write hand to the distance specified in
6744 * bytes.  This distance may span populated buffers, it may span nothing.
6745 * This is clearing a region on the L2ARC device ready for writing.
6746 * If the 'all' boolean is set, every buffer is evicted.
6747 */
6748static void
6749l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
6750{
6751	list_t *buflist;
6752	arc_buf_hdr_t *hdr, *hdr_prev;
6753	kmutex_t *hash_lock;
6754	uint64_t taddr;
6755
6756	buflist = &dev->l2ad_buflist;
6757
6758	if (!all && dev->l2ad_first) {
6759		/*
6760		 * This is the first sweep through the device.  There is
6761		 * nothing to evict.
6762		 */
6763		return;
6764	}
6765
6766	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
6767		/*
6768		 * When nearing the end of the device, evict to the end
6769		 * before the device write hand jumps to the start.
6770		 */
6771		taddr = dev->l2ad_end;
6772	} else {
6773		taddr = dev->l2ad_hand + distance;
6774	}
6775	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
6776	    uint64_t, taddr, boolean_t, all);
6777
6778top:
6779	mutex_enter(&dev->l2ad_mtx);
6780	for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
6781		hdr_prev = list_prev(buflist, hdr);
6782
6783		hash_lock = HDR_LOCK(hdr);
6784
6785		/*
6786		 * We cannot use mutex_enter or else we can deadlock
6787		 * with l2arc_write_buffers (due to swapping the order
6788		 * the hash lock and l2ad_mtx are taken).
6789		 */
6790		if (!mutex_tryenter(hash_lock)) {
6791			/*
6792			 * Missed the hash lock.  Retry.
6793			 */
6794			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
6795			mutex_exit(&dev->l2ad_mtx);
6796			mutex_enter(hash_lock);
6797			mutex_exit(hash_lock);
6798			goto top;
6799		}
6800
6801		if (HDR_L2_WRITE_HEAD(hdr)) {
6802			/*
6803			 * We hit a write head node.  Leave it for
6804			 * l2arc_write_done().
6805			 */
6806			list_remove(buflist, hdr);
6807			mutex_exit(hash_lock);
6808			continue;
6809		}
6810
6811		if (!all && HDR_HAS_L2HDR(hdr) &&
6812		    (hdr->b_l2hdr.b_daddr > taddr ||
6813		    hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
6814			/*
6815			 * We've evicted to the target address,
6816			 * or the end of the device.
6817			 */
6818			mutex_exit(hash_lock);
6819			break;
6820		}
6821
6822		ASSERT(HDR_HAS_L2HDR(hdr));
6823		if (!HDR_HAS_L1HDR(hdr)) {
6824			ASSERT(!HDR_L2_READING(hdr));
6825			/*
6826			 * This doesn't exist in the ARC.  Destroy.
6827			 * arc_hdr_destroy() will call list_remove()
6828			 * and decrement arcstat_l2_size.
6829			 */
6830			arc_change_state(arc_anon, hdr, hash_lock);
6831			arc_hdr_destroy(hdr);
6832		} else {
6833			ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
6834			ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
6835			/*
6836			 * Invalidate issued or about to be issued
6837			 * reads, since we may be about to write
6838			 * over this location.
6839			 */
6840			if (HDR_L2_READING(hdr)) {
6841				ARCSTAT_BUMP(arcstat_l2_evict_reading);
6842				arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
6843			}
6844
6845			/* Ensure this header has finished being written */
6846			ASSERT(!HDR_L2_WRITING(hdr));
6847
6848			arc_hdr_l2hdr_destroy(hdr);
6849		}
6850		mutex_exit(hash_lock);
6851	}
6852	mutex_exit(&dev->l2ad_mtx);
6853}
6854
6855/*
6856 * Find and write ARC buffers to the L2ARC device.
6857 *
6858 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
6859 * for reading until they have completed writing.
6860 * The headroom_boost is an in-out parameter used to maintain headroom boost
6861 * state between calls to this function.
6862 *
6863 * Returns the number of bytes actually written (which may be smaller than
6864 * the delta by which the device hand has changed due to alignment).
