arc.c revision 297077
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26 * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
27 */
28
29/*
30 * DVA-based Adjustable Replacement Cache
31 *
32 * While much of the theory of operation used here is
33 * based on the self-tuning, low overhead replacement cache
34 * presented by Megiddo and Modha at FAST 2003, there are some
35 * significant differences:
36 *
37 * 1. The Megiddo and Modha model assumes any page is evictable.
38 * Pages in its cache cannot be "locked" into memory.  This makes
39 * the eviction algorithm simple: evict the last page in the list.
40 * This also make the performance characteristics easy to reason
41 * about.  Our cache is not so simple.  At any given moment, some
42 * subset of the blocks in the cache are un-evictable because we
43 * have handed out a reference to them.  Blocks are only evictable
44 * when there are no external references active.  This makes
45 * eviction far more problematic:  we choose to evict the evictable
46 * blocks that are the "lowest" in the list.
47 *
48 * There are times when it is not possible to evict the requested
49 * space.  In these circumstances we are unable to adjust the cache
50 * size.  To prevent the cache growing unbounded at these times we
51 * implement a "cache throttle" that slows the flow of new data
52 * into the cache until we can make space available.
53 *
54 * 2. The Megiddo and Modha model assumes a fixed cache size.
55 * Pages are evicted when the cache is full and there is a cache
56 * miss.  Our model has a variable sized cache.  It grows with
57 * high use, but also tries to react to memory pressure from the
58 * operating system: decreasing its size when system memory is
59 * tight.
60 *
61 * 3. The Megiddo and Modha model assumes a fixed page size. All
62 * elements of the cache are therefore exactly the same size.  So
63 * when adjusting the cache size following a cache miss, its simply
64 * a matter of choosing a single page to evict.  In our model, we
65 * have variable sized cache blocks (rangeing from 512 bytes to
66 * 128K bytes).  We therefore choose a set of blocks to evict to make
67 * space for a cache miss that approximates as closely as possible
68 * the space used by the new block.
69 *
70 * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71 * by N. Megiddo & D. Modha, FAST 2003
72 */
73
74/*
75 * The locking model:
76 *
77 * A new reference to a cache buffer can be obtained in two
78 * ways: 1) via a hash table lookup using the DVA as a key,
79 * or 2) via one of the ARC lists.  The arc_read() interface
80 * uses method 1, while the internal arc algorithms for
81 * adjusting the cache use method 2.  We therefore provide two
82 * types of locks: 1) the hash table lock array, and 2) the
83 * arc list locks.
84 *
85 * Buffers do not have their own mutexes, rather they rely on the
86 * hash table mutexes for the bulk of their protection (i.e. most
87 * fields in the arc_buf_hdr_t are protected by these mutexes).
88 *
89 * buf_hash_find() returns the appropriate mutex (held) when it
90 * locates the requested buffer in the hash table.  It returns
91 * NULL for the mutex if the buffer was not in the table.
92 *
93 * buf_hash_remove() expects the appropriate hash mutex to be
94 * already held before it is invoked.
95 *
96 * Each arc state also has a mutex which is used to protect the
97 * buffer list associated with the state.  When attempting to
98 * obtain a hash table lock while holding an arc list lock you
99 * must use: mutex_tryenter() to avoid deadlock.  Also note that
100 * the active state mutex must be held before the ghost state mutex.
101 *
102 * Arc buffers may have an associated eviction callback function.
103 * This function will be invoked prior to removing the buffer (e.g.
104 * in arc_do_user_evicts()).  Note however that the data associated
105 * with the buffer may be evicted prior to the callback.  The callback
106 * must be made with *no locks held* (to prevent deadlock).  Additionally,
107 * the users of callbacks must ensure that their private data is
108 * protected from simultaneous callbacks from arc_clear_callback()
109 * and arc_do_user_evicts().
110 *
111 * Note that the majority of the performance stats are manipulated
112 * with atomic operations.
113 *
114 * The L2ARC uses the l2ad_mtx on each vdev for the following:
115 *
116 *	- L2ARC buflist creation
117 *	- L2ARC buflist eviction
118 *	- L2ARC write completion, which walks L2ARC buflists
119 *	- ARC header destruction, as it removes from L2ARC buflists
120 *	- ARC header release, as it removes from L2ARC buflists
121 */
122
123#include <sys/spa.h>
124#include <sys/zio.h>
125#include <sys/zio_compress.h>
126#include <sys/zfs_context.h>
127#include <sys/arc.h>
128#include <sys/refcount.h>
129#include <sys/vdev.h>
130#include <sys/vdev_impl.h>
131#include <sys/dsl_pool.h>
132#include <sys/multilist.h>
133#ifdef _KERNEL
134#include <sys/dnlc.h>
135#endif
136#include <sys/callb.h>
137#include <sys/kstat.h>
138#include <sys/trim_map.h>
139#include <zfs_fletcher.h>
140#include <sys/sdt.h>
141
142#include <vm/vm_pageout.h>
143#include <machine/vmparam.h>
144
145#ifdef illumos
146#ifndef _KERNEL
147/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
148boolean_t arc_watch = B_FALSE;
149int arc_procfd;
150#endif
151#endif /* illumos */
152
153static kmutex_t		arc_reclaim_lock;
154static kcondvar_t	arc_reclaim_thread_cv;
155static boolean_t	arc_reclaim_thread_exit;
156static kcondvar_t	arc_reclaim_waiters_cv;
157
158static kmutex_t		arc_user_evicts_lock;
159static kcondvar_t	arc_user_evicts_cv;
160static boolean_t	arc_user_evicts_thread_exit;
161
162uint_t arc_reduce_dnlc_percent = 3;
163
164/*
165 * The number of headers to evict in arc_evict_state_impl() before
166 * dropping the sublist lock and evicting from another sublist. A lower
167 * value means we're more likely to evict the "correct" header (i.e. the
168 * oldest header in the arc state), but comes with higher overhead
169 * (i.e. more invocations of arc_evict_state_impl()).
170 */
171int zfs_arc_evict_batch_limit = 10;
172
173/*
174 * The number of sublists used for each of the arc state lists. If this
175 * is not set to a suitable value by the user, it will be configured to
176 * the number of CPUs on the system in arc_init().
177 */
178int zfs_arc_num_sublists_per_state = 0;
179
180/* number of seconds before growing cache again */
181static int		arc_grow_retry = 60;
182
183/* shift of arc_c for calculating overflow limit in arc_get_data_buf */
184int		zfs_arc_overflow_shift = 8;
185
186/* shift of arc_c for calculating both min and max arc_p */
187static int		arc_p_min_shift = 4;
188
189/* log2(fraction of arc to reclaim) */
190static int		arc_shrink_shift = 7;
191
192/*
193 * log2(fraction of ARC which must be free to allow growing).
194 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
195 * when reading a new block into the ARC, we will evict an equal-sized block
196 * from the ARC.
197 *
198 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
199 * we will still not allow it to grow.
200 */
201int			arc_no_grow_shift = 5;
202
203
204/*
205 * minimum lifespan of a prefetch block in clock ticks
206 * (initialized in arc_init())
207 */
208static int		arc_min_prefetch_lifespan;
209
210/*
211 * If this percent of memory is free, don't throttle.
212 */
213int arc_lotsfree_percent = 10;
214
215static int arc_dead;
216extern boolean_t zfs_prefetch_disable;
217
218/*
219 * The arc has filled available memory and has now warmed up.
220 */
221static boolean_t arc_warm;
222
223/*
224 * These tunables are for performance analysis.
225 */
226uint64_t zfs_arc_max;
227uint64_t zfs_arc_min;
228uint64_t zfs_arc_meta_limit = 0;
229uint64_t zfs_arc_meta_min = 0;
230int zfs_arc_grow_retry = 0;
231int zfs_arc_shrink_shift = 0;
232int zfs_arc_p_min_shift = 0;
233int zfs_disable_dup_eviction = 0;
234uint64_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
235u_int zfs_arc_free_target = 0;
236
237static int sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS);
238static int sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS);
239
240#ifdef _KERNEL
241static void
242arc_free_target_init(void *unused __unused)
243{
244
245	zfs_arc_free_target = vm_pageout_wakeup_thresh;
246}
247SYSINIT(arc_free_target_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_ANY,
248    arc_free_target_init, NULL);
249
250TUNABLE_QUAD("vfs.zfs.arc_max", &zfs_arc_max);
251TUNABLE_QUAD("vfs.zfs.arc_min", &zfs_arc_min);
252TUNABLE_QUAD("vfs.zfs.arc_meta_limit", &zfs_arc_meta_limit);
253TUNABLE_QUAD("vfs.zfs.arc_meta_min", &zfs_arc_meta_min);
254TUNABLE_QUAD("vfs.zfs.arc_average_blocksize", &zfs_arc_average_blocksize);
255TUNABLE_INT("vfs.zfs.arc_shrink_shift", &zfs_arc_shrink_shift);
256SYSCTL_DECL(_vfs_zfs);
257SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_max, CTLFLAG_RDTUN, &zfs_arc_max, 0,
258    "Maximum ARC size");
259SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_min, CTLFLAG_RDTUN, &zfs_arc_min, 0,
260    "Minimum ARC size");
261SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_average_blocksize, CTLFLAG_RDTUN,
262    &zfs_arc_average_blocksize, 0,
263    "ARC average blocksize");
264SYSCTL_INT(_vfs_zfs, OID_AUTO, arc_shrink_shift, CTLFLAG_RW,
265    &arc_shrink_shift, 0,
266    "log2(fraction of arc to reclaim)");
267
268/*
269 * We don't have a tunable for arc_free_target due to the dependency on
270 * pagedaemon initialisation.
271 */
272SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_free_target,
273    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(u_int),
274    sysctl_vfs_zfs_arc_free_target, "IU",
275    "Desired number of free pages below which ARC triggers reclaim");
276
277static int
278sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS)
279{
280	u_int val;
281	int err;
282
283	val = zfs_arc_free_target;
284	err = sysctl_handle_int(oidp, &val, 0, req);
285	if (err != 0 || req->newptr == NULL)
286		return (err);
287
288	if (val < minfree)
289		return (EINVAL);
290	if (val > cnt.v_page_count)
291		return (EINVAL);
292
293	zfs_arc_free_target = val;
294
295	return (0);
296}
297
298/*
299 * Must be declared here, before the definition of corresponding kstat
300 * macro which uses the same names will confuse the compiler.
301 */
302SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_meta_limit,
303    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
304    sysctl_vfs_zfs_arc_meta_limit, "QU",
305    "ARC metadata limit");
306#endif
307
308/*
309 * Note that buffers can be in one of 6 states:
310 *	ARC_anon	- anonymous (discussed below)
311 *	ARC_mru		- recently used, currently cached
312 *	ARC_mru_ghost	- recentely used, no longer in cache
313 *	ARC_mfu		- frequently used, currently cached
314 *	ARC_mfu_ghost	- frequently used, no longer in cache
315 *	ARC_l2c_only	- exists in L2ARC but not other states
316 * When there are no active references to the buffer, they are
317 * are linked onto a list in one of these arc states.  These are
318 * the only buffers that can be evicted or deleted.  Within each
319 * state there are multiple lists, one for meta-data and one for
320 * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
321 * etc.) is tracked separately so that it can be managed more
322 * explicitly: favored over data, limited explicitly.
323 *
324 * Anonymous buffers are buffers that are not associated with
325 * a DVA.  These are buffers that hold dirty block copies
326 * before they are written to stable storage.  By definition,
327 * they are "ref'd" and are considered part of arc_mru
328 * that cannot be freed.  Generally, they will aquire a DVA
329 * as they are written and migrate onto the arc_mru list.
330 *
331 * The ARC_l2c_only state is for buffers that are in the second
332 * level ARC but no longer in any of the ARC_m* lists.  The second
333 * level ARC itself may also contain buffers that are in any of
334 * the ARC_m* states - meaning that a buffer can exist in two
335 * places.  The reason for the ARC_l2c_only state is to keep the
336 * buffer header in the hash table, so that reads that hit the
337 * second level ARC benefit from these fast lookups.
338 */
339
340typedef struct arc_state {
341	/*
342	 * list of evictable buffers
343	 */
344	multilist_t arcs_list[ARC_BUFC_NUMTYPES];
345	/*
346	 * total amount of evictable data in this state
347	 */
348	uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];
349	/*
350	 * total amount of data in this state; this includes: evictable,
351	 * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA.
352	 */
353	refcount_t arcs_size;
354} arc_state_t;
355
356/* The 6 states: */
357static arc_state_t ARC_anon;
358static arc_state_t ARC_mru;
359static arc_state_t ARC_mru_ghost;
360static arc_state_t ARC_mfu;
361static arc_state_t ARC_mfu_ghost;
362static arc_state_t ARC_l2c_only;
363
364typedef struct arc_stats {
365	kstat_named_t arcstat_hits;
366	kstat_named_t arcstat_misses;
367	kstat_named_t arcstat_demand_data_hits;
368	kstat_named_t arcstat_demand_data_misses;
369	kstat_named_t arcstat_demand_metadata_hits;
370	kstat_named_t arcstat_demand_metadata_misses;
371	kstat_named_t arcstat_prefetch_data_hits;
372	kstat_named_t arcstat_prefetch_data_misses;
373	kstat_named_t arcstat_prefetch_metadata_hits;
374	kstat_named_t arcstat_prefetch_metadata_misses;
375	kstat_named_t arcstat_mru_hits;
376	kstat_named_t arcstat_mru_ghost_hits;
377	kstat_named_t arcstat_mfu_hits;
378	kstat_named_t arcstat_mfu_ghost_hits;
379	kstat_named_t arcstat_allocated;
380	kstat_named_t arcstat_deleted;
381	/*
382	 * Number of buffers that could not be evicted because the hash lock
383	 * was held by another thread.  The lock may not necessarily be held
384	 * by something using the same buffer, since hash locks are shared
385	 * by multiple buffers.
386	 */
387	kstat_named_t arcstat_mutex_miss;
388	/*
389	 * Number of buffers skipped because they have I/O in progress, are
390	 * indrect prefetch buffers that have not lived long enough, or are
391	 * not from the spa we're trying to evict from.
392	 */
393	kstat_named_t arcstat_evict_skip;
394	/*
395	 * Number of times arc_evict_state() was unable to evict enough
396	 * buffers to reach it's target amount.
397	 */
398	kstat_named_t arcstat_evict_not_enough;
399	kstat_named_t arcstat_evict_l2_cached;
400	kstat_named_t arcstat_evict_l2_eligible;
401	kstat_named_t arcstat_evict_l2_ineligible;
402	kstat_named_t arcstat_evict_l2_skip;
403	kstat_named_t arcstat_hash_elements;
404	kstat_named_t arcstat_hash_elements_max;
405	kstat_named_t arcstat_hash_collisions;
406	kstat_named_t arcstat_hash_chains;
407	kstat_named_t arcstat_hash_chain_max;
408	kstat_named_t arcstat_p;
409	kstat_named_t arcstat_c;
410	kstat_named_t arcstat_c_min;
411	kstat_named_t arcstat_c_max;
412	kstat_named_t arcstat_size;
413	/*
414	 * Number of bytes consumed by internal ARC structures necessary
415	 * for tracking purposes; these structures are not actually
416	 * backed by ARC buffers. This includes arc_buf_hdr_t structures
417	 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
418	 * caches), and arc_buf_t structures (allocated via arc_buf_t
419	 * cache).
420	 */
421	kstat_named_t arcstat_hdr_size;
422	/*
423	 * Number of bytes consumed by ARC buffers of type equal to
424	 * ARC_BUFC_DATA. This is generally consumed by buffers backing
425	 * on disk user data (e.g. plain file contents).
426	 */
427	kstat_named_t arcstat_data_size;
428	/*
429	 * Number of bytes consumed by ARC buffers of type equal to
430	 * ARC_BUFC_METADATA. This is generally consumed by buffers
431	 * backing on disk data that is used for internal ZFS
432	 * structures (e.g. ZAP, dnode, indirect blocks, etc).
433	 */
434	kstat_named_t arcstat_metadata_size;
435	/*
436	 * Number of bytes consumed by various buffers and structures
437	 * not actually backed with ARC buffers. This includes bonus
438	 * buffers (allocated directly via zio_buf_* functions),
439	 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t
440	 * cache), and dnode_t structures (allocated via dnode_t cache).
441	 */
442	kstat_named_t arcstat_other_size;
443	/*
444	 * Total number of bytes consumed by ARC buffers residing in the
445	 * arc_anon state. This includes *all* buffers in the arc_anon
446	 * state; e.g. data, metadata, evictable, and unevictable buffers
447	 * are all included in this value.
448	 */
449	kstat_named_t arcstat_anon_size;
450	/*
451	 * Number of bytes consumed by ARC buffers that meet the
452	 * following criteria: backing buffers of type ARC_BUFC_DATA,
453	 * residing in the arc_anon state, and are eligible for eviction
454	 * (e.g. have no outstanding holds on the buffer).
455	 */
456	kstat_named_t arcstat_anon_evictable_data;
457	/*
458	 * Number of bytes consumed by ARC buffers that meet the
459	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
460	 * residing in the arc_anon state, and are eligible for eviction
461	 * (e.g. have no outstanding holds on the buffer).
462	 */
463	kstat_named_t arcstat_anon_evictable_metadata;
464	/*
465	 * Total number of bytes consumed by ARC buffers residing in the
466	 * arc_mru state. This includes *all* buffers in the arc_mru
467	 * state; e.g. data, metadata, evictable, and unevictable buffers
468	 * are all included in this value.
469	 */
470	kstat_named_t arcstat_mru_size;
471	/*
472	 * Number of bytes consumed by ARC buffers that meet the
473	 * following criteria: backing buffers of type ARC_BUFC_DATA,
474	 * residing in the arc_mru state, and are eligible for eviction
475	 * (e.g. have no outstanding holds on the buffer).
476	 */
477	kstat_named_t arcstat_mru_evictable_data;
478	/*
479	 * Number of bytes consumed by ARC buffers that meet the
480	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
481	 * residing in the arc_mru state, and are eligible for eviction
482	 * (e.g. have no outstanding holds on the buffer).
483	 */
484	kstat_named_t arcstat_mru_evictable_metadata;
485	/*
486	 * Total number of bytes that *would have been* consumed by ARC
487	 * buffers in the arc_mru_ghost state. The key thing to note
488	 * here, is the fact that this size doesn't actually indicate
489	 * RAM consumption. The ghost lists only consist of headers and
490	 * don't actually have ARC buffers linked off of these headers.
491	 * Thus, *if* the headers had associated ARC buffers, these
492	 * buffers *would have* consumed this number of bytes.
493	 */
494	kstat_named_t arcstat_mru_ghost_size;
495	/*
496	 * Number of bytes that *would have been* consumed by ARC
497	 * buffers that are eligible for eviction, of type
498	 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
499	 */
500	kstat_named_t arcstat_mru_ghost_evictable_data;
501	/*
502	 * Number of bytes that *would have been* consumed by ARC
503	 * buffers that are eligible for eviction, of type
504	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
505	 */
506	kstat_named_t arcstat_mru_ghost_evictable_metadata;
507	/*
508	 * Total number of bytes consumed by ARC buffers residing in the
509	 * arc_mfu state. This includes *all* buffers in the arc_mfu
510	 * state; e.g. data, metadata, evictable, and unevictable buffers
511	 * are all included in this value.
512	 */
513	kstat_named_t arcstat_mfu_size;
514	/*
515	 * Number of bytes consumed by ARC buffers that are eligible for
516	 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
517	 * state.
518	 */
519	kstat_named_t arcstat_mfu_evictable_data;
520	/*
521	 * Number of bytes consumed by ARC buffers that are eligible for
522	 * eviction, of type ARC_BUFC_METADATA, and reside in the
523	 * arc_mfu state.
524	 */
525	kstat_named_t arcstat_mfu_evictable_metadata;
526	/*
527	 * Total number of bytes that *would have been* consumed by ARC
528	 * buffers in the arc_mfu_ghost state. See the comment above
529	 * arcstat_mru_ghost_size for more details.
530	 */
531	kstat_named_t arcstat_mfu_ghost_size;
532	/*
533	 * Number of bytes that *would have been* consumed by ARC
534	 * buffers that are eligible for eviction, of type
535	 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
536	 */
537	kstat_named_t arcstat_mfu_ghost_evictable_data;
538	/*
539	 * Number of bytes that *would have been* consumed by ARC
540	 * buffers that are eligible for eviction, of type
541	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
542	 */
543	kstat_named_t arcstat_mfu_ghost_evictable_metadata;
544	kstat_named_t arcstat_l2_hits;
545	kstat_named_t arcstat_l2_misses;
546	kstat_named_t arcstat_l2_feeds;
547	kstat_named_t arcstat_l2_rw_clash;
548	kstat_named_t arcstat_l2_read_bytes;
549	kstat_named_t arcstat_l2_write_bytes;
550	kstat_named_t arcstat_l2_writes_sent;
551	kstat_named_t arcstat_l2_writes_done;
552	kstat_named_t arcstat_l2_writes_error;
553	kstat_named_t arcstat_l2_writes_lock_retry;
554	kstat_named_t arcstat_l2_evict_lock_retry;
555	kstat_named_t arcstat_l2_evict_reading;
556	kstat_named_t arcstat_l2_evict_l1cached;
557	kstat_named_t arcstat_l2_free_on_write;
558	kstat_named_t arcstat_l2_cdata_free_on_write;
559	kstat_named_t arcstat_l2_abort_lowmem;
560	kstat_named_t arcstat_l2_cksum_bad;
561	kstat_named_t arcstat_l2_io_error;
562	kstat_named_t arcstat_l2_size;
563	kstat_named_t arcstat_l2_asize;
564	kstat_named_t arcstat_l2_hdr_size;
565	kstat_named_t arcstat_l2_compress_successes;
566	kstat_named_t arcstat_l2_compress_zeros;
567	kstat_named_t arcstat_l2_compress_failures;
568	kstat_named_t arcstat_l2_write_trylock_fail;
569	kstat_named_t arcstat_l2_write_passed_headroom;
570	kstat_named_t arcstat_l2_write_spa_mismatch;
571	kstat_named_t arcstat_l2_write_in_l2;
572	kstat_named_t arcstat_l2_write_hdr_io_in_progress;
573	kstat_named_t arcstat_l2_write_not_cacheable;
574	kstat_named_t arcstat_l2_write_full;
575	kstat_named_t arcstat_l2_write_buffer_iter;
576	kstat_named_t arcstat_l2_write_pios;
577	kstat_named_t arcstat_l2_write_buffer_bytes_scanned;
578	kstat_named_t arcstat_l2_write_buffer_list_iter;
579	kstat_named_t arcstat_l2_write_buffer_list_null_iter;
580	kstat_named_t arcstat_memory_throttle_count;
581	kstat_named_t arcstat_duplicate_buffers;
582	kstat_named_t arcstat_duplicate_buffers_size;
583	kstat_named_t arcstat_duplicate_reads;
584	kstat_named_t arcstat_meta_used;
585	kstat_named_t arcstat_meta_limit;
586	kstat_named_t arcstat_meta_max;
587	kstat_named_t arcstat_meta_min;
588	kstat_named_t arcstat_sync_wait_for_async;
589	kstat_named_t arcstat_demand_hit_predictive_prefetch;
590} arc_stats_t;
591
592static arc_stats_t arc_stats = {
593	{ "hits",			KSTAT_DATA_UINT64 },
594	{ "misses",			KSTAT_DATA_UINT64 },
595	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
596	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
597	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
598	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
599	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
600	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
601	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
602	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
603	{ "mru_hits",			KSTAT_DATA_UINT64 },
604	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
605	{ "mfu_hits",			KSTAT_DATA_UINT64 },
606	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
607	{ "allocated",			KSTAT_DATA_UINT64 },
608	{ "deleted",			KSTAT_DATA_UINT64 },
609	{ "mutex_miss",			KSTAT_DATA_UINT64 },
610	{ "evict_skip",			KSTAT_DATA_UINT64 },
611	{ "evict_not_enough",		KSTAT_DATA_UINT64 },
612	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
613	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
614	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
615	{ "evict_l2_skip",		KSTAT_DATA_UINT64 },
616	{ "hash_elements",		KSTAT_DATA_UINT64 },
617	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
618	{ "hash_collisions",		KSTAT_DATA_UINT64 },
619	{ "hash_chains",		KSTAT_DATA_UINT64 },
620	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
621	{ "p",				KSTAT_DATA_UINT64 },
622	{ "c",				KSTAT_DATA_UINT64 },
623	{ "c_min",			KSTAT_DATA_UINT64 },
624	{ "c_max",			KSTAT_DATA_UINT64 },
625	{ "size",			KSTAT_DATA_UINT64 },
626	{ "hdr_size",			KSTAT_DATA_UINT64 },
627	{ "data_size",			KSTAT_DATA_UINT64 },
628	{ "metadata_size",		KSTAT_DATA_UINT64 },
629	{ "other_size",			KSTAT_DATA_UINT64 },
630	{ "anon_size",			KSTAT_DATA_UINT64 },
631	{ "anon_evictable_data",	KSTAT_DATA_UINT64 },
632	{ "anon_evictable_metadata",	KSTAT_DATA_UINT64 },
633	{ "mru_size",			KSTAT_DATA_UINT64 },
634	{ "mru_evictable_data",		KSTAT_DATA_UINT64 },
635	{ "mru_evictable_metadata",	KSTAT_DATA_UINT64 },
636	{ "mru_ghost_size",		KSTAT_DATA_UINT64 },
637	{ "mru_ghost_evictable_data",	KSTAT_DATA_UINT64 },
638	{ "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
639	{ "mfu_size",			KSTAT_DATA_UINT64 },
640	{ "mfu_evictable_data",		KSTAT_DATA_UINT64 },
641	{ "mfu_evictable_metadata",	KSTAT_DATA_UINT64 },
642	{ "mfu_ghost_size",		KSTAT_DATA_UINT64 },
643	{ "mfu_ghost_evictable_data",	KSTAT_DATA_UINT64 },
644	{ "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
645	{ "l2_hits",			KSTAT_DATA_UINT64 },
646	{ "l2_misses",			KSTAT_DATA_UINT64 },
647	{ "l2_feeds",			KSTAT_DATA_UINT64 },
648	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
649	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
650	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
651	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
652	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
653	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
654	{ "l2_writes_lock_retry",	KSTAT_DATA_UINT64 },
655	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
656	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
657	{ "l2_evict_l1cached",		KSTAT_DATA_UINT64 },
658	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
659	{ "l2_cdata_free_on_write",	KSTAT_DATA_UINT64 },
660	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
661	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
662	{ "l2_io_error",		KSTAT_DATA_UINT64 },
663	{ "l2_size",			KSTAT_DATA_UINT64 },
664	{ "l2_asize",			KSTAT_DATA_UINT64 },
665	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
666	{ "l2_compress_successes",	KSTAT_DATA_UINT64 },
667	{ "l2_compress_zeros",		KSTAT_DATA_UINT64 },
668	{ "l2_compress_failures",	KSTAT_DATA_UINT64 },
669	{ "l2_write_trylock_fail",	KSTAT_DATA_UINT64 },
670	{ "l2_write_passed_headroom",	KSTAT_DATA_UINT64 },
671	{ "l2_write_spa_mismatch",	KSTAT_DATA_UINT64 },
672	{ "l2_write_in_l2",		KSTAT_DATA_UINT64 },
673	{ "l2_write_io_in_progress",	KSTAT_DATA_UINT64 },
674	{ "l2_write_not_cacheable",	KSTAT_DATA_UINT64 },
675	{ "l2_write_full",		KSTAT_DATA_UINT64 },
676	{ "l2_write_buffer_iter",	KSTAT_DATA_UINT64 },
677	{ "l2_write_pios",		KSTAT_DATA_UINT64 },
678	{ "l2_write_buffer_bytes_scanned", KSTAT_DATA_UINT64 },
679	{ "l2_write_buffer_list_iter",	KSTAT_DATA_UINT64 },
680	{ "l2_write_buffer_list_null_iter", KSTAT_DATA_UINT64 },
681	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
682	{ "duplicate_buffers",		KSTAT_DATA_UINT64 },
683	{ "duplicate_buffers_size",	KSTAT_DATA_UINT64 },
684	{ "duplicate_reads",		KSTAT_DATA_UINT64 },
685	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
686	{ "arc_meta_limit",		KSTAT_DATA_UINT64 },
687	{ "arc_meta_max",		KSTAT_DATA_UINT64 },
688	{ "arc_meta_min",		KSTAT_DATA_UINT64 },
689	{ "sync_wait_for_async",	KSTAT_DATA_UINT64 },
690	{ "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
691};
692
693#define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
694
695#define	ARCSTAT_INCR(stat, val) \
696	atomic_add_64(&arc_stats.stat.value.ui64, (val))
697
698#define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
699#define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
700
701#define	ARCSTAT_MAX(stat, val) {					\
702	uint64_t m;							\
703	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
704	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
705		continue;						\
706}
707
708#define	ARCSTAT_MAXSTAT(stat) \
709	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
710
711/*
712 * We define a macro to allow ARC hits/misses to be easily broken down by
713 * two separate conditions, giving a total of four different subtypes for
714 * each of hits and misses (so eight statistics total).
715 */
716#define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
717	if (cond1) {							\
718		if (cond2) {						\
719			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
720		} else {						\
721			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
722		}							\
723	} else {							\
724		if (cond2) {						\
725			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
726		} else {						\
727			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
728		}							\
729	}
730
731kstat_t			*arc_ksp;
732static arc_state_t	*arc_anon;
733static arc_state_t	*arc_mru;
734static arc_state_t	*arc_mru_ghost;
735static arc_state_t	*arc_mfu;
736static arc_state_t	*arc_mfu_ghost;
737static arc_state_t	*arc_l2c_only;
738
739/*
740 * There are several ARC variables that are critical to export as kstats --
741 * but we don't want to have to grovel around in the kstat whenever we wish to
742 * manipulate them.  For these variables, we therefore define them to be in
743 * terms of the statistic variable.  This assures that we are not introducing
744 * the possibility of inconsistency by having shadow copies of the variables,
745 * while still allowing the code to be readable.
