arc.c revision 302729
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26 * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
27 */
28
29/*
30 * DVA-based Adjustable Replacement Cache
31 *
32 * While much of the theory of operation used here is
33 * based on the self-tuning, low overhead replacement cache
34 * presented by Megiddo and Modha at FAST 2003, there are some
35 * significant differences:
36 *
37 * 1. The Megiddo and Modha model assumes any page is evictable.
38 * Pages in its cache cannot be "locked" into memory.  This makes
39 * the eviction algorithm simple: evict the last page in the list.
40 * This also make the performance characteristics easy to reason
41 * about.  Our cache is not so simple.  At any given moment, some
42 * subset of the blocks in the cache are un-evictable because we
43 * have handed out a reference to them.  Blocks are only evictable
44 * when there are no external references active.  This makes
45 * eviction far more problematic:  we choose to evict the evictable
46 * blocks that are the "lowest" in the list.
47 *
48 * There are times when it is not possible to evict the requested
49 * space.  In these circumstances we are unable to adjust the cache
50 * size.  To prevent the cache growing unbounded at these times we
51 * implement a "cache throttle" that slows the flow of new data
52 * into the cache until we can make space available.
53 *
54 * 2. The Megiddo and Modha model assumes a fixed cache size.
55 * Pages are evicted when the cache is full and there is a cache
56 * miss.  Our model has a variable sized cache.  It grows with
57 * high use, but also tries to react to memory pressure from the
58 * operating system: decreasing its size when system memory is
59 * tight.
60 *
61 * 3. The Megiddo and Modha model assumes a fixed page size. All
62 * elements of the cache are therefore exactly the same size.  So
63 * when adjusting the cache size following a cache miss, its simply
64 * a matter of choosing a single page to evict.  In our model, we
65 * have variable sized cache blocks (rangeing from 512 bytes to
66 * 128K bytes).  We therefore choose a set of blocks to evict to make
67 * space for a cache miss that approximates as closely as possible
68 * the space used by the new block.
69 *
70 * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71 * by N. Megiddo & D. Modha, FAST 2003
72 */
73
74/*
75 * The locking model:
76 *
77 * A new reference to a cache buffer can be obtained in two
78 * ways: 1) via a hash table lookup using the DVA as a key,
79 * or 2) via one of the ARC lists.  The arc_read() interface
80 * uses method 1, while the internal arc algorithms for
81 * adjusting the cache use method 2.  We therefore provide two
82 * types of locks: 1) the hash table lock array, and 2) the
83 * arc list locks.
84 *
85 * Buffers do not have their own mutexes, rather they rely on the
86 * hash table mutexes for the bulk of their protection (i.e. most
87 * fields in the arc_buf_hdr_t are protected by these mutexes).
88 *
89 * buf_hash_find() returns the appropriate mutex (held) when it
90 * locates the requested buffer in the hash table.  It returns
91 * NULL for the mutex if the buffer was not in the table.
92 *
93 * buf_hash_remove() expects the appropriate hash mutex to be
94 * already held before it is invoked.
95 *
96 * Each arc state also has a mutex which is used to protect the
97 * buffer list associated with the state.  When attempting to
98 * obtain a hash table lock while holding an arc list lock you
99 * must use: mutex_tryenter() to avoid deadlock.  Also note that
100 * the active state mutex must be held before the ghost state mutex.
101 *
102 * Arc buffers may have an associated eviction callback function.
103 * This function will be invoked prior to removing the buffer (e.g.
104 * in arc_do_user_evicts()).  Note however that the data associated
105 * with the buffer may be evicted prior to the callback.  The callback
106 * must be made with *no locks held* (to prevent deadlock).  Additionally,
107 * the users of callbacks must ensure that their private data is
108 * protected from simultaneous callbacks from arc_clear_callback()
109 * and arc_do_user_evicts().
110 *
111 * Note that the majority of the performance stats are manipulated
112 * with atomic operations.
113 *
114 * The L2ARC uses the l2ad_mtx on each vdev for the following:
115 *
116 *	- L2ARC buflist creation
117 *	- L2ARC buflist eviction
118 *	- L2ARC write completion, which walks L2ARC buflists
119 *	- ARC header destruction, as it removes from L2ARC buflists
120 *	- ARC header release, as it removes from L2ARC buflists
121 */
122
123#include <sys/spa.h>
124#include <sys/zio.h>
125#include <sys/zio_compress.h>
126#include <sys/zfs_context.h>
127#include <sys/arc.h>
128#include <sys/refcount.h>
129#include <sys/vdev.h>
130#include <sys/vdev_impl.h>
131#include <sys/dsl_pool.h>
132#include <sys/multilist.h>
133#ifdef _KERNEL
134#include <sys/dnlc.h>
135#endif
136#include <sys/callb.h>
137#include <sys/kstat.h>
138#include <sys/trim_map.h>
139#include <zfs_fletcher.h>
140#include <sys/sdt.h>
141
142#include <machine/vmparam.h>
143
144#ifdef illumos
145#ifndef _KERNEL
146/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
147boolean_t arc_watch = B_FALSE;
148int arc_procfd;
149#endif
150#endif /* illumos */
151
152static kmutex_t		arc_reclaim_lock;
153static kcondvar_t	arc_reclaim_thread_cv;
154static boolean_t	arc_reclaim_thread_exit;
155static kcondvar_t	arc_reclaim_waiters_cv;
156
157static kmutex_t		arc_user_evicts_lock;
158static kcondvar_t	arc_user_evicts_cv;
159static boolean_t	arc_user_evicts_thread_exit;
160
161uint_t arc_reduce_dnlc_percent = 3;
162
163/*
164 * The number of headers to evict in arc_evict_state_impl() before
165 * dropping the sublist lock and evicting from another sublist. A lower
166 * value means we're more likely to evict the "correct" header (i.e. the
167 * oldest header in the arc state), but comes with higher overhead
168 * (i.e. more invocations of arc_evict_state_impl()).
169 */
170int zfs_arc_evict_batch_limit = 10;
171
172/*
173 * The number of sublists used for each of the arc state lists. If this
174 * is not set to a suitable value by the user, it will be configured to
175 * the number of CPUs on the system in arc_init().
176 */
177int zfs_arc_num_sublists_per_state = 0;
178
179/* number of seconds before growing cache again */
180static int		arc_grow_retry = 60;
181
182/* shift of arc_c for calculating overflow limit in arc_get_data_buf */
183int		zfs_arc_overflow_shift = 8;
184
185/* shift of arc_c for calculating both min and max arc_p */
186static int		arc_p_min_shift = 4;
187
188/* log2(fraction of arc to reclaim) */
189static int		arc_shrink_shift = 7;
190
191/*
192 * log2(fraction of ARC which must be free to allow growing).
193 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
194 * when reading a new block into the ARC, we will evict an equal-sized block
195 * from the ARC.
196 *
197 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
198 * we will still not allow it to grow.
199 */
200int			arc_no_grow_shift = 5;
201
202
203/*
204 * minimum lifespan of a prefetch block in clock ticks
205 * (initialized in arc_init())
206 */
207static int		arc_min_prefetch_lifespan;
208
209/*
210 * If this percent of memory is free, don't throttle.
211 */
212int arc_lotsfree_percent = 10;
213
214static int arc_dead;
215extern boolean_t zfs_prefetch_disable;
216
217/*
218 * The arc has filled available memory and has now warmed up.
219 */
220static boolean_t arc_warm;
221
222/*
223 * These tunables are for performance analysis.
224 */
225uint64_t zfs_arc_max;
226uint64_t zfs_arc_min;
227uint64_t zfs_arc_meta_limit = 0;
228uint64_t zfs_arc_meta_min = 0;
229int zfs_arc_grow_retry = 0;
230int zfs_arc_shrink_shift = 0;
231int zfs_arc_p_min_shift = 0;
232int zfs_disable_dup_eviction = 0;
233uint64_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
234u_int zfs_arc_free_target = 0;
235
236/* Absolute min for arc min / max is 16MB. */
237static uint64_t arc_abs_min = 16 << 20;
238
239static int sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS);
240static int sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS);
241static int sysctl_vfs_zfs_arc_max(SYSCTL_HANDLER_ARGS);
242static int sysctl_vfs_zfs_arc_min(SYSCTL_HANDLER_ARGS);
243
244#if defined(__FreeBSD__) && defined(_KERNEL)
245static void
246arc_free_target_init(void *unused __unused)
247{
248
249	zfs_arc_free_target = vm_pageout_wakeup_thresh;
250}
251SYSINIT(arc_free_target_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_ANY,
252    arc_free_target_init, NULL);
253
254TUNABLE_QUAD("vfs.zfs.arc_max", &zfs_arc_max);
255TUNABLE_QUAD("vfs.zfs.arc_min", &zfs_arc_min);
256TUNABLE_QUAD("vfs.zfs.arc_meta_limit", &zfs_arc_meta_limit);
257TUNABLE_QUAD("vfs.zfs.arc_meta_min", &zfs_arc_meta_min);
258TUNABLE_QUAD("vfs.zfs.arc_average_blocksize", &zfs_arc_average_blocksize);
259TUNABLE_INT("vfs.zfs.arc_shrink_shift", &zfs_arc_shrink_shift);
260SYSCTL_DECL(_vfs_zfs);
261SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_max, CTLTYPE_U64 | CTLFLAG_RWTUN,
262    0, sizeof(uint64_t), sysctl_vfs_zfs_arc_max, "QU", "Maximum ARC size");
263SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_min, CTLTYPE_U64 | CTLFLAG_RWTUN,
264    0, sizeof(uint64_t), sysctl_vfs_zfs_arc_min, "QU", "Minimum ARC size");
265SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_average_blocksize, CTLFLAG_RDTUN,
266    &zfs_arc_average_blocksize, 0,
267    "ARC average blocksize");
268SYSCTL_INT(_vfs_zfs, OID_AUTO, arc_shrink_shift, CTLFLAG_RW,
269    &arc_shrink_shift, 0,
270    "log2(fraction of arc to reclaim)");
271
272/*
273 * We don't have a tunable for arc_free_target due to the dependency on
274 * pagedaemon initialisation.
275 */
276SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_free_target,
277    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(u_int),
278    sysctl_vfs_zfs_arc_free_target, "IU",
279    "Desired number of free pages below which ARC triggers reclaim");
280
281static int
282sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS)
283{
284	u_int val;
285	int err;
286
287	val = zfs_arc_free_target;
288	err = sysctl_handle_int(oidp, &val, 0, req);
289	if (err != 0 || req->newptr == NULL)
290		return (err);
291
292	if (val < minfree)
293		return (EINVAL);
294	if (val > cnt.v_page_count)
295		return (EINVAL);
296
297	zfs_arc_free_target = val;
298
299	return (0);
300}
301
302/*
303 * Must be declared here, before the definition of corresponding kstat
304 * macro which uses the same names will confuse the compiler.
305 */
306SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_meta_limit,
307    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
308    sysctl_vfs_zfs_arc_meta_limit, "QU",
309    "ARC metadata limit");
310#endif
311
312/*
313 * Note that buffers can be in one of 6 states:
314 *	ARC_anon	- anonymous (discussed below)
315 *	ARC_mru		- recently used, currently cached
316 *	ARC_mru_ghost	- recentely used, no longer in cache
317 *	ARC_mfu		- frequently used, currently cached
318 *	ARC_mfu_ghost	- frequently used, no longer in cache
319 *	ARC_l2c_only	- exists in L2ARC but not other states
320 * When there are no active references to the buffer, they are
321 * are linked onto a list in one of these arc states.  These are
322 * the only buffers that can be evicted or deleted.  Within each
323 * state there are multiple lists, one for meta-data and one for
324 * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
325 * etc.) is tracked separately so that it can be managed more
326 * explicitly: favored over data, limited explicitly.
327 *
328 * Anonymous buffers are buffers that are not associated with
329 * a DVA.  These are buffers that hold dirty block copies
330 * before they are written to stable storage.  By definition,
331 * they are "ref'd" and are considered part of arc_mru
332 * that cannot be freed.  Generally, they will aquire a DVA
333 * as they are written and migrate onto the arc_mru list.
334 *
335 * The ARC_l2c_only state is for buffers that are in the second
336 * level ARC but no longer in any of the ARC_m* lists.  The second
337 * level ARC itself may also contain buffers that are in any of
338 * the ARC_m* states - meaning that a buffer can exist in two
339 * places.  The reason for the ARC_l2c_only state is to keep the
340 * buffer header in the hash table, so that reads that hit the
341 * second level ARC benefit from these fast lookups.
342 */
343
344typedef struct arc_state {
345	/*
346	 * list of evictable buffers
347	 */
348	multilist_t arcs_list[ARC_BUFC_NUMTYPES];
349	/*
350	 * total amount of evictable data in this state
351	 */
352	uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];
353	/*
354	 * total amount of data in this state; this includes: evictable,
355	 * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA.
356	 */
357	refcount_t arcs_size;
358} arc_state_t;
359
360/* The 6 states: */
361static arc_state_t ARC_anon;
362static arc_state_t ARC_mru;
363static arc_state_t ARC_mru_ghost;
364static arc_state_t ARC_mfu;
365static arc_state_t ARC_mfu_ghost;
366static arc_state_t ARC_l2c_only;
367
368typedef struct arc_stats {
369	kstat_named_t arcstat_hits;
370	kstat_named_t arcstat_misses;
371	kstat_named_t arcstat_demand_data_hits;
372	kstat_named_t arcstat_demand_data_misses;
373	kstat_named_t arcstat_demand_metadata_hits;
374	kstat_named_t arcstat_demand_metadata_misses;
375	kstat_named_t arcstat_prefetch_data_hits;
376	kstat_named_t arcstat_prefetch_data_misses;
377	kstat_named_t arcstat_prefetch_metadata_hits;
378	kstat_named_t arcstat_prefetch_metadata_misses;
379	kstat_named_t arcstat_mru_hits;
380	kstat_named_t arcstat_mru_ghost_hits;
381	kstat_named_t arcstat_mfu_hits;
382	kstat_named_t arcstat_mfu_ghost_hits;
383	kstat_named_t arcstat_allocated;
384	kstat_named_t arcstat_deleted;
385	/*
386	 * Number of buffers that could not be evicted because the hash lock
387	 * was held by another thread.  The lock may not necessarily be held
388	 * by something using the same buffer, since hash locks are shared
389	 * by multiple buffers.
390	 */
391	kstat_named_t arcstat_mutex_miss;
392	/*
393	 * Number of buffers skipped because they have I/O in progress, are
394	 * indrect prefetch buffers that have not lived long enough, or are
395	 * not from the spa we're trying to evict from.
396	 */
397	kstat_named_t arcstat_evict_skip;
398	/*
399	 * Number of times arc_evict_state() was unable to evict enough
400	 * buffers to reach it's target amount.
401	 */
402	kstat_named_t arcstat_evict_not_enough;
403	kstat_named_t arcstat_evict_l2_cached;
404	kstat_named_t arcstat_evict_l2_eligible;
405	kstat_named_t arcstat_evict_l2_ineligible;
406	kstat_named_t arcstat_evict_l2_skip;
407	kstat_named_t arcstat_hash_elements;
408	kstat_named_t arcstat_hash_elements_max;
409	kstat_named_t arcstat_hash_collisions;
410	kstat_named_t arcstat_hash_chains;
411	kstat_named_t arcstat_hash_chain_max;
412	kstat_named_t arcstat_p;
413	kstat_named_t arcstat_c;
414	kstat_named_t arcstat_c_min;
415	kstat_named_t arcstat_c_max;
416	kstat_named_t arcstat_size;
417	/*
418	 * Number of bytes consumed by internal ARC structures necessary
419	 * for tracking purposes; these structures are not actually
420	 * backed by ARC buffers. This includes arc_buf_hdr_t structures
421	 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
422	 * caches), and arc_buf_t structures (allocated via arc_buf_t
423	 * cache).
424	 */
425	kstat_named_t arcstat_hdr_size;
426	/*
427	 * Number of bytes consumed by ARC buffers of type equal to
428	 * ARC_BUFC_DATA. This is generally consumed by buffers backing
429	 * on disk user data (e.g. plain file contents).
430	 */
431	kstat_named_t arcstat_data_size;
432	/*
433	 * Number of bytes consumed by ARC buffers of type equal to
434	 * ARC_BUFC_METADATA. This is generally consumed by buffers
435	 * backing on disk data that is used for internal ZFS
436	 * structures (e.g. ZAP, dnode, indirect blocks, etc).
437	 */
438	kstat_named_t arcstat_metadata_size;
439	/*
440	 * Number of bytes consumed by various buffers and structures
441	 * not actually backed with ARC buffers. This includes bonus
442	 * buffers (allocated directly via zio_buf_* functions),
443	 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t
444	 * cache), and dnode_t structures (allocated via dnode_t cache).
445	 */
446	kstat_named_t arcstat_other_size;
447	/*
448	 * Total number of bytes consumed by ARC buffers residing in the
449	 * arc_anon state. This includes *all* buffers in the arc_anon
450	 * state; e.g. data, metadata, evictable, and unevictable buffers
451	 * are all included in this value.
452	 */
453	kstat_named_t arcstat_anon_size;
454	/*
455	 * Number of bytes consumed by ARC buffers that meet the
456	 * following criteria: backing buffers of type ARC_BUFC_DATA,
457	 * residing in the arc_anon state, and are eligible for eviction
458	 * (e.g. have no outstanding holds on the buffer).
459	 */
460	kstat_named_t arcstat_anon_evictable_data;
461	/*
462	 * Number of bytes consumed by ARC buffers that meet the
463	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
464	 * residing in the arc_anon state, and are eligible for eviction
465	 * (e.g. have no outstanding holds on the buffer).
466	 */
467	kstat_named_t arcstat_anon_evictable_metadata;
468	/*
469	 * Total number of bytes consumed by ARC buffers residing in the
470	 * arc_mru state. This includes *all* buffers in the arc_mru
471	 * state; e.g. data, metadata, evictable, and unevictable buffers
472	 * are all included in this value.
473	 */
474	kstat_named_t arcstat_mru_size;
475	/*
476	 * Number of bytes consumed by ARC buffers that meet the
477	 * following criteria: backing buffers of type ARC_BUFC_DATA,
478	 * residing in the arc_mru state, and are eligible for eviction
479	 * (e.g. have no outstanding holds on the buffer).
480	 */
481	kstat_named_t arcstat_mru_evictable_data;
482	/*
483	 * Number of bytes consumed by ARC buffers that meet the
484	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
485	 * residing in the arc_mru state, and are eligible for eviction
486	 * (e.g. have no outstanding holds on the buffer).
487	 */
488	kstat_named_t arcstat_mru_evictable_metadata;
489	/*
490	 * Total number of bytes that *would have been* consumed by ARC
491	 * buffers in the arc_mru_ghost state. The key thing to note
492	 * here, is the fact that this size doesn't actually indicate
493	 * RAM consumption. The ghost lists only consist of headers and
494	 * don't actually have ARC buffers linked off of these headers.
495	 * Thus, *if* the headers had associated ARC buffers, these
496	 * buffers *would have* consumed this number of bytes.
497	 */
498	kstat_named_t arcstat_mru_ghost_size;
499	/*
500	 * Number of bytes that *would have been* consumed by ARC
501	 * buffers that are eligible for eviction, of type
502	 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
503	 */
504	kstat_named_t arcstat_mru_ghost_evictable_data;
505	/*
506	 * Number of bytes that *would have been* consumed by ARC
507	 * buffers that are eligible for eviction, of type
508	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
509	 */
510	kstat_named_t arcstat_mru_ghost_evictable_metadata;
511	/*
512	 * Total number of bytes consumed by ARC buffers residing in the
513	 * arc_mfu state. This includes *all* buffers in the arc_mfu
514	 * state; e.g. data, metadata, evictable, and unevictable buffers
515	 * are all included in this value.
516	 */
517	kstat_named_t arcstat_mfu_size;
518	/*
519	 * Number of bytes consumed by ARC buffers that are eligible for
520	 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
521	 * state.
522	 */
523	kstat_named_t arcstat_mfu_evictable_data;
524	/*
525	 * Number of bytes consumed by ARC buffers that are eligible for
526	 * eviction, of type ARC_BUFC_METADATA, and reside in the
527	 * arc_mfu state.
528	 */
529	kstat_named_t arcstat_mfu_evictable_metadata;
530	/*
531	 * Total number of bytes that *would have been* consumed by ARC
532	 * buffers in the arc_mfu_ghost state. See the comment above
533	 * arcstat_mru_ghost_size for more details.
534	 */
535	kstat_named_t arcstat_mfu_ghost_size;
536	/*
537	 * Number of bytes that *would have been* consumed by ARC
538	 * buffers that are eligible for eviction, of type
539	 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
540	 */
541	kstat_named_t arcstat_mfu_ghost_evictable_data;
542	/*
543	 * Number of bytes that *would have been* consumed by ARC
544	 * buffers that are eligible for eviction, of type
545	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
546	 */
547	kstat_named_t arcstat_mfu_ghost_evictable_metadata;
548	kstat_named_t arcstat_l2_hits;
549	kstat_named_t arcstat_l2_misses;
550	kstat_named_t arcstat_l2_feeds;
551	kstat_named_t arcstat_l2_rw_clash;
552	kstat_named_t arcstat_l2_read_bytes;
553	kstat_named_t arcstat_l2_write_bytes;
554	kstat_named_t arcstat_l2_writes_sent;
555	kstat_named_t arcstat_l2_writes_done;
556	kstat_named_t arcstat_l2_writes_error;
557	kstat_named_t arcstat_l2_writes_lock_retry;
558	kstat_named_t arcstat_l2_evict_lock_retry;
559	kstat_named_t arcstat_l2_evict_reading;
560	kstat_named_t arcstat_l2_evict_l1cached;
561	kstat_named_t arcstat_l2_free_on_write;
562	kstat_named_t arcstat_l2_cdata_free_on_write;
563	kstat_named_t arcstat_l2_abort_lowmem;
564	kstat_named_t arcstat_l2_cksum_bad;
565	kstat_named_t arcstat_l2_io_error;
566	kstat_named_t arcstat_l2_size;
567	kstat_named_t arcstat_l2_asize;
568	kstat_named_t arcstat_l2_hdr_size;
569	kstat_named_t arcstat_l2_compress_successes;
570	kstat_named_t arcstat_l2_compress_zeros;
571	kstat_named_t arcstat_l2_compress_failures;
572	kstat_named_t arcstat_l2_padding_needed;
573	kstat_named_t arcstat_l2_write_trylock_fail;
574	kstat_named_t arcstat_l2_write_passed_headroom;
575	kstat_named_t arcstat_l2_write_spa_mismatch;
576	kstat_named_t arcstat_l2_write_in_l2;
577	kstat_named_t arcstat_l2_write_hdr_io_in_progress;
578	kstat_named_t arcstat_l2_write_not_cacheable;
579	kstat_named_t arcstat_l2_write_full;
580	kstat_named_t arcstat_l2_write_buffer_iter;
581	kstat_named_t arcstat_l2_write_pios;
582	kstat_named_t arcstat_l2_write_buffer_bytes_scanned;
583	kstat_named_t arcstat_l2_write_buffer_list_iter;
584	kstat_named_t arcstat_l2_write_buffer_list_null_iter;
585	kstat_named_t arcstat_memory_throttle_count;
586	kstat_named_t arcstat_duplicate_buffers;
587	kstat_named_t arcstat_duplicate_buffers_size;
588	kstat_named_t arcstat_duplicate_reads;
589	kstat_named_t arcstat_meta_used;
590	kstat_named_t arcstat_meta_limit;
591	kstat_named_t arcstat_meta_max;
592	kstat_named_t arcstat_meta_min;
593	kstat_named_t arcstat_sync_wait_for_async;
594	kstat_named_t arcstat_demand_hit_predictive_prefetch;
595} arc_stats_t;
596
597static arc_stats_t arc_stats = {
598	{ "hits",			KSTAT_DATA_UINT64 },
599	{ "misses",			KSTAT_DATA_UINT64 },
600	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
601	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
602	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
603	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
604	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
605	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
606	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
607	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
608	{ "mru_hits",			KSTAT_DATA_UINT64 },
609	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
610	{ "mfu_hits",			KSTAT_DATA_UINT64 },
611	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
612	{ "allocated",			KSTAT_DATA_UINT64 },
613	{ "deleted",			KSTAT_DATA_UINT64 },
614	{ "mutex_miss",			KSTAT_DATA_UINT64 },
615	{ "evict_skip",			KSTAT_DATA_UINT64 },
616	{ "evict_not_enough",		KSTAT_DATA_UINT64 },
617	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
618	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
619	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
620	{ "evict_l2_skip",		KSTAT_DATA_UINT64 },
621	{ "hash_elements",		KSTAT_DATA_UINT64 },
622	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
623	{ "hash_collisions",		KSTAT_DATA_UINT64 },
624	{ "hash_chains",		KSTAT_DATA_UINT64 },
625	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
626	{ "p",				KSTAT_DATA_UINT64 },
627	{ "c",				KSTAT_DATA_UINT64 },
628	{ "c_min",			KSTAT_DATA_UINT64 },
629	{ "c_max",			KSTAT_DATA_UINT64 },
630	{ "size",			KSTAT_DATA_UINT64 },
631	{ "hdr_size",			KSTAT_DATA_UINT64 },
632	{ "data_size",			KSTAT_DATA_UINT64 },
633	{ "metadata_size",		KSTAT_DATA_UINT64 },
634	{ "other_size",			KSTAT_DATA_UINT64 },
635	{ "anon_size",			KSTAT_DATA_UINT64 },
636	{ "anon_evictable_data",	KSTAT_DATA_UINT64 },
637	{ "anon_evictable_metadata",	KSTAT_DATA_UINT64 },
638	{ "mru_size",			KSTAT_DATA_UINT64 },
639	{ "mru_evictable_data",		KSTAT_DATA_UINT64 },
640	{ "mru_evictable_metadata",	KSTAT_DATA_UINT64 },
641	{ "mru_ghost_size",		KSTAT_DATA_UINT64 },
642	{ "mru_ghost_evictable_data",	KSTAT_DATA_UINT64 },
643	{ "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
644	{ "mfu_size",			KSTAT_DATA_UINT64 },
645	{ "mfu_evictable_data",		KSTAT_DATA_UINT64 },
646	{ "mfu_evictable_metadata",	KSTAT_DATA_UINT64 },
647	{ "mfu_ghost_size",		KSTAT_DATA_UINT64 },
648	{ "mfu_ghost_evictable_data",	KSTAT_DATA_UINT64 },
649	{ "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
650	{ "l2_hits",			KSTAT_DATA_UINT64 },
651	{ "l2_misses",			KSTAT_DATA_UINT64 },
652	{ "l2_feeds",			KSTAT_DATA_UINT64 },
653	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
654	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
655	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
656	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
657	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
658	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
659	{ "l2_writes_lock_retry",	KSTAT_DATA_UINT64 },
660	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
661	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
662	{ "l2_evict_l1cached",		KSTAT_DATA_UINT64 },
663	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
664	{ "l2_cdata_free_on_write",	KSTAT_DATA_UINT64 },
665	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
666	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
667	{ "l2_io_error",		KSTAT_DATA_UINT64 },
668	{ "l2_size",			KSTAT_DATA_UINT64 },
669	{ "l2_asize",			KSTAT_DATA_UINT64 },
670	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
671	{ "l2_compress_successes",	KSTAT_DATA_UINT64 },
672	{ "l2_compress_zeros",		KSTAT_DATA_UINT64 },
673	{ "l2_compress_failures",	KSTAT_DATA_UINT64 },
674	{ "l2_padding_needed",		KSTAT_DATA_UINT64 },
675	{ "l2_write_trylock_fail",	KSTAT_DATA_UINT64 },
676	{ "l2_write_passed_headroom",	KSTAT_DATA_UINT64 },
677	{ "l2_write_spa_mismatch",	KSTAT_DATA_UINT64 },
678	{ "l2_write_in_l2",		KSTAT_DATA_UINT64 },
679	{ "l2_write_io_in_progress",	KSTAT_DATA_UINT64 },
680	{ "l2_write_not_cacheable",	KSTAT_DATA_UINT64 },
681	{ "l2_write_full",		KSTAT_DATA_UINT64 },
682	{ "l2_write_buffer_iter",	KSTAT_DATA_UINT64 },
683	{ "l2_write_pios",		KSTAT_DATA_UINT64 },
684	{ "l2_write_buffer_bytes_scanned", KSTAT_DATA_UINT64 },
685	{ "l2_write_buffer_list_iter",	KSTAT_DATA_UINT64 },
686	{ "l2_write_buffer_list_null_iter", KSTAT_DATA_UINT64 },
687	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
688	{ "duplicate_buffers",		KSTAT_DATA_UINT64 },
689	{ "duplicate_buffers_size",	KSTAT_DATA_UINT64 },
690	{ "duplicate_reads",		KSTAT_DATA_UINT64 },
691	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
692	{ "arc_meta_limit",		KSTAT_DATA_UINT64 },
693	{ "arc_meta_max",		KSTAT_DATA_UINT64 },
694	{ "arc_meta_min",		KSTAT_DATA_UINT64 },
695	{ "sync_wait_for_async",	KSTAT_DATA_UINT64 },
696	{ "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
697};
698
699#define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
700
701#define	ARCSTAT_INCR(stat, val) \
702	atomic_add_64(&arc_stats.stat.value.ui64, (val))
703
704#define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
705#define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
706
707#define	ARCSTAT_MAX(stat, val) {					\
708	uint64_t m;							\
709	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
710	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
711		continue;						\
712}
713
714#define	ARCSTAT_MAXSTAT(stat) \
715	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
716
717/*
718 * We define a macro to allow ARC hits/misses to be easily broken down by
719 * two separate conditions, giving a total of four different subtypes for
720 * each of hits and misses (so eight statistics total).
721 */
722#define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
723	if (cond1) {							\
724		if (cond2) {						\
725			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
726		} else {						\
727			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
728		}							\
729	} else {							\
730		if (cond2) {						\
731			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
732		} else {						\
733			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
734		}							\
735	}
736
737kstat_t			*arc_ksp;
738static arc_state_t	*arc_anon;
739static arc_state_t	*arc_mru;
740static arc_state_t	*arc_mru_ghost;
741static arc_state_t	*arc_mfu;
742static arc_state_t	*arc_mfu_ghost;
743static arc_state_t	*arc_l2c_only;
744
745/*
746 * There are several ARC variables that are critical to export as kstats --
747 * but we don't want to have to grovel around in the kstat whenever we wish to
748 * manipulate them.  For these variables, we therefore define them to be in
749 * terms of the statistic variable.  This assures that we are not introducing
750 * the possibility of inconsistency by having shadow copies of the variables,
751 * while still allowing the code to be readable.
752 */
753#define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
754#define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
755#define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
756#define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
757#define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
758#define	arc_meta_limit	ARCSTAT(arcstat_meta_limit) /* max size for metadata */
759#define	arc_meta_min	ARCSTAT(arcstat_meta_min) /* min size for metadata */
760#define	arc_meta_used	ARCSTAT(arcstat_meta_used) /* size of metadata */
761#define	arc_meta_max	ARCSTAT(arcstat_meta_max) /* max size of metadata */
762
763#define	L2ARC_IS_VALID_COMPRESS(_c_) \
764	((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY)
765
766static int		arc_no_grow;	/* Don't try to grow cache size */
767static uint64_t		arc_tempreserve;
768static uint64_t		arc_loaned_bytes;
769
770typedef struct arc_callback arc_callback_t;
771
772struct arc_callback {
773	void			*acb_private;
774	arc_done_func_t		*acb_done;
775	arc_buf_t		*acb_buf;
776	zio_t			*acb_zio_dummy;
777	arc_callback_t		*acb_next;
778};
779
780typedef struct arc_write_callback arc_write_callback_t;
781
782struct arc_write_callback {
783	void		*awcb_private;
784	arc_done_func_t	*awcb_ready;
785	arc_done_func_t	*awcb_physdone;
786	arc_done_func_t	*awcb_done;
787	arc_buf_t	*awcb_buf;
788};
789
790/*
791 * ARC buffers are separated into multiple structs as a memory saving measure:
792 *   - Common fields struct, always defined, and embedded within it:
793 *       - L2-only fields, always allocated but undefined when not in L2ARC
794 *       - L1-only fields, only allocated when in L1ARC
795 *
796 *           Buffer in L1                     Buffer only in L2
797 *    +------------------------+          +------------------------+
798 *    | arc_buf_hdr_t          |          | arc_buf_hdr_t          |
799 *    |                        |          |                        |
800 *    |                        |          |                        |
801 *    |                        |          |                        |
802 *    +------------------------+          +------------------------+
803 *    | l2arc_buf_hdr_t        |          | l2arc_buf_hdr_t        |
804 *    | (undefined if L1-only) |          |                        |
805 *    +------------------------+          +------------------------+
806 *    | l1arc_buf_hdr_t        |
807 *    |                        |
808 *    |                        |
809 *    |                        |
810 *    |                        |
811 *    +------------------------+
812 *
813 * Because it's possible for the L2ARC to become extremely large, we can wind
814 * up eating a lot of memory in L2ARC buffer headers, so the size of a header
815 * is minimized by only allocating the fields necessary for an L1-cached buffer
816 * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and
817 * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple
818 * words in pointers. arc_hdr_realloc() is used to switch a header between
819 * these two allocation states.