6865 */
6866static uint64_t
6867l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
6868{
6869	arc_buf_hdr_t *hdr, *hdr_prev, *head;
6870	uint64_t write_asize, write_psize, write_sz, headroom;
6871	boolean_t full;
6872	l2arc_write_callback_t *cb;
6873	zio_t *pio, *wzio;
6874	uint64_t guid = spa_load_guid(spa);
6875	int try;
6876
6877	ASSERT3P(dev->l2ad_vdev, !=, NULL);
6878
6879	pio = NULL;
6880	write_sz = write_asize = write_psize = 0;
6881	full = B_FALSE;
6882	head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
6883	arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
6884
6885	ARCSTAT_BUMP(arcstat_l2_write_buffer_iter);
6886	/*
6887	 * Copy buffers for L2ARC writing.
6888	 */
6889	for (try = 0; try <= 3; try++) {
6890		multilist_sublist_t *mls = l2arc_sublist_lock(try);
6891		uint64_t passed_sz = 0;
6892
6893		ARCSTAT_BUMP(arcstat_l2_write_buffer_list_iter);
6894
6895		/*
6896		 * L2ARC fast warmup.
6897		 *
6898		 * Until the ARC is warm and starts to evict, read from the
6899		 * head of the ARC lists rather than the tail.
6900		 */
6901		if (arc_warm == B_FALSE)
6902			hdr = multilist_sublist_head(mls);
6903		else
6904			hdr = multilist_sublist_tail(mls);
6905		if (hdr == NULL)
6906			ARCSTAT_BUMP(arcstat_l2_write_buffer_list_null_iter);
6907
6908		headroom = target_sz * l2arc_headroom;
6909		if (zfs_compressed_arc_enabled)
6910			headroom = (headroom * l2arc_headroom_boost) / 100;
6911
6912		for (; hdr; hdr = hdr_prev) {
6913			kmutex_t *hash_lock;
6914
6915			if (arc_warm == B_FALSE)
6916				hdr_prev = multilist_sublist_next(mls, hdr);
6917			else
6918				hdr_prev = multilist_sublist_prev(mls, hdr);
6919			ARCSTAT_INCR(arcstat_l2_write_buffer_bytes_scanned,
6920			    HDR_GET_LSIZE(hdr));
6921
6922			hash_lock = HDR_LOCK(hdr);
6923			if (!mutex_tryenter(hash_lock)) {
6924				ARCSTAT_BUMP(arcstat_l2_write_trylock_fail);
6925				/*
6926				 * Skip this buffer rather than waiting.
6927				 */
6928				continue;
6929			}
6930
6931			passed_sz += HDR_GET_LSIZE(hdr);
6932			if (passed_sz > headroom) {
6933				/*
6934				 * Searched too far.
6935				 */
6936				mutex_exit(hash_lock);
6937				ARCSTAT_BUMP(arcstat_l2_write_passed_headroom);
6938				break;
6939			}
6940
6941			if (!l2arc_write_eligible(guid, hdr)) {
6942				mutex_exit(hash_lock);
6943				continue;
6944			}
6945
6946			if ((write_asize + HDR_GET_LSIZE(hdr)) > target_sz) {
6947				full = B_TRUE;
6948				mutex_exit(hash_lock);
6949				ARCSTAT_BUMP(arcstat_l2_write_full);
6950				break;
6951			}
6952
6953			if (pio == NULL) {
6954				/*
6955				 * Insert a dummy header on the buflist so
6956				 * l2arc_write_done() can find where the
6957				 * write buffers begin without searching.