746 */
747#define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
748#define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
749#define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
750#define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
751#define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
752#define	arc_meta_limit	ARCSTAT(arcstat_meta_limit) /* max size for metadata */
753#define	arc_meta_min	ARCSTAT(arcstat_meta_min) /* min size for metadata */
754#define	arc_meta_used	ARCSTAT(arcstat_meta_used) /* size of metadata */
755#define	arc_meta_max	ARCSTAT(arcstat_meta_max) /* max size of metadata */
756
757#define	L2ARC_IS_VALID_COMPRESS(_c_) \
758	((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY)
759
760static int		arc_no_grow;	/* Don't try to grow cache size */
761static uint64_t		arc_tempreserve;
762static uint64_t		arc_loaned_bytes;
763
764typedef struct arc_callback arc_callback_t;
765
766struct arc_callback {
767	void			*acb_private;
768	arc_done_func_t		*acb_done;
769	arc_buf_t		*acb_buf;
770	zio_t			*acb_zio_dummy;
771	arc_callback_t		*acb_next;
772};
773
774typedef struct arc_write_callback arc_write_callback_t;
775
776struct arc_write_callback {
777	void		*awcb_private;
778	arc_done_func_t	*awcb_ready;
779	arc_done_func_t	*awcb_physdone;
780	arc_done_func_t	*awcb_done;
781	arc_buf_t	*awcb_buf;
782};
783
784/*
785 * ARC buffers are separated into multiple structs as a memory saving measure:
786 *   - Common fields struct, always defined, and embedded within it:
787 *       - L2-only fields, always allocated but undefined when not in L2ARC
788 *       - L1-only fields, only allocated when in L1ARC
789 *
790 *           Buffer in L1                     Buffer only in L2
791 *    +------------------------+          +------------------------+
792 *    | arc_buf_hdr_t          |          | arc_buf_hdr_t          |
793 *    |                        |          |                        |
794 *    |                        |          |                        |
795 *    |                        |          |                        |
796 *    +------------------------+          +------------------------+
797 *    | l2arc_buf_hdr_t        |          | l2arc_buf_hdr_t        |
798 *    | (undefined if L1-only) |          |                        |
799 *    +------------------------+          +------------------------+
800 *    | l1arc_buf_hdr_t        |
801 *    |                        |
802 *    |                        |
803 *    |                        |
804 *    |                        |
805 *    +------------------------+
806 *
807 * Because it's possible for the L2ARC to become extremely large, we can wind
808 * up eating a lot of memory in L2ARC buffer headers, so the size of a header
809 * is minimized by only allocating the fields necessary for an L1-cached buffer
810 * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and
811 * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple
812 * words in pointers. arc_hdr_realloc() is used to switch a header between
813 * these two allocation states.
814 */
815typedef struct l1arc_buf_hdr {
816	kmutex_t		b_freeze_lock;
817#ifdef ZFS_DEBUG
818	/*
819	 * used for debugging wtih kmem_flags - by allocating and freeing
820	 * b_thawed when the buffer is thawed, we get a record of the stack
821	 * trace that thawed it.
822	 */
823	void			*b_thawed;
824#endif
825
826	arc_buf_t		*b_buf;
827	uint32_t		b_datacnt;
828	/* for waiting on writes to complete */
829	kcondvar_t		b_cv;
830
831	/* protected by arc state mutex */
832	arc_state_t		*b_state;
833	multilist_node_t	b_arc_node;
834
835	/* updated atomically */
836	clock_t			b_arc_access;
837
838	/* self protecting */
839	refcount_t		b_refcnt;
840
841	arc_callback_t		*b_acb;
842	/* temporary buffer holder for in-flight compressed data */
843	void			*b_tmp_cdata;
844} l1arc_buf_hdr_t;
845
846typedef struct l2arc_dev l2arc_dev_t;
847
848typedef struct l2arc_buf_hdr {
849	/* protected by arc_buf_hdr mutex */
850	l2arc_dev_t		*b_dev;		/* L2ARC device */
851	uint64_t		b_daddr;	/* disk address, offset byte */
852	/* real alloc'd buffer size depending on b_compress applied */
853	int32_t			b_asize;
854	uint8_t			b_compress;
855
856	list_node_t		b_l2node;
857} l2arc_buf_hdr_t;
858
859struct arc_buf_hdr {
860	/* protected by hash lock */
861	dva_t			b_dva;
862	uint64_t		b_birth;
863	/*
864	 * Even though this checksum is only set/verified when a buffer is in
865	 * the L1 cache, it needs to be in the set of common fields because it
866	 * must be preserved from the time before a buffer is written out to
867	 * L2ARC until after it is read back in.
868	 */
869	zio_cksum_t		*b_freeze_cksum;
870
871	arc_buf_hdr_t		*b_hash_next;
872	arc_flags_t		b_flags;
873
874	/* immutable */
875	int32_t			b_size;
876	uint64_t		b_spa;
877
878	/* L2ARC fields. Undefined when not in L2ARC. */
879	l2arc_buf_hdr_t		b_l2hdr;
880	/* L1ARC fields. Undefined when in l2arc_only state */
881	l1arc_buf_hdr_t		b_l1hdr;
882};
883
884#ifdef _KERNEL
885static int
886sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS)
887{
888	uint64_t val;
889	int err;
890
891	val = arc_meta_limit;
892	err = sysctl_handle_64(oidp, &val, 0, req);
893	if (err != 0 || req->newptr == NULL)
894		return (err);
895
896        if (val <= 0 || val > arc_c_max)
897		return (EINVAL);
898
899	arc_meta_limit = val;
900	return (0);
901}
902#endif
903
904static arc_buf_t *arc_eviction_list;
905static arc_buf_hdr_t arc_eviction_hdr;
906
907#define	GHOST_STATE(state)	\
908	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
909	(state) == arc_l2c_only)
910
911#define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
912#define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
913#define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_FLAG_IO_ERROR)
914#define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_FLAG_PREFETCH)
915#define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FLAG_FREED_IN_READ)
916#define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_FLAG_BUF_AVAILABLE)
917
918#define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_FLAG_L2CACHE)
919#define	HDR_L2COMPRESS(hdr)	((hdr)->b_flags & ARC_FLAG_L2COMPRESS)
920#define	HDR_L2_READING(hdr)	\
921	    (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&	\
922	    ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
923#define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITING)
924#define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
925#define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
926
927#define	HDR_ISTYPE_METADATA(hdr)	\
928	    ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
929#define	HDR_ISTYPE_DATA(hdr)	(!HDR_ISTYPE_METADATA(hdr))
930
931#define	HDR_HAS_L1HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
932#define	HDR_HAS_L2HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
933
934/*
935 * Other sizes
936 */
937
938#define	HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
939#define	HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
940
941/*
942 * Hash table routines
943 */
944
945#define	HT_LOCK_PAD	CACHE_LINE_SIZE
946
947struct ht_lock {
948	kmutex_t	ht_lock;
949#ifdef _KERNEL
950	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
951#endif
952};
953
954#define	BUF_LOCKS 256
955typedef struct buf_hash_table {
956	uint64_t ht_mask;
957	arc_buf_hdr_t **ht_table;
958	struct ht_lock ht_locks[BUF_LOCKS] __aligned(CACHE_LINE_SIZE);
959} buf_hash_table_t;
960
961static buf_hash_table_t buf_hash_table;
962
963#define	BUF_HASH_INDEX(spa, dva, birth) \
964	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
965#define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
966#define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
967#define	HDR_LOCK(hdr) \
968	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
969
970uint64_t zfs_crc64_table[256];
971
972/*
973 * Level 2 ARC
974 */
975
976#define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
977#define	L2ARC_HEADROOM		2			/* num of writes */
978/*
979 * If we discover during ARC scan any buffers to be compressed, we boost
980 * our headroom for the next scanning cycle by this percentage multiple.
981 */
982#define	L2ARC_HEADROOM_BOOST	200
983#define	L2ARC_FEED_SECS		1		/* caching interval secs */
984#define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
985
986/*
987 * Used to distinguish headers that are being process by
988 * l2arc_write_buffers(), but have yet to be assigned to a l2arc disk
989 * address. This can happen when the header is added to the l2arc's list
990 * of buffers to write in the first stage of l2arc_write_buffers(), but
991 * has not yet been written out which happens in the second stage of
992 * l2arc_write_buffers().
993 */
994#define	L2ARC_ADDR_UNSET	((uint64_t)(-1))
995
996#define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
997#define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
998
999/* L2ARC Performance Tunables */
1000uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
1001uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
1002uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
1003uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
1004uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
1005uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
1006boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
1007boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
1008boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
1009
1010SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_max, CTLFLAG_RW,
1011    &l2arc_write_max, 0, "max write size");
1012SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_boost, CTLFLAG_RW,
1013    &l2arc_write_boost, 0, "extra write during warmup");
1014SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_headroom, CTLFLAG_RW,
1015    &l2arc_headroom, 0, "number of dev writes");
1016SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_secs, CTLFLAG_RW,
1017    &l2arc_feed_secs, 0, "interval seconds");
1018SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_min_ms, CTLFLAG_RW,
1019    &l2arc_feed_min_ms, 0, "min interval milliseconds");
1020
1021SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_noprefetch, CTLFLAG_RW,
1022    &l2arc_noprefetch, 0, "don't cache prefetch bufs");
1023SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_feed_again, CTLFLAG_RW,
1024    &l2arc_feed_again, 0, "turbo warmup");
1025SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_norw, CTLFLAG_RW,
1026    &l2arc_norw, 0, "no reads during writes");
1027
1028SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_size, CTLFLAG_RD,
1029    &ARC_anon.arcs_size.rc_count, 0, "size of anonymous state");
1030SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_metadata_lsize, CTLFLAG_RD,
1031    &ARC_anon.arcs_lsize[ARC_BUFC_METADATA], 0, "size of anonymous state");
1032SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_data_lsize, CTLFLAG_RD,
1033    &ARC_anon.arcs_lsize[ARC_BUFC_DATA], 0, "size of anonymous state");
1034
1035SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_size, CTLFLAG_RD,
1036    &ARC_mru.arcs_size.rc_count, 0, "size of mru state");
1037SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_metadata_lsize, CTLFLAG_RD,
1038    &ARC_mru.arcs_lsize[ARC_BUFC_METADATA], 0, "size of metadata in mru state");
1039SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_data_lsize, CTLFLAG_RD,
1040    &ARC_mru.arcs_lsize[ARC_BUFC_DATA], 0, "size of data in mru state");
1041
1042SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_size, CTLFLAG_RD,
1043    &ARC_mru_ghost.arcs_size.rc_count, 0, "size of mru ghost state");
1044SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_metadata_lsize, CTLFLAG_RD,
1045    &ARC_mru_ghost.arcs_lsize[ARC_BUFC_METADATA], 0,
1046    "size of metadata in mru ghost state");
1047SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_data_lsize, CTLFLAG_RD,
1048    &ARC_mru_ghost.arcs_lsize[ARC_BUFC_DATA], 0,
1049    "size of data in mru ghost state");
1050
1051SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_size, CTLFLAG_RD,
1052    &ARC_mfu.arcs_size.rc_count, 0, "size of mfu state");
1053SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_metadata_lsize, CTLFLAG_RD,
1054    &ARC_mfu.arcs_lsize[ARC_BUFC_METADATA], 0, "size of metadata in mfu state");
1055SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_data_lsize, CTLFLAG_RD,
1056    &ARC_mfu.arcs_lsize[ARC_BUFC_DATA], 0, "size of data in mfu state");
1057
1058SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_size, CTLFLAG_RD,
1059    &ARC_mfu_ghost.arcs_size.rc_count, 0, "size of mfu ghost state");
1060SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_metadata_lsize, CTLFLAG_RD,
1061    &ARC_mfu_ghost.arcs_lsize[ARC_BUFC_METADATA], 0,
1062    "size of metadata in mfu ghost state");
1063SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_data_lsize, CTLFLAG_RD,
1064    &ARC_mfu_ghost.arcs_lsize[ARC_BUFC_DATA], 0,
1065    "size of data in mfu ghost state");
1066
1067SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2c_only_size, CTLFLAG_RD,
1068    &ARC_l2c_only.arcs_size.rc_count, 0, "size of mru state");
1069
1070/*
1071 * L2ARC Internals
1072 */
1073struct l2arc_dev {
1074	vdev_t			*l2ad_vdev;	/* vdev */
1075	spa_t			*l2ad_spa;	/* spa */
1076	uint64_t		l2ad_hand;	/* next write location */
1077	uint64_t		l2ad_start;	/* first addr on device */
1078	uint64_t		l2ad_end;	/* last addr on device */
1079	boolean_t		l2ad_first;	/* first sweep through */
1080	boolean_t		l2ad_writing;	/* currently writing */
1081	kmutex_t		l2ad_mtx;	/* lock for buffer list */
1082	list_t			l2ad_buflist;	/* buffer list */
1083	list_node_t		l2ad_node;	/* device list node */
1084	refcount_t		l2ad_alloc;	/* allocated bytes */
1085};
1086
1087static list_t L2ARC_dev_list;			/* device list */
1088static list_t *l2arc_dev_list;			/* device list pointer */
1089static kmutex_t l2arc_dev_mtx;			/* device list mutex */
1090static l2arc_dev_t *l2arc_dev_last;		/* last device used */
1091static list_t L2ARC_free_on_write;		/* free after write buf list */
1092static list_t *l2arc_free_on_write;		/* free after write list ptr */
1093static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
1094static uint64_t l2arc_ndev;			/* number of devices */
1095
1096typedef struct l2arc_read_callback {
1097	arc_buf_t		*l2rcb_buf;		/* read buffer */
1098	spa_t			*l2rcb_spa;		/* spa */
1099	blkptr_t		l2rcb_bp;		/* original blkptr */
1100	zbookmark_phys_t	l2rcb_zb;		/* original bookmark */
1101	int			l2rcb_flags;		/* original flags */
1102	enum zio_compress	l2rcb_compress;		/* applied compress */
1103} l2arc_read_callback_t;
1104
1105typedef struct l2arc_write_callback {
1106	l2arc_dev_t	*l2wcb_dev;		/* device info */
1107	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
1108} l2arc_write_callback_t;
1109
1110typedef struct l2arc_data_free {
1111	/* protected by l2arc_free_on_write_mtx */
1112	void		*l2df_data;
1113	size_t		l2df_size;
1114	void		(*l2df_func)(void *, size_t);
1115	list_node_t	l2df_list_node;
1116} l2arc_data_free_t;
1117
1118static kmutex_t l2arc_feed_thr_lock;
1119static kcondvar_t l2arc_feed_thr_cv;
1120static uint8_t l2arc_thread_exit;
1121
1122static void arc_get_data_buf(arc_buf_t *);
1123static void arc_access(arc_buf_hdr_t *, kmutex_t *);
1124static boolean_t arc_is_overflowing();
1125static void arc_buf_watch(arc_buf_t *);
1126
1127static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
1128static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
1129
1130static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
1131static void l2arc_read_done(zio_t *);
1132
1133static boolean_t l2arc_compress_buf(arc_buf_hdr_t *);
1134static void l2arc_decompress_zio(zio_t *, arc_buf_hdr_t *, enum zio_compress);
1135static void l2arc_release_cdata_buf(arc_buf_hdr_t *);
1136
1137static void
1138l2arc_trim(const arc_buf_hdr_t *hdr)
1139{
1140	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
1141
1142	ASSERT(HDR_HAS_L2HDR(hdr));
1143	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
1144
1145	if (hdr->b_l2hdr.b_daddr == L2ARC_ADDR_UNSET)
1146		return;
1147	if (hdr->b_l2hdr.b_asize != 0) {
1148		trim_map_free(dev->l2ad_vdev, hdr->b_l2hdr.b_daddr,
1149		    hdr->b_l2hdr.b_asize, 0);
1150	} else {
1151		ASSERT3U(hdr->b_l2hdr.b_compress, ==, ZIO_COMPRESS_EMPTY);
1152	}
1153}
1154
1155static uint64_t
1156buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
1157{
1158	uint8_t *vdva = (uint8_t *)dva;
1159	uint64_t crc = -1ULL;
1160	int i;
1161
1162	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
1163
1164	for (i = 0; i < sizeof (dva_t); i++)
1165		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
1166
1167	crc ^= (spa>>8) ^ birth;
1168
1169	return (crc);
1170}
1171
1172#define	BUF_EMPTY(buf)						\
1173	((buf)->b_dva.dva_word[0] == 0 &&			\
1174	(buf)->b_dva.dva_word[1] == 0)
1175
1176#define	BUF_EQUAL(spa, dva, birth, buf)				\
1177	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
1178	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
1179	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
1180
1181static void
1182buf_discard_identity(arc_buf_hdr_t *hdr)
1183{
1184	hdr->b_dva.dva_word[0] = 0;
1185	hdr->b_dva.dva_word[1] = 0;
1186	hdr->b_birth = 0;
1187}
1188
1189static arc_buf_hdr_t *
1190buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1191{
1192	const dva_t *dva = BP_IDENTITY(bp);
1193	uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1194	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1195	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1196	arc_buf_hdr_t *hdr;
1197
1198	mutex_enter(hash_lock);
1199	for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1200	    hdr = hdr->b_hash_next) {
1201		if (BUF_EQUAL(spa, dva, birth, hdr)) {
1202			*lockp = hash_lock;
1203			return (hdr);
1204		}
1205	}
1206	mutex_exit(hash_lock);
1207	*lockp = NULL;
1208	return (NULL);
1209}
1210
1211/*
1212 * Insert an entry into the hash table.  If there is already an element
1213 * equal to elem in the hash table, then the already existing element
1214 * will be returned and the new element will not be inserted.
1215 * Otherwise returns NULL.
1216 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1217 */
1218static arc_buf_hdr_t *
1219buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1220{
1221	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1222	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1223	arc_buf_hdr_t *fhdr;
1224	uint32_t i;
1225
1226	ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1227	ASSERT(hdr->b_birth != 0);
1228	ASSERT(!HDR_IN_HASH_TABLE(hdr));
1229
1230	if (lockp != NULL) {
1231		*lockp = hash_lock;
1232		mutex_enter(hash_lock);
1233	} else {
1234		ASSERT(MUTEX_HELD(hash_lock));
1235	}
1236
1237	for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1238	    fhdr = fhdr->b_hash_next, i++) {
1239		if (BUF_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1240			return (fhdr);
1241	}
1242
1243	hdr->b_hash_next = buf_hash_table.ht_table[idx];
1244	buf_hash_table.ht_table[idx] = hdr;
1245	hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
1246
1247	/* collect some hash table performance data */
1248	if (i > 0) {
1249		ARCSTAT_BUMP(arcstat_hash_collisions);
1250		if (i == 1)
1251			ARCSTAT_BUMP(arcstat_hash_chains);
1252
1253		ARCSTAT_MAX(arcstat_hash_chain_max, i);
1254	}
1255
1256	ARCSTAT_BUMP(arcstat_hash_elements);
1257	ARCSTAT_MAXSTAT(arcstat_hash_elements);
1258
1259	return (NULL);
1260}
1261
1262static void
1263buf_hash_remove(arc_buf_hdr_t *hdr)
1264{
1265	arc_buf_hdr_t *fhdr, **hdrp;
1266	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1267
1268	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1269	ASSERT(HDR_IN_HASH_TABLE(hdr));
1270
1271	hdrp = &buf_hash_table.ht_table[idx];
1272	while ((fhdr = *hdrp) != hdr) {
1273		ASSERT(fhdr != NULL);
1274		hdrp = &fhdr->b_hash_next;
1275	}
1276	*hdrp = hdr->b_hash_next;
1277	hdr->b_hash_next = NULL;
1278	hdr->b_flags &= ~ARC_FLAG_IN_HASH_TABLE;
1279
1280	/* collect some hash table performance data */
1281	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1282
1283	if (buf_hash_table.ht_table[idx] &&
1284	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1285		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1286}
1287
1288/*
1289 * Global data structures and functions for the buf kmem cache.
1290 */
1291static kmem_cache_t *hdr_full_cache;
1292static kmem_cache_t *hdr_l2only_cache;
1293static kmem_cache_t *buf_cache;
1294
1295static void
1296buf_fini(void)
1297{
1298	int i;
1299
1300	kmem_free(buf_hash_table.ht_table,
1301	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1302	for (i = 0; i < BUF_LOCKS; i++)
1303		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1304	kmem_cache_destroy(hdr_full_cache);
1305	kmem_cache_destroy(hdr_l2only_cache);
1306	kmem_cache_destroy(buf_cache);
1307}
1308
1309/*
1310 * Constructor callback - called when the cache is empty
1311 * and a new buf is requested.
1312 */
1313/* ARGSUSED */
1314static int
1315hdr_full_cons(void *vbuf, void *unused, int kmflag)
1316{
1317	arc_buf_hdr_t *hdr = vbuf;
1318
1319	bzero(hdr, HDR_FULL_SIZE);
1320	cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1321	refcount_create(&hdr->b_l1hdr.b_refcnt);
1322	mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1323	multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1324	arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1325
1326	return (0);
1327}
1328
1329/* ARGSUSED */
1330static int
1331hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1332{
1333	arc_buf_hdr_t *hdr = vbuf;
1334
1335	bzero(hdr, HDR_L2ONLY_SIZE);
1336	arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1337
1338	return (0);
1339}
1340
1341/* ARGSUSED */
1342static int
1343buf_cons(void *vbuf, void *unused, int kmflag)
1344{
1345	arc_buf_t *buf = vbuf;
1346
1347	bzero(buf, sizeof (arc_buf_t));
1348	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1349	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1350
1351	return (0);
1352}
1353
1354/*
1355 * Destructor callback - called when a cached buf is
1356 * no longer required.
1357 */
1358/* ARGSUSED */
1359static void
1360hdr_full_dest(void *vbuf, void *unused)
1361{
1362	arc_buf_hdr_t *hdr = vbuf;
1363
1364	ASSERT(BUF_EMPTY(hdr));
1365	cv_destroy(&hdr->b_l1hdr.b_cv);
1366	refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1367	mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1368	ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1369	arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1370}
1371
1372/* ARGSUSED */
1373static void
1374hdr_l2only_dest(void *vbuf, void *unused)
1375{
1376	arc_buf_hdr_t *hdr = vbuf;
1377
1378	ASSERT(BUF_EMPTY(hdr));
1379	arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1380}
1381
1382/* ARGSUSED */
1383static void
1384buf_dest(void *vbuf, void *unused)
1385{
1386	arc_buf_t *buf = vbuf;
1387
1388	mutex_destroy(&buf->b_evict_lock);
1389	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1390}
1391
1392/*
1393 * Reclaim callback -- invoked when memory is low.
1394 */
1395/* ARGSUSED */
1396static void
1397hdr_recl(void *unused)
1398{
1399	dprintf("hdr_recl called\n");
1400	/*
1401	 * umem calls the reclaim func when we destroy the buf cache,
1402	 * which is after we do arc_fini().
1403	 */
1404	if (!arc_dead)
1405		cv_signal(&arc_reclaim_thread_cv);
1406}
1407
1408static void
1409buf_init(void)
1410{
1411	uint64_t *ct;
1412	uint64_t hsize = 1ULL << 12;
1413	int i, j;
1414
1415	/*
1416	 * The hash table is big enough to fill all of physical memory
1417	 * with an average block size of zfs_arc_average_blocksize (default 8K).
1418	 * By default, the table will take up
1419	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1420	 */
1421	while (hsize * zfs_arc_average_blocksize < (uint64_t)physmem * PAGESIZE)
1422		hsize <<= 1;
1423retry:
1424	buf_hash_table.ht_mask = hsize - 1;
1425	buf_hash_table.ht_table =
1426	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1427	if (buf_hash_table.ht_table == NULL) {
1428		ASSERT(hsize > (1ULL << 8));
1429		hsize >>= 1;
1430		goto retry;
1431	}
1432
1433	hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1434	    0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1435	hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1436	    HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1437	    NULL, NULL, 0);
1438	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1439	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1440
1441	for (i = 0; i < 256; i++)
1442		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1443			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1444
1445	for (i = 0; i < BUF_LOCKS; i++) {
1446		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1447		    NULL, MUTEX_DEFAULT, NULL);
1448	}
1449}
1450
1451/*
1452 * Transition between the two allocation states for the arc_buf_hdr struct.
1453 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
1454 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
1455 * version is used when a cache buffer is only in the L2ARC in order to reduce
1456 * memory usage.
1457 */
1458static arc_buf_hdr_t *
1459arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
1460{
1461	ASSERT(HDR_HAS_L2HDR(hdr));
1462
1463	arc_buf_hdr_t *nhdr;
1464	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
1465
1466	ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
1467	    (old == hdr_l2only_cache && new == hdr_full_cache));
1468
1469	nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
1470
1471	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
1472	buf_hash_remove(hdr);
1473
1474	bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
1475
1476	if (new == hdr_full_cache) {
1477		nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
1478		/*
1479		 * arc_access and arc_change_state need to be aware that a
1480		 * header has just come out of L2ARC, so we set its state to
1481		 * l2c_only even though it's about to change.
1482		 */
1483		nhdr->b_l1hdr.b_state = arc_l2c_only;
1484
1485		/* Verify previous threads set to NULL before freeing */
1486		ASSERT3P(nhdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1487	} else {
1488		ASSERT(hdr->b_l1hdr.b_buf == NULL);
1489		ASSERT0(hdr->b_l1hdr.b_datacnt);
1490
1491		/*
1492		 * If we've reached here, We must have been called from
1493		 * arc_evict_hdr(), as such we should have already been
1494		 * removed from any ghost list we were previously on
1495		 * (which protects us from racing with arc_evict_state),
1496		 * thus no locking is needed during this check.
1497		 */
1498		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1499
1500		/*
1501		 * A buffer must not be moved into the arc_l2c_only
1502		 * state if it's not finished being written out to the
1503		 * l2arc device. Otherwise, the b_l1hdr.b_tmp_cdata field
1504		 * might try to be accessed, even though it was removed.
1505		 */
1506		VERIFY(!HDR_L2_WRITING(hdr));
1507		VERIFY3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1508
1509#ifdef ZFS_DEBUG
1510		if (hdr->b_l1hdr.b_thawed != NULL) {
1511			kmem_free(hdr->b_l1hdr.b_thawed, 1);
1512			hdr->b_l1hdr.b_thawed = NULL;
1513		}
1514#endif
1515
1516		nhdr->b_flags &= ~ARC_FLAG_HAS_L1HDR;
1517	}
1518	/*
1519	 * The header has been reallocated so we need to re-insert it into any
1520	 * lists it was on.
1521	 */
1522	(void) buf_hash_insert(nhdr, NULL);
1523
1524	ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
1525
1526	mutex_enter(&dev->l2ad_mtx);
1527
1528	/*
1529	 * We must place the realloc'ed header back into the list at
1530	 * the same spot. Otherwise, if it's placed earlier in the list,
1531	 * l2arc_write_buffers() could find it during the function's
1532	 * write phase, and try to write it out to the l2arc.
1533	 */
1534	list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
1535	list_remove(&dev->l2ad_buflist, hdr);
1536
1537	mutex_exit(&dev->l2ad_mtx);
1538
1539	/*
1540	 * Since we're using the pointer address as the tag when
1541	 * incrementing and decrementing the l2ad_alloc refcount, we
1542	 * must remove the old pointer (that we're about to destroy) and
1543	 * add the new pointer to the refcount. Otherwise we'd remove
1544	 * the wrong pointer address when calling arc_hdr_destroy() later.
1545	 */
1546
1547	(void) refcount_remove_many(&dev->l2ad_alloc,
1548	    hdr->b_l2hdr.b_asize, hdr);
1549
1550	(void) refcount_add_many(&dev->l2ad_alloc,
1551	    nhdr->b_l2hdr.b_asize, nhdr);
1552
1553	buf_discard_identity(hdr);
1554	hdr->b_freeze_cksum = NULL;
1555	kmem_cache_free(old, hdr);
1556
1557	return (nhdr);
1558}
1559
1560
1561#define	ARC_MINTIME	(hz>>4) /* 62 ms */
1562
1563static void
1564arc_cksum_verify(arc_buf_t *buf)
1565{
1566	zio_cksum_t zc;
1567
1568	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1569		return;
1570
1571	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1572	if (buf->b_hdr->b_freeze_cksum == NULL || HDR_IO_ERROR(buf->b_hdr)) {
1573		mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1574		return;
1575	}
1576	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, NULL, &zc);
1577	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
1578		panic("buffer modified while frozen!");
1579	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1580}
1581
1582static int
1583arc_cksum_equal(arc_buf_t *buf)
1584{
1585	zio_cksum_t zc;
1586	int equal;
1587
1588	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1589	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, NULL, &zc);
1590	equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
1591	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1592
1593	return (equal);
1594}
1595
1596static void
1597arc_cksum_compute(arc_buf_t *buf, boolean_t force)
1598{
1599	if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1600		return;
1601
1602	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1603	if (buf->b_hdr->b_freeze_cksum != NULL) {
1604		mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1605		return;
1606	}
1607	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
1608	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1609	    NULL, buf->b_hdr->b_freeze_cksum);
1610	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1611#ifdef illumos
1612	arc_buf_watch(buf);
1613#endif
1614}
1615
1616#ifdef illumos
1617#ifndef _KERNEL
1618typedef struct procctl {
1619	long cmd;
1620	prwatch_t prwatch;
1621} procctl_t;
1622#endif
1623
1624/* ARGSUSED */
1625static void
1626arc_buf_unwatch(arc_buf_t *buf)
1627{
1628#ifndef _KERNEL
1629	if (arc_watch) {
1630		int result;
1631		procctl_t ctl;
1632		ctl.cmd = PCWATCH;
1633		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1634		ctl.prwatch.pr_size = 0;
1635		ctl.prwatch.pr_wflags = 0;
1636		result = write(arc_procfd, &ctl, sizeof (ctl));
1637		ASSERT3U(result, ==, sizeof (ctl));
1638	}
1639#endif
1640}
1641
1642/* ARGSUSED */
1643static void
1644arc_buf_watch(arc_buf_t *buf)
1645{
1646#ifndef _KERNEL
1647	if (arc_watch) {
1648		int result;
1649		procctl_t ctl;
1650		ctl.cmd = PCWATCH;
1651		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1652		ctl.prwatch.pr_size = buf->b_hdr->b_size;
1653		ctl.prwatch.pr_wflags = WA_WRITE;
1654		result = write(arc_procfd, &ctl, sizeof (ctl));
1655		ASSERT3U(result, ==, sizeof (ctl));
1656	}
1657#endif
1658}
1659#endif /* illumos */
1660
1661static arc_buf_contents_t
1662arc_buf_type(arc_buf_hdr_t *hdr)
1663{
1664	if (HDR_ISTYPE_METADATA(hdr)) {
1665		return (ARC_BUFC_METADATA);
1666	} else {
1667		return (ARC_BUFC_DATA);
1668	}
1669}
1670
1671static uint32_t
1672arc_bufc_to_flags(arc_buf_contents_t type)
1673{
1674	switch (type) {
1675	case ARC_BUFC_DATA:
1676		/* metadata field is 0 if buffer contains normal data */
1677		return (0);
1678	case ARC_BUFC_METADATA:
1679		return (ARC_FLAG_BUFC_METADATA);
1680	default:
1681		break;
1682	}
1683	panic("undefined ARC buffer type!");
1684	return ((uint32_t)-1);
1685}
1686
1687void
1688arc_buf_thaw(arc_buf_t *buf)
1689{
1690	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1691		if (buf->b_hdr->b_l1hdr.b_state != arc_anon)
1692			panic("modifying non-anon buffer!");
1693		if (HDR_IO_IN_PROGRESS(buf->b_hdr))
1694			panic("modifying buffer while i/o in progress!");
1695		arc_cksum_verify(buf);
1696	}
1697
1698	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1699	if (buf->b_hdr->b_freeze_cksum != NULL) {
1700		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1701		buf->b_hdr->b_freeze_cksum = NULL;
1702	}
1703
1704#ifdef ZFS_DEBUG
1705	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1706		if (buf->b_hdr->b_l1hdr.b_thawed != NULL)
1707			kmem_free(buf->b_hdr->b_l1hdr.b_thawed, 1);
1708		buf->b_hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP);
1709	}
1710#endif
1711
1712	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1713
1714#ifdef illumos
1715	arc_buf_unwatch(buf);
1716#endif
1717}
1718
1719void
1720arc_buf_freeze(arc_buf_t *buf)
1721{
1722	kmutex_t *hash_lock;
1723
1724	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1725		return;
1726
1727	hash_lock = HDR_LOCK(buf->b_hdr);
1728	mutex_enter(hash_lock);
1729
1730	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1731	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
1732	arc_cksum_compute(buf, B_FALSE);
1733	mutex_exit(hash_lock);
1734
1735}
1736
1737static void
1738add_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1739{
1740	ASSERT(HDR_HAS_L1HDR(hdr));
1741	ASSERT(MUTEX_HELD(hash_lock));
1742	arc_state_t *state = hdr->b_l1hdr.b_state;
1743
1744	if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
1745	    (state != arc_anon)) {
1746		/* We don't use the L2-only state list. */
1747		if (state != arc_l2c_only) {
1748			arc_buf_contents_t type = arc_buf_type(hdr);
1749			uint64_t delta = hdr->b_size * hdr->b_l1hdr.b_datacnt;
1750			multilist_t *list = &state->arcs_list[type];
1751			uint64_t *size = &state->arcs_lsize[type];
1752
1753			multilist_remove(list, hdr);
1754
1755			if (GHOST_STATE(state)) {
1756				ASSERT0(hdr->b_l1hdr.b_datacnt);
1757				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
1758				delta = hdr->b_size;
1759			}
1760			ASSERT(delta > 0);
1761			ASSERT3U(*size, >=, delta);
1762			atomic_add_64(size, -delta);
1763		}
1764		/* remove the prefetch flag if we get a reference */
1765		hdr->b_flags &= ~ARC_FLAG_PREFETCH;
1766	}
1767}
1768
1769static int
1770remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1771{
1772	int cnt;
1773	arc_state_t *state = hdr->b_l1hdr.b_state;
1774
1775	ASSERT(HDR_HAS_L1HDR(hdr));
1776	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1777	ASSERT(!GHOST_STATE(state));
1778
1779	/*
1780	 * arc_l2c_only counts as a ghost state so we don't need to explicitly
1781	 * check to prevent usage of the arc_l2c_only list.