820 */
821typedef struct l1arc_buf_hdr {
822	kmutex_t		b_freeze_lock;
823#ifdef ZFS_DEBUG
824	/*
825	 * used for debugging wtih kmem_flags - by allocating and freeing
826	 * b_thawed when the buffer is thawed, we get a record of the stack
827	 * trace that thawed it.
828	 */
829	void			*b_thawed;
830#endif
831
832	arc_buf_t		*b_buf;
833	uint32_t		b_datacnt;
834	/* for waiting on writes to complete */
835	kcondvar_t		b_cv;
836
837	/* protected by arc state mutex */
838	arc_state_t		*b_state;
839	multilist_node_t	b_arc_node;
840
841	/* updated atomically */
842	clock_t			b_arc_access;
843
844	/* self protecting */
845	refcount_t		b_refcnt;
846
847	arc_callback_t		*b_acb;
848	/* temporary buffer holder for in-flight compressed or padded data */
849	void			*b_tmp_cdata;
850} l1arc_buf_hdr_t;
851
852typedef struct l2arc_dev l2arc_dev_t;
853
854typedef struct l2arc_buf_hdr {
855	/* protected by arc_buf_hdr mutex */
856	l2arc_dev_t		*b_dev;		/* L2ARC device */
857	uint64_t		b_daddr;	/* disk address, offset byte */
858	/* real alloc'd buffer size depending on b_compress applied */
859	int32_t			b_asize;
860	uint8_t			b_compress;
861
862	list_node_t		b_l2node;
863} l2arc_buf_hdr_t;
864
865struct arc_buf_hdr {
866	/* protected by hash lock */
867	dva_t			b_dva;
868	uint64_t		b_birth;
869	/*
870	 * Even though this checksum is only set/verified when a buffer is in
871	 * the L1 cache, it needs to be in the set of common fields because it
872	 * must be preserved from the time before a buffer is written out to
873	 * L2ARC until after it is read back in.
874	 */
875	zio_cksum_t		*b_freeze_cksum;
876
877	arc_buf_hdr_t		*b_hash_next;
878	arc_flags_t		b_flags;
879
880	/* immutable */
881	int32_t			b_size;
882	uint64_t		b_spa;
883
884	/* L2ARC fields. Undefined when not in L2ARC. */
885	l2arc_buf_hdr_t		b_l2hdr;
886	/* L1ARC fields. Undefined when in l2arc_only state */
887	l1arc_buf_hdr_t		b_l1hdr;
888};
889
890#if defined(__FreeBSD__) && defined(_KERNEL)
891static int
892sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS)
893{
894	uint64_t val;
895	int err;
896
897	val = arc_meta_limit;
898	err = sysctl_handle_64(oidp, &val, 0, req);
899	if (err != 0 || req->newptr == NULL)
900		return (err);
901
902        if (val <= 0 || val > arc_c_max)
903		return (EINVAL);
904
905	arc_meta_limit = val;
906	return (0);
907}
908
909static int
910sysctl_vfs_zfs_arc_max(SYSCTL_HANDLER_ARGS)
911{
912	uint64_t val;
913	int err;
914
915	val = zfs_arc_max;
916	err = sysctl_handle_64(oidp, &val, 0, req);
917	if (err != 0 || req->newptr == NULL)
918		return (err);
919
920	if (zfs_arc_max == 0) {
921		/* Loader tunable so blindly set */
922		zfs_arc_max = val;
923		return (0);
924	}
925
926	if (val < arc_abs_min || val > kmem_size())
927		return (EINVAL);
928	if (val < arc_c_min)
929		return (EINVAL);
930	if (zfs_arc_meta_limit > 0 && val < zfs_arc_meta_limit)
931		return (EINVAL);
932
933	arc_c_max = val;
934
935	arc_c = arc_c_max;
936        arc_p = (arc_c >> 1);
937
938	if (zfs_arc_meta_limit == 0) {
939		/* limit meta-data to 1/4 of the arc capacity */
940		arc_meta_limit = arc_c_max / 4;
941	}
942
943	/* if kmem_flags are set, lets try to use less memory */
944	if (kmem_debugging())
945		arc_c = arc_c / 2;
946
947	zfs_arc_max = arc_c;
948
949	return (0);
950}
951
952static int
953sysctl_vfs_zfs_arc_min(SYSCTL_HANDLER_ARGS)
954{
955	uint64_t val;
956	int err;
957
958	val = zfs_arc_min;
959	err = sysctl_handle_64(oidp, &val, 0, req);
960	if (err != 0 || req->newptr == NULL)
961		return (err);
962
963	if (zfs_arc_min == 0) {
964		/* Loader tunable so blindly set */
965		zfs_arc_min = val;
966		return (0);
967	}
968
969	if (val < arc_abs_min || val > arc_c_max)
970		return (EINVAL);
971
972	arc_c_min = val;
973
974	if (zfs_arc_meta_min == 0)
975                arc_meta_min = arc_c_min / 2;
976
977	if (arc_c < arc_c_min)
978                arc_c = arc_c_min;
979
980	zfs_arc_min = arc_c_min;
981
982	return (0);
983}
984#endif
985
986static arc_buf_t *arc_eviction_list;
987static arc_buf_hdr_t arc_eviction_hdr;
988
989#define	GHOST_STATE(state)	\
990	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
991	(state) == arc_l2c_only)
992
993#define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
994#define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
995#define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_FLAG_IO_ERROR)
996#define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_FLAG_PREFETCH)
997#define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FLAG_FREED_IN_READ)
998#define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_FLAG_BUF_AVAILABLE)
999
1000#define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_FLAG_L2CACHE)
1001#define	HDR_L2COMPRESS(hdr)	((hdr)->b_flags & ARC_FLAG_L2COMPRESS)
1002#define	HDR_L2_READING(hdr)	\
1003	    (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&	\
1004	    ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
1005#define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITING)
1006#define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
1007#define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
1008
1009#define	HDR_ISTYPE_METADATA(hdr)	\
1010	    ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
1011#define	HDR_ISTYPE_DATA(hdr)	(!HDR_ISTYPE_METADATA(hdr))
1012
1013#define	HDR_HAS_L1HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
1014#define	HDR_HAS_L2HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
1015
1016/*
1017 * Other sizes
1018 */
1019
1020#define	HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
1021#define	HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
1022
1023/*
1024 * Hash table routines
1025 */
1026
1027#define	HT_LOCK_PAD	CACHE_LINE_SIZE
1028
1029struct ht_lock {
1030	kmutex_t	ht_lock;
1031#ifdef _KERNEL
1032	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
1033#endif
1034};
1035
1036#define	BUF_LOCKS 256
1037typedef struct buf_hash_table {
1038	uint64_t ht_mask;
1039	arc_buf_hdr_t **ht_table;
1040	struct ht_lock ht_locks[BUF_LOCKS] __aligned(CACHE_LINE_SIZE);
1041} buf_hash_table_t;
1042
1043static buf_hash_table_t buf_hash_table;
1044
1045#define	BUF_HASH_INDEX(spa, dva, birth) \
1046	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
1047#define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
1048#define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
1049#define	HDR_LOCK(hdr) \
1050	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
1051
1052uint64_t zfs_crc64_table[256];
1053
1054/*
1055 * Level 2 ARC
1056 */
1057
1058#define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
1059#define	L2ARC_HEADROOM		2			/* num of writes */
1060/*
1061 * If we discover during ARC scan any buffers to be compressed, we boost
1062 * our headroom for the next scanning cycle by this percentage multiple.
1063 */
1064#define	L2ARC_HEADROOM_BOOST	200
1065#define	L2ARC_FEED_SECS		1		/* caching interval secs */
1066#define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
1067
1068/*
1069 * Used to distinguish headers that are being process by
1070 * l2arc_write_buffers(), but have yet to be assigned to a l2arc disk
1071 * address. This can happen when the header is added to the l2arc's list
1072 * of buffers to write in the first stage of l2arc_write_buffers(), but
1073 * has not yet been written out which happens in the second stage of
1074 * l2arc_write_buffers().
1075 */
1076#define	L2ARC_ADDR_UNSET	((uint64_t)(-1))
1077
1078#define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
1079#define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
1080
1081/* L2ARC Performance Tunables */
1082uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
1083uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
1084uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
1085uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
1086uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
1087uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
1088boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
1089boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
1090boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
1091
1092SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_max, CTLFLAG_RW,
1093    &l2arc_write_max, 0, "max write size");
1094SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_boost, CTLFLAG_RW,
1095    &l2arc_write_boost, 0, "extra write during warmup");
1096SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_headroom, CTLFLAG_RW,
1097    &l2arc_headroom, 0, "number of dev writes");
1098SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_secs, CTLFLAG_RW,
1099    &l2arc_feed_secs, 0, "interval seconds");
1100SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_min_ms, CTLFLAG_RW,
1101    &l2arc_feed_min_ms, 0, "min interval milliseconds");
1102
1103SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_noprefetch, CTLFLAG_RW,
1104    &l2arc_noprefetch, 0, "don't cache prefetch bufs");
1105SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_feed_again, CTLFLAG_RW,
1106    &l2arc_feed_again, 0, "turbo warmup");
1107SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_norw, CTLFLAG_RW,
1108    &l2arc_norw, 0, "no reads during writes");
1109
1110SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_size, CTLFLAG_RD,
1111    &ARC_anon.arcs_size.rc_count, 0, "size of anonymous state");
1112SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_metadata_lsize, CTLFLAG_RD,
1113    &ARC_anon.arcs_lsize[ARC_BUFC_METADATA], 0, "size of anonymous state");
1114SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_data_lsize, CTLFLAG_RD,
1115    &ARC_anon.arcs_lsize[ARC_BUFC_DATA], 0, "size of anonymous state");
1116
1117SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_size, CTLFLAG_RD,
1118    &ARC_mru.arcs_size.rc_count, 0, "size of mru state");
1119SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_metadata_lsize, CTLFLAG_RD,
1120    &ARC_mru.arcs_lsize[ARC_BUFC_METADATA], 0, "size of metadata in mru state");
1121SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_data_lsize, CTLFLAG_RD,
1122    &ARC_mru.arcs_lsize[ARC_BUFC_DATA], 0, "size of data in mru state");
1123
1124SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_size, CTLFLAG_RD,
1125    &ARC_mru_ghost.arcs_size.rc_count, 0, "size of mru ghost state");
1126SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_metadata_lsize, CTLFLAG_RD,
1127    &ARC_mru_ghost.arcs_lsize[ARC_BUFC_METADATA], 0,
1128    "size of metadata in mru ghost state");
1129SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_data_lsize, CTLFLAG_RD,
1130    &ARC_mru_ghost.arcs_lsize[ARC_BUFC_DATA], 0,
1131    "size of data in mru ghost state");
1132
1133SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_size, CTLFLAG_RD,
1134    &ARC_mfu.arcs_size.rc_count, 0, "size of mfu state");
1135SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_metadata_lsize, CTLFLAG_RD,
1136    &ARC_mfu.arcs_lsize[ARC_BUFC_METADATA], 0, "size of metadata in mfu state");
1137SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_data_lsize, CTLFLAG_RD,
1138    &ARC_mfu.arcs_lsize[ARC_BUFC_DATA], 0, "size of data in mfu state");
1139
1140SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_size, CTLFLAG_RD,
1141    &ARC_mfu_ghost.arcs_size.rc_count, 0, "size of mfu ghost state");
1142SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_metadata_lsize, CTLFLAG_RD,
1143    &ARC_mfu_ghost.arcs_lsize[ARC_BUFC_METADATA], 0,
1144    "size of metadata in mfu ghost state");
1145SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_data_lsize, CTLFLAG_RD,
1146    &ARC_mfu_ghost.arcs_lsize[ARC_BUFC_DATA], 0,
1147    "size of data in mfu ghost state");
1148
1149SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2c_only_size, CTLFLAG_RD,
1150    &ARC_l2c_only.arcs_size.rc_count, 0, "size of mru state");
1151
1152/*
1153 * L2ARC Internals
1154 */
1155struct l2arc_dev {
1156	vdev_t			*l2ad_vdev;	/* vdev */
1157	spa_t			*l2ad_spa;	/* spa */
1158	uint64_t		l2ad_hand;	/* next write location */
1159	uint64_t		l2ad_start;	/* first addr on device */
1160	uint64_t		l2ad_end;	/* last addr on device */
1161	boolean_t		l2ad_first;	/* first sweep through */
1162	boolean_t		l2ad_writing;	/* currently writing */
1163	kmutex_t		l2ad_mtx;	/* lock for buffer list */
1164	list_t			l2ad_buflist;	/* buffer list */
1165	list_node_t		l2ad_node;	/* device list node */
1166	refcount_t		l2ad_alloc;	/* allocated bytes */
1167};
1168
1169static list_t L2ARC_dev_list;			/* device list */
1170static list_t *l2arc_dev_list;			/* device list pointer */
1171static kmutex_t l2arc_dev_mtx;			/* device list mutex */
1172static l2arc_dev_t *l2arc_dev_last;		/* last device used */
1173static list_t L2ARC_free_on_write;		/* free after write buf list */
1174static list_t *l2arc_free_on_write;		/* free after write list ptr */
1175static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
1176static uint64_t l2arc_ndev;			/* number of devices */
1177
1178typedef struct l2arc_read_callback {
1179	arc_buf_t		*l2rcb_buf;		/* read buffer */
1180	spa_t			*l2rcb_spa;		/* spa */
1181	blkptr_t		l2rcb_bp;		/* original blkptr */
1182	zbookmark_phys_t	l2rcb_zb;		/* original bookmark */
1183	int			l2rcb_flags;		/* original flags */
1184	enum zio_compress	l2rcb_compress;		/* applied compress */
1185	void			*l2rcb_data;		/* temporary buffer */
1186} l2arc_read_callback_t;
1187
1188typedef struct l2arc_write_callback {
1189	l2arc_dev_t	*l2wcb_dev;		/* device info */
1190	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
1191} l2arc_write_callback_t;
1192
1193typedef struct l2arc_data_free {
1194	/* protected by l2arc_free_on_write_mtx */
1195	void		*l2df_data;
1196	size_t		l2df_size;
1197	void		(*l2df_func)(void *, size_t);
1198	list_node_t	l2df_list_node;
1199} l2arc_data_free_t;
1200
1201static kmutex_t l2arc_feed_thr_lock;
1202static kcondvar_t l2arc_feed_thr_cv;
1203static uint8_t l2arc_thread_exit;
1204
1205static void arc_get_data_buf(arc_buf_t *);
1206static void arc_access(arc_buf_hdr_t *, kmutex_t *);
1207static boolean_t arc_is_overflowing();
1208static void arc_buf_watch(arc_buf_t *);
1209
1210static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
1211static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
1212
1213static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
1214static void l2arc_read_done(zio_t *);
1215
1216static boolean_t l2arc_transform_buf(arc_buf_hdr_t *, boolean_t);
1217static void l2arc_decompress_zio(zio_t *, arc_buf_hdr_t *, enum zio_compress);
1218static void l2arc_release_cdata_buf(arc_buf_hdr_t *);
1219
1220static void
1221l2arc_trim(const arc_buf_hdr_t *hdr)
1222{
1223	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
1224
1225	ASSERT(HDR_HAS_L2HDR(hdr));
1226	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
1227
1228	if (hdr->b_l2hdr.b_daddr == L2ARC_ADDR_UNSET)
1229		return;
1230	if (hdr->b_l2hdr.b_asize != 0) {
1231		trim_map_free(dev->l2ad_vdev, hdr->b_l2hdr.b_daddr,
1232		    hdr->b_l2hdr.b_asize, 0);
1233	} else {
1234		ASSERT3U(hdr->b_l2hdr.b_compress, ==, ZIO_COMPRESS_EMPTY);
1235	}
1236}
1237
1238static uint64_t
1239buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
1240{
1241	uint8_t *vdva = (uint8_t *)dva;
1242	uint64_t crc = -1ULL;
1243	int i;
1244
1245	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
1246
1247	for (i = 0; i < sizeof (dva_t); i++)
1248		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
1249
1250	crc ^= (spa>>8) ^ birth;
1251
1252	return (crc);
1253}
1254
1255#define	BUF_EMPTY(buf)						\
1256	((buf)->b_dva.dva_word[0] == 0 &&			\
1257	(buf)->b_dva.dva_word[1] == 0)
1258
1259#define	BUF_EQUAL(spa, dva, birth, buf)				\
1260	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
1261	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
1262	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
1263
1264static void
1265buf_discard_identity(arc_buf_hdr_t *hdr)
1266{
1267	hdr->b_dva.dva_word[0] = 0;
1268	hdr->b_dva.dva_word[1] = 0;
1269	hdr->b_birth = 0;
1270}
1271
1272static arc_buf_hdr_t *
1273buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1274{
1275	const dva_t *dva = BP_IDENTITY(bp);
1276	uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1277	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1278	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1279	arc_buf_hdr_t *hdr;
1280
1281	mutex_enter(hash_lock);
1282	for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1283	    hdr = hdr->b_hash_next) {
1284		if (BUF_EQUAL(spa, dva, birth, hdr)) {
1285			*lockp = hash_lock;
1286			return (hdr);
1287		}
1288	}
1289	mutex_exit(hash_lock);
1290	*lockp = NULL;
1291	return (NULL);
1292}
1293
1294/*
1295 * Insert an entry into the hash table.  If there is already an element
1296 * equal to elem in the hash table, then the already existing element
1297 * will be returned and the new element will not be inserted.
1298 * Otherwise returns NULL.
1299 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1300 */
1301static arc_buf_hdr_t *
1302buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1303{
1304	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1305	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1306	arc_buf_hdr_t *fhdr;
1307	uint32_t i;
1308
1309	ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1310	ASSERT(hdr->b_birth != 0);
1311	ASSERT(!HDR_IN_HASH_TABLE(hdr));
1312
1313	if (lockp != NULL) {
1314		*lockp = hash_lock;
1315		mutex_enter(hash_lock);
1316	} else {
1317		ASSERT(MUTEX_HELD(hash_lock));
1318	}
1319
1320	for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1321	    fhdr = fhdr->b_hash_next, i++) {
1322		if (BUF_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1323			return (fhdr);
1324	}
1325
1326	hdr->b_hash_next = buf_hash_table.ht_table[idx];
1327	buf_hash_table.ht_table[idx] = hdr;
1328	hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
1329
1330	/* collect some hash table performance data */
1331	if (i > 0) {
1332		ARCSTAT_BUMP(arcstat_hash_collisions);
1333		if (i == 1)
1334			ARCSTAT_BUMP(arcstat_hash_chains);
1335
1336		ARCSTAT_MAX(arcstat_hash_chain_max, i);
1337	}
1338
1339	ARCSTAT_BUMP(arcstat_hash_elements);
1340	ARCSTAT_MAXSTAT(arcstat_hash_elements);
1341
1342	return (NULL);
1343}
1344
1345static void
1346buf_hash_remove(arc_buf_hdr_t *hdr)
1347{
1348	arc_buf_hdr_t *fhdr, **hdrp;
1349	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1350
1351	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1352	ASSERT(HDR_IN_HASH_TABLE(hdr));
1353
1354	hdrp = &buf_hash_table.ht_table[idx];
1355	while ((fhdr = *hdrp) != hdr) {
1356		ASSERT(fhdr != NULL);
1357		hdrp = &fhdr->b_hash_next;
1358	}
1359	*hdrp = hdr->b_hash_next;
1360	hdr->b_hash_next = NULL;
1361	hdr->b_flags &= ~ARC_FLAG_IN_HASH_TABLE;
1362
1363	/* collect some hash table performance data */
1364	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1365
1366	if (buf_hash_table.ht_table[idx] &&
1367	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1368		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1369}
1370
1371/*
1372 * Global data structures and functions for the buf kmem cache.
1373 */
1374static kmem_cache_t *hdr_full_cache;
1375static kmem_cache_t *hdr_l2only_cache;
1376static kmem_cache_t *buf_cache;
1377
1378static void
1379buf_fini(void)
1380{
1381	int i;
1382
1383	kmem_free(buf_hash_table.ht_table,
1384	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1385	for (i = 0; i < BUF_LOCKS; i++)
1386		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1387	kmem_cache_destroy(hdr_full_cache);
1388	kmem_cache_destroy(hdr_l2only_cache);
1389	kmem_cache_destroy(buf_cache);
1390}
1391
1392/*
1393 * Constructor callback - called when the cache is empty
1394 * and a new buf is requested.
1395 */
1396/* ARGSUSED */
1397static int
1398hdr_full_cons(void *vbuf, void *unused, int kmflag)
1399{
1400	arc_buf_hdr_t *hdr = vbuf;
1401
1402	bzero(hdr, HDR_FULL_SIZE);
1403	cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1404	refcount_create(&hdr->b_l1hdr.b_refcnt);
1405	mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1406	multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1407	arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1408
1409	return (0);
1410}
1411
1412/* ARGSUSED */
1413static int
1414hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1415{
1416	arc_buf_hdr_t *hdr = vbuf;
1417
1418	bzero(hdr, HDR_L2ONLY_SIZE);
1419	arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1420
1421	return (0);
1422}
1423
1424/* ARGSUSED */
1425static int
1426buf_cons(void *vbuf, void *unused, int kmflag)
1427{
1428	arc_buf_t *buf = vbuf;
1429
1430	bzero(buf, sizeof (arc_buf_t));
1431	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1432	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1433
1434	return (0);
1435}
1436
1437/*
1438 * Destructor callback - called when a cached buf is
1439 * no longer required.
1440 */
1441/* ARGSUSED */
1442static void
1443hdr_full_dest(void *vbuf, void *unused)
1444{
1445	arc_buf_hdr_t *hdr = vbuf;
1446
1447	ASSERT(BUF_EMPTY(hdr));
1448	cv_destroy(&hdr->b_l1hdr.b_cv);
1449	refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1450	mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1451	ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1452	arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1453}
1454
1455/* ARGSUSED */
1456static void
1457hdr_l2only_dest(void *vbuf, void *unused)
1458{
1459	arc_buf_hdr_t *hdr = vbuf;
1460
1461	ASSERT(BUF_EMPTY(hdr));
1462	arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1463}
1464
1465/* ARGSUSED */
1466static void
1467buf_dest(void *vbuf, void *unused)
1468{
1469	arc_buf_t *buf = vbuf;
1470
1471	mutex_destroy(&buf->b_evict_lock);
1472	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1473}
1474
1475/*
1476 * Reclaim callback -- invoked when memory is low.
1477 */
1478/* ARGSUSED */
1479static void
1480hdr_recl(void *unused)
1481{
1482	dprintf("hdr_recl called\n");
1483	/*
1484	 * umem calls the reclaim func when we destroy the buf cache,
1485	 * which is after we do arc_fini().
1486	 */
1487	if (!arc_dead)
1488		cv_signal(&arc_reclaim_thread_cv);
1489}
1490
1491static void
1492buf_init(void)
1493{
1494	uint64_t *ct;
1495	uint64_t hsize = 1ULL << 12;
1496	int i, j;
1497
1498	/*
1499	 * The hash table is big enough to fill all of physical memory
1500	 * with an average block size of zfs_arc_average_blocksize (default 8K).
1501	 * By default, the table will take up
1502	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1503	 */
1504	while (hsize * zfs_arc_average_blocksize < (uint64_t)physmem * PAGESIZE)
1505		hsize <<= 1;
1506retry:
1507	buf_hash_table.ht_mask = hsize - 1;
1508	buf_hash_table.ht_table =
1509	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1510	if (buf_hash_table.ht_table == NULL) {
1511		ASSERT(hsize > (1ULL << 8));
1512		hsize >>= 1;
1513		goto retry;
1514	}
1515
1516	hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1517	    0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1518	hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1519	    HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1520	    NULL, NULL, 0);
1521	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1522	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1523
1524	for (i = 0; i < 256; i++)
1525		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1526			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1527
1528	for (i = 0; i < BUF_LOCKS; i++) {
1529		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1530		    NULL, MUTEX_DEFAULT, NULL);
1531	}
1532}
1533
1534/*
1535 * Transition between the two allocation states for the arc_buf_hdr struct.
1536 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
1537 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
1538 * version is used when a cache buffer is only in the L2ARC in order to reduce
1539 * memory usage.
1540 */
1541static arc_buf_hdr_t *
1542arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
1543{
1544	ASSERT(HDR_HAS_L2HDR(hdr));
1545
1546	arc_buf_hdr_t *nhdr;
1547	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
1548
1549	ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
1550	    (old == hdr_l2only_cache && new == hdr_full_cache));
1551
1552	nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
1553
1554	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
1555	buf_hash_remove(hdr);
1556
1557	bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
1558
1559	if (new == hdr_full_cache) {
1560		nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
1561		/*
1562		 * arc_access and arc_change_state need to be aware that a
1563		 * header has just come out of L2ARC, so we set its state to
1564		 * l2c_only even though it's about to change.
1565		 */
1566		nhdr->b_l1hdr.b_state = arc_l2c_only;
1567
1568		/* Verify previous threads set to NULL before freeing */
1569		ASSERT3P(nhdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1570	} else {
1571		ASSERT(hdr->b_l1hdr.b_buf == NULL);
1572		ASSERT0(hdr->b_l1hdr.b_datacnt);
1573
1574		/*
1575		 * If we've reached here, We must have been called from
1576		 * arc_evict_hdr(), as such we should have already been
1577		 * removed from any ghost list we were previously on
1578		 * (which protects us from racing with arc_evict_state),
1579		 * thus no locking is needed during this check.
1580		 */
1581		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1582
1583		/*
1584		 * A buffer must not be moved into the arc_l2c_only
1585		 * state if it's not finished being written out to the
1586		 * l2arc device. Otherwise, the b_l1hdr.b_tmp_cdata field
1587		 * might try to be accessed, even though it was removed.
1588		 */
1589		VERIFY(!HDR_L2_WRITING(hdr));
1590		VERIFY3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1591
1592#ifdef ZFS_DEBUG
1593		if (hdr->b_l1hdr.b_thawed != NULL) {
1594			kmem_free(hdr->b_l1hdr.b_thawed, 1);
1595			hdr->b_l1hdr.b_thawed = NULL;
1596		}
1597#endif
1598
1599		nhdr->b_flags &= ~ARC_FLAG_HAS_L1HDR;
1600	}
1601	/*
1602	 * The header has been reallocated so we need to re-insert it into any
1603	 * lists it was on.
1604	 */
1605	(void) buf_hash_insert(nhdr, NULL);
1606
1607	ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
1608
1609	mutex_enter(&dev->l2ad_mtx);
1610
1611	/*
1612	 * We must place the realloc'ed header back into the list at
1613	 * the same spot. Otherwise, if it's placed earlier in the list,
1614	 * l2arc_write_buffers() could find it during the function's
1615	 * write phase, and try to write it out to the l2arc.
1616	 */
1617	list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
1618	list_remove(&dev->l2ad_buflist, hdr);
1619
1620	mutex_exit(&dev->l2ad_mtx);
1621
1622	/*
1623	 * Since we're using the pointer address as the tag when
1624	 * incrementing and decrementing the l2ad_alloc refcount, we
1625	 * must remove the old pointer (that we're about to destroy) and
1626	 * add the new pointer to the refcount. Otherwise we'd remove
1627	 * the wrong pointer address when calling arc_hdr_destroy() later.
1628	 */
1629
1630	(void) refcount_remove_many(&dev->l2ad_alloc,
1631	    hdr->b_l2hdr.b_asize, hdr);
1632
1633	(void) refcount_add_many(&dev->l2ad_alloc,
1634	    nhdr->b_l2hdr.b_asize, nhdr);
1635
1636	buf_discard_identity(hdr);
1637	hdr->b_freeze_cksum = NULL;
1638	kmem_cache_free(old, hdr);
1639
1640	return (nhdr);
1641}
1642
1643
1644#define	ARC_MINTIME	(hz>>4) /* 62 ms */
1645
1646static void
1647arc_cksum_verify(arc_buf_t *buf)
1648{
1649	zio_cksum_t zc;
1650
1651	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1652		return;
1653
1654	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1655	if (buf->b_hdr->b_freeze_cksum == NULL || HDR_IO_ERROR(buf->b_hdr)) {
1656		mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1657		return;
1658	}
1659	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, NULL, &zc);
1660	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
1661		panic("buffer modified while frozen!");
1662	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1663}
1664
1665static int
1666arc_cksum_equal(arc_buf_t *buf)
1667{
1668	zio_cksum_t zc;
1669	int equal;
1670
1671	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1672	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, NULL, &zc);
1673	equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
1674	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1675
1676	return (equal);
1677}
1678
1679static void
1680arc_cksum_compute(arc_buf_t *buf, boolean_t force)
1681{
1682	if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1683		return;
1684
1685	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1686	if (buf->b_hdr->b_freeze_cksum != NULL) {
1687		mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1688		return;
1689	}
1690	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
1691	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1692	    NULL, buf->b_hdr->b_freeze_cksum);
1693	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1694#ifdef illumos
1695	arc_buf_watch(buf);
1696#endif
1697}
1698
1699#ifdef illumos
1700#ifndef _KERNEL
1701typedef struct procctl {
1702	long cmd;
1703	prwatch_t prwatch;
1704} procctl_t;
1705#endif
1706
1707/* ARGSUSED */
1708static void
1709arc_buf_unwatch(arc_buf_t *buf)
1710{
1711#ifndef _KERNEL
1712	if (arc_watch) {
1713		int result;
1714		procctl_t ctl;
1715		ctl.cmd = PCWATCH;
1716		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1717		ctl.prwatch.pr_size = 0;
1718		ctl.prwatch.pr_wflags = 0;
1719		result = write(arc_procfd, &ctl, sizeof (ctl));
1720		ASSERT3U(result, ==, sizeof (ctl));
1721	}
1722#endif
1723}
1724
1725/* ARGSUSED */
1726static void
1727arc_buf_watch(arc_buf_t *buf)
1728{
1729#ifndef _KERNEL
1730	if (arc_watch) {
1731		int result;
1732		procctl_t ctl;
1733		ctl.cmd = PCWATCH;
1734		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1735		ctl.prwatch.pr_size = buf->b_hdr->b_size;
1736		ctl.prwatch.pr_wflags = WA_WRITE;
1737		result = write(arc_procfd, &ctl, sizeof (ctl));
1738		ASSERT3U(result, ==, sizeof (ctl));
1739	}
1740#endif
1741}
1742#endif /* illumos */
1743
1744static arc_buf_contents_t
1745arc_buf_type(arc_buf_hdr_t *hdr)
1746{
1747	if (HDR_ISTYPE_METADATA(hdr)) {
1748		return (ARC_BUFC_METADATA);
1749	} else {
1750		return (ARC_BUFC_DATA);
1751	}
1752}
1753
1754static uint32_t
1755arc_bufc_to_flags(arc_buf_contents_t type)
1756{
1757	switch (type) {
1758	case ARC_BUFC_DATA:
1759		/* metadata field is 0 if buffer contains normal data */
1760		return (0);
1761	case ARC_BUFC_METADATA:
1762		return (ARC_FLAG_BUFC_METADATA);
1763	default:
1764		break;
1765	}
1766	panic("undefined ARC buffer type!");
1767	return ((uint32_t)-1);
1768}
1769
1770void
1771arc_buf_thaw(arc_buf_t *buf)
1772{
1773	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1774		if (buf->b_hdr->b_l1hdr.b_state != arc_anon)
1775			panic("modifying non-anon buffer!");
1776		if (HDR_IO_IN_PROGRESS(buf->b_hdr))
1777			panic("modifying buffer while i/o in progress!");
1778		arc_cksum_verify(buf);
1779	}
1780
1781	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1782	if (buf->b_hdr->b_freeze_cksum != NULL) {
1783		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1784		buf->b_hdr->b_freeze_cksum = NULL;
1785	}
1786
1787#ifdef ZFS_DEBUG
1788	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1789		if (buf->b_hdr->b_l1hdr.b_thawed != NULL)
1790			kmem_free(buf->b_hdr->b_l1hdr.b_thawed, 1);
1791		buf->b_hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP);
1792	}
1793#endif
1794
1795	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1796
1797#ifdef illumos
1798	arc_buf_unwatch(buf);
1799#endif
1800}
1801
1802void
1803arc_buf_freeze(arc_buf_t *buf)
1804{
1805	kmutex_t *hash_lock;
1806
1807	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1808		return;
1809
1810	hash_lock = HDR_LOCK(buf->b_hdr);
1811	mutex_enter(hash_lock);
1812
1813	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1814	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
1815	arc_cksum_compute(buf, B_FALSE);
1816	mutex_exit(hash_lock);
1817
1818}
1819
1820static void
1821add_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1822{
1823	ASSERT(HDR_HAS_L1HDR(hdr));
1824	ASSERT(MUTEX_HELD(hash_lock));
1825	arc_state_t *state = hdr->b_l1hdr.b_state;
1826
1827	if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
1828	    (state != arc_anon)) {
1829		/* We don't use the L2-only state list. */
1830		if (state != arc_l2c_only) {
1831			arc_buf_contents_t type = arc_buf_type(hdr);
1832			uint64_t delta = hdr->b_size * hdr->b_l1hdr.b_datacnt;
1833			multilist_t *list = &state->arcs_list[type];
1834			uint64_t *size = &state->arcs_lsize[type];
1835
1836			multilist_remove(list, hdr);
1837
1838			if (GHOST_STATE(state)) {
1839				ASSERT0(hdr->b_l1hdr.b_datacnt);
1840				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
1841				delta = hdr->b_size;
1842			}
1843			ASSERT(delta > 0);
1844			ASSERT3U(*size, >=, delta);
1845			atomic_add_64(size, -delta);
1846		}
1847		/* remove the prefetch flag if we get a reference */
1848		hdr->b_flags &= ~ARC_FLAG_PREFETCH;
1849	}
1850}
1851
1852static int
1853remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1854{
1855	int cnt;
1856	arc_state_t *state = hdr->b_l1hdr.b_state;
1857
1858	ASSERT(HDR_HAS_L1HDR(hdr));
1859	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1860	ASSERT(!GHOST_STATE(state));
1861
1862	/*
1863	 * arc_l2c_only counts as a ghost state so we don't need to explicitly
1864	 * check to prevent usage of the arc_l2c_only list.
