arc.c revision 288596
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26 * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
27 */
28
29/*
30 * DVA-based Adjustable Replacement Cache
31 *
32 * While much of the theory of operation used here is
33 * based on the self-tuning, low overhead replacement cache
34 * presented by Megiddo and Modha at FAST 2003, there are some
35 * significant differences:
36 *
37 * 1. The Megiddo and Modha model assumes any page is evictable.
38 * Pages in its cache cannot be "locked" into memory.  This makes
39 * the eviction algorithm simple: evict the last page in the list.
40 * This also make the performance characteristics easy to reason
41 * about.  Our cache is not so simple.  At any given moment, some
42 * subset of the blocks in the cache are un-evictable because we
43 * have handed out a reference to them.  Blocks are only evictable
44 * when there are no external references active.  This makes
45 * eviction far more problematic:  we choose to evict the evictable
46 * blocks that are the "lowest" in the list.
47 *
48 * There are times when it is not possible to evict the requested
49 * space.  In these circumstances we are unable to adjust the cache
50 * size.  To prevent the cache growing unbounded at these times we
51 * implement a "cache throttle" that slows the flow of new data
52 * into the cache until we can make space available.
53 *
54 * 2. The Megiddo and Modha model assumes a fixed cache size.
55 * Pages are evicted when the cache is full and there is a cache
56 * miss.  Our model has a variable sized cache.  It grows with
57 * high use, but also tries to react to memory pressure from the
58 * operating system: decreasing its size when system memory is
59 * tight.
60 *
61 * 3. The Megiddo and Modha model assumes a fixed page size. All
62 * elements of the cache are therefore exactly the same size.  So
63 * when adjusting the cache size following a cache miss, its simply
64 * a matter of choosing a single page to evict.  In our model, we
65 * have variable sized cache blocks (rangeing from 512 bytes to
66 * 128K bytes).  We therefore choose a set of blocks to evict to make
67 * space for a cache miss that approximates as closely as possible
68 * the space used by the new block.
69 *
70 * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71 * by N. Megiddo & D. Modha, FAST 2003
72 */
73
74/*
75 * The locking model:
76 *
77 * A new reference to a cache buffer can be obtained in two
78 * ways: 1) via a hash table lookup using the DVA as a key,
79 * or 2) via one of the ARC lists.  The arc_read() interface
80 * uses method 1, while the internal arc algorithms for
81 * adjusting the cache use method 2.  We therefore provide two
82 * types of locks: 1) the hash table lock array, and 2) the
83 * arc list locks.
84 *
85 * Buffers do not have their own mutexes, rather they rely on the
86 * hash table mutexes for the bulk of their protection (i.e. most
87 * fields in the arc_buf_hdr_t are protected by these mutexes).
88 *
89 * buf_hash_find() returns the appropriate mutex (held) when it
90 * locates the requested buffer in the hash table.  It returns
91 * NULL for the mutex if the buffer was not in the table.
92 *
93 * buf_hash_remove() expects the appropriate hash mutex to be
94 * already held before it is invoked.
95 *
96 * Each arc state also has a mutex which is used to protect the
97 * buffer list associated with the state.  When attempting to
98 * obtain a hash table lock while holding an arc list lock you
99 * must use: mutex_tryenter() to avoid deadlock.  Also note that
100 * the active state mutex must be held before the ghost state mutex.
101 *
102 * Arc buffers may have an associated eviction callback function.
103 * This function will be invoked prior to removing the buffer (e.g.
104 * in arc_do_user_evicts()).  Note however that the data associated
105 * with the buffer may be evicted prior to the callback.  The callback
106 * must be made with *no locks held* (to prevent deadlock).  Additionally,
107 * the users of callbacks must ensure that their private data is
108 * protected from simultaneous callbacks from arc_clear_callback()
109 * and arc_do_user_evicts().
110 *
111 * Note that the majority of the performance stats are manipulated
112 * with atomic operations.
113 *
114 * The L2ARC uses the l2ad_mtx on each vdev for the following:
115 *
116 *	- L2ARC buflist creation
117 *	- L2ARC buflist eviction
118 *	- L2ARC write completion, which walks L2ARC buflists
119 *	- ARC header destruction, as it removes from L2ARC buflists
120 *	- ARC header release, as it removes from L2ARC buflists
121 */
122
123#include <sys/spa.h>
124#include <sys/zio.h>
125#include <sys/zio_compress.h>
126#include <sys/zfs_context.h>
127#include <sys/arc.h>
128#include <sys/refcount.h>
129#include <sys/vdev.h>
130#include <sys/vdev_impl.h>
131#include <sys/dsl_pool.h>
132#include <sys/multilist.h>
133#ifdef _KERNEL
134#include <sys/dnlc.h>
135#endif
136#include <sys/callb.h>
137#include <sys/kstat.h>
138#include <sys/trim_map.h>
139#include <zfs_fletcher.h>
140#include <sys/sdt.h>
141
142#include <vm/vm_pageout.h>
143#include <machine/vmparam.h>
144
145#ifdef illumos
146#ifndef _KERNEL
147/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
148boolean_t arc_watch = B_FALSE;
149int arc_procfd;
150#endif
151#endif /* illumos */
152
153static kmutex_t		arc_reclaim_lock;
154static kcondvar_t	arc_reclaim_thread_cv;
155static boolean_t	arc_reclaim_thread_exit;
156static kcondvar_t	arc_reclaim_waiters_cv;
157
158static kmutex_t		arc_user_evicts_lock;
159static kcondvar_t	arc_user_evicts_cv;
160static boolean_t	arc_user_evicts_thread_exit;
161
162uint_t arc_reduce_dnlc_percent = 3;
163
164/*
165 * The number of headers to evict in arc_evict_state_impl() before
166 * dropping the sublist lock and evicting from another sublist. A lower
167 * value means we're more likely to evict the "correct" header (i.e. the
168 * oldest header in the arc state), but comes with higher overhead
169 * (i.e. more invocations of arc_evict_state_impl()).
170 */
171int zfs_arc_evict_batch_limit = 10;
172
173/*
174 * The number of sublists used for each of the arc state lists. If this
175 * is not set to a suitable value by the user, it will be configured to
176 * the number of CPUs on the system in arc_init().
177 */
178int zfs_arc_num_sublists_per_state = 0;
179
180/* number of seconds before growing cache again */
181static int		arc_grow_retry = 60;
182
183/* shift of arc_c for calculating overflow limit in arc_get_data_buf */
184int		zfs_arc_overflow_shift = 8;
185
186/* shift of arc_c for calculating both min and max arc_p */
187static int		arc_p_min_shift = 4;
188
189/* log2(fraction of arc to reclaim) */
190static int		arc_shrink_shift = 7;
191
192/*
193 * log2(fraction of ARC which must be free to allow growing).
194 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
195 * when reading a new block into the ARC, we will evict an equal-sized block
196 * from the ARC.
197 *
198 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
199 * we will still not allow it to grow.
200 */
201int			arc_no_grow_shift = 5;
202
203
204/*
205 * minimum lifespan of a prefetch block in clock ticks
206 * (initialized in arc_init())
207 */
208static int		arc_min_prefetch_lifespan;
209
210/*
211 * If this percent of memory is free, don't throttle.
212 */
213int arc_lotsfree_percent = 10;
214
215static int arc_dead;
216extern boolean_t zfs_prefetch_disable;
217
218/*
219 * The arc has filled available memory and has now warmed up.
220 */
221static boolean_t arc_warm;
222
223/*
224 * These tunables are for performance analysis.
225 */
226uint64_t zfs_arc_max;
227uint64_t zfs_arc_min;
228uint64_t zfs_arc_meta_limit = 0;
229uint64_t zfs_arc_meta_min = 0;
230int zfs_arc_grow_retry = 0;
231int zfs_arc_shrink_shift = 0;
232int zfs_arc_p_min_shift = 0;
233int zfs_disable_dup_eviction = 0;
234uint64_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
235u_int zfs_arc_free_target = 0;
236
237static int sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS);
238static int sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS);
239
240#ifdef _KERNEL
241static void
242arc_free_target_init(void *unused __unused)
243{
244
245	zfs_arc_free_target = vm_pageout_wakeup_thresh;
246}
247SYSINIT(arc_free_target_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_ANY,
248    arc_free_target_init, NULL);
249
250TUNABLE_QUAD("vfs.zfs.arc_max", &zfs_arc_max);
251TUNABLE_QUAD("vfs.zfs.arc_min", &zfs_arc_min);
252TUNABLE_QUAD("vfs.zfs.arc_meta_limit", &zfs_arc_meta_limit);
253TUNABLE_QUAD("vfs.zfs.arc_meta_min", &zfs_arc_meta_min);
254TUNABLE_QUAD("vfs.zfs.arc_average_blocksize", &zfs_arc_average_blocksize);
255TUNABLE_INT("vfs.zfs.arc_shrink_shift", &zfs_arc_shrink_shift);
256SYSCTL_DECL(_vfs_zfs);
257SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_max, CTLFLAG_RDTUN, &zfs_arc_max, 0,
258    "Maximum ARC size");
259SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_min, CTLFLAG_RDTUN, &zfs_arc_min, 0,
260    "Minimum ARC size");
261SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_average_blocksize, CTLFLAG_RDTUN,
262    &zfs_arc_average_blocksize, 0,
263    "ARC average blocksize");
264SYSCTL_INT(_vfs_zfs, OID_AUTO, arc_shrink_shift, CTLFLAG_RW,
265    &arc_shrink_shift, 0,
266    "log2(fraction of arc to reclaim)");
267
268/*
269 * We don't have a tunable for arc_free_target due to the dependency on
270 * pagedaemon initialisation.
271 */
272SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_free_target,
273    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(u_int),
274    sysctl_vfs_zfs_arc_free_target, "IU",
275    "Desired number of free pages below which ARC triggers reclaim");
276
277static int
278sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS)
279{
280	u_int val;
281	int err;
282
283	val = zfs_arc_free_target;
284	err = sysctl_handle_int(oidp, &val, 0, req);
285	if (err != 0 || req->newptr == NULL)
286		return (err);
287
288	if (val < minfree)
289		return (EINVAL);
290	if (val > cnt.v_page_count)
291		return (EINVAL);
292
293	zfs_arc_free_target = val;
294
295	return (0);
296}
297
298/*
299 * Must be declared here, before the definition of corresponding kstat
300 * macro which uses the same names will confuse the compiler.
301 */
302SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_meta_limit,
303    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
304    sysctl_vfs_zfs_arc_meta_limit, "QU",
305    "ARC metadata limit");
306#endif
307
308/*
309 * Note that buffers can be in one of 6 states:
310 *	ARC_anon	- anonymous (discussed below)
311 *	ARC_mru		- recently used, currently cached
312 *	ARC_mru_ghost	- recentely used, no longer in cache
313 *	ARC_mfu		- frequently used, currently cached
314 *	ARC_mfu_ghost	- frequently used, no longer in cache
315 *	ARC_l2c_only	- exists in L2ARC but not other states
316 * When there are no active references to the buffer, they are
317 * are linked onto a list in one of these arc states.  These are
318 * the only buffers that can be evicted or deleted.  Within each
319 * state there are multiple lists, one for meta-data and one for
320 * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
321 * etc.) is tracked separately so that it can be managed more
322 * explicitly: favored over data, limited explicitly.
323 *
324 * Anonymous buffers are buffers that are not associated with
325 * a DVA.  These are buffers that hold dirty block copies
326 * before they are written to stable storage.  By definition,
327 * they are "ref'd" and are considered part of arc_mru
328 * that cannot be freed.  Generally, they will aquire a DVA
329 * as they are written and migrate onto the arc_mru list.
330 *
331 * The ARC_l2c_only state is for buffers that are in the second
332 * level ARC but no longer in any of the ARC_m* lists.  The second
333 * level ARC itself may also contain buffers that are in any of
334 * the ARC_m* states - meaning that a buffer can exist in two
335 * places.  The reason for the ARC_l2c_only state is to keep the
336 * buffer header in the hash table, so that reads that hit the
337 * second level ARC benefit from these fast lookups.
338 */
339
340typedef struct arc_state {
341	/*
342	 * list of evictable buffers
343	 */
344	multilist_t arcs_list[ARC_BUFC_NUMTYPES];
345	/*
346	 * total amount of evictable data in this state
347	 */
348	uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];
349	/*
350	 * total amount of data in this state; this includes: evictable,
351	 * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA.
352	 */
353	refcount_t arcs_size;
354} arc_state_t;
355
356/* The 6 states: */
357static arc_state_t ARC_anon;
358static arc_state_t ARC_mru;
359static arc_state_t ARC_mru_ghost;
360static arc_state_t ARC_mfu;
361static arc_state_t ARC_mfu_ghost;
362static arc_state_t ARC_l2c_only;
363
364typedef struct arc_stats {
365	kstat_named_t arcstat_hits;
366	kstat_named_t arcstat_misses;
367	kstat_named_t arcstat_demand_data_hits;
368	kstat_named_t arcstat_demand_data_misses;
369	kstat_named_t arcstat_demand_metadata_hits;
370	kstat_named_t arcstat_demand_metadata_misses;
371	kstat_named_t arcstat_prefetch_data_hits;
372	kstat_named_t arcstat_prefetch_data_misses;
373	kstat_named_t arcstat_prefetch_metadata_hits;
374	kstat_named_t arcstat_prefetch_metadata_misses;
375	kstat_named_t arcstat_mru_hits;
376	kstat_named_t arcstat_mru_ghost_hits;
377	kstat_named_t arcstat_mfu_hits;
378	kstat_named_t arcstat_mfu_ghost_hits;
379	kstat_named_t arcstat_allocated;
380	kstat_named_t arcstat_deleted;
381	/*
382	 * Number of buffers that could not be evicted because the hash lock
383	 * was held by another thread.  The lock may not necessarily be held
384	 * by something using the same buffer, since hash locks are shared
385	 * by multiple buffers.
386	 */
387	kstat_named_t arcstat_mutex_miss;
388	/*
389	 * Number of buffers skipped because they have I/O in progress, are
390	 * indrect prefetch buffers that have not lived long enough, or are
391	 * not from the spa we're trying to evict from.
392	 */
393	kstat_named_t arcstat_evict_skip;
394	/*
395	 * Number of times arc_evict_state() was unable to evict enough
396	 * buffers to reach it's target amount.
397	 */
398	kstat_named_t arcstat_evict_not_enough;
399	kstat_named_t arcstat_evict_l2_cached;
400	kstat_named_t arcstat_evict_l2_eligible;
401	kstat_named_t arcstat_evict_l2_ineligible;
402	kstat_named_t arcstat_evict_l2_skip;
403	kstat_named_t arcstat_hash_elements;
404	kstat_named_t arcstat_hash_elements_max;
405	kstat_named_t arcstat_hash_collisions;
406	kstat_named_t arcstat_hash_chains;
407	kstat_named_t arcstat_hash_chain_max;
408	kstat_named_t arcstat_p;
409	kstat_named_t arcstat_c;
410	kstat_named_t arcstat_c_min;
411	kstat_named_t arcstat_c_max;
412	kstat_named_t arcstat_size;
413	/*
414	 * Number of bytes consumed by internal ARC structures necessary
415	 * for tracking purposes; these structures are not actually
416	 * backed by ARC buffers. This includes arc_buf_hdr_t structures
417	 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
418	 * caches), and arc_buf_t structures (allocated via arc_buf_t
419	 * cache).
420	 */
421	kstat_named_t arcstat_hdr_size;
422	/*
423	 * Number of bytes consumed by ARC buffers of type equal to
424	 * ARC_BUFC_DATA. This is generally consumed by buffers backing
425	 * on disk user data (e.g. plain file contents).
426	 */
427	kstat_named_t arcstat_data_size;
428	/*
429	 * Number of bytes consumed by ARC buffers of type equal to
430	 * ARC_BUFC_METADATA. This is generally consumed by buffers
431	 * backing on disk data that is used for internal ZFS
432	 * structures (e.g. ZAP, dnode, indirect blocks, etc).
433	 */
434	kstat_named_t arcstat_metadata_size;
435	/*
436	 * Number of bytes consumed by various buffers and structures
437	 * not actually backed with ARC buffers. This includes bonus
438	 * buffers (allocated directly via zio_buf_* functions),
439	 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t
440	 * cache), and dnode_t structures (allocated via dnode_t cache).
441	 */
442	kstat_named_t arcstat_other_size;
443	/*
444	 * Total number of bytes consumed by ARC buffers residing in the
445	 * arc_anon state. This includes *all* buffers in the arc_anon
446	 * state; e.g. data, metadata, evictable, and unevictable buffers
447	 * are all included in this value.
448	 */
449	kstat_named_t arcstat_anon_size;
450	/*
451	 * Number of bytes consumed by ARC buffers that meet the
452	 * following criteria: backing buffers of type ARC_BUFC_DATA,
453	 * residing in the arc_anon state, and are eligible for eviction
454	 * (e.g. have no outstanding holds on the buffer).
455	 */
456	kstat_named_t arcstat_anon_evictable_data;
457	/*
458	 * Number of bytes consumed by ARC buffers that meet the
459	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
460	 * residing in the arc_anon state, and are eligible for eviction
461	 * (e.g. have no outstanding holds on the buffer).
462	 */
463	kstat_named_t arcstat_anon_evictable_metadata;
464	/*
465	 * Total number of bytes consumed by ARC buffers residing in the
466	 * arc_mru state. This includes *all* buffers in the arc_mru
467	 * state; e.g. data, metadata, evictable, and unevictable buffers
468	 * are all included in this value.
469	 */
470	kstat_named_t arcstat_mru_size;
471	/*
472	 * Number of bytes consumed by ARC buffers that meet the
473	 * following criteria: backing buffers of type ARC_BUFC_DATA,
474	 * residing in the arc_mru state, and are eligible for eviction
475	 * (e.g. have no outstanding holds on the buffer).
476	 */
477	kstat_named_t arcstat_mru_evictable_data;
478	/*
479	 * Number of bytes consumed by ARC buffers that meet the
480	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
481	 * residing in the arc_mru state, and are eligible for eviction
482	 * (e.g. have no outstanding holds on the buffer).
483	 */
484	kstat_named_t arcstat_mru_evictable_metadata;
485	/*
486	 * Total number of bytes that *would have been* consumed by ARC
487	 * buffers in the arc_mru_ghost state. The key thing to note
488	 * here, is the fact that this size doesn't actually indicate
489	 * RAM consumption. The ghost lists only consist of headers and
490	 * don't actually have ARC buffers linked off of these headers.
491	 * Thus, *if* the headers had associated ARC buffers, these
492	 * buffers *would have* consumed this number of bytes.
493	 */
494	kstat_named_t arcstat_mru_ghost_size;
495	/*
496	 * Number of bytes that *would have been* consumed by ARC
497	 * buffers that are eligible for eviction, of type
498	 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
499	 */
500	kstat_named_t arcstat_mru_ghost_evictable_data;
501	/*
502	 * Number of bytes that *would have been* consumed by ARC
503	 * buffers that are eligible for eviction, of type
504	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
505	 */
506	kstat_named_t arcstat_mru_ghost_evictable_metadata;
507	/*
508	 * Total number of bytes consumed by ARC buffers residing in the
509	 * arc_mfu state. This includes *all* buffers in the arc_mfu
510	 * state; e.g. data, metadata, evictable, and unevictable buffers
511	 * are all included in this value.
512	 */
513	kstat_named_t arcstat_mfu_size;
514	/*
515	 * Number of bytes consumed by ARC buffers that are eligible for
516	 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
517	 * state.
518	 */
519	kstat_named_t arcstat_mfu_evictable_data;
520	/*
521	 * Number of bytes consumed by ARC buffers that are eligible for
522	 * eviction, of type ARC_BUFC_METADATA, and reside in the
523	 * arc_mfu state.
524	 */
525	kstat_named_t arcstat_mfu_evictable_metadata;
526	/*
527	 * Total number of bytes that *would have been* consumed by ARC
528	 * buffers in the arc_mfu_ghost state. See the comment above
529	 * arcstat_mru_ghost_size for more details.