1782	 */
1783	if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
1784	    (state != arc_anon)) {
1785		arc_buf_contents_t type = arc_buf_type(hdr);
1786		multilist_t *list = &state->arcs_list[type];
1787		uint64_t *size = &state->arcs_lsize[type];
1788
1789		multilist_insert(list, hdr);
1790
1791		ASSERT(hdr->b_l1hdr.b_datacnt > 0);
1792		atomic_add_64(size, hdr->b_size *
1793		    hdr->b_l1hdr.b_datacnt);
1794	}
1795	return (cnt);
1796}
1797
1798/*
1799 * Move the supplied buffer to the indicated state. The hash lock
1800 * for the buffer must be held by the caller.
1801 */
1802static void
1803arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
1804    kmutex_t *hash_lock)
1805{
1806	arc_state_t *old_state;
1807	int64_t refcnt;
1808	uint32_t datacnt;
1809	uint64_t from_delta, to_delta;
1810	arc_buf_contents_t buftype = arc_buf_type(hdr);
1811
1812	/*
1813	 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
1814	 * in arc_read() when bringing a buffer out of the L2ARC.  However, the
1815	 * L1 hdr doesn't always exist when we change state to arc_anon before
1816	 * destroying a header, in which case reallocating to add the L1 hdr is
1817	 * pointless.
1818	 */
1819	if (HDR_HAS_L1HDR(hdr)) {
1820		old_state = hdr->b_l1hdr.b_state;
1821		refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
1822		datacnt = hdr->b_l1hdr.b_datacnt;
1823	} else {
1824		old_state = arc_l2c_only;
1825		refcnt = 0;
1826		datacnt = 0;
1827	}
1828
1829	ASSERT(MUTEX_HELD(hash_lock));
1830	ASSERT3P(new_state, !=, old_state);
1831	ASSERT(refcnt == 0 || datacnt > 0);
1832	ASSERT(!GHOST_STATE(new_state) || datacnt == 0);
1833	ASSERT(old_state != arc_anon || datacnt <= 1);
1834
1835	from_delta = to_delta = datacnt * hdr->b_size;
1836
1837	/*
1838	 * If this buffer is evictable, transfer it from the
1839	 * old state list to the new state list.
1840	 */
1841	if (refcnt == 0) {
1842		if (old_state != arc_anon && old_state != arc_l2c_only) {
1843			uint64_t *size = &old_state->arcs_lsize[buftype];
1844
1845			ASSERT(HDR_HAS_L1HDR(hdr));
1846			multilist_remove(&old_state->arcs_list[buftype], hdr);
1847
1848			/*
1849			 * If prefetching out of the ghost cache,
1850			 * we will have a non-zero datacnt.
1851			 */
1852			if (GHOST_STATE(old_state) && datacnt == 0) {
1853				/* ghost elements have a ghost size */
1854				ASSERT(hdr->b_l1hdr.b_buf == NULL);
1855				from_delta = hdr->b_size;
1856			}
1857			ASSERT3U(*size, >=, from_delta);
1858			atomic_add_64(size, -from_delta);
1859		}
1860		if (new_state != arc_anon && new_state != arc_l2c_only) {
1861			uint64_t *size = &new_state->arcs_lsize[buftype];
1862
1863			/*
1864			 * An L1 header always exists here, since if we're
1865			 * moving to some L1-cached state (i.e. not l2c_only or
1866			 * anonymous), we realloc the header to add an L1hdr
1867			 * beforehand.
1868			 */
1869			ASSERT(HDR_HAS_L1HDR(hdr));
1870			multilist_insert(&new_state->arcs_list[buftype], hdr);
1871
1872			/* ghost elements have a ghost size */
1873			if (GHOST_STATE(new_state)) {
1874				ASSERT0(datacnt);
1875				ASSERT(hdr->b_l1hdr.b_buf == NULL);
1876				to_delta = hdr->b_size;
1877			}
1878			atomic_add_64(size, to_delta);
1879		}
1880	}
1881
1882	ASSERT(!BUF_EMPTY(hdr));
1883	if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
1884		buf_hash_remove(hdr);
1885
1886	/* adjust state sizes (ignore arc_l2c_only) */
1887
1888	if (to_delta && new_state != arc_l2c_only) {
1889		ASSERT(HDR_HAS_L1HDR(hdr));
1890		if (GHOST_STATE(new_state)) {
1891			ASSERT0(datacnt);
1892
1893			/*
1894			 * We moving a header to a ghost state, we first
1895			 * remove all arc buffers. Thus, we'll have a
1896			 * datacnt of zero, and no arc buffer to use for
1897			 * the reference. As a result, we use the arc
1898			 * header pointer for the reference.
1899			 */
1900			(void) refcount_add_many(&new_state->arcs_size,
1901			    hdr->b_size, hdr);
1902		} else {
1903			ASSERT3U(datacnt, !=, 0);
1904
1905			/*
1906			 * Each individual buffer holds a unique reference,
1907			 * thus we must remove each of these references one
1908			 * at a time.
1909			 */
1910			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
1911			    buf = buf->b_next) {
1912				(void) refcount_add_many(&new_state->arcs_size,
1913				    hdr->b_size, buf);
1914			}
1915		}
1916	}
1917
1918	if (from_delta && old_state != arc_l2c_only) {
1919		ASSERT(HDR_HAS_L1HDR(hdr));
1920		if (GHOST_STATE(old_state)) {
1921			/*
1922			 * When moving a header off of a ghost state,
1923			 * there's the possibility for datacnt to be
1924			 * non-zero. This is because we first add the
1925			 * arc buffer to the header prior to changing
1926			 * the header's state. Since we used the header
1927			 * for the reference when putting the header on
1928			 * the ghost state, we must balance that and use
1929			 * the header when removing off the ghost state
1930			 * (even though datacnt is non zero).
1931			 */
1932
1933			IMPLY(datacnt == 0, new_state == arc_anon ||
1934			    new_state == arc_l2c_only);
1935
1936			(void) refcount_remove_many(&old_state->arcs_size,
1937			    hdr->b_size, hdr);
1938		} else {
1939			ASSERT3P(datacnt, !=, 0);
1940
1941			/*
1942			 * Each individual buffer holds a unique reference,
1943			 * thus we must remove each of these references one
1944			 * at a time.
1945			 */
1946			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
1947			    buf = buf->b_next) {
1948				(void) refcount_remove_many(
1949				    &old_state->arcs_size, hdr->b_size, buf);
1950			}
1951		}
1952	}
1953
1954	if (HDR_HAS_L1HDR(hdr))
1955		hdr->b_l1hdr.b_state = new_state;
1956
1957	/*
1958	 * L2 headers should never be on the L2 state list since they don't
1959	 * have L1 headers allocated.
1960	 */
1961	ASSERT(multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
1962	    multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
1963}
1964
1965void
1966arc_space_consume(uint64_t space, arc_space_type_t type)
1967{
1968	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1969
1970	switch (type) {
1971	case ARC_SPACE_DATA:
1972		ARCSTAT_INCR(arcstat_data_size, space);
1973		break;
1974	case ARC_SPACE_META:
1975		ARCSTAT_INCR(arcstat_metadata_size, space);
1976		break;
1977	case ARC_SPACE_OTHER:
1978		ARCSTAT_INCR(arcstat_other_size, space);
1979		break;
1980	case ARC_SPACE_HDRS:
1981		ARCSTAT_INCR(arcstat_hdr_size, space);
1982		break;
1983	case ARC_SPACE_L2HDRS:
1984		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1985		break;
1986	}
1987
1988	if (type != ARC_SPACE_DATA)
1989		ARCSTAT_INCR(arcstat_meta_used, space);
1990
1991	atomic_add_64(&arc_size, space);
1992}
1993
1994void
1995arc_space_return(uint64_t space, arc_space_type_t type)
1996{
1997	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1998
1999	switch (type) {
2000	case ARC_SPACE_DATA:
2001		ARCSTAT_INCR(arcstat_data_size, -space);
2002		break;
2003	case ARC_SPACE_META:
2004		ARCSTAT_INCR(arcstat_metadata_size, -space);
2005		break;
2006	case ARC_SPACE_OTHER:
2007		ARCSTAT_INCR(arcstat_other_size, -space);
2008		break;
2009	case ARC_SPACE_HDRS:
2010		ARCSTAT_INCR(arcstat_hdr_size, -space);
2011		break;
2012	case ARC_SPACE_L2HDRS:
2013		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
2014		break;
2015	}
2016
2017	if (type != ARC_SPACE_DATA) {
2018		ASSERT(arc_meta_used >= space);
2019		if (arc_meta_max < arc_meta_used)
2020			arc_meta_max = arc_meta_used;
2021		ARCSTAT_INCR(arcstat_meta_used, -space);
2022	}
2023
2024	ASSERT(arc_size >= space);
2025	atomic_add_64(&arc_size, -space);
2026}
2027
2028arc_buf_t *
2029arc_buf_alloc(spa_t *spa, int32_t size, void *tag, arc_buf_contents_t type)
2030{
2031	arc_buf_hdr_t *hdr;
2032	arc_buf_t *buf;
2033
2034	ASSERT3U(size, >, 0);
2035	hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
2036	ASSERT(BUF_EMPTY(hdr));
2037	ASSERT3P(hdr->b_freeze_cksum, ==, NULL);
2038	hdr->b_size = size;
2039	hdr->b_spa = spa_load_guid(spa);
2040
2041	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2042	buf->b_hdr = hdr;
2043	buf->b_data = NULL;
2044	buf->b_efunc = NULL;
2045	buf->b_private = NULL;
2046	buf->b_next = NULL;
2047
2048	hdr->b_flags = arc_bufc_to_flags(type);
2049	hdr->b_flags |= ARC_FLAG_HAS_L1HDR;
2050
2051	hdr->b_l1hdr.b_buf = buf;
2052	hdr->b_l1hdr.b_state = arc_anon;
2053	hdr->b_l1hdr.b_arc_access = 0;
2054	hdr->b_l1hdr.b_datacnt = 1;
2055	hdr->b_l1hdr.b_tmp_cdata = NULL;
2056
2057	arc_get_data_buf(buf);
2058	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2059	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2060
2061	return (buf);
2062}
2063
2064static char *arc_onloan_tag = "onloan";
2065
2066/*
2067 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2068 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2069 * buffers must be returned to the arc before they can be used by the DMU or
2070 * freed.
2071 */
2072arc_buf_t *
2073arc_loan_buf(spa_t *spa, int size)
2074{
2075	arc_buf_t *buf;
2076
2077	buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
2078
2079	atomic_add_64(&arc_loaned_bytes, size);
2080	return (buf);
2081}
2082
2083/*
2084 * Return a loaned arc buffer to the arc.
2085 */
2086void
2087arc_return_buf(arc_buf_t *buf, void *tag)
2088{
2089	arc_buf_hdr_t *hdr = buf->b_hdr;
2090
2091	ASSERT(buf->b_data != NULL);
2092	ASSERT(HDR_HAS_L1HDR(hdr));
2093	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2094	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2095
2096	atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
2097}
2098
2099/* Detach an arc_buf from a dbuf (tag) */
2100void
2101arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2102{
2103	arc_buf_hdr_t *hdr = buf->b_hdr;
2104
2105	ASSERT(buf->b_data != NULL);
2106	ASSERT(HDR_HAS_L1HDR(hdr));
2107	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2108	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2109	buf->b_efunc = NULL;
2110	buf->b_private = NULL;
2111
2112	atomic_add_64(&arc_loaned_bytes, hdr->b_size);
2113}
2114
2115static arc_buf_t *
2116arc_buf_clone(arc_buf_t *from)
2117{
2118	arc_buf_t *buf;
2119	arc_buf_hdr_t *hdr = from->b_hdr;
2120	uint64_t size = hdr->b_size;
2121
2122	ASSERT(HDR_HAS_L1HDR(hdr));
2123	ASSERT(hdr->b_l1hdr.b_state != arc_anon);
2124
2125	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2126	buf->b_hdr = hdr;
2127	buf->b_data = NULL;
2128	buf->b_efunc = NULL;
2129	buf->b_private = NULL;
2130	buf->b_next = hdr->b_l1hdr.b_buf;
2131	hdr->b_l1hdr.b_buf = buf;
2132	arc_get_data_buf(buf);
2133	bcopy(from->b_data, buf->b_data, size);
2134
2135	/*
2136	 * This buffer already exists in the arc so create a duplicate
2137	 * copy for the caller.  If the buffer is associated with user data
2138	 * then track the size and number of duplicates.  These stats will be
2139	 * updated as duplicate buffers are created and destroyed.
2140	 */
2141	if (HDR_ISTYPE_DATA(hdr)) {
2142		ARCSTAT_BUMP(arcstat_duplicate_buffers);
2143		ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
2144	}
2145	hdr->b_l1hdr.b_datacnt += 1;
2146	return (buf);
2147}
2148
2149void
2150arc_buf_add_ref(arc_buf_t *buf, void* tag)
2151{
2152	arc_buf_hdr_t *hdr;
2153	kmutex_t *hash_lock;
2154
2155	/*
2156	 * Check to see if this buffer is evicted.  Callers
2157	 * must verify b_data != NULL to know if the add_ref
2158	 * was successful.
2159	 */
2160	mutex_enter(&buf->b_evict_lock);
2161	if (buf->b_data == NULL) {
2162		mutex_exit(&buf->b_evict_lock);
2163		return;
2164	}
2165	hash_lock = HDR_LOCK(buf->b_hdr);
2166	mutex_enter(hash_lock);
2167	hdr = buf->b_hdr;
2168	ASSERT(HDR_HAS_L1HDR(hdr));
2169	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2170	mutex_exit(&buf->b_evict_lock);
2171
2172	ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
2173	    hdr->b_l1hdr.b_state == arc_mfu);
2174
2175	add_reference(hdr, hash_lock, tag);
2176	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2177	arc_access(hdr, hash_lock);
2178	mutex_exit(hash_lock);
2179	ARCSTAT_BUMP(arcstat_hits);
2180	ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
2181	    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
2182	    data, metadata, hits);
2183}
2184
2185static void
2186arc_buf_free_on_write(void *data, size_t size,
2187    void (*free_func)(void *, size_t))
2188{
2189	l2arc_data_free_t *df;
2190
2191	df = kmem_alloc(sizeof (*df), KM_SLEEP);
2192	df->l2df_data = data;
2193	df->l2df_size = size;
2194	df->l2df_func = free_func;
2195	mutex_enter(&l2arc_free_on_write_mtx);
2196	list_insert_head(l2arc_free_on_write, df);
2197	mutex_exit(&l2arc_free_on_write_mtx);
2198}
2199
2200/*
2201 * Free the arc data buffer.  If it is an l2arc write in progress,
2202 * the buffer is placed on l2arc_free_on_write to be freed later.
2203 */
2204static void
2205arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
2206{
2207	arc_buf_hdr_t *hdr = buf->b_hdr;
2208
2209	if (HDR_L2_WRITING(hdr)) {
2210		arc_buf_free_on_write(buf->b_data, hdr->b_size, free_func);
2211		ARCSTAT_BUMP(arcstat_l2_free_on_write);
2212	} else {
2213		free_func(buf->b_data, hdr->b_size);
2214	}
2215}
2216
2217static void
2218arc_buf_l2_cdata_free(arc_buf_hdr_t *hdr)
2219{
2220	ASSERT(HDR_HAS_L2HDR(hdr));
2221	ASSERT(MUTEX_HELD(&hdr->b_l2hdr.b_dev->l2ad_mtx));
2222
2223	/*
2224	 * The b_tmp_cdata field is linked off of the b_l1hdr, so if
2225	 * that doesn't exist, the header is in the arc_l2c_only state,
2226	 * and there isn't anything to free (it's already been freed).
2227	 */
2228	if (!HDR_HAS_L1HDR(hdr))
2229		return;
2230
2231	/*
2232	 * The header isn't being written to the l2arc device, thus it
2233	 * shouldn't have a b_tmp_cdata to free.
2234	 */
2235	if (!HDR_L2_WRITING(hdr)) {
2236		ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
2237		return;
2238	}
2239
2240	/*
2241	 * The header does not have compression enabled. This can be due
2242	 * to the buffer not being compressible, or because we're
2243	 * freeing the buffer before the second phase of
2244	 * l2arc_write_buffer() has started (which does the compression
2245	 * step). In either case, b_tmp_cdata does not point to a
2246	 * separately compressed buffer, so there's nothing to free (it
2247	 * points to the same buffer as the arc_buf_t's b_data field).
2248	 */
2249	if (hdr->b_l2hdr.b_compress == ZIO_COMPRESS_OFF) {
2250		hdr->b_l1hdr.b_tmp_cdata = NULL;
2251		return;
2252	}
2253
2254	/*
2255	 * There's nothing to free since the buffer was all zero's and
2256	 * compressed to a zero length buffer.
2257	 */
2258	if (hdr->b_l2hdr.b_compress == ZIO_COMPRESS_EMPTY) {
2259		ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
2260		return;
2261	}
2262
2263	ASSERT(L2ARC_IS_VALID_COMPRESS(hdr->b_l2hdr.b_compress));
2264
2265	arc_buf_free_on_write(hdr->b_l1hdr.b_tmp_cdata,
2266	    hdr->b_size, zio_data_buf_free);
2267
2268	ARCSTAT_BUMP(arcstat_l2_cdata_free_on_write);
2269	hdr->b_l1hdr.b_tmp_cdata = NULL;
2270}
2271
2272/*
2273 * Free up buf->b_data and if 'remove' is set, then pull the
2274 * arc_buf_t off of the the arc_buf_hdr_t's list and free it.
2275 */
2276static void
2277arc_buf_destroy(arc_buf_t *buf, boolean_t remove)
2278{
2279	arc_buf_t **bufp;
2280
2281	/* free up data associated with the buf */
2282	if (buf->b_data != NULL) {
2283		arc_state_t *state = buf->b_hdr->b_l1hdr.b_state;
2284		uint64_t size = buf->b_hdr->b_size;
2285		arc_buf_contents_t type = arc_buf_type(buf->b_hdr);
2286
2287		arc_cksum_verify(buf);
2288#ifdef illumos
2289		arc_buf_unwatch(buf);
2290#endif
2291
2292		if (type == ARC_BUFC_METADATA) {
2293			arc_buf_data_free(buf, zio_buf_free);
2294			arc_space_return(size, ARC_SPACE_META);
2295		} else {
2296			ASSERT(type == ARC_BUFC_DATA);
2297			arc_buf_data_free(buf, zio_data_buf_free);
2298			arc_space_return(size, ARC_SPACE_DATA);
2299		}
2300
2301		/* protected by hash lock, if in the hash table */
2302		if (multilist_link_active(&buf->b_hdr->b_l1hdr.b_arc_node)) {
2303			uint64_t *cnt = &state->arcs_lsize[type];
2304
2305			ASSERT(refcount_is_zero(
2306			    &buf->b_hdr->b_l1hdr.b_refcnt));
2307			ASSERT(state != arc_anon && state != arc_l2c_only);
2308
2309			ASSERT3U(*cnt, >=, size);
2310			atomic_add_64(cnt, -size);
2311		}
2312
2313		(void) refcount_remove_many(&state->arcs_size, size, buf);
2314		buf->b_data = NULL;
2315
2316		/*
2317		 * If we're destroying a duplicate buffer make sure
2318		 * that the appropriate statistics are updated.
2319		 */
2320		if (buf->b_hdr->b_l1hdr.b_datacnt > 1 &&
2321		    HDR_ISTYPE_DATA(buf->b_hdr)) {
2322			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
2323			ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
2324		}
2325		ASSERT(buf->b_hdr->b_l1hdr.b_datacnt > 0);
2326		buf->b_hdr->b_l1hdr.b_datacnt -= 1;
2327	}
2328
2329	/* only remove the buf if requested */
2330	if (!remove)
2331		return;
2332
2333	/* remove the buf from the hdr list */
2334	for (bufp = &buf->b_hdr->b_l1hdr.b_buf; *bufp != buf;
2335	    bufp = &(*bufp)->b_next)
2336		continue;
2337	*bufp = buf->b_next;
2338	buf->b_next = NULL;
2339
2340	ASSERT(buf->b_efunc == NULL);
2341
2342	/* clean up the buf */
2343	buf->b_hdr = NULL;
2344	kmem_cache_free(buf_cache, buf);
2345}
2346
2347static void
2348arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
2349{
2350	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
2351	l2arc_dev_t *dev = l2hdr->b_dev;
2352
2353	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
2354	ASSERT(HDR_HAS_L2HDR(hdr));
2355
2356	list_remove(&dev->l2ad_buflist, hdr);
2357
2358	/*
2359	 * We don't want to leak the b_tmp_cdata buffer that was
2360	 * allocated in l2arc_write_buffers()
2361	 */
2362	arc_buf_l2_cdata_free(hdr);
2363
2364	/*
2365	 * If the l2hdr's b_daddr is equal to L2ARC_ADDR_UNSET, then
2366	 * this header is being processed by l2arc_write_buffers() (i.e.
2367	 * it's in the first stage of l2arc_write_buffers()).
2368	 * Re-affirming that truth here, just to serve as a reminder. If
2369	 * b_daddr does not equal L2ARC_ADDR_UNSET, then the header may or
2370	 * may not have its HDR_L2_WRITING flag set. (the write may have
2371	 * completed, in which case HDR_L2_WRITING will be false and the
2372	 * b_daddr field will point to the address of the buffer on disk).
2373	 */
2374	IMPLY(l2hdr->b_daddr == L2ARC_ADDR_UNSET, HDR_L2_WRITING(hdr));
2375
2376	/*
2377	 * If b_daddr is equal to L2ARC_ADDR_UNSET, we're racing with
2378	 * l2arc_write_buffers(). Since we've just removed this header
2379	 * from the l2arc buffer list, this header will never reach the
2380	 * second stage of l2arc_write_buffers(), which increments the
2381	 * accounting stats for this header. Thus, we must be careful
2382	 * not to decrement them for this header either.
2383	 */
2384	if (l2hdr->b_daddr != L2ARC_ADDR_UNSET) {
2385		ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
2386		ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
2387
2388		vdev_space_update(dev->l2ad_vdev,
2389		    -l2hdr->b_asize, 0, 0);
2390
2391		(void) refcount_remove_many(&dev->l2ad_alloc,
2392		    l2hdr->b_asize, hdr);
2393	}
2394
2395	hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
2396}
2397
2398static void
2399arc_hdr_destroy(arc_buf_hdr_t *hdr)
2400{
2401	if (HDR_HAS_L1HDR(hdr)) {
2402		ASSERT(hdr->b_l1hdr.b_buf == NULL ||
2403		    hdr->b_l1hdr.b_datacnt > 0);
2404		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2405		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
2406	}
2407	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2408	ASSERT(!HDR_IN_HASH_TABLE(hdr));
2409
2410	if (HDR_HAS_L2HDR(hdr)) {
2411		l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
2412		boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
2413
2414		if (!buflist_held)
2415			mutex_enter(&dev->l2ad_mtx);
2416
2417		/*
2418		 * Even though we checked this conditional above, we
2419		 * need to check this again now that we have the
2420		 * l2ad_mtx. This is because we could be racing with
2421		 * another thread calling l2arc_evict() which might have
2422		 * destroyed this header's L2 portion as we were waiting
2423		 * to acquire the l2ad_mtx. If that happens, we don't
2424		 * want to re-destroy the header's L2 portion.
2425		 */
2426		if (HDR_HAS_L2HDR(hdr)) {
2427			l2arc_trim(hdr);
2428			arc_hdr_l2hdr_destroy(hdr);
2429		}
2430
2431		if (!buflist_held)
2432			mutex_exit(&dev->l2ad_mtx);
2433	}
2434
2435	if (!BUF_EMPTY(hdr))
2436		buf_discard_identity(hdr);
2437
2438	if (hdr->b_freeze_cksum != NULL) {
2439		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
2440		hdr->b_freeze_cksum = NULL;
2441	}
2442
2443	if (HDR_HAS_L1HDR(hdr)) {
2444		while (hdr->b_l1hdr.b_buf) {
2445			arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2446
2447			if (buf->b_efunc != NULL) {
2448				mutex_enter(&arc_user_evicts_lock);
2449				mutex_enter(&buf->b_evict_lock);
2450				ASSERT(buf->b_hdr != NULL);
2451				arc_buf_destroy(hdr->b_l1hdr.b_buf, FALSE);
2452				hdr->b_l1hdr.b_buf = buf->b_next;
2453				buf->b_hdr = &arc_eviction_hdr;
2454				buf->b_next = arc_eviction_list;
2455				arc_eviction_list = buf;
2456				mutex_exit(&buf->b_evict_lock);
2457				cv_signal(&arc_user_evicts_cv);
2458				mutex_exit(&arc_user_evicts_lock);
2459			} else {
2460				arc_buf_destroy(hdr->b_l1hdr.b_buf, TRUE);
2461			}
2462		}
2463#ifdef ZFS_DEBUG
2464		if (hdr->b_l1hdr.b_thawed != NULL) {
2465			kmem_free(hdr->b_l1hdr.b_thawed, 1);
2466			hdr->b_l1hdr.b_thawed = NULL;
2467		}
2468#endif
2469	}
2470
2471	ASSERT3P(hdr->b_hash_next, ==, NULL);
2472	if (HDR_HAS_L1HDR(hdr)) {
2473		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
2474		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
2475		kmem_cache_free(hdr_full_cache, hdr);
2476	} else {
2477		kmem_cache_free(hdr_l2only_cache, hdr);
2478	}
2479}
2480
2481void
2482arc_buf_free(arc_buf_t *buf, void *tag)
2483{
2484	arc_buf_hdr_t *hdr = buf->b_hdr;
2485	int hashed = hdr->b_l1hdr.b_state != arc_anon;
2486
2487	ASSERT(buf->b_efunc == NULL);
2488	ASSERT(buf->b_data != NULL);
2489
2490	if (hashed) {
2491		kmutex_t *hash_lock = HDR_LOCK(hdr);
2492
2493		mutex_enter(hash_lock);
2494		hdr = buf->b_hdr;
2495		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2496
2497		(void) remove_reference(hdr, hash_lock, tag);
2498		if (hdr->b_l1hdr.b_datacnt > 1) {
2499			arc_buf_destroy(buf, TRUE);
2500		} else {
2501			ASSERT(buf == hdr->b_l1hdr.b_buf);
2502			ASSERT(buf->b_efunc == NULL);
2503			hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
2504		}
2505		mutex_exit(hash_lock);
2506	} else if (HDR_IO_IN_PROGRESS(hdr)) {
2507		int destroy_hdr;
2508		/*
2509		 * We are in the middle of an async write.  Don't destroy
2510		 * this buffer unless the write completes before we finish
2511		 * decrementing the reference count.
2512		 */
2513		mutex_enter(&arc_user_evicts_lock);
2514		(void) remove_reference(hdr, NULL, tag);
2515		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2516		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
2517		mutex_exit(&arc_user_evicts_lock);
2518		if (destroy_hdr)
2519			arc_hdr_destroy(hdr);
2520	} else {
2521		if (remove_reference(hdr, NULL, tag) > 0)
2522			arc_buf_destroy(buf, TRUE);
2523		else
2524			arc_hdr_destroy(hdr);
2525	}
2526}
2527
2528boolean_t
2529arc_buf_remove_ref(arc_buf_t *buf, void* tag)
2530{
2531	arc_buf_hdr_t *hdr = buf->b_hdr;
2532	kmutex_t *hash_lock = HDR_LOCK(hdr);
2533	boolean_t no_callback = (buf->b_efunc == NULL);
2534
2535	if (hdr->b_l1hdr.b_state == arc_anon) {
2536		ASSERT(hdr->b_l1hdr.b_datacnt == 1);
2537		arc_buf_free(buf, tag);
2538		return (no_callback);
2539	}
2540
2541	mutex_enter(hash_lock);
2542	hdr = buf->b_hdr;
2543	ASSERT(hdr->b_l1hdr.b_datacnt > 0);
2544	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2545	ASSERT(hdr->b_l1hdr.b_state != arc_anon);
2546	ASSERT(buf->b_data != NULL);
2547
2548	(void) remove_reference(hdr, hash_lock, tag);
2549	if (hdr->b_l1hdr.b_datacnt > 1) {
2550		if (no_callback)
2551			arc_buf_destroy(buf, TRUE);
2552	} else if (no_callback) {
2553		ASSERT(hdr->b_l1hdr.b_buf == buf && buf->b_next == NULL);
2554		ASSERT(buf->b_efunc == NULL);
2555		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
2556	}
2557	ASSERT(no_callback || hdr->b_l1hdr.b_datacnt > 1 ||
2558	    refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2559	mutex_exit(hash_lock);
2560	return (no_callback);
2561}
2562
2563int32_t
2564arc_buf_size(arc_buf_t *buf)
2565{
2566	return (buf->b_hdr->b_size);
2567}
2568
2569/*
2570 * Called from the DMU to determine if the current buffer should be
2571 * evicted. In order to ensure proper locking, the eviction must be initiated
2572 * from the DMU. Return true if the buffer is associated with user data and
2573 * duplicate buffers still exist.
2574 */
2575boolean_t
2576arc_buf_eviction_needed(arc_buf_t *buf)
2577{
2578	arc_buf_hdr_t *hdr;
2579	boolean_t evict_needed = B_FALSE;
2580
2581	if (zfs_disable_dup_eviction)
2582		return (B_FALSE);
2583
2584	mutex_enter(&buf->b_evict_lock);
2585	hdr = buf->b_hdr;
2586	if (hdr == NULL) {
2587		/*
2588		 * We are in arc_do_user_evicts(); let that function
2589		 * perform the eviction.