1865	 */
1866	if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
1867	    (state != arc_anon)) {
1868		arc_buf_contents_t type = arc_buf_type(hdr);
1869		multilist_t *list = &state->arcs_list[type];
1870		uint64_t *size = &state->arcs_lsize[type];
1871
1872		multilist_insert(list, hdr);
1873
1874		ASSERT(hdr->b_l1hdr.b_datacnt > 0);
1875		atomic_add_64(size, hdr->b_size *
1876		    hdr->b_l1hdr.b_datacnt);
1877	}
1878	return (cnt);
1879}
1880
1881/*
1882 * Move the supplied buffer to the indicated state. The hash lock
1883 * for the buffer must be held by the caller.
1884 */
1885static void
1886arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
1887    kmutex_t *hash_lock)
1888{
1889	arc_state_t *old_state;
1890	int64_t refcnt;
1891	uint32_t datacnt;
1892	uint64_t from_delta, to_delta;
1893	arc_buf_contents_t buftype = arc_buf_type(hdr);
1894
1895	/*
1896	 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
1897	 * in arc_read() when bringing a buffer out of the L2ARC.  However, the
1898	 * L1 hdr doesn't always exist when we change state to arc_anon before
1899	 * destroying a header, in which case reallocating to add the L1 hdr is
1900	 * pointless.
1901	 */
1902	if (HDR_HAS_L1HDR(hdr)) {
1903		old_state = hdr->b_l1hdr.b_state;
1904		refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
1905		datacnt = hdr->b_l1hdr.b_datacnt;
1906	} else {
1907		old_state = arc_l2c_only;
1908		refcnt = 0;
1909		datacnt = 0;
1910	}
1911
1912	ASSERT(MUTEX_HELD(hash_lock));
1913	ASSERT3P(new_state, !=, old_state);
1914	ASSERT(refcnt == 0 || datacnt > 0);
1915	ASSERT(!GHOST_STATE(new_state) || datacnt == 0);
1916	ASSERT(old_state != arc_anon || datacnt <= 1);
1917
1918	from_delta = to_delta = datacnt * hdr->b_size;
1919
1920	/*
1921	 * If this buffer is evictable, transfer it from the
1922	 * old state list to the new state list.
1923	 */
1924	if (refcnt == 0) {
1925		if (old_state != arc_anon && old_state != arc_l2c_only) {
1926			uint64_t *size = &old_state->arcs_lsize[buftype];
1927
1928			ASSERT(HDR_HAS_L1HDR(hdr));
1929			multilist_remove(&old_state->arcs_list[buftype], hdr);
1930
1931			/*
1932			 * If prefetching out of the ghost cache,
1933			 * we will have a non-zero datacnt.
1934			 */
1935			if (GHOST_STATE(old_state) && datacnt == 0) {
1936				/* ghost elements have a ghost size */
1937				ASSERT(hdr->b_l1hdr.b_buf == NULL);
1938				from_delta = hdr->b_size;
1939			}
1940			ASSERT3U(*size, >=, from_delta);
1941			atomic_add_64(size, -from_delta);
1942		}
1943		if (new_state != arc_anon && new_state != arc_l2c_only) {
1944			uint64_t *size = &new_state->arcs_lsize[buftype];
1945
1946			/*
1947			 * An L1 header always exists here, since if we're
1948			 * moving to some L1-cached state (i.e. not l2c_only or
1949			 * anonymous), we realloc the header to add an L1hdr
1950			 * beforehand.
1951			 */
1952			ASSERT(HDR_HAS_L1HDR(hdr));
1953			multilist_insert(&new_state->arcs_list[buftype], hdr);
1954
1955			/* ghost elements have a ghost size */
1956			if (GHOST_STATE(new_state)) {
1957				ASSERT0(datacnt);
1958				ASSERT(hdr->b_l1hdr.b_buf == NULL);
1959				to_delta = hdr->b_size;
1960			}
1961			atomic_add_64(size, to_delta);
1962		}
1963	}
1964
1965	ASSERT(!BUF_EMPTY(hdr));
1966	if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
1967		buf_hash_remove(hdr);
1968
1969	/* adjust state sizes (ignore arc_l2c_only) */
1970
1971	if (to_delta && new_state != arc_l2c_only) {
1972		ASSERT(HDR_HAS_L1HDR(hdr));
1973		if (GHOST_STATE(new_state)) {
1974			ASSERT0(datacnt);
1975
1976			/*
1977			 * We moving a header to a ghost state, we first
1978			 * remove all arc buffers. Thus, we'll have a
1979			 * datacnt of zero, and no arc buffer to use for
1980			 * the reference. As a result, we use the arc
1981			 * header pointer for the reference.
1982			 */
1983			(void) refcount_add_many(&new_state->arcs_size,
1984			    hdr->b_size, hdr);
1985		} else {
1986			ASSERT3U(datacnt, !=, 0);
1987
1988			/*
1989			 * Each individual buffer holds a unique reference,
1990			 * thus we must remove each of these references one
1991			 * at a time.
1992			 */
1993			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
1994			    buf = buf->b_next) {
1995				(void) refcount_add_many(&new_state->arcs_size,
1996				    hdr->b_size, buf);
1997			}
1998		}
1999	}
2000
2001	if (from_delta && old_state != arc_l2c_only) {
2002		ASSERT(HDR_HAS_L1HDR(hdr));
2003		if (GHOST_STATE(old_state)) {
2004			/*
2005			 * When moving a header off of a ghost state,
2006			 * there's the possibility for datacnt to be
2007			 * non-zero. This is because we first add the
2008			 * arc buffer to the header prior to changing
2009			 * the header's state. Since we used the header
2010			 * for the reference when putting the header on
2011			 * the ghost state, we must balance that and use
2012			 * the header when removing off the ghost state
2013			 * (even though datacnt is non zero).
2014			 */
2015
2016			IMPLY(datacnt == 0, new_state == arc_anon ||
2017			    new_state == arc_l2c_only);
2018
2019			(void) refcount_remove_many(&old_state->arcs_size,
2020			    hdr->b_size, hdr);
2021		} else {
2022			ASSERT3P(datacnt, !=, 0);
2023
2024			/*
2025			 * Each individual buffer holds a unique reference,
2026			 * thus we must remove each of these references one
2027			 * at a time.
2028			 */
2029			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2030			    buf = buf->b_next) {
2031				(void) refcount_remove_many(
2032				    &old_state->arcs_size, hdr->b_size, buf);
2033			}
2034		}
2035	}
2036
2037	if (HDR_HAS_L1HDR(hdr))
2038		hdr->b_l1hdr.b_state = new_state;
2039
2040	/*
2041	 * L2 headers should never be on the L2 state list since they don't
2042	 * have L1 headers allocated.
2043	 */
2044	ASSERT(multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
2045	    multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
2046}
2047
2048void
2049arc_space_consume(uint64_t space, arc_space_type_t type)
2050{
2051	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2052
2053	switch (type) {
2054	case ARC_SPACE_DATA:
2055		ARCSTAT_INCR(arcstat_data_size, space);
2056		break;
2057	case ARC_SPACE_META:
2058		ARCSTAT_INCR(arcstat_metadata_size, space);
2059		break;
2060	case ARC_SPACE_OTHER:
2061		ARCSTAT_INCR(arcstat_other_size, space);
2062		break;
2063	case ARC_SPACE_HDRS:
2064		ARCSTAT_INCR(arcstat_hdr_size, space);
2065		break;
2066	case ARC_SPACE_L2HDRS:
2067		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
2068		break;
2069	}
2070
2071	if (type != ARC_SPACE_DATA)
2072		ARCSTAT_INCR(arcstat_meta_used, space);
2073
2074	atomic_add_64(&arc_size, space);
2075}
2076
2077void
2078arc_space_return(uint64_t space, arc_space_type_t type)
2079{
2080	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2081
2082	switch (type) {
2083	case ARC_SPACE_DATA:
2084		ARCSTAT_INCR(arcstat_data_size, -space);
2085		break;
2086	case ARC_SPACE_META:
2087		ARCSTAT_INCR(arcstat_metadata_size, -space);
2088		break;
2089	case ARC_SPACE_OTHER:
2090		ARCSTAT_INCR(arcstat_other_size, -space);
2091		break;
2092	case ARC_SPACE_HDRS:
2093		ARCSTAT_INCR(arcstat_hdr_size, -space);
2094		break;
2095	case ARC_SPACE_L2HDRS:
2096		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
2097		break;
2098	}
2099
2100	if (type != ARC_SPACE_DATA) {
2101		ASSERT(arc_meta_used >= space);
2102		if (arc_meta_max < arc_meta_used)
2103			arc_meta_max = arc_meta_used;
2104		ARCSTAT_INCR(arcstat_meta_used, -space);
2105	}
2106
2107	ASSERT(arc_size >= space);
2108	atomic_add_64(&arc_size, -space);
2109}
2110
2111arc_buf_t *
2112arc_buf_alloc(spa_t *spa, int32_t size, void *tag, arc_buf_contents_t type)
2113{
2114	arc_buf_hdr_t *hdr;
2115	arc_buf_t *buf;
2116
2117	ASSERT3U(size, >, 0);
2118	hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
2119	ASSERT(BUF_EMPTY(hdr));
2120	ASSERT3P(hdr->b_freeze_cksum, ==, NULL);
2121	hdr->b_size = size;
2122	hdr->b_spa = spa_load_guid(spa);
2123
2124	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2125	buf->b_hdr = hdr;
2126	buf->b_data = NULL;
2127	buf->b_efunc = NULL;
2128	buf->b_private = NULL;
2129	buf->b_next = NULL;
2130
2131	hdr->b_flags = arc_bufc_to_flags(type);
2132	hdr->b_flags |= ARC_FLAG_HAS_L1HDR;
2133
2134	hdr->b_l1hdr.b_buf = buf;
2135	hdr->b_l1hdr.b_state = arc_anon;
2136	hdr->b_l1hdr.b_arc_access = 0;
2137	hdr->b_l1hdr.b_datacnt = 1;
2138	hdr->b_l1hdr.b_tmp_cdata = NULL;
2139
2140	arc_get_data_buf(buf);
2141	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2142	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2143
2144	return (buf);
2145}
2146
2147static char *arc_onloan_tag = "onloan";
2148
2149/*
2150 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2151 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2152 * buffers must be returned to the arc before they can be used by the DMU or
2153 * freed.
2154 */
2155arc_buf_t *
2156arc_loan_buf(spa_t *spa, int size)
2157{
2158	arc_buf_t *buf;
2159
2160	buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
2161
2162	atomic_add_64(&arc_loaned_bytes, size);
2163	return (buf);
2164}
2165
2166/*
2167 * Return a loaned arc buffer to the arc.
2168 */
2169void
2170arc_return_buf(arc_buf_t *buf, void *tag)
2171{
2172	arc_buf_hdr_t *hdr = buf->b_hdr;
2173
2174	ASSERT(buf->b_data != NULL);
2175	ASSERT(HDR_HAS_L1HDR(hdr));
2176	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2177	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2178
2179	atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
2180}
2181
2182/* Detach an arc_buf from a dbuf (tag) */
2183void
2184arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2185{
2186	arc_buf_hdr_t *hdr = buf->b_hdr;
2187
2188	ASSERT(buf->b_data != NULL);
2189	ASSERT(HDR_HAS_L1HDR(hdr));
2190	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2191	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2192	buf->b_efunc = NULL;
2193	buf->b_private = NULL;
2194
2195	atomic_add_64(&arc_loaned_bytes, hdr->b_size);
2196}
2197
2198static arc_buf_t *
2199arc_buf_clone(arc_buf_t *from)
2200{
2201	arc_buf_t *buf;
2202	arc_buf_hdr_t *hdr = from->b_hdr;
2203	uint64_t size = hdr->b_size;
2204
2205	ASSERT(HDR_HAS_L1HDR(hdr));
2206	ASSERT(hdr->b_l1hdr.b_state != arc_anon);
2207
2208	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2209	buf->b_hdr = hdr;
2210	buf->b_data = NULL;
2211	buf->b_efunc = NULL;
2212	buf->b_private = NULL;
2213	buf->b_next = hdr->b_l1hdr.b_buf;
2214	hdr->b_l1hdr.b_buf = buf;
2215	arc_get_data_buf(buf);
2216	bcopy(from->b_data, buf->b_data, size);
2217
2218	/*
2219	 * This buffer already exists in the arc so create a duplicate
2220	 * copy for the caller.  If the buffer is associated with user data
2221	 * then track the size and number of duplicates.  These stats will be
2222	 * updated as duplicate buffers are created and destroyed.
2223	 */
2224	if (HDR_ISTYPE_DATA(hdr)) {
2225		ARCSTAT_BUMP(arcstat_duplicate_buffers);
2226		ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
2227	}
2228	hdr->b_l1hdr.b_datacnt += 1;
2229	return (buf);
2230}
2231
2232void
2233arc_buf_add_ref(arc_buf_t *buf, void* tag)
2234{
2235	arc_buf_hdr_t *hdr;
2236	kmutex_t *hash_lock;
2237
2238	/*
2239	 * Check to see if this buffer is evicted.  Callers
2240	 * must verify b_data != NULL to know if the add_ref
2241	 * was successful.
2242	 */
2243	mutex_enter(&buf->b_evict_lock);
2244	if (buf->b_data == NULL) {
2245		mutex_exit(&buf->b_evict_lock);
2246		return;
2247	}
2248	hash_lock = HDR_LOCK(buf->b_hdr);
2249	mutex_enter(hash_lock);
2250	hdr = buf->b_hdr;
2251	ASSERT(HDR_HAS_L1HDR(hdr));
2252	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2253	mutex_exit(&buf->b_evict_lock);
2254
2255	ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
2256	    hdr->b_l1hdr.b_state == arc_mfu);
2257
2258	add_reference(hdr, hash_lock, tag);
2259	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2260	arc_access(hdr, hash_lock);
2261	mutex_exit(hash_lock);
2262	ARCSTAT_BUMP(arcstat_hits);
2263	ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
2264	    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
2265	    data, metadata, hits);
2266}
2267
2268static void
2269arc_buf_free_on_write(void *data, size_t size,
2270    void (*free_func)(void *, size_t))
2271{
2272	l2arc_data_free_t *df;
2273
2274	df = kmem_alloc(sizeof (*df), KM_SLEEP);
2275	df->l2df_data = data;
2276	df->l2df_size = size;
2277	df->l2df_func = free_func;
2278	mutex_enter(&l2arc_free_on_write_mtx);
2279	list_insert_head(l2arc_free_on_write, df);
2280	mutex_exit(&l2arc_free_on_write_mtx);
2281}
2282
2283/*
2284 * Free the arc data buffer.  If it is an l2arc write in progress,
2285 * the buffer is placed on l2arc_free_on_write to be freed later.
2286 */
2287static void
2288arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
2289{
2290	arc_buf_hdr_t *hdr = buf->b_hdr;
2291
2292	if (HDR_L2_WRITING(hdr)) {
2293		arc_buf_free_on_write(buf->b_data, hdr->b_size, free_func);
2294		ARCSTAT_BUMP(arcstat_l2_free_on_write);
2295	} else {
2296		free_func(buf->b_data, hdr->b_size);
2297	}
2298}
2299
2300static void
2301arc_buf_l2_cdata_free(arc_buf_hdr_t *hdr)
2302{
2303	size_t align, asize, len;
2304
2305	ASSERT(HDR_HAS_L2HDR(hdr));
2306	ASSERT(MUTEX_HELD(&hdr->b_l2hdr.b_dev->l2ad_mtx));
2307
2308	/*
2309	 * The b_tmp_cdata field is linked off of the b_l1hdr, so if
2310	 * that doesn't exist, the header is in the arc_l2c_only state,
2311	 * and there isn't anything to free (it's already been freed).
2312	 */
2313	if (!HDR_HAS_L1HDR(hdr))
2314		return;
2315
2316	/*
2317	 * The header isn't being written to the l2arc device, thus it
2318	 * shouldn't have a b_tmp_cdata to free.
2319	 */
2320	if (!HDR_L2_WRITING(hdr)) {
2321		ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
2322		return;
2323	}
2324
2325	/*
2326	 * The bufer has been chosen for writing to L2ARC, but it's
2327	 * not being written just yet.  In other words,
2328	 * b_tmp_cdata points to exactly the same buffer as b_data,
2329	 * l2arc_transform_buf hasn't been called.
2330	 */
2331	if (hdr->b_l2hdr.b_daddr == L2ARC_ADDR_UNSET) {
2332		ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==,
2333		    hdr->b_l1hdr.b_buf->b_data);
2334		ASSERT3U(hdr->b_l2hdr.b_compress, ==, ZIO_COMPRESS_OFF);
2335		hdr->b_l1hdr.b_tmp_cdata = NULL;
2336		return;
2337	}
2338
2339	/*
2340	 * There's nothing to free since the buffer was all zero's and
2341	 * compressed to a zero length buffer.
2342	 */
2343	if (hdr->b_l2hdr.b_compress == ZIO_COMPRESS_EMPTY) {
2344		ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
2345		return;
2346	}
2347
2348	/*
2349	 * Nothing to do if the temporary buffer was not required.
2350	 */
2351	if (hdr->b_l1hdr.b_tmp_cdata == NULL)
2352		return;
2353
2354	ARCSTAT_BUMP(arcstat_l2_cdata_free_on_write);
2355	len = hdr->b_size;
2356	align = (size_t)1 << hdr->b_l2hdr.b_dev->l2ad_vdev->vdev_ashift;
2357	asize = P2ROUNDUP(len, align);
2358	arc_buf_free_on_write(hdr->b_l1hdr.b_tmp_cdata, asize,
2359	    zio_data_buf_free);
2360	hdr->b_l1hdr.b_tmp_cdata = NULL;
2361}
2362
2363/*
2364 * Free up buf->b_data and if 'remove' is set, then pull the
2365 * arc_buf_t off of the the arc_buf_hdr_t's list and free it.
2366 */
2367static void
2368arc_buf_destroy(arc_buf_t *buf, boolean_t remove)
2369{
2370	arc_buf_t **bufp;
2371
2372	/* free up data associated with the buf */
2373	if (buf->b_data != NULL) {
2374		arc_state_t *state = buf->b_hdr->b_l1hdr.b_state;
2375		uint64_t size = buf->b_hdr->b_size;
2376		arc_buf_contents_t type = arc_buf_type(buf->b_hdr);
2377
2378		arc_cksum_verify(buf);
2379#ifdef illumos
2380		arc_buf_unwatch(buf);
2381#endif
2382
2383		if (type == ARC_BUFC_METADATA) {
2384			arc_buf_data_free(buf, zio_buf_free);
2385			arc_space_return(size, ARC_SPACE_META);
2386		} else {
2387			ASSERT(type == ARC_BUFC_DATA);
2388			arc_buf_data_free(buf, zio_data_buf_free);
2389			arc_space_return(size, ARC_SPACE_DATA);
2390		}
2391
2392		/* protected by hash lock, if in the hash table */
2393		if (multilist_link_active(&buf->b_hdr->b_l1hdr.b_arc_node)) {
2394			uint64_t *cnt = &state->arcs_lsize[type];
2395
2396			ASSERT(refcount_is_zero(
2397			    &buf->b_hdr->b_l1hdr.b_refcnt));
2398			ASSERT(state != arc_anon && state != arc_l2c_only);
2399
2400			ASSERT3U(*cnt, >=, size);
2401			atomic_add_64(cnt, -size);
2402		}
2403
2404		(void) refcount_remove_many(&state->arcs_size, size, buf);
2405		buf->b_data = NULL;
2406
2407		/*
2408		 * If we're destroying a duplicate buffer make sure
2409		 * that the appropriate statistics are updated.
2410		 */
2411		if (buf->b_hdr->b_l1hdr.b_datacnt > 1 &&
2412		    HDR_ISTYPE_DATA(buf->b_hdr)) {
2413			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
2414			ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
2415		}
2416		ASSERT(buf->b_hdr->b_l1hdr.b_datacnt > 0);
2417		buf->b_hdr->b_l1hdr.b_datacnt -= 1;
2418	}
2419
2420	/* only remove the buf if requested */
2421	if (!remove)
2422		return;
2423
2424	/* remove the buf from the hdr list */
2425	for (bufp = &buf->b_hdr->b_l1hdr.b_buf; *bufp != buf;
2426	    bufp = &(*bufp)->b_next)
2427		continue;
2428	*bufp = buf->b_next;
2429	buf->b_next = NULL;
2430
2431	ASSERT(buf->b_efunc == NULL);
2432
2433	/* clean up the buf */
2434	buf->b_hdr = NULL;
2435	kmem_cache_free(buf_cache, buf);
2436}
2437
2438static void
2439arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
2440{
2441	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
2442	l2arc_dev_t *dev = l2hdr->b_dev;
2443
2444	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
2445	ASSERT(HDR_HAS_L2HDR(hdr));
2446
2447	list_remove(&dev->l2ad_buflist, hdr);
2448
2449	/*
2450	 * We don't want to leak the b_tmp_cdata buffer that was
2451	 * allocated in l2arc_write_buffers()
2452	 */
2453	arc_buf_l2_cdata_free(hdr);
2454
2455	/*
2456	 * If the l2hdr's b_daddr is equal to L2ARC_ADDR_UNSET, then
2457	 * this header is being processed by l2arc_write_buffers() (i.e.
2458	 * it's in the first stage of l2arc_write_buffers()).
2459	 * Re-affirming that truth here, just to serve as a reminder. If
2460	 * b_daddr does not equal L2ARC_ADDR_UNSET, then the header may or
2461	 * may not have its HDR_L2_WRITING flag set. (the write may have
2462	 * completed, in which case HDR_L2_WRITING will be false and the
2463	 * b_daddr field will point to the address of the buffer on disk).
2464	 */
2465	IMPLY(l2hdr->b_daddr == L2ARC_ADDR_UNSET, HDR_L2_WRITING(hdr));
2466
2467	/*
2468	 * If b_daddr is equal to L2ARC_ADDR_UNSET, we're racing with
2469	 * l2arc_write_buffers(). Since we've just removed this header
2470	 * from the l2arc buffer list, this header will never reach the
2471	 * second stage of l2arc_write_buffers(), which increments the
2472	 * accounting stats for this header. Thus, we must be careful
2473	 * not to decrement them for this header either.
2474	 */
2475	if (l2hdr->b_daddr != L2ARC_ADDR_UNSET) {
2476		ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
2477		ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
2478
2479		vdev_space_update(dev->l2ad_vdev,
2480		    -l2hdr->b_asize, 0, 0);
2481
2482		(void) refcount_remove_many(&dev->l2ad_alloc,
2483		    l2hdr->b_asize, hdr);
2484	}
2485
2486	hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
2487}
2488
2489static void
2490arc_hdr_destroy(arc_buf_hdr_t *hdr)
2491{
2492	if (HDR_HAS_L1HDR(hdr)) {
2493		ASSERT(hdr->b_l1hdr.b_buf == NULL ||
2494		    hdr->b_l1hdr.b_datacnt > 0);
2495		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2496		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
2497	}
2498	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2499	ASSERT(!HDR_IN_HASH_TABLE(hdr));
2500
2501	if (HDR_HAS_L2HDR(hdr)) {
2502		l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
2503		boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
2504
2505		if (!buflist_held)
2506			mutex_enter(&dev->l2ad_mtx);
2507
2508		/*
2509		 * Even though we checked this conditional above, we
2510		 * need to check this again now that we have the
2511		 * l2ad_mtx. This is because we could be racing with
2512		 * another thread calling l2arc_evict() which might have
2513		 * destroyed this header's L2 portion as we were waiting
2514		 * to acquire the l2ad_mtx. If that happens, we don't
2515		 * want to re-destroy the header's L2 portion.
2516		 */
2517		if (HDR_HAS_L2HDR(hdr)) {
2518			l2arc_trim(hdr);
2519			arc_hdr_l2hdr_destroy(hdr);
2520		}
2521
2522		if (!buflist_held)
2523			mutex_exit(&dev->l2ad_mtx);
2524	}
2525
2526	if (!BUF_EMPTY(hdr))
2527		buf_discard_identity(hdr);
2528
2529	if (hdr->b_freeze_cksum != NULL) {
2530		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
2531		hdr->b_freeze_cksum = NULL;
2532	}
2533
2534	if (HDR_HAS_L1HDR(hdr)) {
2535		while (hdr->b_l1hdr.b_buf) {
2536			arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2537
2538			if (buf->b_efunc != NULL) {
2539				mutex_enter(&arc_user_evicts_lock);
2540				mutex_enter(&buf->b_evict_lock);
2541				ASSERT(buf->b_hdr != NULL);
2542				arc_buf_destroy(hdr->b_l1hdr.b_buf, FALSE);
2543				hdr->b_l1hdr.b_buf = buf->b_next;
2544				buf->b_hdr = &arc_eviction_hdr;
2545				buf->b_next = arc_eviction_list;
2546				arc_eviction_list = buf;
2547				mutex_exit(&buf->b_evict_lock);
2548				cv_signal(&arc_user_evicts_cv);
2549				mutex_exit(&arc_user_evicts_lock);
2550			} else {
2551				arc_buf_destroy(hdr->b_l1hdr.b_buf, TRUE);
2552			}
2553		}
2554#ifdef ZFS_DEBUG
2555		if (hdr->b_l1hdr.b_thawed != NULL) {
2556			kmem_free(hdr->b_l1hdr.b_thawed, 1);
2557			hdr->b_l1hdr.b_thawed = NULL;
2558		}
2559#endif
2560	}
2561
2562	ASSERT3P(hdr->b_hash_next, ==, NULL);
2563	if (HDR_HAS_L1HDR(hdr)) {
2564		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
2565		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
2566		kmem_cache_free(hdr_full_cache, hdr);
2567	} else {
2568		kmem_cache_free(hdr_l2only_cache, hdr);
2569	}
2570}
2571
2572void
2573arc_buf_free(arc_buf_t *buf, void *tag)
2574{
2575	arc_buf_hdr_t *hdr = buf->b_hdr;
2576	int hashed = hdr->b_l1hdr.b_state != arc_anon;
2577
2578	ASSERT(buf->b_efunc == NULL);
2579	ASSERT(buf->b_data != NULL);
2580
2581	if (hashed) {
2582		kmutex_t *hash_lock = HDR_LOCK(hdr);
2583
2584		mutex_enter(hash_lock);
2585		hdr = buf->b_hdr;
2586		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2587
2588		(void) remove_reference(hdr, hash_lock, tag);
2589		if (hdr->b_l1hdr.b_datacnt > 1) {
2590			arc_buf_destroy(buf, TRUE);
2591		} else {
2592			ASSERT(buf == hdr->b_l1hdr.b_buf);
2593			ASSERT(buf->b_efunc == NULL);
2594			hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
2595		}
2596		mutex_exit(hash_lock);
2597	} else if (HDR_IO_IN_PROGRESS(hdr)) {
2598		int destroy_hdr;
2599		/*
2600		 * We are in the middle of an async write.  Don't destroy
2601		 * this buffer unless the write completes before we finish
2602		 * decrementing the reference count.
2603		 */
2604		mutex_enter(&arc_user_evicts_lock);
2605		(void) remove_reference(hdr, NULL, tag);
2606		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2607		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
2608		mutex_exit(&arc_user_evicts_lock);
2609		if (destroy_hdr)
2610			arc_hdr_destroy(hdr);
2611	} else {
2612		if (remove_reference(hdr, NULL, tag) > 0)
2613			arc_buf_destroy(buf, TRUE);
2614		else
2615			arc_hdr_destroy(hdr);
2616	}
2617}
2618
2619boolean_t
2620arc_buf_remove_ref(arc_buf_t *buf, void* tag)
2621{
2622	arc_buf_hdr_t *hdr = buf->b_hdr;
2623	kmutex_t *hash_lock = HDR_LOCK(hdr);
2624	boolean_t no_callback = (buf->b_efunc == NULL);
2625
2626	if (hdr->b_l1hdr.b_state == arc_anon) {
2627		ASSERT(hdr->b_l1hdr.b_datacnt == 1);
2628		arc_buf_free(buf, tag);
2629		return (no_callback);
2630	}
2631
2632	mutex_enter(hash_lock);
2633	hdr = buf->b_hdr;
2634	ASSERT(hdr->b_l1hdr.b_datacnt > 0);
2635	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2636	ASSERT(hdr->b_l1hdr.b_state != arc_anon);
2637	ASSERT(buf->b_data != NULL);
2638
2639	(void) remove_reference(hdr, hash_lock, tag);
2640	if (hdr->b_l1hdr.b_datacnt > 1) {
2641		if (no_callback)
2642			arc_buf_destroy(buf, TRUE);
2643	} else if (no_callback) {
2644		ASSERT(hdr->b_l1hdr.b_buf == buf && buf->b_next == NULL);
2645		ASSERT(buf->b_efunc == NULL);
2646		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
2647	}
2648	ASSERT(no_callback || hdr->b_l1hdr.b_datacnt > 1 ||
2649	    refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2650	mutex_exit(hash_lock);
2651	return (no_callback);
2652}
2653
2654int32_t
2655arc_buf_size(arc_buf_t *buf)
2656{
2657	return (buf->b_hdr->b_size);
2658}
2659
2660/*
2661 * Called from the DMU to determine if the current buffer should be
2662 * evicted. In order to ensure proper locking, the eviction must be initiated
2663 * from the DMU. Return true if the buffer is associated with user data and
2664 * duplicate buffers still exist.