530	 */
531	kstat_named_t arcstat_mfu_ghost_size;
532	/*
533	 * Number of bytes that *would have been* consumed by ARC
534	 * buffers that are eligible for eviction, of type
535	 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
536	 */
537	kstat_named_t arcstat_mfu_ghost_evictable_data;
538	/*
539	 * Number of bytes that *would have been* consumed by ARC
540	 * buffers that are eligible for eviction, of type
541	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
542	 */
543	kstat_named_t arcstat_mfu_ghost_evictable_metadata;
544	kstat_named_t arcstat_l2_hits;
545	kstat_named_t arcstat_l2_misses;
546	kstat_named_t arcstat_l2_feeds;
547	kstat_named_t arcstat_l2_rw_clash;
548	kstat_named_t arcstat_l2_read_bytes;
549	kstat_named_t arcstat_l2_write_bytes;
550	kstat_named_t arcstat_l2_writes_sent;
551	kstat_named_t arcstat_l2_writes_done;
552	kstat_named_t arcstat_l2_writes_error;
553	kstat_named_t arcstat_l2_writes_lock_retry;
554	kstat_named_t arcstat_l2_evict_lock_retry;
555	kstat_named_t arcstat_l2_evict_reading;
556	kstat_named_t arcstat_l2_evict_l1cached;
557	kstat_named_t arcstat_l2_free_on_write;
558	kstat_named_t arcstat_l2_cdata_free_on_write;
559	kstat_named_t arcstat_l2_abort_lowmem;
560	kstat_named_t arcstat_l2_cksum_bad;
561	kstat_named_t arcstat_l2_io_error;
562	kstat_named_t arcstat_l2_size;
563	kstat_named_t arcstat_l2_asize;
564	kstat_named_t arcstat_l2_hdr_size;
565	kstat_named_t arcstat_l2_compress_successes;
566	kstat_named_t arcstat_l2_compress_zeros;
567	kstat_named_t arcstat_l2_compress_failures;
568	kstat_named_t arcstat_l2_write_trylock_fail;
569	kstat_named_t arcstat_l2_write_passed_headroom;
570	kstat_named_t arcstat_l2_write_spa_mismatch;
571	kstat_named_t arcstat_l2_write_in_l2;
572	kstat_named_t arcstat_l2_write_hdr_io_in_progress;
573	kstat_named_t arcstat_l2_write_not_cacheable;
574	kstat_named_t arcstat_l2_write_full;
575	kstat_named_t arcstat_l2_write_buffer_iter;
576	kstat_named_t arcstat_l2_write_pios;
577	kstat_named_t arcstat_l2_write_buffer_bytes_scanned;
578	kstat_named_t arcstat_l2_write_buffer_list_iter;
579	kstat_named_t arcstat_l2_write_buffer_list_null_iter;
580	kstat_named_t arcstat_memory_throttle_count;
581	kstat_named_t arcstat_duplicate_buffers;
582	kstat_named_t arcstat_duplicate_buffers_size;
583	kstat_named_t arcstat_duplicate_reads;
584	kstat_named_t arcstat_meta_used;
585	kstat_named_t arcstat_meta_limit;
586	kstat_named_t arcstat_meta_max;
587	kstat_named_t arcstat_meta_min;
588	kstat_named_t arcstat_sync_wait_for_async;
589	kstat_named_t arcstat_demand_hit_predictive_prefetch;
590} arc_stats_t;
591
592static arc_stats_t arc_stats = {
593	{ "hits",			KSTAT_DATA_UINT64 },
594	{ "misses",			KSTAT_DATA_UINT64 },
595	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
596	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
597	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
598	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
599	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
600	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
601	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
602	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
603	{ "mru_hits",			KSTAT_DATA_UINT64 },
604	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
605	{ "mfu_hits",			KSTAT_DATA_UINT64 },
606	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
607	{ "allocated",			KSTAT_DATA_UINT64 },
608	{ "deleted",			KSTAT_DATA_UINT64 },
609	{ "mutex_miss",			KSTAT_DATA_UINT64 },
610	{ "evict_skip",			KSTAT_DATA_UINT64 },
611	{ "evict_not_enough",		KSTAT_DATA_UINT64 },
612	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
613	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
614	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
615	{ "evict_l2_skip",		KSTAT_DATA_UINT64 },
616	{ "hash_elements",		KSTAT_DATA_UINT64 },
617	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
618	{ "hash_collisions",		KSTAT_DATA_UINT64 },
619	{ "hash_chains",		KSTAT_DATA_UINT64 },
620	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
621	{ "p",				KSTAT_DATA_UINT64 },
622	{ "c",				KSTAT_DATA_UINT64 },
623	{ "c_min",			KSTAT_DATA_UINT64 },
624	{ "c_max",			KSTAT_DATA_UINT64 },
625	{ "size",			KSTAT_DATA_UINT64 },
626	{ "hdr_size",			KSTAT_DATA_UINT64 },
627	{ "data_size",			KSTAT_DATA_UINT64 },
628	{ "metadata_size",		KSTAT_DATA_UINT64 },
629	{ "other_size",			KSTAT_DATA_UINT64 },
630	{ "anon_size",			KSTAT_DATA_UINT64 },
631	{ "anon_evictable_data",	KSTAT_DATA_UINT64 },
632	{ "anon_evictable_metadata",	KSTAT_DATA_UINT64 },
633	{ "mru_size",			KSTAT_DATA_UINT64 },
634	{ "mru_evictable_data",		KSTAT_DATA_UINT64 },
635	{ "mru_evictable_metadata",	KSTAT_DATA_UINT64 },
636	{ "mru_ghost_size",		KSTAT_DATA_UINT64 },
637	{ "mru_ghost_evictable_data",	KSTAT_DATA_UINT64 },
638	{ "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
639	{ "mfu_size",			KSTAT_DATA_UINT64 },
640	{ "mfu_evictable_data",		KSTAT_DATA_UINT64 },
641	{ "mfu_evictable_metadata",	KSTAT_DATA_UINT64 },
642	{ "mfu_ghost_size",		KSTAT_DATA_UINT64 },
643	{ "mfu_ghost_evictable_data",	KSTAT_DATA_UINT64 },
644	{ "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
645	{ "l2_hits",			KSTAT_DATA_UINT64 },
646	{ "l2_misses",			KSTAT_DATA_UINT64 },
647	{ "l2_feeds",			KSTAT_DATA_UINT64 },
648	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
649	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
650	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
651	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
652	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
653	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
654	{ "l2_writes_lock_retry",	KSTAT_DATA_UINT64 },
655	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
656	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
657	{ "l2_evict_l1cached",		KSTAT_DATA_UINT64 },
658	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
659	{ "l2_cdata_free_on_write",	KSTAT_DATA_UINT64 },
660	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
661	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
662	{ "l2_io_error",		KSTAT_DATA_UINT64 },
663	{ "l2_size",			KSTAT_DATA_UINT64 },
664	{ "l2_asize",			KSTAT_DATA_UINT64 },
665	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
666	{ "l2_compress_successes",	KSTAT_DATA_UINT64 },
667	{ "l2_compress_zeros",		KSTAT_DATA_UINT64 },
668	{ "l2_compress_failures",	KSTAT_DATA_UINT64 },
669	{ "l2_write_trylock_fail",	KSTAT_DATA_UINT64 },
670	{ "l2_write_passed_headroom",	KSTAT_DATA_UINT64 },
671	{ "l2_write_spa_mismatch",	KSTAT_DATA_UINT64 },
672	{ "l2_write_in_l2",		KSTAT_DATA_UINT64 },
673	{ "l2_write_io_in_progress",	KSTAT_DATA_UINT64 },
674	{ "l2_write_not_cacheable",	KSTAT_DATA_UINT64 },
675	{ "l2_write_full",		KSTAT_DATA_UINT64 },
676	{ "l2_write_buffer_iter",	KSTAT_DATA_UINT64 },
677	{ "l2_write_pios",		KSTAT_DATA_UINT64 },
678	{ "l2_write_buffer_bytes_scanned", KSTAT_DATA_UINT64 },
679	{ "l2_write_buffer_list_iter",	KSTAT_DATA_UINT64 },
680	{ "l2_write_buffer_list_null_iter", KSTAT_DATA_UINT64 },
681	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
682	{ "duplicate_buffers",		KSTAT_DATA_UINT64 },
683	{ "duplicate_buffers_size",	KSTAT_DATA_UINT64 },
684	{ "duplicate_reads",		KSTAT_DATA_UINT64 },
685	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
686	{ "arc_meta_limit",		KSTAT_DATA_UINT64 },
687	{ "arc_meta_max",		KSTAT_DATA_UINT64 },
688	{ "arc_meta_min",		KSTAT_DATA_UINT64 },
689	{ "sync_wait_for_async",	KSTAT_DATA_UINT64 },
690	{ "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
691};
692
693#define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
694
695#define	ARCSTAT_INCR(stat, val) \
696	atomic_add_64(&arc_stats.stat.value.ui64, (val))
697
698#define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
699#define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
700
701#define	ARCSTAT_MAX(stat, val) {					\
702	uint64_t m;							\
703	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
704	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
705		continue;						\
706}
707
708#define	ARCSTAT_MAXSTAT(stat) \
709	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
710
711/*
712 * We define a macro to allow ARC hits/misses to be easily broken down by
713 * two separate conditions, giving a total of four different subtypes for
714 * each of hits and misses (so eight statistics total).
715 */
716#define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
717	if (cond1) {							\
718		if (cond2) {						\
719			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
720		} else {						\
721			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
722		}							\
723	} else {							\
724		if (cond2) {						\
725			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
726		} else {						\
727			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
728		}							\
729	}
730
731kstat_t			*arc_ksp;
732static arc_state_t	*arc_anon;
733static arc_state_t	*arc_mru;
734static arc_state_t	*arc_mru_ghost;
735static arc_state_t	*arc_mfu;
736static arc_state_t	*arc_mfu_ghost;
737static arc_state_t	*arc_l2c_only;
738
739/*
740 * There are several ARC variables that are critical to export as kstats --
741 * but we don't want to have to grovel around in the kstat whenever we wish to
742 * manipulate them.  For these variables, we therefore define them to be in
743 * terms of the statistic variable.  This assures that we are not introducing
744 * the possibility of inconsistency by having shadow copies of the variables,
745 * while still allowing the code to be readable.
746 */
747#define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
748#define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
749#define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
750#define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
751#define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
752#define	arc_meta_limit	ARCSTAT(arcstat_meta_limit) /* max size for metadata */
753#define	arc_meta_min	ARCSTAT(arcstat_meta_min) /* min size for metadata */
754#define	arc_meta_used	ARCSTAT(arcstat_meta_used) /* size of metadata */
755#define	arc_meta_max	ARCSTAT(arcstat_meta_max) /* max size of metadata */
756
757#define	L2ARC_IS_VALID_COMPRESS(_c_) \
758	((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY)
759
760static int		arc_no_grow;	/* Don't try to grow cache size */
761static uint64_t		arc_tempreserve;
762static uint64_t		arc_loaned_bytes;
763
764typedef struct arc_callback arc_callback_t;
765
766struct arc_callback {
767	void			*acb_private;
768	arc_done_func_t		*acb_done;
769	arc_buf_t		*acb_buf;
770	zio_t			*acb_zio_dummy;
771	arc_callback_t		*acb_next;
772};
773
774typedef struct arc_write_callback arc_write_callback_t;
775
776struct arc_write_callback {
777	void		*awcb_private;
778	arc_done_func_t	*awcb_ready;
779	arc_done_func_t	*awcb_physdone;
780	arc_done_func_t	*awcb_done;
781	arc_buf_t	*awcb_buf;
782};
783
784/*
785 * ARC buffers are separated into multiple structs as a memory saving measure:
786 *   - Common fields struct, always defined, and embedded within it:
787 *       - L2-only fields, always allocated but undefined when not in L2ARC
788 *       - L1-only fields, only allocated when in L1ARC
789 *
790 *           Buffer in L1                     Buffer only in L2
791 *    +------------------------+          +------------------------+
792 *    | arc_buf_hdr_t          |          | arc_buf_hdr_t          |
793 *    |                        |          |                        |
794 *    |                        |          |                        |
795 *    |                        |          |                        |
796 *    +------------------------+          +------------------------+
797 *    | l2arc_buf_hdr_t        |          | l2arc_buf_hdr_t        |
798 *    | (undefined if L1-only) |          |                        |
799 *    +------------------------+          +------------------------+
800 *    | l1arc_buf_hdr_t        |
801 *    |                        |
802 *    |                        |
803 *    |                        |
804 *    |                        |
805 *    +------------------------+
806 *
807 * Because it's possible for the L2ARC to become extremely large, we can wind
808 * up eating a lot of memory in L2ARC buffer headers, so the size of a header
809 * is minimized by only allocating the fields necessary for an L1-cached buffer
810 * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and
811 * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple
812 * words in pointers. arc_hdr_realloc() is used to switch a header between
813 * these two allocation states.
814 */
815typedef struct l1arc_buf_hdr {
816	kmutex_t		b_freeze_lock;
817#ifdef ZFS_DEBUG
818	/*
819	 * used for debugging wtih kmem_flags - by allocating and freeing
820	 * b_thawed when the buffer is thawed, we get a record of the stack
821	 * trace that thawed it.
822	 */
823	void			*b_thawed;
824#endif
825
826	arc_buf_t		*b_buf;
827	uint32_t		b_datacnt;
828	/* for waiting on writes to complete */
829	kcondvar_t		b_cv;
830
831	/* protected by arc state mutex */
832	arc_state_t		*b_state;
833	multilist_node_t	b_arc_node;
834
835	/* updated atomically */
836	clock_t			b_arc_access;
837
838	/* self protecting */
839	refcount_t		b_refcnt;
840
841	arc_callback_t		*b_acb;
842	/* temporary buffer holder for in-flight compressed data */
843	void			*b_tmp_cdata;
844} l1arc_buf_hdr_t;
845
846typedef struct l2arc_dev l2arc_dev_t;
847
848typedef struct l2arc_buf_hdr {
849	/* protected by arc_buf_hdr mutex */
850	l2arc_dev_t		*b_dev;		/* L2ARC device */
851	uint64_t		b_daddr;	/* disk address, offset byte */
852	/* real alloc'd buffer size depending on b_compress applied */
853	int32_t			b_asize;
854	uint8_t			b_compress;
855
856	list_node_t		b_l2node;
857} l2arc_buf_hdr_t;
858
859struct arc_buf_hdr {
860	/* protected by hash lock */
861	dva_t			b_dva;
862	uint64_t		b_birth;
863	/*
864	 * Even though this checksum is only set/verified when a buffer is in
865	 * the L1 cache, it needs to be in the set of common fields because it
866	 * must be preserved from the time before a buffer is written out to
867	 * L2ARC until after it is read back in.
868	 */
869	zio_cksum_t		*b_freeze_cksum;
870
871	arc_buf_hdr_t		*b_hash_next;
872	arc_flags_t		b_flags;
873
874	/* immutable */
875	int32_t			b_size;
876	uint64_t		b_spa;
877
878	/* L2ARC fields. Undefined when not in L2ARC. */
879	l2arc_buf_hdr_t		b_l2hdr;
880	/* L1ARC fields. Undefined when in l2arc_only state */
881	l1arc_buf_hdr_t		b_l1hdr;
882};
883
884#ifdef _KERNEL
885static int
886sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS)
887{
888	uint64_t val;
889	int err;
890
891	val = arc_meta_limit;
892	err = sysctl_handle_64(oidp, &val, 0, req);
893	if (err != 0 || req->newptr == NULL)
894		return (err);
895
896        if (val <= 0 || val > arc_c_max)
897		return (EINVAL);
898
899	arc_meta_limit = val;
900	return (0);
901}
902#endif
903
904static arc_buf_t *arc_eviction_list;
905static arc_buf_hdr_t arc_eviction_hdr;
906
907#define	GHOST_STATE(state)	\
908	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
909	(state) == arc_l2c_only)
910
911#define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
912#define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
913#define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_FLAG_IO_ERROR)
914#define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_FLAG_PREFETCH)
915#define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FLAG_FREED_IN_READ)
916#define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_FLAG_BUF_AVAILABLE)
917
918#define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_FLAG_L2CACHE)
919#define	HDR_L2COMPRESS(hdr)	((hdr)->b_flags & ARC_FLAG_L2COMPRESS)
920#define	HDR_L2_READING(hdr)	\
921	    (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&	\
922	    ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
923#define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITING)
924#define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
925#define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
926
927#define	HDR_ISTYPE_METADATA(hdr)	\
928	    ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
929#define	HDR_ISTYPE_DATA(hdr)	(!HDR_ISTYPE_METADATA(hdr))
930
931#define	HDR_HAS_L1HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
932#define	HDR_HAS_L2HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
933
934/*
935 * Other sizes
936 */
937
938#define	HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
939#define	HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
940
941/*
942 * Hash table routines
943 */
944
945#define	HT_LOCK_PAD	CACHE_LINE_SIZE
946
947struct ht_lock {
948	kmutex_t	ht_lock;
949#ifdef _KERNEL
950	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
951#endif
952};
953
954#define	BUF_LOCKS 256
955typedef struct buf_hash_table {
956	uint64_t ht_mask;
957	arc_buf_hdr_t **ht_table;
958	struct ht_lock ht_locks[BUF_LOCKS] __aligned(CACHE_LINE_SIZE);
959} buf_hash_table_t;
960
961static buf_hash_table_t buf_hash_table;
962
963#define	BUF_HASH_INDEX(spa, dva, birth) \
964	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
965#define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
966#define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
967#define	HDR_LOCK(hdr) \
968	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
969
970uint64_t zfs_crc64_table[256];
971
972/*
973 * Level 2 ARC
974 */
975
976#define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
977#define	L2ARC_HEADROOM		2			/* num of writes */
978/*
979 * If we discover during ARC scan any buffers to be compressed, we boost
980 * our headroom for the next scanning cycle by this percentage multiple.
981 */
982#define	L2ARC_HEADROOM_BOOST	200
983#define	L2ARC_FEED_SECS		1		/* caching interval secs */
984#define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
985
986/*
987 * Used to distinguish headers that are being process by
988 * l2arc_write_buffers(), but have yet to be assigned to a l2arc disk
989 * address. This can happen when the header is added to the l2arc's list
990 * of buffers to write in the first stage of l2arc_write_buffers(), but
991 * has not yet been written out which happens in the second stage of
992 * l2arc_write_buffers().
993 */
994#define	L2ARC_ADDR_UNSET	((uint64_t)(-1))
995
996#define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
997#define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
998
999/* L2ARC Performance Tunables */
1000uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
1001uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
1002uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
1003uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
1004uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
1005uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
1006boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
1007boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
1008boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
1009
1010SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_max, CTLFLAG_RW,
1011    &l2arc_write_max, 0, "max write size");
1012SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_boost, CTLFLAG_RW,
1013    &l2arc_write_boost, 0, "extra write during warmup");
1014SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_headroom, CTLFLAG_RW,
1015    &l2arc_headroom, 0, "number of dev writes");
1016SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_secs, CTLFLAG_RW,
1017    &l2arc_feed_secs, 0, "interval seconds");
1018SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_min_ms, CTLFLAG_RW,
1019    &l2arc_feed_min_ms, 0, "min interval milliseconds");
1020
1021SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_noprefetch, CTLFLAG_RW,
1022    &l2arc_noprefetch, 0, "don't cache prefetch bufs");
1023SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_feed_again, CTLFLAG_RW,
1024    &l2arc_feed_again, 0, "turbo warmup");
1025SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_norw, CTLFLAG_RW,
1026    &l2arc_norw, 0, "no reads during writes");
1027
1028SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_size, CTLFLAG_RD,
1029    &ARC_anon.arcs_size.rc_count, 0, "size of anonymous state");
1030SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_metadata_lsize, CTLFLAG_RD,
1031    &ARC_anon.arcs_lsize[ARC_BUFC_METADATA], 0, "size of anonymous state");
1032SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_data_lsize, CTLFLAG_RD,
1033    &ARC_anon.arcs_lsize[ARC_BUFC_DATA], 0, "size of anonymous state");
1034
1035SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_size, CTLFLAG_RD,
1036    &ARC_mru.arcs_size.rc_count, 0, "size of mru state");
1037SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_metadata_lsize, CTLFLAG_RD,
1038    &ARC_mru.arcs_lsize[ARC_BUFC_METADATA], 0, "size of metadata in mru state");
1039SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_data_lsize, CTLFLAG_RD,
1040    &ARC_mru.arcs_lsize[ARC_BUFC_DATA], 0, "size of data in mru state");
1041
1042SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_size, CTLFLAG_RD,
1043    &ARC_mru_ghost.arcs_size.rc_count, 0, "size of mru ghost state");
1044SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_metadata_lsize, CTLFLAG_RD,
1045    &ARC_mru_ghost.arcs_lsize[ARC_BUFC_METADATA], 0,
1046    "size of metadata in mru ghost state");
1047SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_data_lsize, CTLFLAG_RD,
1048    &ARC_mru_ghost.arcs_lsize[ARC_BUFC_DATA], 0,
1049    "size of data in mru ghost state");
1050
1051SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_size, CTLFLAG_RD,
1052    &ARC_mfu.arcs_size.rc_count, 0, "size of mfu state");
1053SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_metadata_lsize, CTLFLAG_RD,
1054    &ARC_mfu.arcs_lsize[ARC_BUFC_METADATA], 0, "size of metadata in mfu state");
1055SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_data_lsize, CTLFLAG_RD,
1056    &ARC_mfu.arcs_lsize[ARC_BUFC_DATA], 0, "size of data in mfu state");
1057
1058SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_size, CTLFLAG_RD,
1059    &ARC_mfu_ghost.arcs_size.rc_count, 0, "size of mfu ghost state");
1060SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_metadata_lsize, CTLFLAG_RD,
1061    &ARC_mfu_ghost.arcs_lsize[ARC_BUFC_METADATA], 0,
1062    "size of metadata in mfu ghost state");
1063SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_data_lsize, CTLFLAG_RD,
1064    &ARC_mfu_ghost.arcs_lsize[ARC_BUFC_DATA], 0,
1065    "size of data in mfu ghost state");
1066
1067SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2c_only_size, CTLFLAG_RD,
1068    &ARC_l2c_only.arcs_size.rc_count, 0, "size of mru state");
1069
1070/*
1071 * L2ARC Internals
1072 */
1073struct l2arc_dev {
1074	vdev_t			*l2ad_vdev;	/* vdev */
1075	spa_t			*l2ad_spa;	/* spa */
1076	uint64_t		l2ad_hand;	/* next write location */
1077	uint64_t		l2ad_start;	/* first addr on device */
1078	uint64_t		l2ad_end;	/* last addr on device */
1079	boolean_t		l2ad_first;	/* first sweep through */
1080	boolean_t		l2ad_writing;	/* currently writing */
1081	kmutex_t		l2ad_mtx;	/* lock for buffer list */
1082	list_t			l2ad_buflist;	/* buffer list */
1083	list_node_t		l2ad_node;	/* device list node */
1084	refcount_t		l2ad_alloc;	/* allocated bytes */
1085};
1086
1087static list_t L2ARC_dev_list;			/* device list */
1088static list_t *l2arc_dev_list;			/* device list pointer */
1089static kmutex_t l2arc_dev_mtx;			/* device list mutex */
1090static l2arc_dev_t *l2arc_dev_last;		/* last device used */
1091static list_t L2ARC_free_on_write;		/* free after write buf list */
1092static list_t *l2arc_free_on_write;		/* free after write list ptr */
1093static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
1094static uint64_t l2arc_ndev;			/* number of devices */
1095
1096typedef struct l2arc_read_callback {
1097	arc_buf_t		*l2rcb_buf;		/* read buffer */
1098	spa_t			*l2rcb_spa;		/* spa */
1099	blkptr_t		l2rcb_bp;		/* original blkptr */
1100	zbookmark_phys_t	l2rcb_zb;		/* original bookmark */
1101	int			l2rcb_flags;		/* original flags */
1102	enum zio_compress	l2rcb_compress;		/* applied compress */
1103} l2arc_read_callback_t;
1104
1105typedef struct l2arc_write_callback {
1106	l2arc_dev_t	*l2wcb_dev;		/* device info */
1107	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
1108} l2arc_write_callback_t;
1109
1110typedef struct l2arc_data_free {
1111	/* protected by l2arc_free_on_write_mtx */
1112	void		*l2df_data;
1113	size_t		l2df_size;
1114	void		(*l2df_func)(void *, size_t);
1115	list_node_t	l2df_list_node;
1116} l2arc_data_free_t;
1117
1118static kmutex_t l2arc_feed_thr_lock;
1119static kcondvar_t l2arc_feed_thr_cv;
1120static uint8_t l2arc_thread_exit;
1121
1122static void arc_get_data_buf(arc_buf_t *);
1123static void arc_access(arc_buf_hdr_t *, kmutex_t *);
1124static boolean_t arc_is_overflowing();
1125static void arc_buf_watch(arc_buf_t *);
1126
1127static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
1128static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
1129
1130static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
1131static void l2arc_read_done(zio_t *);
1132
1133static boolean_t l2arc_compress_buf(arc_buf_hdr_t *);
1134static void l2arc_decompress_zio(zio_t *, arc_buf_hdr_t *, enum zio_compress);
1135static void l2arc_release_cdata_buf(arc_buf_hdr_t *);
1136
1137static uint64_t
1138buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
1139{
1140	uint8_t *vdva = (uint8_t *)dva;
1141	uint64_t crc = -1ULL;
1142	int i;
1143
1144	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
1145
1146	for (i = 0; i < sizeof (dva_t); i++)
1147		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
1148
1149	crc ^= (spa>>8) ^ birth;
1150
1151	return (crc);
1152}
1153
1154#define	BUF_EMPTY(buf)						\
1155	((buf)->b_dva.dva_word[0] == 0 &&			\
1156	(buf)->b_dva.dva_word[1] == 0)
1157
1158#define	BUF_EQUAL(spa, dva, birth, buf)				\
1159	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
1160	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
1161	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
1162
1163static void
1164buf_discard_identity(arc_buf_hdr_t *hdr)
1165{
1166	hdr->b_dva.dva_word[0] = 0;
1167	hdr->b_dva.dva_word[1] = 0;
1168	hdr->b_birth = 0;
1169}
1170
1171static arc_buf_hdr_t *
1172buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1173{
1174	const dva_t *dva = BP_IDENTITY(bp);
1175	uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1176	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1177	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1178	arc_buf_hdr_t *hdr;
1179
1180	mutex_enter(hash_lock);
1181	for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1182	    hdr = hdr->b_hash_next) {
1183		if (BUF_EQUAL(spa, dva, birth, hdr)) {
1184			*lockp = hash_lock;
1185			return (hdr);
1186		}
1187	}
1188	mutex_exit(hash_lock);
1189	*lockp = NULL;
1190	return (NULL);
1191}
1192
1193/*
1194 * Insert an entry into the hash table.  If there is already an element
1195 * equal to elem in the hash table, then the already existing element
1196 * will be returned and the new element will not be inserted.