2590		 */
2591		ASSERT(buf->b_data == NULL);
2592		mutex_exit(&buf->b_evict_lock);
2593		return (B_FALSE);
2594	} else if (buf->b_data == NULL) {
2595		/*
2596		 * We have already been added to the arc eviction list;
2597		 * recommend eviction.
2598		 */
2599		ASSERT3P(hdr, ==, &arc_eviction_hdr);
2600		mutex_exit(&buf->b_evict_lock);
2601		return (B_TRUE);
2602	}
2603
2604	if (hdr->b_l1hdr.b_datacnt > 1 && HDR_ISTYPE_DATA(hdr))
2605		evict_needed = B_TRUE;
2606
2607	mutex_exit(&buf->b_evict_lock);
2608	return (evict_needed);
2609}
2610
2611/*
2612 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
2613 * state of the header is dependent on it's state prior to entering this
2614 * function. The following transitions are possible:
2615 *
2616 *    - arc_mru -> arc_mru_ghost
2617 *    - arc_mfu -> arc_mfu_ghost
2618 *    - arc_mru_ghost -> arc_l2c_only
2619 *    - arc_mru_ghost -> deleted
2620 *    - arc_mfu_ghost -> arc_l2c_only
2621 *    - arc_mfu_ghost -> deleted
2622 */
2623static int64_t
2624arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
2625{
2626	arc_state_t *evicted_state, *state;
2627	int64_t bytes_evicted = 0;
2628
2629	ASSERT(MUTEX_HELD(hash_lock));
2630	ASSERT(HDR_HAS_L1HDR(hdr));
2631
2632	state = hdr->b_l1hdr.b_state;
2633	if (GHOST_STATE(state)) {
2634		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2635		ASSERT(hdr->b_l1hdr.b_buf == NULL);
2636
2637		/*
2638		 * l2arc_write_buffers() relies on a header's L1 portion
2639		 * (i.e. it's b_tmp_cdata field) during it's write phase.
2640		 * Thus, we cannot push a header onto the arc_l2c_only
2641		 * state (removing it's L1 piece) until the header is
2642		 * done being written to the l2arc.
2643		 */
2644		if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
2645			ARCSTAT_BUMP(arcstat_evict_l2_skip);
2646			return (bytes_evicted);
2647		}
2648
2649		ARCSTAT_BUMP(arcstat_deleted);
2650		bytes_evicted += hdr->b_size;
2651
2652		DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
2653
2654		if (HDR_HAS_L2HDR(hdr)) {
2655			/*
2656			 * This buffer is cached on the 2nd Level ARC;
2657			 * don't destroy the header.
2658			 */
2659			arc_change_state(arc_l2c_only, hdr, hash_lock);
2660			/*
2661			 * dropping from L1+L2 cached to L2-only,
2662			 * realloc to remove the L1 header.
2663			 */
2664			hdr = arc_hdr_realloc(hdr, hdr_full_cache,
2665			    hdr_l2only_cache);
2666		} else {
2667			arc_change_state(arc_anon, hdr, hash_lock);
2668			arc_hdr_destroy(hdr);
2669		}
2670		return (bytes_evicted);
2671	}
2672
2673	ASSERT(state == arc_mru || state == arc_mfu);
2674	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
2675
2676	/* prefetch buffers have a minimum lifespan */
2677	if (HDR_IO_IN_PROGRESS(hdr) ||
2678	    ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
2679	    ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
2680	    arc_min_prefetch_lifespan)) {
2681		ARCSTAT_BUMP(arcstat_evict_skip);
2682		return (bytes_evicted);
2683	}
2684
2685	ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
2686	ASSERT3U(hdr->b_l1hdr.b_datacnt, >, 0);
2687	while (hdr->b_l1hdr.b_buf) {
2688		arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2689		if (!mutex_tryenter(&buf->b_evict_lock)) {
2690			ARCSTAT_BUMP(arcstat_mutex_miss);
2691			break;
2692		}
2693		if (buf->b_data != NULL)
2694			bytes_evicted += hdr->b_size;
2695		if (buf->b_efunc != NULL) {
2696			mutex_enter(&arc_user_evicts_lock);
2697			arc_buf_destroy(buf, FALSE);
2698			hdr->b_l1hdr.b_buf = buf->b_next;
2699			buf->b_hdr = &arc_eviction_hdr;
2700			buf->b_next = arc_eviction_list;
2701			arc_eviction_list = buf;
2702			cv_signal(&arc_user_evicts_cv);
2703			mutex_exit(&arc_user_evicts_lock);
2704			mutex_exit(&buf->b_evict_lock);
2705		} else {
2706			mutex_exit(&buf->b_evict_lock);
2707			arc_buf_destroy(buf, TRUE);
2708		}
2709	}
2710
2711	if (HDR_HAS_L2HDR(hdr)) {
2712		ARCSTAT_INCR(arcstat_evict_l2_cached, hdr->b_size);
2713	} else {
2714		if (l2arc_write_eligible(hdr->b_spa, hdr))
2715			ARCSTAT_INCR(arcstat_evict_l2_eligible, hdr->b_size);
2716		else
2717			ARCSTAT_INCR(arcstat_evict_l2_ineligible, hdr->b_size);
2718	}
2719
2720	if (hdr->b_l1hdr.b_datacnt == 0) {
2721		arc_change_state(evicted_state, hdr, hash_lock);
2722		ASSERT(HDR_IN_HASH_TABLE(hdr));
2723		hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
2724		hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
2725		DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
2726	}
2727
2728	return (bytes_evicted);
2729}
2730
2731static uint64_t
2732arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
2733    uint64_t spa, int64_t bytes)
2734{
2735	multilist_sublist_t *mls;
2736	uint64_t bytes_evicted = 0;
2737	arc_buf_hdr_t *hdr;
2738	kmutex_t *hash_lock;
2739	int evict_count = 0;
2740
2741	ASSERT3P(marker, !=, NULL);
2742	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
2743
2744	mls = multilist_sublist_lock(ml, idx);
2745
2746	for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
2747	    hdr = multilist_sublist_prev(mls, marker)) {
2748		if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
2749		    (evict_count >= zfs_arc_evict_batch_limit))
2750			break;
2751
2752		/*
2753		 * To keep our iteration location, move the marker
2754		 * forward. Since we're not holding hdr's hash lock, we
2755		 * must be very careful and not remove 'hdr' from the
2756		 * sublist. Otherwise, other consumers might mistake the
2757		 * 'hdr' as not being on a sublist when they call the
2758		 * multilist_link_active() function (they all rely on
2759		 * the hash lock protecting concurrent insertions and
2760		 * removals). multilist_sublist_move_forward() was
2761		 * specifically implemented to ensure this is the case
2762		 * (only 'marker' will be removed and re-inserted).
2763		 */
2764		multilist_sublist_move_forward(mls, marker);
2765
2766		/*
2767		 * The only case where the b_spa field should ever be
2768		 * zero, is the marker headers inserted by
2769		 * arc_evict_state(). It's possible for multiple threads
2770		 * to be calling arc_evict_state() concurrently (e.g.
2771		 * dsl_pool_close() and zio_inject_fault()), so we must
2772		 * skip any markers we see from these other threads.
2773		 */
2774		if (hdr->b_spa == 0)
2775			continue;
2776
2777		/* we're only interested in evicting buffers of a certain spa */
2778		if (spa != 0 && hdr->b_spa != spa) {
2779			ARCSTAT_BUMP(arcstat_evict_skip);
2780			continue;
2781		}
2782
2783		hash_lock = HDR_LOCK(hdr);
2784
2785		/*
2786		 * We aren't calling this function from any code path
2787		 * that would already be holding a hash lock, so we're
2788		 * asserting on this assumption to be defensive in case
2789		 * this ever changes. Without this check, it would be
2790		 * possible to incorrectly increment arcstat_mutex_miss
2791		 * below (e.g. if the code changed such that we called
2792		 * this function with a hash lock held).
2793		 */
2794		ASSERT(!MUTEX_HELD(hash_lock));
2795
2796		if (mutex_tryenter(hash_lock)) {
2797			uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
2798			mutex_exit(hash_lock);
2799
2800			bytes_evicted += evicted;
2801
2802			/*
2803			 * If evicted is zero, arc_evict_hdr() must have
2804			 * decided to skip this header, don't increment
2805			 * evict_count in this case.
2806			 */
2807			if (evicted != 0)
2808				evict_count++;
2809
2810			/*
2811			 * If arc_size isn't overflowing, signal any
2812			 * threads that might happen to be waiting.
2813			 *
2814			 * For each header evicted, we wake up a single
2815			 * thread. If we used cv_broadcast, we could
2816			 * wake up "too many" threads causing arc_size
2817			 * to significantly overflow arc_c; since
2818			 * arc_get_data_buf() doesn't check for overflow
2819			 * when it's woken up (it doesn't because it's
2820			 * possible for the ARC to be overflowing while
2821			 * full of un-evictable buffers, and the
2822			 * function should proceed in this case).
2823			 *
2824			 * If threads are left sleeping, due to not
2825			 * using cv_broadcast, they will be woken up
2826			 * just before arc_reclaim_thread() sleeps.
2827			 */
2828			mutex_enter(&arc_reclaim_lock);
2829			if (!arc_is_overflowing())
2830				cv_signal(&arc_reclaim_waiters_cv);
2831			mutex_exit(&arc_reclaim_lock);
2832		} else {
2833			ARCSTAT_BUMP(arcstat_mutex_miss);
2834		}
2835	}
2836
2837	multilist_sublist_unlock(mls);
2838
2839	return (bytes_evicted);
2840}
2841
2842/*
2843 * Evict buffers from the given arc state, until we've removed the
2844 * specified number of bytes. Move the removed buffers to the
2845 * appropriate evict state.
2846 *
2847 * This function makes a "best effort". It skips over any buffers
2848 * it can't get a hash_lock on, and so, may not catch all candidates.
2849 * It may also return without evicting as much space as requested.
2850 *
2851 * If bytes is specified using the special value ARC_EVICT_ALL, this
2852 * will evict all available (i.e. unlocked and evictable) buffers from
2853 * the given arc state; which is used by arc_flush().
2854 */
2855static uint64_t
2856arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
2857    arc_buf_contents_t type)
2858{
2859	uint64_t total_evicted = 0;
2860	multilist_t *ml = &state->arcs_list[type];
2861	int num_sublists;
2862	arc_buf_hdr_t **markers;
2863
2864	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
2865
2866	num_sublists = multilist_get_num_sublists(ml);
2867
2868	/*
2869	 * If we've tried to evict from each sublist, made some
2870	 * progress, but still have not hit the target number of bytes
2871	 * to evict, we want to keep trying. The markers allow us to
2872	 * pick up where we left off for each individual sublist, rather
2873	 * than starting from the tail each time.
2874	 */
2875	markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
2876	for (int i = 0; i < num_sublists; i++) {
2877		markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
2878
2879		/*
2880		 * A b_spa of 0 is used to indicate that this header is
2881		 * a marker. This fact is used in arc_adjust_type() and
2882		 * arc_evict_state_impl().
2883		 */
2884		markers[i]->b_spa = 0;
2885
2886		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
2887		multilist_sublist_insert_tail(mls, markers[i]);
2888		multilist_sublist_unlock(mls);
2889	}
2890
2891	/*
2892	 * While we haven't hit our target number of bytes to evict, or
2893	 * we're evicting all available buffers.
2894	 */
2895	while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
2896		/*
2897		 * Start eviction using a randomly selected sublist,
2898		 * this is to try and evenly balance eviction across all
2899		 * sublists. Always starting at the same sublist
2900		 * (e.g. index 0) would cause evictions to favor certain
2901		 * sublists over others.
2902		 */
2903		int sublist_idx = multilist_get_random_index(ml);
2904		uint64_t scan_evicted = 0;
2905
2906		for (int i = 0; i < num_sublists; i++) {
2907			uint64_t bytes_remaining;
2908			uint64_t bytes_evicted;
2909
2910			if (bytes == ARC_EVICT_ALL)
2911				bytes_remaining = ARC_EVICT_ALL;
2912			else if (total_evicted < bytes)
2913				bytes_remaining = bytes - total_evicted;
2914			else
2915				break;
2916
2917			bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
2918			    markers[sublist_idx], spa, bytes_remaining);
2919
2920			scan_evicted += bytes_evicted;
2921			total_evicted += bytes_evicted;
2922
2923			/* we've reached the end, wrap to the beginning */
2924			if (++sublist_idx >= num_sublists)
2925				sublist_idx = 0;
2926		}
2927
2928		/*
2929		 * If we didn't evict anything during this scan, we have
2930		 * no reason to believe we'll evict more during another
2931		 * scan, so break the loop.
2932		 */
2933		if (scan_evicted == 0) {
2934			/* This isn't possible, let's make that obvious */
2935			ASSERT3S(bytes, !=, 0);
2936
2937			/*
2938			 * When bytes is ARC_EVICT_ALL, the only way to
2939			 * break the loop is when scan_evicted is zero.
2940			 * In that case, we actually have evicted enough,
2941			 * so we don't want to increment the kstat.
2942			 */
2943			if (bytes != ARC_EVICT_ALL) {
2944				ASSERT3S(total_evicted, <, bytes);
2945				ARCSTAT_BUMP(arcstat_evict_not_enough);
2946			}
2947
2948			break;
2949		}
2950	}
2951
2952	for (int i = 0; i < num_sublists; i++) {
2953		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
2954		multilist_sublist_remove(mls, markers[i]);
2955		multilist_sublist_unlock(mls);
2956
2957		kmem_cache_free(hdr_full_cache, markers[i]);
2958	}
2959	kmem_free(markers, sizeof (*markers) * num_sublists);
2960
2961	return (total_evicted);
2962}
2963
2964/*
2965 * Flush all "evictable" data of the given type from the arc state
2966 * specified. This will not evict any "active" buffers (i.e. referenced).
2967 *
2968 * When 'retry' is set to FALSE, the function will make a single pass
2969 * over the state and evict any buffers that it can. Since it doesn't
2970 * continually retry the eviction, it might end up leaving some buffers
2971 * in the ARC due to lock misses.
2972 *
2973 * When 'retry' is set to TRUE, the function will continually retry the
2974 * eviction until *all* evictable buffers have been removed from the
2975 * state. As a result, if concurrent insertions into the state are
2976 * allowed (e.g. if the ARC isn't shutting down), this function might
2977 * wind up in an infinite loop, continually trying to evict buffers.
2978 */
2979static uint64_t
2980arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
2981    boolean_t retry)
2982{
2983	uint64_t evicted = 0;
2984
2985	while (state->arcs_lsize[type] != 0) {
2986		evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
2987
2988		if (!retry)
2989			break;
2990	}
2991
2992	return (evicted);
2993}
2994
2995/*
2996 * Evict the specified number of bytes from the state specified,
2997 * restricting eviction to the spa and type given. This function
2998 * prevents us from trying to evict more from a state's list than
2999 * is "evictable", and to skip evicting altogether when passed a
3000 * negative value for "bytes". In contrast, arc_evict_state() will
3001 * evict everything it can, when passed a negative value for "bytes".
3002 */
3003static uint64_t
3004arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
3005    arc_buf_contents_t type)
3006{
3007	int64_t delta;
3008
3009	if (bytes > 0 && state->arcs_lsize[type] > 0) {
3010		delta = MIN(state->arcs_lsize[type], bytes);
3011		return (arc_evict_state(state, spa, delta, type));
3012	}
3013
3014	return (0);
3015}
3016
3017/*
3018 * Evict metadata buffers from the cache, such that arc_meta_used is
3019 * capped by the arc_meta_limit tunable.
3020 */
3021static uint64_t
3022arc_adjust_meta(void)
3023{
3024	uint64_t total_evicted = 0;
3025	int64_t target;
3026
3027	/*
3028	 * If we're over the meta limit, we want to evict enough
3029	 * metadata to get back under the meta limit. We don't want to
3030	 * evict so much that we drop the MRU below arc_p, though. If
3031	 * we're over the meta limit more than we're over arc_p, we
3032	 * evict some from the MRU here, and some from the MFU below.
3033	 */
3034	target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3035	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
3036	    refcount_count(&arc_mru->arcs_size) - arc_p));
3037
3038	total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3039
3040	/*
3041	 * Similar to the above, we want to evict enough bytes to get us
3042	 * below the meta limit, but not so much as to drop us below the
3043	 * space alloted to the MFU (which is defined as arc_c - arc_p).
3044	 */
3045	target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3046	    (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p)));
3047
3048	total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3049
3050	return (total_evicted);
3051}
3052
3053/*
3054 * Return the type of the oldest buffer in the given arc state
3055 *
3056 * This function will select a random sublist of type ARC_BUFC_DATA and
3057 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
3058 * is compared, and the type which contains the "older" buffer will be
3059 * returned.
3060 */
3061static arc_buf_contents_t
3062arc_adjust_type(arc_state_t *state)
3063{
3064	multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA];
3065	multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA];
3066	int data_idx = multilist_get_random_index(data_ml);
3067	int meta_idx = multilist_get_random_index(meta_ml);
3068	multilist_sublist_t *data_mls;
3069	multilist_sublist_t *meta_mls;
3070	arc_buf_contents_t type;
3071	arc_buf_hdr_t *data_hdr;
3072	arc_buf_hdr_t *meta_hdr;
3073
3074	/*
3075	 * We keep the sublist lock until we're finished, to prevent
3076	 * the headers from being destroyed via arc_evict_state().
3077	 */
3078	data_mls = multilist_sublist_lock(data_ml, data_idx);
3079	meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
3080
3081	/*
3082	 * These two loops are to ensure we skip any markers that
3083	 * might be at the tail of the lists due to arc_evict_state().
3084	 */
3085
3086	for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
3087	    data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
3088		if (data_hdr->b_spa != 0)
3089			break;
3090	}
3091
3092	for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
3093	    meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
3094		if (meta_hdr->b_spa != 0)
3095			break;
3096	}
3097
3098	if (data_hdr == NULL && meta_hdr == NULL) {
3099		type = ARC_BUFC_DATA;
3100	} else if (data_hdr == NULL) {
3101		ASSERT3P(meta_hdr, !=, NULL);
3102		type = ARC_BUFC_METADATA;
3103	} else if (meta_hdr == NULL) {
3104		ASSERT3P(data_hdr, !=, NULL);
3105		type = ARC_BUFC_DATA;
3106	} else {
3107		ASSERT3P(data_hdr, !=, NULL);
3108		ASSERT3P(meta_hdr, !=, NULL);
3109
3110		/* The headers can't be on the sublist without an L1 header */
3111		ASSERT(HDR_HAS_L1HDR(data_hdr));
3112		ASSERT(HDR_HAS_L1HDR(meta_hdr));
3113
3114		if (data_hdr->b_l1hdr.b_arc_access <
3115		    meta_hdr->b_l1hdr.b_arc_access) {
3116			type = ARC_BUFC_DATA;
3117		} else {
3118			type = ARC_BUFC_METADATA;
3119		}
3120	}
3121
3122	multilist_sublist_unlock(meta_mls);
3123	multilist_sublist_unlock(data_mls);
3124
3125	return (type);
3126}
3127
3128/*
3129 * Evict buffers from the cache, such that arc_size is capped by arc_c.
3130 */
3131static uint64_t
3132arc_adjust(void)
3133{
3134	uint64_t total_evicted = 0;
3135	uint64_t bytes;
3136	int64_t target;
3137
3138	/*
3139	 * If we're over arc_meta_limit, we want to correct that before
3140	 * potentially evicting data buffers below.
3141	 */
3142	total_evicted += arc_adjust_meta();
3143
3144	/*
3145	 * Adjust MRU size
3146	 *
3147	 * If we're over the target cache size, we want to evict enough
3148	 * from the list to get back to our target size. We don't want
3149	 * to evict too much from the MRU, such that it drops below
3150	 * arc_p. So, if we're over our target cache size more than
3151	 * the MRU is over arc_p, we'll evict enough to get back to
3152	 * arc_p here, and then evict more from the MFU below.
3153	 */
3154	target = MIN((int64_t)(arc_size - arc_c),
3155	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
3156	    refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p));
3157
3158	/*
3159	 * If we're below arc_meta_min, always prefer to evict data.
3160	 * Otherwise, try to satisfy the requested number of bytes to
3161	 * evict from the type which contains older buffers; in an
3162	 * effort to keep newer buffers in the cache regardless of their
3163	 * type. If we cannot satisfy the number of bytes from this
3164	 * type, spill over into the next type.
3165	 */
3166	if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
3167	    arc_meta_used > arc_meta_min) {
3168		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3169		total_evicted += bytes;
3170
3171		/*
3172		 * If we couldn't evict our target number of bytes from
3173		 * metadata, we try to get the rest from data.
3174		 */
3175		target -= bytes;
3176
3177		total_evicted +=
3178		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3179	} else {
3180		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3181		total_evicted += bytes;
3182
3183		/*
3184		 * If we couldn't evict our target number of bytes from
3185		 * data, we try to get the rest from metadata.
3186		 */
3187		target -= bytes;
3188
3189		total_evicted +=
3190		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3191	}
3192
3193	/*
3194	 * Adjust MFU size
3195	 *
3196	 * Now that we've tried to evict enough from the MRU to get its
3197	 * size back to arc_p, if we're still above the target cache
3198	 * size, we evict the rest from the MFU.
3199	 */
3200	target = arc_size - arc_c;
3201
3202	if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
3203	    arc_meta_used > arc_meta_min) {
3204		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3205		total_evicted += bytes;
3206
3207		/*
3208		 * If we couldn't evict our target number of bytes from
3209		 * metadata, we try to get the rest from data.
3210		 */
3211		target -= bytes;
3212
3213		total_evicted +=
3214		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3215	} else {
3216		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3217		total_evicted += bytes;
3218
3219		/*
3220		 * If we couldn't evict our target number of bytes from
3221		 * data, we try to get the rest from data.
3222		 */
3223		target -= bytes;
3224
3225		total_evicted +=
3226		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3227	}
3228
3229	/*
3230	 * Adjust ghost lists
3231	 *
3232	 * In addition to the above, the ARC also defines target values
3233	 * for the ghost lists. The sum of the mru list and mru ghost
3234	 * list should never exceed the target size of the cache, and
3235	 * the sum of the mru list, mfu list, mru ghost list, and mfu
3236	 * ghost list should never exceed twice the target size of the
3237	 * cache. The following logic enforces these limits on the ghost
3238	 * caches, and evicts from them as needed.
3239	 */
3240	target = refcount_count(&arc_mru->arcs_size) +
3241	    refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
3242
3243	bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
3244	total_evicted += bytes;
3245
3246	target -= bytes;
3247
3248	total_evicted +=
3249	    arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
3250
3251	/*
3252	 * We assume the sum of the mru list and mfu list is less than
3253	 * or equal to arc_c (we enforced this above), which means we
3254	 * can use the simpler of the two equations below:
3255	 *
3256	 *	mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
3257	 *		    mru ghost + mfu ghost <= arc_c
3258	 */
3259	target = refcount_count(&arc_mru_ghost->arcs_size) +
3260	    refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
3261
3262	bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
3263	total_evicted += bytes;
3264
3265	target -= bytes;
3266
3267	total_evicted +=
3268	    arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
3269
3270	return (total_evicted);
3271}
3272
3273static void
3274arc_do_user_evicts(void)
3275{
3276	mutex_enter(&arc_user_evicts_lock);
3277	while (arc_eviction_list != NULL) {
3278		arc_buf_t *buf = arc_eviction_list;
3279		arc_eviction_list = buf->b_next;
3280		mutex_enter(&buf->b_evict_lock);
3281		buf->b_hdr = NULL;
3282		mutex_exit(&buf->b_evict_lock);
3283		mutex_exit(&arc_user_evicts_lock);
3284
3285		if (buf->b_efunc != NULL)
3286			VERIFY0(buf->b_efunc(buf->b_private));
3287
3288		buf->b_efunc = NULL;
3289		buf->b_private = NULL;
3290		kmem_cache_free(buf_cache, buf);
3291		mutex_enter(&arc_user_evicts_lock);
3292	}
3293	mutex_exit(&arc_user_evicts_lock);
3294}
3295
3296void
3297arc_flush(spa_t *spa, boolean_t retry)
3298{
3299	uint64_t guid = 0;
3300
3301	/*
3302	 * If retry is TRUE, a spa must not be specified since we have
3303	 * no good way to determine if all of a spa's buffers have been
3304	 * evicted from an arc state.
3305	 */
3306	ASSERT(!retry || spa == 0);
3307
3308	if (spa != NULL)
3309		guid = spa_load_guid(spa);
3310
3311	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
3312	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
3313
3314	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
3315	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
3316
3317	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
3318	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
3319
3320	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
3321	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
3322
3323	arc_do_user_evicts();
3324	ASSERT(spa || arc_eviction_list == NULL);
3325}
3326
3327void
3328arc_shrink(int64_t to_free)
3329{
3330	if (arc_c > arc_c_min) {
3331		DTRACE_PROBE4(arc__shrink, uint64_t, arc_c, uint64_t,
3332			arc_c_min, uint64_t, arc_p, uint64_t, to_free);
3333		if (arc_c > arc_c_min + to_free)
3334			atomic_add_64(&arc_c, -to_free);
3335		else
3336			arc_c = arc_c_min;
3337
3338		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
3339		if (arc_c > arc_size)
3340			arc_c = MAX(arc_size, arc_c_min);
3341		if (arc_p > arc_c)
3342			arc_p = (arc_c >> 1);
3343
3344		DTRACE_PROBE2(arc__shrunk, uint64_t, arc_c, uint64_t,
3345			arc_p);
3346
3347		ASSERT(arc_c >= arc_c_min);
3348		ASSERT((int64_t)arc_p >= 0);
3349	}
3350
3351	if (arc_size > arc_c) {
3352		DTRACE_PROBE2(arc__shrink_adjust, uint64_t, arc_size,
3353			uint64_t, arc_c);
3354		(void) arc_adjust();
3355	}
3356}
3357
3358static long needfree = 0;
3359
3360typedef enum free_memory_reason_t {
3361	FMR_UNKNOWN,
3362	FMR_NEEDFREE,
3363	FMR_LOTSFREE,
3364	FMR_SWAPFS_MINFREE,
3365	FMR_PAGES_PP_MAXIMUM,
3366	FMR_HEAP_ARENA,
3367	FMR_ZIO_ARENA,
3368	FMR_ZIO_FRAG,
3369} free_memory_reason_t;
3370
3371int64_t last_free_memory;
3372free_memory_reason_t last_free_reason;
3373
3374/*
3375 * Additional reserve of pages for pp_reserve.
3376 */
3377int64_t arc_pages_pp_reserve = 64;
3378
3379/*
3380 * Additional reserve of pages for swapfs.
3381 */
3382int64_t arc_swapfs_reserve = 64;
3383
3384/*
3385 * Return the amount of memory that can be consumed before reclaim will be
3386 * needed.  Positive if there is sufficient free memory, negative indicates
3387 * the amount of memory that needs to be freed up.
3388 */
3389static int64_t
3390arc_available_memory(void)
3391{
3392	int64_t lowest = INT64_MAX;
3393	int64_t n;
3394	free_memory_reason_t r = FMR_UNKNOWN;
3395
3396#ifdef _KERNEL
3397	if (needfree > 0) {
3398		n = PAGESIZE * (-needfree);
3399		if (n < lowest) {
3400			lowest = n;
3401			r = FMR_NEEDFREE;
3402		}
3403	}
3404
3405	/*
3406	 * Cooperate with pagedaemon when it's time for it to scan
3407	 * and reclaim some pages.
3408	 */
3409	n = PAGESIZE * ((int64_t)freemem - zfs_arc_free_target);
3410	if (n < lowest) {
3411		lowest = n;
3412		r = FMR_LOTSFREE;
3413	}
3414
3415#ifdef illumos
3416	/*
3417	 * check that we're out of range of the pageout scanner.  It starts to
3418	 * schedule paging if freemem is less than lotsfree and needfree.
3419	 * lotsfree is the high-water mark for pageout, and needfree is the
3420	 * number of needed free pages.  We add extra pages here to make sure
3421	 * the scanner doesn't start up while we're freeing memory.
3422	 */
3423	n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
3424	if (n < lowest) {
3425		lowest = n;
3426		r = FMR_LOTSFREE;
3427	}
3428
3429	/*
3430	 * check to make sure that swapfs has enough space so that anon
3431	 * reservations can still succeed. anon_resvmem() checks that the
3432	 * availrmem is greater than swapfs_minfree, and the number of reserved
3433	 * swap pages.  We also add a bit of extra here just to prevent
3434	 * circumstances from getting really dire.
3435	 */
3436	n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
3437	    desfree - arc_swapfs_reserve);
3438	if (n < lowest) {
3439		lowest = n;
3440		r = FMR_SWAPFS_MINFREE;
3441	}
3442
3443
3444	/*
3445	 * Check that we have enough availrmem that memory locking (e.g., via
3446	 * mlock(3C) or memcntl(2)) can still succeed.  (pages_pp_maximum
3447	 * stores the number of pages that cannot be locked; when availrmem
3448	 * drops below pages_pp_maximum, page locking mechanisms such as
3449	 * page_pp_lock() will fail.)
3450	 */
3451	n = PAGESIZE * (availrmem - pages_pp_maximum -
3452	    arc_pages_pp_reserve);
3453	if (n < lowest) {
3454		lowest = n;
3455		r = FMR_PAGES_PP_MAXIMUM;
3456	}
3457
3458#endif	/* illumos */
3459#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
3460	/*
3461	 * If we're on an i386 platform, it's possible that we'll exhaust the
3462	 * kernel heap space before we ever run out of available physical
3463	 * memory.  Most checks of the size of the heap_area compare against
3464	 * tune.t_minarmem, which is the minimum available real memory that we
3465	 * can have in the system.  However, this is generally fixed at 25 pages
3466	 * which is so low that it's useless.  In this comparison, we seek to
3467	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
3468	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
3469	 * free)
3470	 */
3471	n = (int64_t)vmem_size(heap_arena, VMEM_FREE) -
3472	    (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
3473	if (n < lowest) {
3474		lowest = n;
3475		r = FMR_HEAP_ARENA;
3476	}
3477#define	zio_arena	NULL
3478#else
3479#define	zio_arena	heap_arena
3480#endif
3481
3482	/*
3483	 * If zio data pages are being allocated out of a separate heap segment,
3484	 * then enforce that the size of available vmem for this arena remains
3485	 * above about 1/16th free.
3486	 *
3487	 * Note: The 1/16th arena free requirement was put in place
3488	 * to aggressively evict memory from the arc in order to avoid
3489	 * memory fragmentation issues.
3490	 */
3491	if (zio_arena != NULL) {
3492		n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
3493		    (vmem_size(zio_arena, VMEM_ALLOC) >> 4);
3494		if (n < lowest) {
3495			lowest = n;
3496			r = FMR_ZIO_ARENA;
3497		}
3498	}
3499
3500	/*
3501	 * Above limits know nothing about real level of KVA fragmentation.
3502	 * Start aggressive reclamation if too little sequential KVA left.
3503	 */
3504	if (lowest > 0) {
3505		n = (vmem_size(heap_arena, VMEM_MAXFREE) < zfs_max_recordsize) ?