2665 */
2666boolean_t
2667arc_buf_eviction_needed(arc_buf_t *buf)
2668{
2669	arc_buf_hdr_t *hdr;
2670	boolean_t evict_needed = B_FALSE;
2671
2672	if (zfs_disable_dup_eviction)
2673		return (B_FALSE);
2674
2675	mutex_enter(&buf->b_evict_lock);
2676	hdr = buf->b_hdr;
2677	if (hdr == NULL) {
2678		/*
2679		 * We are in arc_do_user_evicts(); let that function
2680		 * perform the eviction.
2681		 */
2682		ASSERT(buf->b_data == NULL);
2683		mutex_exit(&buf->b_evict_lock);
2684		return (B_FALSE);
2685	} else if (buf->b_data == NULL) {
2686		/*
2687		 * We have already been added to the arc eviction list;
2688		 * recommend eviction.
2689		 */
2690		ASSERT3P(hdr, ==, &arc_eviction_hdr);
2691		mutex_exit(&buf->b_evict_lock);
2692		return (B_TRUE);
2693	}
2694
2695	if (hdr->b_l1hdr.b_datacnt > 1 && HDR_ISTYPE_DATA(hdr))
2696		evict_needed = B_TRUE;
2697
2698	mutex_exit(&buf->b_evict_lock);
2699	return (evict_needed);
2700}
2701
2702/*
2703 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
2704 * state of the header is dependent on it's state prior to entering this
2705 * function. The following transitions are possible:
2706 *
2707 *    - arc_mru -> arc_mru_ghost
2708 *    - arc_mfu -> arc_mfu_ghost
2709 *    - arc_mru_ghost -> arc_l2c_only
2710 *    - arc_mru_ghost -> deleted
2711 *    - arc_mfu_ghost -> arc_l2c_only
2712 *    - arc_mfu_ghost -> deleted
2713 */
2714static int64_t
2715arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
2716{
2717	arc_state_t *evicted_state, *state;
2718	int64_t bytes_evicted = 0;
2719
2720	ASSERT(MUTEX_HELD(hash_lock));
2721	ASSERT(HDR_HAS_L1HDR(hdr));
2722
2723	state = hdr->b_l1hdr.b_state;
2724	if (GHOST_STATE(state)) {
2725		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2726		ASSERT(hdr->b_l1hdr.b_buf == NULL);
2727
2728		/*
2729		 * l2arc_write_buffers() relies on a header's L1 portion
2730		 * (i.e. it's b_tmp_cdata field) during it's write phase.
2731		 * Thus, we cannot push a header onto the arc_l2c_only
2732		 * state (removing it's L1 piece) until the header is
2733		 * done being written to the l2arc.
2734		 */
2735		if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
2736			ARCSTAT_BUMP(arcstat_evict_l2_skip);
2737			return (bytes_evicted);
2738		}
2739
2740		ARCSTAT_BUMP(arcstat_deleted);
2741		bytes_evicted += hdr->b_size;
2742
2743		DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
2744
2745		if (HDR_HAS_L2HDR(hdr)) {
2746			/*
2747			 * This buffer is cached on the 2nd Level ARC;
2748			 * don't destroy the header.
2749			 */
2750			arc_change_state(arc_l2c_only, hdr, hash_lock);
2751			/*
2752			 * dropping from L1+L2 cached to L2-only,
2753			 * realloc to remove the L1 header.
2754			 */
2755			hdr = arc_hdr_realloc(hdr, hdr_full_cache,
2756			    hdr_l2only_cache);
2757		} else {
2758			arc_change_state(arc_anon, hdr, hash_lock);
2759			arc_hdr_destroy(hdr);
2760		}
2761		return (bytes_evicted);
2762	}
2763
2764	ASSERT(state == arc_mru || state == arc_mfu);
2765	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
2766
2767	/* prefetch buffers have a minimum lifespan */
2768	if (HDR_IO_IN_PROGRESS(hdr) ||
2769	    ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
2770	    ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
2771	    arc_min_prefetch_lifespan)) {
2772		ARCSTAT_BUMP(arcstat_evict_skip);
2773		return (bytes_evicted);
2774	}
2775
2776	ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
2777	ASSERT3U(hdr->b_l1hdr.b_datacnt, >, 0);
2778	while (hdr->b_l1hdr.b_buf) {
2779		arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2780		if (!mutex_tryenter(&buf->b_evict_lock)) {
2781			ARCSTAT_BUMP(arcstat_mutex_miss);
2782			break;
2783		}
2784		if (buf->b_data != NULL)
2785			bytes_evicted += hdr->b_size;
2786		if (buf->b_efunc != NULL) {
2787			mutex_enter(&arc_user_evicts_lock);
2788			arc_buf_destroy(buf, FALSE);
2789			hdr->b_l1hdr.b_buf = buf->b_next;
2790			buf->b_hdr = &arc_eviction_hdr;
2791			buf->b_next = arc_eviction_list;
2792			arc_eviction_list = buf;
2793			cv_signal(&arc_user_evicts_cv);
2794			mutex_exit(&arc_user_evicts_lock);
2795			mutex_exit(&buf->b_evict_lock);
2796		} else {
2797			mutex_exit(&buf->b_evict_lock);
2798			arc_buf_destroy(buf, TRUE);
2799		}
2800	}
2801
2802	if (HDR_HAS_L2HDR(hdr)) {
2803		ARCSTAT_INCR(arcstat_evict_l2_cached, hdr->b_size);
2804	} else {
2805		if (l2arc_write_eligible(hdr->b_spa, hdr))
2806			ARCSTAT_INCR(arcstat_evict_l2_eligible, hdr->b_size);
2807		else
2808			ARCSTAT_INCR(arcstat_evict_l2_ineligible, hdr->b_size);
2809	}
2810
2811	if (hdr->b_l1hdr.b_datacnt == 0) {
2812		arc_change_state(evicted_state, hdr, hash_lock);
2813		ASSERT(HDR_IN_HASH_TABLE(hdr));
2814		hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
2815		hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
2816		DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
2817	}
2818
2819	return (bytes_evicted);
2820}
2821
2822static uint64_t
2823arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
2824    uint64_t spa, int64_t bytes)
2825{
2826	multilist_sublist_t *mls;
2827	uint64_t bytes_evicted = 0;
2828	arc_buf_hdr_t *hdr;
2829	kmutex_t *hash_lock;
2830	int evict_count = 0;
2831
2832	ASSERT3P(marker, !=, NULL);
2833	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
2834
2835	mls = multilist_sublist_lock(ml, idx);
2836
2837	for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
2838	    hdr = multilist_sublist_prev(mls, marker)) {
2839		if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
2840		    (evict_count >= zfs_arc_evict_batch_limit))
2841			break;
2842
2843		/*
2844		 * To keep our iteration location, move the marker
2845		 * forward. Since we're not holding hdr's hash lock, we
2846		 * must be very careful and not remove 'hdr' from the
2847		 * sublist. Otherwise, other consumers might mistake the
2848		 * 'hdr' as not being on a sublist when they call the
2849		 * multilist_link_active() function (they all rely on
2850		 * the hash lock protecting concurrent insertions and
2851		 * removals). multilist_sublist_move_forward() was
2852		 * specifically implemented to ensure this is the case
2853		 * (only 'marker' will be removed and re-inserted).
2854		 */
2855		multilist_sublist_move_forward(mls, marker);
2856
2857		/*
2858		 * The only case where the b_spa field should ever be
2859		 * zero, is the marker headers inserted by
2860		 * arc_evict_state(). It's possible for multiple threads
2861		 * to be calling arc_evict_state() concurrently (e.g.
2862		 * dsl_pool_close() and zio_inject_fault()), so we must
2863		 * skip any markers we see from these other threads.
2864		 */
2865		if (hdr->b_spa == 0)
2866			continue;
2867
2868		/* we're only interested in evicting buffers of a certain spa */
2869		if (spa != 0 && hdr->b_spa != spa) {
2870			ARCSTAT_BUMP(arcstat_evict_skip);
2871			continue;
2872		}
2873
2874		hash_lock = HDR_LOCK(hdr);
2875
2876		/*
2877		 * We aren't calling this function from any code path
2878		 * that would already be holding a hash lock, so we're
2879		 * asserting on this assumption to be defensive in case
2880		 * this ever changes. Without this check, it would be
2881		 * possible to incorrectly increment arcstat_mutex_miss
2882		 * below (e.g. if the code changed such that we called
2883		 * this function with a hash lock held).
2884		 */
2885		ASSERT(!MUTEX_HELD(hash_lock));
2886
2887		if (mutex_tryenter(hash_lock)) {
2888			uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
2889			mutex_exit(hash_lock);
2890
2891			bytes_evicted += evicted;
2892
2893			/*
2894			 * If evicted is zero, arc_evict_hdr() must have
2895			 * decided to skip this header, don't increment
2896			 * evict_count in this case.
2897			 */
2898			if (evicted != 0)
2899				evict_count++;
2900
2901			/*
2902			 * If arc_size isn't overflowing, signal any
2903			 * threads that might happen to be waiting.
2904			 *
2905			 * For each header evicted, we wake up a single
2906			 * thread. If we used cv_broadcast, we could
2907			 * wake up "too many" threads causing arc_size
2908			 * to significantly overflow arc_c; since
2909			 * arc_get_data_buf() doesn't check for overflow
2910			 * when it's woken up (it doesn't because it's
2911			 * possible for the ARC to be overflowing while
2912			 * full of un-evictable buffers, and the
2913			 * function should proceed in this case).
2914			 *
2915			 * If threads are left sleeping, due to not
2916			 * using cv_broadcast, they will be woken up
2917			 * just before arc_reclaim_thread() sleeps.
2918			 */
2919			mutex_enter(&arc_reclaim_lock);
2920			if (!arc_is_overflowing())
2921				cv_signal(&arc_reclaim_waiters_cv);
2922			mutex_exit(&arc_reclaim_lock);
2923		} else {
2924			ARCSTAT_BUMP(arcstat_mutex_miss);
2925		}
2926	}
2927
2928	multilist_sublist_unlock(mls);
2929
2930	return (bytes_evicted);
2931}
2932
2933/*
2934 * Evict buffers from the given arc state, until we've removed the
2935 * specified number of bytes. Move the removed buffers to the
2936 * appropriate evict state.
2937 *
2938 * This function makes a "best effort". It skips over any buffers
2939 * it can't get a hash_lock on, and so, may not catch all candidates.
2940 * It may also return without evicting as much space as requested.
2941 *
2942 * If bytes is specified using the special value ARC_EVICT_ALL, this
2943 * will evict all available (i.e. unlocked and evictable) buffers from
2944 * the given arc state; which is used by arc_flush().
2945 */
2946static uint64_t
2947arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
2948    arc_buf_contents_t type)
2949{
2950	uint64_t total_evicted = 0;
2951	multilist_t *ml = &state->arcs_list[type];
2952	int num_sublists;
2953	arc_buf_hdr_t **markers;
2954
2955	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
2956
2957	num_sublists = multilist_get_num_sublists(ml);
2958
2959	/*
2960	 * If we've tried to evict from each sublist, made some
2961	 * progress, but still have not hit the target number of bytes
2962	 * to evict, we want to keep trying. The markers allow us to
2963	 * pick up where we left off for each individual sublist, rather
2964	 * than starting from the tail each time.
2965	 */
2966	markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
2967	for (int i = 0; i < num_sublists; i++) {
2968		markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
2969
2970		/*
2971		 * A b_spa of 0 is used to indicate that this header is
2972		 * a marker. This fact is used in arc_adjust_type() and
2973		 * arc_evict_state_impl().
2974		 */
2975		markers[i]->b_spa = 0;
2976
2977		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
2978		multilist_sublist_insert_tail(mls, markers[i]);
2979		multilist_sublist_unlock(mls);
2980	}
2981
2982	/*
2983	 * While we haven't hit our target number of bytes to evict, or
2984	 * we're evicting all available buffers.
2985	 */
2986	while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
2987		/*
2988		 * Start eviction using a randomly selected sublist,
2989		 * this is to try and evenly balance eviction across all
2990		 * sublists. Always starting at the same sublist
2991		 * (e.g. index 0) would cause evictions to favor certain
2992		 * sublists over others.
2993		 */
2994		int sublist_idx = multilist_get_random_index(ml);
2995		uint64_t scan_evicted = 0;
2996
2997		for (int i = 0; i < num_sublists; i++) {
2998			uint64_t bytes_remaining;
2999			uint64_t bytes_evicted;
3000
3001			if (bytes == ARC_EVICT_ALL)
3002				bytes_remaining = ARC_EVICT_ALL;
3003			else if (total_evicted < bytes)
3004				bytes_remaining = bytes - total_evicted;
3005			else
3006				break;
3007
3008			bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
3009			    markers[sublist_idx], spa, bytes_remaining);
3010
3011			scan_evicted += bytes_evicted;
3012			total_evicted += bytes_evicted;
3013
3014			/* we've reached the end, wrap to the beginning */
3015			if (++sublist_idx >= num_sublists)
3016				sublist_idx = 0;
3017		}
3018
3019		/*
3020		 * If we didn't evict anything during this scan, we have
3021		 * no reason to believe we'll evict more during another
3022		 * scan, so break the loop.
3023		 */
3024		if (scan_evicted == 0) {
3025			/* This isn't possible, let's make that obvious */
3026			ASSERT3S(bytes, !=, 0);
3027
3028			/*
3029			 * When bytes is ARC_EVICT_ALL, the only way to
3030			 * break the loop is when scan_evicted is zero.
3031			 * In that case, we actually have evicted enough,
3032			 * so we don't want to increment the kstat.
3033			 */
3034			if (bytes != ARC_EVICT_ALL) {
3035				ASSERT3S(total_evicted, <, bytes);
3036				ARCSTAT_BUMP(arcstat_evict_not_enough);
3037			}
3038
3039			break;
3040		}
3041	}
3042
3043	for (int i = 0; i < num_sublists; i++) {
3044		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3045		multilist_sublist_remove(mls, markers[i]);
3046		multilist_sublist_unlock(mls);
3047
3048		kmem_cache_free(hdr_full_cache, markers[i]);
3049	}
3050	kmem_free(markers, sizeof (*markers) * num_sublists);
3051
3052	return (total_evicted);
3053}
3054
3055/*
3056 * Flush all "evictable" data of the given type from the arc state
3057 * specified. This will not evict any "active" buffers (i.e. referenced).
3058 *
3059 * When 'retry' is set to FALSE, the function will make a single pass
3060 * over the state and evict any buffers that it can. Since it doesn't
3061 * continually retry the eviction, it might end up leaving some buffers
3062 * in the ARC due to lock misses.
3063 *
3064 * When 'retry' is set to TRUE, the function will continually retry the
3065 * eviction until *all* evictable buffers have been removed from the
3066 * state. As a result, if concurrent insertions into the state are
3067 * allowed (e.g. if the ARC isn't shutting down), this function might
3068 * wind up in an infinite loop, continually trying to evict buffers.
3069 */
3070static uint64_t
3071arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
3072    boolean_t retry)
3073{
3074	uint64_t evicted = 0;
3075
3076	while (state->arcs_lsize[type] != 0) {
3077		evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
3078
3079		if (!retry)
3080			break;
3081	}
3082
3083	return (evicted);
3084}
3085
3086/*
3087 * Evict the specified number of bytes from the state specified,
3088 * restricting eviction to the spa and type given. This function
3089 * prevents us from trying to evict more from a state's list than
3090 * is "evictable", and to skip evicting altogether when passed a
3091 * negative value for "bytes". In contrast, arc_evict_state() will
3092 * evict everything it can, when passed a negative value for "bytes".
3093 */
3094static uint64_t
3095arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
3096    arc_buf_contents_t type)
3097{
3098	int64_t delta;
3099
3100	if (bytes > 0 && state->arcs_lsize[type] > 0) {
3101		delta = MIN(state->arcs_lsize[type], bytes);
3102		return (arc_evict_state(state, spa, delta, type));
3103	}
3104
3105	return (0);
3106}
3107
3108/*
3109 * Evict metadata buffers from the cache, such that arc_meta_used is
3110 * capped by the arc_meta_limit tunable.
3111 */
3112static uint64_t
3113arc_adjust_meta(void)
3114{
3115	uint64_t total_evicted = 0;
3116	int64_t target;
3117
3118	/*
3119	 * If we're over the meta limit, we want to evict enough
3120	 * metadata to get back under the meta limit. We don't want to
3121	 * evict so much that we drop the MRU below arc_p, though. If
3122	 * we're over the meta limit more than we're over arc_p, we
3123	 * evict some from the MRU here, and some from the MFU below.
3124	 */
3125	target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3126	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
3127	    refcount_count(&arc_mru->arcs_size) - arc_p));
3128
3129	total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3130
3131	/*
3132	 * Similar to the above, we want to evict enough bytes to get us
3133	 * below the meta limit, but not so much as to drop us below the
3134	 * space alloted to the MFU (which is defined as arc_c - arc_p).
3135	 */
3136	target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3137	    (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p)));
3138
3139	total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3140
3141	return (total_evicted);
3142}
3143
3144/*
3145 * Return the type of the oldest buffer in the given arc state
3146 *
3147 * This function will select a random sublist of type ARC_BUFC_DATA and
3148 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
3149 * is compared, and the type which contains the "older" buffer will be
3150 * returned.
3151 */
3152static arc_buf_contents_t
3153arc_adjust_type(arc_state_t *state)
3154{
3155	multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA];
3156	multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA];
3157	int data_idx = multilist_get_random_index(data_ml);
3158	int meta_idx = multilist_get_random_index(meta_ml);
3159	multilist_sublist_t *data_mls;
3160	multilist_sublist_t *meta_mls;
3161	arc_buf_contents_t type;
3162	arc_buf_hdr_t *data_hdr;
3163	arc_buf_hdr_t *meta_hdr;
3164
3165	/*
3166	 * We keep the sublist lock until we're finished, to prevent
3167	 * the headers from being destroyed via arc_evict_state().
3168	 */
3169	data_mls = multilist_sublist_lock(data_ml, data_idx);
3170	meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
3171
3172	/*
3173	 * These two loops are to ensure we skip any markers that
3174	 * might be at the tail of the lists due to arc_evict_state().
3175	 */
3176
3177	for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
3178	    data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
3179		if (data_hdr->b_spa != 0)
3180			break;
3181	}
3182
3183	for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
3184	    meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
3185		if (meta_hdr->b_spa != 0)
3186			break;
3187	}
3188
3189	if (data_hdr == NULL && meta_hdr == NULL) {
3190		type = ARC_BUFC_DATA;
3191	} else if (data_hdr == NULL) {
3192		ASSERT3P(meta_hdr, !=, NULL);
3193		type = ARC_BUFC_METADATA;
3194	} else if (meta_hdr == NULL) {
3195		ASSERT3P(data_hdr, !=, NULL);
3196		type = ARC_BUFC_DATA;
3197	} else {
3198		ASSERT3P(data_hdr, !=, NULL);
3199		ASSERT3P(meta_hdr, !=, NULL);
3200
3201		/* The headers can't be on the sublist without an L1 header */
3202		ASSERT(HDR_HAS_L1HDR(data_hdr));
3203		ASSERT(HDR_HAS_L1HDR(meta_hdr));
3204
3205		if (data_hdr->b_l1hdr.b_arc_access <
3206		    meta_hdr->b_l1hdr.b_arc_access) {
3207			type = ARC_BUFC_DATA;
3208		} else {
3209			type = ARC_BUFC_METADATA;
3210		}
3211	}
3212
3213	multilist_sublist_unlock(meta_mls);
3214	multilist_sublist_unlock(data_mls);
3215
3216	return (type);
3217}
3218
3219/*
3220 * Evict buffers from the cache, such that arc_size is capped by arc_c.
3221 */
3222static uint64_t
3223arc_adjust(void)
3224{
3225	uint64_t total_evicted = 0;
3226	uint64_t bytes;
3227	int64_t target;
3228
3229	/*
3230	 * If we're over arc_meta_limit, we want to correct that before
3231	 * potentially evicting data buffers below.
3232	 */
3233	total_evicted += arc_adjust_meta();
3234
3235	/*
3236	 * Adjust MRU size
3237	 *
3238	 * If we're over the target cache size, we want to evict enough
3239	 * from the list to get back to our target size. We don't want
3240	 * to evict too much from the MRU, such that it drops below
3241	 * arc_p. So, if we're over our target cache size more than
3242	 * the MRU is over arc_p, we'll evict enough to get back to
3243	 * arc_p here, and then evict more from the MFU below.
3244	 */
3245	target = MIN((int64_t)(arc_size - arc_c),
3246	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
3247	    refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p));
3248
3249	/*
3250	 * If we're below arc_meta_min, always prefer to evict data.
3251	 * Otherwise, try to satisfy the requested number of bytes to
3252	 * evict from the type which contains older buffers; in an
3253	 * effort to keep newer buffers in the cache regardless of their
3254	 * type. If we cannot satisfy the number of bytes from this
3255	 * type, spill over into the next type.
3256	 */
3257	if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
3258	    arc_meta_used > arc_meta_min) {
3259		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3260		total_evicted += bytes;
3261
3262		/*
3263		 * If we couldn't evict our target number of bytes from
3264		 * metadata, we try to get the rest from data.
3265		 */
3266		target -= bytes;
3267
3268		total_evicted +=
3269		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3270	} else {
3271		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3272		total_evicted += bytes;
3273
3274		/*
3275		 * If we couldn't evict our target number of bytes from
3276		 * data, we try to get the rest from metadata.
3277		 */
3278		target -= bytes;
3279
3280		total_evicted +=
3281		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3282	}
3283
3284	/*
3285	 * Adjust MFU size
3286	 *
3287	 * Now that we've tried to evict enough from the MRU to get its
3288	 * size back to arc_p, if we're still above the target cache
3289	 * size, we evict the rest from the MFU.
3290	 */
3291	target = arc_size - arc_c;
3292
3293	if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
3294	    arc_meta_used > arc_meta_min) {
3295		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3296		total_evicted += bytes;
3297
3298		/*
3299		 * If we couldn't evict our target number of bytes from
3300		 * metadata, we try to get the rest from data.
3301		 */
3302		target -= bytes;
3303
3304		total_evicted +=
3305		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3306	} else {
3307		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3308		total_evicted += bytes;
3309
3310		/*
3311		 * If we couldn't evict our target number of bytes from
3312		 * data, we try to get the rest from data.
3313		 */
3314		target -= bytes;
3315
3316		total_evicted +=
3317		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3318	}
3319
3320	/*
3321	 * Adjust ghost lists
3322	 *
3323	 * In addition to the above, the ARC also defines target values
3324	 * for the ghost lists. The sum of the mru list and mru ghost
3325	 * list should never exceed the target size of the cache, and
3326	 * the sum of the mru list, mfu list, mru ghost list, and mfu
3327	 * ghost list should never exceed twice the target size of the
3328	 * cache. The following logic enforces these limits on the ghost
3329	 * caches, and evicts from them as needed.
3330	 */
3331	target = refcount_count(&arc_mru->arcs_size) +
3332	    refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
3333
3334	bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
3335	total_evicted += bytes;
3336
3337	target -= bytes;
3338
3339	total_evicted +=
3340	    arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
3341
3342	/*
3343	 * We assume the sum of the mru list and mfu list is less than
3344	 * or equal to arc_c (we enforced this above), which means we
3345	 * can use the simpler of the two equations below:
3346	 *
3347	 *	mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
3348	 *		    mru ghost + mfu ghost <= arc_c
3349	 */
3350	target = refcount_count(&arc_mru_ghost->arcs_size) +
3351	    refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
3352
3353	bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
3354	total_evicted += bytes;
3355
3356	target -= bytes;
3357
3358	total_evicted +=
3359	    arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
3360
3361	return (total_evicted);
3362}
3363
3364static void
3365arc_do_user_evicts(void)
3366{
3367	mutex_enter(&arc_user_evicts_lock);
3368	while (arc_eviction_list != NULL) {
3369		arc_buf_t *buf = arc_eviction_list;
3370		arc_eviction_list = buf->b_next;
3371		mutex_enter(&buf->b_evict_lock);
3372		buf->b_hdr = NULL;
3373		mutex_exit(&buf->b_evict_lock);
3374		mutex_exit(&arc_user_evicts_lock);
3375
3376		if (buf->b_efunc != NULL)
3377			VERIFY0(buf->b_efunc(buf->b_private));
3378
3379		buf->b_efunc = NULL;
3380		buf->b_private = NULL;
3381		kmem_cache_free(buf_cache, buf);
3382		mutex_enter(&arc_user_evicts_lock);
3383	}
3384	mutex_exit(&arc_user_evicts_lock);
3385}
3386
3387void
3388arc_flush(spa_t *spa, boolean_t retry)
3389{
3390	uint64_t guid = 0;
3391
3392	/*
3393	 * If retry is TRUE, a spa must not be specified since we have
3394	 * no good way to determine if all of a spa's buffers have been
3395	 * evicted from an arc state.
3396	 */
3397	ASSERT(!retry || spa == 0);
3398
3399	if (spa != NULL)
3400		guid = spa_load_guid(spa);
3401
3402	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
3403	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
3404
3405	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
3406	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
3407
3408	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
3409	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
3410
3411	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
3412	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
3413
3414	arc_do_user_evicts();
3415	ASSERT(spa || arc_eviction_list == NULL);
3416}
3417
3418void
3419arc_shrink(int64_t to_free)
3420{
3421	if (arc_c > arc_c_min) {
3422		DTRACE_PROBE4(arc__shrink, uint64_t, arc_c, uint64_t,
3423			arc_c_min, uint64_t, arc_p, uint64_t, to_free);
3424		if (arc_c > arc_c_min + to_free)
3425			atomic_add_64(&arc_c, -to_free);
3426		else
3427			arc_c = arc_c_min;
3428
3429		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
3430		if (arc_c > arc_size)
3431			arc_c = MAX(arc_size, arc_c_min);
3432		if (arc_p > arc_c)
3433			arc_p = (arc_c >> 1);
3434
3435		DTRACE_PROBE2(arc__shrunk, uint64_t, arc_c, uint64_t,
3436			arc_p);
3437
3438		ASSERT(arc_c >= arc_c_min);
3439		ASSERT((int64_t)arc_p >= 0);
3440	}
3441
3442	if (arc_size > arc_c) {
3443		DTRACE_PROBE2(arc__shrink_adjust, uint64_t, arc_size,
3444			uint64_t, arc_c);
3445		(void) arc_adjust();
3446	}
3447}
3448
3449static long needfree = 0;
3450
3451typedef enum free_memory_reason_t {
3452	FMR_UNKNOWN,
3453	FMR_NEEDFREE,
3454	FMR_LOTSFREE,
3455	FMR_SWAPFS_MINFREE,
3456	FMR_PAGES_PP_MAXIMUM,
3457	FMR_HEAP_ARENA,
3458	FMR_ZIO_ARENA,
3459	FMR_ZIO_FRAG,
3460} free_memory_reason_t;
3461
3462int64_t last_free_memory;
3463free_memory_reason_t last_free_reason;
3464
3465/*
3466 * Additional reserve of pages for pp_reserve.
3467 */
3468int64_t arc_pages_pp_reserve = 64;
3469
3470/*
3471 * Additional reserve of pages for swapfs.
3472 */
3473int64_t arc_swapfs_reserve = 64;
3474
3475/*
3476 * Return the amount of memory that can be consumed before reclaim will be
3477 * needed.  Positive if there is sufficient free memory, negative indicates
3478 * the amount of memory that needs to be freed up.
3479 */
3480static int64_t
3481arc_available_memory(void)
3482{
3483	int64_t lowest = INT64_MAX;
3484	int64_t n;
3485	free_memory_reason_t r = FMR_UNKNOWN;
3486
3487#ifdef _KERNEL
3488	if (needfree > 0) {
3489		n = PAGESIZE * (-needfree);
3490		if (n < lowest) {
3491			lowest = n;
3492			r = FMR_NEEDFREE;
3493		}
3494	}
3495
3496	/*
3497	 * Cooperate with pagedaemon when it's time for it to scan
3498	 * and reclaim some pages.
3499	 */
3500	n = PAGESIZE * ((int64_t)freemem - zfs_arc_free_target);
3501	if (n < lowest) {
3502		lowest = n;
3503		r = FMR_LOTSFREE;
3504	}
3505
3506#ifdef illumos
3507	/*
3508	 * check that we're out of range of the pageout scanner.  It starts to
3509	 * schedule paging if freemem is less than lotsfree and needfree.
3510	 * lotsfree is the high-water mark for pageout, and needfree is the
3511	 * number of needed free pages.  We add extra pages here to make sure
3512	 * the scanner doesn't start up while we're freeing memory.
3513	 */
3514	n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
3515	if (n < lowest) {
3516		lowest = n;
3517		r = FMR_LOTSFREE;
3518	}
3519
3520	/*
3521	 * check to make sure that swapfs has enough space so that anon
3522	 * reservations can still succeed. anon_resvmem() checks that the
3523	 * availrmem is greater than swapfs_minfree, and the number of reserved
3524	 * swap pages.  We also add a bit of extra here just to prevent
3525	 * circumstances from getting really dire.
3526	 */
3527	n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
3528	    desfree - arc_swapfs_reserve);
3529	if (n < lowest) {
3530		lowest = n;
3531		r = FMR_SWAPFS_MINFREE;
3532	}
3533
3534
3535	/*
3536	 * Check that we have enough availrmem that memory locking (e.g., via
3537	 * mlock(3C) or memcntl(2)) can still succeed.  (pages_pp_maximum
3538	 * stores the number of pages that cannot be locked; when availrmem
3539	 * drops below pages_pp_maximum, page locking mechanisms such as
3540	 * page_pp_lock() will fail.)
3541	 */
3542	n = PAGESIZE * (availrmem - pages_pp_maximum -
3543	    arc_pages_pp_reserve);
3544	if (n < lowest) {
3545		lowest = n;
3546		r = FMR_PAGES_PP_MAXIMUM;
3547	}
3548
3549#endif	/* illumos */
3550#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
3551	/*
3552	 * If we're on an i386 platform, it's possible that we'll exhaust the
3553	 * kernel heap space before we ever run out of available physical
3554	 * memory.  Most checks of the size of the heap_area compare against
3555	 * tune.t_minarmem, which is the minimum available real memory that we
3556	 * can have in the system.  However, this is generally fixed at 25 pages
3557	 * which is so low that it's useless.  In this comparison, we seek to
3558	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
3559	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
3560	 * free)
3561	 */
3562	n = (int64_t)vmem_size(heap_arena, VMEM_FREE) -
3563	    (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
3564	if (n < lowest) {
3565		lowest = n;
3566		r = FMR_HEAP_ARENA;
3567	}
3568#define	zio_arena	NULL
3569#else
3570#define	zio_arena	heap_arena
3571#endif
3572
3573	/*
3574	 * If zio data pages are being allocated out of a separate heap segment,
3575	 * then enforce that the size of available vmem for this arena remains
3576	 * above about 1/16th free.
3577	 *
3578	 * Note: The 1/16th arena free requirement was put in place
3579	 * to aggressively evict memory from the arc in order to avoid
3580	 * memory fragmentation issues.
3581	 */
3582	if (zio_arena != NULL) {
3583		n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
3584		    (vmem_size(zio_arena, VMEM_ALLOC) >> 4);
3585		if (n < lowest) {
3586			lowest = n;
3587			r = FMR_ZIO_ARENA;
3588		}
3589	}
3590
3591	/*
3592	 * Above limits know nothing about real level of KVA fragmentation.