1197 * Otherwise returns NULL.
1198 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1199 */
1200static arc_buf_hdr_t *
1201buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1202{
1203	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1204	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1205	arc_buf_hdr_t *fhdr;
1206	uint32_t i;
1207
1208	ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1209	ASSERT(hdr->b_birth != 0);
1210	ASSERT(!HDR_IN_HASH_TABLE(hdr));
1211
1212	if (lockp != NULL) {
1213		*lockp = hash_lock;
1214		mutex_enter(hash_lock);
1215	} else {
1216		ASSERT(MUTEX_HELD(hash_lock));
1217	}
1218
1219	for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1220	    fhdr = fhdr->b_hash_next, i++) {
1221		if (BUF_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1222			return (fhdr);
1223	}
1224
1225	hdr->b_hash_next = buf_hash_table.ht_table[idx];
1226	buf_hash_table.ht_table[idx] = hdr;
1227	hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
1228
1229	/* collect some hash table performance data */
1230	if (i > 0) {
1231		ARCSTAT_BUMP(arcstat_hash_collisions);
1232		if (i == 1)
1233			ARCSTAT_BUMP(arcstat_hash_chains);
1234
1235		ARCSTAT_MAX(arcstat_hash_chain_max, i);
1236	}
1237
1238	ARCSTAT_BUMP(arcstat_hash_elements);
1239	ARCSTAT_MAXSTAT(arcstat_hash_elements);
1240
1241	return (NULL);
1242}
1243
1244static void
1245buf_hash_remove(arc_buf_hdr_t *hdr)
1246{
1247	arc_buf_hdr_t *fhdr, **hdrp;
1248	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1249
1250	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1251	ASSERT(HDR_IN_HASH_TABLE(hdr));
1252
1253	hdrp = &buf_hash_table.ht_table[idx];
1254	while ((fhdr = *hdrp) != hdr) {
1255		ASSERT(fhdr != NULL);
1256		hdrp = &fhdr->b_hash_next;
1257	}
1258	*hdrp = hdr->b_hash_next;
1259	hdr->b_hash_next = NULL;
1260	hdr->b_flags &= ~ARC_FLAG_IN_HASH_TABLE;
1261
1262	/* collect some hash table performance data */
1263	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1264
1265	if (buf_hash_table.ht_table[idx] &&
1266	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1267		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1268}
1269
1270/*
1271 * Global data structures and functions for the buf kmem cache.
1272 */
1273static kmem_cache_t *hdr_full_cache;
1274static kmem_cache_t *hdr_l2only_cache;
1275static kmem_cache_t *buf_cache;
1276
1277static void
1278buf_fini(void)
1279{
1280	int i;
1281
1282	kmem_free(buf_hash_table.ht_table,
1283	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1284	for (i = 0; i < BUF_LOCKS; i++)
1285		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1286	kmem_cache_destroy(hdr_full_cache);
1287	kmem_cache_destroy(hdr_l2only_cache);
1288	kmem_cache_destroy(buf_cache);
1289}
1290
1291/*
1292 * Constructor callback - called when the cache is empty
1293 * and a new buf is requested.
1294 */
1295/* ARGSUSED */
1296static int
1297hdr_full_cons(void *vbuf, void *unused, int kmflag)
1298{
1299	arc_buf_hdr_t *hdr = vbuf;
1300
1301	bzero(hdr, HDR_FULL_SIZE);
1302	cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1303	refcount_create(&hdr->b_l1hdr.b_refcnt);
1304	mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1305	multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1306	arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1307
1308	return (0);
1309}
1310
1311/* ARGSUSED */
1312static int
1313hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1314{
1315	arc_buf_hdr_t *hdr = vbuf;
1316
1317	bzero(hdr, HDR_L2ONLY_SIZE);
1318	arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1319
1320	return (0);
1321}
1322
1323/* ARGSUSED */
1324static int
1325buf_cons(void *vbuf, void *unused, int kmflag)
1326{
1327	arc_buf_t *buf = vbuf;
1328
1329	bzero(buf, sizeof (arc_buf_t));
1330	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1331	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1332
1333	return (0);
1334}
1335
1336/*
1337 * Destructor callback - called when a cached buf is
1338 * no longer required.
1339 */
1340/* ARGSUSED */
1341static void
1342hdr_full_dest(void *vbuf, void *unused)
1343{
1344	arc_buf_hdr_t *hdr = vbuf;
1345
1346	ASSERT(BUF_EMPTY(hdr));
1347	cv_destroy(&hdr->b_l1hdr.b_cv);
1348	refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1349	mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1350	ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1351	arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1352}
1353
1354/* ARGSUSED */
1355static void
1356hdr_l2only_dest(void *vbuf, void *unused)
1357{
1358	arc_buf_hdr_t *hdr = vbuf;
1359
1360	ASSERT(BUF_EMPTY(hdr));
1361	arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1362}
1363
1364/* ARGSUSED */
1365static void
1366buf_dest(void *vbuf, void *unused)
1367{
1368	arc_buf_t *buf = vbuf;
1369
1370	mutex_destroy(&buf->b_evict_lock);
1371	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1372}
1373
1374/*
1375 * Reclaim callback -- invoked when memory is low.
1376 */
1377/* ARGSUSED */
1378static void
1379hdr_recl(void *unused)
1380{
1381	dprintf("hdr_recl called\n");
1382	/*
1383	 * umem calls the reclaim func when we destroy the buf cache,
1384	 * which is after we do arc_fini().
1385	 */
1386	if (!arc_dead)
1387		cv_signal(&arc_reclaim_thread_cv);
1388}
1389
1390static void
1391buf_init(void)
1392{
1393	uint64_t *ct;
1394	uint64_t hsize = 1ULL << 12;
1395	int i, j;
1396
1397	/*
1398	 * The hash table is big enough to fill all of physical memory
1399	 * with an average block size of zfs_arc_average_blocksize (default 8K).
1400	 * By default, the table will take up
1401	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1402	 */
1403	while (hsize * zfs_arc_average_blocksize < (uint64_t)physmem * PAGESIZE)
1404		hsize <<= 1;
1405retry:
1406	buf_hash_table.ht_mask = hsize - 1;
1407	buf_hash_table.ht_table =
1408	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1409	if (buf_hash_table.ht_table == NULL) {
1410		ASSERT(hsize > (1ULL << 8));
1411		hsize >>= 1;
1412		goto retry;
1413	}
1414
1415	hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1416	    0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1417	hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1418	    HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1419	    NULL, NULL, 0);
1420	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1421	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1422
1423	for (i = 0; i < 256; i++)
1424		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1425			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1426
1427	for (i = 0; i < BUF_LOCKS; i++) {
1428		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1429		    NULL, MUTEX_DEFAULT, NULL);
1430	}
1431}
1432
1433/*
1434 * Transition between the two allocation states for the arc_buf_hdr struct.
1435 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
1436 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
1437 * version is used when a cache buffer is only in the L2ARC in order to reduce
1438 * memory usage.
1439 */
1440static arc_buf_hdr_t *
1441arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
1442{
1443	ASSERT(HDR_HAS_L2HDR(hdr));
1444
1445	arc_buf_hdr_t *nhdr;
1446	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
1447
1448	ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
1449	    (old == hdr_l2only_cache && new == hdr_full_cache));
1450
1451	nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
1452
1453	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
1454	buf_hash_remove(hdr);
1455
1456	bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
1457
1458	if (new == hdr_full_cache) {
1459		nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
1460		/*
1461		 * arc_access and arc_change_state need to be aware that a
1462		 * header has just come out of L2ARC, so we set its state to
1463		 * l2c_only even though it's about to change.
1464		 */
1465		nhdr->b_l1hdr.b_state = arc_l2c_only;
1466
1467		/* Verify previous threads set to NULL before freeing */
1468		ASSERT3P(nhdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1469	} else {
1470		ASSERT(hdr->b_l1hdr.b_buf == NULL);
1471		ASSERT0(hdr->b_l1hdr.b_datacnt);
1472
1473		/*
1474		 * If we've reached here, We must have been called from
1475		 * arc_evict_hdr(), as such we should have already been
1476		 * removed from any ghost list we were previously on
1477		 * (which protects us from racing with arc_evict_state),
1478		 * thus no locking is needed during this check.
1479		 */
1480		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1481
1482		/*
1483		 * A buffer must not be moved into the arc_l2c_only
1484		 * state if it's not finished being written out to the
1485		 * l2arc device. Otherwise, the b_l1hdr.b_tmp_cdata field
1486		 * might try to be accessed, even though it was removed.
1487		 */
1488		VERIFY(!HDR_L2_WRITING(hdr));
1489		VERIFY3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1490
1491		nhdr->b_flags &= ~ARC_FLAG_HAS_L1HDR;
1492	}
1493	/*
1494	 * The header has been reallocated so we need to re-insert it into any
1495	 * lists it was on.
1496	 */
1497	(void) buf_hash_insert(nhdr, NULL);
1498
1499	ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
1500
1501	mutex_enter(&dev->l2ad_mtx);
1502
1503	/*
1504	 * We must place the realloc'ed header back into the list at
1505	 * the same spot. Otherwise, if it's placed earlier in the list,
1506	 * l2arc_write_buffers() could find it during the function's
1507	 * write phase, and try to write it out to the l2arc.
1508	 */
1509	list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
1510	list_remove(&dev->l2ad_buflist, hdr);
1511
1512	mutex_exit(&dev->l2ad_mtx);
1513
1514	/*
1515	 * Since we're using the pointer address as the tag when
1516	 * incrementing and decrementing the l2ad_alloc refcount, we
1517	 * must remove the old pointer (that we're about to destroy) and
1518	 * add the new pointer to the refcount. Otherwise we'd remove
1519	 * the wrong pointer address when calling arc_hdr_destroy() later.
1520	 */
1521
1522	(void) refcount_remove_many(&dev->l2ad_alloc,
1523	    hdr->b_l2hdr.b_asize, hdr);
1524
1525	(void) refcount_add_many(&dev->l2ad_alloc,
1526	    nhdr->b_l2hdr.b_asize, nhdr);
1527
1528	buf_discard_identity(hdr);
1529	hdr->b_freeze_cksum = NULL;
1530	kmem_cache_free(old, hdr);
1531
1532	return (nhdr);
1533}
1534
1535
1536#define	ARC_MINTIME	(hz>>4) /* 62 ms */
1537
1538static void
1539arc_cksum_verify(arc_buf_t *buf)
1540{
1541	zio_cksum_t zc;
1542
1543	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1544		return;
1545
1546	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1547	if (buf->b_hdr->b_freeze_cksum == NULL || HDR_IO_ERROR(buf->b_hdr)) {
1548		mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1549		return;
1550	}
1551	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1552	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
1553		panic("buffer modified while frozen!");
1554	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1555}
1556
1557static int
1558arc_cksum_equal(arc_buf_t *buf)
1559{
1560	zio_cksum_t zc;
1561	int equal;
1562
1563	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1564	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1565	equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
1566	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1567
1568	return (equal);
1569}
1570
1571static void
1572arc_cksum_compute(arc_buf_t *buf, boolean_t force)
1573{
1574	if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1575		return;
1576
1577	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1578	if (buf->b_hdr->b_freeze_cksum != NULL) {
1579		mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1580		return;
1581	}
1582	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
1583	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1584	    buf->b_hdr->b_freeze_cksum);
1585	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1586#ifdef illumos
1587	arc_buf_watch(buf);
1588#endif /* illumos */
1589}
1590
1591#ifdef illumos
1592#ifndef _KERNEL
1593typedef struct procctl {
1594	long cmd;
1595	prwatch_t prwatch;
1596} procctl_t;
1597#endif
1598
1599/* ARGSUSED */
1600static void
1601arc_buf_unwatch(arc_buf_t *buf)
1602{
1603#ifndef _KERNEL
1604	if (arc_watch) {
1605		int result;
1606		procctl_t ctl;
1607		ctl.cmd = PCWATCH;
1608		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1609		ctl.prwatch.pr_size = 0;
1610		ctl.prwatch.pr_wflags = 0;
1611		result = write(arc_procfd, &ctl, sizeof (ctl));
1612		ASSERT3U(result, ==, sizeof (ctl));
1613	}
1614#endif
1615}
1616
1617/* ARGSUSED */
1618static void
1619arc_buf_watch(arc_buf_t *buf)
1620{
1621#ifndef _KERNEL
1622	if (arc_watch) {
1623		int result;
1624		procctl_t ctl;
1625		ctl.cmd = PCWATCH;
1626		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1627		ctl.prwatch.pr_size = buf->b_hdr->b_size;
1628		ctl.prwatch.pr_wflags = WA_WRITE;
1629		result = write(arc_procfd, &ctl, sizeof (ctl));
1630		ASSERT3U(result, ==, sizeof (ctl));
1631	}
1632#endif
1633}
1634#endif /* illumos */
1635
1636static arc_buf_contents_t
1637arc_buf_type(arc_buf_hdr_t *hdr)
1638{
1639	if (HDR_ISTYPE_METADATA(hdr)) {
1640		return (ARC_BUFC_METADATA);
1641	} else {
1642		return (ARC_BUFC_DATA);
1643	}
1644}
1645
1646static uint32_t
1647arc_bufc_to_flags(arc_buf_contents_t type)
1648{
1649	switch (type) {
1650	case ARC_BUFC_DATA:
1651		/* metadata field is 0 if buffer contains normal data */
1652		return (0);
1653	case ARC_BUFC_METADATA:
1654		return (ARC_FLAG_BUFC_METADATA);
1655	default:
1656		break;
1657	}
1658	panic("undefined ARC buffer type!");
1659	return ((uint32_t)-1);
1660}
1661
1662void
1663arc_buf_thaw(arc_buf_t *buf)
1664{
1665	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1666		if (buf->b_hdr->b_l1hdr.b_state != arc_anon)
1667			panic("modifying non-anon buffer!");
1668		if (HDR_IO_IN_PROGRESS(buf->b_hdr))
1669			panic("modifying buffer while i/o in progress!");
1670		arc_cksum_verify(buf);
1671	}
1672
1673	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1674	if (buf->b_hdr->b_freeze_cksum != NULL) {
1675		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1676		buf->b_hdr->b_freeze_cksum = NULL;
1677	}
1678
1679#ifdef ZFS_DEBUG
1680	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1681		if (buf->b_hdr->b_l1hdr.b_thawed != NULL)
1682			kmem_free(buf->b_hdr->b_l1hdr.b_thawed, 1);
1683		buf->b_hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP);
1684	}
1685#endif
1686
1687	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1688
1689#ifdef illumos
1690	arc_buf_unwatch(buf);
1691#endif /* illumos */
1692}
1693
1694void
1695arc_buf_freeze(arc_buf_t *buf)
1696{
1697	kmutex_t *hash_lock;
1698
1699	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1700		return;
1701
1702	hash_lock = HDR_LOCK(buf->b_hdr);
1703	mutex_enter(hash_lock);
1704
1705	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1706	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
1707	arc_cksum_compute(buf, B_FALSE);
1708	mutex_exit(hash_lock);
1709
1710}
1711
1712static void
1713add_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1714{
1715	ASSERT(HDR_HAS_L1HDR(hdr));
1716	ASSERT(MUTEX_HELD(hash_lock));
1717	arc_state_t *state = hdr->b_l1hdr.b_state;
1718
1719	if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
1720	    (state != arc_anon)) {
1721		/* We don't use the L2-only state list. */
1722		if (state != arc_l2c_only) {
1723			arc_buf_contents_t type = arc_buf_type(hdr);
1724			uint64_t delta = hdr->b_size * hdr->b_l1hdr.b_datacnt;
1725			multilist_t *list = &state->arcs_list[type];
1726			uint64_t *size = &state->arcs_lsize[type];
1727
1728			multilist_remove(list, hdr);
1729
1730			if (GHOST_STATE(state)) {
1731				ASSERT0(hdr->b_l1hdr.b_datacnt);
1732				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
1733				delta = hdr->b_size;
1734			}
1735			ASSERT(delta > 0);
1736			ASSERT3U(*size, >=, delta);
1737			atomic_add_64(size, -delta);
1738		}
1739		/* remove the prefetch flag if we get a reference */
1740		hdr->b_flags &= ~ARC_FLAG_PREFETCH;
1741	}
1742}
1743
1744static int
1745remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1746{
1747	int cnt;
1748	arc_state_t *state = hdr->b_l1hdr.b_state;
1749
1750	ASSERT(HDR_HAS_L1HDR(hdr));
1751	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1752	ASSERT(!GHOST_STATE(state));
1753
1754	/*
1755	 * arc_l2c_only counts as a ghost state so we don't need to explicitly
1756	 * check to prevent usage of the arc_l2c_only list.
1757	 */
1758	if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
1759	    (state != arc_anon)) {
1760		arc_buf_contents_t type = arc_buf_type(hdr);
1761		multilist_t *list = &state->arcs_list[type];
1762		uint64_t *size = &state->arcs_lsize[type];
1763
1764		multilist_insert(list, hdr);
1765
1766		ASSERT(hdr->b_l1hdr.b_datacnt > 0);
1767		atomic_add_64(size, hdr->b_size *
1768		    hdr->b_l1hdr.b_datacnt);
1769	}
1770	return (cnt);
1771}
1772
1773/*
1774 * Move the supplied buffer to the indicated state. The hash lock
1775 * for the buffer must be held by the caller.
1776 */
1777static void
1778arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
1779    kmutex_t *hash_lock)
1780{
1781	arc_state_t *old_state;
1782	int64_t refcnt;
1783	uint32_t datacnt;
1784	uint64_t from_delta, to_delta;
1785	arc_buf_contents_t buftype = arc_buf_type(hdr);
1786
1787	/*
1788	 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
1789	 * in arc_read() when bringing a buffer out of the L2ARC.  However, the
1790	 * L1 hdr doesn't always exist when we change state to arc_anon before
1791	 * destroying a header, in which case reallocating to add the L1 hdr is
1792	 * pointless.
1793	 */
1794	if (HDR_HAS_L1HDR(hdr)) {
1795		old_state = hdr->b_l1hdr.b_state;
1796		refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
1797		datacnt = hdr->b_l1hdr.b_datacnt;
1798	} else {
1799		old_state = arc_l2c_only;
1800		refcnt = 0;
1801		datacnt = 0;
1802	}
1803
1804	ASSERT(MUTEX_HELD(hash_lock));
1805	ASSERT3P(new_state, !=, old_state);
1806	ASSERT(refcnt == 0 || datacnt > 0);
1807	ASSERT(!GHOST_STATE(new_state) || datacnt == 0);
1808	ASSERT(old_state != arc_anon || datacnt <= 1);
1809
1810	from_delta = to_delta = datacnt * hdr->b_size;
1811
1812	/*
1813	 * If this buffer is evictable, transfer it from the
1814	 * old state list to the new state list.
1815	 */
1816	if (refcnt == 0) {
1817		if (old_state != arc_anon && old_state != arc_l2c_only) {
1818			uint64_t *size = &old_state->arcs_lsize[buftype];
1819
1820			ASSERT(HDR_HAS_L1HDR(hdr));
1821			multilist_remove(&old_state->arcs_list[buftype], hdr);
1822
1823			/*
1824			 * If prefetching out of the ghost cache,
1825			 * we will have a non-zero datacnt.
1826			 */
1827			if (GHOST_STATE(old_state) && datacnt == 0) {
1828				/* ghost elements have a ghost size */
1829				ASSERT(hdr->b_l1hdr.b_buf == NULL);
1830				from_delta = hdr->b_size;
1831			}
1832			ASSERT3U(*size, >=, from_delta);
1833			atomic_add_64(size, -from_delta);
1834		}
1835		if (new_state != arc_anon && new_state != arc_l2c_only) {
1836			uint64_t *size = &new_state->arcs_lsize[buftype];
1837
1838			/*
1839			 * An L1 header always exists here, since if we're
1840			 * moving to some L1-cached state (i.e. not l2c_only or
1841			 * anonymous), we realloc the header to add an L1hdr
1842			 * beforehand.
1843			 */
1844			ASSERT(HDR_HAS_L1HDR(hdr));
1845			multilist_insert(&new_state->arcs_list[buftype], hdr);
1846
1847			/* ghost elements have a ghost size */
1848			if (GHOST_STATE(new_state)) {
1849				ASSERT0(datacnt);
1850				ASSERT(hdr->b_l1hdr.b_buf == NULL);
1851				to_delta = hdr->b_size;
1852			}
1853			atomic_add_64(size, to_delta);
1854		}
1855	}
1856
1857	ASSERT(!BUF_EMPTY(hdr));
1858	if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
1859		buf_hash_remove(hdr);
1860
1861	/* adjust state sizes (ignore arc_l2c_only) */
1862
1863	if (to_delta && new_state != arc_l2c_only) {
1864		ASSERT(HDR_HAS_L1HDR(hdr));
1865		if (GHOST_STATE(new_state)) {
1866			ASSERT0(datacnt);
1867
1868			/*
1869			 * We moving a header to a ghost state, we first
1870			 * remove all arc buffers. Thus, we'll have a
1871			 * datacnt of zero, and no arc buffer to use for
1872			 * the reference. As a result, we use the arc
1873			 * header pointer for the reference.
1874			 */
1875			(void) refcount_add_many(&new_state->arcs_size,
1876			    hdr->b_size, hdr);
1877		} else {
1878			ASSERT3U(datacnt, !=, 0);
1879
1880			/*
1881			 * Each individual buffer holds a unique reference,
1882			 * thus we must remove each of these references one
1883			 * at a time.
1884			 */
1885			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
1886			    buf = buf->b_next) {
1887				(void) refcount_add_many(&new_state->arcs_size,
1888				    hdr->b_size, buf);
1889			}
1890		}
1891	}
1892
1893	if (from_delta && old_state != arc_l2c_only) {
1894		ASSERT(HDR_HAS_L1HDR(hdr));
1895		if (GHOST_STATE(old_state)) {
1896			/*
1897			 * When moving a header off of a ghost state,
1898			 * there's the possibility for datacnt to be
1899			 * non-zero. This is because we first add the
1900			 * arc buffer to the header prior to changing
1901			 * the header's state. Since we used the header
1902			 * for the reference when putting the header on
1903			 * the ghost state, we must balance that and use
1904			 * the header when removing off the ghost state
1905			 * (even though datacnt is non zero).
1906			 */
1907
1908			IMPLY(datacnt == 0, new_state == arc_anon ||
1909			    new_state == arc_l2c_only);
1910
1911			(void) refcount_remove_many(&old_state->arcs_size,
1912			    hdr->b_size, hdr);
1913		} else {
1914			ASSERT3P(datacnt, !=, 0);
1915
1916			/*
1917			 * Each individual buffer holds a unique reference,
1918			 * thus we must remove each of these references one
1919			 * at a time.
1920			 */
1921			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
1922			    buf = buf->b_next) {
1923				(void) refcount_remove_many(
1924				    &old_state->arcs_size, hdr->b_size, buf);
1925			}
1926		}
1927	}
1928
1929	if (HDR_HAS_L1HDR(hdr))
1930		hdr->b_l1hdr.b_state = new_state;
1931
1932	/*
1933	 * L2 headers should never be on the L2 state list since they don't
1934	 * have L1 headers allocated.