3506		    -((int64_t)vmem_size(heap_arena, VMEM_ALLOC) >> 4) :
3507		    INT64_MAX;
3508		if (n < lowest) {
3509			lowest = n;
3510			r = FMR_ZIO_FRAG;
3511		}
3512	}
3513
3514#else	/* _KERNEL */
3515	/* Every 100 calls, free a small amount */
3516	if (spa_get_random(100) == 0)
3517		lowest = -1024;
3518#endif	/* _KERNEL */
3519
3520	last_free_memory = lowest;
3521	last_free_reason = r;
3522	DTRACE_PROBE2(arc__available_memory, int64_t, lowest, int, r);
3523	return (lowest);
3524}
3525
3526
3527/*
3528 * Determine if the system is under memory pressure and is asking
3529 * to reclaim memory. A return value of TRUE indicates that the system
3530 * is under memory pressure and that the arc should adjust accordingly.
3531 */
3532static boolean_t
3533arc_reclaim_needed(void)
3534{
3535	return (arc_available_memory() < 0);
3536}
3537
3538extern kmem_cache_t	*zio_buf_cache[];
3539extern kmem_cache_t	*zio_data_buf_cache[];
3540extern kmem_cache_t	*range_seg_cache;
3541
3542static __noinline void
3543arc_kmem_reap_now(void)
3544{
3545	size_t			i;
3546	kmem_cache_t		*prev_cache = NULL;
3547	kmem_cache_t		*prev_data_cache = NULL;
3548
3549	DTRACE_PROBE(arc__kmem_reap_start);
3550#ifdef _KERNEL
3551	if (arc_meta_used >= arc_meta_limit) {
3552		/*
3553		 * We are exceeding our meta-data cache limit.
3554		 * Purge some DNLC entries to release holds on meta-data.
3555		 */
3556		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
3557	}
3558#if defined(__i386)
3559	/*
3560	 * Reclaim unused memory from all kmem caches.
3561	 */
3562	kmem_reap();
3563#endif
3564#endif
3565
3566	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
3567		if (zio_buf_cache[i] != prev_cache) {
3568			prev_cache = zio_buf_cache[i];
3569			kmem_cache_reap_now(zio_buf_cache[i]);
3570		}
3571		if (zio_data_buf_cache[i] != prev_data_cache) {
3572			prev_data_cache = zio_data_buf_cache[i];
3573			kmem_cache_reap_now(zio_data_buf_cache[i]);
3574		}
3575	}
3576	kmem_cache_reap_now(buf_cache);
3577	kmem_cache_reap_now(hdr_full_cache);
3578	kmem_cache_reap_now(hdr_l2only_cache);
3579	kmem_cache_reap_now(range_seg_cache);
3580
3581#ifdef illumos
3582	if (zio_arena != NULL) {
3583		/*
3584		 * Ask the vmem arena to reclaim unused memory from its
3585		 * quantum caches.
3586		 */
3587		vmem_qcache_reap(zio_arena);
3588	}
3589#endif
3590	DTRACE_PROBE(arc__kmem_reap_end);
3591}
3592
3593/*
3594 * Threads can block in arc_get_data_buf() waiting for this thread to evict
3595 * enough data and signal them to proceed. When this happens, the threads in
3596 * arc_get_data_buf() are sleeping while holding the hash lock for their
3597 * particular arc header. Thus, we must be careful to never sleep on a
3598 * hash lock in this thread. This is to prevent the following deadlock:
3599 *
3600 *  - Thread A sleeps on CV in arc_get_data_buf() holding hash lock "L",
3601 *    waiting for the reclaim thread to signal it.
3602 *
3603 *  - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
3604 *    fails, and goes to sleep forever.
3605 *
3606 * This possible deadlock is avoided by always acquiring a hash lock
3607 * using mutex_tryenter() from arc_reclaim_thread().
3608 */
3609static void
3610arc_reclaim_thread(void *dummy __unused)
3611{
3612	clock_t			growtime = 0;
3613	callb_cpr_t		cpr;
3614
3615	CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
3616
3617	mutex_enter(&arc_reclaim_lock);
3618	while (!arc_reclaim_thread_exit) {
3619		int64_t free_memory = arc_available_memory();
3620		uint64_t evicted = 0;
3621
3622		mutex_exit(&arc_reclaim_lock);
3623
3624		if (free_memory < 0) {
3625
3626			arc_no_grow = B_TRUE;
3627			arc_warm = B_TRUE;
3628
3629			/*
3630			 * Wait at least zfs_grow_retry (default 60) seconds
3631			 * before considering growing.
3632			 */
3633			growtime = ddi_get_lbolt() + (arc_grow_retry * hz);
3634
3635			arc_kmem_reap_now();
3636
3637			/*
3638			 * If we are still low on memory, shrink the ARC
3639			 * so that we have arc_shrink_min free space.
3640			 */
3641			free_memory = arc_available_memory();
3642
3643			int64_t to_free =
3644			    (arc_c >> arc_shrink_shift) - free_memory;
3645			if (to_free > 0) {
3646#ifdef _KERNEL
3647				to_free = MAX(to_free, ptob(needfree));
3648#endif
3649				arc_shrink(to_free);
3650			}
3651		} else if (free_memory < arc_c >> arc_no_grow_shift) {
3652			arc_no_grow = B_TRUE;
3653		} else if (ddi_get_lbolt() >= growtime) {
3654			arc_no_grow = B_FALSE;
3655		}
3656
3657		evicted = arc_adjust();
3658
3659		mutex_enter(&arc_reclaim_lock);
3660
3661		/*
3662		 * If evicted is zero, we couldn't evict anything via
3663		 * arc_adjust(). This could be due to hash lock
3664		 * collisions, but more likely due to the majority of
3665		 * arc buffers being unevictable. Therefore, even if
3666		 * arc_size is above arc_c, another pass is unlikely to
3667		 * be helpful and could potentially cause us to enter an
3668		 * infinite loop.
3669		 */
3670		if (arc_size <= arc_c || evicted == 0) {
3671#ifdef _KERNEL
3672			needfree = 0;
3673#endif
3674			/*
3675			 * We're either no longer overflowing, or we
3676			 * can't evict anything more, so we should wake
3677			 * up any threads before we go to sleep.
3678			 */
3679			cv_broadcast(&arc_reclaim_waiters_cv);
3680
3681			/*
3682			 * Block until signaled, or after one second (we
3683			 * might need to perform arc_kmem_reap_now()
3684			 * even if we aren't being signalled)
3685			 */
3686			CALLB_CPR_SAFE_BEGIN(&cpr);
3687			(void) cv_timedwait(&arc_reclaim_thread_cv,
3688			    &arc_reclaim_lock, hz);
3689			CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
3690		}
3691	}
3692
3693	arc_reclaim_thread_exit = FALSE;
3694	cv_broadcast(&arc_reclaim_thread_cv);
3695	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_lock */
3696	thread_exit();
3697}
3698
3699static void
3700arc_user_evicts_thread(void *dummy __unused)
3701{
3702	callb_cpr_t cpr;
3703
3704	CALLB_CPR_INIT(&cpr, &arc_user_evicts_lock, callb_generic_cpr, FTAG);
3705
3706	mutex_enter(&arc_user_evicts_lock);
3707	while (!arc_user_evicts_thread_exit) {
3708		mutex_exit(&arc_user_evicts_lock);
3709
3710		arc_do_user_evicts();
3711
3712		/*
3713		 * This is necessary in order for the mdb ::arc dcmd to
3714		 * show up to date information. Since the ::arc command
3715		 * does not call the kstat's update function, without
3716		 * this call, the command may show stale stats for the
3717		 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
3718		 * with this change, the data might be up to 1 second
3719		 * out of date; but that should suffice. The arc_state_t
3720		 * structures can be queried directly if more accurate
3721		 * information is needed.
3722		 */
3723		if (arc_ksp != NULL)
3724			arc_ksp->ks_update(arc_ksp, KSTAT_READ);
3725
3726		mutex_enter(&arc_user_evicts_lock);
3727
3728		/*
3729		 * Block until signaled, or after one second (we need to
3730		 * call the arc's kstat update function regularly).
3731		 */
3732		CALLB_CPR_SAFE_BEGIN(&cpr);
3733		(void) cv_timedwait(&arc_user_evicts_cv,
3734		    &arc_user_evicts_lock, hz);
3735		CALLB_CPR_SAFE_END(&cpr, &arc_user_evicts_lock);
3736	}
3737
3738	arc_user_evicts_thread_exit = FALSE;
3739	cv_broadcast(&arc_user_evicts_cv);
3740	CALLB_CPR_EXIT(&cpr);		/* drops arc_user_evicts_lock */
3741	thread_exit();
3742}
3743
3744/*
3745 * Adapt arc info given the number of bytes we are trying to add and
3746 * the state that we are comming from.  This function is only called
3747 * when we are adding new content to the cache.
3748 */
3749static void
3750arc_adapt(int bytes, arc_state_t *state)
3751{
3752	int mult;
3753	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
3754	int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
3755	int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
3756
3757	if (state == arc_l2c_only)
3758		return;
3759
3760	ASSERT(bytes > 0);
3761	/*
3762	 * Adapt the target size of the MRU list:
3763	 *	- if we just hit in the MRU ghost list, then increase
3764	 *	  the target size of the MRU list.
3765	 *	- if we just hit in the MFU ghost list, then increase
3766	 *	  the target size of the MFU list by decreasing the
3767	 *	  target size of the MRU list.
3768	 */
3769	if (state == arc_mru_ghost) {
3770		mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
3771		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
3772
3773		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
3774	} else if (state == arc_mfu_ghost) {
3775		uint64_t delta;
3776
3777		mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
3778		mult = MIN(mult, 10);
3779
3780		delta = MIN(bytes * mult, arc_p);
3781		arc_p = MAX(arc_p_min, arc_p - delta);
3782	}
3783	ASSERT((int64_t)arc_p >= 0);
3784
3785	if (arc_reclaim_needed()) {
3786		cv_signal(&arc_reclaim_thread_cv);
3787		return;
3788	}
3789
3790	if (arc_no_grow)
3791		return;
3792
3793	if (arc_c >= arc_c_max)
3794		return;
3795
3796	/*
3797	 * If we're within (2 * maxblocksize) bytes of the target
3798	 * cache size, increment the target cache size
3799	 */
3800	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
3801		DTRACE_PROBE1(arc__inc_adapt, int, bytes);
3802		atomic_add_64(&arc_c, (int64_t)bytes);
3803		if (arc_c > arc_c_max)
3804			arc_c = arc_c_max;
3805		else if (state == arc_anon)
3806			atomic_add_64(&arc_p, (int64_t)bytes);
3807		if (arc_p > arc_c)
3808			arc_p = arc_c;
3809	}
3810	ASSERT((int64_t)arc_p >= 0);
3811}
3812
3813/*
3814 * Check if arc_size has grown past our upper threshold, determined by
3815 * zfs_arc_overflow_shift.
3816 */
3817static boolean_t
3818arc_is_overflowing(void)
3819{
3820	/* Always allow at least one block of overflow */
3821	uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
3822	    arc_c >> zfs_arc_overflow_shift);
3823
3824	return (arc_size >= arc_c + overflow);
3825}
3826
3827/*
3828 * The buffer, supplied as the first argument, needs a data block. If we
3829 * are hitting the hard limit for the cache size, we must sleep, waiting
3830 * for the eviction thread to catch up. If we're past the target size
3831 * but below the hard limit, we'll only signal the reclaim thread and
3832 * continue on.
3833 */
3834static void
3835arc_get_data_buf(arc_buf_t *buf)
3836{
3837	arc_state_t		*state = buf->b_hdr->b_l1hdr.b_state;
3838	uint64_t		size = buf->b_hdr->b_size;
3839	arc_buf_contents_t	type = arc_buf_type(buf->b_hdr);
3840
3841	arc_adapt(size, state);
3842
3843	/*
3844	 * If arc_size is currently overflowing, and has grown past our
3845	 * upper limit, we must be adding data faster than the evict
3846	 * thread can evict. Thus, to ensure we don't compound the
3847	 * problem by adding more data and forcing arc_size to grow even
3848	 * further past it's target size, we halt and wait for the
3849	 * eviction thread to catch up.
3850	 *
3851	 * It's also possible that the reclaim thread is unable to evict
3852	 * enough buffers to get arc_size below the overflow limit (e.g.
3853	 * due to buffers being un-evictable, or hash lock collisions).
3854	 * In this case, we want to proceed regardless if we're
3855	 * overflowing; thus we don't use a while loop here.
3856	 */
3857	if (arc_is_overflowing()) {
3858		mutex_enter(&arc_reclaim_lock);
3859
3860		/*
3861		 * Now that we've acquired the lock, we may no longer be
3862		 * over the overflow limit, lets check.
3863		 *
3864		 * We're ignoring the case of spurious wake ups. If that
3865		 * were to happen, it'd let this thread consume an ARC
3866		 * buffer before it should have (i.e. before we're under
3867		 * the overflow limit and were signalled by the reclaim
3868		 * thread). As long as that is a rare occurrence, it
3869		 * shouldn't cause any harm.
3870		 */
3871		if (arc_is_overflowing()) {
3872			cv_signal(&arc_reclaim_thread_cv);
3873			cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
3874		}
3875
3876		mutex_exit(&arc_reclaim_lock);
3877	}
3878
3879	if (type == ARC_BUFC_METADATA) {
3880		buf->b_data = zio_buf_alloc(size);
3881		arc_space_consume(size, ARC_SPACE_META);
3882	} else {
3883		ASSERT(type == ARC_BUFC_DATA);
3884		buf->b_data = zio_data_buf_alloc(size);
3885		arc_space_consume(size, ARC_SPACE_DATA);
3886	}
3887
3888	/*
3889	 * Update the state size.  Note that ghost states have a
3890	 * "ghost size" and so don't need to be updated.
3891	 */
3892	if (!GHOST_STATE(buf->b_hdr->b_l1hdr.b_state)) {
3893		arc_buf_hdr_t *hdr = buf->b_hdr;
3894		arc_state_t *state = hdr->b_l1hdr.b_state;
3895
3896		(void) refcount_add_many(&state->arcs_size, size, buf);
3897
3898		/*
3899		 * If this is reached via arc_read, the link is
3900		 * protected by the hash lock. If reached via
3901		 * arc_buf_alloc, the header should not be accessed by
3902		 * any other thread. And, if reached via arc_read_done,
3903		 * the hash lock will protect it if it's found in the
3904		 * hash table; otherwise no other thread should be
3905		 * trying to [add|remove]_reference it.
3906		 */
3907		if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
3908			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3909			atomic_add_64(&hdr->b_l1hdr.b_state->arcs_lsize[type],
3910			    size);
3911		}
3912		/*
3913		 * If we are growing the cache, and we are adding anonymous
3914		 * data, and we have outgrown arc_p, update arc_p
3915		 */
3916		if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
3917		    (refcount_count(&arc_anon->arcs_size) +
3918		    refcount_count(&arc_mru->arcs_size) > arc_p))
3919			arc_p = MIN(arc_c, arc_p + size);
3920	}
3921	ARCSTAT_BUMP(arcstat_allocated);
3922}
3923
3924/*
3925 * This routine is called whenever a buffer is accessed.
3926 * NOTE: the hash lock is dropped in this function.
3927 */
3928static void
3929arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3930{
3931	clock_t now;
3932
3933	ASSERT(MUTEX_HELD(hash_lock));
3934	ASSERT(HDR_HAS_L1HDR(hdr));
3935
3936	if (hdr->b_l1hdr.b_state == arc_anon) {
3937		/*
3938		 * This buffer is not in the cache, and does not
3939		 * appear in our "ghost" list.  Add the new buffer
3940		 * to the MRU state.
3941		 */
3942
3943		ASSERT0(hdr->b_l1hdr.b_arc_access);
3944		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3945		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
3946		arc_change_state(arc_mru, hdr, hash_lock);
3947
3948	} else if (hdr->b_l1hdr.b_state == arc_mru) {
3949		now = ddi_get_lbolt();
3950
3951		/*
3952		 * If this buffer is here because of a prefetch, then either:
3953		 * - clear the flag if this is a "referencing" read
3954		 *   (any subsequent access will bump this into the MFU state).
3955		 * or
3956		 * - move the buffer to the head of the list if this is
3957		 *   another prefetch (to make it less likely to be evicted).
3958		 */
3959		if (HDR_PREFETCH(hdr)) {
3960			if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
3961				/* link protected by hash lock */
3962				ASSERT(multilist_link_active(
3963				    &hdr->b_l1hdr.b_arc_node));
3964			} else {
3965				hdr->b_flags &= ~ARC_FLAG_PREFETCH;
3966				ARCSTAT_BUMP(arcstat_mru_hits);
3967			}
3968			hdr->b_l1hdr.b_arc_access = now;
3969			return;
3970		}
3971
3972		/*
3973		 * This buffer has been "accessed" only once so far,
3974		 * but it is still in the cache. Move it to the MFU
3975		 * state.
3976		 */
3977		if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) {
3978			/*
3979			 * More than 125ms have passed since we
3980			 * instantiated this buffer.  Move it to the
3981			 * most frequently used state.
3982			 */
3983			hdr->b_l1hdr.b_arc_access = now;
3984			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3985			arc_change_state(arc_mfu, hdr, hash_lock);
3986		}
3987		ARCSTAT_BUMP(arcstat_mru_hits);
3988	} else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
3989		arc_state_t	*new_state;
3990		/*
3991		 * This buffer has been "accessed" recently, but
3992		 * was evicted from the cache.  Move it to the
3993		 * MFU state.
3994		 */
3995
3996		if (HDR_PREFETCH(hdr)) {
3997			new_state = arc_mru;
3998			if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
3999				hdr->b_flags &= ~ARC_FLAG_PREFETCH;
4000			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4001		} else {
4002			new_state = arc_mfu;
4003			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4004		}
4005
4006		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4007		arc_change_state(new_state, hdr, hash_lock);
4008
4009		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
4010	} else if (hdr->b_l1hdr.b_state == arc_mfu) {
4011		/*
4012		 * This buffer has been accessed more than once and is
4013		 * still in the cache.  Keep it in the MFU state.
4014		 *
4015		 * NOTE: an add_reference() that occurred when we did
4016		 * the arc_read() will have kicked this off the list.
4017		 * If it was a prefetch, we will explicitly move it to
4018		 * the head of the list now.
4019		 */
4020		if ((HDR_PREFETCH(hdr)) != 0) {
4021			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4022			/* link protected by hash_lock */
4023			ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4024		}
4025		ARCSTAT_BUMP(arcstat_mfu_hits);
4026		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4027	} else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
4028		arc_state_t	*new_state = arc_mfu;
4029		/*
4030		 * This buffer has been accessed more than once but has
4031		 * been evicted from the cache.  Move it back to the
4032		 * MFU state.
4033		 */
4034
4035		if (HDR_PREFETCH(hdr)) {
4036			/*
4037			 * This is a prefetch access...
4038			 * move this block back to the MRU state.
4039			 */
4040			ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
4041			new_state = arc_mru;
4042		}
4043
4044		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4045		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4046		arc_change_state(new_state, hdr, hash_lock);
4047
4048		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
4049	} else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
4050		/*
4051		 * This buffer is on the 2nd Level ARC.
4052		 */
4053
4054		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4055		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4056		arc_change_state(arc_mfu, hdr, hash_lock);
4057	} else {
4058		ASSERT(!"invalid arc state");
4059	}
4060}
4061
4062/* a generic arc_done_func_t which you can use */
4063/* ARGSUSED */
4064void
4065arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
4066{
4067	if (zio == NULL || zio->io_error == 0)
4068		bcopy(buf->b_data, arg, buf->b_hdr->b_size);
4069	VERIFY(arc_buf_remove_ref(buf, arg));
4070}
4071
4072/* a generic arc_done_func_t */
4073void
4074arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
4075{
4076	arc_buf_t **bufp = arg;
4077	if (zio && zio->io_error) {
4078		VERIFY(arc_buf_remove_ref(buf, arg));
4079		*bufp = NULL;
4080	} else {
4081		*bufp = buf;
4082		ASSERT(buf->b_data);
4083	}
4084}
4085
4086static void
4087arc_read_done(zio_t *zio)
4088{
4089	arc_buf_hdr_t	*hdr;
4090	arc_buf_t	*buf;
4091	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
4092	kmutex_t	*hash_lock = NULL;
4093	arc_callback_t	*callback_list, *acb;
4094	int		freeable = FALSE;
4095
4096	buf = zio->io_private;
4097	hdr = buf->b_hdr;
4098
4099	/*
4100	 * The hdr was inserted into hash-table and removed from lists
4101	 * prior to starting I/O.  We should find this header, since
4102	 * it's in the hash table, and it should be legit since it's
4103	 * not possible to evict it during the I/O.  The only possible
4104	 * reason for it not to be found is if we were freed during the
4105	 * read.
4106	 */
4107	if (HDR_IN_HASH_TABLE(hdr)) {
4108		ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
4109		ASSERT3U(hdr->b_dva.dva_word[0], ==,
4110		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
4111		ASSERT3U(hdr->b_dva.dva_word[1], ==,
4112		    BP_IDENTITY(zio->io_bp)->dva_word[1]);
4113
4114		arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
4115		    &hash_lock);
4116
4117		ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) &&
4118		    hash_lock == NULL) ||
4119		    (found == hdr &&
4120		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
4121		    (found == hdr && HDR_L2_READING(hdr)));
4122	}
4123
4124	hdr->b_flags &= ~ARC_FLAG_L2_EVICTED;
4125	if (l2arc_noprefetch && HDR_PREFETCH(hdr))
4126		hdr->b_flags &= ~ARC_FLAG_L2CACHE;
4127
4128	/* byteswap if necessary */
4129	callback_list = hdr->b_l1hdr.b_acb;
4130	ASSERT(callback_list != NULL);
4131	if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
4132		dmu_object_byteswap_t bswap =
4133		    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
4134		arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
4135		    byteswap_uint64_array :
4136		    dmu_ot_byteswap[bswap].ob_func;
4137		func(buf->b_data, hdr->b_size);
4138	}
4139
4140	arc_cksum_compute(buf, B_FALSE);
4141#ifdef illumos
4142	arc_buf_watch(buf);
4143#endif
4144
4145	if (hash_lock && zio->io_error == 0 &&
4146	    hdr->b_l1hdr.b_state == arc_anon) {
4147		/*
4148		 * Only call arc_access on anonymous buffers.  This is because
4149		 * if we've issued an I/O for an evicted buffer, we've already
4150		 * called arc_access (to prevent any simultaneous readers from
4151		 * getting confused).
4152		 */
4153		arc_access(hdr, hash_lock);
4154	}
4155
4156	/* create copies of the data buffer for the callers */
4157	abuf = buf;
4158	for (acb = callback_list; acb; acb = acb->acb_next) {
4159		if (acb->acb_done) {
4160			if (abuf == NULL) {
4161				ARCSTAT_BUMP(arcstat_duplicate_reads);
4162				abuf = arc_buf_clone(buf);
4163			}
4164			acb->acb_buf = abuf;
4165			abuf = NULL;
4166		}
4167	}
4168	hdr->b_l1hdr.b_acb = NULL;
4169	hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
4170	ASSERT(!HDR_BUF_AVAILABLE(hdr));
4171	if (abuf == buf) {
4172		ASSERT(buf->b_efunc == NULL);
4173		ASSERT(hdr->b_l1hdr.b_datacnt == 1);
4174		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
4175	}
4176
4177	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
4178	    callback_list != NULL);
4179
4180	if (zio->io_error != 0) {
4181		hdr->b_flags |= ARC_FLAG_IO_ERROR;
4182		if (hdr->b_l1hdr.b_state != arc_anon)
4183			arc_change_state(arc_anon, hdr, hash_lock);
4184		if (HDR_IN_HASH_TABLE(hdr))
4185			buf_hash_remove(hdr);
4186		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4187	}
4188
4189	/*
4190	 * Broadcast before we drop the hash_lock to avoid the possibility
4191	 * that the hdr (and hence the cv) might be freed before we get to
4192	 * the cv_broadcast().
4193	 */
4194	cv_broadcast(&hdr->b_l1hdr.b_cv);
4195
4196	if (hash_lock != NULL) {
4197		mutex_exit(hash_lock);
4198	} else {
4199		/*
4200		 * This block was freed while we waited for the read to
4201		 * complete.  It has been removed from the hash table and
4202		 * moved to the anonymous state (so that it won't show up
4203		 * in the cache).
4204		 */
4205		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
4206		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4207	}
4208
4209	/* execute each callback and free its structure */
4210	while ((acb = callback_list) != NULL) {
4211		if (acb->acb_done)
4212			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
4213
4214		if (acb->acb_zio_dummy != NULL) {
4215			acb->acb_zio_dummy->io_error = zio->io_error;
4216			zio_nowait(acb->acb_zio_dummy);
4217		}
4218
4219		callback_list = acb->acb_next;
4220		kmem_free(acb, sizeof (arc_callback_t));
4221	}
4222
4223	if (freeable)
4224		arc_hdr_destroy(hdr);
4225}
4226
4227/*
4228 * "Read" the block at the specified DVA (in bp) via the
4229 * cache.  If the block is found in the cache, invoke the provided
4230 * callback immediately and return.  Note that the `zio' parameter
4231 * in the callback will be NULL in this case, since no IO was
4232 * required.  If the block is not in the cache pass the read request
4233 * on to the spa with a substitute callback function, so that the
4234 * requested block will be added to the cache.
4235 *
4236 * If a read request arrives for a block that has a read in-progress,
4237 * either wait for the in-progress read to complete (and return the
4238 * results); or, if this is a read with a "done" func, add a record
4239 * to the read to invoke the "done" func when the read completes,
4240 * and return; or just return.
4241 *
4242 * arc_read_done() will invoke all the requested "done" functions
4243 * for readers of this block.
4244 */
4245int
4246arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
4247    void *private, zio_priority_t priority, int zio_flags,
4248    arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
4249{
4250	arc_buf_hdr_t *hdr = NULL;
4251	arc_buf_t *buf = NULL;
4252	kmutex_t *hash_lock = NULL;
4253	zio_t *rzio;
4254	uint64_t guid = spa_load_guid(spa);
4255
4256	ASSERT(!BP_IS_EMBEDDED(bp) ||
4257	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
4258
4259top:
4260	if (!BP_IS_EMBEDDED(bp)) {
4261		/*
4262		 * Embedded BP's have no DVA and require no I/O to "read".
4263		 * Create an anonymous arc buf to back it.
4264		 */
4265		hdr = buf_hash_find(guid, bp, &hash_lock);
4266	}
4267
4268	if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_datacnt > 0) {
4269
4270		*arc_flags |= ARC_FLAG_CACHED;
4271
4272		if (HDR_IO_IN_PROGRESS(hdr)) {
4273
4274			if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
4275			    priority == ZIO_PRIORITY_SYNC_READ) {
4276				/*
4277				 * This sync read must wait for an
4278				 * in-progress async read (e.g. a predictive
4279				 * prefetch).  Async reads are queued
4280				 * separately at the vdev_queue layer, so
4281				 * this is a form of priority inversion.
4282				 * Ideally, we would "inherit" the demand
4283				 * i/o's priority by moving the i/o from
4284				 * the async queue to the synchronous queue,
4285				 * but there is currently no mechanism to do
4286				 * so.  Track this so that we can evaluate
4287				 * the magnitude of this potential performance
4288				 * problem.
4289				 *
4290				 * Note that if the prefetch i/o is already
4291				 * active (has been issued to the device),
4292				 * the prefetch improved performance, because
4293				 * we issued it sooner than we would have
4294				 * without the prefetch.
4295				 */
4296				DTRACE_PROBE1(arc__sync__wait__for__async,
4297				    arc_buf_hdr_t *, hdr);
4298				ARCSTAT_BUMP(arcstat_sync_wait_for_async);
4299			}
4300			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
4301				hdr->b_flags &= ~ARC_FLAG_PREDICTIVE_PREFETCH;
4302			}
4303
4304			if (*arc_flags & ARC_FLAG_WAIT) {
4305				cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
4306				mutex_exit(hash_lock);
4307				goto top;
4308			}
4309			ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4310
4311			if (done) {
4312				arc_callback_t *acb = NULL;
4313
4314				acb = kmem_zalloc(sizeof (arc_callback_t),
4315				    KM_SLEEP);
4316				acb->acb_done = done;
4317				acb->acb_private = private;
4318				if (pio != NULL)
4319					acb->acb_zio_dummy = zio_null(pio,
4320					    spa, NULL, NULL, NULL, zio_flags);
4321
4322				ASSERT(acb->acb_done != NULL);
4323				acb->acb_next = hdr->b_l1hdr.b_acb;
4324				hdr->b_l1hdr.b_acb = acb;
4325				add_reference(hdr, hash_lock, private);
4326				mutex_exit(hash_lock);
4327				return (0);
4328			}
4329			mutex_exit(hash_lock);
4330			return (0);
4331		}
4332
4333		ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4334		    hdr->b_l1hdr.b_state == arc_mfu);
4335
4336		if (done) {
4337			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
4338				/*
4339				 * This is a demand read which does not have to
4340				 * wait for i/o because we did a predictive
4341				 * prefetch i/o for it, which has completed.
4342				 */
4343				DTRACE_PROBE1(
4344				    arc__demand__hit__predictive__prefetch,
4345				    arc_buf_hdr_t *, hdr);
4346				ARCSTAT_BUMP(
4347				    arcstat_demand_hit_predictive_prefetch);
4348				hdr->b_flags &= ~ARC_FLAG_PREDICTIVE_PREFETCH;
4349			}
4350			add_reference(hdr, hash_lock, private);
4351			/*
4352			 * If this block is already in use, create a new
4353			 * copy of the data so that we will be guaranteed
4354			 * that arc_release() will always succeed.
4355			 */
4356			buf = hdr->b_l1hdr.b_buf;
4357			ASSERT(buf);
4358			ASSERT(buf->b_data);
4359			if (HDR_BUF_AVAILABLE(hdr)) {
4360				ASSERT(buf->b_efunc == NULL);
4361				hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
4362			} else {
4363				buf = arc_buf_clone(buf);
4364			}
4365
4366		} else if (*arc_flags & ARC_FLAG_PREFETCH &&
4367		    refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4368			hdr->b_flags |= ARC_FLAG_PREFETCH;
4369		}
4370		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
4371		arc_access(hdr, hash_lock);
4372		if (*arc_flags & ARC_FLAG_L2CACHE)
4373			hdr->b_flags |= ARC_FLAG_L2CACHE;
4374		if (*arc_flags & ARC_FLAG_L2COMPRESS)
4375			hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4376		mutex_exit(hash_lock);
4377		ARCSTAT_BUMP(arcstat_hits);
4378		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4379		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
4380		    data, metadata, hits);
4381
4382		if (done)
4383			done(NULL, buf, private);
4384	} else {
4385		uint64_t size = BP_GET_LSIZE(bp);
4386		arc_callback_t *acb;
4387		vdev_t *vd = NULL;
4388		uint64_t addr = 0;
4389		boolean_t devw = B_FALSE;
4390		enum zio_compress b_compress = ZIO_COMPRESS_OFF;
4391		int32_t b_asize = 0;
4392
4393		if (hdr == NULL) {
4394			/* this block is not in the cache */
4395			arc_buf_hdr_t *exists = NULL;
4396			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
4397			buf = arc_buf_alloc(spa, size, private, type);
4398			hdr = buf->b_hdr;
4399			if (!BP_IS_EMBEDDED(bp)) {
4400				hdr->b_dva = *BP_IDENTITY(bp);
4401				hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
4402				exists = buf_hash_insert(hdr, &hash_lock);
4403			}
4404			if (exists != NULL) {
4405				/* somebody beat us to the hash insert */
4406				mutex_exit(hash_lock);
4407				buf_discard_identity(hdr);
4408				(void) arc_buf_remove_ref(buf, private);
4409				goto top; /* restart the IO request */
4410			}
4411
4412			/*
4413			 * If there is a callback, we pass our reference to
4414			 * it; otherwise we remove our reference.