3593	 * Start aggressive reclamation if too little sequential KVA left.
3594	 */
3595	if (lowest > 0) {
3596		n = (vmem_size(heap_arena, VMEM_MAXFREE) < zfs_max_recordsize) ?
3597		    -((int64_t)vmem_size(heap_arena, VMEM_ALLOC) >> 4) :
3598		    INT64_MAX;
3599		if (n < lowest) {
3600			lowest = n;
3601			r = FMR_ZIO_FRAG;
3602		}
3603	}
3604
3605#else	/* _KERNEL */
3606	/* Every 100 calls, free a small amount */
3607	if (spa_get_random(100) == 0)
3608		lowest = -1024;
3609#endif	/* _KERNEL */
3610
3611	last_free_memory = lowest;
3612	last_free_reason = r;
3613	DTRACE_PROBE2(arc__available_memory, int64_t, lowest, int, r);
3614	return (lowest);
3615}
3616
3617
3618/*
3619 * Determine if the system is under memory pressure and is asking
3620 * to reclaim memory. A return value of TRUE indicates that the system
3621 * is under memory pressure and that the arc should adjust accordingly.
3622 */
3623static boolean_t
3624arc_reclaim_needed(void)
3625{
3626	return (arc_available_memory() < 0);
3627}
3628
3629extern kmem_cache_t	*zio_buf_cache[];
3630extern kmem_cache_t	*zio_data_buf_cache[];
3631extern kmem_cache_t	*range_seg_cache;
3632
3633static __noinline void
3634arc_kmem_reap_now(void)
3635{
3636	size_t			i;
3637	kmem_cache_t		*prev_cache = NULL;
3638	kmem_cache_t		*prev_data_cache = NULL;
3639
3640	DTRACE_PROBE(arc__kmem_reap_start);
3641#ifdef _KERNEL
3642	if (arc_meta_used >= arc_meta_limit) {
3643		/*
3644		 * We are exceeding our meta-data cache limit.
3645		 * Purge some DNLC entries to release holds on meta-data.
3646		 */
3647		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
3648	}
3649#if defined(__i386)
3650	/*
3651	 * Reclaim unused memory from all kmem caches.
3652	 */
3653	kmem_reap();
3654#endif
3655#endif
3656
3657	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
3658		if (zio_buf_cache[i] != prev_cache) {
3659			prev_cache = zio_buf_cache[i];
3660			kmem_cache_reap_now(zio_buf_cache[i]);
3661		}
3662		if (zio_data_buf_cache[i] != prev_data_cache) {
3663			prev_data_cache = zio_data_buf_cache[i];
3664			kmem_cache_reap_now(zio_data_buf_cache[i]);
3665		}
3666	}
3667	kmem_cache_reap_now(buf_cache);
3668	kmem_cache_reap_now(hdr_full_cache);
3669	kmem_cache_reap_now(hdr_l2only_cache);
3670	kmem_cache_reap_now(range_seg_cache);
3671
3672#ifdef illumos
3673	if (zio_arena != NULL) {
3674		/*
3675		 * Ask the vmem arena to reclaim unused memory from its
3676		 * quantum caches.
3677		 */
3678		vmem_qcache_reap(zio_arena);
3679	}
3680#endif
3681	DTRACE_PROBE(arc__kmem_reap_end);
3682}
3683
3684/*
3685 * Threads can block in arc_get_data_buf() waiting for this thread to evict
3686 * enough data and signal them to proceed. When this happens, the threads in
3687 * arc_get_data_buf() are sleeping while holding the hash lock for their
3688 * particular arc header. Thus, we must be careful to never sleep on a
3689 * hash lock in this thread. This is to prevent the following deadlock:
3690 *
3691 *  - Thread A sleeps on CV in arc_get_data_buf() holding hash lock "L",
3692 *    waiting for the reclaim thread to signal it.
3693 *
3694 *  - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
3695 *    fails, and goes to sleep forever.
3696 *
3697 * This possible deadlock is avoided by always acquiring a hash lock
3698 * using mutex_tryenter() from arc_reclaim_thread().
3699 */
3700static void
3701arc_reclaim_thread(void *dummy __unused)
3702{
3703	hrtime_t		growtime = 0;
3704	callb_cpr_t		cpr;
3705
3706	CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
3707
3708	mutex_enter(&arc_reclaim_lock);
3709	while (!arc_reclaim_thread_exit) {
3710		int64_t free_memory = arc_available_memory();
3711		uint64_t evicted = 0;
3712
3713		mutex_exit(&arc_reclaim_lock);
3714
3715		if (free_memory < 0) {
3716
3717			arc_no_grow = B_TRUE;
3718			arc_warm = B_TRUE;
3719
3720			/*
3721			 * Wait at least zfs_grow_retry (default 60) seconds
3722			 * before considering growing.
3723			 */
3724			growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
3725
3726			arc_kmem_reap_now();
3727
3728			/*
3729			 * If we are still low on memory, shrink the ARC
3730			 * so that we have arc_shrink_min free space.
3731			 */
3732			free_memory = arc_available_memory();
3733
3734			int64_t to_free =
3735			    (arc_c >> arc_shrink_shift) - free_memory;
3736			if (to_free > 0) {
3737#ifdef _KERNEL
3738				to_free = MAX(to_free, ptob(needfree));
3739#endif
3740				arc_shrink(to_free);
3741			}
3742		} else if (free_memory < arc_c >> arc_no_grow_shift) {
3743			arc_no_grow = B_TRUE;
3744		} else if (gethrtime() >= growtime) {
3745			arc_no_grow = B_FALSE;
3746		}
3747
3748		evicted = arc_adjust();
3749
3750		mutex_enter(&arc_reclaim_lock);
3751
3752		/*
3753		 * If evicted is zero, we couldn't evict anything via
3754		 * arc_adjust(). This could be due to hash lock
3755		 * collisions, but more likely due to the majority of
3756		 * arc buffers being unevictable. Therefore, even if
3757		 * arc_size is above arc_c, another pass is unlikely to
3758		 * be helpful and could potentially cause us to enter an
3759		 * infinite loop.
3760		 */
3761		if (arc_size <= arc_c || evicted == 0) {
3762#ifdef _KERNEL
3763			needfree = 0;
3764#endif
3765			/*
3766			 * We're either no longer overflowing, or we
3767			 * can't evict anything more, so we should wake
3768			 * up any threads before we go to sleep.
3769			 */
3770			cv_broadcast(&arc_reclaim_waiters_cv);
3771
3772			/*
3773			 * Block until signaled, or after one second (we
3774			 * might need to perform arc_kmem_reap_now()
3775			 * even if we aren't being signalled)
3776			 */
3777			CALLB_CPR_SAFE_BEGIN(&cpr);
3778			(void) cv_timedwait_hires(&arc_reclaim_thread_cv,
3779			    &arc_reclaim_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
3780			CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
3781		}
3782	}
3783
3784	arc_reclaim_thread_exit = FALSE;
3785	cv_broadcast(&arc_reclaim_thread_cv);
3786	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_lock */
3787	thread_exit();
3788}
3789
3790static void
3791arc_user_evicts_thread(void *dummy __unused)
3792{
3793	callb_cpr_t cpr;
3794
3795	CALLB_CPR_INIT(&cpr, &arc_user_evicts_lock, callb_generic_cpr, FTAG);
3796
3797	mutex_enter(&arc_user_evicts_lock);
3798	while (!arc_user_evicts_thread_exit) {
3799		mutex_exit(&arc_user_evicts_lock);
3800
3801		arc_do_user_evicts();
3802
3803		/*
3804		 * This is necessary in order for the mdb ::arc dcmd to
3805		 * show up to date information. Since the ::arc command
3806		 * does not call the kstat's update function, without
3807		 * this call, the command may show stale stats for the
3808		 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
3809		 * with this change, the data might be up to 1 second
3810		 * out of date; but that should suffice. The arc_state_t
3811		 * structures can be queried directly if more accurate
3812		 * information is needed.
3813		 */
3814		if (arc_ksp != NULL)
3815			arc_ksp->ks_update(arc_ksp, KSTAT_READ);
3816
3817		mutex_enter(&arc_user_evicts_lock);
3818
3819		/*
3820		 * Block until signaled, or after one second (we need to
3821		 * call the arc's kstat update function regularly).
3822		 */
3823		CALLB_CPR_SAFE_BEGIN(&cpr);
3824		(void) cv_timedwait(&arc_user_evicts_cv,
3825		    &arc_user_evicts_lock, hz);
3826		CALLB_CPR_SAFE_END(&cpr, &arc_user_evicts_lock);
3827	}
3828
3829	arc_user_evicts_thread_exit = FALSE;
3830	cv_broadcast(&arc_user_evicts_cv);
3831	CALLB_CPR_EXIT(&cpr);		/* drops arc_user_evicts_lock */
3832	thread_exit();
3833}
3834
3835/*
3836 * Adapt arc info given the number of bytes we are trying to add and
3837 * the state that we are comming from.  This function is only called
3838 * when we are adding new content to the cache.
3839 */
3840static void
3841arc_adapt(int bytes, arc_state_t *state)
3842{
3843	int mult;
3844	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
3845	int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
3846	int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
3847
3848	if (state == arc_l2c_only)
3849		return;
3850
3851	ASSERT(bytes > 0);
3852	/*
3853	 * Adapt the target size of the MRU list:
3854	 *	- if we just hit in the MRU ghost list, then increase
3855	 *	  the target size of the MRU list.
3856	 *	- if we just hit in the MFU ghost list, then increase
3857	 *	  the target size of the MFU list by decreasing the
3858	 *	  target size of the MRU list.
3859	 */
3860	if (state == arc_mru_ghost) {
3861		mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
3862		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
3863
3864		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
3865	} else if (state == arc_mfu_ghost) {
3866		uint64_t delta;
3867
3868		mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
3869		mult = MIN(mult, 10);
3870
3871		delta = MIN(bytes * mult, arc_p);
3872		arc_p = MAX(arc_p_min, arc_p - delta);
3873	}
3874	ASSERT((int64_t)arc_p >= 0);
3875
3876	if (arc_reclaim_needed()) {
3877		cv_signal(&arc_reclaim_thread_cv);
3878		return;
3879	}
3880
3881	if (arc_no_grow)
3882		return;
3883
3884	if (arc_c >= arc_c_max)
3885		return;
3886
3887	/*
3888	 * If we're within (2 * maxblocksize) bytes of the target
3889	 * cache size, increment the target cache size
3890	 */
3891	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
3892		DTRACE_PROBE1(arc__inc_adapt, int, bytes);
3893		atomic_add_64(&arc_c, (int64_t)bytes);
3894		if (arc_c > arc_c_max)
3895			arc_c = arc_c_max;
3896		else if (state == arc_anon)
3897			atomic_add_64(&arc_p, (int64_t)bytes);
3898		if (arc_p > arc_c)
3899			arc_p = arc_c;
3900	}
3901	ASSERT((int64_t)arc_p >= 0);
3902}
3903
3904/*
3905 * Check if arc_size has grown past our upper threshold, determined by
3906 * zfs_arc_overflow_shift.
3907 */
3908static boolean_t
3909arc_is_overflowing(void)
3910{
3911	/* Always allow at least one block of overflow */
3912	uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
3913	    arc_c >> zfs_arc_overflow_shift);
3914
3915	return (arc_size >= arc_c + overflow);
3916}
3917
3918/*
3919 * The buffer, supplied as the first argument, needs a data block. If we
3920 * are hitting the hard limit for the cache size, we must sleep, waiting
3921 * for the eviction thread to catch up. If we're past the target size
3922 * but below the hard limit, we'll only signal the reclaim thread and
3923 * continue on.
3924 */
3925static void
3926arc_get_data_buf(arc_buf_t *buf)
3927{
3928	arc_state_t		*state = buf->b_hdr->b_l1hdr.b_state;
3929	uint64_t		size = buf->b_hdr->b_size;
3930	arc_buf_contents_t	type = arc_buf_type(buf->b_hdr);
3931
3932	arc_adapt(size, state);
3933
3934	/*
3935	 * If arc_size is currently overflowing, and has grown past our
3936	 * upper limit, we must be adding data faster than the evict
3937	 * thread can evict. Thus, to ensure we don't compound the
3938	 * problem by adding more data and forcing arc_size to grow even
3939	 * further past it's target size, we halt and wait for the
3940	 * eviction thread to catch up.
3941	 *
3942	 * It's also possible that the reclaim thread is unable to evict
3943	 * enough buffers to get arc_size below the overflow limit (e.g.
3944	 * due to buffers being un-evictable, or hash lock collisions).
3945	 * In this case, we want to proceed regardless if we're
3946	 * overflowing; thus we don't use a while loop here.
3947	 */
3948	if (arc_is_overflowing()) {
3949		mutex_enter(&arc_reclaim_lock);
3950
3951		/*
3952		 * Now that we've acquired the lock, we may no longer be
3953		 * over the overflow limit, lets check.
3954		 *
3955		 * We're ignoring the case of spurious wake ups. If that
3956		 * were to happen, it'd let this thread consume an ARC
3957		 * buffer before it should have (i.e. before we're under
3958		 * the overflow limit and were signalled by the reclaim
3959		 * thread). As long as that is a rare occurrence, it
3960		 * shouldn't cause any harm.
3961		 */
3962		if (arc_is_overflowing()) {
3963			cv_signal(&arc_reclaim_thread_cv);
3964			cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
3965		}
3966
3967		mutex_exit(&arc_reclaim_lock);
3968	}
3969
3970	if (type == ARC_BUFC_METADATA) {
3971		buf->b_data = zio_buf_alloc(size);
3972		arc_space_consume(size, ARC_SPACE_META);
3973	} else {
3974		ASSERT(type == ARC_BUFC_DATA);
3975		buf->b_data = zio_data_buf_alloc(size);
3976		arc_space_consume(size, ARC_SPACE_DATA);
3977	}
3978
3979	/*
3980	 * Update the state size.  Note that ghost states have a
3981	 * "ghost size" and so don't need to be updated.
3982	 */
3983	if (!GHOST_STATE(buf->b_hdr->b_l1hdr.b_state)) {
3984		arc_buf_hdr_t *hdr = buf->b_hdr;
3985		arc_state_t *state = hdr->b_l1hdr.b_state;
3986
3987		(void) refcount_add_many(&state->arcs_size, size, buf);
3988
3989		/*
3990		 * If this is reached via arc_read, the link is
3991		 * protected by the hash lock. If reached via
3992		 * arc_buf_alloc, the header should not be accessed by
3993		 * any other thread. And, if reached via arc_read_done,
3994		 * the hash lock will protect it if it's found in the
3995		 * hash table; otherwise no other thread should be
3996		 * trying to [add|remove]_reference it.
3997		 */
3998		if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
3999			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4000			atomic_add_64(&hdr->b_l1hdr.b_state->arcs_lsize[type],
4001			    size);
4002		}
4003		/*
4004		 * If we are growing the cache, and we are adding anonymous
4005		 * data, and we have outgrown arc_p, update arc_p
4006		 */
4007		if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
4008		    (refcount_count(&arc_anon->arcs_size) +
4009		    refcount_count(&arc_mru->arcs_size) > arc_p))
4010			arc_p = MIN(arc_c, arc_p + size);
4011	}
4012	ARCSTAT_BUMP(arcstat_allocated);
4013}
4014
4015/*
4016 * This routine is called whenever a buffer is accessed.
4017 * NOTE: the hash lock is dropped in this function.
4018 */
4019static void
4020arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
4021{
4022	clock_t now;
4023
4024	ASSERT(MUTEX_HELD(hash_lock));
4025	ASSERT(HDR_HAS_L1HDR(hdr));
4026
4027	if (hdr->b_l1hdr.b_state == arc_anon) {
4028		/*
4029		 * This buffer is not in the cache, and does not
4030		 * appear in our "ghost" list.  Add the new buffer
4031		 * to the MRU state.
4032		 */
4033
4034		ASSERT0(hdr->b_l1hdr.b_arc_access);
4035		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4036		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4037		arc_change_state(arc_mru, hdr, hash_lock);
4038
4039	} else if (hdr->b_l1hdr.b_state == arc_mru) {
4040		now = ddi_get_lbolt();
4041
4042		/*
4043		 * If this buffer is here because of a prefetch, then either:
4044		 * - clear the flag if this is a "referencing" read
4045		 *   (any subsequent access will bump this into the MFU state).
4046		 * or
4047		 * - move the buffer to the head of the list if this is
4048		 *   another prefetch (to make it less likely to be evicted).
4049		 */
4050		if (HDR_PREFETCH(hdr)) {
4051			if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4052				/* link protected by hash lock */
4053				ASSERT(multilist_link_active(
4054				    &hdr->b_l1hdr.b_arc_node));
4055			} else {
4056				hdr->b_flags &= ~ARC_FLAG_PREFETCH;
4057				ARCSTAT_BUMP(arcstat_mru_hits);
4058			}
4059			hdr->b_l1hdr.b_arc_access = now;
4060			return;
4061		}
4062
4063		/*
4064		 * This buffer has been "accessed" only once so far,
4065		 * but it is still in the cache. Move it to the MFU
4066		 * state.
4067		 */
4068		if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) {
4069			/*
4070			 * More than 125ms have passed since we
4071			 * instantiated this buffer.  Move it to the
4072			 * most frequently used state.
4073			 */
4074			hdr->b_l1hdr.b_arc_access = now;
4075			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4076			arc_change_state(arc_mfu, hdr, hash_lock);
4077		}
4078		ARCSTAT_BUMP(arcstat_mru_hits);
4079	} else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
4080		arc_state_t	*new_state;
4081		/*
4082		 * This buffer has been "accessed" recently, but
4083		 * was evicted from the cache.  Move it to the
4084		 * MFU state.
4085		 */
4086
4087		if (HDR_PREFETCH(hdr)) {
4088			new_state = arc_mru;
4089			if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
4090				hdr->b_flags &= ~ARC_FLAG_PREFETCH;
4091			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4092		} else {
4093			new_state = arc_mfu;
4094			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4095		}
4096
4097		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4098		arc_change_state(new_state, hdr, hash_lock);
4099
4100		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
4101	} else if (hdr->b_l1hdr.b_state == arc_mfu) {
4102		/*
4103		 * This buffer has been accessed more than once and is
4104		 * still in the cache.  Keep it in the MFU state.
4105		 *
4106		 * NOTE: an add_reference() that occurred when we did
4107		 * the arc_read() will have kicked this off the list.
4108		 * If it was a prefetch, we will explicitly move it to
4109		 * the head of the list now.
4110		 */
4111		if ((HDR_PREFETCH(hdr)) != 0) {
4112			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4113			/* link protected by hash_lock */
4114			ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4115		}
4116		ARCSTAT_BUMP(arcstat_mfu_hits);
4117		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4118	} else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
4119		arc_state_t	*new_state = arc_mfu;
4120		/*
4121		 * This buffer has been accessed more than once but has
4122		 * been evicted from the cache.  Move it back to the
4123		 * MFU state.
4124		 */
4125
4126		if (HDR_PREFETCH(hdr)) {
4127			/*
4128			 * This is a prefetch access...
4129			 * move this block back to the MRU state.
4130			 */
4131			ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
4132			new_state = arc_mru;
4133		}
4134
4135		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4136		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4137		arc_change_state(new_state, hdr, hash_lock);
4138
4139		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
4140	} else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
4141		/*
4142		 * This buffer is on the 2nd Level ARC.
4143		 */
4144
4145		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4146		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4147		arc_change_state(arc_mfu, hdr, hash_lock);
4148	} else {
4149		ASSERT(!"invalid arc state");
4150	}
4151}
4152
4153/* a generic arc_done_func_t which you can use */
4154/* ARGSUSED */
4155void
4156arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
4157{
4158	if (zio == NULL || zio->io_error == 0)
4159		bcopy(buf->b_data, arg, buf->b_hdr->b_size);
4160	VERIFY(arc_buf_remove_ref(buf, arg));
4161}
4162
4163/* a generic arc_done_func_t */
4164void
4165arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
4166{
4167	arc_buf_t **bufp = arg;
4168	if (zio && zio->io_error) {
4169		VERIFY(arc_buf_remove_ref(buf, arg));
4170		*bufp = NULL;
4171	} else {
4172		*bufp = buf;
4173		ASSERT(buf->b_data);
4174	}
4175}
4176
4177static void
4178arc_read_done(zio_t *zio)
4179{
4180	arc_buf_hdr_t	*hdr;
4181	arc_buf_t	*buf;
4182	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
4183	kmutex_t	*hash_lock = NULL;
4184	arc_callback_t	*callback_list, *acb;
4185	int		freeable = FALSE;
4186
4187	buf = zio->io_private;
4188	hdr = buf->b_hdr;
4189
4190	/*
4191	 * The hdr was inserted into hash-table and removed from lists
4192	 * prior to starting I/O.  We should find this header, since
4193	 * it's in the hash table, and it should be legit since it's
4194	 * not possible to evict it during the I/O.  The only possible
4195	 * reason for it not to be found is if we were freed during the
4196	 * read.
4197	 */
4198	if (HDR_IN_HASH_TABLE(hdr)) {
4199		ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
4200		ASSERT3U(hdr->b_dva.dva_word[0], ==,
4201		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
4202		ASSERT3U(hdr->b_dva.dva_word[1], ==,
4203		    BP_IDENTITY(zio->io_bp)->dva_word[1]);
4204
4205		arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
4206		    &hash_lock);
4207
4208		ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) &&
4209		    hash_lock == NULL) ||
4210		    (found == hdr &&
4211		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
4212		    (found == hdr && HDR_L2_READING(hdr)));
4213	}
4214
4215	hdr->b_flags &= ~ARC_FLAG_L2_EVICTED;
4216	if (l2arc_noprefetch && HDR_PREFETCH(hdr))
4217		hdr->b_flags &= ~ARC_FLAG_L2CACHE;
4218
4219	/* byteswap if necessary */
4220	callback_list = hdr->b_l1hdr.b_acb;
4221	ASSERT(callback_list != NULL);
4222	if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
4223		dmu_object_byteswap_t bswap =
4224		    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
4225		arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
4226		    byteswap_uint64_array :
4227		    dmu_ot_byteswap[bswap].ob_func;
4228		func(buf->b_data, hdr->b_size);
4229	}
4230
4231	arc_cksum_compute(buf, B_FALSE);
4232#ifdef illumos
4233	arc_buf_watch(buf);
4234#endif
4235
4236	if (hash_lock && zio->io_error == 0 &&
4237	    hdr->b_l1hdr.b_state == arc_anon) {
4238		/*
4239		 * Only call arc_access on anonymous buffers.  This is because
4240		 * if we've issued an I/O for an evicted buffer, we've already
4241		 * called arc_access (to prevent any simultaneous readers from
4242		 * getting confused).
4243		 */
4244		arc_access(hdr, hash_lock);
4245	}
4246
4247	/* create copies of the data buffer for the callers */
4248	abuf = buf;
4249	for (acb = callback_list; acb; acb = acb->acb_next) {
4250		if (acb->acb_done) {
4251			if (abuf == NULL) {
4252				ARCSTAT_BUMP(arcstat_duplicate_reads);
4253				abuf = arc_buf_clone(buf);
4254			}
4255			acb->acb_buf = abuf;
4256			abuf = NULL;
4257		}
4258	}
4259	hdr->b_l1hdr.b_acb = NULL;
4260	hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
4261	ASSERT(!HDR_BUF_AVAILABLE(hdr));
4262	if (abuf == buf) {
4263		ASSERT(buf->b_efunc == NULL);
4264		ASSERT(hdr->b_l1hdr.b_datacnt == 1);
4265		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
4266	}
4267
4268	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
4269	    callback_list != NULL);
4270
4271	if (zio->io_error != 0) {
4272		hdr->b_flags |= ARC_FLAG_IO_ERROR;
4273		if (hdr->b_l1hdr.b_state != arc_anon)
4274			arc_change_state(arc_anon, hdr, hash_lock);
4275		if (HDR_IN_HASH_TABLE(hdr))
4276			buf_hash_remove(hdr);
4277		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4278	}
4279
4280	/*
4281	 * Broadcast before we drop the hash_lock to avoid the possibility
4282	 * that the hdr (and hence the cv) might be freed before we get to
4283	 * the cv_broadcast().
4284	 */
4285	cv_broadcast(&hdr->b_l1hdr.b_cv);
4286
4287	if (hash_lock != NULL) {
4288		mutex_exit(hash_lock);
4289	} else {
4290		/*
4291		 * This block was freed while we waited for the read to
4292		 * complete.  It has been removed from the hash table and
4293		 * moved to the anonymous state (so that it won't show up
4294		 * in the cache).
4295		 */
4296		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
4297		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4298	}
4299
4300	/* execute each callback and free its structure */
4301	while ((acb = callback_list) != NULL) {
4302		if (acb->acb_done)
4303			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
4304
4305		if (acb->acb_zio_dummy != NULL) {
4306			acb->acb_zio_dummy->io_error = zio->io_error;
4307			zio_nowait(acb->acb_zio_dummy);
4308		}
4309
4310		callback_list = acb->acb_next;
4311		kmem_free(acb, sizeof (arc_callback_t));
4312	}
4313
4314	if (freeable)
4315		arc_hdr_destroy(hdr);
4316}
4317
4318/*
4319 * "Read" the block at the specified DVA (in bp) via the
4320 * cache.  If the block is found in the cache, invoke the provided
4321 * callback immediately and return.  Note that the `zio' parameter
4322 * in the callback will be NULL in this case, since no IO was
4323 * required.  If the block is not in the cache pass the read request
4324 * on to the spa with a substitute callback function, so that the
4325 * requested block will be added to the cache.
4326 *
4327 * If a read request arrives for a block that has a read in-progress,
4328 * either wait for the in-progress read to complete (and return the
4329 * results); or, if this is a read with a "done" func, add a record
4330 * to the read to invoke the "done" func when the read completes,
4331 * and return; or just return.
4332 *
4333 * arc_read_done() will invoke all the requested "done" functions
4334 * for readers of this block.
4335 */
4336int
4337arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
4338    void *private, zio_priority_t priority, int zio_flags,
4339    arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
4340{
4341	arc_buf_hdr_t *hdr = NULL;
4342	arc_buf_t *buf = NULL;
4343	kmutex_t *hash_lock = NULL;
4344	zio_t *rzio;
4345	uint64_t guid = spa_load_guid(spa);
4346
4347	ASSERT(!BP_IS_EMBEDDED(bp) ||
4348	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
4349
4350top:
4351	if (!BP_IS_EMBEDDED(bp)) {
4352		/*
4353		 * Embedded BP's have no DVA and require no I/O to "read".
4354		 * Create an anonymous arc buf to back it.
4355		 */
4356		hdr = buf_hash_find(guid, bp, &hash_lock);
4357	}
4358
4359	if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_datacnt > 0) {
4360
4361		*arc_flags |= ARC_FLAG_CACHED;
4362
4363		if (HDR_IO_IN_PROGRESS(hdr)) {
4364
4365			if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
4366			    priority == ZIO_PRIORITY_SYNC_READ) {
4367				/*
4368				 * This sync read must wait for an
4369				 * in-progress async read (e.g. a predictive
4370				 * prefetch).  Async reads are queued
4371				 * separately at the vdev_queue layer, so
4372				 * this is a form of priority inversion.
4373				 * Ideally, we would "inherit" the demand
4374				 * i/o's priority by moving the i/o from
4375				 * the async queue to the synchronous queue,
4376				 * but there is currently no mechanism to do
4377				 * so.  Track this so that we can evaluate
4378				 * the magnitude of this potential performance
4379				 * problem.
4380				 *
4381				 * Note that if the prefetch i/o is already
4382				 * active (has been issued to the device),
4383				 * the prefetch improved performance, because
4384				 * we issued it sooner than we would have
4385				 * without the prefetch.
4386				 */
4387				DTRACE_PROBE1(arc__sync__wait__for__async,
4388				    arc_buf_hdr_t *, hdr);
4389				ARCSTAT_BUMP(arcstat_sync_wait_for_async);
4390			}
4391			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
4392				hdr->b_flags &= ~ARC_FLAG_PREDICTIVE_PREFETCH;
4393			}
4394
4395			if (*arc_flags & ARC_FLAG_WAIT) {
4396				cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
4397				mutex_exit(hash_lock);
4398				goto top;
4399			}
4400			ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4401
4402			if (done) {
4403				arc_callback_t *acb = NULL;
4404
4405				acb = kmem_zalloc(sizeof (arc_callback_t),
4406				    KM_SLEEP);
4407				acb->acb_done = done;
4408				acb->acb_private = private;
4409				if (pio != NULL)
4410					acb->acb_zio_dummy = zio_null(pio,
4411					    spa, NULL, NULL, NULL, zio_flags);
4412
4413				ASSERT(acb->acb_done != NULL);
4414				acb->acb_next = hdr->b_l1hdr.b_acb;
4415				hdr->b_l1hdr.b_acb = acb;
4416				add_reference(hdr, hash_lock, private);
4417				mutex_exit(hash_lock);
4418				return (0);
4419			}
4420			mutex_exit(hash_lock);
4421			return (0);
4422		}
4423
4424		ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4425		    hdr->b_l1hdr.b_state == arc_mfu);
4426
4427		if (done) {
4428			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
4429				/*
4430				 * This is a demand read which does not have to
4431				 * wait for i/o because we did a predictive
4432				 * prefetch i/o for it, which has completed.
4433				 */
4434				DTRACE_PROBE1(
4435				    arc__demand__hit__predictive__prefetch,
4436				    arc_buf_hdr_t *, hdr);
4437				ARCSTAT_BUMP(
4438				    arcstat_demand_hit_predictive_prefetch);
4439				hdr->b_flags &= ~ARC_FLAG_PREDICTIVE_PREFETCH;
4440			}
4441			add_reference(hdr, hash_lock, private);
4442			/*
4443			 * If this block is already in use, create a new
4444			 * copy of the data so that we will be guaranteed
4445			 * that arc_release() will always succeed.
4446			 */
4447			buf = hdr->b_l1hdr.b_buf;
4448			ASSERT(buf);
4449			ASSERT(buf->b_data);
4450			if (HDR_BUF_AVAILABLE(hdr)) {
4451				ASSERT(buf->b_efunc == NULL);
4452				hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
4453			} else {
4454				buf = arc_buf_clone(buf);
4455			}
4456
4457		} else if (*arc_flags & ARC_FLAG_PREFETCH &&
4458		    refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4459			hdr->b_flags |= ARC_FLAG_PREFETCH;
4460		}
4461		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
4462		arc_access(hdr, hash_lock);
4463		if (*arc_flags & ARC_FLAG_L2CACHE)
4464			hdr->b_flags |= ARC_FLAG_L2CACHE;
4465		if (*arc_flags & ARC_FLAG_L2COMPRESS)
4466			hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4467		mutex_exit(hash_lock);
4468		ARCSTAT_BUMP(arcstat_hits);
4469		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4470		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
4471		    data, metadata, hits);
4472
4473		if (done)
4474			done(NULL, buf, private);
4475	} else {
4476		uint64_t size = BP_GET_LSIZE(bp);
4477		arc_callback_t *acb;
4478		vdev_t *vd = NULL;
4479		uint64_t addr = 0;
4480		boolean_t devw = B_FALSE;
4481		enum zio_compress b_compress = ZIO_COMPRESS_OFF;
4482		int32_t b_asize = 0;
4483
4484		if (hdr == NULL) {
4485			/* this block is not in the cache */
4486			arc_buf_hdr_t *exists = NULL;
4487			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
4488			buf = arc_buf_alloc(spa, size, private, type);
4489			hdr = buf->b_hdr;
4490			if (!BP_IS_EMBEDDED(bp)) {
4491				hdr->b_dva = *BP_IDENTITY(bp);
4492				hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
4493				exists = buf_hash_insert(hdr, &hash_lock);
4494			}
4495			if (exists != NULL) {
4496				/* somebody beat us to the hash insert */
4497				mutex_exit(hash_lock);
4498				buf_discard_identity(hdr);
4499				(void) arc_buf_remove_ref(buf, private);
4500				goto top; /* restart the IO request */
4501			}
4502
4503			/*
4504			 * If there is a callback, we pass our reference to
4505			 * it; otherwise we remove our reference.