1935	 */
1936	ASSERT(multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
1937	    multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
1938}
1939
1940void
1941arc_space_consume(uint64_t space, arc_space_type_t type)
1942{
1943	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1944
1945	switch (type) {
1946	case ARC_SPACE_DATA:
1947		ARCSTAT_INCR(arcstat_data_size, space);
1948		break;
1949	case ARC_SPACE_META:
1950		ARCSTAT_INCR(arcstat_metadata_size, space);
1951		break;
1952	case ARC_SPACE_OTHER:
1953		ARCSTAT_INCR(arcstat_other_size, space);
1954		break;
1955	case ARC_SPACE_HDRS:
1956		ARCSTAT_INCR(arcstat_hdr_size, space);
1957		break;
1958	case ARC_SPACE_L2HDRS:
1959		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1960		break;
1961	}
1962
1963	if (type != ARC_SPACE_DATA)
1964		ARCSTAT_INCR(arcstat_meta_used, space);
1965
1966	atomic_add_64(&arc_size, space);
1967}
1968
1969void
1970arc_space_return(uint64_t space, arc_space_type_t type)
1971{
1972	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1973
1974	switch (type) {
1975	case ARC_SPACE_DATA:
1976		ARCSTAT_INCR(arcstat_data_size, -space);
1977		break;
1978	case ARC_SPACE_META:
1979		ARCSTAT_INCR(arcstat_metadata_size, -space);
1980		break;
1981	case ARC_SPACE_OTHER:
1982		ARCSTAT_INCR(arcstat_other_size, -space);
1983		break;
1984	case ARC_SPACE_HDRS:
1985		ARCSTAT_INCR(arcstat_hdr_size, -space);
1986		break;
1987	case ARC_SPACE_L2HDRS:
1988		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1989		break;
1990	}
1991
1992	if (type != ARC_SPACE_DATA) {
1993		ASSERT(arc_meta_used >= space);
1994		if (arc_meta_max < arc_meta_used)
1995			arc_meta_max = arc_meta_used;
1996		ARCSTAT_INCR(arcstat_meta_used, -space);
1997	}
1998
1999	ASSERT(arc_size >= space);
2000	atomic_add_64(&arc_size, -space);
2001}
2002
2003arc_buf_t *
2004arc_buf_alloc(spa_t *spa, int32_t size, void *tag, arc_buf_contents_t type)
2005{
2006	arc_buf_hdr_t *hdr;
2007	arc_buf_t *buf;
2008
2009	ASSERT3U(size, >, 0);
2010	hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
2011	ASSERT(BUF_EMPTY(hdr));
2012	ASSERT3P(hdr->b_freeze_cksum, ==, NULL);
2013	hdr->b_size = size;
2014	hdr->b_spa = spa_load_guid(spa);
2015
2016	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2017	buf->b_hdr = hdr;
2018	buf->b_data = NULL;
2019	buf->b_efunc = NULL;
2020	buf->b_private = NULL;
2021	buf->b_next = NULL;
2022
2023	hdr->b_flags = arc_bufc_to_flags(type);
2024	hdr->b_flags |= ARC_FLAG_HAS_L1HDR;
2025
2026	hdr->b_l1hdr.b_buf = buf;
2027	hdr->b_l1hdr.b_state = arc_anon;
2028	hdr->b_l1hdr.b_arc_access = 0;
2029	hdr->b_l1hdr.b_datacnt = 1;
2030	hdr->b_l1hdr.b_tmp_cdata = NULL;
2031
2032	arc_get_data_buf(buf);
2033	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2034	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2035
2036	return (buf);
2037}
2038
2039static char *arc_onloan_tag = "onloan";
2040
2041/*
2042 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2043 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2044 * buffers must be returned to the arc before they can be used by the DMU or
2045 * freed.
2046 */
2047arc_buf_t *
2048arc_loan_buf(spa_t *spa, int size)
2049{
2050	arc_buf_t *buf;
2051
2052	buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
2053
2054	atomic_add_64(&arc_loaned_bytes, size);
2055	return (buf);
2056}
2057
2058/*
2059 * Return a loaned arc buffer to the arc.
2060 */
2061void
2062arc_return_buf(arc_buf_t *buf, void *tag)
2063{
2064	arc_buf_hdr_t *hdr = buf->b_hdr;
2065
2066	ASSERT(buf->b_data != NULL);
2067	ASSERT(HDR_HAS_L1HDR(hdr));
2068	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2069	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2070
2071	atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
2072}
2073
2074/* Detach an arc_buf from a dbuf (tag) */
2075void
2076arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2077{
2078	arc_buf_hdr_t *hdr = buf->b_hdr;
2079
2080	ASSERT(buf->b_data != NULL);
2081	ASSERT(HDR_HAS_L1HDR(hdr));
2082	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2083	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2084	buf->b_efunc = NULL;
2085	buf->b_private = NULL;
2086
2087	atomic_add_64(&arc_loaned_bytes, hdr->b_size);
2088}
2089
2090static arc_buf_t *
2091arc_buf_clone(arc_buf_t *from)
2092{
2093	arc_buf_t *buf;
2094	arc_buf_hdr_t *hdr = from->b_hdr;
2095	uint64_t size = hdr->b_size;
2096
2097	ASSERT(HDR_HAS_L1HDR(hdr));
2098	ASSERT(hdr->b_l1hdr.b_state != arc_anon);
2099
2100	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2101	buf->b_hdr = hdr;
2102	buf->b_data = NULL;
2103	buf->b_efunc = NULL;
2104	buf->b_private = NULL;
2105	buf->b_next = hdr->b_l1hdr.b_buf;
2106	hdr->b_l1hdr.b_buf = buf;
2107	arc_get_data_buf(buf);
2108	bcopy(from->b_data, buf->b_data, size);
2109
2110	/*
2111	 * This buffer already exists in the arc so create a duplicate
2112	 * copy for the caller.  If the buffer is associated with user data
2113	 * then track the size and number of duplicates.  These stats will be
2114	 * updated as duplicate buffers are created and destroyed.
2115	 */
2116	if (HDR_ISTYPE_DATA(hdr)) {
2117		ARCSTAT_BUMP(arcstat_duplicate_buffers);
2118		ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
2119	}
2120	hdr->b_l1hdr.b_datacnt += 1;
2121	return (buf);
2122}
2123
2124void
2125arc_buf_add_ref(arc_buf_t *buf, void* tag)
2126{
2127	arc_buf_hdr_t *hdr;
2128	kmutex_t *hash_lock;
2129
2130	/*
2131	 * Check to see if this buffer is evicted.  Callers
2132	 * must verify b_data != NULL to know if the add_ref
2133	 * was successful.
2134	 */
2135	mutex_enter(&buf->b_evict_lock);
2136	if (buf->b_data == NULL) {
2137		mutex_exit(&buf->b_evict_lock);
2138		return;
2139	}
2140	hash_lock = HDR_LOCK(buf->b_hdr);
2141	mutex_enter(hash_lock);
2142	hdr = buf->b_hdr;
2143	ASSERT(HDR_HAS_L1HDR(hdr));
2144	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2145	mutex_exit(&buf->b_evict_lock);
2146
2147	ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
2148	    hdr->b_l1hdr.b_state == arc_mfu);
2149
2150	add_reference(hdr, hash_lock, tag);
2151	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2152	arc_access(hdr, hash_lock);
2153	mutex_exit(hash_lock);
2154	ARCSTAT_BUMP(arcstat_hits);
2155	ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
2156	    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
2157	    data, metadata, hits);
2158}
2159
2160static void
2161arc_buf_free_on_write(void *data, size_t size,
2162    void (*free_func)(void *, size_t))
2163{
2164	l2arc_data_free_t *df;
2165
2166	df = kmem_alloc(sizeof (*df), KM_SLEEP);
2167	df->l2df_data = data;
2168	df->l2df_size = size;
2169	df->l2df_func = free_func;
2170	mutex_enter(&l2arc_free_on_write_mtx);
2171	list_insert_head(l2arc_free_on_write, df);
2172	mutex_exit(&l2arc_free_on_write_mtx);
2173}
2174
2175/*
2176 * Free the arc data buffer.  If it is an l2arc write in progress,
2177 * the buffer is placed on l2arc_free_on_write to be freed later.
2178 */
2179static void
2180arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
2181{
2182	arc_buf_hdr_t *hdr = buf->b_hdr;
2183
2184	if (HDR_L2_WRITING(hdr)) {
2185		arc_buf_free_on_write(buf->b_data, hdr->b_size, free_func);
2186		ARCSTAT_BUMP(arcstat_l2_free_on_write);
2187	} else {
2188		free_func(buf->b_data, hdr->b_size);
2189	}
2190}
2191
2192static void
2193arc_buf_l2_cdata_free(arc_buf_hdr_t *hdr)
2194{
2195	ASSERT(HDR_HAS_L2HDR(hdr));
2196	ASSERT(MUTEX_HELD(&hdr->b_l2hdr.b_dev->l2ad_mtx));
2197
2198	/*
2199	 * The b_tmp_cdata field is linked off of the b_l1hdr, so if
2200	 * that doesn't exist, the header is in the arc_l2c_only state,
2201	 * and there isn't anything to free (it's already been freed).
2202	 */
2203	if (!HDR_HAS_L1HDR(hdr))
2204		return;
2205
2206	/*
2207	 * The header isn't being written to the l2arc device, thus it
2208	 * shouldn't have a b_tmp_cdata to free.
2209	 */
2210	if (!HDR_L2_WRITING(hdr)) {
2211		ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
2212		return;
2213	}
2214
2215	/*
2216	 * The header does not have compression enabled. This can be due
2217	 * to the buffer not being compressible, or because we're
2218	 * freeing the buffer before the second phase of
2219	 * l2arc_write_buffer() has started (which does the compression
2220	 * step). In either case, b_tmp_cdata does not point to a
2221	 * separately compressed buffer, so there's nothing to free (it
2222	 * points to the same buffer as the arc_buf_t's b_data field).
2223	 */
2224	if (hdr->b_l2hdr.b_compress == ZIO_COMPRESS_OFF) {
2225		hdr->b_l1hdr.b_tmp_cdata = NULL;
2226		return;
2227	}
2228
2229	/*
2230	 * There's nothing to free since the buffer was all zero's and
2231	 * compressed to a zero length buffer.
2232	 */
2233	if (hdr->b_l2hdr.b_compress == ZIO_COMPRESS_EMPTY) {
2234		ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
2235		return;
2236	}
2237
2238	ASSERT(L2ARC_IS_VALID_COMPRESS(hdr->b_l2hdr.b_compress));
2239
2240	arc_buf_free_on_write(hdr->b_l1hdr.b_tmp_cdata,
2241	    hdr->b_size, zio_data_buf_free);
2242
2243	ARCSTAT_BUMP(arcstat_l2_cdata_free_on_write);
2244	hdr->b_l1hdr.b_tmp_cdata = NULL;
2245}
2246
2247/*
2248 * Free up buf->b_data and if 'remove' is set, then pull the
2249 * arc_buf_t off of the the arc_buf_hdr_t's list and free it.
2250 */
2251static void
2252arc_buf_destroy(arc_buf_t *buf, boolean_t remove)
2253{
2254	arc_buf_t **bufp;
2255
2256	/* free up data associated with the buf */
2257	if (buf->b_data != NULL) {
2258		arc_state_t *state = buf->b_hdr->b_l1hdr.b_state;
2259		uint64_t size = buf->b_hdr->b_size;
2260		arc_buf_contents_t type = arc_buf_type(buf->b_hdr);
2261
2262		arc_cksum_verify(buf);
2263#ifdef illumos
2264		arc_buf_unwatch(buf);
2265#endif /* illumos */
2266
2267		if (type == ARC_BUFC_METADATA) {
2268			arc_buf_data_free(buf, zio_buf_free);
2269			arc_space_return(size, ARC_SPACE_META);
2270		} else {
2271			ASSERT(type == ARC_BUFC_DATA);
2272			arc_buf_data_free(buf, zio_data_buf_free);
2273			arc_space_return(size, ARC_SPACE_DATA);
2274		}
2275
2276		/* protected by hash lock, if in the hash table */
2277		if (multilist_link_active(&buf->b_hdr->b_l1hdr.b_arc_node)) {
2278			uint64_t *cnt = &state->arcs_lsize[type];
2279
2280			ASSERT(refcount_is_zero(
2281			    &buf->b_hdr->b_l1hdr.b_refcnt));
2282			ASSERT(state != arc_anon && state != arc_l2c_only);
2283
2284			ASSERT3U(*cnt, >=, size);
2285			atomic_add_64(cnt, -size);
2286		}
2287
2288		(void) refcount_remove_many(&state->arcs_size, size, buf);
2289		buf->b_data = NULL;
2290
2291		/*
2292		 * If we're destroying a duplicate buffer make sure
2293		 * that the appropriate statistics are updated.
2294		 */
2295		if (buf->b_hdr->b_l1hdr.b_datacnt > 1 &&
2296		    HDR_ISTYPE_DATA(buf->b_hdr)) {
2297			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
2298			ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
2299		}
2300		ASSERT(buf->b_hdr->b_l1hdr.b_datacnt > 0);
2301		buf->b_hdr->b_l1hdr.b_datacnt -= 1;
2302	}
2303
2304	/* only remove the buf if requested */
2305	if (!remove)
2306		return;
2307
2308	/* remove the buf from the hdr list */
2309	for (bufp = &buf->b_hdr->b_l1hdr.b_buf; *bufp != buf;
2310	    bufp = &(*bufp)->b_next)
2311		continue;
2312	*bufp = buf->b_next;
2313	buf->b_next = NULL;
2314
2315	ASSERT(buf->b_efunc == NULL);
2316
2317	/* clean up the buf */
2318	buf->b_hdr = NULL;
2319	kmem_cache_free(buf_cache, buf);
2320}
2321
2322static void
2323arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
2324{
2325	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
2326	l2arc_dev_t *dev = l2hdr->b_dev;
2327
2328	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
2329	ASSERT(HDR_HAS_L2HDR(hdr));
2330
2331	list_remove(&dev->l2ad_buflist, hdr);
2332
2333	/*
2334	 * We don't want to leak the b_tmp_cdata buffer that was
2335	 * allocated in l2arc_write_buffers()
2336	 */
2337	arc_buf_l2_cdata_free(hdr);
2338
2339	/*
2340	 * If the l2hdr's b_daddr is equal to L2ARC_ADDR_UNSET, then
2341	 * this header is being processed by l2arc_write_buffers() (i.e.
2342	 * it's in the first stage of l2arc_write_buffers()).
2343	 * Re-affirming that truth here, just to serve as a reminder. If
2344	 * b_daddr does not equal L2ARC_ADDR_UNSET, then the header may or
2345	 * may not have its HDR_L2_WRITING flag set. (the write may have
2346	 * completed, in which case HDR_L2_WRITING will be false and the
2347	 * b_daddr field will point to the address of the buffer on disk).
2348	 */
2349	IMPLY(l2hdr->b_daddr == L2ARC_ADDR_UNSET, HDR_L2_WRITING(hdr));
2350
2351	/*
2352	 * If b_daddr is equal to L2ARC_ADDR_UNSET, we're racing with
2353	 * l2arc_write_buffers(). Since we've just removed this header
2354	 * from the l2arc buffer list, this header will never reach the
2355	 * second stage of l2arc_write_buffers(), which increments the
2356	 * accounting stats for this header. Thus, we must be careful
2357	 * not to decrement them for this header either.
2358	 */
2359	if (l2hdr->b_daddr != L2ARC_ADDR_UNSET) {
2360		ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
2361		ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
2362
2363		vdev_space_update(dev->l2ad_vdev,
2364		    -l2hdr->b_asize, 0, 0);
2365
2366		(void) refcount_remove_many(&dev->l2ad_alloc,
2367		    l2hdr->b_asize, hdr);
2368	}
2369
2370	hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
2371}
2372
2373static void
2374arc_hdr_destroy(arc_buf_hdr_t *hdr)
2375{
2376	if (HDR_HAS_L1HDR(hdr)) {
2377		ASSERT(hdr->b_l1hdr.b_buf == NULL ||
2378		    hdr->b_l1hdr.b_datacnt > 0);
2379		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2380		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
2381	}
2382	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2383	ASSERT(!HDR_IN_HASH_TABLE(hdr));
2384
2385	if (HDR_HAS_L2HDR(hdr)) {
2386		l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
2387		boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
2388
2389		if (!buflist_held)
2390			mutex_enter(&dev->l2ad_mtx);
2391
2392		/*
2393		 * Even though we checked this conditional above, we
2394		 * need to check this again now that we have the
2395		 * l2ad_mtx. This is because we could be racing with
2396		 * another thread calling l2arc_evict() which might have
2397		 * destroyed this header's L2 portion as we were waiting
2398		 * to acquire the l2ad_mtx. If that happens, we don't
2399		 * want to re-destroy the header's L2 portion.
2400		 */
2401		if (HDR_HAS_L2HDR(hdr)) {
2402			if (hdr->b_l2hdr.b_daddr != L2ARC_ADDR_UNSET)
2403				trim_map_free(dev->l2ad_vdev,
2404				    hdr->b_l2hdr.b_daddr,
2405				    hdr->b_l2hdr.b_asize, 0);
2406			arc_hdr_l2hdr_destroy(hdr);
2407		}
2408
2409		if (!buflist_held)
2410			mutex_exit(&dev->l2ad_mtx);
2411	}
2412
2413	if (!BUF_EMPTY(hdr))
2414		buf_discard_identity(hdr);
2415
2416	if (hdr->b_freeze_cksum != NULL) {
2417		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
2418		hdr->b_freeze_cksum = NULL;
2419	}
2420
2421	if (HDR_HAS_L1HDR(hdr)) {
2422		while (hdr->b_l1hdr.b_buf) {
2423			arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2424
2425			if (buf->b_efunc != NULL) {
2426				mutex_enter(&arc_user_evicts_lock);
2427				mutex_enter(&buf->b_evict_lock);
2428				ASSERT(buf->b_hdr != NULL);
2429				arc_buf_destroy(hdr->b_l1hdr.b_buf, FALSE);
2430				hdr->b_l1hdr.b_buf = buf->b_next;
2431				buf->b_hdr = &arc_eviction_hdr;
2432				buf->b_next = arc_eviction_list;
2433				arc_eviction_list = buf;
2434				mutex_exit(&buf->b_evict_lock);
2435				cv_signal(&arc_user_evicts_cv);
2436				mutex_exit(&arc_user_evicts_lock);
2437			} else {
2438				arc_buf_destroy(hdr->b_l1hdr.b_buf, TRUE);
2439			}
2440		}
2441#ifdef ZFS_DEBUG
2442		if (hdr->b_l1hdr.b_thawed != NULL) {
2443			kmem_free(hdr->b_l1hdr.b_thawed, 1);
2444			hdr->b_l1hdr.b_thawed = NULL;
2445		}
2446#endif
2447	}
2448
2449	ASSERT3P(hdr->b_hash_next, ==, NULL);
2450	if (HDR_HAS_L1HDR(hdr)) {
2451		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
2452		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
2453		kmem_cache_free(hdr_full_cache, hdr);
2454	} else {
2455		kmem_cache_free(hdr_l2only_cache, hdr);
2456	}
2457}
2458
2459void
2460arc_buf_free(arc_buf_t *buf, void *tag)
2461{
2462	arc_buf_hdr_t *hdr = buf->b_hdr;
2463	int hashed = hdr->b_l1hdr.b_state != arc_anon;
2464
2465	ASSERT(buf->b_efunc == NULL);
2466	ASSERT(buf->b_data != NULL);
2467
2468	if (hashed) {
2469		kmutex_t *hash_lock = HDR_LOCK(hdr);
2470
2471		mutex_enter(hash_lock);
2472		hdr = buf->b_hdr;
2473		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2474
2475		(void) remove_reference(hdr, hash_lock, tag);
2476		if (hdr->b_l1hdr.b_datacnt > 1) {
2477			arc_buf_destroy(buf, TRUE);
2478		} else {
2479			ASSERT(buf == hdr->b_l1hdr.b_buf);
2480			ASSERT(buf->b_efunc == NULL);
2481			hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
2482		}
2483		mutex_exit(hash_lock);
2484	} else if (HDR_IO_IN_PROGRESS(hdr)) {
2485		int destroy_hdr;
2486		/*
2487		 * We are in the middle of an async write.  Don't destroy
2488		 * this buffer unless the write completes before we finish
2489		 * decrementing the reference count.
2490		 */
2491		mutex_enter(&arc_user_evicts_lock);
2492		(void) remove_reference(hdr, NULL, tag);
2493		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2494		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
2495		mutex_exit(&arc_user_evicts_lock);
2496		if (destroy_hdr)
2497			arc_hdr_destroy(hdr);
2498	} else {
2499		if (remove_reference(hdr, NULL, tag) > 0)
2500			arc_buf_destroy(buf, TRUE);
2501		else
2502			arc_hdr_destroy(hdr);
2503	}
2504}
2505
2506boolean_t
2507arc_buf_remove_ref(arc_buf_t *buf, void* tag)
2508{
2509	arc_buf_hdr_t *hdr = buf->b_hdr;
2510	kmutex_t *hash_lock = HDR_LOCK(hdr);
2511	boolean_t no_callback = (buf->b_efunc == NULL);
2512
2513	if (hdr->b_l1hdr.b_state == arc_anon) {
2514		ASSERT(hdr->b_l1hdr.b_datacnt == 1);
2515		arc_buf_free(buf, tag);
2516		return (no_callback);
2517	}
2518
2519	mutex_enter(hash_lock);
2520	hdr = buf->b_hdr;
2521	ASSERT(hdr->b_l1hdr.b_datacnt > 0);
2522	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2523	ASSERT(hdr->b_l1hdr.b_state != arc_anon);
2524	ASSERT(buf->b_data != NULL);
2525
2526	(void) remove_reference(hdr, hash_lock, tag);
2527	if (hdr->b_l1hdr.b_datacnt > 1) {
2528		if (no_callback)
2529			arc_buf_destroy(buf, TRUE);
2530	} else if (no_callback) {
2531		ASSERT(hdr->b_l1hdr.b_buf == buf && buf->b_next == NULL);
2532		ASSERT(buf->b_efunc == NULL);
2533		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
2534	}
2535	ASSERT(no_callback || hdr->b_l1hdr.b_datacnt > 1 ||
2536	    refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2537	mutex_exit(hash_lock);
2538	return (no_callback);
2539}
2540
2541int32_t
2542arc_buf_size(arc_buf_t *buf)
2543{
2544	return (buf->b_hdr->b_size);
2545}
2546
2547/*
2548 * Called from the DMU to determine if the current buffer should be
2549 * evicted. In order to ensure proper locking, the eviction must be initiated
2550 * from the DMU. Return true if the buffer is associated with user data and
2551 * duplicate buffers still exist.
2552 */
2553boolean_t
2554arc_buf_eviction_needed(arc_buf_t *buf)
2555{
2556	arc_buf_hdr_t *hdr;
2557	boolean_t evict_needed = B_FALSE;
2558
2559	if (zfs_disable_dup_eviction)
2560		return (B_FALSE);
2561
2562	mutex_enter(&buf->b_evict_lock);
2563	hdr = buf->b_hdr;
2564	if (hdr == NULL) {
2565		/*
2566		 * We are in arc_do_user_evicts(); let that function
2567		 * perform the eviction.