4415			 */
4416			if (done == NULL) {
4417				(void) remove_reference(hdr, hash_lock,
4418				    private);
4419			}
4420			if (*arc_flags & ARC_FLAG_PREFETCH)
4421				hdr->b_flags |= ARC_FLAG_PREFETCH;
4422			if (*arc_flags & ARC_FLAG_L2CACHE)
4423				hdr->b_flags |= ARC_FLAG_L2CACHE;
4424			if (*arc_flags & ARC_FLAG_L2COMPRESS)
4425				hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4426			if (BP_GET_LEVEL(bp) > 0)
4427				hdr->b_flags |= ARC_FLAG_INDIRECT;
4428		} else {
4429			/*
4430			 * This block is in the ghost cache. If it was L2-only
4431			 * (and thus didn't have an L1 hdr), we realloc the
4432			 * header to add an L1 hdr.
4433			 */
4434			if (!HDR_HAS_L1HDR(hdr)) {
4435				hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
4436				    hdr_full_cache);
4437			}
4438
4439			ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
4440			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4441			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4442			ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
4443
4444			/*
4445			 * If there is a callback, we pass a reference to it.
4446			 */
4447			if (done != NULL)
4448				add_reference(hdr, hash_lock, private);
4449			if (*arc_flags & ARC_FLAG_PREFETCH)
4450				hdr->b_flags |= ARC_FLAG_PREFETCH;
4451			if (*arc_flags & ARC_FLAG_L2CACHE)
4452				hdr->b_flags |= ARC_FLAG_L2CACHE;
4453			if (*arc_flags & ARC_FLAG_L2COMPRESS)
4454				hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4455			buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
4456			buf->b_hdr = hdr;
4457			buf->b_data = NULL;
4458			buf->b_efunc = NULL;
4459			buf->b_private = NULL;
4460			buf->b_next = NULL;
4461			hdr->b_l1hdr.b_buf = buf;
4462			ASSERT0(hdr->b_l1hdr.b_datacnt);
4463			hdr->b_l1hdr.b_datacnt = 1;
4464			arc_get_data_buf(buf);
4465			arc_access(hdr, hash_lock);
4466		}
4467
4468		if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
4469			hdr->b_flags |= ARC_FLAG_PREDICTIVE_PREFETCH;
4470		ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
4471
4472		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
4473		acb->acb_done = done;
4474		acb->acb_private = private;
4475
4476		ASSERT(hdr->b_l1hdr.b_acb == NULL);
4477		hdr->b_l1hdr.b_acb = acb;
4478		hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
4479
4480		if (HDR_HAS_L2HDR(hdr) &&
4481		    (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
4482			devw = hdr->b_l2hdr.b_dev->l2ad_writing;
4483			addr = hdr->b_l2hdr.b_daddr;
4484			b_compress = hdr->b_l2hdr.b_compress;
4485			b_asize = hdr->b_l2hdr.b_asize;
4486			/*
4487			 * Lock out device removal.
4488			 */
4489			if (vdev_is_dead(vd) ||
4490			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
4491				vd = NULL;
4492		}
4493
4494		if (hash_lock != NULL)
4495			mutex_exit(hash_lock);
4496
4497		/*
4498		 * At this point, we have a level 1 cache miss.  Try again in
4499		 * L2ARC if possible.
4500		 */
4501		ASSERT3U(hdr->b_size, ==, size);
4502		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
4503		    uint64_t, size, zbookmark_phys_t *, zb);
4504		ARCSTAT_BUMP(arcstat_misses);
4505		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4506		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
4507		    data, metadata, misses);
4508#ifdef _KERNEL
4509		curthread->td_ru.ru_inblock++;
4510#endif
4511
4512		if (priority == ZIO_PRIORITY_ASYNC_READ)
4513			hdr->b_flags |= ARC_FLAG_PRIO_ASYNC_READ;
4514		else
4515			hdr->b_flags &= ~ARC_FLAG_PRIO_ASYNC_READ;
4516
4517		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
4518			/*
4519			 * Read from the L2ARC if the following are true:
4520			 * 1. The L2ARC vdev was previously cached.
4521			 * 2. This buffer still has L2ARC metadata.
4522			 * 3. This buffer isn't currently writing to the L2ARC.
4523			 * 4. The L2ARC entry wasn't evicted, which may
4524			 *    also have invalidated the vdev.
4525			 * 5. This isn't prefetch and l2arc_noprefetch is set.
4526			 */
4527			if (HDR_HAS_L2HDR(hdr) &&
4528			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
4529			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
4530				l2arc_read_callback_t *cb;
4531
4532				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
4533				ARCSTAT_BUMP(arcstat_l2_hits);
4534
4535				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
4536				    KM_SLEEP);
4537				cb->l2rcb_buf = buf;
4538				cb->l2rcb_spa = spa;
4539				cb->l2rcb_bp = *bp;
4540				cb->l2rcb_zb = *zb;
4541				cb->l2rcb_flags = zio_flags;
4542				cb->l2rcb_compress = b_compress;
4543
4544				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
4545				    addr + size < vd->vdev_psize -
4546				    VDEV_LABEL_END_SIZE);
4547
4548				/*
4549				 * l2arc read.  The SCL_L2ARC lock will be
4550				 * released by l2arc_read_done().
4551				 * Issue a null zio if the underlying buffer
4552				 * was squashed to zero size by compression.
4553				 */
4554				if (b_compress == ZIO_COMPRESS_EMPTY) {
4555					rzio = zio_null(pio, spa, vd,
4556					    l2arc_read_done, cb,
4557					    zio_flags | ZIO_FLAG_DONT_CACHE |
4558					    ZIO_FLAG_CANFAIL |
4559					    ZIO_FLAG_DONT_PROPAGATE |
4560					    ZIO_FLAG_DONT_RETRY);
4561				} else {
4562					rzio = zio_read_phys(pio, vd, addr,
4563					    b_asize, buf->b_data,
4564					    ZIO_CHECKSUM_OFF,
4565					    l2arc_read_done, cb, priority,
4566					    zio_flags | ZIO_FLAG_DONT_CACHE |
4567					    ZIO_FLAG_CANFAIL |
4568					    ZIO_FLAG_DONT_PROPAGATE |
4569					    ZIO_FLAG_DONT_RETRY, B_FALSE);
4570				}
4571				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
4572				    zio_t *, rzio);
4573				ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize);
4574
4575				if (*arc_flags & ARC_FLAG_NOWAIT) {
4576					zio_nowait(rzio);
4577					return (0);
4578				}
4579
4580				ASSERT(*arc_flags & ARC_FLAG_WAIT);
4581				if (zio_wait(rzio) == 0)
4582					return (0);
4583
4584				/* l2arc read error; goto zio_read() */
4585			} else {
4586				DTRACE_PROBE1(l2arc__miss,
4587				    arc_buf_hdr_t *, hdr);
4588				ARCSTAT_BUMP(arcstat_l2_misses);
4589				if (HDR_L2_WRITING(hdr))
4590					ARCSTAT_BUMP(arcstat_l2_rw_clash);
4591				spa_config_exit(spa, SCL_L2ARC, vd);
4592			}
4593		} else {
4594			if (vd != NULL)
4595				spa_config_exit(spa, SCL_L2ARC, vd);
4596			if (l2arc_ndev != 0) {
4597				DTRACE_PROBE1(l2arc__miss,
4598				    arc_buf_hdr_t *, hdr);
4599				ARCSTAT_BUMP(arcstat_l2_misses);
4600			}
4601		}
4602
4603		rzio = zio_read(pio, spa, bp, buf->b_data, size,
4604		    arc_read_done, buf, priority, zio_flags, zb);
4605
4606		if (*arc_flags & ARC_FLAG_WAIT)
4607			return (zio_wait(rzio));
4608
4609		ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4610		zio_nowait(rzio);
4611	}
4612	return (0);
4613}
4614
4615void
4616arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
4617{
4618	ASSERT(buf->b_hdr != NULL);
4619	ASSERT(buf->b_hdr->b_l1hdr.b_state != arc_anon);
4620	ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt) ||
4621	    func == NULL);
4622	ASSERT(buf->b_efunc == NULL);
4623	ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
4624
4625	buf->b_efunc = func;
4626	buf->b_private = private;
4627}
4628
4629/*
4630 * Notify the arc that a block was freed, and thus will never be used again.
4631 */
4632void
4633arc_freed(spa_t *spa, const blkptr_t *bp)
4634{
4635	arc_buf_hdr_t *hdr;
4636	kmutex_t *hash_lock;
4637	uint64_t guid = spa_load_guid(spa);
4638
4639	ASSERT(!BP_IS_EMBEDDED(bp));
4640
4641	hdr = buf_hash_find(guid, bp, &hash_lock);
4642	if (hdr == NULL)
4643		return;
4644	if (HDR_BUF_AVAILABLE(hdr)) {
4645		arc_buf_t *buf = hdr->b_l1hdr.b_buf;
4646		add_reference(hdr, hash_lock, FTAG);
4647		hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
4648		mutex_exit(hash_lock);
4649
4650		arc_release(buf, FTAG);
4651		(void) arc_buf_remove_ref(buf, FTAG);
4652	} else {
4653		mutex_exit(hash_lock);
4654	}
4655
4656}
4657
4658/*
4659 * Clear the user eviction callback set by arc_set_callback(), first calling
4660 * it if it exists.  Because the presence of a callback keeps an arc_buf cached
4661 * clearing the callback may result in the arc_buf being destroyed.  However,
4662 * it will not result in the *last* arc_buf being destroyed, hence the data
4663 * will remain cached in the ARC. We make a copy of the arc buffer here so
4664 * that we can process the callback without holding any locks.
4665 *
4666 * It's possible that the callback is already in the process of being cleared
4667 * by another thread.  In this case we can not clear the callback.
4668 *
4669 * Returns B_TRUE if the callback was successfully called and cleared.
4670 */
4671boolean_t
4672arc_clear_callback(arc_buf_t *buf)
4673{
4674	arc_buf_hdr_t *hdr;
4675	kmutex_t *hash_lock;
4676	arc_evict_func_t *efunc = buf->b_efunc;
4677	void *private = buf->b_private;
4678
4679	mutex_enter(&buf->b_evict_lock);
4680	hdr = buf->b_hdr;
4681	if (hdr == NULL) {
4682		/*
4683		 * We are in arc_do_user_evicts().
4684		 */
4685		ASSERT(buf->b_data == NULL);
4686		mutex_exit(&buf->b_evict_lock);
4687		return (B_FALSE);
4688	} else if (buf->b_data == NULL) {
4689		/*
4690		 * We are on the eviction list; process this buffer now
4691		 * but let arc_do_user_evicts() do the reaping.
4692		 */
4693		buf->b_efunc = NULL;
4694		mutex_exit(&buf->b_evict_lock);
4695		VERIFY0(efunc(private));
4696		return (B_TRUE);
4697	}
4698	hash_lock = HDR_LOCK(hdr);
4699	mutex_enter(hash_lock);
4700	hdr = buf->b_hdr;
4701	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4702
4703	ASSERT3U(refcount_count(&hdr->b_l1hdr.b_refcnt), <,
4704	    hdr->b_l1hdr.b_datacnt);
4705	ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4706	    hdr->b_l1hdr.b_state == arc_mfu);
4707
4708	buf->b_efunc = NULL;
4709	buf->b_private = NULL;
4710
4711	if (hdr->b_l1hdr.b_datacnt > 1) {
4712		mutex_exit(&buf->b_evict_lock);
4713		arc_buf_destroy(buf, TRUE);
4714	} else {
4715		ASSERT(buf == hdr->b_l1hdr.b_buf);
4716		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
4717		mutex_exit(&buf->b_evict_lock);
4718	}
4719
4720	mutex_exit(hash_lock);
4721	VERIFY0(efunc(private));
4722	return (B_TRUE);
4723}
4724
4725/*
4726 * Release this buffer from the cache, making it an anonymous buffer.  This
4727 * must be done after a read and prior to modifying the buffer contents.
4728 * If the buffer has more than one reference, we must make
4729 * a new hdr for the buffer.
4730 */
4731void
4732arc_release(arc_buf_t *buf, void *tag)
4733{
4734	arc_buf_hdr_t *hdr = buf->b_hdr;
4735
4736	/*
4737	 * It would be nice to assert that if it's DMU metadata (level >
4738	 * 0 || it's the dnode file), then it must be syncing context.
4739	 * But we don't know that information at this level.
4740	 */
4741
4742	mutex_enter(&buf->b_evict_lock);
4743
4744	ASSERT(HDR_HAS_L1HDR(hdr));
4745
4746	/*
4747	 * We don't grab the hash lock prior to this check, because if
4748	 * the buffer's header is in the arc_anon state, it won't be
4749	 * linked into the hash table.
4750	 */
4751	if (hdr->b_l1hdr.b_state == arc_anon) {
4752		mutex_exit(&buf->b_evict_lock);
4753		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4754		ASSERT(!HDR_IN_HASH_TABLE(hdr));
4755		ASSERT(!HDR_HAS_L2HDR(hdr));
4756		ASSERT(BUF_EMPTY(hdr));
4757		ASSERT3U(hdr->b_l1hdr.b_datacnt, ==, 1);
4758		ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
4759		ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
4760
4761		ASSERT3P(buf->b_efunc, ==, NULL);
4762		ASSERT3P(buf->b_private, ==, NULL);
4763
4764		hdr->b_l1hdr.b_arc_access = 0;
4765		arc_buf_thaw(buf);
4766
4767		return;
4768	}
4769
4770	kmutex_t *hash_lock = HDR_LOCK(hdr);
4771	mutex_enter(hash_lock);
4772
4773	/*
4774	 * This assignment is only valid as long as the hash_lock is
4775	 * held, we must be careful not to reference state or the
4776	 * b_state field after dropping the lock.
4777	 */
4778	arc_state_t *state = hdr->b_l1hdr.b_state;
4779	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4780	ASSERT3P(state, !=, arc_anon);
4781
4782	/* this buffer is not on any list */
4783	ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) > 0);
4784
4785	if (HDR_HAS_L2HDR(hdr)) {
4786		mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
4787
4788		/*
4789		 * We have to recheck this conditional again now that
4790		 * we're holding the l2ad_mtx to prevent a race with
4791		 * another thread which might be concurrently calling
4792		 * l2arc_evict(). In that case, l2arc_evict() might have
4793		 * destroyed the header's L2 portion as we were waiting
4794		 * to acquire the l2ad_mtx.
4795		 */
4796		if (HDR_HAS_L2HDR(hdr)) {
4797			l2arc_trim(hdr);
4798			arc_hdr_l2hdr_destroy(hdr);
4799		}
4800
4801		mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
4802	}
4803
4804	/*
4805	 * Do we have more than one buf?
4806	 */
4807	if (hdr->b_l1hdr.b_datacnt > 1) {
4808		arc_buf_hdr_t *nhdr;
4809		arc_buf_t **bufp;
4810		uint64_t blksz = hdr->b_size;
4811		uint64_t spa = hdr->b_spa;
4812		arc_buf_contents_t type = arc_buf_type(hdr);
4813		uint32_t flags = hdr->b_flags;
4814
4815		ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
4816		/*
4817		 * Pull the data off of this hdr and attach it to
4818		 * a new anonymous hdr.
4819		 */
4820		(void) remove_reference(hdr, hash_lock, tag);
4821		bufp = &hdr->b_l1hdr.b_buf;
4822		while (*bufp != buf)
4823			bufp = &(*bufp)->b_next;
4824		*bufp = buf->b_next;
4825		buf->b_next = NULL;
4826
4827		ASSERT3P(state, !=, arc_l2c_only);
4828
4829		(void) refcount_remove_many(
4830		    &state->arcs_size, hdr->b_size, buf);
4831
4832		if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
4833			ASSERT3P(state, !=, arc_l2c_only);
4834			uint64_t *size = &state->arcs_lsize[type];
4835			ASSERT3U(*size, >=, hdr->b_size);
4836			atomic_add_64(size, -hdr->b_size);
4837		}
4838
4839		/*
4840		 * We're releasing a duplicate user data buffer, update
4841		 * our statistics accordingly.
4842		 */
4843		if (HDR_ISTYPE_DATA(hdr)) {
4844			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
4845			ARCSTAT_INCR(arcstat_duplicate_buffers_size,
4846			    -hdr->b_size);
4847		}
4848		hdr->b_l1hdr.b_datacnt -= 1;
4849		arc_cksum_verify(buf);
4850#ifdef illumos
4851		arc_buf_unwatch(buf);
4852#endif
4853
4854		mutex_exit(hash_lock);
4855
4856		nhdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
4857		nhdr->b_size = blksz;
4858		nhdr->b_spa = spa;
4859
4860		nhdr->b_flags = flags & ARC_FLAG_L2_WRITING;
4861		nhdr->b_flags |= arc_bufc_to_flags(type);
4862		nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
4863
4864		nhdr->b_l1hdr.b_buf = buf;
4865		nhdr->b_l1hdr.b_datacnt = 1;
4866		nhdr->b_l1hdr.b_state = arc_anon;
4867		nhdr->b_l1hdr.b_arc_access = 0;
4868		nhdr->b_l1hdr.b_tmp_cdata = NULL;
4869		nhdr->b_freeze_cksum = NULL;
4870
4871		(void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
4872		buf->b_hdr = nhdr;
4873		mutex_exit(&buf->b_evict_lock);
4874		(void) refcount_add_many(&arc_anon->arcs_size, blksz, buf);
4875	} else {
4876		mutex_exit(&buf->b_evict_lock);
4877		ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
4878		/* protected by hash lock, or hdr is on arc_anon */
4879		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4880		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4881		arc_change_state(arc_anon, hdr, hash_lock);
4882		hdr->b_l1hdr.b_arc_access = 0;
4883		mutex_exit(hash_lock);
4884
4885		buf_discard_identity(hdr);
4886		arc_buf_thaw(buf);
4887	}
4888	buf->b_efunc = NULL;
4889	buf->b_private = NULL;
4890}
4891
4892int
4893arc_released(arc_buf_t *buf)
4894{
4895	int released;
4896
4897	mutex_enter(&buf->b_evict_lock);
4898	released = (buf->b_data != NULL &&
4899	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
4900	mutex_exit(&buf->b_evict_lock);
4901	return (released);
4902}
4903
4904#ifdef ZFS_DEBUG
4905int
4906arc_referenced(arc_buf_t *buf)
4907{
4908	int referenced;
4909
4910	mutex_enter(&buf->b_evict_lock);
4911	referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
4912	mutex_exit(&buf->b_evict_lock);
4913	return (referenced);
4914}
4915#endif
4916
4917static void
4918arc_write_ready(zio_t *zio)
4919{
4920	arc_write_callback_t *callback = zio->io_private;
4921	arc_buf_t *buf = callback->awcb_buf;
4922	arc_buf_hdr_t *hdr = buf->b_hdr;
4923
4924	ASSERT(HDR_HAS_L1HDR(hdr));
4925	ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
4926	ASSERT(hdr->b_l1hdr.b_datacnt > 0);
4927	callback->awcb_ready(zio, buf, callback->awcb_private);
4928
4929	/*
4930	 * If the IO is already in progress, then this is a re-write
4931	 * attempt, so we need to thaw and re-compute the cksum.
4932	 * It is the responsibility of the callback to handle the
4933	 * accounting for any re-write attempt.
4934	 */
4935	if (HDR_IO_IN_PROGRESS(hdr)) {
4936		mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
4937		if (hdr->b_freeze_cksum != NULL) {
4938			kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
4939			hdr->b_freeze_cksum = NULL;
4940		}
4941		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
4942	}
4943	arc_cksum_compute(buf, B_FALSE);
4944	hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
4945}
4946
4947/*
4948 * The SPA calls this callback for each physical write that happens on behalf
4949 * of a logical write.  See the comment in dbuf_write_physdone() for details.
4950 */
4951static void
4952arc_write_physdone(zio_t *zio)
4953{
4954	arc_write_callback_t *cb = zio->io_private;
4955	if (cb->awcb_physdone != NULL)
4956		cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
4957}
4958
4959static void
4960arc_write_done(zio_t *zio)
4961{
4962	arc_write_callback_t *callback = zio->io_private;
4963	arc_buf_t *buf = callback->awcb_buf;
4964	arc_buf_hdr_t *hdr = buf->b_hdr;
4965
4966	ASSERT(hdr->b_l1hdr.b_acb == NULL);
4967
4968	if (zio->io_error == 0) {
4969		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
4970			buf_discard_identity(hdr);
4971		} else {
4972			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
4973			hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
4974		}
4975	} else {
4976		ASSERT(BUF_EMPTY(hdr));
4977	}
4978
4979	/*
4980	 * If the block to be written was all-zero or compressed enough to be
4981	 * embedded in the BP, no write was performed so there will be no
4982	 * dva/birth/checksum.  The buffer must therefore remain anonymous
4983	 * (and uncached).
4984	 */
4985	if (!BUF_EMPTY(hdr)) {
4986		arc_buf_hdr_t *exists;
4987		kmutex_t *hash_lock;
4988
4989		ASSERT(zio->io_error == 0);
4990
4991		arc_cksum_verify(buf);
4992
4993		exists = buf_hash_insert(hdr, &hash_lock);
4994		if (exists != NULL) {
4995			/*
4996			 * This can only happen if we overwrite for
4997			 * sync-to-convergence, because we remove
4998			 * buffers from the hash table when we arc_free().
4999			 */
5000			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
5001				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5002					panic("bad overwrite, hdr=%p exists=%p",
5003					    (void *)hdr, (void *)exists);
5004				ASSERT(refcount_is_zero(
5005				    &exists->b_l1hdr.b_refcnt));
5006				arc_change_state(arc_anon, exists, hash_lock);
5007				mutex_exit(hash_lock);
5008				arc_hdr_destroy(exists);
5009				exists = buf_hash_insert(hdr, &hash_lock);
5010				ASSERT3P(exists, ==, NULL);
5011			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
5012				/* nopwrite */
5013				ASSERT(zio->io_prop.zp_nopwrite);
5014				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5015					panic("bad nopwrite, hdr=%p exists=%p",
5016					    (void *)hdr, (void *)exists);
5017			} else {
5018				/* Dedup */
5019				ASSERT(hdr->b_l1hdr.b_datacnt == 1);
5020				ASSERT(hdr->b_l1hdr.b_state == arc_anon);
5021				ASSERT(BP_GET_DEDUP(zio->io_bp));
5022				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
5023			}
5024		}
5025		hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
5026		/* if it's not anon, we are doing a scrub */
5027		if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
5028			arc_access(hdr, hash_lock);
5029		mutex_exit(hash_lock);
5030	} else {
5031		hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
5032	}
5033
5034	ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5035	callback->awcb_done(zio, buf, callback->awcb_private);
5036
5037	kmem_free(callback, sizeof (arc_write_callback_t));
5038}
5039
5040zio_t *
5041arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
5042    blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
5043    const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone,
5044    arc_done_func_t *done, void *private, zio_priority_t priority,
5045    int zio_flags, const zbookmark_phys_t *zb)
5046{
5047	arc_buf_hdr_t *hdr = buf->b_hdr;
5048	arc_write_callback_t *callback;
5049	zio_t *zio;
5050
5051	ASSERT(ready != NULL);
5052	ASSERT(done != NULL);
5053	ASSERT(!HDR_IO_ERROR(hdr));
5054	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5055	ASSERT(hdr->b_l1hdr.b_acb == NULL);
5056	ASSERT(hdr->b_l1hdr.b_datacnt > 0);
5057	if (l2arc)
5058		hdr->b_flags |= ARC_FLAG_L2CACHE;
5059	if (l2arc_compress)
5060		hdr->b_flags |= ARC_FLAG_L2COMPRESS;
5061	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
5062	callback->awcb_ready = ready;
5063	callback->awcb_physdone = physdone;
5064	callback->awcb_done = done;
5065	callback->awcb_private = private;
5066	callback->awcb_buf = buf;
5067
5068	zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
5069	    arc_write_ready, arc_write_physdone, arc_write_done, callback,
5070	    priority, zio_flags, zb);
5071
5072	return (zio);
5073}
5074
5075static int
5076arc_memory_throttle(uint64_t reserve, uint64_t txg)
5077{
5078#ifdef _KERNEL
5079	uint64_t available_memory = ptob(freemem);
5080	static uint64_t page_load = 0;
5081	static uint64_t last_txg = 0;
5082
5083#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
5084	available_memory =
5085	    MIN(available_memory, ptob(vmem_size(heap_arena, VMEM_FREE)));
5086#endif
5087
5088	if (freemem > (uint64_t)physmem * arc_lotsfree_percent / 100)
5089		return (0);
5090
5091	if (txg > last_txg) {
5092		last_txg = txg;
5093		page_load = 0;
5094	}
5095	/*
5096	 * If we are in pageout, we know that memory is already tight,
5097	 * the arc is already going to be evicting, so we just want to
5098	 * continue to let page writes occur as quickly as possible.
5099	 */
5100	if (curproc == pageproc) {
5101		if (page_load > MAX(ptob(minfree), available_memory) / 4)
5102			return (SET_ERROR(ERESTART));
5103		/* Note: reserve is inflated, so we deflate */
5104		page_load += reserve / 8;
5105		return (0);
5106	} else if (page_load > 0 && arc_reclaim_needed()) {
5107		/* memory is low, delay before restarting */
5108		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
5109		return (SET_ERROR(EAGAIN));
5110	}
5111	page_load = 0;
5112#endif
5113	return (0);
5114}
5115
5116void
5117arc_tempreserve_clear(uint64_t reserve)
5118{
5119	atomic_add_64(&arc_tempreserve, -reserve);
5120	ASSERT((int64_t)arc_tempreserve >= 0);
5121}
5122
5123int
5124arc_tempreserve_space(uint64_t reserve, uint64_t txg)
5125{
5126	int error;
5127	uint64_t anon_size;
5128
5129	if (reserve > arc_c/4 && !arc_no_grow) {
5130		arc_c = MIN(arc_c_max, reserve * 4);
5131		DTRACE_PROBE1(arc__set_reserve, uint64_t, arc_c);
5132	}
5133	if (reserve > arc_c)
5134		return (SET_ERROR(ENOMEM));
5135
5136	/*
5137	 * Don't count loaned bufs as in flight dirty data to prevent long
5138	 * network delays from blocking transactions that are ready to be
5139	 * assigned to a txg.
5140	 */
5141	anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
5142	    arc_loaned_bytes), 0);
5143
5144	/*
5145	 * Writes will, almost always, require additional memory allocations
5146	 * in order to compress/encrypt/etc the data.  We therefore need to
5147	 * make sure that there is sufficient available memory for this.
5148	 */
5149	error = arc_memory_throttle(reserve, txg);
5150	if (error != 0)
5151		return (error);
5152
5153	/*
5154	 * Throttle writes when the amount of dirty data in the cache
5155	 * gets too large.  We try to keep the cache less than half full
5156	 * of dirty blocks so that our sync times don't grow too large.
5157	 * Note: if two requests come in concurrently, we might let them
5158	 * both succeed, when one of them should fail.  Not a huge deal.
5159	 */
5160
5161	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
5162	    anon_size > arc_c / 4) {
5163		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
5164		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
5165		    arc_tempreserve>>10,
5166		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
5167		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
5168		    reserve>>10, arc_c>>10);
5169		return (SET_ERROR(ERESTART));
5170	}
5171	atomic_add_64(&arc_tempreserve, reserve);
5172	return (0);
5173}
5174
5175static void
5176arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
5177    kstat_named_t *evict_data, kstat_named_t *evict_metadata)
5178{
5179	size->value.ui64 = refcount_count(&state->arcs_size);
5180	evict_data->value.ui64 = state->arcs_lsize[ARC_BUFC_DATA];
5181	evict_metadata->value.ui64 = state->arcs_lsize[ARC_BUFC_METADATA];
5182}
5183
5184static int
5185arc_kstat_update(kstat_t *ksp, int rw)
5186{
5187	arc_stats_t *as = ksp->ks_data;
5188
5189	if (rw == KSTAT_WRITE) {
5190		return (EACCES);
5191	} else {
5192		arc_kstat_update_state(arc_anon,
5193		    &as->arcstat_anon_size,
5194		    &as->arcstat_anon_evictable_data,
5195		    &as->arcstat_anon_evictable_metadata);
5196		arc_kstat_update_state(arc_mru,
5197		    &as->arcstat_mru_size,
5198		    &as->arcstat_mru_evictable_data,
5199		    &as->arcstat_mru_evictable_metadata);
5200		arc_kstat_update_state(arc_mru_ghost,
5201		    &as->arcstat_mru_ghost_size,
5202		    &as->arcstat_mru_ghost_evictable_data,
5203		    &as->arcstat_mru_ghost_evictable_metadata);
5204		arc_kstat_update_state(arc_mfu,
5205		    &as->arcstat_mfu_size,
5206		    &as->arcstat_mfu_evictable_data,
5207		    &as->arcstat_mfu_evictable_metadata);
5208		arc_kstat_update_state(arc_mfu_ghost,
5209		    &as->arcstat_mfu_ghost_size,
5210		    &as->arcstat_mfu_ghost_evictable_data,
5211		    &as->arcstat_mfu_ghost_evictable_metadata);
5212	}
5213
5214	return (0);
5215}
5216
5217/*
5218 * This function *must* return indices evenly distributed between all
5219 * sublists of the multilist. This is needed due to how the ARC eviction
5220 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
5221 * distributed between all sublists and uses this assumption when
5222 * deciding which sublist to evict from and how much to evict from it.
5223 */
5224unsigned int
5225arc_state_multilist_index_func(multilist_t *ml, void *obj)
5226{
5227	arc_buf_hdr_t *hdr = obj;
5228
5229	/*
5230	 * We rely on b_dva to generate evenly distributed index
5231	 * numbers using buf_hash below. So, as an added precaution,
5232	 * let's make sure we never add empty buffers to the arc lists.
5233	 */
5234	ASSERT(!BUF_EMPTY(hdr));
5235
5236	/*
5237	 * The assumption here, is the hash value for a given
5238	 * arc_buf_hdr_t will remain constant throughout it's lifetime
5239	 * (i.e. it's b_spa, b_dva, and b_birth fields don't change).
5240	 * Thus, we don't need to store the header's sublist index
5241	 * on insertion, as this index can be recalculated on removal.
5242	 *
5243	 * Also, the low order bits of the hash value are thought to be
5244	 * distributed evenly. Otherwise, in the case that the multilist
5245	 * has a power of two number of sublists, each sublists' usage
5246	 * would not be evenly distributed.
5247	 */
5248	return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
5249	    multilist_get_num_sublists(ml));
5250}
5251
5252#ifdef _KERNEL
5253static eventhandler_tag arc_event_lowmem = NULL;
5254
5255static void
5256arc_lowmem(void *arg __unused, int howto __unused)
5257{
5258
5259	mutex_enter(&arc_reclaim_lock);
5260	/* XXX: Memory deficit should be passed as argument. */
5261	needfree = btoc(arc_c >> arc_shrink_shift);
5262	DTRACE_PROBE(arc__needfree);
5263	cv_signal(&arc_reclaim_thread_cv);
5264
5265	/*
5266	 * It is unsafe to block here in arbitrary threads, because we can come
5267	 * here from ARC itself and may hold ARC locks and thus risk a deadlock
5268	 * with ARC reclaim thread.