4506			 */
4507			if (done == NULL) {
4508				(void) remove_reference(hdr, hash_lock,
4509				    private);
4510			}
4511			if (*arc_flags & ARC_FLAG_PREFETCH)
4512				hdr->b_flags |= ARC_FLAG_PREFETCH;
4513			if (*arc_flags & ARC_FLAG_L2CACHE)
4514				hdr->b_flags |= ARC_FLAG_L2CACHE;
4515			if (*arc_flags & ARC_FLAG_L2COMPRESS)
4516				hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4517			if (BP_GET_LEVEL(bp) > 0)
4518				hdr->b_flags |= ARC_FLAG_INDIRECT;
4519		} else {
4520			/*
4521			 * This block is in the ghost cache. If it was L2-only
4522			 * (and thus didn't have an L1 hdr), we realloc the
4523			 * header to add an L1 hdr.
4524			 */
4525			if (!HDR_HAS_L1HDR(hdr)) {
4526				hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
4527				    hdr_full_cache);
4528			}
4529
4530			ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
4531			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4532			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4533			ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
4534
4535			/*
4536			 * If there is a callback, we pass a reference to it.
4537			 */
4538			if (done != NULL)
4539				add_reference(hdr, hash_lock, private);
4540			if (*arc_flags & ARC_FLAG_PREFETCH)
4541				hdr->b_flags |= ARC_FLAG_PREFETCH;
4542			if (*arc_flags & ARC_FLAG_L2CACHE)
4543				hdr->b_flags |= ARC_FLAG_L2CACHE;
4544			if (*arc_flags & ARC_FLAG_L2COMPRESS)
4545				hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4546			buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
4547			buf->b_hdr = hdr;
4548			buf->b_data = NULL;
4549			buf->b_efunc = NULL;
4550			buf->b_private = NULL;
4551			buf->b_next = NULL;
4552			hdr->b_l1hdr.b_buf = buf;
4553			ASSERT0(hdr->b_l1hdr.b_datacnt);
4554			hdr->b_l1hdr.b_datacnt = 1;
4555			arc_get_data_buf(buf);
4556			arc_access(hdr, hash_lock);
4557		}
4558
4559		if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
4560			hdr->b_flags |= ARC_FLAG_PREDICTIVE_PREFETCH;
4561		ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
4562
4563		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
4564		acb->acb_done = done;
4565		acb->acb_private = private;
4566
4567		ASSERT(hdr->b_l1hdr.b_acb == NULL);
4568		hdr->b_l1hdr.b_acb = acb;
4569		hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
4570
4571		if (HDR_HAS_L2HDR(hdr) &&
4572		    (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
4573			devw = hdr->b_l2hdr.b_dev->l2ad_writing;
4574			addr = hdr->b_l2hdr.b_daddr;
4575			b_compress = hdr->b_l2hdr.b_compress;
4576			b_asize = hdr->b_l2hdr.b_asize;
4577			/*
4578			 * Lock out device removal.
4579			 */
4580			if (vdev_is_dead(vd) ||
4581			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
4582				vd = NULL;
4583		}
4584
4585		if (hash_lock != NULL)
4586			mutex_exit(hash_lock);
4587
4588		/*
4589		 * At this point, we have a level 1 cache miss.  Try again in
4590		 * L2ARC if possible.
4591		 */
4592		ASSERT3U(hdr->b_size, ==, size);
4593		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
4594		    uint64_t, size, zbookmark_phys_t *, zb);
4595		ARCSTAT_BUMP(arcstat_misses);
4596		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4597		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
4598		    data, metadata, misses);
4599#ifdef _KERNEL
4600		curthread->td_ru.ru_inblock++;
4601#endif
4602
4603		if (priority == ZIO_PRIORITY_ASYNC_READ)
4604			hdr->b_flags |= ARC_FLAG_PRIO_ASYNC_READ;
4605		else
4606			hdr->b_flags &= ~ARC_FLAG_PRIO_ASYNC_READ;
4607
4608		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
4609			/*
4610			 * Read from the L2ARC if the following are true:
4611			 * 1. The L2ARC vdev was previously cached.
4612			 * 2. This buffer still has L2ARC metadata.
4613			 * 3. This buffer isn't currently writing to the L2ARC.
4614			 * 4. The L2ARC entry wasn't evicted, which may
4615			 *    also have invalidated the vdev.
4616			 * 5. This isn't prefetch and l2arc_noprefetch is set.
4617			 */
4618			if (HDR_HAS_L2HDR(hdr) &&
4619			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
4620			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
4621				l2arc_read_callback_t *cb;
4622				void* b_data;
4623
4624				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
4625				ARCSTAT_BUMP(arcstat_l2_hits);
4626
4627				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
4628				    KM_SLEEP);
4629				cb->l2rcb_buf = buf;
4630				cb->l2rcb_spa = spa;
4631				cb->l2rcb_bp = *bp;
4632				cb->l2rcb_zb = *zb;
4633				cb->l2rcb_flags = zio_flags;
4634				cb->l2rcb_compress = b_compress;
4635				if (b_asize > hdr->b_size) {
4636					ASSERT3U(b_compress, ==,
4637					    ZIO_COMPRESS_OFF);
4638					b_data = zio_data_buf_alloc(b_asize);
4639					cb->l2rcb_data = b_data;
4640				} else {
4641					b_data = buf->b_data;
4642				}
4643
4644				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
4645				    addr + size < vd->vdev_psize -
4646				    VDEV_LABEL_END_SIZE);
4647
4648				/*
4649				 * l2arc read.  The SCL_L2ARC lock will be
4650				 * released by l2arc_read_done().
4651				 * Issue a null zio if the underlying buffer
4652				 * was squashed to zero size by compression.
4653				 */
4654				if (b_compress == ZIO_COMPRESS_EMPTY) {
4655					ASSERT3U(b_asize, ==, 0);
4656					rzio = zio_null(pio, spa, vd,
4657					    l2arc_read_done, cb,
4658					    zio_flags | ZIO_FLAG_DONT_CACHE |
4659					    ZIO_FLAG_CANFAIL |
4660					    ZIO_FLAG_DONT_PROPAGATE |
4661					    ZIO_FLAG_DONT_RETRY);
4662				} else {
4663					rzio = zio_read_phys(pio, vd, addr,
4664					    b_asize, b_data,
4665					    ZIO_CHECKSUM_OFF,
4666					    l2arc_read_done, cb, priority,
4667					    zio_flags | ZIO_FLAG_DONT_CACHE |
4668					    ZIO_FLAG_CANFAIL |
4669					    ZIO_FLAG_DONT_PROPAGATE |
4670					    ZIO_FLAG_DONT_RETRY, B_FALSE);
4671				}
4672				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
4673				    zio_t *, rzio);
4674				ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize);
4675
4676				if (*arc_flags & ARC_FLAG_NOWAIT) {
4677					zio_nowait(rzio);
4678					return (0);
4679				}
4680
4681				ASSERT(*arc_flags & ARC_FLAG_WAIT);
4682				if (zio_wait(rzio) == 0)
4683					return (0);
4684
4685				/* l2arc read error; goto zio_read() */
4686			} else {
4687				DTRACE_PROBE1(l2arc__miss,
4688				    arc_buf_hdr_t *, hdr);
4689				ARCSTAT_BUMP(arcstat_l2_misses);
4690				if (HDR_L2_WRITING(hdr))
4691					ARCSTAT_BUMP(arcstat_l2_rw_clash);
4692				spa_config_exit(spa, SCL_L2ARC, vd);
4693			}
4694		} else {
4695			if (vd != NULL)
4696				spa_config_exit(spa, SCL_L2ARC, vd);
4697			if (l2arc_ndev != 0) {
4698				DTRACE_PROBE1(l2arc__miss,
4699				    arc_buf_hdr_t *, hdr);
4700				ARCSTAT_BUMP(arcstat_l2_misses);
4701			}
4702		}
4703
4704		rzio = zio_read(pio, spa, bp, buf->b_data, size,
4705		    arc_read_done, buf, priority, zio_flags, zb);
4706
4707		if (*arc_flags & ARC_FLAG_WAIT)
4708			return (zio_wait(rzio));
4709
4710		ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4711		zio_nowait(rzio);
4712	}
4713	return (0);
4714}
4715
4716void
4717arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
4718{
4719	ASSERT(buf->b_hdr != NULL);
4720	ASSERT(buf->b_hdr->b_l1hdr.b_state != arc_anon);
4721	ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt) ||
4722	    func == NULL);
4723	ASSERT(buf->b_efunc == NULL);
4724	ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
4725
4726	buf->b_efunc = func;
4727	buf->b_private = private;
4728}
4729
4730/*
4731 * Notify the arc that a block was freed, and thus will never be used again.
4732 */
4733void
4734arc_freed(spa_t *spa, const blkptr_t *bp)
4735{
4736	arc_buf_hdr_t *hdr;
4737	kmutex_t *hash_lock;
4738	uint64_t guid = spa_load_guid(spa);
4739
4740	ASSERT(!BP_IS_EMBEDDED(bp));
4741
4742	hdr = buf_hash_find(guid, bp, &hash_lock);
4743	if (hdr == NULL)
4744		return;
4745	if (HDR_BUF_AVAILABLE(hdr)) {
4746		arc_buf_t *buf = hdr->b_l1hdr.b_buf;
4747		add_reference(hdr, hash_lock, FTAG);
4748		hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
4749		mutex_exit(hash_lock);
4750
4751		arc_release(buf, FTAG);
4752		(void) arc_buf_remove_ref(buf, FTAG);
4753	} else {
4754		mutex_exit(hash_lock);
4755	}
4756
4757}
4758
4759/*
4760 * Clear the user eviction callback set by arc_set_callback(), first calling
4761 * it if it exists.  Because the presence of a callback keeps an arc_buf cached
4762 * clearing the callback may result in the arc_buf being destroyed.  However,
4763 * it will not result in the *last* arc_buf being destroyed, hence the data
4764 * will remain cached in the ARC. We make a copy of the arc buffer here so
4765 * that we can process the callback without holding any locks.
4766 *
4767 * It's possible that the callback is already in the process of being cleared
4768 * by another thread.  In this case we can not clear the callback.
4769 *
4770 * Returns B_TRUE if the callback was successfully called and cleared.
4771 */
4772boolean_t
4773arc_clear_callback(arc_buf_t *buf)
4774{
4775	arc_buf_hdr_t *hdr;
4776	kmutex_t *hash_lock;
4777	arc_evict_func_t *efunc = buf->b_efunc;
4778	void *private = buf->b_private;
4779
4780	mutex_enter(&buf->b_evict_lock);
4781	hdr = buf->b_hdr;
4782	if (hdr == NULL) {
4783		/*
4784		 * We are in arc_do_user_evicts().
4785		 */
4786		ASSERT(buf->b_data == NULL);
4787		mutex_exit(&buf->b_evict_lock);
4788		return (B_FALSE);
4789	} else if (buf->b_data == NULL) {
4790		/*
4791		 * We are on the eviction list; process this buffer now
4792		 * but let arc_do_user_evicts() do the reaping.
4793		 */
4794		buf->b_efunc = NULL;
4795		mutex_exit(&buf->b_evict_lock);
4796		VERIFY0(efunc(private));
4797		return (B_TRUE);
4798	}
4799	hash_lock = HDR_LOCK(hdr);
4800	mutex_enter(hash_lock);
4801	hdr = buf->b_hdr;
4802	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4803
4804	ASSERT3U(refcount_count(&hdr->b_l1hdr.b_refcnt), <,
4805	    hdr->b_l1hdr.b_datacnt);
4806	ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4807	    hdr->b_l1hdr.b_state == arc_mfu);
4808
4809	buf->b_efunc = NULL;
4810	buf->b_private = NULL;
4811
4812	if (hdr->b_l1hdr.b_datacnt > 1) {
4813		mutex_exit(&buf->b_evict_lock);
4814		arc_buf_destroy(buf, TRUE);
4815	} else {
4816		ASSERT(buf == hdr->b_l1hdr.b_buf);
4817		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
4818		mutex_exit(&buf->b_evict_lock);
4819	}
4820
4821	mutex_exit(hash_lock);
4822	VERIFY0(efunc(private));
4823	return (B_TRUE);
4824}
4825
4826/*
4827 * Release this buffer from the cache, making it an anonymous buffer.  This
4828 * must be done after a read and prior to modifying the buffer contents.
4829 * If the buffer has more than one reference, we must make
4830 * a new hdr for the buffer.
4831 */
4832void
4833arc_release(arc_buf_t *buf, void *tag)
4834{
4835	arc_buf_hdr_t *hdr = buf->b_hdr;
4836
4837	/*
4838	 * It would be nice to assert that if it's DMU metadata (level >
4839	 * 0 || it's the dnode file), then it must be syncing context.
4840	 * But we don't know that information at this level.
4841	 */
4842
4843	mutex_enter(&buf->b_evict_lock);
4844
4845	ASSERT(HDR_HAS_L1HDR(hdr));
4846
4847	/*
4848	 * We don't grab the hash lock prior to this check, because if
4849	 * the buffer's header is in the arc_anon state, it won't be
4850	 * linked into the hash table.
4851	 */
4852	if (hdr->b_l1hdr.b_state == arc_anon) {
4853		mutex_exit(&buf->b_evict_lock);
4854		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4855		ASSERT(!HDR_IN_HASH_TABLE(hdr));
4856		ASSERT(!HDR_HAS_L2HDR(hdr));
4857		ASSERT(BUF_EMPTY(hdr));
4858		ASSERT3U(hdr->b_l1hdr.b_datacnt, ==, 1);
4859		ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
4860		ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
4861
4862		ASSERT3P(buf->b_efunc, ==, NULL);
4863		ASSERT3P(buf->b_private, ==, NULL);
4864
4865		hdr->b_l1hdr.b_arc_access = 0;
4866		arc_buf_thaw(buf);
4867
4868		return;
4869	}
4870
4871	kmutex_t *hash_lock = HDR_LOCK(hdr);
4872	mutex_enter(hash_lock);
4873
4874	/*
4875	 * This assignment is only valid as long as the hash_lock is
4876	 * held, we must be careful not to reference state or the
4877	 * b_state field after dropping the lock.
4878	 */
4879	arc_state_t *state = hdr->b_l1hdr.b_state;
4880	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4881	ASSERT3P(state, !=, arc_anon);
4882
4883	/* this buffer is not on any list */
4884	ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) > 0);
4885
4886	if (HDR_HAS_L2HDR(hdr)) {
4887		mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
4888
4889		/*
4890		 * We have to recheck this conditional again now that
4891		 * we're holding the l2ad_mtx to prevent a race with
4892		 * another thread which might be concurrently calling
4893		 * l2arc_evict(). In that case, l2arc_evict() might have
4894		 * destroyed the header's L2 portion as we were waiting
4895		 * to acquire the l2ad_mtx.
4896		 */
4897		if (HDR_HAS_L2HDR(hdr)) {
4898			l2arc_trim(hdr);
4899			arc_hdr_l2hdr_destroy(hdr);
4900		}
4901
4902		mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
4903	}
4904
4905	/*
4906	 * Do we have more than one buf?
4907	 */
4908	if (hdr->b_l1hdr.b_datacnt > 1) {
4909		arc_buf_hdr_t *nhdr;
4910		arc_buf_t **bufp;
4911		uint64_t blksz = hdr->b_size;
4912		uint64_t spa = hdr->b_spa;
4913		arc_buf_contents_t type = arc_buf_type(hdr);
4914		uint32_t flags = hdr->b_flags;
4915
4916		ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
4917		/*
4918		 * Pull the data off of this hdr and attach it to
4919		 * a new anonymous hdr.
4920		 */
4921		(void) remove_reference(hdr, hash_lock, tag);
4922		bufp = &hdr->b_l1hdr.b_buf;
4923		while (*bufp != buf)
4924			bufp = &(*bufp)->b_next;
4925		*bufp = buf->b_next;
4926		buf->b_next = NULL;
4927
4928		ASSERT3P(state, !=, arc_l2c_only);
4929
4930		(void) refcount_remove_many(
4931		    &state->arcs_size, hdr->b_size, buf);
4932
4933		if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
4934			ASSERT3P(state, !=, arc_l2c_only);
4935			uint64_t *size = &state->arcs_lsize[type];
4936			ASSERT3U(*size, >=, hdr->b_size);
4937			atomic_add_64(size, -hdr->b_size);
4938		}
4939
4940		/*
4941		 * We're releasing a duplicate user data buffer, update
4942		 * our statistics accordingly.
4943		 */
4944		if (HDR_ISTYPE_DATA(hdr)) {
4945			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
4946			ARCSTAT_INCR(arcstat_duplicate_buffers_size,
4947			    -hdr->b_size);
4948		}
4949		hdr->b_l1hdr.b_datacnt -= 1;
4950		arc_cksum_verify(buf);
4951#ifdef illumos
4952		arc_buf_unwatch(buf);
4953#endif
4954
4955		mutex_exit(hash_lock);
4956
4957		nhdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
4958		nhdr->b_size = blksz;
4959		nhdr->b_spa = spa;
4960
4961		nhdr->b_flags = flags & ARC_FLAG_L2_WRITING;
4962		nhdr->b_flags |= arc_bufc_to_flags(type);
4963		nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
4964
4965		nhdr->b_l1hdr.b_buf = buf;
4966		nhdr->b_l1hdr.b_datacnt = 1;
4967		nhdr->b_l1hdr.b_state = arc_anon;
4968		nhdr->b_l1hdr.b_arc_access = 0;
4969		nhdr->b_l1hdr.b_tmp_cdata = NULL;
4970		nhdr->b_freeze_cksum = NULL;
4971
4972		(void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
4973		buf->b_hdr = nhdr;
4974		mutex_exit(&buf->b_evict_lock);
4975		(void) refcount_add_many(&arc_anon->arcs_size, blksz, buf);
4976	} else {
4977		mutex_exit(&buf->b_evict_lock);
4978		ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
4979		/* protected by hash lock, or hdr is on arc_anon */
4980		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4981		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4982		arc_change_state(arc_anon, hdr, hash_lock);
4983		hdr->b_l1hdr.b_arc_access = 0;
4984		mutex_exit(hash_lock);
4985
4986		buf_discard_identity(hdr);
4987		arc_buf_thaw(buf);
4988	}
4989	buf->b_efunc = NULL;
4990	buf->b_private = NULL;
4991}
4992
4993int
4994arc_released(arc_buf_t *buf)
4995{
4996	int released;
4997
4998	mutex_enter(&buf->b_evict_lock);
4999	released = (buf->b_data != NULL &&
5000	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
5001	mutex_exit(&buf->b_evict_lock);
5002	return (released);
5003}
5004
5005#ifdef ZFS_DEBUG
5006int
5007arc_referenced(arc_buf_t *buf)
5008{
5009	int referenced;
5010
5011	mutex_enter(&buf->b_evict_lock);
5012	referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
5013	mutex_exit(&buf->b_evict_lock);
5014	return (referenced);
5015}
5016#endif
5017
5018static void
5019arc_write_ready(zio_t *zio)
5020{
5021	arc_write_callback_t *callback = zio->io_private;
5022	arc_buf_t *buf = callback->awcb_buf;
5023	arc_buf_hdr_t *hdr = buf->b_hdr;
5024
5025	ASSERT(HDR_HAS_L1HDR(hdr));
5026	ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
5027	ASSERT(hdr->b_l1hdr.b_datacnt > 0);
5028	callback->awcb_ready(zio, buf, callback->awcb_private);
5029
5030	/*
5031	 * If the IO is already in progress, then this is a re-write
5032	 * attempt, so we need to thaw and re-compute the cksum.
5033	 * It is the responsibility of the callback to handle the
5034	 * accounting for any re-write attempt.
5035	 */
5036	if (HDR_IO_IN_PROGRESS(hdr)) {
5037		mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
5038		if (hdr->b_freeze_cksum != NULL) {
5039			kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
5040			hdr->b_freeze_cksum = NULL;
5041		}
5042		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
5043	}
5044	arc_cksum_compute(buf, B_FALSE);
5045	hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
5046}
5047
5048/*
5049 * The SPA calls this callback for each physical write that happens on behalf
5050 * of a logical write.  See the comment in dbuf_write_physdone() for details.
5051 */
5052static void
5053arc_write_physdone(zio_t *zio)
5054{
5055	arc_write_callback_t *cb = zio->io_private;
5056	if (cb->awcb_physdone != NULL)
5057		cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
5058}
5059
5060static void
5061arc_write_done(zio_t *zio)
5062{
5063	arc_write_callback_t *callback = zio->io_private;
5064	arc_buf_t *buf = callback->awcb_buf;
5065	arc_buf_hdr_t *hdr = buf->b_hdr;
5066
5067	ASSERT(hdr->b_l1hdr.b_acb == NULL);
5068
5069	if (zio->io_error == 0) {
5070		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5071			buf_discard_identity(hdr);
5072		} else {
5073			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
5074			hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
5075		}
5076	} else {
5077		ASSERT(BUF_EMPTY(hdr));
5078	}
5079
5080	/*
5081	 * If the block to be written was all-zero or compressed enough to be
5082	 * embedded in the BP, no write was performed so there will be no
5083	 * dva/birth/checksum.  The buffer must therefore remain anonymous
5084	 * (and uncached).
5085	 */
5086	if (!BUF_EMPTY(hdr)) {
5087		arc_buf_hdr_t *exists;
5088		kmutex_t *hash_lock;
5089
5090		ASSERT(zio->io_error == 0);
5091
5092		arc_cksum_verify(buf);
5093
5094		exists = buf_hash_insert(hdr, &hash_lock);
5095		if (exists != NULL) {
5096			/*
5097			 * This can only happen if we overwrite for
5098			 * sync-to-convergence, because we remove
5099			 * buffers from the hash table when we arc_free().
5100			 */
5101			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
5102				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5103					panic("bad overwrite, hdr=%p exists=%p",
5104					    (void *)hdr, (void *)exists);
5105				ASSERT(refcount_is_zero(
5106				    &exists->b_l1hdr.b_refcnt));
5107				arc_change_state(arc_anon, exists, hash_lock);
5108				mutex_exit(hash_lock);
5109				arc_hdr_destroy(exists);
5110				exists = buf_hash_insert(hdr, &hash_lock);
5111				ASSERT3P(exists, ==, NULL);
5112			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
5113				/* nopwrite */
5114				ASSERT(zio->io_prop.zp_nopwrite);
5115				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5116					panic("bad nopwrite, hdr=%p exists=%p",
5117					    (void *)hdr, (void *)exists);
5118			} else {
5119				/* Dedup */
5120				ASSERT(hdr->b_l1hdr.b_datacnt == 1);
5121				ASSERT(hdr->b_l1hdr.b_state == arc_anon);
5122				ASSERT(BP_GET_DEDUP(zio->io_bp));
5123				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
5124			}
5125		}
5126		hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
5127		/* if it's not anon, we are doing a scrub */
5128		if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
5129			arc_access(hdr, hash_lock);
5130		mutex_exit(hash_lock);
5131	} else {
5132		hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
5133	}
5134
5135	ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5136	callback->awcb_done(zio, buf, callback->awcb_private);
5137
5138	kmem_free(callback, sizeof (arc_write_callback_t));
5139}
5140
5141zio_t *
5142arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
5143    blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
5144    const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone,
5145    arc_done_func_t *done, void *private, zio_priority_t priority,
5146    int zio_flags, const zbookmark_phys_t *zb)
5147{
5148	arc_buf_hdr_t *hdr = buf->b_hdr;
5149	arc_write_callback_t *callback;
5150	zio_t *zio;
5151
5152	ASSERT(ready != NULL);
5153	ASSERT(done != NULL);
5154	ASSERT(!HDR_IO_ERROR(hdr));
5155	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5156	ASSERT(hdr->b_l1hdr.b_acb == NULL);
5157	ASSERT(hdr->b_l1hdr.b_datacnt > 0);
5158	if (l2arc)
5159		hdr->b_flags |= ARC_FLAG_L2CACHE;
5160	if (l2arc_compress)
5161		hdr->b_flags |= ARC_FLAG_L2COMPRESS;
5162	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
5163	callback->awcb_ready = ready;
5164	callback->awcb_physdone = physdone;
5165	callback->awcb_done = done;
5166	callback->awcb_private = private;
5167	callback->awcb_buf = buf;
5168
5169	zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
5170	    arc_write_ready, arc_write_physdone, arc_write_done, callback,
5171	    priority, zio_flags, zb);
5172
5173	return (zio);
5174}
5175
5176static int
5177arc_memory_throttle(uint64_t reserve, uint64_t txg)
5178{
5179#ifdef _KERNEL
5180	uint64_t available_memory = ptob(freemem);
5181	static uint64_t page_load = 0;
5182	static uint64_t last_txg = 0;
5183
5184#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
5185	available_memory =
5186	    MIN(available_memory, ptob(vmem_size(heap_arena, VMEM_FREE)));
5187#endif
5188
5189	if (freemem > (uint64_t)physmem * arc_lotsfree_percent / 100)
5190		return (0);
5191
5192	if (txg > last_txg) {
5193		last_txg = txg;
5194		page_load = 0;
5195	}
5196	/*
5197	 * If we are in pageout, we know that memory is already tight,
5198	 * the arc is already going to be evicting, so we just want to
5199	 * continue to let page writes occur as quickly as possible.
5200	 */
5201	if (curproc == pageproc) {
5202		if (page_load > MAX(ptob(minfree), available_memory) / 4)
5203			return (SET_ERROR(ERESTART));
5204		/* Note: reserve is inflated, so we deflate */
5205		page_load += reserve / 8;
5206		return (0);
5207	} else if (page_load > 0 && arc_reclaim_needed()) {
5208		/* memory is low, delay before restarting */
5209		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
5210		return (SET_ERROR(EAGAIN));
5211	}
5212	page_load = 0;
5213#endif
5214	return (0);
5215}
5216
5217void
5218arc_tempreserve_clear(uint64_t reserve)
5219{
5220	atomic_add_64(&arc_tempreserve, -reserve);
5221	ASSERT((int64_t)arc_tempreserve >= 0);
5222}
5223
5224int
5225arc_tempreserve_space(uint64_t reserve, uint64_t txg)
5226{
5227	int error;
5228	uint64_t anon_size;
5229
5230	if (reserve > arc_c/4 && !arc_no_grow) {
5231		arc_c = MIN(arc_c_max, reserve * 4);
5232		DTRACE_PROBE1(arc__set_reserve, uint64_t, arc_c);
5233	}
5234	if (reserve > arc_c)
5235		return (SET_ERROR(ENOMEM));
5236
5237	/*
5238	 * Don't count loaned bufs as in flight dirty data to prevent long
5239	 * network delays from blocking transactions that are ready to be
5240	 * assigned to a txg.
5241	 */
5242	anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
5243	    arc_loaned_bytes), 0);
5244
5245	/*
5246	 * Writes will, almost always, require additional memory allocations
5247	 * in order to compress/encrypt/etc the data.  We therefore need to
5248	 * make sure that there is sufficient available memory for this.
5249	 */
5250	error = arc_memory_throttle(reserve, txg);
5251	if (error != 0)
5252		return (error);
5253
5254	/*
5255	 * Throttle writes when the amount of dirty data in the cache
5256	 * gets too large.  We try to keep the cache less than half full
5257	 * of dirty blocks so that our sync times don't grow too large.
5258	 * Note: if two requests come in concurrently, we might let them
5259	 * both succeed, when one of them should fail.  Not a huge deal.
5260	 */
5261
5262	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
5263	    anon_size > arc_c / 4) {
5264		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
5265		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
5266		    arc_tempreserve>>10,
5267		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
5268		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
5269		    reserve>>10, arc_c>>10);
5270		return (SET_ERROR(ERESTART));
5271	}
5272	atomic_add_64(&arc_tempreserve, reserve);
5273	return (0);
5274}
5275
5276static void
5277arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
5278    kstat_named_t *evict_data, kstat_named_t *evict_metadata)
5279{
5280	size->value.ui64 = refcount_count(&state->arcs_size);
5281	evict_data->value.ui64 = state->arcs_lsize[ARC_BUFC_DATA];
5282	evict_metadata->value.ui64 = state->arcs_lsize[ARC_BUFC_METADATA];
5283}
5284
5285static int
5286arc_kstat_update(kstat_t *ksp, int rw)
5287{
5288	arc_stats_t *as = ksp->ks_data;
5289
5290	if (rw == KSTAT_WRITE) {
5291		return (EACCES);
5292	} else {
5293		arc_kstat_update_state(arc_anon,
5294		    &as->arcstat_anon_size,
5295		    &as->arcstat_anon_evictable_data,
5296		    &as->arcstat_anon_evictable_metadata);
5297		arc_kstat_update_state(arc_mru,
5298		    &as->arcstat_mru_size,
5299		    &as->arcstat_mru_evictable_data,
5300		    &as->arcstat_mru_evictable_metadata);
5301		arc_kstat_update_state(arc_mru_ghost,
5302		    &as->arcstat_mru_ghost_size,
5303		    &as->arcstat_mru_ghost_evictable_data,
5304		    &as->arcstat_mru_ghost_evictable_metadata);
5305		arc_kstat_update_state(arc_mfu,
5306		    &as->arcstat_mfu_size,
5307		    &as->arcstat_mfu_evictable_data,
5308		    &as->arcstat_mfu_evictable_metadata);
5309		arc_kstat_update_state(arc_mfu_ghost,
5310		    &as->arcstat_mfu_ghost_size,
5311		    &as->arcstat_mfu_ghost_evictable_data,
5312		    &as->arcstat_mfu_ghost_evictable_metadata);
5313	}
5314
5315	return (0);
5316}
5317
5318/*
5319 * This function *must* return indices evenly distributed between all
5320 * sublists of the multilist. This is needed due to how the ARC eviction
5321 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
5322 * distributed between all sublists and uses this assumption when
5323 * deciding which sublist to evict from and how much to evict from it.
5324 */
5325unsigned int
5326arc_state_multilist_index_func(multilist_t *ml, void *obj)
5327{
5328	arc_buf_hdr_t *hdr = obj;
5329
5330	/*
5331	 * We rely on b_dva to generate evenly distributed index
5332	 * numbers using buf_hash below. So, as an added precaution,
5333	 * let's make sure we never add empty buffers to the arc lists.
5334	 */
5335	ASSERT(!BUF_EMPTY(hdr));
5336
5337	/*
5338	 * The assumption here, is the hash value for a given
5339	 * arc_buf_hdr_t will remain constant throughout it's lifetime
5340	 * (i.e. it's b_spa, b_dva, and b_birth fields don't change).
5341	 * Thus, we don't need to store the header's sublist index
5342	 * on insertion, as this index can be recalculated on removal.
5343	 *
5344	 * Also, the low order bits of the hash value are thought to be
5345	 * distributed evenly. Otherwise, in the case that the multilist
5346	 * has a power of two number of sublists, each sublists' usage
5347	 * would not be evenly distributed.
5348	 */
5349	return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
5350	    multilist_get_num_sublists(ml));
5351}
5352
5353#ifdef _KERNEL
5354static eventhandler_tag arc_event_lowmem = NULL;
5355
5356static void
5357arc_lowmem(void *arg __unused, int howto __unused)
5358{
5359
5360	mutex_enter(&arc_reclaim_lock);
5361	/* XXX: Memory deficit should be passed as argument. */
5362	needfree = btoc(arc_c >> arc_shrink_shift);
5363	DTRACE_PROBE(arc__needfree);
5364	cv_signal(&arc_reclaim_thread_cv);
5365
5366	/*
5367	 * It is unsafe to block here in arbitrary threads, because we can come
5368	 * here from ARC itself and may hold ARC locks and thus risk a deadlock
5369	 * with ARC reclaim thread.