6958				 */
6959				mutex_enter(&dev->l2ad_mtx);
6960				list_insert_head(&dev->l2ad_buflist, head);
6961				mutex_exit(&dev->l2ad_mtx);
6962
6963				cb = kmem_alloc(
6964				    sizeof (l2arc_write_callback_t), KM_SLEEP);
6965				cb->l2wcb_dev = dev;
6966				cb->l2wcb_head = head;
6967				pio = zio_root(spa, l2arc_write_done, cb,
6968				    ZIO_FLAG_CANFAIL);
6969				ARCSTAT_BUMP(arcstat_l2_write_pios);
6970			}
6971
6972			hdr->b_l2hdr.b_dev = dev;
6973			hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
6974			arc_hdr_set_flags(hdr,
6975			    ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR);
6976
6977			mutex_enter(&dev->l2ad_mtx);
6978			list_insert_head(&dev->l2ad_buflist, hdr);
6979			mutex_exit(&dev->l2ad_mtx);
6980
6981			/*
6982			 * We rely on the L1 portion of the header below, so
6983			 * it's invalid for this header to have been evicted out
6984			 * of the ghost cache, prior to being written out. The
6985			 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
6986			 */
6987			ASSERT(HDR_HAS_L1HDR(hdr));
6988
6989			ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
6990			ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL);
6991			ASSERT3U(arc_hdr_size(hdr), >, 0);
6992			uint64_t size = arc_hdr_size(hdr);
6993			uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
6994			    size);
6995
6996			(void) refcount_add_many(&dev->l2ad_alloc, size, hdr);
6997
6998			/*
6999			 * Normally the L2ARC can use the hdr's data, but if
7000			 * we're sharing data between the hdr and one of its
7001			 * bufs, L2ARC needs its own copy of the data so that
7002			 * the ZIO below can't race with the buf consumer. To
7003			 * ensure that this copy will be available for the
7004			 * lifetime of the ZIO and be cleaned up afterwards, we
7005			 * add it to the l2arc_free_on_write queue.
7006			 */
7007			void *to_write;
7008			if (!HDR_SHARED_DATA(hdr) && size == asize) {
7009				to_write = hdr->b_l1hdr.b_pdata;
7010			} else {
7011				arc_buf_contents_t type = arc_buf_type(hdr);
7012				if (type == ARC_BUFC_METADATA) {
7013					to_write = zio_buf_alloc(asize);
7014				} else {
7015					ASSERT3U(type, ==, ARC_BUFC_DATA);
7016					to_write = zio_data_buf_alloc(asize);
7017				}
7018
7019				bcopy(hdr->b_l1hdr.b_pdata, to_write, size);
7020				if (asize != size)
7021					bzero(to_write + size, asize - size);
7022				l2arc_free_data_on_write(to_write, asize, type);
7023			}
7024			wzio = zio_write_phys(pio, dev->l2ad_vdev,
7025			    hdr->b_l2hdr.b_daddr, asize, to_write,
7026			    ZIO_CHECKSUM_OFF, NULL, hdr,
7027			    ZIO_PRIORITY_ASYNC_WRITE,
7028			    ZIO_FLAG_CANFAIL, B_FALSE);
7029
7030			write_sz += HDR_GET_LSIZE(hdr);
7031			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
7032			    zio_t *, wzio);
7033
7034			write_asize += size;
7035			write_psize += asize;
7036			dev->l2ad_hand += asize;
7037
7038			mutex_exit(hash_lock);
7039
7040			(void) zio_nowait(wzio);
7041		}
7042
7043		multilist_sublist_unlock(mls);
7044
7045		if (full == B_TRUE)
7046			break;
7047	}
7048
7049	/* No buffers selected for writing? */
7050	if (pio == NULL) {
7051		ASSERT0(write_sz);
7052		ASSERT(!HDR_HAS_L1HDR(head));
7053		kmem_cache_free(hdr_l2only_cache, head);
7054		return (0);
7055	}
7056
7057	ASSERT3U(write_asize, <=, target_sz);
7058	ARCSTAT_BUMP(arcstat_l2_writes_sent);
7059	ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
7060	ARCSTAT_INCR(arcstat_l2_size, write_sz);
7061	ARCSTAT_INCR(arcstat_l2_asize, write_asize);
7062	vdev_space_update(dev->l2ad_vdev, write_asize, 0, 0);
7063
7064	/*
7065	 * Bump device hand to the device start if it is approaching the end.
7066	 * l2arc_evict() will already have evicted ahead for this case.
7067	 */
7068	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
7069		dev->l2ad_hand = dev->l2ad_start;
7070		dev->l2ad_first = B_FALSE;
7071	}
7072
7073	dev->l2ad_writing = B_TRUE;
7074	(void) zio_wait(pio);
7075	dev->l2ad_writing = B_FALSE;
7076
7077	return (write_asize);
7078}
7079
7080/*
7081 * This thread feeds the L2ARC at regular intervals.  This is the beating
7082 * heart of the L2ARC.