5269	 */
5270	if (curproc == pageproc)
5271		(void) cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
5272	mutex_exit(&arc_reclaim_lock);
5273}
5274#endif
5275
5276void
5277arc_init(void)
5278{
5279	int i, prefetch_tunable_set = 0;
5280
5281	mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
5282	cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
5283	cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
5284
5285	mutex_init(&arc_user_evicts_lock, NULL, MUTEX_DEFAULT, NULL);
5286	cv_init(&arc_user_evicts_cv, NULL, CV_DEFAULT, NULL);
5287
5288	/* Convert seconds to clock ticks */
5289	arc_min_prefetch_lifespan = 1 * hz;
5290
5291	/* Start out with 1/8 of all memory */
5292	arc_c = kmem_size() / 8;
5293
5294#ifdef illumos
5295#ifdef _KERNEL
5296	/*
5297	 * On architectures where the physical memory can be larger
5298	 * than the addressable space (intel in 32-bit mode), we may
5299	 * need to limit the cache to 1/8 of VM size.
5300	 */
5301	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
5302#endif
5303#endif	/* illumos */
5304	/* set min cache to 1/32 of all memory, or 16MB, whichever is more */
5305	arc_c_min = MAX(arc_c / 4, 16 << 20);
5306	/* set max to 1/2 of all memory, or all but 1GB, whichever is more */
5307	if (arc_c * 8 >= 1 << 30)
5308		arc_c_max = (arc_c * 8) - (1 << 30);
5309	else
5310		arc_c_max = arc_c_min;
5311	arc_c_max = MAX(arc_c * 5, arc_c_max);
5312
5313	/*
5314	 * In userland, there's only the memory pressure that we artificially
5315	 * create (see arc_available_memory()).  Don't let arc_c get too
5316	 * small, because it can cause transactions to be larger than
5317	 * arc_c, causing arc_tempreserve_space() to fail.
5318	 */
5319#ifndef _KERNEL
5320	arc_c_min = arc_c_max / 2;
5321#endif
5322
5323#ifdef _KERNEL
5324	/*
5325	 * Allow the tunables to override our calculations if they are
5326	 * reasonable (ie. over 16MB)
5327	 */
5328	if (zfs_arc_max > 16 << 20 && zfs_arc_max < kmem_size())
5329		arc_c_max = zfs_arc_max;
5330	if (zfs_arc_min > 16 << 20 && zfs_arc_min <= arc_c_max)
5331		arc_c_min = zfs_arc_min;
5332#endif
5333
5334	arc_c = arc_c_max;
5335	arc_p = (arc_c >> 1);
5336
5337	/* limit meta-data to 1/4 of the arc capacity */
5338	arc_meta_limit = arc_c_max / 4;
5339
5340	/* Allow the tunable to override if it is reasonable */
5341	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
5342		arc_meta_limit = zfs_arc_meta_limit;
5343
5344	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
5345		arc_c_min = arc_meta_limit / 2;
5346
5347	if (zfs_arc_meta_min > 0) {
5348		arc_meta_min = zfs_arc_meta_min;
5349	} else {
5350		arc_meta_min = arc_c_min / 2;
5351	}
5352
5353	if (zfs_arc_grow_retry > 0)
5354		arc_grow_retry = zfs_arc_grow_retry;
5355
5356	if (zfs_arc_shrink_shift > 0)
5357		arc_shrink_shift = zfs_arc_shrink_shift;
5358
5359	/*
5360	 * Ensure that arc_no_grow_shift is less than arc_shrink_shift.
5361	 */
5362	if (arc_no_grow_shift >= arc_shrink_shift)
5363		arc_no_grow_shift = arc_shrink_shift - 1;
5364
5365	if (zfs_arc_p_min_shift > 0)
5366		arc_p_min_shift = zfs_arc_p_min_shift;
5367
5368	if (zfs_arc_num_sublists_per_state < 1)
5369		zfs_arc_num_sublists_per_state = MAX(max_ncpus, 1);
5370
5371	/* if kmem_flags are set, lets try to use less memory */
5372	if (kmem_debugging())
5373		arc_c = arc_c / 2;
5374	if (arc_c < arc_c_min)
5375		arc_c = arc_c_min;
5376
5377	zfs_arc_min = arc_c_min;
5378	zfs_arc_max = arc_c_max;
5379
5380	arc_anon = &ARC_anon;
5381	arc_mru = &ARC_mru;
5382	arc_mru_ghost = &ARC_mru_ghost;
5383	arc_mfu = &ARC_mfu;
5384	arc_mfu_ghost = &ARC_mfu_ghost;
5385	arc_l2c_only = &ARC_l2c_only;
5386	arc_size = 0;
5387
5388	multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
5389	    sizeof (arc_buf_hdr_t),
5390	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5391	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5392	multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
5393	    sizeof (arc_buf_hdr_t),
5394	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5395	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5396	multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
5397	    sizeof (arc_buf_hdr_t),
5398	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5399	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5400	multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
5401	    sizeof (arc_buf_hdr_t),
5402	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5403	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5404	multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
5405	    sizeof (arc_buf_hdr_t),
5406	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5407	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5408	multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
5409	    sizeof (arc_buf_hdr_t),
5410	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5411	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5412	multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
5413	    sizeof (arc_buf_hdr_t),
5414	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5415	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5416	multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
5417	    sizeof (arc_buf_hdr_t),
5418	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5419	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5420	multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
5421	    sizeof (arc_buf_hdr_t),
5422	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5423	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5424	multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
5425	    sizeof (arc_buf_hdr_t),
5426	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5427	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5428
5429	refcount_create(&arc_anon->arcs_size);
5430	refcount_create(&arc_mru->arcs_size);
5431	refcount_create(&arc_mru_ghost->arcs_size);
5432	refcount_create(&arc_mfu->arcs_size);
5433	refcount_create(&arc_mfu_ghost->arcs_size);
5434	refcount_create(&arc_l2c_only->arcs_size);
5435
5436	buf_init();
5437
5438	arc_reclaim_thread_exit = FALSE;
5439	arc_user_evicts_thread_exit = FALSE;
5440	arc_eviction_list = NULL;
5441	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
5442
5443	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
5444	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
5445
5446	if (arc_ksp != NULL) {
5447		arc_ksp->ks_data = &arc_stats;
5448		arc_ksp->ks_update = arc_kstat_update;
5449		kstat_install(arc_ksp);
5450	}
5451
5452	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
5453	    TS_RUN, minclsyspri);
5454
5455#ifdef _KERNEL
5456	arc_event_lowmem = EVENTHANDLER_REGISTER(vm_lowmem, arc_lowmem, NULL,
5457	    EVENTHANDLER_PRI_FIRST);
5458#endif
5459
5460	(void) thread_create(NULL, 0, arc_user_evicts_thread, NULL, 0, &p0,
5461	    TS_RUN, minclsyspri);
5462
5463	arc_dead = FALSE;
5464	arc_warm = B_FALSE;
5465
5466	/*
5467	 * Calculate maximum amount of dirty data per pool.
5468	 *
5469	 * If it has been set by /etc/system, take that.
5470	 * Otherwise, use a percentage of physical memory defined by
5471	 * zfs_dirty_data_max_percent (default 10%) with a cap at
5472	 * zfs_dirty_data_max_max (default 4GB).
5473	 */
5474	if (zfs_dirty_data_max == 0) {
5475		zfs_dirty_data_max = ptob(physmem) *
5476		    zfs_dirty_data_max_percent / 100;
5477		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
5478		    zfs_dirty_data_max_max);
5479	}
5480
5481#ifdef _KERNEL
5482	if (TUNABLE_INT_FETCH("vfs.zfs.prefetch_disable", &zfs_prefetch_disable))
5483		prefetch_tunable_set = 1;
5484
5485#ifdef __i386__
5486	if (prefetch_tunable_set == 0) {
5487		printf("ZFS NOTICE: Prefetch is disabled by default on i386 "
5488		    "-- to enable,\n");
5489		printf("            add \"vfs.zfs.prefetch_disable=0\" "
5490		    "to /boot/loader.conf.\n");
5491		zfs_prefetch_disable = 1;
5492	}
5493#else
5494	if ((((uint64_t)physmem * PAGESIZE) < (1ULL << 32)) &&
5495	    prefetch_tunable_set == 0) {
5496		printf("ZFS NOTICE: Prefetch is disabled by default if less "
5497		    "than 4GB of RAM is present;\n"
5498		    "            to enable, add \"vfs.zfs.prefetch_disable=0\" "
5499		    "to /boot/loader.conf.\n");
5500		zfs_prefetch_disable = 1;
5501	}
5502#endif
5503	/* Warn about ZFS memory and address space requirements. */
5504	if (((uint64_t)physmem * PAGESIZE) < (256 + 128 + 64) * (1 << 20)) {
5505		printf("ZFS WARNING: Recommended minimum RAM size is 512MB; "
5506		    "expect unstable behavior.\n");
5507	}
5508	if (kmem_size() < 512 * (1 << 20)) {
5509		printf("ZFS WARNING: Recommended minimum kmem_size is 512MB; "
5510		    "expect unstable behavior.\n");
5511		printf("             Consider tuning vm.kmem_size and "
5512		    "vm.kmem_size_max\n");
5513		printf("             in /boot/loader.conf.\n");
5514	}
5515#endif
5516}
5517
5518void
5519arc_fini(void)
5520{
5521	mutex_enter(&arc_reclaim_lock);
5522	arc_reclaim_thread_exit = TRUE;
5523	/*
5524	 * The reclaim thread will set arc_reclaim_thread_exit back to
5525	 * FALSE when it is finished exiting; we're waiting for that.
5526	 */
5527	while (arc_reclaim_thread_exit) {
5528		cv_signal(&arc_reclaim_thread_cv);
5529		cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
5530	}
5531	mutex_exit(&arc_reclaim_lock);
5532
5533	mutex_enter(&arc_user_evicts_lock);
5534	arc_user_evicts_thread_exit = TRUE;
5535	/*
5536	 * The user evicts thread will set arc_user_evicts_thread_exit
5537	 * to FALSE when it is finished exiting; we're waiting for that.
5538	 */
5539	while (arc_user_evicts_thread_exit) {
5540		cv_signal(&arc_user_evicts_cv);
5541		cv_wait(&arc_user_evicts_cv, &arc_user_evicts_lock);
5542	}
5543	mutex_exit(&arc_user_evicts_lock);
5544
5545	/* Use TRUE to ensure *all* buffers are evicted */
5546	arc_flush(NULL, TRUE);
5547
5548	arc_dead = TRUE;
5549
5550	if (arc_ksp != NULL) {
5551		kstat_delete(arc_ksp);
5552		arc_ksp = NULL;
5553	}
5554
5555	mutex_destroy(&arc_reclaim_lock);
5556	cv_destroy(&arc_reclaim_thread_cv);
5557	cv_destroy(&arc_reclaim_waiters_cv);
5558
5559	mutex_destroy(&arc_user_evicts_lock);
5560	cv_destroy(&arc_user_evicts_cv);
5561
5562	refcount_destroy(&arc_anon->arcs_size);
5563	refcount_destroy(&arc_mru->arcs_size);
5564	refcount_destroy(&arc_mru_ghost->arcs_size);
5565	refcount_destroy(&arc_mfu->arcs_size);
5566	refcount_destroy(&arc_mfu_ghost->arcs_size);
5567	refcount_destroy(&arc_l2c_only->arcs_size);
5568
5569	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
5570	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
5571	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
5572	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
5573	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
5574	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
5575	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
5576	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
5577
5578	buf_fini();
5579
5580	ASSERT0(arc_loaned_bytes);
5581
5582#ifdef _KERNEL
5583	if (arc_event_lowmem != NULL)
5584		EVENTHANDLER_DEREGISTER(vm_lowmem, arc_event_lowmem);
5585#endif
5586}
5587
5588/*
5589 * Level 2 ARC
5590 *
5591 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
5592 * It uses dedicated storage devices to hold cached data, which are populated
5593 * using large infrequent writes.  The main role of this cache is to boost
5594 * the performance of random read workloads.  The intended L2ARC devices
5595 * include short-stroked disks, solid state disks, and other media with
5596 * substantially faster read latency than disk.
5597 *
5598 *                 +-----------------------+
5599 *                 |         ARC           |
5600 *                 +-----------------------+
5601 *                    |         ^     ^
5602 *                    |         |     |
5603 *      l2arc_feed_thread()    arc_read()
5604 *                    |         |     |
5605 *                    |  l2arc read   |
5606 *                    V         |     |
5607 *               +---------------+    |
5608 *               |     L2ARC     |    |
5609 *               +---------------+    |
5610 *                   |    ^           |
5611 *          l2arc_write() |           |
5612 *                   |    |           |
5613 *                   V    |           |
5614 *                 +-------+      +-------+
5615 *                 | vdev  |      | vdev  |
5616 *                 | cache |      | cache |
5617 *                 +-------+      +-------+
5618 *                 +=========+     .-----.
5619 *                 :  L2ARC  :    |-_____-|
5620 *                 : devices :    | Disks |
5621 *                 +=========+    `-_____-'
5622 *
5623 * Read requests are satisfied from the following sources, in order:
5624 *
5625 *	1) ARC
5626 *	2) vdev cache of L2ARC devices
5627 *	3) L2ARC devices
5628 *	4) vdev cache of disks
5629 *	5) disks
5630 *
5631 * Some L2ARC device types exhibit extremely slow write performance.
5632 * To accommodate for this there are some significant differences between
5633 * the L2ARC and traditional cache design:
5634 *
5635 * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
5636 * the ARC behave as usual, freeing buffers and placing headers on ghost
5637 * lists.  The ARC does not send buffers to the L2ARC during eviction as
5638 * this would add inflated write latencies for all ARC memory pressure.
5639 *
5640 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
5641 * It does this by periodically scanning buffers from the eviction-end of
5642 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
5643 * not already there. It scans until a headroom of buffers is satisfied,
5644 * which itself is a buffer for ARC eviction. If a compressible buffer is
5645 * found during scanning and selected for writing to an L2ARC device, we
5646 * temporarily boost scanning headroom during the next scan cycle to make
5647 * sure we adapt to compression effects (which might significantly reduce
5648 * the data volume we write to L2ARC). The thread that does this is
5649 * l2arc_feed_thread(), illustrated below; example sizes are included to
5650 * provide a better sense of ratio than this diagram:
5651 *
5652 *	       head -->                        tail
5653 *	        +---------------------+----------+
5654 *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
5655 *	        +---------------------+----------+   |   o L2ARC eligible
5656 *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
5657 *	        +---------------------+----------+   |
5658 *	             15.9 Gbytes      ^ 32 Mbytes    |
5659 *	                           headroom          |
5660 *	                                      l2arc_feed_thread()
5661 *	                                             |
5662 *	                 l2arc write hand <--[oooo]--'
5663 *	                         |           8 Mbyte
5664 *	                         |          write max
5665 *	                         V
5666 *		  +==============================+
5667 *	L2ARC dev |####|#|###|###|    |####| ... |
5668 *	          +==============================+
5669 *	                     32 Gbytes
5670 *
5671 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
5672 * evicted, then the L2ARC has cached a buffer much sooner than it probably
5673 * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
5674 * safe to say that this is an uncommon case, since buffers at the end of
5675 * the ARC lists have moved there due to inactivity.
5676 *
5677 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
5678 * then the L2ARC simply misses copying some buffers.  This serves as a
5679 * pressure valve to prevent heavy read workloads from both stalling the ARC
5680 * with waits and clogging the L2ARC with writes.  This also helps prevent
5681 * the potential for the L2ARC to churn if it attempts to cache content too
5682 * quickly, such as during backups of the entire pool.
5683 *
5684 * 5. After system boot and before the ARC has filled main memory, there are
5685 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
5686 * lists can remain mostly static.  Instead of searching from tail of these
5687 * lists as pictured, the l2arc_feed_thread() will search from the list heads
5688 * for eligible buffers, greatly increasing its chance of finding them.
5689 *
5690 * The L2ARC device write speed is also boosted during this time so that
5691 * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
5692 * there are no L2ARC reads, and no fear of degrading read performance
5693 * through increased writes.
5694 *
5695 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
5696 * the vdev queue can aggregate them into larger and fewer writes.  Each
5697 * device is written to in a rotor fashion, sweeping writes through
5698 * available space then repeating.
5699 *
5700 * 7. The L2ARC does not store dirty content.  It never needs to flush
5701 * write buffers back to disk based storage.
5702 *
5703 * 8. If an ARC buffer is written (and dirtied) which also exists in the
5704 * L2ARC, the now stale L2ARC buffer is immediately dropped.
5705 *
5706 * The performance of the L2ARC can be tweaked by a number of tunables, which
5707 * may be necessary for different workloads:
5708 *
5709 *	l2arc_write_max		max write bytes per interval
5710 *	l2arc_write_boost	extra write bytes during device warmup
5711 *	l2arc_noprefetch	skip caching prefetched buffers
5712 *	l2arc_headroom		number of max device writes to precache
5713 *	l2arc_headroom_boost	when we find compressed buffers during ARC
5714 *				scanning, we multiply headroom by this
5715 *				percentage factor for the next scan cycle,
5716 *				since more compressed buffers are likely to
5717 *				be present
5718 *	l2arc_feed_secs		seconds between L2ARC writing
5719 *
5720 * Tunables may be removed or added as future performance improvements are
5721 * integrated, and also may become zpool properties.
5722 *
5723 * There are three key functions that control how the L2ARC warms up:
5724 *
5725 *	l2arc_write_eligible()	check if a buffer is eligible to cache
5726 *	l2arc_write_size()	calculate how much to write
5727 *	l2arc_write_interval()	calculate sleep delay between writes
5728 *
5729 * These three functions determine what to write, how much, and how quickly
5730 * to send writes.
5731 */
5732
5733static boolean_t
5734l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
5735{
5736	/*
5737	 * A buffer is *not* eligible for the L2ARC if it:
5738	 * 1. belongs to a different spa.
5739	 * 2. is already cached on the L2ARC.
5740	 * 3. has an I/O in progress (it may be an incomplete read).
5741	 * 4. is flagged not eligible (zfs property).
5742	 */
5743	if (hdr->b_spa != spa_guid) {
5744		ARCSTAT_BUMP(arcstat_l2_write_spa_mismatch);
5745		return (B_FALSE);
5746	}
5747	if (HDR_HAS_L2HDR(hdr)) {
5748		ARCSTAT_BUMP(arcstat_l2_write_in_l2);
5749		return (B_FALSE);
5750	}
5751	if (HDR_IO_IN_PROGRESS(hdr)) {
5752		ARCSTAT_BUMP(arcstat_l2_write_hdr_io_in_progress);
5753		return (B_FALSE);
5754	}
5755	if (!HDR_L2CACHE(hdr)) {
5756		ARCSTAT_BUMP(arcstat_l2_write_not_cacheable);
5757		return (B_FALSE);
5758	}
5759
5760	return (B_TRUE);
5761}
5762
5763static uint64_t
5764l2arc_write_size(void)
5765{
5766	uint64_t size;
5767
5768	/*
5769	 * Make sure our globals have meaningful values in case the user
5770	 * altered them.
5771	 */
5772	size = l2arc_write_max;
5773	if (size == 0) {
5774		cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
5775		    "be greater than zero, resetting it to the default (%d)",
5776		    L2ARC_WRITE_SIZE);
5777		size = l2arc_write_max = L2ARC_WRITE_SIZE;
5778	}
5779
5780	if (arc_warm == B_FALSE)
5781		size += l2arc_write_boost;
5782
5783	return (size);
5784
5785}
5786
5787static clock_t
5788l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
5789{
5790	clock_t interval, next, now;
5791
5792	/*
5793	 * If the ARC lists are busy, increase our write rate; if the
5794	 * lists are stale, idle back.  This is achieved by checking
5795	 * how much we previously wrote - if it was more than half of
5796	 * what we wanted, schedule the next write much sooner.
5797	 */
5798	if (l2arc_feed_again && wrote > (wanted / 2))
5799		interval = (hz * l2arc_feed_min_ms) / 1000;
5800	else
5801		interval = hz * l2arc_feed_secs;
5802
5803	now = ddi_get_lbolt();
5804	next = MAX(now, MIN(now + interval, began + interval));
5805
5806	return (next);
5807}
5808
5809/*
5810 * Cycle through L2ARC devices.  This is how L2ARC load balances.
5811 * If a device is returned, this also returns holding the spa config lock.
5812 */
5813static l2arc_dev_t *
5814l2arc_dev_get_next(void)
5815{
5816	l2arc_dev_t *first, *next = NULL;
5817
5818	/*
5819	 * Lock out the removal of spas (spa_namespace_lock), then removal
5820	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
5821	 * both locks will be dropped and a spa config lock held instead.
5822	 */
5823	mutex_enter(&spa_namespace_lock);
5824	mutex_enter(&l2arc_dev_mtx);
5825
5826	/* if there are no vdevs, there is nothing to do */
5827	if (l2arc_ndev == 0)
5828		goto out;
5829
5830	first = NULL;
5831	next = l2arc_dev_last;
5832	do {
5833		/* loop around the list looking for a non-faulted vdev */
5834		if (next == NULL) {
5835			next = list_head(l2arc_dev_list);
5836		} else {
5837			next = list_next(l2arc_dev_list, next);
5838			if (next == NULL)
5839				next = list_head(l2arc_dev_list);
5840		}
5841
5842		/* if we have come back to the start, bail out */
5843		if (first == NULL)
5844			first = next;
5845		else if (next == first)
5846			break;
5847
5848	} while (vdev_is_dead(next->l2ad_vdev));
5849
5850	/* if we were unable to find any usable vdevs, return NULL */
5851	if (vdev_is_dead(next->l2ad_vdev))
5852		next = NULL;
5853
5854	l2arc_dev_last = next;
5855
5856out:
5857	mutex_exit(&l2arc_dev_mtx);
5858
5859	/*
5860	 * Grab the config lock to prevent the 'next' device from being
5861	 * removed while we are writing to it.
5862	 */
5863	if (next != NULL)
5864		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
5865	mutex_exit(&spa_namespace_lock);
5866
5867	return (next);
5868}
5869
5870/*
5871 * Free buffers that were tagged for destruction.
5872 */
5873static void
5874l2arc_do_free_on_write()
5875{
5876	list_t *buflist;
5877	l2arc_data_free_t *df, *df_prev;
5878
5879	mutex_enter(&l2arc_free_on_write_mtx);
5880	buflist = l2arc_free_on_write;
5881
5882	for (df = list_tail(buflist); df; df = df_prev) {
5883		df_prev = list_prev(buflist, df);
5884		ASSERT(df->l2df_data != NULL);
5885		ASSERT(df->l2df_func != NULL);
5886		df->l2df_func(df->l2df_data, df->l2df_size);
5887		list_remove(buflist, df);
5888		kmem_free(df, sizeof (l2arc_data_free_t));
5889	}
5890
5891	mutex_exit(&l2arc_free_on_write_mtx);
5892}
5893
5894/*
5895 * A write to a cache device has completed.  Update all headers to allow
5896 * reads from these buffers to begin.
5897 */
5898static void
5899l2arc_write_done(zio_t *zio)
5900{
5901	l2arc_write_callback_t *cb;
5902	l2arc_dev_t *dev;
5903	list_t *buflist;
5904	arc_buf_hdr_t *head, *hdr, *hdr_prev;
5905	kmutex_t *hash_lock;
5906	int64_t bytes_dropped = 0;
5907
5908	cb = zio->io_private;
5909	ASSERT(cb != NULL);
5910	dev = cb->l2wcb_dev;
5911	ASSERT(dev != NULL);
5912	head = cb->l2wcb_head;
5913	ASSERT(head != NULL);
5914	buflist = &dev->l2ad_buflist;
5915	ASSERT(buflist != NULL);
5916	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
5917	    l2arc_write_callback_t *, cb);
5918
5919	if (zio->io_error != 0)
5920		ARCSTAT_BUMP(arcstat_l2_writes_error);
5921
5922	/*
5923	 * All writes completed, or an error was hit.
5924	 */
5925top:
5926	mutex_enter(&dev->l2ad_mtx);
5927	for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
5928		hdr_prev = list_prev(buflist, hdr);
5929
5930		hash_lock = HDR_LOCK(hdr);
5931
5932		/*
5933		 * We cannot use mutex_enter or else we can deadlock
5934		 * with l2arc_write_buffers (due to swapping the order
5935		 * the hash lock and l2ad_mtx are taken).
5936		 */
5937		if (!mutex_tryenter(hash_lock)) {
5938			/*
5939			 * Missed the hash lock. We must retry so we
5940			 * don't leave the ARC_FLAG_L2_WRITING bit set.
5941			 */
5942			ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
5943
5944			/*
5945			 * We don't want to rescan the headers we've
5946			 * already marked as having been written out, so
5947			 * we reinsert the head node so we can pick up
5948			 * where we left off.
5949			 */
5950			list_remove(buflist, head);
5951			list_insert_after(buflist, hdr, head);
5952
5953			mutex_exit(&dev->l2ad_mtx);
5954
5955			/*
5956			 * We wait for the hash lock to become available
5957			 * to try and prevent busy waiting, and increase
5958			 * the chance we'll be able to acquire the lock
5959			 * the next time around.
5960			 */
5961			mutex_enter(hash_lock);
5962			mutex_exit(hash_lock);
5963			goto top;
5964		}
5965
5966		/*
5967		 * We could not have been moved into the arc_l2c_only
5968		 * state while in-flight due to our ARC_FLAG_L2_WRITING
5969		 * bit being set. Let's just ensure that's being enforced.
5970		 */
5971		ASSERT(HDR_HAS_L1HDR(hdr));
5972
5973		/*
5974		 * We may have allocated a buffer for L2ARC compression,
5975		 * we must release it to avoid leaking this data.
5976		 */
5977		l2arc_release_cdata_buf(hdr);
5978
5979		if (zio->io_error != 0) {
5980			/*
5981			 * Error - drop L2ARC entry.
5982			 */
5983			list_remove(buflist, hdr);
5984			l2arc_trim(hdr);
5985			hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
5986
5987			ARCSTAT_INCR(arcstat_l2_asize, -hdr->b_l2hdr.b_asize);
5988			ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
5989
5990			bytes_dropped += hdr->b_l2hdr.b_asize;
5991			(void) refcount_remove_many(&dev->l2ad_alloc,
5992			    hdr->b_l2hdr.b_asize, hdr);
5993		}
5994
5995		/*
5996		 * Allow ARC to begin reads and ghost list evictions to
5997		 * this L2ARC entry.
5998		 */
5999		hdr->b_flags &= ~ARC_FLAG_L2_WRITING;
6000
6001		mutex_exit(hash_lock);
6002	}
6003
6004	atomic_inc_64(&l2arc_writes_done);
6005	list_remove(buflist, head);
6006	ASSERT(!HDR_HAS_L1HDR(head));
6007	kmem_cache_free(hdr_l2only_cache, head);
6008	mutex_exit(&dev->l2ad_mtx);
6009
6010	vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
6011
6012	l2arc_do_free_on_write();
6013
6014	kmem_free(cb, sizeof (l2arc_write_callback_t));
6015}
6016
6017/*
6018 * A read to a cache device completed.  Validate buffer contents before
6019 * handing over to the regular ARC routines.
6020 */
6021static void
6022l2arc_read_done(zio_t *zio)
6023{
6024	l2arc_read_callback_t *cb;
6025	arc_buf_hdr_t *hdr;
6026	arc_buf_t *buf;
6027	kmutex_t *hash_lock;
6028	int equal;
6029
6030	ASSERT(zio->io_vd != NULL);
6031	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
6032
6033	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
6034
6035	cb = zio->io_private;
6036	ASSERT(cb != NULL);
6037	buf = cb->l2rcb_buf;
6038	ASSERT(buf != NULL);
6039
6040	hash_lock = HDR_LOCK(buf->b_hdr);
6041	mutex_enter(hash_lock);
6042	hdr = buf->b_hdr;
6043	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6044
6045	/*
6046	 * If the buffer was compressed, decompress it first.
6047	 */
6048	if (cb->l2rcb_compress != ZIO_COMPRESS_OFF)
6049		l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress);
6050	ASSERT(zio->io_data != NULL);
6051	ASSERT3U(zio->io_size, ==, hdr->b_size);
6052	ASSERT3U(BP_GET_LSIZE(&cb->l2rcb_bp), ==, hdr->b_size);
6053
6054	/*
6055	 * Check this survived the L2ARC journey.
6056	 */
6057	equal = arc_cksum_equal(buf);
6058	if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
6059		mutex_exit(hash_lock);
6060		zio->io_private = buf;
6061		zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
6062		zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
6063		arc_read_done(zio);
6064	} else {
6065		mutex_exit(hash_lock);
6066		/*
6067		 * Buffer didn't survive caching.  Increment stats and
6068		 * reissue to the original storage device.
6069		 */
6070		if (zio->io_error != 0) {
6071			ARCSTAT_BUMP(arcstat_l2_io_error);
6072		} else {
6073			zio->io_error = SET_ERROR(EIO);
6074		}
6075		if (!equal)
6076			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
6077
6078		/*
6079		 * If there's no waiter, issue an async i/o to the primary
6080		 * storage now.  If there *is* a waiter, the caller must
6081		 * issue the i/o in a context where it's OK to block.
6082		 */
6083		if (zio->io_waiter == NULL) {
6084			zio_t *pio = zio_unique_parent(zio);
6085
6086			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
6087
6088			zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
6089			    buf->b_data, hdr->b_size, arc_read_done, buf,
6090			    zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
6091		}
6092	}
6093
6094	kmem_free(cb, sizeof (l2arc_read_callback_t));
6095}
6096
6097/*
6098 * This is the list priority from which the L2ARC will search for pages to
6099 * cache.  This is used within loops (0..3) to cycle through lists in the
6100 * desired order.  This order can have a significant effect on cache
6101 * performance.
6102 *
6103 * Currently the metadata lists are hit first, MFU then MRU, followed by
6104 * the data lists.  This function returns a locked list, and also returns
6105 * the lock pointer.
6106 */
6107static multilist_sublist_t *
6108l2arc_sublist_lock(int list_num)
6109{
6110	multilist_t *ml = NULL;
6111	unsigned int idx;
6112
6113	ASSERT(list_num >= 0 && list_num <= 3);
6114
6115	switch (list_num) {
6116	case 0:
6117		ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
6118		break;
6119	case 1:
6120		ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
6121		break;
6122	case 2:
6123		ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
6124		break;
6125	case 3:
6126		ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
6127		break;
6128	}
6129
6130	/*
6131	 * Return a randomly-selected sublist. This is acceptable
6132	 * because the caller feeds only a little bit of data for each
6133	 * call (8MB). Subsequent calls will result in different
6134	 * sublists being selected.
6135	 */
6136	idx = multilist_get_random_index(ml);
6137	return (multilist_sublist_lock(ml, idx));
6138}
6139
6140/*
6141 * Evict buffers from the device write hand to the distance specified in
6142 * bytes.  This distance may span populated buffers, it may span nothing.
6143 * This is clearing a region on the L2ARC device ready for writing.
6144 * If the 'all' boolean is set, every buffer is evicted.