2568		 */
2569		ASSERT(buf->b_data == NULL);
2570		mutex_exit(&buf->b_evict_lock);
2571		return (B_FALSE);
2572	} else if (buf->b_data == NULL) {
2573		/*
2574		 * We have already been added to the arc eviction list;
2575		 * recommend eviction.
2576		 */
2577		ASSERT3P(hdr, ==, &arc_eviction_hdr);
2578		mutex_exit(&buf->b_evict_lock);
2579		return (B_TRUE);
2580	}
2581
2582	if (hdr->b_l1hdr.b_datacnt > 1 && HDR_ISTYPE_DATA(hdr))
2583		evict_needed = B_TRUE;
2584
2585	mutex_exit(&buf->b_evict_lock);
2586	return (evict_needed);
2587}
2588
2589/*
2590 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
2591 * state of the header is dependent on it's state prior to entering this
2592 * function. The following transitions are possible:
2593 *
2594 *    - arc_mru -> arc_mru_ghost
2595 *    - arc_mfu -> arc_mfu_ghost
2596 *    - arc_mru_ghost -> arc_l2c_only
2597 *    - arc_mru_ghost -> deleted
2598 *    - arc_mfu_ghost -> arc_l2c_only
2599 *    - arc_mfu_ghost -> deleted
2600 */
2601static int64_t
2602arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
2603{
2604	arc_state_t *evicted_state, *state;
2605	int64_t bytes_evicted = 0;
2606
2607	ASSERT(MUTEX_HELD(hash_lock));
2608	ASSERT(HDR_HAS_L1HDR(hdr));
2609
2610	state = hdr->b_l1hdr.b_state;
2611	if (GHOST_STATE(state)) {
2612		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2613		ASSERT(hdr->b_l1hdr.b_buf == NULL);
2614
2615		/*
2616		 * l2arc_write_buffers() relies on a header's L1 portion
2617		 * (i.e. it's b_tmp_cdata field) during it's write phase.
2618		 * Thus, we cannot push a header onto the arc_l2c_only
2619		 * state (removing it's L1 piece) until the header is
2620		 * done being written to the l2arc.
2621		 */
2622		if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
2623			ARCSTAT_BUMP(arcstat_evict_l2_skip);
2624			return (bytes_evicted);
2625		}
2626
2627		ARCSTAT_BUMP(arcstat_deleted);
2628		bytes_evicted += hdr->b_size;
2629
2630		DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
2631
2632		if (HDR_HAS_L2HDR(hdr)) {
2633			/*
2634			 * This buffer is cached on the 2nd Level ARC;
2635			 * don't destroy the header.
2636			 */
2637			arc_change_state(arc_l2c_only, hdr, hash_lock);
2638			/*
2639			 * dropping from L1+L2 cached to L2-only,
2640			 * realloc to remove the L1 header.
2641			 */
2642			hdr = arc_hdr_realloc(hdr, hdr_full_cache,
2643			    hdr_l2only_cache);
2644		} else {
2645			arc_change_state(arc_anon, hdr, hash_lock);
2646			arc_hdr_destroy(hdr);
2647		}
2648		return (bytes_evicted);
2649	}
2650
2651	ASSERT(state == arc_mru || state == arc_mfu);
2652	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
2653
2654	/* prefetch buffers have a minimum lifespan */
2655	if (HDR_IO_IN_PROGRESS(hdr) ||
2656	    ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
2657	    ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
2658	    arc_min_prefetch_lifespan)) {
2659		ARCSTAT_BUMP(arcstat_evict_skip);
2660		return (bytes_evicted);
2661	}
2662
2663	ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
2664	ASSERT3U(hdr->b_l1hdr.b_datacnt, >, 0);
2665	while (hdr->b_l1hdr.b_buf) {
2666		arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2667		if (!mutex_tryenter(&buf->b_evict_lock)) {
2668			ARCSTAT_BUMP(arcstat_mutex_miss);
2669			break;
2670		}
2671		if (buf->b_data != NULL)
2672			bytes_evicted += hdr->b_size;
2673		if (buf->b_efunc != NULL) {
2674			mutex_enter(&arc_user_evicts_lock);
2675			arc_buf_destroy(buf, FALSE);
2676			hdr->b_l1hdr.b_buf = buf->b_next;
2677			buf->b_hdr = &arc_eviction_hdr;
2678			buf->b_next = arc_eviction_list;
2679			arc_eviction_list = buf;
2680			cv_signal(&arc_user_evicts_cv);
2681			mutex_exit(&arc_user_evicts_lock);
2682			mutex_exit(&buf->b_evict_lock);
2683		} else {
2684			mutex_exit(&buf->b_evict_lock);
2685			arc_buf_destroy(buf, TRUE);
2686		}
2687	}
2688
2689	if (HDR_HAS_L2HDR(hdr)) {
2690		ARCSTAT_INCR(arcstat_evict_l2_cached, hdr->b_size);
2691	} else {
2692		if (l2arc_write_eligible(hdr->b_spa, hdr))
2693			ARCSTAT_INCR(arcstat_evict_l2_eligible, hdr->b_size);
2694		else
2695			ARCSTAT_INCR(arcstat_evict_l2_ineligible, hdr->b_size);
2696	}
2697
2698	if (hdr->b_l1hdr.b_datacnt == 0) {
2699		arc_change_state(evicted_state, hdr, hash_lock);
2700		ASSERT(HDR_IN_HASH_TABLE(hdr));
2701		hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
2702		hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
2703		DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
2704	}
2705
2706	return (bytes_evicted);
2707}
2708
2709static uint64_t
2710arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
2711    uint64_t spa, int64_t bytes)
2712{
2713	multilist_sublist_t *mls;
2714	uint64_t bytes_evicted = 0;
2715	arc_buf_hdr_t *hdr;
2716	kmutex_t *hash_lock;
2717	int evict_count = 0;
2718
2719	ASSERT3P(marker, !=, NULL);
2720	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
2721
2722	mls = multilist_sublist_lock(ml, idx);
2723
2724	for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
2725	    hdr = multilist_sublist_prev(mls, marker)) {
2726		if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
2727		    (evict_count >= zfs_arc_evict_batch_limit))
2728			break;
2729
2730		/*
2731		 * To keep our iteration location, move the marker
2732		 * forward. Since we're not holding hdr's hash lock, we
2733		 * must be very careful and not remove 'hdr' from the
2734		 * sublist. Otherwise, other consumers might mistake the
2735		 * 'hdr' as not being on a sublist when they call the
2736		 * multilist_link_active() function (they all rely on
2737		 * the hash lock protecting concurrent insertions and
2738		 * removals). multilist_sublist_move_forward() was
2739		 * specifically implemented to ensure this is the case
2740		 * (only 'marker' will be removed and re-inserted).
2741		 */
2742		multilist_sublist_move_forward(mls, marker);
2743
2744		/*
2745		 * The only case where the b_spa field should ever be
2746		 * zero, is the marker headers inserted by
2747		 * arc_evict_state(). It's possible for multiple threads
2748		 * to be calling arc_evict_state() concurrently (e.g.
2749		 * dsl_pool_close() and zio_inject_fault()), so we must
2750		 * skip any markers we see from these other threads.
2751		 */
2752		if (hdr->b_spa == 0)
2753			continue;
2754
2755		/* we're only interested in evicting buffers of a certain spa */
2756		if (spa != 0 && hdr->b_spa != spa) {
2757			ARCSTAT_BUMP(arcstat_evict_skip);
2758			continue;
2759		}
2760
2761		hash_lock = HDR_LOCK(hdr);
2762
2763		/*
2764		 * We aren't calling this function from any code path
2765		 * that would already be holding a hash lock, so we're
2766		 * asserting on this assumption to be defensive in case
2767		 * this ever changes. Without this check, it would be
2768		 * possible to incorrectly increment arcstat_mutex_miss
2769		 * below (e.g. if the code changed such that we called
2770		 * this function with a hash lock held).
2771		 */
2772		ASSERT(!MUTEX_HELD(hash_lock));
2773
2774		if (mutex_tryenter(hash_lock)) {
2775			uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
2776			mutex_exit(hash_lock);
2777
2778			bytes_evicted += evicted;
2779
2780			/*
2781			 * If evicted is zero, arc_evict_hdr() must have
2782			 * decided to skip this header, don't increment
2783			 * evict_count in this case.
2784			 */
2785			if (evicted != 0)
2786				evict_count++;
2787
2788			/*
2789			 * If arc_size isn't overflowing, signal any
2790			 * threads that might happen to be waiting.
2791			 *
2792			 * For each header evicted, we wake up a single
2793			 * thread. If we used cv_broadcast, we could
2794			 * wake up "too many" threads causing arc_size
2795			 * to significantly overflow arc_c; since
2796			 * arc_get_data_buf() doesn't check for overflow
2797			 * when it's woken up (it doesn't because it's
2798			 * possible for the ARC to be overflowing while
2799			 * full of un-evictable buffers, and the
2800			 * function should proceed in this case).
2801			 *
2802			 * If threads are left sleeping, due to not
2803			 * using cv_broadcast, they will be woken up
2804			 * just before arc_reclaim_thread() sleeps.
2805			 */
2806			mutex_enter(&arc_reclaim_lock);
2807			if (!arc_is_overflowing())
2808				cv_signal(&arc_reclaim_waiters_cv);
2809			mutex_exit(&arc_reclaim_lock);
2810		} else {
2811			ARCSTAT_BUMP(arcstat_mutex_miss);
2812		}
2813	}
2814
2815	multilist_sublist_unlock(mls);
2816
2817	return (bytes_evicted);
2818}
2819
2820/*
2821 * Evict buffers from the given arc state, until we've removed the
2822 * specified number of bytes. Move the removed buffers to the
2823 * appropriate evict state.
2824 *
2825 * This function makes a "best effort". It skips over any buffers
2826 * it can't get a hash_lock on, and so, may not catch all candidates.
2827 * It may also return without evicting as much space as requested.
2828 *
2829 * If bytes is specified using the special value ARC_EVICT_ALL, this
2830 * will evict all available (i.e. unlocked and evictable) buffers from
2831 * the given arc state; which is used by arc_flush().
2832 */
2833static uint64_t
2834arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
2835    arc_buf_contents_t type)
2836{
2837	uint64_t total_evicted = 0;
2838	multilist_t *ml = &state->arcs_list[type];
2839	int num_sublists;
2840	arc_buf_hdr_t **markers;
2841
2842	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
2843
2844	num_sublists = multilist_get_num_sublists(ml);
2845
2846	/*
2847	 * If we've tried to evict from each sublist, made some
2848	 * progress, but still have not hit the target number of bytes
2849	 * to evict, we want to keep trying. The markers allow us to
2850	 * pick up where we left off for each individual sublist, rather
2851	 * than starting from the tail each time.
2852	 */
2853	markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
2854	for (int i = 0; i < num_sublists; i++) {
2855		markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
2856
2857		/*
2858		 * A b_spa of 0 is used to indicate that this header is
2859		 * a marker. This fact is used in arc_adjust_type() and
2860		 * arc_evict_state_impl().
2861		 */
2862		markers[i]->b_spa = 0;
2863
2864		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
2865		multilist_sublist_insert_tail(mls, markers[i]);
2866		multilist_sublist_unlock(mls);
2867	}
2868
2869	/*
2870	 * While we haven't hit our target number of bytes to evict, or
2871	 * we're evicting all available buffers.
2872	 */
2873	while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
2874		/*
2875		 * Start eviction using a randomly selected sublist,
2876		 * this is to try and evenly balance eviction across all
2877		 * sublists. Always starting at the same sublist
2878		 * (e.g. index 0) would cause evictions to favor certain
2879		 * sublists over others.
2880		 */
2881		int sublist_idx = multilist_get_random_index(ml);
2882		uint64_t scan_evicted = 0;
2883
2884		for (int i = 0; i < num_sublists; i++) {
2885			uint64_t bytes_remaining;
2886			uint64_t bytes_evicted;
2887
2888			if (bytes == ARC_EVICT_ALL)
2889				bytes_remaining = ARC_EVICT_ALL;
2890			else if (total_evicted < bytes)
2891				bytes_remaining = bytes - total_evicted;
2892			else
2893				break;
2894
2895			bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
2896			    markers[sublist_idx], spa, bytes_remaining);
2897
2898			scan_evicted += bytes_evicted;
2899			total_evicted += bytes_evicted;
2900
2901			/* we've reached the end, wrap to the beginning */
2902			if (++sublist_idx >= num_sublists)
2903				sublist_idx = 0;
2904		}
2905
2906		/*
2907		 * If we didn't evict anything during this scan, we have
2908		 * no reason to believe we'll evict more during another
2909		 * scan, so break the loop.
2910		 */
2911		if (scan_evicted == 0) {
2912			/* This isn't possible, let's make that obvious */
2913			ASSERT3S(bytes, !=, 0);
2914
2915			/*
2916			 * When bytes is ARC_EVICT_ALL, the only way to
2917			 * break the loop is when scan_evicted is zero.
2918			 * In that case, we actually have evicted enough,
2919			 * so we don't want to increment the kstat.
2920			 */
2921			if (bytes != ARC_EVICT_ALL) {
2922				ASSERT3S(total_evicted, <, bytes);
2923				ARCSTAT_BUMP(arcstat_evict_not_enough);
2924			}
2925
2926			break;
2927		}
2928	}
2929
2930	for (int i = 0; i < num_sublists; i++) {
2931		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
2932		multilist_sublist_remove(mls, markers[i]);
2933		multilist_sublist_unlock(mls);
2934
2935		kmem_cache_free(hdr_full_cache, markers[i]);
2936	}
2937	kmem_free(markers, sizeof (*markers) * num_sublists);
2938
2939	return (total_evicted);
2940}
2941
2942/*
2943 * Flush all "evictable" data of the given type from the arc state
2944 * specified. This will not evict any "active" buffers (i.e. referenced).
2945 *
2946 * When 'retry' is set to FALSE, the function will make a single pass
2947 * over the state and evict any buffers that it can. Since it doesn't
2948 * continually retry the eviction, it might end up leaving some buffers
2949 * in the ARC due to lock misses.
2950 *
2951 * When 'retry' is set to TRUE, the function will continually retry the
2952 * eviction until *all* evictable buffers have been removed from the
2953 * state. As a result, if concurrent insertions into the state are
2954 * allowed (e.g. if the ARC isn't shutting down), this function might
2955 * wind up in an infinite loop, continually trying to evict buffers.
2956 */
2957static uint64_t
2958arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
2959    boolean_t retry)
2960{
2961	uint64_t evicted = 0;
2962
2963	while (state->arcs_lsize[type] != 0) {
2964		evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
2965
2966		if (!retry)
2967			break;
2968	}
2969
2970	return (evicted);
2971}
2972
2973/*
2974 * Evict the specified number of bytes from the state specified,
2975 * restricting eviction to the spa and type given. This function
2976 * prevents us from trying to evict more from a state's list than
2977 * is "evictable", and to skip evicting altogether when passed a
2978 * negative value for "bytes". In contrast, arc_evict_state() will
2979 * evict everything it can, when passed a negative value for "bytes".
2980 */
2981static uint64_t
2982arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
2983    arc_buf_contents_t type)
2984{
2985	int64_t delta;
2986
2987	if (bytes > 0 && state->arcs_lsize[type] > 0) {
2988		delta = MIN(state->arcs_lsize[type], bytes);
2989		return (arc_evict_state(state, spa, delta, type));
2990	}
2991
2992	return (0);
2993}
2994
2995/*
2996 * Evict metadata buffers from the cache, such that arc_meta_used is
2997 * capped by the arc_meta_limit tunable.
2998 */
2999static uint64_t
3000arc_adjust_meta(void)
3001{
3002	uint64_t total_evicted = 0;
3003	int64_t target;
3004
3005	/*
3006	 * If we're over the meta limit, we want to evict enough
3007	 * metadata to get back under the meta limit. We don't want to
3008	 * evict so much that we drop the MRU below arc_p, though. If
3009	 * we're over the meta limit more than we're over arc_p, we
3010	 * evict some from the MRU here, and some from the MFU below.
3011	 */
3012	target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3013	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
3014	    refcount_count(&arc_mru->arcs_size) - arc_p));
3015
3016	total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3017
3018	/*
3019	 * Similar to the above, we want to evict enough bytes to get us
3020	 * below the meta limit, but not so much as to drop us below the
3021	 * space alloted to the MFU (which is defined as arc_c - arc_p).
3022	 */
3023	target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3024	    (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p)));
3025
3026	total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3027
3028	return (total_evicted);
3029}
3030
3031/*
3032 * Return the type of the oldest buffer in the given arc state
3033 *
3034 * This function will select a random sublist of type ARC_BUFC_DATA and
3035 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
3036 * is compared, and the type which contains the "older" buffer will be
3037 * returned.
3038 */
3039static arc_buf_contents_t
3040arc_adjust_type(arc_state_t *state)
3041{
3042	multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA];
3043	multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA];
3044	int data_idx = multilist_get_random_index(data_ml);
3045	int meta_idx = multilist_get_random_index(meta_ml);
3046	multilist_sublist_t *data_mls;
3047	multilist_sublist_t *meta_mls;
3048	arc_buf_contents_t type;
3049	arc_buf_hdr_t *data_hdr;
3050	arc_buf_hdr_t *meta_hdr;
3051
3052	/*
3053	 * We keep the sublist lock until we're finished, to prevent
3054	 * the headers from being destroyed via arc_evict_state().
3055	 */
3056	data_mls = multilist_sublist_lock(data_ml, data_idx);
3057	meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
3058
3059	/*
3060	 * These two loops are to ensure we skip any markers that
3061	 * might be at the tail of the lists due to arc_evict_state().
3062	 */
3063
3064	for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
3065	    data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
3066		if (data_hdr->b_spa != 0)
3067			break;
3068	}
3069
3070	for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
3071	    meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
3072		if (meta_hdr->b_spa != 0)
3073			break;
3074	}
3075
3076	if (data_hdr == NULL && meta_hdr == NULL) {
3077		type = ARC_BUFC_DATA;
3078	} else if (data_hdr == NULL) {
3079		ASSERT3P(meta_hdr, !=, NULL);
3080		type = ARC_BUFC_METADATA;
3081	} else if (meta_hdr == NULL) {
3082		ASSERT3P(data_hdr, !=, NULL);
3083		type = ARC_BUFC_DATA;
3084	} else {
3085		ASSERT3P(data_hdr, !=, NULL);
3086		ASSERT3P(meta_hdr, !=, NULL);
3087
3088		/* The headers can't be on the sublist without an L1 header */
3089		ASSERT(HDR_HAS_L1HDR(data_hdr));
3090		ASSERT(HDR_HAS_L1HDR(meta_hdr));
3091
3092		if (data_hdr->b_l1hdr.b_arc_access <
3093		    meta_hdr->b_l1hdr.b_arc_access) {
3094			type = ARC_BUFC_DATA;
3095		} else {
3096			type = ARC_BUFC_METADATA;
3097		}
3098	}
3099
3100	multilist_sublist_unlock(meta_mls);
3101	multilist_sublist_unlock(data_mls);
3102
3103	return (type);
3104}
3105
3106/*
3107 * Evict buffers from the cache, such that arc_size is capped by arc_c.
3108 */
3109static uint64_t
3110arc_adjust(void)
3111{
3112	uint64_t total_evicted = 0;
3113	uint64_t bytes;
3114	int64_t target;
3115
3116	/*
3117	 * If we're over arc_meta_limit, we want to correct that before
3118	 * potentially evicting data buffers below.
3119	 */
3120	total_evicted += arc_adjust_meta();
3121
3122	/*
3123	 * Adjust MRU size
3124	 *
3125	 * If we're over the target cache size, we want to evict enough
3126	 * from the list to get back to our target size. We don't want
3127	 * to evict too much from the MRU, such that it drops below
3128	 * arc_p. So, if we're over our target cache size more than
3129	 * the MRU is over arc_p, we'll evict enough to get back to
3130	 * arc_p here, and then evict more from the MFU below.
3131	 */
3132	target = MIN((int64_t)(arc_size - arc_c),
3133	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
3134	    refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p));
3135
3136	/*
3137	 * If we're below arc_meta_min, always prefer to evict data.
3138	 * Otherwise, try to satisfy the requested number of bytes to
3139	 * evict from the type which contains older buffers; in an
3140	 * effort to keep newer buffers in the cache regardless of their
3141	 * type. If we cannot satisfy the number of bytes from this
3142	 * type, spill over into the next type.
3143	 */
3144	if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
3145	    arc_meta_used > arc_meta_min) {
3146		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3147		total_evicted += bytes;
3148
3149		/*
3150		 * If we couldn't evict our target number of bytes from
3151		 * metadata, we try to get the rest from data.
3152		 */
3153		target -= bytes;
3154
3155		total_evicted +=
3156		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3157	} else {
3158		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3159		total_evicted += bytes;
3160
3161		/*
3162		 * If we couldn't evict our target number of bytes from
3163		 * data, we try to get the rest from metadata.
3164		 */
3165		target -= bytes;
3166
3167		total_evicted +=
3168		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3169	}
3170
3171	/*
3172	 * Adjust MFU size
3173	 *
3174	 * Now that we've tried to evict enough from the MRU to get its
3175	 * size back to arc_p, if we're still above the target cache
3176	 * size, we evict the rest from the MFU.
3177	 */
3178	target = arc_size - arc_c;
3179
3180	if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
3181	    arc_meta_used > arc_meta_min) {
3182		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3183		total_evicted += bytes;
3184
3185		/*
3186		 * If we couldn't evict our target number of bytes from
3187		 * metadata, we try to get the rest from data.
3188		 */
3189		target -= bytes;
3190
3191		total_evicted +=
3192		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3193	} else {
3194		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3195		total_evicted += bytes;
3196
3197		/*
3198		 * If we couldn't evict our target number of bytes from
3199		 * data, we try to get the rest from data.
3200		 */
3201		target -= bytes;
3202
3203		total_evicted +=
3204		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3205	}
3206
3207	/*
3208	 * Adjust ghost lists
3209	 *
3210	 * In addition to the above, the ARC also defines target values
3211	 * for the ghost lists. The sum of the mru list and mru ghost
3212	 * list should never exceed the target size of the cache, and
3213	 * the sum of the mru list, mfu list, mru ghost list, and mfu
3214	 * ghost list should never exceed twice the target size of the
3215	 * cache. The following logic enforces these limits on the ghost
3216	 * caches, and evicts from them as needed.
3217	 */
3218	target = refcount_count(&arc_mru->arcs_size) +
3219	    refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
3220
3221	bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
3222	total_evicted += bytes;
3223
3224	target -= bytes;
3225
3226	total_evicted +=
3227	    arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
3228
3229	/*
3230	 * We assume the sum of the mru list and mfu list is less than
3231	 * or equal to arc_c (we enforced this above), which means we
3232	 * can use the simpler of the two equations below:
3233	 *
3234	 *	mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
3235	 *		    mru ghost + mfu ghost <= arc_c
3236	 */
3237	target = refcount_count(&arc_mru_ghost->arcs_size) +
3238	    refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
3239
3240	bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
3241	total_evicted += bytes;
3242
3243	target -= bytes;
3244
3245	total_evicted +=
3246	    arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
3247
3248	return (total_evicted);
3249}
3250
3251static void
3252arc_do_user_evicts(void)
3253{
3254	mutex_enter(&arc_user_evicts_lock);
3255	while (arc_eviction_list != NULL) {
3256		arc_buf_t *buf = arc_eviction_list;
3257		arc_eviction_list = buf->b_next;
3258		mutex_enter(&buf->b_evict_lock);
3259		buf->b_hdr = NULL;
3260		mutex_exit(&buf->b_evict_lock);
3261		mutex_exit(&arc_user_evicts_lock);
3262
3263		if (buf->b_efunc != NULL)
3264			VERIFY0(buf->b_efunc(buf->b_private));
3265
3266		buf->b_efunc = NULL;
3267		buf->b_private = NULL;
3268		kmem_cache_free(buf_cache, buf);
3269		mutex_enter(&arc_user_evicts_lock);
3270	}
3271	mutex_exit(&arc_user_evicts_lock);
3272}
3273
3274void
3275arc_flush(spa_t *spa, boolean_t retry)
3276{
3277	uint64_t guid = 0;
3278
3279	/*
3280	 * If retry is TRUE, a spa must not be specified since we have
3281	 * no good way to determine if all of a spa's buffers have been
3282	 * evicted from an arc state.