7083 */
7084static void
7085l2arc_feed_thread(void *dummy __unused)
7086{
7087	callb_cpr_t cpr;
7088	l2arc_dev_t *dev;
7089	spa_t *spa;
7090	uint64_t size, wrote;
7091	clock_t begin, next = ddi_get_lbolt();
7092
7093	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
7094
7095	mutex_enter(&l2arc_feed_thr_lock);
7096
7097	while (l2arc_thread_exit == 0) {
7098		CALLB_CPR_SAFE_BEGIN(&cpr);
7099		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
7100		    next - ddi_get_lbolt());
7101		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
7102		next = ddi_get_lbolt() + hz;
7103
7104		/*
7105		 * Quick check for L2ARC devices.
7106		 */
7107		mutex_enter(&l2arc_dev_mtx);
7108		if (l2arc_ndev == 0) {
7109			mutex_exit(&l2arc_dev_mtx);
7110			continue;
7111		}
7112		mutex_exit(&l2arc_dev_mtx);
7113		begin = ddi_get_lbolt();
7114
7115		/*
7116		 * This selects the next l2arc device to write to, and in
7117		 * doing so the next spa to feed from: dev->l2ad_spa.   This
7118		 * will return NULL if there are now no l2arc devices or if
7119		 * they are all faulted.
7120		 *
7121		 * If a device is returned, its spa's config lock is also
7122		 * held to prevent device removal.  l2arc_dev_get_next()
7123		 * will grab and release l2arc_dev_mtx.
7124		 */
7125		if ((dev = l2arc_dev_get_next()) == NULL)
7126			continue;
7127
7128		spa = dev->l2ad_spa;
7129		ASSERT3P(spa, !=, NULL);
7130
7131		/*
7132		 * If the pool is read-only then force the feed thread to
7133		 * sleep a little longer.
7134		 */
7135		if (!spa_writeable(spa)) {
7136			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
7137			spa_config_exit(spa, SCL_L2ARC, dev);
7138			continue;
7139		}
7140
7141		/*
7142		 * Avoid contributing to memory pressure.
7143		 */
7144		if (arc_reclaim_needed()) {
7145			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
7146			spa_config_exit(spa, SCL_L2ARC, dev);
7147			continue;
7148		}
7149
7150		ARCSTAT_BUMP(arcstat_l2_feeds);
7151
7152		size = l2arc_write_size();
7153
7154		/*
7155		 * Evict L2ARC buffers that will be overwritten.
7156		 */
7157		l2arc_evict(dev, size, B_FALSE);
7158
7159		/*
7160		 * Write ARC buffers.
7161		 */
7162		wrote = l2arc_write_buffers(spa, dev, size);
7163
7164		/*
7165		 * Calculate interval between writes.
7166		 */
7167		next = l2arc_write_interval(begin, size, wrote);
7168		spa_config_exit(spa, SCL_L2ARC, dev);
7169	}
7170
7171	l2arc_thread_exit = 0;
7172	cv_broadcast(&l2arc_feed_thr_cv);
7173	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
7174	thread_exit();
7175}
7176
7177boolean_t
7178l2arc_vdev_present(vdev_t *vd)
7179{
7180	l2arc_dev_t *dev;
7181
7182	mutex_enter(&l2arc_dev_mtx);
7183	for (dev = list_head(l2arc_dev_list); dev != NULL;
7184	    dev = list_next(l2arc_dev_list, dev)) {
7185		if (dev->l2ad_vdev == vd)
7186			break;
7187	}
7188	mutex_exit(&l2arc_dev_mtx);
7189
7190	return (dev != NULL);
7191}
7192
7193/*
7194 * Add a vdev for use by the L2ARC.  By this point the spa has already
7195 * validated the vdev and opened it.
7196 */
7197void
7198l2arc_add_vdev(spa_t *spa, vdev_t *vd)
7199{
7200	l2arc_dev_t *adddev;
7201
7202	ASSERT(!l2arc_vdev_present(vd));
7203
7204	vdev_ashift_optimize(vd);
7205
7206	/*
7207	 * Create a new l2arc device entry.