6145 */
6146static void
6147l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
6148{
6149	list_t *buflist;
6150	arc_buf_hdr_t *hdr, *hdr_prev;
6151	kmutex_t *hash_lock;
6152	uint64_t taddr;
6153
6154	buflist = &dev->l2ad_buflist;
6155
6156	if (!all && dev->l2ad_first) {
6157		/*
6158		 * This is the first sweep through the device.  There is
6159		 * nothing to evict.
6160		 */
6161		return;
6162	}
6163
6164	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
6165		/*
6166		 * When nearing the end of the device, evict to the end
6167		 * before the device write hand jumps to the start.
6168		 */
6169		taddr = dev->l2ad_end;
6170	} else {
6171		taddr = dev->l2ad_hand + distance;
6172	}
6173	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
6174	    uint64_t, taddr, boolean_t, all);
6175
6176top:
6177	mutex_enter(&dev->l2ad_mtx);
6178	for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
6179		hdr_prev = list_prev(buflist, hdr);
6180
6181		hash_lock = HDR_LOCK(hdr);
6182
6183		/*
6184		 * We cannot use mutex_enter or else we can deadlock
6185		 * with l2arc_write_buffers (due to swapping the order
6186		 * the hash lock and l2ad_mtx are taken).
6187		 */
6188		if (!mutex_tryenter(hash_lock)) {
6189			/*
6190			 * Missed the hash lock.  Retry.
6191			 */
6192			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
6193			mutex_exit(&dev->l2ad_mtx);
6194			mutex_enter(hash_lock);
6195			mutex_exit(hash_lock);
6196			goto top;
6197		}
6198
6199		if (HDR_L2_WRITE_HEAD(hdr)) {
6200			/*
6201			 * We hit a write head node.  Leave it for
6202			 * l2arc_write_done().
6203			 */
6204			list_remove(buflist, hdr);
6205			mutex_exit(hash_lock);
6206			continue;
6207		}
6208
6209		if (!all && HDR_HAS_L2HDR(hdr) &&
6210		    (hdr->b_l2hdr.b_daddr > taddr ||
6211		    hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
6212			/*
6213			 * We've evicted to the target address,
6214			 * or the end of the device.
6215			 */
6216			mutex_exit(hash_lock);
6217			break;
6218		}
6219
6220		ASSERT(HDR_HAS_L2HDR(hdr));
6221		if (!HDR_HAS_L1HDR(hdr)) {
6222			ASSERT(!HDR_L2_READING(hdr));
6223			/*
6224			 * This doesn't exist in the ARC.  Destroy.
6225			 * arc_hdr_destroy() will call list_remove()
6226			 * and decrement arcstat_l2_size.
6227			 */
6228			arc_change_state(arc_anon, hdr, hash_lock);
6229			arc_hdr_destroy(hdr);
6230		} else {
6231			ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
6232			ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
6233			/*
6234			 * Invalidate issued or about to be issued
6235			 * reads, since we may be about to write
6236			 * over this location.
6237			 */
6238			if (HDR_L2_READING(hdr)) {
6239				ARCSTAT_BUMP(arcstat_l2_evict_reading);
6240				hdr->b_flags |= ARC_FLAG_L2_EVICTED;
6241			}
6242
6243			/* Ensure this header has finished being written */
6244			ASSERT(!HDR_L2_WRITING(hdr));
6245			ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
6246
6247			arc_hdr_l2hdr_destroy(hdr);
6248		}
6249		mutex_exit(hash_lock);
6250	}
6251	mutex_exit(&dev->l2ad_mtx);
6252}
6253
6254/*
6255 * Find and write ARC buffers to the L2ARC device.
6256 *
6257 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
6258 * for reading until they have completed writing.
6259 * The headroom_boost is an in-out parameter used to maintain headroom boost
6260 * state between calls to this function.
6261 *
6262 * Returns the number of bytes actually written (which may be smaller than
6263 * the delta by which the device hand has changed due to alignment).
6264 */
6265static uint64_t
6266l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz,
6267    boolean_t *headroom_boost)
6268{
6269	arc_buf_hdr_t *hdr, *hdr_prev, *head;
6270	uint64_t write_asize, write_sz, headroom,
6271	    buf_compress_minsz;
6272	void *buf_data;
6273	boolean_t full;
6274	l2arc_write_callback_t *cb;
6275	zio_t *pio, *wzio;
6276	uint64_t guid = spa_load_guid(spa);
6277	const boolean_t do_headroom_boost = *headroom_boost;
6278	int try;
6279
6280	ASSERT(dev->l2ad_vdev != NULL);
6281
6282	/* Lower the flag now, we might want to raise it again later. */
6283	*headroom_boost = B_FALSE;
6284
6285	pio = NULL;
6286	write_sz = write_asize = 0;
6287	full = B_FALSE;
6288	head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
6289	head->b_flags |= ARC_FLAG_L2_WRITE_HEAD;
6290	head->b_flags |= ARC_FLAG_HAS_L2HDR;
6291
6292	ARCSTAT_BUMP(arcstat_l2_write_buffer_iter);
6293	/*
6294	 * We will want to try to compress buffers that are at least 2x the
6295	 * device sector size.
6296	 */
6297	buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift;
6298
6299	/*
6300	 * Copy buffers for L2ARC writing.
6301	 */
6302	for (try = 0; try <= 3; try++) {
6303		multilist_sublist_t *mls = l2arc_sublist_lock(try);
6304		uint64_t passed_sz = 0;
6305
6306		ARCSTAT_BUMP(arcstat_l2_write_buffer_list_iter);
6307
6308		/*
6309		 * L2ARC fast warmup.
6310		 *
6311		 * Until the ARC is warm and starts to evict, read from the
6312		 * head of the ARC lists rather than the tail.
6313		 */
6314		if (arc_warm == B_FALSE)
6315			hdr = multilist_sublist_head(mls);
6316		else
6317			hdr = multilist_sublist_tail(mls);
6318		if (hdr == NULL)
6319			ARCSTAT_BUMP(arcstat_l2_write_buffer_list_null_iter);
6320
6321		headroom = target_sz * l2arc_headroom;
6322		if (do_headroom_boost)
6323			headroom = (headroom * l2arc_headroom_boost) / 100;
6324
6325		for (; hdr; hdr = hdr_prev) {
6326			kmutex_t *hash_lock;
6327			uint64_t buf_sz;
6328			uint64_t buf_a_sz;
6329
6330			if (arc_warm == B_FALSE)
6331				hdr_prev = multilist_sublist_next(mls, hdr);
6332			else
6333				hdr_prev = multilist_sublist_prev(mls, hdr);
6334			ARCSTAT_INCR(arcstat_l2_write_buffer_bytes_scanned, hdr->b_size);
6335
6336			hash_lock = HDR_LOCK(hdr);
6337			if (!mutex_tryenter(hash_lock)) {
6338				ARCSTAT_BUMP(arcstat_l2_write_trylock_fail);
6339				/*
6340				 * Skip this buffer rather than waiting.
6341				 */
6342				continue;
6343			}
6344
6345			passed_sz += hdr->b_size;
6346			if (passed_sz > headroom) {
6347				/*
6348				 * Searched too far.
6349				 */
6350				mutex_exit(hash_lock);
6351				ARCSTAT_BUMP(arcstat_l2_write_passed_headroom);
6352				break;
6353			}
6354
6355			if (!l2arc_write_eligible(guid, hdr)) {
6356				mutex_exit(hash_lock);
6357				continue;
6358			}
6359
6360			/*
6361			 * Assume that the buffer is not going to be compressed
6362			 * and could take more space on disk because of a larger
6363			 * disk block size.
6364			 */
6365			buf_sz = hdr->b_size;
6366			buf_a_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
6367
6368			if ((write_asize + buf_a_sz) > target_sz) {
6369				full = B_TRUE;
6370				mutex_exit(hash_lock);
6371				ARCSTAT_BUMP(arcstat_l2_write_full);
6372				break;
6373			}
6374
6375			if (pio == NULL) {
6376				/*
6377				 * Insert a dummy header on the buflist so
6378				 * l2arc_write_done() can find where the
6379				 * write buffers begin without searching.
6380				 */
6381				mutex_enter(&dev->l2ad_mtx);
6382				list_insert_head(&dev->l2ad_buflist, head);
6383				mutex_exit(&dev->l2ad_mtx);
6384
6385				cb = kmem_alloc(
6386				    sizeof (l2arc_write_callback_t), KM_SLEEP);
6387				cb->l2wcb_dev = dev;
6388				cb->l2wcb_head = head;
6389				pio = zio_root(spa, l2arc_write_done, cb,
6390				    ZIO_FLAG_CANFAIL);
6391				ARCSTAT_BUMP(arcstat_l2_write_pios);
6392			}
6393
6394			/*
6395			 * Create and add a new L2ARC header.
6396			 */
6397			hdr->b_l2hdr.b_dev = dev;
6398			hdr->b_flags |= ARC_FLAG_L2_WRITING;
6399			/*
6400			 * Temporarily stash the data buffer in b_tmp_cdata.
6401			 * The subsequent write step will pick it up from
6402			 * there. This is because can't access b_l1hdr.b_buf
6403			 * without holding the hash_lock, which we in turn
6404			 * can't access without holding the ARC list locks
6405			 * (which we want to avoid during compression/writing).
6406			 */
6407			hdr->b_l2hdr.b_compress = ZIO_COMPRESS_OFF;
6408			hdr->b_l2hdr.b_asize = hdr->b_size;
6409			hdr->b_l1hdr.b_tmp_cdata = hdr->b_l1hdr.b_buf->b_data;
6410
6411			/*
6412			 * Explicitly set the b_daddr field to a known
6413			 * value which means "invalid address". This
6414			 * enables us to differentiate which stage of
6415			 * l2arc_write_buffers() the particular header
6416			 * is in (e.g. this loop, or the one below).
6417			 * ARC_FLAG_L2_WRITING is not enough to make
6418			 * this distinction, and we need to know in
6419			 * order to do proper l2arc vdev accounting in
6420			 * arc_release() and arc_hdr_destroy().
6421			 *
6422			 * Note, we can't use a new flag to distinguish
6423			 * the two stages because we don't hold the
6424			 * header's hash_lock below, in the second stage
6425			 * of this function. Thus, we can't simply
6426			 * change the b_flags field to denote that the
6427			 * IO has been sent. We can change the b_daddr
6428			 * field of the L2 portion, though, since we'll
6429			 * be holding the l2ad_mtx; which is why we're
6430			 * using it to denote the header's state change.
6431			 */
6432			hdr->b_l2hdr.b_daddr = L2ARC_ADDR_UNSET;
6433
6434			hdr->b_flags |= ARC_FLAG_HAS_L2HDR;
6435
6436			mutex_enter(&dev->l2ad_mtx);
6437			list_insert_head(&dev->l2ad_buflist, hdr);
6438			mutex_exit(&dev->l2ad_mtx);
6439
6440			/*
6441			 * Compute and store the buffer cksum before
6442			 * writing.  On debug the cksum is verified first.
6443			 */
6444			arc_cksum_verify(hdr->b_l1hdr.b_buf);
6445			arc_cksum_compute(hdr->b_l1hdr.b_buf, B_TRUE);
6446
6447			mutex_exit(hash_lock);
6448
6449			write_sz += buf_sz;
6450			write_asize += buf_a_sz;
6451		}
6452
6453		multilist_sublist_unlock(mls);
6454
6455		if (full == B_TRUE)
6456			break;
6457	}
6458
6459	/* No buffers selected for writing? */
6460	if (pio == NULL) {
6461		ASSERT0(write_sz);
6462		ASSERT(!HDR_HAS_L1HDR(head));
6463		kmem_cache_free(hdr_l2only_cache, head);
6464		return (0);
6465	}
6466
6467	mutex_enter(&dev->l2ad_mtx);
6468
6469	/*
6470	 * Note that elsewhere in this file arcstat_l2_asize
6471	 * and the used space on l2ad_vdev are updated using b_asize,
6472	 * which is not necessarily rounded up to the device block size.
6473	 * Too keep accounting consistent we do the same here as well:
6474	 * stats_size accumulates the sum of b_asize of the written buffers,
6475	 * while write_asize accumulates the sum of b_asize rounded up
6476	 * to the device block size.
6477	 * The latter sum is used only to validate the corectness of the code.
6478	 */
6479	uint64_t stats_size = 0;
6480	write_asize = 0;
6481
6482	/*
6483	 * Now start writing the buffers. We're starting at the write head
6484	 * and work backwards, retracing the course of the buffer selector
6485	 * loop above.
6486	 */
6487	for (hdr = list_prev(&dev->l2ad_buflist, head); hdr;
6488	    hdr = list_prev(&dev->l2ad_buflist, hdr)) {
6489		uint64_t buf_sz;
6490
6491		/*
6492		 * We rely on the L1 portion of the header below, so
6493		 * it's invalid for this header to have been evicted out
6494		 * of the ghost cache, prior to being written out. The
6495		 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
6496		 */
6497		ASSERT(HDR_HAS_L1HDR(hdr));
6498
6499		/*
6500		 * We shouldn't need to lock the buffer here, since we flagged
6501		 * it as ARC_FLAG_L2_WRITING in the previous step, but we must
6502		 * take care to only access its L2 cache parameters. In
6503		 * particular, hdr->l1hdr.b_buf may be invalid by now due to
6504		 * ARC eviction.
6505		 */
6506		hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
6507
6508		if ((HDR_L2COMPRESS(hdr)) &&
6509		    hdr->b_l2hdr.b_asize >= buf_compress_minsz) {
6510			if (l2arc_compress_buf(hdr)) {
6511				/*
6512				 * If compression succeeded, enable headroom
6513				 * boost on the next scan cycle.
6514				 */
6515				*headroom_boost = B_TRUE;
6516			}
6517		}
6518
6519		/*
6520		 * Pick up the buffer data we had previously stashed away
6521		 * (and now potentially also compressed).
6522		 */
6523		buf_data = hdr->b_l1hdr.b_tmp_cdata;
6524		buf_sz = hdr->b_l2hdr.b_asize;
6525
6526		/*
6527		 * We need to do this regardless if buf_sz is zero or
6528		 * not, otherwise, when this l2hdr is evicted we'll
6529		 * remove a reference that was never added.
6530		 */
6531		(void) refcount_add_many(&dev->l2ad_alloc, buf_sz, hdr);
6532
6533		/* Compression may have squashed the buffer to zero length. */
6534		if (buf_sz != 0) {
6535			uint64_t buf_a_sz;
6536
6537			wzio = zio_write_phys(pio, dev->l2ad_vdev,
6538			    dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
6539			    NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
6540			    ZIO_FLAG_CANFAIL, B_FALSE);
6541
6542			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
6543			    zio_t *, wzio);
6544			(void) zio_nowait(wzio);
6545
6546			stats_size += buf_sz;
6547
6548			/*
6549			 * Keep the clock hand suitably device-aligned.
6550			 */
6551			buf_a_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
6552			write_asize += buf_a_sz;
6553			dev->l2ad_hand += buf_a_sz;
6554		}
6555	}
6556
6557	mutex_exit(&dev->l2ad_mtx);
6558
6559	ASSERT3U(write_asize, <=, target_sz);
6560	ARCSTAT_BUMP(arcstat_l2_writes_sent);
6561	ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
6562	ARCSTAT_INCR(arcstat_l2_size, write_sz);
6563	ARCSTAT_INCR(arcstat_l2_asize, stats_size);
6564	vdev_space_update(dev->l2ad_vdev, stats_size, 0, 0);
6565
6566	/*
6567	 * Bump device hand to the device start if it is approaching the end.
6568	 * l2arc_evict() will already have evicted ahead for this case.
6569	 */
6570	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
6571		dev->l2ad_hand = dev->l2ad_start;
6572		dev->l2ad_first = B_FALSE;
6573	}
6574
6575	dev->l2ad_writing = B_TRUE;
6576	(void) zio_wait(pio);
6577	dev->l2ad_writing = B_FALSE;
6578
6579	return (write_asize);
6580}
6581
6582/*
6583 * Compresses an L2ARC buffer.
6584 * The data to be compressed must be prefilled in l1hdr.b_tmp_cdata and its
6585 * size in l2hdr->b_asize. This routine tries to compress the data and
6586 * depending on the compression result there are three possible outcomes:
6587 * *) The buffer was incompressible. The original l2hdr contents were left
6588 *    untouched and are ready for writing to an L2 device.
6589 * *) The buffer was all-zeros, so there is no need to write it to an L2
6590 *    device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is
6591 *    set to zero and b_compress is set to ZIO_COMPRESS_EMPTY.
6592 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary
6593 *    data buffer which holds the compressed data to be written, and b_asize
6594 *    tells us how much data there is. b_compress is set to the appropriate
6595 *    compression algorithm. Once writing is done, invoke
6596 *    l2arc_release_cdata_buf on this l2hdr to free this temporary buffer.
6597 *
6598 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the
6599 * buffer was incompressible).
6600 */
6601static boolean_t
6602l2arc_compress_buf(arc_buf_hdr_t *hdr)
6603{
6604	void *cdata;
6605	size_t csize, len, rounded;
6606	ASSERT(HDR_HAS_L2HDR(hdr));
6607	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
6608
6609	ASSERT(HDR_HAS_L1HDR(hdr));
6610	ASSERT3S(l2hdr->b_compress, ==, ZIO_COMPRESS_OFF);
6611	ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
6612
6613	len = l2hdr->b_asize;
6614	cdata = zio_data_buf_alloc(len);
6615	ASSERT3P(cdata, !=, NULL);
6616	csize = zio_compress_data(ZIO_COMPRESS_LZ4, hdr->b_l1hdr.b_tmp_cdata,
6617	    cdata, l2hdr->b_asize);
6618
6619	if (csize == 0) {
6620		/* zero block, indicate that there's nothing to write */
6621		zio_data_buf_free(cdata, len);
6622		l2hdr->b_compress = ZIO_COMPRESS_EMPTY;
6623		l2hdr->b_asize = 0;
6624		hdr->b_l1hdr.b_tmp_cdata = NULL;
6625		ARCSTAT_BUMP(arcstat_l2_compress_zeros);
6626		return (B_TRUE);
6627	}
6628
6629	rounded = P2ROUNDUP(csize,
6630	    (size_t)1 << l2hdr->b_dev->l2ad_vdev->vdev_ashift);
6631	if (rounded < len) {
6632		/*
6633		 * Compression succeeded, we'll keep the cdata around for
6634		 * writing and release it afterwards.
6635		 */
6636		if (rounded > csize) {
6637			bzero((char *)cdata + csize, rounded - csize);
6638			csize = rounded;
6639		}
6640		l2hdr->b_compress = ZIO_COMPRESS_LZ4;
6641		l2hdr->b_asize = csize;
6642		hdr->b_l1hdr.b_tmp_cdata = cdata;
6643		ARCSTAT_BUMP(arcstat_l2_compress_successes);
6644		return (B_TRUE);
6645	} else {
6646		/*
6647		 * Compression failed, release the compressed buffer.
6648		 * l2hdr will be left unmodified.
6649		 */
6650		zio_data_buf_free(cdata, len);
6651		ARCSTAT_BUMP(arcstat_l2_compress_failures);
6652		return (B_FALSE);
6653	}
6654}
6655
6656/*
6657 * Decompresses a zio read back from an l2arc device. On success, the
6658 * underlying zio's io_data buffer is overwritten by the uncompressed
6659 * version. On decompression error (corrupt compressed stream), the
6660 * zio->io_error value is set to signal an I/O error.
6661 *
6662 * Please note that the compressed data stream is not checksummed, so
6663 * if the underlying device is experiencing data corruption, we may feed
6664 * corrupt data to the decompressor, so the decompressor needs to be
6665 * able to handle this situation (LZ4 does).
6666 */
6667static void
6668l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c)
6669{
6670	ASSERT(L2ARC_IS_VALID_COMPRESS(c));
6671
6672	if (zio->io_error != 0) {
6673		/*
6674		 * An io error has occured, just restore the original io
6675		 * size in preparation for a main pool read.
6676		 */
6677		zio->io_orig_size = zio->io_size = hdr->b_size;
6678		return;
6679	}
6680
6681	if (c == ZIO_COMPRESS_EMPTY) {
6682		/*
6683		 * An empty buffer results in a null zio, which means we
6684		 * need to fill its io_data after we're done restoring the
6685		 * buffer's contents.
6686		 */
6687		ASSERT(hdr->b_l1hdr.b_buf != NULL);
6688		bzero(hdr->b_l1hdr.b_buf->b_data, hdr->b_size);
6689		zio->io_data = zio->io_orig_data = hdr->b_l1hdr.b_buf->b_data;
6690	} else {
6691		ASSERT(zio->io_data != NULL);
6692		/*
6693		 * We copy the compressed data from the start of the arc buffer
6694		 * (the zio_read will have pulled in only what we need, the
6695		 * rest is garbage which we will overwrite at decompression)
6696		 * and then decompress back to the ARC data buffer. This way we
6697		 * can minimize copying by simply decompressing back over the
6698		 * original compressed data (rather than decompressing to an
6699		 * aux buffer and then copying back the uncompressed buffer,
6700		 * which is likely to be much larger).
6701		 */
6702		uint64_t csize;
6703		void *cdata;
6704
6705		csize = zio->io_size;
6706		cdata = zio_data_buf_alloc(csize);
6707		bcopy(zio->io_data, cdata, csize);
6708		if (zio_decompress_data(c, cdata, zio->io_data, csize,
6709		    hdr->b_size) != 0)
6710			zio->io_error = EIO;
6711		zio_data_buf_free(cdata, csize);
6712	}
6713
6714	/* Restore the expected uncompressed IO size. */
6715	zio->io_orig_size = zio->io_size = hdr->b_size;
6716}
6717
6718/*
6719 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure.
6720 * This buffer serves as a temporary holder of compressed data while
6721 * the buffer entry is being written to an l2arc device. Once that is
6722 * done, we can dispose of it.
6723 */
6724static void
6725l2arc_release_cdata_buf(arc_buf_hdr_t *hdr)
6726{
6727	ASSERT(HDR_HAS_L2HDR(hdr));
6728	enum zio_compress comp = hdr->b_l2hdr.b_compress;
6729
6730	ASSERT(HDR_HAS_L1HDR(hdr));
6731	ASSERT(comp == ZIO_COMPRESS_OFF || L2ARC_IS_VALID_COMPRESS(comp));
6732
6733	if (comp == ZIO_COMPRESS_OFF) {
6734		/*
6735		 * In this case, b_tmp_cdata points to the same buffer
6736		 * as the arc_buf_t's b_data field. We don't want to
6737		 * free it, since the arc_buf_t will handle that.
6738		 */
6739		hdr->b_l1hdr.b_tmp_cdata = NULL;
6740	} else if (comp == ZIO_COMPRESS_EMPTY) {
6741		/*
6742		 * In this case, b_tmp_cdata was compressed to an empty
6743		 * buffer, thus there's nothing to free and b_tmp_cdata
6744		 * should have been set to NULL in l2arc_write_buffers().
6745		 */
6746		ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
6747	} else {
6748		/*
6749		 * If the data was compressed, then we've allocated a
6750		 * temporary buffer for it, so now we need to release it.
6751		 */
6752		ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
6753		zio_data_buf_free(hdr->b_l1hdr.b_tmp_cdata,
6754		    hdr->b_size);
6755		hdr->b_l1hdr.b_tmp_cdata = NULL;
6756	}
6757
6758}
6759
6760/*
6761 * This thread feeds the L2ARC at regular intervals.  This is the beating
6762 * heart of the L2ARC.
6763 */
6764static void
6765l2arc_feed_thread(void *dummy __unused)
6766{
6767	callb_cpr_t cpr;
6768	l2arc_dev_t *dev;
6769	spa_t *spa;
6770	uint64_t size, wrote;
6771	clock_t begin, next = ddi_get_lbolt();
6772	boolean_t headroom_boost = B_FALSE;
6773
6774	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
6775
6776	mutex_enter(&l2arc_feed_thr_lock);
6777
6778	while (l2arc_thread_exit == 0) {
6779		CALLB_CPR_SAFE_BEGIN(&cpr);
6780		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
6781		    next - ddi_get_lbolt());
6782		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
6783		next = ddi_get_lbolt() + hz;
6784
6785		/*
6786		 * Quick check for L2ARC devices.
6787		 */
6788		mutex_enter(&l2arc_dev_mtx);
6789		if (l2arc_ndev == 0) {
6790			mutex_exit(&l2arc_dev_mtx);
6791			continue;
6792		}
6793		mutex_exit(&l2arc_dev_mtx);
6794		begin = ddi_get_lbolt();
6795
6796		/*
6797		 * This selects the next l2arc device to write to, and in
6798		 * doing so the next spa to feed from: dev->l2ad_spa.   This
6799		 * will return NULL if there are now no l2arc devices or if
6800		 * they are all faulted.
6801		 *
6802		 * If a device is returned, its spa's config lock is also
6803		 * held to prevent device removal.  l2arc_dev_get_next()
6804		 * will grab and release l2arc_dev_mtx.
6805		 */
6806		if ((dev = l2arc_dev_get_next()) == NULL)
6807			continue;
6808
6809		spa = dev->l2ad_spa;
6810		ASSERT(spa != NULL);
6811
6812		/*
6813		 * If the pool is read-only then force the feed thread to
6814		 * sleep a little longer.
6815		 */
6816		if (!spa_writeable(spa)) {
6817			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
6818			spa_config_exit(spa, SCL_L2ARC, dev);
6819			continue;
6820		}
6821
6822		/*
6823		 * Avoid contributing to memory pressure.
6824		 */
6825		if (arc_reclaim_needed()) {
6826			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
6827			spa_config_exit(spa, SCL_L2ARC, dev);
6828			continue;
6829		}
6830
6831		ARCSTAT_BUMP(arcstat_l2_feeds);
6832
6833		size = l2arc_write_size();
6834
6835		/*
6836		 * Evict L2ARC buffers that will be overwritten.
6837		 */
6838		l2arc_evict(dev, size, B_FALSE);
6839
6840		/*
6841		 * Write ARC buffers.
6842		 */
6843		wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost);
6844
6845		/*
6846		 * Calculate interval between writes.
6847		 */
6848		next = l2arc_write_interval(begin, size, wrote);
6849		spa_config_exit(spa, SCL_L2ARC, dev);
6850	}
6851
6852	l2arc_thread_exit = 0;
6853	cv_broadcast(&l2arc_feed_thr_cv);
6854	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
6855	thread_exit();
6856}
6857
6858boolean_t
6859l2arc_vdev_present(vdev_t *vd)
6860{
6861	l2arc_dev_t *dev;
6862
6863	mutex_enter(&l2arc_dev_mtx);
6864	for (dev = list_head(l2arc_dev_list); dev != NULL;
6865	    dev = list_next(l2arc_dev_list, dev)) {
6866		if (dev->l2ad_vdev == vd)
6867			break;
6868	}
6869	mutex_exit(&l2arc_dev_mtx);
6870
6871	return (dev != NULL);
6872}
6873
6874/*
6875 * Add a vdev for use by the L2ARC.  By this point the spa has already
6876 * validated the vdev and opened it.
6877 */
6878void
6879l2arc_add_vdev(spa_t *spa, vdev_t *vd)
6880{
6881	l2arc_dev_t *adddev;
6882
6883	ASSERT(!l2arc_vdev_present(vd));
6884
6885	vdev_ashift_optimize(vd);
6886
6887	/*
6888	 * Create a new l2arc device entry.
6889	 */
6890	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
6891	adddev->l2ad_spa = spa;
6892	adddev->l2ad_vdev = vd;
6893	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
6894	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
6895	adddev->l2ad_hand = adddev->l2ad_start;
6896	adddev->l2ad_first = B_TRUE;
6897	adddev->l2ad_writing = B_FALSE;
6898
6899	mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
6900	/*
6901	 * This is a list of all ARC buffers that are still valid on the
6902	 * device.
6903	 */
6904	list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
6905	    offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
6906
6907	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
6908	refcount_create(&adddev->l2ad_alloc);
6909
6910	/*
6911	 * Add device to global list
6912	 */
6913	mutex_enter(&l2arc_dev_mtx);
6914	list_insert_head(l2arc_dev_list, adddev);
6915	atomic_inc_64(&l2arc_ndev);
6916	mutex_exit(&l2arc_dev_mtx);
6917}
6918
6919/*
6920 * Remove a vdev from the L2ARC.
6921 */
6922void
6923l2arc_remove_vdev(vdev_t *vd)
6924{
6925	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
6926
6927	/*
6928	 * Find the device by vdev
6929	 */
6930	mutex_enter(&l2arc_dev_mtx);
6931	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
6932		nextdev = list_next(l2arc_dev_list, dev);
6933		if (vd == dev->l2ad_vdev) {
6934			remdev = dev;
6935			break;
6936		}
6937	}
6938	ASSERT(remdev != NULL);
6939
6940	/*
6941	 * Remove device from global list
6942	 */
6943	list_remove(l2arc_dev_list, remdev);
6944	l2arc_dev_last = NULL;		/* may have been invalidated */
6945	atomic_dec_64(&l2arc_ndev);
6946	mutex_exit(&l2arc_dev_mtx);
6947
6948	/*
6949	 * Clear all buflists and ARC references.  L2ARC device flush.
6950	 */
6951	l2arc_evict(remdev, 0, B_TRUE);
6952	list_destroy(&remdev->l2ad_buflist);
6953	mutex_destroy(&remdev->l2ad_mtx);
6954	refcount_destroy(&remdev->l2ad_alloc);
6955	kmem_free(remdev, sizeof (l2arc_dev_t));
6956}
6957
6958void
6959l2arc_init(void)
6960{
6961	l2arc_thread_exit = 0;
6962	l2arc_ndev = 0;
6963	l2arc_writes_sent = 0;
6964	l2arc_writes_done = 0;
6965
6966	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
6967	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
6968	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
6969	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
6970
6971	l2arc_dev_list = &L2ARC_dev_list;
6972	l2arc_free_on_write = &L2ARC_free_on_write;
6973	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
6974	    offsetof(l2arc_dev_t, l2ad_node));
6975	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
6976	    offsetof(l2arc_data_free_t, l2df_list_node));
6977}
6978
6979void
6980l2arc_fini(void)
6981{
6982	/*
6983	 * This is called from dmu_fini(), which is called from spa_fini();
6984	 * Because of this, we can assume that all l2arc devices have
6985	 * already been removed when the pools themselves were removed.
6986	 */
6987
6988	l2arc_do_free_on_write();
6989
6990	mutex_destroy(&l2arc_feed_thr_lock);
6991	cv_destroy(&l2arc_feed_thr_cv);
6992	mutex_destroy(&l2arc_dev_mtx);
6993	mutex_destroy(&l2arc_free_on_write_mtx);
6994
6995	list_destroy(l2arc_dev_list);
6996	list_destroy(l2arc_free_on_write);
6997}
6998
6999void
7000l2arc_start(void)
7001{
7002	if (!(spa_mode_global & FWRITE))
7003		return;
7004
7005	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
7006	    TS_RUN, minclsyspri);
7007}
7008
7009void
7010l2arc_stop(void)
7011{
7012	if (!(spa_mode_global & FWRITE))
7013		return;
7014
7015	mutex_enter(&l2arc_feed_thr_lock);
7016	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
7017	l2arc_thread_exit = 1;
7018	while (l2arc_thread_exit != 0)
7019		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
7020	mutex_exit(&l2arc_feed_thr_lock);
7021}
7022