3283	 */
3284	ASSERT(!retry || spa == 0);
3285
3286	if (spa != NULL)
3287		guid = spa_load_guid(spa);
3288
3289	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
3290	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
3291
3292	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
3293	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
3294
3295	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
3296	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
3297
3298	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
3299	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
3300
3301	arc_do_user_evicts();
3302	ASSERT(spa || arc_eviction_list == NULL);
3303}
3304
3305void
3306arc_shrink(int64_t to_free)
3307{
3308	if (arc_c > arc_c_min) {
3309		DTRACE_PROBE4(arc__shrink, uint64_t, arc_c, uint64_t,
3310			arc_c_min, uint64_t, arc_p, uint64_t, to_free);
3311		if (arc_c > arc_c_min + to_free)
3312			atomic_add_64(&arc_c, -to_free);
3313		else
3314			arc_c = arc_c_min;
3315
3316		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
3317		if (arc_c > arc_size)
3318			arc_c = MAX(arc_size, arc_c_min);
3319		if (arc_p > arc_c)
3320			arc_p = (arc_c >> 1);
3321
3322		DTRACE_PROBE2(arc__shrunk, uint64_t, arc_c, uint64_t,
3323			arc_p);
3324
3325		ASSERT(arc_c >= arc_c_min);
3326		ASSERT((int64_t)arc_p >= 0);
3327	}
3328
3329	if (arc_size > arc_c) {
3330		DTRACE_PROBE2(arc__shrink_adjust, uint64_t, arc_size,
3331			uint64_t, arc_c);
3332		(void) arc_adjust();
3333	}
3334}
3335
3336static long needfree = 0;
3337
3338typedef enum free_memory_reason_t {
3339	FMR_UNKNOWN,
3340	FMR_NEEDFREE,
3341	FMR_LOTSFREE,
3342	FMR_SWAPFS_MINFREE,
3343	FMR_PAGES_PP_MAXIMUM,
3344	FMR_HEAP_ARENA,
3345	FMR_ZIO_ARENA,
3346	FMR_ZIO_FRAG,
3347} free_memory_reason_t;
3348
3349int64_t last_free_memory;
3350free_memory_reason_t last_free_reason;
3351
3352/*
3353 * Additional reserve of pages for pp_reserve.
3354 */
3355int64_t arc_pages_pp_reserve = 64;
3356
3357/*
3358 * Additional reserve of pages for swapfs.
3359 */
3360int64_t arc_swapfs_reserve = 64;
3361
3362/*
3363 * Return the amount of memory that can be consumed before reclaim will be
3364 * needed.  Positive if there is sufficient free memory, negative indicates
3365 * the amount of memory that needs to be freed up.
3366 */
3367static int64_t
3368arc_available_memory(void)
3369{
3370	int64_t lowest = INT64_MAX;
3371	int64_t n;
3372	free_memory_reason_t r = FMR_UNKNOWN;
3373
3374#ifdef _KERNEL
3375	if (needfree > 0) {
3376		n = PAGESIZE * (-needfree);
3377		if (n < lowest) {
3378			lowest = n;
3379			r = FMR_NEEDFREE;
3380		}
3381	}
3382
3383	/*
3384	 * Cooperate with pagedaemon when it's time for it to scan
3385	 * and reclaim some pages.
3386	 */
3387	n = PAGESIZE * ((int64_t)freemem - zfs_arc_free_target);
3388	if (n < lowest) {
3389		lowest = n;
3390		r = FMR_LOTSFREE;
3391	}
3392
3393#ifdef sun
3394	/*
3395	 * check that we're out of range of the pageout scanner.  It starts to
3396	 * schedule paging if freemem is less than lotsfree and needfree.
3397	 * lotsfree is the high-water mark for pageout, and needfree is the
3398	 * number of needed free pages.  We add extra pages here to make sure
3399	 * the scanner doesn't start up while we're freeing memory.
3400	 */
3401	n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
3402	if (n < lowest) {
3403		lowest = n;
3404		r = FMR_LOTSFREE;
3405	}
3406
3407	/*
3408	 * check to make sure that swapfs has enough space so that anon
3409	 * reservations can still succeed. anon_resvmem() checks that the
3410	 * availrmem is greater than swapfs_minfree, and the number of reserved
3411	 * swap pages.  We also add a bit of extra here just to prevent
3412	 * circumstances from getting really dire.
3413	 */
3414	n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
3415	    desfree - arc_swapfs_reserve);
3416	if (n < lowest) {
3417		lowest = n;
3418		r = FMR_SWAPFS_MINFREE;
3419	}
3420
3421
3422	/*
3423	 * Check that we have enough availrmem that memory locking (e.g., via
3424	 * mlock(3C) or memcntl(2)) can still succeed.  (pages_pp_maximum
3425	 * stores the number of pages that cannot be locked; when availrmem
3426	 * drops below pages_pp_maximum, page locking mechanisms such as
3427	 * page_pp_lock() will fail.)
3428	 */
3429	n = PAGESIZE * (availrmem - pages_pp_maximum -
3430	    arc_pages_pp_reserve);
3431	if (n < lowest) {
3432		lowest = n;
3433		r = FMR_PAGES_PP_MAXIMUM;
3434	}
3435
3436#endif	/* sun */
3437#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
3438	/*
3439	 * If we're on an i386 platform, it's possible that we'll exhaust the
3440	 * kernel heap space before we ever run out of available physical
3441	 * memory.  Most checks of the size of the heap_area compare against
3442	 * tune.t_minarmem, which is the minimum available real memory that we
3443	 * can have in the system.  However, this is generally fixed at 25 pages
3444	 * which is so low that it's useless.  In this comparison, we seek to
3445	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
3446	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
3447	 * free)
3448	 */
3449	n = (int64_t)vmem_size(heap_arena, VMEM_FREE) -
3450	    (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
3451	if (n < lowest) {
3452		lowest = n;
3453		r = FMR_HEAP_ARENA;
3454	}
3455#define	zio_arena	NULL
3456#else
3457#define	zio_arena	heap_arena
3458#endif
3459
3460	/*
3461	 * If zio data pages are being allocated out of a separate heap segment,
3462	 * then enforce that the size of available vmem for this arena remains
3463	 * above about 1/16th free.
3464	 *
3465	 * Note: The 1/16th arena free requirement was put in place
3466	 * to aggressively evict memory from the arc in order to avoid
3467	 * memory fragmentation issues.
3468	 */
3469	if (zio_arena != NULL) {
3470		n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
3471		    (vmem_size(zio_arena, VMEM_ALLOC) >> 4);
3472		if (n < lowest) {
3473			lowest = n;
3474			r = FMR_ZIO_ARENA;
3475		}
3476	}
3477
3478	/*
3479	 * Above limits know nothing about real level of KVA fragmentation.
3480	 * Start aggressive reclamation if too little sequential KVA left.
3481	 */
3482	if (lowest > 0) {
3483		n = (vmem_size(heap_arena, VMEM_MAXFREE) < zfs_max_recordsize) ?
3484		    -((int64_t)vmem_size(heap_arena, VMEM_ALLOC) >> 4) :
3485		    INT64_MAX;
3486		if (n < lowest) {
3487			lowest = n;
3488			r = FMR_ZIO_FRAG;
3489		}
3490	}
3491
3492#else	/* _KERNEL */
3493	/* Every 100 calls, free a small amount */
3494	if (spa_get_random(100) == 0)
3495		lowest = -1024;
3496#endif	/* _KERNEL */
3497
3498	last_free_memory = lowest;
3499	last_free_reason = r;
3500	DTRACE_PROBE2(arc__available_memory, int64_t, lowest, int, r);
3501	return (lowest);
3502}
3503
3504
3505/*
3506 * Determine if the system is under memory pressure and is asking
3507 * to reclaim memory. A return value of TRUE indicates that the system
3508 * is under memory pressure and that the arc should adjust accordingly.
3509 */
3510static boolean_t
3511arc_reclaim_needed(void)
3512{
3513	return (arc_available_memory() < 0);
3514}
3515
3516extern kmem_cache_t	*zio_buf_cache[];
3517extern kmem_cache_t	*zio_data_buf_cache[];
3518extern kmem_cache_t	*range_seg_cache;
3519
3520static __noinline void
3521arc_kmem_reap_now(void)
3522{
3523	size_t			i;
3524	kmem_cache_t		*prev_cache = NULL;
3525	kmem_cache_t		*prev_data_cache = NULL;
3526
3527	DTRACE_PROBE(arc__kmem_reap_start);
3528#ifdef _KERNEL
3529	if (arc_meta_used >= arc_meta_limit) {
3530		/*
3531		 * We are exceeding our meta-data cache limit.
3532		 * Purge some DNLC entries to release holds on meta-data.
3533		 */
3534		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
3535	}
3536#if defined(__i386)
3537	/*
3538	 * Reclaim unused memory from all kmem caches.
3539	 */
3540	kmem_reap();
3541#endif
3542#endif
3543
3544	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
3545		if (zio_buf_cache[i] != prev_cache) {
3546			prev_cache = zio_buf_cache[i];
3547			kmem_cache_reap_now(zio_buf_cache[i]);
3548		}
3549		if (zio_data_buf_cache[i] != prev_data_cache) {
3550			prev_data_cache = zio_data_buf_cache[i];
3551			kmem_cache_reap_now(zio_data_buf_cache[i]);
3552		}
3553	}
3554	kmem_cache_reap_now(buf_cache);
3555	kmem_cache_reap_now(hdr_full_cache);
3556	kmem_cache_reap_now(hdr_l2only_cache);
3557	kmem_cache_reap_now(range_seg_cache);
3558
3559#ifdef sun
3560	if (zio_arena != NULL) {
3561		/*
3562		 * Ask the vmem arena to reclaim unused memory from its
3563		 * quantum caches.
3564		 */
3565		vmem_qcache_reap(zio_arena);
3566	}
3567#endif
3568	DTRACE_PROBE(arc__kmem_reap_end);
3569}
3570
3571/*
3572 * Threads can block in arc_get_data_buf() waiting for this thread to evict
3573 * enough data and signal them to proceed. When this happens, the threads in
3574 * arc_get_data_buf() are sleeping while holding the hash lock for their
3575 * particular arc header. Thus, we must be careful to never sleep on a
3576 * hash lock in this thread. This is to prevent the following deadlock:
3577 *
3578 *  - Thread A sleeps on CV in arc_get_data_buf() holding hash lock "L",
3579 *    waiting for the reclaim thread to signal it.
3580 *
3581 *  - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
3582 *    fails, and goes to sleep forever.
3583 *
3584 * This possible deadlock is avoided by always acquiring a hash lock
3585 * using mutex_tryenter() from arc_reclaim_thread().
3586 */
3587static void
3588arc_reclaim_thread(void *dummy __unused)
3589{
3590	clock_t			growtime = 0;
3591	callb_cpr_t		cpr;
3592
3593	CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
3594
3595	mutex_enter(&arc_reclaim_lock);
3596	while (!arc_reclaim_thread_exit) {
3597		int64_t free_memory = arc_available_memory();
3598		uint64_t evicted = 0;
3599
3600		mutex_exit(&arc_reclaim_lock);
3601
3602		if (free_memory < 0) {
3603
3604			arc_no_grow = B_TRUE;
3605			arc_warm = B_TRUE;
3606
3607			/*
3608			 * Wait at least zfs_grow_retry (default 60) seconds
3609			 * before considering growing.
3610			 */
3611			growtime = ddi_get_lbolt() + (arc_grow_retry * hz);
3612
3613			arc_kmem_reap_now();
3614
3615			/*
3616			 * If we are still low on memory, shrink the ARC
3617			 * so that we have arc_shrink_min free space.
3618			 */
3619			free_memory = arc_available_memory();
3620
3621			int64_t to_free =
3622			    (arc_c >> arc_shrink_shift) - free_memory;
3623			if (to_free > 0) {
3624#ifdef _KERNEL
3625				to_free = MAX(to_free, ptob(needfree));
3626#endif
3627				arc_shrink(to_free);
3628			}
3629		} else if (free_memory < arc_c >> arc_no_grow_shift) {
3630			arc_no_grow = B_TRUE;
3631		} else if (ddi_get_lbolt() >= growtime) {
3632			arc_no_grow = B_FALSE;
3633		}
3634
3635		evicted = arc_adjust();
3636
3637		mutex_enter(&arc_reclaim_lock);
3638
3639		/*
3640		 * If evicted is zero, we couldn't evict anything via
3641		 * arc_adjust(). This could be due to hash lock
3642		 * collisions, but more likely due to the majority of
3643		 * arc buffers being unevictable. Therefore, even if
3644		 * arc_size is above arc_c, another pass is unlikely to
3645		 * be helpful and could potentially cause us to enter an
3646		 * infinite loop.
3647		 */
3648		if (arc_size <= arc_c || evicted == 0) {
3649#ifdef _KERNEL
3650			needfree = 0;
3651#endif
3652			/*
3653			 * We're either no longer overflowing, or we
3654			 * can't evict anything more, so we should wake
3655			 * up any threads before we go to sleep.
3656			 */
3657			cv_broadcast(&arc_reclaim_waiters_cv);
3658
3659			/*
3660			 * Block until signaled, or after one second (we
3661			 * might need to perform arc_kmem_reap_now()
3662			 * even if we aren't being signalled)
3663			 */
3664			CALLB_CPR_SAFE_BEGIN(&cpr);
3665			(void) cv_timedwait(&arc_reclaim_thread_cv,
3666			    &arc_reclaim_lock, hz);
3667			CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
3668		}
3669	}
3670
3671	arc_reclaim_thread_exit = FALSE;
3672	cv_broadcast(&arc_reclaim_thread_cv);
3673	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_lock */
3674	thread_exit();
3675}
3676
3677static void
3678arc_user_evicts_thread(void *dummy __unused)
3679{
3680	callb_cpr_t cpr;
3681
3682	CALLB_CPR_INIT(&cpr, &arc_user_evicts_lock, callb_generic_cpr, FTAG);
3683
3684	mutex_enter(&arc_user_evicts_lock);
3685	while (!arc_user_evicts_thread_exit) {
3686		mutex_exit(&arc_user_evicts_lock);
3687
3688		arc_do_user_evicts();
3689
3690		/*
3691		 * This is necessary in order for the mdb ::arc dcmd to
3692		 * show up to date information. Since the ::arc command
3693		 * does not call the kstat's update function, without
3694		 * this call, the command may show stale stats for the
3695		 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
3696		 * with this change, the data might be up to 1 second
3697		 * out of date; but that should suffice. The arc_state_t
3698		 * structures can be queried directly if more accurate
3699		 * information is needed.
3700		 */
3701		if (arc_ksp != NULL)
3702			arc_ksp->ks_update(arc_ksp, KSTAT_READ);
3703
3704		mutex_enter(&arc_user_evicts_lock);
3705
3706		/*
3707		 * Block until signaled, or after one second (we need to
3708		 * call the arc's kstat update function regularly).
3709		 */
3710		CALLB_CPR_SAFE_BEGIN(&cpr);
3711		(void) cv_timedwait(&arc_user_evicts_cv,
3712		    &arc_user_evicts_lock, hz);
3713		CALLB_CPR_SAFE_END(&cpr, &arc_user_evicts_lock);
3714	}
3715
3716	arc_user_evicts_thread_exit = FALSE;
3717	cv_broadcast(&arc_user_evicts_cv);
3718	CALLB_CPR_EXIT(&cpr);		/* drops arc_user_evicts_lock */
3719	thread_exit();
3720}
3721
3722/*
3723 * Adapt arc info given the number of bytes we are trying to add and
3724 * the state that we are comming from.  This function is only called
3725 * when we are adding new content to the cache.
3726 */
3727static void
3728arc_adapt(int bytes, arc_state_t *state)
3729{
3730	int mult;
3731	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
3732	int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
3733	int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
3734
3735	if (state == arc_l2c_only)
3736		return;
3737
3738	ASSERT(bytes > 0);
3739	/*
3740	 * Adapt the target size of the MRU list:
3741	 *	- if we just hit in the MRU ghost list, then increase
3742	 *	  the target size of the MRU list.
3743	 *	- if we just hit in the MFU ghost list, then increase
3744	 *	  the target size of the MFU list by decreasing the
3745	 *	  target size of the MRU list.
3746	 */
3747	if (state == arc_mru_ghost) {
3748		mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
3749		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
3750
3751		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
3752	} else if (state == arc_mfu_ghost) {
3753		uint64_t delta;
3754
3755		mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
3756		mult = MIN(mult, 10);
3757
3758		delta = MIN(bytes * mult, arc_p);
3759		arc_p = MAX(arc_p_min, arc_p - delta);
3760	}
3761	ASSERT((int64_t)arc_p >= 0);
3762
3763	if (arc_reclaim_needed()) {
3764		cv_signal(&arc_reclaim_thread_cv);
3765		return;
3766	}
3767
3768	if (arc_no_grow)
3769		return;
3770
3771	if (arc_c >= arc_c_max)
3772		return;
3773
3774	/*
3775	 * If we're within (2 * maxblocksize) bytes of the target
3776	 * cache size, increment the target cache size
3777	 */
3778	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
3779		DTRACE_PROBE1(arc__inc_adapt, int, bytes);
3780		atomic_add_64(&arc_c, (int64_t)bytes);
3781		if (arc_c > arc_c_max)
3782			arc_c = arc_c_max;
3783		else if (state == arc_anon)
3784			atomic_add_64(&arc_p, (int64_t)bytes);
3785		if (arc_p > arc_c)
3786			arc_p = arc_c;
3787	}
3788	ASSERT((int64_t)arc_p >= 0);
3789}
3790
3791/*
3792 * Check if arc_size has grown past our upper threshold, determined by
3793 * zfs_arc_overflow_shift.
3794 */
3795static boolean_t
3796arc_is_overflowing(void)
3797{
3798	/* Always allow at least one block of overflow */
3799	uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
3800	    arc_c >> zfs_arc_overflow_shift);
3801
3802	return (arc_size >= arc_c + overflow);
3803}
3804
3805/*
3806 * The buffer, supplied as the first argument, needs a data block. If we
3807 * are hitting the hard limit for the cache size, we must sleep, waiting
3808 * for the eviction thread to catch up. If we're past the target size
3809 * but below the hard limit, we'll only signal the reclaim thread and
3810 * continue on.
3811 */
3812static void
3813arc_get_data_buf(arc_buf_t *buf)
3814{
3815	arc_state_t		*state = buf->b_hdr->b_l1hdr.b_state;
3816	uint64_t		size = buf->b_hdr->b_size;
3817	arc_buf_contents_t	type = arc_buf_type(buf->b_hdr);
3818
3819	arc_adapt(size, state);
3820
3821	/*
3822	 * If arc_size is currently overflowing, and has grown past our
3823	 * upper limit, we must be adding data faster than the evict
3824	 * thread can evict. Thus, to ensure we don't compound the
3825	 * problem by adding more data and forcing arc_size to grow even
3826	 * further past it's target size, we halt and wait for the
3827	 * eviction thread to catch up.
3828	 *
3829	 * It's also possible that the reclaim thread is unable to evict
3830	 * enough buffers to get arc_size below the overflow limit (e.g.
3831	 * due to buffers being un-evictable, or hash lock collisions).
3832	 * In this case, we want to proceed regardless if we're
3833	 * overflowing; thus we don't use a while loop here.
3834	 */
3835	if (arc_is_overflowing()) {
3836		mutex_enter(&arc_reclaim_lock);
3837
3838		/*
3839		 * Now that we've acquired the lock, we may no longer be
3840		 * over the overflow limit, lets check.
3841		 *
3842		 * We're ignoring the case of spurious wake ups. If that
3843		 * were to happen, it'd let this thread consume an ARC
3844		 * buffer before it should have (i.e. before we're under
3845		 * the overflow limit and were signalled by the reclaim
3846		 * thread). As long as that is a rare occurrence, it
3847		 * shouldn't cause any harm.
3848		 */
3849		if (arc_is_overflowing()) {
3850			cv_signal(&arc_reclaim_thread_cv);
3851			cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
3852		}
3853
3854		mutex_exit(&arc_reclaim_lock);
3855	}
3856
3857	if (type == ARC_BUFC_METADATA) {
3858		buf->b_data = zio_buf_alloc(size);
3859		arc_space_consume(size, ARC_SPACE_META);
3860	} else {
3861		ASSERT(type == ARC_BUFC_DATA);
3862		buf->b_data = zio_data_buf_alloc(size);
3863		arc_space_consume(size, ARC_SPACE_DATA);
3864	}
3865
3866	/*
3867	 * Update the state size.  Note that ghost states have a
3868	 * "ghost size" and so don't need to be updated.
3869	 */
3870	if (!GHOST_STATE(buf->b_hdr->b_l1hdr.b_state)) {
3871		arc_buf_hdr_t *hdr = buf->b_hdr;
3872		arc_state_t *state = hdr->b_l1hdr.b_state;
3873
3874		(void) refcount_add_many(&state->arcs_size, size, buf);
3875
3876		/*
3877		 * If this is reached via arc_read, the link is
3878		 * protected by the hash lock. If reached via
3879		 * arc_buf_alloc, the header should not be accessed by
3880		 * any other thread. And, if reached via arc_read_done,
3881		 * the hash lock will protect it if it's found in the
3882		 * hash table; otherwise no other thread should be
3883		 * trying to [add|remove]_reference it.
3884		 */
3885		if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
3886			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3887			atomic_add_64(&hdr->b_l1hdr.b_state->arcs_lsize[type],
3888			    size);
3889		}
3890		/*
3891		 * If we are growing the cache, and we are adding anonymous
3892		 * data, and we have outgrown arc_p, update arc_p
3893		 */
3894		if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
3895		    (refcount_count(&arc_anon->arcs_size) +
3896		    refcount_count(&arc_mru->arcs_size) > arc_p))
3897			arc_p = MIN(arc_c, arc_p + size);
3898	}
3899	ARCSTAT_BUMP(arcstat_allocated);
3900}
3901
3902/*
3903 * This routine is called whenever a buffer is accessed.
3904 * NOTE: the hash lock is dropped in this function.
3905 */
3906static void
3907arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3908{
3909	clock_t now;
3910
3911	ASSERT(MUTEX_HELD(hash_lock));
3912	ASSERT(HDR_HAS_L1HDR(hdr));
3913
3914	if (hdr->b_l1hdr.b_state == arc_anon) {
3915		/*
3916		 * This buffer is not in the cache, and does not
3917		 * appear in our "ghost" list.  Add the new buffer
3918		 * to the MRU state.