7208	 */
7209	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
7210	adddev->l2ad_spa = spa;
7211	adddev->l2ad_vdev = vd;
7212	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
7213	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
7214	adddev->l2ad_hand = adddev->l2ad_start;
7215	adddev->l2ad_first = B_TRUE;
7216	adddev->l2ad_writing = B_FALSE;
7217
7218	mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
7219	/*
7220	 * This is a list of all ARC buffers that are still valid on the
7221	 * device.
7222	 */
7223	list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
7224	    offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
7225
7226	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
7227	refcount_create(&adddev->l2ad_alloc);
7228
7229	/*
7230	 * Add device to global list
7231	 */
7232	mutex_enter(&l2arc_dev_mtx);
7233	list_insert_head(l2arc_dev_list, adddev);
7234	atomic_inc_64(&l2arc_ndev);
7235	mutex_exit(&l2arc_dev_mtx);
7236}
7237
7238/*
7239 * Remove a vdev from the L2ARC.
7240 */
7241void
7242l2arc_remove_vdev(vdev_t *vd)
7243{
7244	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
7245
7246	/*
7247	 * Find the device by vdev
7248	 */
7249	mutex_enter(&l2arc_dev_mtx);
7250	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
7251		nextdev = list_next(l2arc_dev_list, dev);
7252		if (vd == dev->l2ad_vdev) {
7253			remdev = dev;
7254			break;
7255		}
7256	}
7257	ASSERT3P(remdev, !=, NULL);
7258
7259	/*
7260	 * Remove device from global list
7261	 */
7262	list_remove(l2arc_dev_list, remdev);
7263	l2arc_dev_last = NULL;		/* may have been invalidated */
7264	atomic_dec_64(&l2arc_ndev);
7265	mutex_exit(&l2arc_dev_mtx);
7266
7267	/*
7268	 * Clear all buflists and ARC references.  L2ARC device flush.
7269	 */
7270	l2arc_evict(remdev, 0, B_TRUE);
7271	list_destroy(&remdev->l2ad_buflist);
7272	mutex_destroy(&remdev->l2ad_mtx);
7273	refcount_destroy(&remdev->l2ad_alloc);
7274	kmem_free(remdev, sizeof (l2arc_dev_t));
7275}
7276
7277void
7278l2arc_init(void)
7279{
7280	l2arc_thread_exit = 0;
7281	l2arc_ndev = 0;
7282	l2arc_writes_sent = 0;
7283	l2arc_writes_done = 0;
7284
7285	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
7286	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
7287	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
7288	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
7289
7290	l2arc_dev_list = &L2ARC_dev_list;
7291	l2arc_free_on_write = &L2ARC_free_on_write;
7292	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
7293	    offsetof(l2arc_dev_t, l2ad_node));
7294	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
7295	    offsetof(l2arc_data_free_t, l2df_list_node));
7296}
7297
7298void
7299l2arc_fini(void)
7300{
7301	/*
7302	 * This is called from dmu_fini(), which is called from spa_fini();
7303	 * Because of this, we can assume that all l2arc devices have
7304	 * already been removed when the pools themselves were removed.
7305	 */
7306
7307	l2arc_do_free_on_write();
7308
7309	mutex_destroy(&l2arc_feed_thr_lock);
7310	cv_destroy(&l2arc_feed_thr_cv);
7311	mutex_destroy(&l2arc_dev_mtx);
7312	mutex_destroy(&l2arc_free_on_write_mtx);
7313
7314	list_destroy(l2arc_dev_list);
7315	list_destroy(l2arc_free_on_write);
7316}
7317
7318void
7319l2arc_start(void)
7320{
7321	if (!(spa_mode_global & FWRITE))
7322		return;
7323
7324	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
7325	    TS_RUN, minclsyspri);
7326}
7327
7328void
7329l2arc_stop(void)
7330{
7331	if (!(spa_mode_global & FWRITE))
7332		return;
7333
7334	mutex_enter(&l2arc_feed_thr_lock);
7335	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
7336	l2arc_thread_exit = 1;
7337	while (l2arc_thread_exit != 0)
7338		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
7339	mutex_exit(&l2arc_feed_thr_lock);
7340}
7341