5370	 */
5371	if (curproc == pageproc)
5372		(void) cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
5373	mutex_exit(&arc_reclaim_lock);
5374}
5375#endif
5376
5377void
5378arc_init(void)
5379{
5380	int i, prefetch_tunable_set = 0;
5381
5382	mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
5383	cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
5384	cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
5385
5386	mutex_init(&arc_user_evicts_lock, NULL, MUTEX_DEFAULT, NULL);
5387	cv_init(&arc_user_evicts_cv, NULL, CV_DEFAULT, NULL);
5388
5389	/* Convert seconds to clock ticks */
5390	arc_min_prefetch_lifespan = 1 * hz;
5391
5392	/* Start out with 1/8 of all memory */
5393	arc_c = kmem_size() / 8;
5394
5395#ifdef illumos
5396#ifdef _KERNEL
5397	/*
5398	 * On architectures where the physical memory can be larger
5399	 * than the addressable space (intel in 32-bit mode), we may
5400	 * need to limit the cache to 1/8 of VM size.
5401	 */
5402	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
5403#endif
5404#endif	/* illumos */
5405	/* set min cache to 1/32 of all memory, or arc_abs_min, whichever is more */
5406	arc_c_min = MAX(arc_c / 4, arc_abs_min);
5407	/* set max to 1/2 of all memory, or all but 1GB, whichever is more */
5408	if (arc_c * 8 >= 1 << 30)
5409		arc_c_max = (arc_c * 8) - (1 << 30);
5410	else
5411		arc_c_max = arc_c_min;
5412	arc_c_max = MAX(arc_c * 5, arc_c_max);
5413
5414	/*
5415	 * In userland, there's only the memory pressure that we artificially
5416	 * create (see arc_available_memory()).  Don't let arc_c get too
5417	 * small, because it can cause transactions to be larger than
5418	 * arc_c, causing arc_tempreserve_space() to fail.
5419	 */
5420#ifndef _KERNEL
5421	arc_c_min = arc_c_max / 2;
5422#endif
5423
5424#ifdef _KERNEL
5425	/*
5426	 * Allow the tunables to override our calculations if they are
5427	 * reasonable.
5428	 */
5429	if (zfs_arc_max > arc_abs_min && zfs_arc_max < kmem_size())
5430		arc_c_max = zfs_arc_max;
5431	if (zfs_arc_min > arc_abs_min && zfs_arc_min <= arc_c_max)
5432		arc_c_min = zfs_arc_min;
5433#endif
5434
5435	arc_c = arc_c_max;
5436	arc_p = (arc_c >> 1);
5437
5438	/* limit meta-data to 1/4 of the arc capacity */
5439	arc_meta_limit = arc_c_max / 4;
5440
5441	/* Allow the tunable to override if it is reasonable */
5442	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
5443		arc_meta_limit = zfs_arc_meta_limit;
5444
5445	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
5446		arc_c_min = arc_meta_limit / 2;
5447
5448	if (zfs_arc_meta_min > 0) {
5449		arc_meta_min = zfs_arc_meta_min;
5450	} else {
5451		arc_meta_min = arc_c_min / 2;
5452	}
5453
5454	if (zfs_arc_grow_retry > 0)
5455		arc_grow_retry = zfs_arc_grow_retry;
5456
5457	if (zfs_arc_shrink_shift > 0)
5458		arc_shrink_shift = zfs_arc_shrink_shift;
5459
5460	/*
5461	 * Ensure that arc_no_grow_shift is less than arc_shrink_shift.
5462	 */
5463	if (arc_no_grow_shift >= arc_shrink_shift)
5464		arc_no_grow_shift = arc_shrink_shift - 1;
5465
5466	if (zfs_arc_p_min_shift > 0)
5467		arc_p_min_shift = zfs_arc_p_min_shift;
5468
5469	if (zfs_arc_num_sublists_per_state < 1)
5470		zfs_arc_num_sublists_per_state = MAX(max_ncpus, 1);
5471
5472	/* if kmem_flags are set, lets try to use less memory */
5473	if (kmem_debugging())
5474		arc_c = arc_c / 2;
5475	if (arc_c < arc_c_min)
5476		arc_c = arc_c_min;
5477
5478	zfs_arc_min = arc_c_min;
5479	zfs_arc_max = arc_c_max;
5480
5481	arc_anon = &ARC_anon;
5482	arc_mru = &ARC_mru;
5483	arc_mru_ghost = &ARC_mru_ghost;
5484	arc_mfu = &ARC_mfu;
5485	arc_mfu_ghost = &ARC_mfu_ghost;
5486	arc_l2c_only = &ARC_l2c_only;
5487	arc_size = 0;
5488
5489	multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
5490	    sizeof (arc_buf_hdr_t),
5491	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5492	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5493	multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
5494	    sizeof (arc_buf_hdr_t),
5495	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5496	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5497	multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
5498	    sizeof (arc_buf_hdr_t),
5499	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5500	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5501	multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
5502	    sizeof (arc_buf_hdr_t),
5503	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5504	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5505	multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
5506	    sizeof (arc_buf_hdr_t),
5507	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5508	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5509	multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
5510	    sizeof (arc_buf_hdr_t),
5511	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5512	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5513	multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
5514	    sizeof (arc_buf_hdr_t),
5515	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5516	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5517	multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
5518	    sizeof (arc_buf_hdr_t),
5519	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5520	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5521	multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
5522	    sizeof (arc_buf_hdr_t),
5523	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5524	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5525	multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
5526	    sizeof (arc_buf_hdr_t),
5527	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5528	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5529
5530	refcount_create(&arc_anon->arcs_size);
5531	refcount_create(&arc_mru->arcs_size);
5532	refcount_create(&arc_mru_ghost->arcs_size);
5533	refcount_create(&arc_mfu->arcs_size);
5534	refcount_create(&arc_mfu_ghost->arcs_size);
5535	refcount_create(&arc_l2c_only->arcs_size);
5536
5537	buf_init();
5538
5539	arc_reclaim_thread_exit = FALSE;
5540	arc_user_evicts_thread_exit = FALSE;
5541	arc_eviction_list = NULL;
5542	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
5543
5544	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
5545	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
5546
5547	if (arc_ksp != NULL) {
5548		arc_ksp->ks_data = &arc_stats;
5549		arc_ksp->ks_update = arc_kstat_update;
5550		kstat_install(arc_ksp);
5551	}
5552
5553	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
5554	    TS_RUN, minclsyspri);
5555
5556#ifdef _KERNEL
5557	arc_event_lowmem = EVENTHANDLER_REGISTER(vm_lowmem, arc_lowmem, NULL,
5558	    EVENTHANDLER_PRI_FIRST);
5559#endif
5560
5561	(void) thread_create(NULL, 0, arc_user_evicts_thread, NULL, 0, &p0,
5562	    TS_RUN, minclsyspri);
5563
5564	arc_dead = FALSE;
5565	arc_warm = B_FALSE;
5566
5567	/*
5568	 * Calculate maximum amount of dirty data per pool.
5569	 *
5570	 * If it has been set by /etc/system, take that.
5571	 * Otherwise, use a percentage of physical memory defined by
5572	 * zfs_dirty_data_max_percent (default 10%) with a cap at
5573	 * zfs_dirty_data_max_max (default 4GB).
5574	 */
5575	if (zfs_dirty_data_max == 0) {
5576		zfs_dirty_data_max = ptob(physmem) *
5577		    zfs_dirty_data_max_percent / 100;
5578		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
5579		    zfs_dirty_data_max_max);
5580	}
5581
5582#ifdef _KERNEL
5583	if (TUNABLE_INT_FETCH("vfs.zfs.prefetch_disable", &zfs_prefetch_disable))
5584		prefetch_tunable_set = 1;
5585
5586#ifdef __i386__
5587	if (prefetch_tunable_set == 0) {
5588		printf("ZFS NOTICE: Prefetch is disabled by default on i386 "
5589		    "-- to enable,\n");
5590		printf("            add \"vfs.zfs.prefetch_disable=0\" "
5591		    "to /boot/loader.conf.\n");
5592		zfs_prefetch_disable = 1;
5593	}
5594#else
5595	if ((((uint64_t)physmem * PAGESIZE) < (1ULL << 32)) &&
5596	    prefetch_tunable_set == 0) {
5597		printf("ZFS NOTICE: Prefetch is disabled by default if less "
5598		    "than 4GB of RAM is present;\n"
5599		    "            to enable, add \"vfs.zfs.prefetch_disable=0\" "
5600		    "to /boot/loader.conf.\n");
5601		zfs_prefetch_disable = 1;
5602	}
5603#endif
5604	/* Warn about ZFS memory and address space requirements. */
5605	if (((uint64_t)physmem * PAGESIZE) < (256 + 128 + 64) * (1 << 20)) {
5606		printf("ZFS WARNING: Recommended minimum RAM size is 512MB; "
5607		    "expect unstable behavior.\n");
5608	}
5609	if (kmem_size() < 512 * (1 << 20)) {
5610		printf("ZFS WARNING: Recommended minimum kmem_size is 512MB; "
5611		    "expect unstable behavior.\n");
5612		printf("             Consider tuning vm.kmem_size and "
5613		    "vm.kmem_size_max\n");
5614		printf("             in /boot/loader.conf.\n");
5615	}
5616#endif
5617}
5618
5619void
5620arc_fini(void)
5621{
5622	mutex_enter(&arc_reclaim_lock);
5623	arc_reclaim_thread_exit = TRUE;
5624	/*
5625	 * The reclaim thread will set arc_reclaim_thread_exit back to
5626	 * FALSE when it is finished exiting; we're waiting for that.
5627	 */
5628	while (arc_reclaim_thread_exit) {
5629		cv_signal(&arc_reclaim_thread_cv);
5630		cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
5631	}
5632	mutex_exit(&arc_reclaim_lock);
5633
5634	mutex_enter(&arc_user_evicts_lock);
5635	arc_user_evicts_thread_exit = TRUE;
5636	/*
5637	 * The user evicts thread will set arc_user_evicts_thread_exit
5638	 * to FALSE when it is finished exiting; we're waiting for that.
5639	 */
5640	while (arc_user_evicts_thread_exit) {
5641		cv_signal(&arc_user_evicts_cv);
5642		cv_wait(&arc_user_evicts_cv, &arc_user_evicts_lock);
5643	}
5644	mutex_exit(&arc_user_evicts_lock);
5645
5646	/* Use TRUE to ensure *all* buffers are evicted */
5647	arc_flush(NULL, TRUE);
5648
5649	arc_dead = TRUE;
5650
5651	if (arc_ksp != NULL) {
5652		kstat_delete(arc_ksp);
5653		arc_ksp = NULL;
5654	}
5655
5656	mutex_destroy(&arc_reclaim_lock);
5657	cv_destroy(&arc_reclaim_thread_cv);
5658	cv_destroy(&arc_reclaim_waiters_cv);
5659
5660	mutex_destroy(&arc_user_evicts_lock);
5661	cv_destroy(&arc_user_evicts_cv);
5662
5663	refcount_destroy(&arc_anon->arcs_size);
5664	refcount_destroy(&arc_mru->arcs_size);
5665	refcount_destroy(&arc_mru_ghost->arcs_size);
5666	refcount_destroy(&arc_mfu->arcs_size);
5667	refcount_destroy(&arc_mfu_ghost->arcs_size);
5668	refcount_destroy(&arc_l2c_only->arcs_size);
5669
5670	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
5671	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
5672	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
5673	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
5674	multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
5675	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
5676	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
5677	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
5678	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
5679	multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
5680
5681	buf_fini();
5682
5683	ASSERT0(arc_loaned_bytes);
5684
5685#ifdef _KERNEL
5686	if (arc_event_lowmem != NULL)
5687		EVENTHANDLER_DEREGISTER(vm_lowmem, arc_event_lowmem);
5688#endif
5689}
5690
5691/*
5692 * Level 2 ARC
5693 *
5694 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
5695 * It uses dedicated storage devices to hold cached data, which are populated
5696 * using large infrequent writes.  The main role of this cache is to boost
5697 * the performance of random read workloads.  The intended L2ARC devices
5698 * include short-stroked disks, solid state disks, and other media with
5699 * substantially faster read latency than disk.
5700 *
5701 *                 +-----------------------+
5702 *                 |         ARC           |
5703 *                 +-----------------------+
5704 *                    |         ^     ^
5705 *                    |         |     |
5706 *      l2arc_feed_thread()    arc_read()
5707 *                    |         |     |
5708 *                    |  l2arc read   |
5709 *                    V         |     |
5710 *               +---------------+    |
5711 *               |     L2ARC     |    |
5712 *               +---------------+    |
5713 *                   |    ^           |
5714 *          l2arc_write() |           |
5715 *                   |    |           |
5716 *                   V    |           |
5717 *                 +-------+      +-------+
5718 *                 | vdev  |      | vdev  |
5719 *                 | cache |      | cache |
5720 *                 +-------+      +-------+
5721 *                 +=========+     .-----.
5722 *                 :  L2ARC  :    |-_____-|
5723 *                 : devices :    | Disks |
5724 *                 +=========+    `-_____-'
5725 *
5726 * Read requests are satisfied from the following sources, in order:
5727 *
5728 *	1) ARC
5729 *	2) vdev cache of L2ARC devices
5730 *	3) L2ARC devices
5731 *	4) vdev cache of disks
5732 *	5) disks
5733 *
5734 * Some L2ARC device types exhibit extremely slow write performance.
5735 * To accommodate for this there are some significant differences between
5736 * the L2ARC and traditional cache design:
5737 *
5738 * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
5739 * the ARC behave as usual, freeing buffers and placing headers on ghost
5740 * lists.  The ARC does not send buffers to the L2ARC during eviction as
5741 * this would add inflated write latencies for all ARC memory pressure.
5742 *
5743 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
5744 * It does this by periodically scanning buffers from the eviction-end of
5745 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
5746 * not already there. It scans until a headroom of buffers is satisfied,
5747 * which itself is a buffer for ARC eviction. If a compressible buffer is
5748 * found during scanning and selected for writing to an L2ARC device, we
5749 * temporarily boost scanning headroom during the next scan cycle to make
5750 * sure we adapt to compression effects (which might significantly reduce
5751 * the data volume we write to L2ARC). The thread that does this is
5752 * l2arc_feed_thread(), illustrated below; example sizes are included to
5753 * provide a better sense of ratio than this diagram:
5754 *
5755 *	       head -->                        tail
5756 *	        +---------------------+----------+
5757 *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
5758 *	        +---------------------+----------+   |   o L2ARC eligible
5759 *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
5760 *	        +---------------------+----------+   |
5761 *	             15.9 Gbytes      ^ 32 Mbytes    |
5762 *	                           headroom          |
5763 *	                                      l2arc_feed_thread()
5764 *	                                             |
5765 *	                 l2arc write hand <--[oooo]--'
5766 *	                         |           8 Mbyte
5767 *	                         |          write max
5768 *	                         V
5769 *		  +==============================+
5770 *	L2ARC dev |####|#|###|###|    |####| ... |
5771 *	          +==============================+
5772 *	                     32 Gbytes
5773 *
5774 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
5775 * evicted, then the L2ARC has cached a buffer much sooner than it probably
5776 * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
5777 * safe to say that this is an uncommon case, since buffers at the end of
5778 * the ARC lists have moved there due to inactivity.
5779 *
5780 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
5781 * then the L2ARC simply misses copying some buffers.  This serves as a
5782 * pressure valve to prevent heavy read workloads from both stalling the ARC
5783 * with waits and clogging the L2ARC with writes.  This also helps prevent
5784 * the potential for the L2ARC to churn if it attempts to cache content too
5785 * quickly, such as during backups of the entire pool.
5786 *
5787 * 5. After system boot and before the ARC has filled main memory, there are
5788 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
5789 * lists can remain mostly static.  Instead of searching from tail of these
5790 * lists as pictured, the l2arc_feed_thread() will search from the list heads
5791 * for eligible buffers, greatly increasing its chance of finding them.
5792 *
5793 * The L2ARC device write speed is also boosted during this time so that
5794 * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
5795 * there are no L2ARC reads, and no fear of degrading read performance
5796 * through increased writes.
5797 *
5798 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
5799 * the vdev queue can aggregate them into larger and fewer writes.  Each
5800 * device is written to in a rotor fashion, sweeping writes through
5801 * available space then repeating.
5802 *
5803 * 7. The L2ARC does not store dirty content.  It never needs to flush
5804 * write buffers back to disk based storage.
5805 *
5806 * 8. If an ARC buffer is written (and dirtied) which also exists in the
5807 * L2ARC, the now stale L2ARC buffer is immediately dropped.
5808 *
5809 * The performance of the L2ARC can be tweaked by a number of tunables, which
5810 * may be necessary for different workloads:
5811 *
5812 *	l2arc_write_max		max write bytes per interval
5813 *	l2arc_write_boost	extra write bytes during device warmup
5814 *	l2arc_noprefetch	skip caching prefetched buffers
5815 *	l2arc_headroom		number of max device writes to precache
5816 *	l2arc_headroom_boost	when we find compressed buffers during ARC
5817 *				scanning, we multiply headroom by this
5818 *				percentage factor for the next scan cycle,
5819 *				since more compressed buffers are likely to
5820 *				be present
5821 *	l2arc_feed_secs		seconds between L2ARC writing
5822 *
5823 * Tunables may be removed or added as future performance improvements are
5824 * integrated, and also may become zpool properties.
5825 *
5826 * There are three key functions that control how the L2ARC warms up:
5827 *
5828 *	l2arc_write_eligible()	check if a buffer is eligible to cache
5829 *	l2arc_write_size()	calculate how much to write
5830 *	l2arc_write_interval()	calculate sleep delay between writes
5831 *
5832 * These three functions determine what to write, how much, and how quickly
5833 * to send writes.
5834 */
5835
5836static boolean_t
5837l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
5838{
5839	/*
5840	 * A buffer is *not* eligible for the L2ARC if it:
5841	 * 1. belongs to a different spa.
5842	 * 2. is already cached on the L2ARC.
5843	 * 3. has an I/O in progress (it may be an incomplete read).
5844	 * 4. is flagged not eligible (zfs property).
5845	 */
5846	if (hdr->b_spa != spa_guid) {
5847		ARCSTAT_BUMP(arcstat_l2_write_spa_mismatch);
5848		return (B_FALSE);
5849	}
5850	if (HDR_HAS_L2HDR(hdr)) {
5851		ARCSTAT_BUMP(arcstat_l2_write_in_l2);
5852		return (B_FALSE);
5853	}
5854	if (HDR_IO_IN_PROGRESS(hdr)) {
5855		ARCSTAT_BUMP(arcstat_l2_write_hdr_io_in_progress);
5856		return (B_FALSE);
5857	}
5858	if (!HDR_L2CACHE(hdr)) {
5859		ARCSTAT_BUMP(arcstat_l2_write_not_cacheable);
5860		return (B_FALSE);
5861	}
5862
5863	return (B_TRUE);
5864}
5865
5866static uint64_t
5867l2arc_write_size(void)
5868{
5869	uint64_t size;
5870
5871	/*
5872	 * Make sure our globals have meaningful values in case the user
5873	 * altered them.
5874	 */
5875	size = l2arc_write_max;
5876	if (size == 0) {
5877		cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
5878		    "be greater than zero, resetting it to the default (%d)",
5879		    L2ARC_WRITE_SIZE);
5880		size = l2arc_write_max = L2ARC_WRITE_SIZE;
5881	}
5882
5883	if (arc_warm == B_FALSE)
5884		size += l2arc_write_boost;
5885
5886	return (size);
5887
5888}
5889
5890static clock_t
5891l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
5892{
5893	clock_t interval, next, now;
5894
5895	/*
5896	 * If the ARC lists are busy, increase our write rate; if the
5897	 * lists are stale, idle back.  This is achieved by checking
5898	 * how much we previously wrote - if it was more than half of
5899	 * what we wanted, schedule the next write much sooner.
5900	 */
5901	if (l2arc_feed_again && wrote > (wanted / 2))
5902		interval = (hz * l2arc_feed_min_ms) / 1000;
5903	else
5904		interval = hz * l2arc_feed_secs;
5905
5906	now = ddi_get_lbolt();
5907	next = MAX(now, MIN(now + interval, began + interval));
5908
5909	return (next);
5910}
5911
5912/*
5913 * Cycle through L2ARC devices.  This is how L2ARC load balances.
5914 * If a device is returned, this also returns holding the spa config lock.
5915 */
5916static l2arc_dev_t *
5917l2arc_dev_get_next(void)
5918{
5919	l2arc_dev_t *first, *next = NULL;
5920
5921	/*
5922	 * Lock out the removal of spas (spa_namespace_lock), then removal
5923	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
5924	 * both locks will be dropped and a spa config lock held instead.
5925	 */
5926	mutex_enter(&spa_namespace_lock);
5927	mutex_enter(&l2arc_dev_mtx);
5928
5929	/* if there are no vdevs, there is nothing to do */
5930	if (l2arc_ndev == 0)
5931		goto out;
5932
5933	first = NULL;
5934	next = l2arc_dev_last;
5935	do {
5936		/* loop around the list looking for a non-faulted vdev */
5937		if (next == NULL) {
5938			next = list_head(l2arc_dev_list);
5939		} else {
5940			next = list_next(l2arc_dev_list, next);
5941			if (next == NULL)
5942				next = list_head(l2arc_dev_list);
5943		}
5944
5945		/* if we have come back to the start, bail out */
5946		if (first == NULL)
5947			first = next;
5948		else if (next == first)
5949			break;
5950
5951	} while (vdev_is_dead(next->l2ad_vdev));
5952
5953	/* if we were unable to find any usable vdevs, return NULL */
5954	if (vdev_is_dead(next->l2ad_vdev))
5955		next = NULL;
5956
5957	l2arc_dev_last = next;
5958
5959out:
5960	mutex_exit(&l2arc_dev_mtx);
5961
5962	/*
5963	 * Grab the config lock to prevent the 'next' device from being
5964	 * removed while we are writing to it.
5965	 */
5966	if (next != NULL)
5967		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
5968	mutex_exit(&spa_namespace_lock);
5969
5970	return (next);
5971}
5972
5973/*
5974 * Free buffers that were tagged for destruction.
5975 */
5976static void
5977l2arc_do_free_on_write()
5978{
5979	list_t *buflist;
5980	l2arc_data_free_t *df, *df_prev;
5981
5982	mutex_enter(&l2arc_free_on_write_mtx);
5983	buflist = l2arc_free_on_write;
5984
5985	for (df = list_tail(buflist); df; df = df_prev) {
5986		df_prev = list_prev(buflist, df);
5987		ASSERT(df->l2df_data != NULL);
5988		ASSERT(df->l2df_func != NULL);
5989		df->l2df_func(df->l2df_data, df->l2df_size);
5990		list_remove(buflist, df);
5991		kmem_free(df, sizeof (l2arc_data_free_t));
5992	}
5993
5994	mutex_exit(&l2arc_free_on_write_mtx);
5995}
5996
5997/*
5998 * A write to a cache device has completed.  Update all headers to allow
5999 * reads from these buffers to begin.
6000 */
6001static void
6002l2arc_write_done(zio_t *zio)
6003{
6004	l2arc_write_callback_t *cb;
6005	l2arc_dev_t *dev;
6006	list_t *buflist;
6007	arc_buf_hdr_t *head, *hdr, *hdr_prev;
6008	kmutex_t *hash_lock;
6009	int64_t bytes_dropped = 0;
6010
6011	cb = zio->io_private;
6012	ASSERT(cb != NULL);
6013	dev = cb->l2wcb_dev;
6014	ASSERT(dev != NULL);
6015	head = cb->l2wcb_head;
6016	ASSERT(head != NULL);
6017	buflist = &dev->l2ad_buflist;
6018	ASSERT(buflist != NULL);
6019	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
6020	    l2arc_write_callback_t *, cb);
6021
6022	if (zio->io_error != 0)
6023		ARCSTAT_BUMP(arcstat_l2_writes_error);
6024
6025	/*
6026	 * All writes completed, or an error was hit.
6027	 */
6028top:
6029	mutex_enter(&dev->l2ad_mtx);
6030	for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
6031		hdr_prev = list_prev(buflist, hdr);
6032
6033		hash_lock = HDR_LOCK(hdr);
6034
6035		/*
6036		 * We cannot use mutex_enter or else we can deadlock
6037		 * with l2arc_write_buffers (due to swapping the order
6038		 * the hash lock and l2ad_mtx are taken).
6039		 */
6040		if (!mutex_tryenter(hash_lock)) {
6041			/*
6042			 * Missed the hash lock. We must retry so we
6043			 * don't leave the ARC_FLAG_L2_WRITING bit set.
6044			 */
6045			ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
6046
6047			/*
6048			 * We don't want to rescan the headers we've
6049			 * already marked as having been written out, so
6050			 * we reinsert the head node so we can pick up
6051			 * where we left off.
6052			 */
6053			list_remove(buflist, head);
6054			list_insert_after(buflist, hdr, head);
6055
6056			mutex_exit(&dev->l2ad_mtx);
6057
6058			/*
6059			 * We wait for the hash lock to become available
6060			 * to try and prevent busy waiting, and increase
6061			 * the chance we'll be able to acquire the lock
6062			 * the next time around.
6063			 */
6064			mutex_enter(hash_lock);
6065			mutex_exit(hash_lock);
6066			goto top;
6067		}
6068
6069		/*
6070		 * We could not have been moved into the arc_l2c_only
6071		 * state while in-flight due to our ARC_FLAG_L2_WRITING
6072		 * bit being set. Let's just ensure that's being enforced.
6073		 */
6074		ASSERT(HDR_HAS_L1HDR(hdr));
6075
6076		/*
6077		 * We may have allocated a buffer for L2ARC compression,
6078		 * we must release it to avoid leaking this data.
6079		 */
6080		l2arc_release_cdata_buf(hdr);
6081
6082		if (zio->io_error != 0) {
6083			/*
6084			 * Error - drop L2ARC entry.
6085			 */
6086			list_remove(buflist, hdr);
6087			l2arc_trim(hdr);
6088			hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
6089
6090			ARCSTAT_INCR(arcstat_l2_asize, -hdr->b_l2hdr.b_asize);
6091			ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
6092
6093			bytes_dropped += hdr->b_l2hdr.b_asize;
6094			(void) refcount_remove_many(&dev->l2ad_alloc,
6095			    hdr->b_l2hdr.b_asize, hdr);
6096		}
6097
6098		/*
6099		 * Allow ARC to begin reads and ghost list evictions to
6100		 * this L2ARC entry.
6101		 */
6102		hdr->b_flags &= ~ARC_FLAG_L2_WRITING;
6103
6104		mutex_exit(hash_lock);
6105	}
6106
6107	atomic_inc_64(&l2arc_writes_done);
6108	list_remove(buflist, head);
6109	ASSERT(!HDR_HAS_L1HDR(head));
6110	kmem_cache_free(hdr_l2only_cache, head);
6111	mutex_exit(&dev->l2ad_mtx);
6112
6113	vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
6114
6115	l2arc_do_free_on_write();
6116
6117	kmem_free(cb, sizeof (l2arc_write_callback_t));
6118}
6119
6120/*
6121 * A read to a cache device completed.  Validate buffer contents before
6122 * handing over to the regular ARC routines.
6123 */
6124static void
6125l2arc_read_done(zio_t *zio)
6126{
6127	l2arc_read_callback_t *cb;
6128	arc_buf_hdr_t *hdr;
6129	arc_buf_t *buf;
6130	kmutex_t *hash_lock;
6131	int equal;
6132
6133	ASSERT(zio->io_vd != NULL);
6134	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
6135
6136	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
6137
6138	cb = zio->io_private;
6139	ASSERT(cb != NULL);
6140	buf = cb->l2rcb_buf;
6141	ASSERT(buf != NULL);
6142
6143	hash_lock = HDR_LOCK(buf->b_hdr);
6144	mutex_enter(hash_lock);
6145	hdr = buf->b_hdr;
6146	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6147
6148	/*
6149	 * If the data was read into a temporary buffer,
6150	 * move it and free the buffer.
6151	 */
6152	if (cb->l2rcb_data != NULL) {
6153		ASSERT3U(hdr->b_size, <, zio->io_size);
6154		ASSERT3U(cb->l2rcb_compress, ==, ZIO_COMPRESS_OFF);
6155		if (zio->io_error == 0)
6156			bcopy(cb->l2rcb_data, buf->b_data, hdr->b_size);
6157
6158		/*
6159		 * The following must be done regardless of whether
6160		 * there was an error:
6161		 * - free the temporary buffer
6162		 * - point zio to the real ARC buffer
6163		 * - set zio size accordingly
6164		 * These are required because zio is either re-used for
6165		 * an I/O of the block in the case of the error
6166		 * or the zio is passed to arc_read_done() and it
6167		 * needs real data.
6168		 */
6169		zio_data_buf_free(cb->l2rcb_data, zio->io_size);
6170		zio->io_size = zio->io_orig_size = hdr->b_size;
6171		zio->io_data = zio->io_orig_data = buf->b_data;
6172	}
6173
6174	/*
6175	 * If the buffer was compressed, decompress it first.
6176	 */
6177	if (cb->l2rcb_compress != ZIO_COMPRESS_OFF)
6178		l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress);
6179	ASSERT(zio->io_data != NULL);
6180	ASSERT3U(zio->io_size, ==, hdr->b_size);
6181	ASSERT3U(BP_GET_LSIZE(&cb->l2rcb_bp), ==, hdr->b_size);
6182
6183	/*
6184	 * Check this survived the L2ARC journey.
6185	 */
6186	equal = arc_cksum_equal(buf);
6187	if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
6188		mutex_exit(hash_lock);
6189		zio->io_private = buf;
6190		zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
6191		zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
6192		arc_read_done(zio);
6193	} else {
6194		mutex_exit(hash_lock);
6195		/*
6196		 * Buffer didn't survive caching.  Increment stats and
6197		 * reissue to the original storage device.
6198		 */
6199		if (zio->io_error != 0) {
6200			ARCSTAT_BUMP(arcstat_l2_io_error);
6201		} else {
6202			zio->io_error = SET_ERROR(EIO);
6203		}
6204		if (!equal)
6205			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
6206
6207		/*
6208		 * If there's no waiter, issue an async i/o to the primary
6209		 * storage now.  If there *is* a waiter, the caller must
6210		 * issue the i/o in a context where it's OK to block.
6211		 */
6212		if (zio->io_waiter == NULL) {
6213			zio_t *pio = zio_unique_parent(zio);
6214
6215			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
6216
6217			zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
6218			    buf->b_data, hdr->b_size, arc_read_done, buf,
6219			    zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
6220		}
6221	}
6222
6223	kmem_free(cb, sizeof (l2arc_read_callback_t));
6224}
6225
6226/*
6227 * This is the list priority from which the L2ARC will search for pages to
6228 * cache.  This is used within loops (0..3) to cycle through lists in the
6229 * desired order.  This order can have a significant effect on cache
6230 * performance.
6231 *
6232 * Currently the metadata lists are hit first, MFU then MRU, followed by
6233 * the data lists.  This function returns a locked list, and also returns
6234 * the lock pointer.
6235 */
6236static multilist_sublist_t *
6237l2arc_sublist_lock(int list_num)
6238{
6239	multilist_t *ml = NULL;
6240	unsigned int idx;
6241
6242	ASSERT(list_num >= 0 && list_num <= 3);
6243
6244	switch (list_num) {
6245	case 0:
6246		ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
6247		break;
6248	case 1:
6249		ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
6250		break;
6251	case 2:
6252		ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
6253		break;
6254	case 3:
6255		ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
6256		break;
6257	}
6258
6259	/*
6260	 * Return a randomly-selected sublist. This is acceptable
6261	 * because the caller feeds only a little bit of data for each
6262	 * call (8MB). Subsequent calls will result in different
6263	 * sublists being selected.
6264	 */
6265	idx = multilist_get_random_index(ml);
6266	return (multilist_sublist_lock(ml, idx));
6267}
6268
6269/*
6270 * Evict buffers from the device write hand to the distance specified in
6271 * bytes.  This distance may span populated buffers, it may span nothing.
6272 * This is clearing a region on the L2ARC device ready for writing.
6273 * If the 'all' boolean is set, every buffer is evicted.
6274 */
6275static void
6276l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
6277{
6278	list_t *buflist;
6279	arc_buf_hdr_t *hdr, *hdr_prev;
6280	kmutex_t *hash_lock;
6281	uint64_t taddr;
6282
6283	buflist = &dev->l2ad_buflist;
6284
6285	if (!all && dev->l2ad_first) {
6286		/*
6287		 * This is the first sweep through the device.  There is
6288		 * nothing to evict.