3919		 */
3920
3921		ASSERT0(hdr->b_l1hdr.b_arc_access);
3922		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3923		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
3924		arc_change_state(arc_mru, hdr, hash_lock);
3925
3926	} else if (hdr->b_l1hdr.b_state == arc_mru) {
3927		now = ddi_get_lbolt();
3928
3929		/*
3930		 * If this buffer is here because of a prefetch, then either:
3931		 * - clear the flag if this is a "referencing" read
3932		 *   (any subsequent access will bump this into the MFU state).
3933		 * or
3934		 * - move the buffer to the head of the list if this is
3935		 *   another prefetch (to make it less likely to be evicted).
3936		 */
3937		if (HDR_PREFETCH(hdr)) {
3938			if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
3939				/* link protected by hash lock */
3940				ASSERT(multilist_link_active(
3941				    &hdr->b_l1hdr.b_arc_node));
3942			} else {
3943				hdr->b_flags &= ~ARC_FLAG_PREFETCH;
3944				ARCSTAT_BUMP(arcstat_mru_hits);
3945			}
3946			hdr->b_l1hdr.b_arc_access = now;
3947			return;
3948		}
3949
3950		/*
3951		 * This buffer has been "accessed" only once so far,
3952		 * but it is still in the cache. Move it to the MFU
3953		 * state.
3954		 */
3955		if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) {
3956			/*
3957			 * More than 125ms have passed since we
3958			 * instantiated this buffer.  Move it to the
3959			 * most frequently used state.
3960			 */
3961			hdr->b_l1hdr.b_arc_access = now;
3962			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3963			arc_change_state(arc_mfu, hdr, hash_lock);
3964		}
3965		ARCSTAT_BUMP(arcstat_mru_hits);
3966	} else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
3967		arc_state_t	*new_state;
3968		/*
3969		 * This buffer has been "accessed" recently, but
3970		 * was evicted from the cache.  Move it to the
3971		 * MFU state.
3972		 */
3973
3974		if (HDR_PREFETCH(hdr)) {
3975			new_state = arc_mru;
3976			if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
3977				hdr->b_flags &= ~ARC_FLAG_PREFETCH;
3978			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
3979		} else {
3980			new_state = arc_mfu;
3981			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3982		}
3983
3984		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3985		arc_change_state(new_state, hdr, hash_lock);
3986
3987		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
3988	} else if (hdr->b_l1hdr.b_state == arc_mfu) {
3989		/*
3990		 * This buffer has been accessed more than once and is
3991		 * still in the cache.  Keep it in the MFU state.
3992		 *
3993		 * NOTE: an add_reference() that occurred when we did
3994		 * the arc_read() will have kicked this off the list.
3995		 * If it was a prefetch, we will explicitly move it to
3996		 * the head of the list now.
3997		 */
3998		if ((HDR_PREFETCH(hdr)) != 0) {
3999			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4000			/* link protected by hash_lock */
4001			ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4002		}
4003		ARCSTAT_BUMP(arcstat_mfu_hits);
4004		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4005	} else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
4006		arc_state_t	*new_state = arc_mfu;
4007		/*
4008		 * This buffer has been accessed more than once but has
4009		 * been evicted from the cache.  Move it back to the
4010		 * MFU state.
4011		 */
4012
4013		if (HDR_PREFETCH(hdr)) {
4014			/*
4015			 * This is a prefetch access...
4016			 * move this block back to the MRU state.
4017			 */
4018			ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
4019			new_state = arc_mru;
4020		}
4021
4022		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4023		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4024		arc_change_state(new_state, hdr, hash_lock);
4025
4026		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
4027	} else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
4028		/*
4029		 * This buffer is on the 2nd Level ARC.
4030		 */
4031
4032		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4033		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4034		arc_change_state(arc_mfu, hdr, hash_lock);
4035	} else {
4036		ASSERT(!"invalid arc state");
4037	}
4038}
4039
4040/* a generic arc_done_func_t which you can use */
4041/* ARGSUSED */
4042void
4043arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
4044{
4045	if (zio == NULL || zio->io_error == 0)
4046		bcopy(buf->b_data, arg, buf->b_hdr->b_size);
4047	VERIFY(arc_buf_remove_ref(buf, arg));
4048}
4049
4050/* a generic arc_done_func_t */
4051void
4052arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
4053{
4054	arc_buf_t **bufp = arg;
4055	if (zio && zio->io_error) {
4056		VERIFY(arc_buf_remove_ref(buf, arg));
4057		*bufp = NULL;
4058	} else {
4059		*bufp = buf;
4060		ASSERT(buf->b_data);
4061	}
4062}
4063
4064static void
4065arc_read_done(zio_t *zio)
4066{
4067	arc_buf_hdr_t	*hdr;
4068	arc_buf_t	*buf;
4069	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
4070	kmutex_t	*hash_lock = NULL;
4071	arc_callback_t	*callback_list, *acb;
4072	int		freeable = FALSE;
4073
4074	buf = zio->io_private;
4075	hdr = buf->b_hdr;
4076
4077	/*
4078	 * The hdr was inserted into hash-table and removed from lists
4079	 * prior to starting I/O.  We should find this header, since
4080	 * it's in the hash table, and it should be legit since it's
4081	 * not possible to evict it during the I/O.  The only possible
4082	 * reason for it not to be found is if we were freed during the
4083	 * read.
4084	 */
4085	if (HDR_IN_HASH_TABLE(hdr)) {
4086		ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
4087		ASSERT3U(hdr->b_dva.dva_word[0], ==,
4088		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
4089		ASSERT3U(hdr->b_dva.dva_word[1], ==,
4090		    BP_IDENTITY(zio->io_bp)->dva_word[1]);
4091
4092		arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
4093		    &hash_lock);
4094
4095		ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) &&
4096		    hash_lock == NULL) ||
4097		    (found == hdr &&
4098		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
4099		    (found == hdr && HDR_L2_READING(hdr)));
4100	}
4101
4102	hdr->b_flags &= ~ARC_FLAG_L2_EVICTED;
4103	if (l2arc_noprefetch && HDR_PREFETCH(hdr))
4104		hdr->b_flags &= ~ARC_FLAG_L2CACHE;
4105
4106	/* byteswap if necessary */
4107	callback_list = hdr->b_l1hdr.b_acb;
4108	ASSERT(callback_list != NULL);
4109	if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
4110		dmu_object_byteswap_t bswap =
4111		    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
4112		arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
4113		    byteswap_uint64_array :
4114		    dmu_ot_byteswap[bswap].ob_func;
4115		func(buf->b_data, hdr->b_size);
4116	}
4117
4118	arc_cksum_compute(buf, B_FALSE);
4119#ifdef illumos
4120	arc_buf_watch(buf);
4121#endif /* illumos */
4122
4123	if (hash_lock && zio->io_error == 0 &&
4124	    hdr->b_l1hdr.b_state == arc_anon) {
4125		/*
4126		 * Only call arc_access on anonymous buffers.  This is because
4127		 * if we've issued an I/O for an evicted buffer, we've already
4128		 * called arc_access (to prevent any simultaneous readers from
4129		 * getting confused).
4130		 */
4131		arc_access(hdr, hash_lock);
4132	}
4133
4134	/* create copies of the data buffer for the callers */
4135	abuf = buf;
4136	for (acb = callback_list; acb; acb = acb->acb_next) {
4137		if (acb->acb_done) {
4138			if (abuf == NULL) {
4139				ARCSTAT_BUMP(arcstat_duplicate_reads);
4140				abuf = arc_buf_clone(buf);
4141			}
4142			acb->acb_buf = abuf;
4143			abuf = NULL;
4144		}
4145	}
4146	hdr->b_l1hdr.b_acb = NULL;
4147	hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
4148	ASSERT(!HDR_BUF_AVAILABLE(hdr));
4149	if (abuf == buf) {
4150		ASSERT(buf->b_efunc == NULL);
4151		ASSERT(hdr->b_l1hdr.b_datacnt == 1);
4152		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
4153	}
4154
4155	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
4156	    callback_list != NULL);
4157
4158	if (zio->io_error != 0) {
4159		hdr->b_flags |= ARC_FLAG_IO_ERROR;
4160		if (hdr->b_l1hdr.b_state != arc_anon)
4161			arc_change_state(arc_anon, hdr, hash_lock);
4162		if (HDR_IN_HASH_TABLE(hdr))
4163			buf_hash_remove(hdr);
4164		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4165	}
4166
4167	/*
4168	 * Broadcast before we drop the hash_lock to avoid the possibility
4169	 * that the hdr (and hence the cv) might be freed before we get to
4170	 * the cv_broadcast().
4171	 */
4172	cv_broadcast(&hdr->b_l1hdr.b_cv);
4173
4174	if (hash_lock != NULL) {
4175		mutex_exit(hash_lock);
4176	} else {
4177		/*
4178		 * This block was freed while we waited for the read to
4179		 * complete.  It has been removed from the hash table and
4180		 * moved to the anonymous state (so that it won't show up
4181		 * in the cache).
4182		 */
4183		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
4184		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4185	}
4186
4187	/* execute each callback and free its structure */
4188	while ((acb = callback_list) != NULL) {
4189		if (acb->acb_done)
4190			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
4191
4192		if (acb->acb_zio_dummy != NULL) {
4193			acb->acb_zio_dummy->io_error = zio->io_error;
4194			zio_nowait(acb->acb_zio_dummy);
4195		}
4196
4197		callback_list = acb->acb_next;
4198		kmem_free(acb, sizeof (arc_callback_t));
4199	}
4200
4201	if (freeable)
4202		arc_hdr_destroy(hdr);
4203}
4204
4205/*
4206 * "Read" the block at the specified DVA (in bp) via the
4207 * cache.  If the block is found in the cache, invoke the provided
4208 * callback immediately and return.  Note that the `zio' parameter
4209 * in the callback will be NULL in this case, since no IO was
4210 * required.  If the block is not in the cache pass the read request
4211 * on to the spa with a substitute callback function, so that the
4212 * requested block will be added to the cache.
4213 *
4214 * If a read request arrives for a block that has a read in-progress,
4215 * either wait for the in-progress read to complete (and return the
4216 * results); or, if this is a read with a "done" func, add a record
4217 * to the read to invoke the "done" func when the read completes,
4218 * and return; or just return.
4219 *
4220 * arc_read_done() will invoke all the requested "done" functions
4221 * for readers of this block.
4222 */
4223int
4224arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
4225    void *private, zio_priority_t priority, int zio_flags,
4226    arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
4227{
4228	arc_buf_hdr_t *hdr = NULL;
4229	arc_buf_t *buf = NULL;
4230	kmutex_t *hash_lock = NULL;
4231	zio_t *rzio;
4232	uint64_t guid = spa_load_guid(spa);
4233
4234	ASSERT(!BP_IS_EMBEDDED(bp) ||
4235	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
4236
4237top:
4238	if (!BP_IS_EMBEDDED(bp)) {
4239		/*
4240		 * Embedded BP's have no DVA and require no I/O to "read".
4241		 * Create an anonymous arc buf to back it.
4242		 */
4243		hdr = buf_hash_find(guid, bp, &hash_lock);
4244	}
4245
4246	if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_datacnt > 0) {
4247
4248		*arc_flags |= ARC_FLAG_CACHED;
4249
4250		if (HDR_IO_IN_PROGRESS(hdr)) {
4251
4252			if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
4253			    priority == ZIO_PRIORITY_SYNC_READ) {
4254				/*
4255				 * This sync read must wait for an
4256				 * in-progress async read (e.g. a predictive
4257				 * prefetch).  Async reads are queued
4258				 * separately at the vdev_queue layer, so
4259				 * this is a form of priority inversion.
4260				 * Ideally, we would "inherit" the demand
4261				 * i/o's priority by moving the i/o from
4262				 * the async queue to the synchronous queue,
4263				 * but there is currently no mechanism to do
4264				 * so.  Track this so that we can evaluate
4265				 * the magnitude of this potential performance
4266				 * problem.
4267				 *
4268				 * Note that if the prefetch i/o is already
4269				 * active (has been issued to the device),
4270				 * the prefetch improved performance, because
4271				 * we issued it sooner than we would have
4272				 * without the prefetch.
4273				 */
4274				DTRACE_PROBE1(arc__sync__wait__for__async,
4275				    arc_buf_hdr_t *, hdr);
4276				ARCSTAT_BUMP(arcstat_sync_wait_for_async);
4277			}
4278			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
4279				hdr->b_flags &= ~ARC_FLAG_PREDICTIVE_PREFETCH;
4280			}
4281
4282			if (*arc_flags & ARC_FLAG_WAIT) {
4283				cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
4284				mutex_exit(hash_lock);
4285				goto top;
4286			}
4287			ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4288
4289			if (done) {
4290				arc_callback_t *acb = NULL;
4291
4292				acb = kmem_zalloc(sizeof (arc_callback_t),
4293				    KM_SLEEP);
4294				acb->acb_done = done;
4295				acb->acb_private = private;
4296				if (pio != NULL)
4297					acb->acb_zio_dummy = zio_null(pio,
4298					    spa, NULL, NULL, NULL, zio_flags);
4299
4300				ASSERT(acb->acb_done != NULL);
4301				acb->acb_next = hdr->b_l1hdr.b_acb;
4302				hdr->b_l1hdr.b_acb = acb;
4303				add_reference(hdr, hash_lock, private);
4304				mutex_exit(hash_lock);
4305				return (0);
4306			}
4307			mutex_exit(hash_lock);
4308			return (0);
4309		}
4310
4311		ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4312		    hdr->b_l1hdr.b_state == arc_mfu);
4313
4314		if (done) {
4315			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
4316				/*
4317				 * This is a demand read which does not have to
4318				 * wait for i/o because we did a predictive
4319				 * prefetch i/o for it, which has completed.
4320				 */
4321				DTRACE_PROBE1(
4322				    arc__demand__hit__predictive__prefetch,
4323				    arc_buf_hdr_t *, hdr);
4324				ARCSTAT_BUMP(
4325				    arcstat_demand_hit_predictive_prefetch);
4326				hdr->b_flags &= ~ARC_FLAG_PREDICTIVE_PREFETCH;
4327			}
4328			add_reference(hdr, hash_lock, private);
4329			/*
4330			 * If this block is already in use, create a new
4331			 * copy of the data so that we will be guaranteed
4332			 * that arc_release() will always succeed.
4333			 */
4334			buf = hdr->b_l1hdr.b_buf;
4335			ASSERT(buf);
4336			ASSERT(buf->b_data);
4337			if (HDR_BUF_AVAILABLE(hdr)) {
4338				ASSERT(buf->b_efunc == NULL);
4339				hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
4340			} else {
4341				buf = arc_buf_clone(buf);
4342			}
4343
4344		} else if (*arc_flags & ARC_FLAG_PREFETCH &&
4345		    refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4346			hdr->b_flags |= ARC_FLAG_PREFETCH;
4347		}
4348		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
4349		arc_access(hdr, hash_lock);
4350		if (*arc_flags & ARC_FLAG_L2CACHE)
4351			hdr->b_flags |= ARC_FLAG_L2CACHE;
4352		if (*arc_flags & ARC_FLAG_L2COMPRESS)
4353			hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4354		mutex_exit(hash_lock);
4355		ARCSTAT_BUMP(arcstat_hits);
4356		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4357		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
4358		    data, metadata, hits);
4359
4360		if (done)
4361			done(NULL, buf, private);
4362	} else {
4363		uint64_t size = BP_GET_LSIZE(bp);
4364		arc_callback_t *acb;
4365		vdev_t *vd = NULL;
4366		uint64_t addr = 0;
4367		boolean_t devw = B_FALSE;
4368		enum zio_compress b_compress = ZIO_COMPRESS_OFF;
4369		int32_t b_asize = 0;
4370
4371		if (hdr == NULL) {
4372			/* this block is not in the cache */
4373			arc_buf_hdr_t *exists = NULL;
4374			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
4375			buf = arc_buf_alloc(spa, size, private, type);
4376			hdr = buf->b_hdr;
4377			if (!BP_IS_EMBEDDED(bp)) {
4378				hdr->b_dva = *BP_IDENTITY(bp);
4379				hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
4380				exists = buf_hash_insert(hdr, &hash_lock);
4381			}
4382			if (exists != NULL) {
4383				/* somebody beat us to the hash insert */
4384				mutex_exit(hash_lock);
4385				buf_discard_identity(hdr);
4386				(void) arc_buf_remove_ref(buf, private);
4387				goto top; /* restart the IO request */
4388			}
4389
4390			/*
4391			 * If there is a callback, we pass our reference to
4392			 * it; otherwise we remove our reference.
4393			 */
4394			if (done == NULL) {
4395				(void) remove_reference(hdr, hash_lock,
4396				    private);
4397			}
4398			if (*arc_flags & ARC_FLAG_PREFETCH)
4399				hdr->b_flags |= ARC_FLAG_PREFETCH;
4400			if (*arc_flags & ARC_FLAG_L2CACHE)
4401				hdr->b_flags |= ARC_FLAG_L2CACHE;
4402			if (*arc_flags & ARC_FLAG_L2COMPRESS)
4403				hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4404			if (BP_GET_LEVEL(bp) > 0)
4405				hdr->b_flags |= ARC_FLAG_INDIRECT;
4406		} else {
4407			/*
4408			 * This block is in the ghost cache. If it was L2-only
4409			 * (and thus didn't have an L1 hdr), we realloc the
4410			 * header to add an L1 hdr.
4411			 */
4412			if (!HDR_HAS_L1HDR(hdr)) {
4413				hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
4414				    hdr_full_cache);
4415			}
4416
4417			ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
4418			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4419			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4420			ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
4421
4422			/*
4423			 * If there is a callback, we pass a reference to it.
4424			 */
4425			if (done != NULL)
4426				add_reference(hdr, hash_lock, private);
4427			if (*arc_flags & ARC_FLAG_PREFETCH)
4428				hdr->b_flags |= ARC_FLAG_PREFETCH;
4429			if (*arc_flags & ARC_FLAG_L2CACHE)
4430				hdr->b_flags |= ARC_FLAG_L2CACHE;
4431			if (*arc_flags & ARC_FLAG_L2COMPRESS)
4432				hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4433			buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
4434			buf->b_hdr = hdr;
4435			buf->b_data = NULL;
4436			buf->b_efunc = NULL;
4437			buf->b_private = NULL;
4438			buf->b_next = NULL;
4439			hdr->b_l1hdr.b_buf = buf;
4440			ASSERT0(hdr->b_l1hdr.b_datacnt);
4441			hdr->b_l1hdr.b_datacnt = 1;
4442			arc_get_data_buf(buf);
4443			arc_access(hdr, hash_lock);
4444		}
4445
4446		if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
4447			hdr->b_flags |= ARC_FLAG_PREDICTIVE_PREFETCH;
4448		ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
4449
4450		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
4451		acb->acb_done = done;
4452		acb->acb_private = private;
4453
4454		ASSERT(hdr->b_l1hdr.b_acb == NULL);
4455		hdr->b_l1hdr.b_acb = acb;
4456		hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
4457
4458		if (HDR_HAS_L2HDR(hdr) &&
4459		    (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
4460			devw = hdr->b_l2hdr.b_dev->l2ad_writing;
4461			addr = hdr->b_l2hdr.b_daddr;
4462			b_compress = hdr->b_l2hdr.b_compress;
4463			b_asize = hdr->b_l2hdr.b_asize;
4464			/*
4465			 * Lock out device removal.
4466			 */
4467			if (vdev_is_dead(vd) ||
4468			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
4469				vd = NULL;
4470		}
4471
4472		if (hash_lock != NULL)
4473			mutex_exit(hash_lock);
4474
4475		/*
4476		 * At this point, we have a level 1 cache miss.  Try again in
4477		 * L2ARC if possible.
4478		 */
4479		ASSERT3U(hdr->b_size, ==, size);
4480		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
4481		    uint64_t, size, zbookmark_phys_t *, zb);
4482		ARCSTAT_BUMP(arcstat_misses);
4483		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4484		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
4485		    data, metadata, misses);
4486#ifdef _KERNEL
4487		curthread->td_ru.ru_inblock++;
4488#endif
4489
4490		if (priority == ZIO_PRIORITY_ASYNC_READ)
4491			hdr->b_flags |= ARC_FLAG_PRIO_ASYNC_READ;
4492		else
4493			hdr->b_flags &= ~ARC_FLAG_PRIO_ASYNC_READ;
4494
4495		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
4496			/*
4497			 * Read from the L2ARC if the following are true:
4498			 * 1. The L2ARC vdev was previously cached.
4499			 * 2. This buffer still has L2ARC metadata.
4500			 * 3. This buffer isn't currently writing to the L2ARC.
4501			 * 4. The L2ARC entry wasn't evicted, which may
4502			 *    also have invalidated the vdev.
4503			 * 5. This isn't prefetch and l2arc_noprefetch is set.
4504			 */
4505			if (HDR_HAS_L2HDR(hdr) &&
4506			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
4507			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
4508				l2arc_read_callback_t *cb;
4509
4510				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
4511				ARCSTAT_BUMP(arcstat_l2_hits);
4512
4513				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
4514				    KM_SLEEP);
4515				cb->l2rcb_buf = buf;
4516				cb->l2rcb_spa = spa;
4517				cb->l2rcb_bp = *bp;
4518				cb->l2rcb_zb = *zb;
4519				cb->l2rcb_flags = zio_flags;
4520				cb->l2rcb_compress = b_compress;
4521
4522				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
4523				    addr + size < vd->vdev_psize -
4524				    VDEV_LABEL_END_SIZE);
4525
4526				/*
4527				 * l2arc read.  The SCL_L2ARC lock will be
4528				 * released by l2arc_read_done().
4529				 * Issue a null zio if the underlying buffer
4530				 * was squashed to zero size by compression.
4531				 */
4532				if (b_compress == ZIO_COMPRESS_EMPTY) {
4533					rzio = zio_null(pio, spa, vd,
4534					    l2arc_read_done, cb,
4535					    zio_flags | ZIO_FLAG_DONT_CACHE |
4536					    ZIO_FLAG_CANFAIL |
4537					    ZIO_FLAG_DONT_PROPAGATE |
4538					    ZIO_FLAG_DONT_RETRY);
4539				} else {
4540					rzio = zio_read_phys(pio, vd, addr,
4541					    b_asize, buf->b_data,
4542					    ZIO_CHECKSUM_OFF,
4543					    l2arc_read_done, cb, priority,
4544					    zio_flags | ZIO_FLAG_DONT_CACHE |
4545					    ZIO_FLAG_CANFAIL |
4546					    ZIO_FLAG_DONT_PROPAGATE |
4547					    ZIO_FLAG_DONT_RETRY, B_FALSE);
4548				}
4549				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
4550				    zio_t *, rzio);
4551				ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize);
4552
4553				if (*arc_flags & ARC_FLAG_NOWAIT) {
4554					zio_nowait(rzio);
4555					return (0);
4556				}
4557
4558				ASSERT(*arc_flags & ARC_FLAG_WAIT);
4559				if (zio_wait(rzio) == 0)
4560					return (0);
4561
4562				/* l2arc read error; goto zio_read() */
4563			} else {
4564				DTRACE_PROBE1(l2arc__miss,
4565				    arc_buf_hdr_t *, hdr);
4566				ARCSTAT_BUMP(arcstat_l2_misses);
4567				if (HDR_L2_WRITING(hdr))
4568					ARCSTAT_BUMP(arcstat_l2_rw_clash);
4569				spa_config_exit(spa, SCL_L2ARC, vd);
4570			}
4571		} else {
4572			if (vd != NULL)
4573				spa_config_exit(spa, SCL_L2ARC, vd);
4574			if (l2arc_ndev != 0) {
4575				DTRACE_PROBE1(l2arc__miss,
4576				    arc_buf_hdr_t *, hdr);
4577				ARCSTAT_BUMP(arcstat_l2_misses);
4578			}
4579		}
4580
4581		rzio = zio_read(pio, spa, bp, buf->b_data, size,
4582		    arc_read_done, buf, priority, zio_flags, zb);
4583
4584		if (*arc_flags & ARC_FLAG_WAIT)
4585			return (zio_wait(rzio));
4586
4587		ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4588		zio_nowait(rzio);
4589	}
4590	return (0);
4591}
4592
4593void
4594arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
4595{
4596	ASSERT(buf->b_hdr != NULL);
4597	ASSERT(buf->b_hdr->b_l1hdr.b_state != arc_anon);
4598	ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt) ||
4599	    func == NULL);
4600	ASSERT(buf->b_efunc == NULL);
4601	ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
4602
4603	buf->b_efunc = func;
4604	buf->b_private = private;
4605}
4606
4607/*
4608 * Notify the arc that a block was freed, and thus will never be used again.