6289		 */
6290		return;
6291	}
6292
6293	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
6294		/*
6295		 * When nearing the end of the device, evict to the end
6296		 * before the device write hand jumps to the start.
6297		 */
6298		taddr = dev->l2ad_end;
6299	} else {
6300		taddr = dev->l2ad_hand + distance;
6301	}
6302	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
6303	    uint64_t, taddr, boolean_t, all);
6304
6305top:
6306	mutex_enter(&dev->l2ad_mtx);
6307	for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
6308		hdr_prev = list_prev(buflist, hdr);
6309
6310		hash_lock = HDR_LOCK(hdr);
6311
6312		/*
6313		 * We cannot use mutex_enter or else we can deadlock
6314		 * with l2arc_write_buffers (due to swapping the order
6315		 * the hash lock and l2ad_mtx are taken).
6316		 */
6317		if (!mutex_tryenter(hash_lock)) {
6318			/*
6319			 * Missed the hash lock.  Retry.
6320			 */
6321			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
6322			mutex_exit(&dev->l2ad_mtx);
6323			mutex_enter(hash_lock);
6324			mutex_exit(hash_lock);
6325			goto top;
6326		}
6327
6328		if (HDR_L2_WRITE_HEAD(hdr)) {
6329			/*
6330			 * We hit a write head node.  Leave it for
6331			 * l2arc_write_done().
6332			 */
6333			list_remove(buflist, hdr);
6334			mutex_exit(hash_lock);
6335			continue;
6336		}
6337
6338		if (!all && HDR_HAS_L2HDR(hdr) &&
6339		    (hdr->b_l2hdr.b_daddr > taddr ||
6340		    hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
6341			/*
6342			 * We've evicted to the target address,
6343			 * or the end of the device.
6344			 */
6345			mutex_exit(hash_lock);
6346			break;
6347		}
6348
6349		ASSERT(HDR_HAS_L2HDR(hdr));
6350		if (!HDR_HAS_L1HDR(hdr)) {
6351			ASSERT(!HDR_L2_READING(hdr));
6352			/*
6353			 * This doesn't exist in the ARC.  Destroy.
6354			 * arc_hdr_destroy() will call list_remove()
6355			 * and decrement arcstat_l2_size.
6356			 */
6357			arc_change_state(arc_anon, hdr, hash_lock);
6358			arc_hdr_destroy(hdr);
6359		} else {
6360			ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
6361			ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
6362			/*
6363			 * Invalidate issued or about to be issued
6364			 * reads, since we may be about to write
6365			 * over this location.
6366			 */
6367			if (HDR_L2_READING(hdr)) {
6368				ARCSTAT_BUMP(arcstat_l2_evict_reading);
6369				hdr->b_flags |= ARC_FLAG_L2_EVICTED;
6370			}
6371
6372			/* Ensure this header has finished being written */
6373			ASSERT(!HDR_L2_WRITING(hdr));
6374			ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
6375
6376			arc_hdr_l2hdr_destroy(hdr);
6377		}
6378		mutex_exit(hash_lock);
6379	}
6380	mutex_exit(&dev->l2ad_mtx);
6381}
6382
6383/*
6384 * Find and write ARC buffers to the L2ARC device.
6385 *
6386 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
6387 * for reading until they have completed writing.
6388 * The headroom_boost is an in-out parameter used to maintain headroom boost
6389 * state between calls to this function.
6390 *
6391 * Returns the number of bytes actually written (which may be smaller than
6392 * the delta by which the device hand has changed due to alignment).
6393 */
6394static uint64_t
6395l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz,
6396    boolean_t *headroom_boost)
6397{
6398	arc_buf_hdr_t *hdr, *hdr_prev, *head;
6399	uint64_t write_asize, write_sz, headroom,
6400	    buf_compress_minsz;
6401	void *buf_data;
6402	boolean_t full;
6403	l2arc_write_callback_t *cb;
6404	zio_t *pio, *wzio;
6405	uint64_t guid = spa_load_guid(spa);
6406	const boolean_t do_headroom_boost = *headroom_boost;
6407	int try;
6408
6409	ASSERT(dev->l2ad_vdev != NULL);
6410
6411	/* Lower the flag now, we might want to raise it again later. */
6412	*headroom_boost = B_FALSE;
6413
6414	pio = NULL;
6415	write_sz = write_asize = 0;
6416	full = B_FALSE;
6417	head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
6418	head->b_flags |= ARC_FLAG_L2_WRITE_HEAD;
6419	head->b_flags |= ARC_FLAG_HAS_L2HDR;
6420
6421	ARCSTAT_BUMP(arcstat_l2_write_buffer_iter);
6422	/*
6423	 * We will want to try to compress buffers that are at least 2x the
6424	 * device sector size.
6425	 */
6426	buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift;
6427
6428	/*
6429	 * Copy buffers for L2ARC writing.
6430	 */
6431	for (try = 0; try <= 3; try++) {
6432		multilist_sublist_t *mls = l2arc_sublist_lock(try);
6433		uint64_t passed_sz = 0;
6434
6435		ARCSTAT_BUMP(arcstat_l2_write_buffer_list_iter);
6436
6437		/*
6438		 * L2ARC fast warmup.
6439		 *
6440		 * Until the ARC is warm and starts to evict, read from the
6441		 * head of the ARC lists rather than the tail.
6442		 */
6443		if (arc_warm == B_FALSE)
6444			hdr = multilist_sublist_head(mls);
6445		else
6446			hdr = multilist_sublist_tail(mls);
6447		if (hdr == NULL)
6448			ARCSTAT_BUMP(arcstat_l2_write_buffer_list_null_iter);
6449
6450		headroom = target_sz * l2arc_headroom;
6451		if (do_headroom_boost)
6452			headroom = (headroom * l2arc_headroom_boost) / 100;
6453
6454		for (; hdr; hdr = hdr_prev) {
6455			kmutex_t *hash_lock;
6456			uint64_t buf_sz;
6457			uint64_t buf_a_sz;
6458			size_t align;
6459
6460			if (arc_warm == B_FALSE)
6461				hdr_prev = multilist_sublist_next(mls, hdr);
6462			else
6463				hdr_prev = multilist_sublist_prev(mls, hdr);
6464			ARCSTAT_INCR(arcstat_l2_write_buffer_bytes_scanned, hdr->b_size);
6465
6466			hash_lock = HDR_LOCK(hdr);
6467			if (!mutex_tryenter(hash_lock)) {
6468				ARCSTAT_BUMP(arcstat_l2_write_trylock_fail);
6469				/*
6470				 * Skip this buffer rather than waiting.
6471				 */
6472				continue;
6473			}
6474
6475			passed_sz += hdr->b_size;
6476			if (passed_sz > headroom) {
6477				/*
6478				 * Searched too far.
6479				 */
6480				mutex_exit(hash_lock);
6481				ARCSTAT_BUMP(arcstat_l2_write_passed_headroom);
6482				break;
6483			}
6484
6485			if (!l2arc_write_eligible(guid, hdr)) {
6486				mutex_exit(hash_lock);
6487				continue;
6488			}
6489
6490			/*
6491			 * Assume that the buffer is not going to be compressed
6492			 * and could take more space on disk because of a larger
6493			 * disk block size.
6494			 */
6495			buf_sz = hdr->b_size;
6496			align = (size_t)1 << dev->l2ad_vdev->vdev_ashift;
6497			buf_a_sz = P2ROUNDUP(buf_sz, align);
6498
6499			if ((write_asize + buf_a_sz) > target_sz) {
6500				full = B_TRUE;
6501				mutex_exit(hash_lock);
6502				ARCSTAT_BUMP(arcstat_l2_write_full);
6503				break;
6504			}
6505
6506			if (pio == NULL) {
6507				/*
6508				 * Insert a dummy header on the buflist so
6509				 * l2arc_write_done() can find where the
6510				 * write buffers begin without searching.
6511				 */
6512				mutex_enter(&dev->l2ad_mtx);
6513				list_insert_head(&dev->l2ad_buflist, head);
6514				mutex_exit(&dev->l2ad_mtx);
6515
6516				cb = kmem_alloc(
6517				    sizeof (l2arc_write_callback_t), KM_SLEEP);
6518				cb->l2wcb_dev = dev;
6519				cb->l2wcb_head = head;
6520				pio = zio_root(spa, l2arc_write_done, cb,
6521				    ZIO_FLAG_CANFAIL);
6522				ARCSTAT_BUMP(arcstat_l2_write_pios);
6523			}
6524
6525			/*
6526			 * Create and add a new L2ARC header.
6527			 */
6528			hdr->b_l2hdr.b_dev = dev;
6529			hdr->b_flags |= ARC_FLAG_L2_WRITING;
6530			/*
6531			 * Temporarily stash the data buffer in b_tmp_cdata.
6532			 * The subsequent write step will pick it up from
6533			 * there. This is because can't access b_l1hdr.b_buf
6534			 * without holding the hash_lock, which we in turn
6535			 * can't access without holding the ARC list locks
6536			 * (which we want to avoid during compression/writing).
6537			 */
6538			hdr->b_l2hdr.b_compress = ZIO_COMPRESS_OFF;
6539			hdr->b_l2hdr.b_asize = hdr->b_size;
6540			hdr->b_l1hdr.b_tmp_cdata = hdr->b_l1hdr.b_buf->b_data;
6541
6542			/*
6543			 * Explicitly set the b_daddr field to a known
6544			 * value which means "invalid address". This
6545			 * enables us to differentiate which stage of
6546			 * l2arc_write_buffers() the particular header
6547			 * is in (e.g. this loop, or the one below).
6548			 * ARC_FLAG_L2_WRITING is not enough to make
6549			 * this distinction, and we need to know in
6550			 * order to do proper l2arc vdev accounting in
6551			 * arc_release() and arc_hdr_destroy().
6552			 *
6553			 * Note, we can't use a new flag to distinguish
6554			 * the two stages because we don't hold the
6555			 * header's hash_lock below, in the second stage
6556			 * of this function. Thus, we can't simply
6557			 * change the b_flags field to denote that the
6558			 * IO has been sent. We can change the b_daddr
6559			 * field of the L2 portion, though, since we'll
6560			 * be holding the l2ad_mtx; which is why we're
6561			 * using it to denote the header's state change.
6562			 */
6563			hdr->b_l2hdr.b_daddr = L2ARC_ADDR_UNSET;
6564
6565			hdr->b_flags |= ARC_FLAG_HAS_L2HDR;
6566
6567			mutex_enter(&dev->l2ad_mtx);
6568			list_insert_head(&dev->l2ad_buflist, hdr);
6569			mutex_exit(&dev->l2ad_mtx);
6570
6571			/*
6572			 * Compute and store the buffer cksum before
6573			 * writing.  On debug the cksum is verified first.
6574			 */
6575			arc_cksum_verify(hdr->b_l1hdr.b_buf);
6576			arc_cksum_compute(hdr->b_l1hdr.b_buf, B_TRUE);
6577
6578			mutex_exit(hash_lock);
6579
6580			write_sz += buf_sz;
6581			write_asize += buf_a_sz;
6582		}
6583
6584		multilist_sublist_unlock(mls);
6585
6586		if (full == B_TRUE)
6587			break;
6588	}
6589
6590	/* No buffers selected for writing? */
6591	if (pio == NULL) {
6592		ASSERT0(write_sz);
6593		ASSERT(!HDR_HAS_L1HDR(head));
6594		kmem_cache_free(hdr_l2only_cache, head);
6595		return (0);
6596	}
6597
6598	mutex_enter(&dev->l2ad_mtx);
6599
6600	/*
6601	 * Now start writing the buffers. We're starting at the write head
6602	 * and work backwards, retracing the course of the buffer selector
6603	 * loop above.
6604	 */
6605	write_asize = 0;
6606	for (hdr = list_prev(&dev->l2ad_buflist, head); hdr;
6607	    hdr = list_prev(&dev->l2ad_buflist, hdr)) {
6608		uint64_t buf_sz;
6609		boolean_t compress;
6610
6611		/*
6612		 * We rely on the L1 portion of the header below, so
6613		 * it's invalid for this header to have been evicted out
6614		 * of the ghost cache, prior to being written out. The
6615		 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
6616		 */
6617		ASSERT(HDR_HAS_L1HDR(hdr));
6618
6619		/*
6620		 * We shouldn't need to lock the buffer here, since we flagged
6621		 * it as ARC_FLAG_L2_WRITING in the previous step, but we must
6622		 * take care to only access its L2 cache parameters. In
6623		 * particular, hdr->l1hdr.b_buf may be invalid by now due to
6624		 * ARC eviction.
6625		 */
6626		hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
6627
6628		/*
6629		 * Save a pointer to the original buffer data we had previously
6630		 * stashed away.
6631		 */
6632		buf_data = hdr->b_l1hdr.b_tmp_cdata;
6633
6634		compress = HDR_L2COMPRESS(hdr) &&
6635		    hdr->b_l2hdr.b_asize >= buf_compress_minsz;
6636		if (l2arc_transform_buf(hdr, compress)) {
6637			/*
6638			 * If compression succeeded, enable headroom
6639			 * boost on the next scan cycle.
6640			 */
6641			*headroom_boost = B_TRUE;
6642		}
6643
6644		/*
6645		 * Get the new buffer size that accounts for compression
6646		 * and padding.
6647		 */
6648		buf_sz = hdr->b_l2hdr.b_asize;
6649
6650		/*
6651		 * We need to do this regardless if buf_sz is zero or
6652		 * not, otherwise, when this l2hdr is evicted we'll
6653		 * remove a reference that was never added.
6654		 */
6655		(void) refcount_add_many(&dev->l2ad_alloc, buf_sz, hdr);
6656
6657		/* Compression may have squashed the buffer to zero length. */
6658		if (buf_sz != 0) {
6659			/*
6660			 * If the data was padded or compressed, then it
6661			 * it is in a new buffer.
6662			 */
6663			if (hdr->b_l1hdr.b_tmp_cdata != NULL)
6664				buf_data = hdr->b_l1hdr.b_tmp_cdata;
6665			wzio = zio_write_phys(pio, dev->l2ad_vdev,
6666			    dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
6667			    NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
6668			    ZIO_FLAG_CANFAIL, B_FALSE);
6669
6670			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
6671			    zio_t *, wzio);
6672			(void) zio_nowait(wzio);
6673
6674			write_asize += buf_sz;
6675			dev->l2ad_hand += buf_sz;
6676		}
6677	}
6678
6679	mutex_exit(&dev->l2ad_mtx);
6680
6681	ASSERT3U(write_asize, <=, target_sz);
6682	ARCSTAT_BUMP(arcstat_l2_writes_sent);
6683	ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
6684	ARCSTAT_INCR(arcstat_l2_size, write_sz);
6685	ARCSTAT_INCR(arcstat_l2_asize, write_asize);
6686	vdev_space_update(dev->l2ad_vdev, write_asize, 0, 0);
6687
6688	/*
6689	 * Bump device hand to the device start if it is approaching the end.
6690	 * l2arc_evict() will already have evicted ahead for this case.
6691	 */
6692	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
6693		dev->l2ad_hand = dev->l2ad_start;
6694		dev->l2ad_first = B_FALSE;
6695	}
6696
6697	dev->l2ad_writing = B_TRUE;
6698	(void) zio_wait(pio);
6699	dev->l2ad_writing = B_FALSE;
6700
6701	return (write_asize);
6702}
6703
6704/*
6705 * Transforms, possibly compresses and pads, an L2ARC buffer.
6706 * The data to be compressed must be prefilled in l1hdr.b_tmp_cdata and its
6707 * size in l2hdr->b_asize. This routine tries to compress the data and
6708 * depending on the compression result there are three possible outcomes:
6709 * *) The buffer was incompressible. The buffer size was already ashift aligned.
6710 *    The original hdr contents were left untouched except for b_tmp_cdata,
6711 *    which is reset to NULL. The caller must keep a pointer to the original
6712 *    data.
6713 * *) The buffer was incompressible. The buffer size was not ashift aligned.
6714 *    b_tmp_cdata was replaced with a temporary data buffer which holds a padded
6715 *    (aligned) copy of the data. Once writing is done, invoke
6716 *    l2arc_release_cdata_buf on this hdr to free the temporary buffer.
6717 * *) The buffer was all-zeros, so there is no need to write it to an L2
6718 *    device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is
6719 *    set to zero and b_compress is set to ZIO_COMPRESS_EMPTY.
6720 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary
6721 *    data buffer which holds the compressed data to be written, and b_asize
6722 *    tells us how much data there is. b_compress is set to the appropriate
6723 *    compression algorithm. Once writing is done, invoke
6724 *    l2arc_release_cdata_buf on this l2hdr to free this temporary buffer.
6725 *
6726 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the
6727 * buffer was incompressible).
6728 */
6729static boolean_t
6730l2arc_transform_buf(arc_buf_hdr_t *hdr, boolean_t compress)
6731{
6732	void *cdata;
6733	size_t align, asize, csize, len, rounded;
6734
6735	ASSERT(HDR_HAS_L2HDR(hdr));
6736	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
6737
6738	ASSERT(HDR_HAS_L1HDR(hdr));
6739	ASSERT3S(l2hdr->b_compress, ==, ZIO_COMPRESS_OFF);
6740	ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
6741
6742	len = l2hdr->b_asize;
6743	align = (size_t)1 << l2hdr->b_dev->l2ad_vdev->vdev_ashift;
6744	asize = P2ROUNDUP(len, align);
6745	cdata = zio_data_buf_alloc(asize);
6746	ASSERT3P(cdata, !=, NULL);
6747	if (compress)
6748		csize = zio_compress_data(ZIO_COMPRESS_LZ4,
6749		    hdr->b_l1hdr.b_tmp_cdata, cdata, len);
6750	else
6751		csize = len;
6752
6753	if (csize == 0) {
6754		/* zero block, indicate that there's nothing to write */
6755		zio_data_buf_free(cdata, asize);
6756		l2hdr->b_compress = ZIO_COMPRESS_EMPTY;
6757		l2hdr->b_asize = 0;
6758		hdr->b_l1hdr.b_tmp_cdata = NULL;
6759		ARCSTAT_BUMP(arcstat_l2_compress_zeros);
6760		return (B_TRUE);
6761	}
6762
6763	rounded = P2ROUNDUP(csize, align);
6764	ASSERT3U(rounded, <=, asize);
6765	if (rounded < len) {
6766		/*
6767		 * Compression succeeded, we'll keep the cdata around for
6768		 * writing and release it afterwards.
6769		 */
6770		if (rounded > csize) {
6771			bzero((char *)cdata + csize, rounded - csize);
6772			csize = rounded;
6773		}
6774		l2hdr->b_compress = ZIO_COMPRESS_LZ4;
6775		l2hdr->b_asize = csize;
6776		hdr->b_l1hdr.b_tmp_cdata = cdata;
6777		ARCSTAT_BUMP(arcstat_l2_compress_successes);
6778		return (B_TRUE);
6779	} else {
6780		/*
6781		 * Compression did not save space.
6782		 */
6783		if (P2PHASE(len, align) != 0) {
6784			/*
6785			 * Use compression buffer for a copy of data padded to
6786			 * the proper size.  Compression algorithm remains set
6787			 * to ZIO_COMPRESS_OFF.
6788			 */
6789			ASSERT3U(len, <, asize);
6790			bcopy(hdr->b_l1hdr.b_tmp_cdata, cdata, len);
6791			bzero((char *)cdata + len, asize - len);
6792			l2hdr->b_asize = asize;
6793			hdr->b_l1hdr.b_tmp_cdata = cdata;
6794			ARCSTAT_BUMP(arcstat_l2_padding_needed);
6795		} else {
6796			ASSERT3U(len, ==, asize);
6797			/*
6798			 * The original buffer is good as is,
6799			 * release the compressed buffer.
6800			 * l2hdr will be left unmodified except for b_tmp_cdata.
6801			 */
6802			zio_data_buf_free(cdata, asize);
6803			hdr->b_l1hdr.b_tmp_cdata = NULL;
6804		}
6805		if (compress)
6806			ARCSTAT_BUMP(arcstat_l2_compress_failures);
6807		return (B_FALSE);
6808	}
6809}
6810
6811/*
6812 * Decompresses a zio read back from an l2arc device. On success, the
6813 * underlying zio's io_data buffer is overwritten by the uncompressed
6814 * version. On decompression error (corrupt compressed stream), the
6815 * zio->io_error value is set to signal an I/O error.
6816 *
6817 * Please note that the compressed data stream is not checksummed, so
6818 * if the underlying device is experiencing data corruption, we may feed
6819 * corrupt data to the decompressor, so the decompressor needs to be
6820 * able to handle this situation (LZ4 does).
6821 */
6822static void
6823l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c)
6824{
6825	ASSERT(L2ARC_IS_VALID_COMPRESS(c));
6826
6827	if (zio->io_error != 0) {
6828		/*
6829		 * An io error has occured, just restore the original io
6830		 * size in preparation for a main pool read.
6831		 */
6832		zio->io_orig_size = zio->io_size = hdr->b_size;
6833		return;
6834	}
6835
6836	if (c == ZIO_COMPRESS_EMPTY) {
6837		/*
6838		 * An empty buffer results in a null zio, which means we
6839		 * need to fill its io_data after we're done restoring the
6840		 * buffer's contents.
6841		 */
6842		ASSERT(hdr->b_l1hdr.b_buf != NULL);
6843		bzero(hdr->b_l1hdr.b_buf->b_data, hdr->b_size);
6844		zio->io_data = zio->io_orig_data = hdr->b_l1hdr.b_buf->b_data;
6845	} else {
6846		ASSERT(zio->io_data != NULL);
6847		/*
6848		 * We copy the compressed data from the start of the arc buffer
6849		 * (the zio_read will have pulled in only what we need, the
6850		 * rest is garbage which we will overwrite at decompression)
6851		 * and then decompress back to the ARC data buffer. This way we
6852		 * can minimize copying by simply decompressing back over the
6853		 * original compressed data (rather than decompressing to an
6854		 * aux buffer and then copying back the uncompressed buffer,
6855		 * which is likely to be much larger).
6856		 */
6857		uint64_t csize;
6858		void *cdata;
6859
6860		csize = zio->io_size;
6861		cdata = zio_data_buf_alloc(csize);
6862		bcopy(zio->io_data, cdata, csize);
6863		if (zio_decompress_data(c, cdata, zio->io_data, csize,
6864		    hdr->b_size) != 0)
6865			zio->io_error = EIO;
6866		zio_data_buf_free(cdata, csize);
6867	}
6868
6869	/* Restore the expected uncompressed IO size. */
6870	zio->io_orig_size = zio->io_size = hdr->b_size;
6871}
6872
6873/*
6874 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure.
6875 * This buffer serves as a temporary holder of compressed or padded data while
6876 * the buffer entry is being written to an l2arc device. Once that is
6877 * done, we can dispose of it.
6878 */
6879static void
6880l2arc_release_cdata_buf(arc_buf_hdr_t *hdr)
6881{
6882	size_t align, asize, len;
6883	enum zio_compress comp = hdr->b_l2hdr.b_compress;
6884
6885	ASSERT(HDR_HAS_L2HDR(hdr));
6886	ASSERT(HDR_HAS_L1HDR(hdr));
6887	ASSERT(comp == ZIO_COMPRESS_OFF || L2ARC_IS_VALID_COMPRESS(comp));
6888
6889	if (hdr->b_l1hdr.b_tmp_cdata != NULL) {
6890		ASSERT(comp != ZIO_COMPRESS_EMPTY);
6891		len = hdr->b_size;
6892		align = (size_t)1 << hdr->b_l2hdr.b_dev->l2ad_vdev->vdev_ashift;
6893		asize = P2ROUNDUP(len, align);
6894		zio_data_buf_free(hdr->b_l1hdr.b_tmp_cdata, asize);
6895		hdr->b_l1hdr.b_tmp_cdata = NULL;
6896	} else {
6897		ASSERT(comp == ZIO_COMPRESS_OFF || comp == ZIO_COMPRESS_EMPTY);
6898	}
6899}
6900
6901/*
6902 * This thread feeds the L2ARC at regular intervals.  This is the beating
6903 * heart of the L2ARC.
6904 */
6905static void
6906l2arc_feed_thread(void *dummy __unused)
6907{
6908	callb_cpr_t cpr;
6909	l2arc_dev_t *dev;
6910	spa_t *spa;
6911	uint64_t size, wrote;
6912	clock_t begin, next = ddi_get_lbolt();
6913	boolean_t headroom_boost = B_FALSE;
6914
6915	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
6916
6917	mutex_enter(&l2arc_feed_thr_lock);
6918
6919	while (l2arc_thread_exit == 0) {
6920		CALLB_CPR_SAFE_BEGIN(&cpr);
6921		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
6922		    next - ddi_get_lbolt());
6923		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
6924		next = ddi_get_lbolt() + hz;
6925
6926		/*
6927		 * Quick check for L2ARC devices.
6928		 */
6929		mutex_enter(&l2arc_dev_mtx);
6930		if (l2arc_ndev == 0) {
6931			mutex_exit(&l2arc_dev_mtx);
6932			continue;
6933		}
6934		mutex_exit(&l2arc_dev_mtx);
6935		begin = ddi_get_lbolt();
6936
6937		/*
6938		 * This selects the next l2arc device to write to, and in
6939		 * doing so the next spa to feed from: dev->l2ad_spa.   This
6940		 * will return NULL if there are now no l2arc devices or if
6941		 * they are all faulted.
6942		 *
6943		 * If a device is returned, its spa's config lock is also
6944		 * held to prevent device removal.  l2arc_dev_get_next()
6945		 * will grab and release l2arc_dev_mtx.
6946		 */
6947		if ((dev = l2arc_dev_get_next()) == NULL)
6948			continue;
6949
6950		spa = dev->l2ad_spa;
6951		ASSERT(spa != NULL);
6952
6953		/*
6954		 * If the pool is read-only then force the feed thread to
6955		 * sleep a little longer.
6956		 */
6957		if (!spa_writeable(spa)) {
6958			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
6959			spa_config_exit(spa, SCL_L2ARC, dev);
6960			continue;
6961		}
6962
6963		/*
6964		 * Avoid contributing to memory pressure.
6965		 */
6966		if (arc_reclaim_needed()) {
6967			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
6968			spa_config_exit(spa, SCL_L2ARC, dev);
6969			continue;
6970		}
6971
6972		ARCSTAT_BUMP(arcstat_l2_feeds);
6973
6974		size = l2arc_write_size();
6975
6976		/*
6977		 * Evict L2ARC buffers that will be overwritten.
6978		 */
6979		l2arc_evict(dev, size, B_FALSE);
6980
6981		/*
6982		 * Write ARC buffers.
6983		 */
6984		wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost);
6985
6986		/*
6987		 * Calculate interval between writes.
6988		 */
6989		next = l2arc_write_interval(begin, size, wrote);
6990		spa_config_exit(spa, SCL_L2ARC, dev);
6991	}
6992
6993	l2arc_thread_exit = 0;
6994	cv_broadcast(&l2arc_feed_thr_cv);
6995	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
6996	thread_exit();
6997}
6998
6999boolean_t
7000l2arc_vdev_present(vdev_t *vd)
7001{
7002	l2arc_dev_t *dev;
7003
7004	mutex_enter(&l2arc_dev_mtx);
7005	for (dev = list_head(l2arc_dev_list); dev != NULL;
7006	    dev = list_next(l2arc_dev_list, dev)) {
7007		if (dev->l2ad_vdev == vd)
7008			break;
7009	}
7010	mutex_exit(&l2arc_dev_mtx);
7011
7012	return (dev != NULL);
7013}
7014
7015/*
7016 * Add a vdev for use by the L2ARC.  By this point the spa has already
7017 * validated the vdev and opened it.
7018 */
7019void
7020l2arc_add_vdev(spa_t *spa, vdev_t *vd)
7021{
7022	l2arc_dev_t *adddev;
7023
7024	ASSERT(!l2arc_vdev_present(vd));
7025
7026	vdev_ashift_optimize(vd);
7027
7028	/*
7029	 * Create a new l2arc device entry.
7030	 */
7031	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
7032	adddev->l2ad_spa = spa;
7033	adddev->l2ad_vdev = vd;
7034	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
7035	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
7036	adddev->l2ad_hand = adddev->l2ad_start;
7037	adddev->l2ad_first = B_TRUE;
7038	adddev->l2ad_writing = B_FALSE;
7039
7040	mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
7041	/*
7042	 * This is a list of all ARC buffers that are still valid on the
7043	 * device.
7044	 */
7045	list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
7046	    offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
7047
7048	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
7049	refcount_create(&adddev->l2ad_alloc);
7050
7051	/*
7052	 * Add device to global list
7053	 */
7054	mutex_enter(&l2arc_dev_mtx);
7055	list_insert_head(l2arc_dev_list, adddev);
7056	atomic_inc_64(&l2arc_ndev);
7057	mutex_exit(&l2arc_dev_mtx);
7058}
7059
7060/*
7061 * Remove a vdev from the L2ARC.
7062 */
7063void
7064l2arc_remove_vdev(vdev_t *vd)
7065{
7066	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
7067
7068	/*
7069	 * Find the device by vdev
7070	 */
7071	mutex_enter(&l2arc_dev_mtx);
7072	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
7073		nextdev = list_next(l2arc_dev_list, dev);
7074		if (vd == dev->l2ad_vdev) {
7075			remdev = dev;
7076			break;
7077		}
7078	}
7079	ASSERT(remdev != NULL);
7080
7081	/*
7082	 * Remove device from global list
7083	 */
7084	list_remove(l2arc_dev_list, remdev);
7085	l2arc_dev_last = NULL;		/* may have been invalidated */
7086	atomic_dec_64(&l2arc_ndev);
7087	mutex_exit(&l2arc_dev_mtx);
7088
7089	/*
7090	 * Clear all buflists and ARC references.  L2ARC device flush.
7091	 */
7092	l2arc_evict(remdev, 0, B_TRUE);
7093	list_destroy(&remdev->l2ad_buflist);
7094	mutex_destroy(&remdev->l2ad_mtx);
7095	refcount_destroy(&remdev->l2ad_alloc);
7096	kmem_free(remdev, sizeof (l2arc_dev_t));
7097}
7098
7099void
7100l2arc_init(void)
7101{
7102	l2arc_thread_exit = 0;
7103	l2arc_ndev = 0;
7104	l2arc_writes_sent = 0;
7105	l2arc_writes_done = 0;
7106
7107	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
7108	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
7109	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
7110	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
7111
7112	l2arc_dev_list = &L2ARC_dev_list;
7113	l2arc_free_on_write = &L2ARC_free_on_write;
7114	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
7115	    offsetof(l2arc_dev_t, l2ad_node));
7116	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
7117	    offsetof(l2arc_data_free_t, l2df_list_node));
7118}
7119
7120void
7121l2arc_fini(void)
7122{
7123	/*
7124	 * This is called from dmu_fini(), which is called from spa_fini();
7125	 * Because of this, we can assume that all l2arc devices have
7126	 * already been removed when the pools themselves were removed.
7127	 */
7128
7129	l2arc_do_free_on_write();
7130
7131	mutex_destroy(&l2arc_feed_thr_lock);
7132	cv_destroy(&l2arc_feed_thr_cv);
7133	mutex_destroy(&l2arc_dev_mtx);
7134	mutex_destroy(&l2arc_free_on_write_mtx);
7135
7136	list_destroy(l2arc_dev_list);
7137	list_destroy(l2arc_free_on_write);
7138}
7139
7140void
7141l2arc_start(void)
7142{
7143	if (!(spa_mode_global & FWRITE))
7144		return;
7145
7146	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
7147	    TS_RUN, minclsyspri);
7148}
7149
7150void
7151l2arc_stop(void)
7152{
7153	if (!(spa_mode_global & FWRITE))
7154		return;
7155
7156	mutex_enter(&l2arc_feed_thr_lock);
7157	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
7158	l2arc_thread_exit = 1;
7159	while (l2arc_thread_exit != 0)
7160		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
7161	mutex_exit(&l2arc_feed_thr_lock);
7162}
7163