4609 */
4610void
4611arc_freed(spa_t *spa, const blkptr_t *bp)
4612{
4613	arc_buf_hdr_t *hdr;
4614	kmutex_t *hash_lock;
4615	uint64_t guid = spa_load_guid(spa);
4616
4617	ASSERT(!BP_IS_EMBEDDED(bp));
4618
4619	hdr = buf_hash_find(guid, bp, &hash_lock);
4620	if (hdr == NULL)
4621		return;
4622	if (HDR_BUF_AVAILABLE(hdr)) {
4623		arc_buf_t *buf = hdr->b_l1hdr.b_buf;
4624		add_reference(hdr, hash_lock, FTAG);
4625		hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
4626		mutex_exit(hash_lock);
4627
4628		arc_release(buf, FTAG);
4629		(void) arc_buf_remove_ref(buf, FTAG);
4630	} else {
4631		mutex_exit(hash_lock);
4632	}
4633
4634}
4635
4636/*
4637 * Clear the user eviction callback set by arc_set_callback(), first calling
4638 * it if it exists.  Because the presence of a callback keeps an arc_buf cached
4639 * clearing the callback may result in the arc_buf being destroyed.  However,
4640 * it will not result in the *last* arc_buf being destroyed, hence the data
4641 * will remain cached in the ARC. We make a copy of the arc buffer here so
4642 * that we can process the callback without holding any locks.
4643 *
4644 * It's possible that the callback is already in the process of being cleared
4645 * by another thread.  In this case we can not clear the callback.
4646 *
4647 * Returns B_TRUE if the callback was successfully called and cleared.
4648 */
4649boolean_t
4650arc_clear_callback(arc_buf_t *buf)
4651{
4652	arc_buf_hdr_t *hdr;
4653	kmutex_t *hash_lock;
4654	arc_evict_func_t *efunc = buf->b_efunc;
4655	void *private = buf->b_private;
4656
4657	mutex_enter(&buf->b_evict_lock);
4658	hdr = buf->b_hdr;
4659	if (hdr == NULL) {
4660		/*
4661		 * We are in arc_do_user_evicts().
4662		 */
4663		ASSERT(buf->b_data == NULL);
4664		mutex_exit(&buf->b_evict_lock);
4665		return (B_FALSE);
4666	} else if (buf->b_data == NULL) {
4667		/*
4668		 * We are on the eviction list; process this buffer now
4669		 * but let arc_do_user_evicts() do the reaping.
4670		 */
4671		buf->b_efunc = NULL;
4672		mutex_exit(&buf->b_evict_lock);
4673		VERIFY0(efunc(private));
4674		return (B_TRUE);
4675	}
4676	hash_lock = HDR_LOCK(hdr);
4677	mutex_enter(hash_lock);
4678	hdr = buf->b_hdr;
4679	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4680
4681	ASSERT3U(refcount_count(&hdr->b_l1hdr.b_refcnt), <,
4682	    hdr->b_l1hdr.b_datacnt);
4683	ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4684	    hdr->b_l1hdr.b_state == arc_mfu);
4685
4686	buf->b_efunc = NULL;
4687	buf->b_private = NULL;
4688
4689	if (hdr->b_l1hdr.b_datacnt > 1) {
4690		mutex_exit(&buf->b_evict_lock);
4691		arc_buf_destroy(buf, TRUE);
4692	} else {
4693		ASSERT(buf == hdr->b_l1hdr.b_buf);
4694		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
4695		mutex_exit(&buf->b_evict_lock);
4696	}
4697
4698	mutex_exit(hash_lock);
4699	VERIFY0(efunc(private));
4700	return (B_TRUE);
4701}
4702
4703/*
4704 * Release this buffer from the cache, making it an anonymous buffer.  This
4705 * must be done after a read and prior to modifying the buffer contents.
4706 * If the buffer has more than one reference, we must make
4707 * a new hdr for the buffer.
4708 */
4709void
4710arc_release(arc_buf_t *buf, void *tag)
4711{
4712	arc_buf_hdr_t *hdr = buf->b_hdr;
4713
4714	/*
4715	 * It would be nice to assert that if it's DMU metadata (level >
4716	 * 0 || it's the dnode file), then it must be syncing context.
4717	 * But we don't know that information at this level.
4718	 */
4719
4720	mutex_enter(&buf->b_evict_lock);
4721
4722	ASSERT(HDR_HAS_L1HDR(hdr));
4723
4724	/*
4725	 * We don't grab the hash lock prior to this check, because if
4726	 * the buffer's header is in the arc_anon state, it won't be
4727	 * linked into the hash table.
4728	 */
4729	if (hdr->b_l1hdr.b_state == arc_anon) {
4730		mutex_exit(&buf->b_evict_lock);
4731		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4732		ASSERT(!HDR_IN_HASH_TABLE(hdr));
4733		ASSERT(!HDR_HAS_L2HDR(hdr));
4734		ASSERT(BUF_EMPTY(hdr));
4735		ASSERT3U(hdr->b_l1hdr.b_datacnt, ==, 1);
4736		ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
4737		ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
4738
4739		ASSERT3P(buf->b_efunc, ==, NULL);
4740		ASSERT3P(buf->b_private, ==, NULL);
4741
4742		hdr->b_l1hdr.b_arc_access = 0;
4743		arc_buf_thaw(buf);
4744
4745		return;
4746	}
4747
4748	kmutex_t *hash_lock = HDR_LOCK(hdr);
4749	mutex_enter(hash_lock);
4750
4751	/*
4752	 * This assignment is only valid as long as the hash_lock is
4753	 * held, we must be careful not to reference state or the
4754	 * b_state field after dropping the lock.
4755	 */
4756	arc_state_t *state = hdr->b_l1hdr.b_state;
4757	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4758	ASSERT3P(state, !=, arc_anon);
4759
4760	/* this buffer is not on any list */
4761	ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) > 0);
4762
4763	if (HDR_HAS_L2HDR(hdr)) {
4764		mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
4765
4766		/*
4767		 * We have to recheck this conditional again now that
4768		 * we're holding the l2ad_mtx to prevent a race with
4769		 * another thread which might be concurrently calling
4770		 * l2arc_evict(). In that case, l2arc_evict() might have
4771		 * destroyed the header's L2 portion as we were waiting
4772		 * to acquire the l2ad_mtx.
4773		 */
4774		if (HDR_HAS_L2HDR(hdr)) {
4775			if (hdr->b_l2hdr.b_daddr != L2ARC_ADDR_UNSET)
4776				trim_map_free(hdr->b_l2hdr.b_dev->l2ad_vdev,
4777				    hdr->b_l2hdr.b_daddr,
4778				    hdr->b_l2hdr.b_asize, 0);
4779			arc_hdr_l2hdr_destroy(hdr);
4780		}
4781
4782		mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
4783	}
4784
4785	/*
4786	 * Do we have more than one buf?
4787	 */
4788	if (hdr->b_l1hdr.b_datacnt > 1) {
4789		arc_buf_hdr_t *nhdr;
4790		arc_buf_t **bufp;
4791		uint64_t blksz = hdr->b_size;
4792		uint64_t spa = hdr->b_spa;
4793		arc_buf_contents_t type = arc_buf_type(hdr);
4794		uint32_t flags = hdr->b_flags;
4795
4796		ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
4797		/*
4798		 * Pull the data off of this hdr and attach it to
4799		 * a new anonymous hdr.
4800		 */
4801		(void) remove_reference(hdr, hash_lock, tag);
4802		bufp = &hdr->b_l1hdr.b_buf;
4803		while (*bufp != buf)
4804			bufp = &(*bufp)->b_next;
4805		*bufp = buf->b_next;
4806		buf->b_next = NULL;
4807
4808		ASSERT3P(state, !=, arc_l2c_only);
4809
4810		(void) refcount_remove_many(
4811		    &state->arcs_size, hdr->b_size, buf);
4812
4813		if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
4814			ASSERT3P(state, !=, arc_l2c_only);
4815			uint64_t *size = &state->arcs_lsize[type];
4816			ASSERT3U(*size, >=, hdr->b_size);
4817			atomic_add_64(size, -hdr->b_size);
4818		}
4819
4820		/*
4821		 * We're releasing a duplicate user data buffer, update
4822		 * our statistics accordingly.
4823		 */
4824		if (HDR_ISTYPE_DATA(hdr)) {
4825			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
4826			ARCSTAT_INCR(arcstat_duplicate_buffers_size,
4827			    -hdr->b_size);
4828		}
4829		hdr->b_l1hdr.b_datacnt -= 1;
4830		arc_cksum_verify(buf);
4831#ifdef illumos
4832		arc_buf_unwatch(buf);
4833#endif /* illumos */
4834
4835		mutex_exit(hash_lock);
4836
4837		nhdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
4838		nhdr->b_size = blksz;
4839		nhdr->b_spa = spa;
4840
4841		nhdr->b_flags = flags & ARC_FLAG_L2_WRITING;
4842		nhdr->b_flags |= arc_bufc_to_flags(type);
4843		nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
4844
4845		nhdr->b_l1hdr.b_buf = buf;
4846		nhdr->b_l1hdr.b_datacnt = 1;
4847		nhdr->b_l1hdr.b_state = arc_anon;
4848		nhdr->b_l1hdr.b_arc_access = 0;
4849		nhdr->b_l1hdr.b_tmp_cdata = NULL;
4850		nhdr->b_freeze_cksum = NULL;
4851
4852		(void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
4853		buf->b_hdr = nhdr;
4854		mutex_exit(&buf->b_evict_lock);
4855		(void) refcount_add_many(&arc_anon->arcs_size, blksz, buf);
4856	} else {
4857		mutex_exit(&buf->b_evict_lock);
4858		ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
4859		/* protected by hash lock, or hdr is on arc_anon */
4860		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4861		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4862		arc_change_state(arc_anon, hdr, hash_lock);
4863		hdr->b_l1hdr.b_arc_access = 0;
4864		mutex_exit(hash_lock);
4865
4866		buf_discard_identity(hdr);
4867		arc_buf_thaw(buf);
4868	}
4869	buf->b_efunc = NULL;
4870	buf->b_private = NULL;
4871}
4872
4873int
4874arc_released(arc_buf_t *buf)
4875{
4876	int released;
4877
4878	mutex_enter(&buf->b_evict_lock);
4879	released = (buf->b_data != NULL &&
4880	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
4881	mutex_exit(&buf->b_evict_lock);
4882	return (released);
4883}
4884
4885#ifdef ZFS_DEBUG
4886int
4887arc_referenced(arc_buf_t *buf)
4888{
4889	int referenced;
4890
4891	mutex_enter(&buf->b_evict_lock);
4892	referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
4893	mutex_exit(&buf->b_evict_lock);
4894	return (referenced);
4895}
4896#endif
4897
4898static void
4899arc_write_ready(zio_t *zio)
4900{
4901	arc_write_callback_t *callback = zio->io_private;
4902	arc_buf_t *buf = callback->awcb_buf;
4903	arc_buf_hdr_t *hdr = buf->b_hdr;
4904
4905	ASSERT(HDR_HAS_L1HDR(hdr));
4906	ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
4907	ASSERT(hdr->b_l1hdr.b_datacnt > 0);
4908	callback->awcb_ready(zio, buf, callback->awcb_private);
4909
4910	/*
4911	 * If the IO is already in progress, then this is a re-write
4912	 * attempt, so we need to thaw and re-compute the cksum.
4913	 * It is the responsibility of the callback to handle the
4914	 * accounting for any re-write attempt.
4915	 */
4916	if (HDR_IO_IN_PROGRESS(hdr)) {
4917		mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
4918		if (hdr->b_freeze_cksum != NULL) {
4919			kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
4920			hdr->b_freeze_cksum = NULL;
4921		}
4922		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
4923	}
4924	arc_cksum_compute(buf, B_FALSE);
4925	hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
4926}
4927
4928/*
4929 * The SPA calls this callback for each physical write that happens on behalf
4930 * of a logical write.  See the comment in dbuf_write_physdone() for details.
4931 */
4932static void
4933arc_write_physdone(zio_t *zio)
4934{
4935	arc_write_callback_t *cb = zio->io_private;
4936	if (cb->awcb_physdone != NULL)
4937		cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
4938}
4939
4940static void
4941arc_write_done(zio_t *zio)
4942{
4943	arc_write_callback_t *callback = zio->io_private;
4944	arc_buf_t *buf = callback->awcb_buf;
4945	arc_buf_hdr_t *hdr = buf->b_hdr;
4946
4947	ASSERT(hdr->b_l1hdr.b_acb == NULL);
4948
4949	if (zio->io_error == 0) {
4950		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
4951			buf_discard_identity(hdr);
4952		} else {
4953			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
4954			hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
4955		}
4956	} else {
4957		ASSERT(BUF_EMPTY(hdr));
4958	}
4959
4960	/*
4961	 * If the block to be written was all-zero or compressed enough to be
4962	 * embedded in the BP, no write was performed so there will be no
4963	 * dva/birth/checksum.  The buffer must therefore remain anonymous
4964	 * (and uncached).
4965	 */
4966	if (!BUF_EMPTY(hdr)) {
4967		arc_buf_hdr_t *exists;
4968		kmutex_t *hash_lock;
4969
4970		ASSERT(zio->io_error == 0);
4971
4972		arc_cksum_verify(buf);
4973
4974		exists = buf_hash_insert(hdr, &hash_lock);
4975		if (exists != NULL) {
4976			/*
4977			 * This can only happen if we overwrite for
4978			 * sync-to-convergence, because we remove
4979			 * buffers from the hash table when we arc_free().
4980			 */
4981			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
4982				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
4983					panic("bad overwrite, hdr=%p exists=%p",
4984					    (void *)hdr, (void *)exists);
4985				ASSERT(refcount_is_zero(
4986				    &exists->b_l1hdr.b_refcnt));
4987				arc_change_state(arc_anon, exists, hash_lock);
4988				mutex_exit(hash_lock);
4989				arc_hdr_destroy(exists);
4990				exists = buf_hash_insert(hdr, &hash_lock);
4991				ASSERT3P(exists, ==, NULL);
4992			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
4993				/* nopwrite */
4994				ASSERT(zio->io_prop.zp_nopwrite);
4995				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
4996					panic("bad nopwrite, hdr=%p exists=%p",
4997					    (void *)hdr, (void *)exists);
4998			} else {
4999				/* Dedup */
5000				ASSERT(hdr->b_l1hdr.b_datacnt == 1);
5001				ASSERT(hdr->b_l1hdr.b_state == arc_anon);
5002				ASSERT(BP_GET_DEDUP(zio->io_bp));
5003				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
5004			}
5005		}
5006		hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
5007		/* if it's not anon, we are doing a scrub */
5008		if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
5009			arc_access(hdr, hash_lock);
5010		mutex_exit(hash_lock);
5011	} else {
5012		hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
5013	}
5014
5015	ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5016	callback->awcb_done(zio, buf, callback->awcb_private);
5017
5018	kmem_free(callback, sizeof (arc_write_callback_t));
5019}
5020
5021zio_t *
5022arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
5023    blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
5024    const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone,
5025    arc_done_func_t *done, void *private, zio_priority_t priority,
5026    int zio_flags, const zbookmark_phys_t *zb)
5027{
5028	arc_buf_hdr_t *hdr = buf->b_hdr;
5029	arc_write_callback_t *callback;
5030	zio_t *zio;
5031
5032	ASSERT(ready != NULL);
5033	ASSERT(done != NULL);
5034	ASSERT(!HDR_IO_ERROR(hdr));
5035	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5036	ASSERT(hdr->b_l1hdr.b_acb == NULL);
5037	ASSERT(hdr->b_l1hdr.b_datacnt > 0);
5038	if (l2arc)
5039		hdr->b_flags |= ARC_FLAG_L2CACHE;
5040	if (l2arc_compress)
5041		hdr->b_flags |= ARC_FLAG_L2COMPRESS;
5042	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
5043	callback->awcb_ready = ready;
5044	callback->awcb_physdone = physdone;
5045	callback->awcb_done = done;
5046	callback->awcb_private = private;
5047	callback->awcb_buf = buf;
5048
5049	zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
5050	    arc_write_ready, arc_write_physdone, arc_write_done, callback,
5051	    priority, zio_flags, zb);
5052
5053	return (zio);
5054}
5055
5056static int
5057arc_memory_throttle(uint64_t reserve, uint64_t txg)
5058{
5059#ifdef _KERNEL
5060	uint64_t available_memory = ptob(freemem);
5061	static uint64_t page_load = 0;
5062	static uint64_t last_txg = 0;
5063
5064#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
5065	available_memory =
5066	    MIN(available_memory, ptob(vmem_size(heap_arena, VMEM_FREE)));
5067#endif
5068
5069	if (freemem > (uint64_t)physmem * arc_lotsfree_percent / 100)
5070		return (0);
5071
5072	if (txg > last_txg) {
5073		last_txg = txg;
5074		page_load = 0;
5075	}
5076	/*
5077	 * If we are in pageout, we know that memory is already tight,
5078	 * the arc is already going to be evicting, so we just want to
5079	 * continue to let page writes occur as quickly as possible.
5080	 */
5081	if (curproc == pageproc) {
5082		if (page_load > MAX(ptob(minfree), available_memory) / 4)
5083			return (SET_ERROR(ERESTART));
5084		/* Note: reserve is inflated, so we deflate */
5085		page_load += reserve / 8;
5086		return (0);
5087	} else if (page_load > 0 && arc_reclaim_needed()) {
5088		/* memory is low, delay before restarting */
5089		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
5090		return (SET_ERROR(EAGAIN));
5091	}
5092	page_load = 0;
5093#endif
5094	return (0);
5095}
5096
5097void
5098arc_tempreserve_clear(uint64_t reserve)
5099{
5100	atomic_add_64(&arc_tempreserve, -reserve);
5101	ASSERT((int64_t)arc_tempreserve >= 0);
5102}
5103
5104int
5105arc_tempreserve_space(uint64_t reserve, uint64_t txg)
5106{
5107	int error;
5108	uint64_t anon_size;
5109
5110	if (reserve > arc_c/4 && !arc_no_grow) {
5111		arc_c = MIN(arc_c_max, reserve * 4);
5112		DTRACE_PROBE1(arc__set_reserve, uint64_t, arc_c);
5113	}
5114	if (reserve > arc_c)
5115		return (SET_ERROR(ENOMEM));
5116
5117	/*
5118	 * Don't count loaned bufs as in flight dirty data to prevent long
5119	 * network delays from blocking transactions that are ready to be
5120	 * assigned to a txg.
5121	 */
5122	anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
5123	    arc_loaned_bytes), 0);
5124
5125	/*
5126	 * Writes will, almost always, require additional memory allocations
5127	 * in order to compress/encrypt/etc the data.  We therefore need to
5128	 * make sure that there is sufficient available memory for this.
5129	 */
5130	error = arc_memory_throttle(reserve, txg);
5131	if (error != 0)
5132		return (error);
5133
5134	/*
5135	 * Throttle writes when the amount of dirty data in the cache
5136	 * gets too large.  We try to keep the cache less than half full
5137	 * of dirty blocks so that our sync times don't grow too large.
5138	 * Note: if two requests come in concurrently, we might let them
5139	 * both succeed, when one of them should fail.  Not a huge deal.
5140	 */
5141
5142	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
5143	    anon_size > arc_c / 4) {
5144		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
5145		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
5146		    arc_tempreserve>>10,
5147		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
5148		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
5149		    reserve>>10, arc_c>>10);
5150		return (SET_ERROR(ERESTART));
5151	}
5152	atomic_add_64(&arc_tempreserve, reserve);
5153	return (0);
5154}
5155
5156static void
5157arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
5158    kstat_named_t *evict_data, kstat_named_t *evict_metadata)
5159{
5160	size->value.ui64 = refcount_count(&state->arcs_size);
5161	evict_data->value.ui64 = state->arcs_lsize[ARC_BUFC_DATA];
5162	evict_metadata->value.ui64 = state->arcs_lsize[ARC_BUFC_METADATA];
5163}
5164
5165static int
5166arc_kstat_update(kstat_t *ksp, int rw)
5167{
5168	arc_stats_t *as = ksp->ks_data;
5169
5170	if (rw == KSTAT_WRITE) {
5171		return (EACCES);
5172	} else {
5173		arc_kstat_update_state(arc_anon,
5174		    &as->arcstat_anon_size,
5175		    &as->arcstat_anon_evictable_data,
5176		    &as->arcstat_anon_evictable_metadata);
5177		arc_kstat_update_state(arc_mru,
5178		    &as->arcstat_mru_size,
5179		    &as->arcstat_mru_evictable_data,
5180		    &as->arcstat_mru_evictable_metadata);
5181		arc_kstat_update_state(arc_mru_ghost,
5182		    &as->arcstat_mru_ghost_size,
5183		    &as->arcstat_mru_ghost_evictable_data,
5184		    &as->arcstat_mru_ghost_evictable_metadata);
5185		arc_kstat_update_state(arc_mfu,
5186		    &as->arcstat_mfu_size,
5187		    &as->arcstat_mfu_evictable_data,
5188		    &as->arcstat_mfu_evictable_metadata);
5189		arc_kstat_update_state(arc_mfu_ghost,
5190		    &as->arcstat_mfu_ghost_size,
5191		    &as->arcstat_mfu_ghost_evictable_data,
5192		    &as->arcstat_mfu_ghost_evictable_metadata);
5193	}
5194
5195	return (0);
5196}
5197
5198/*
5199 * This function *must* return indices evenly distributed between all
5200 * sublists of the multilist. This is needed due to how the ARC eviction
5201 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
5202 * distributed between all sublists and uses this assumption when
5203 * deciding which sublist to evict from and how much to evict from it.
5204 */
5205unsigned int
5206arc_state_multilist_index_func(multilist_t *ml, void *obj)
5207{
5208	arc_buf_hdr_t *hdr = obj;
5209
5210	/*
5211	 * We rely on b_dva to generate evenly distributed index
5212	 * numbers using buf_hash below. So, as an added precaution,
5213	 * let's make sure we never add empty buffers to the arc lists.
5214	 */
5215	ASSERT(!BUF_EMPTY(hdr));
5216
5217	/*
5218	 * The assumption here, is the hash value for a given
5219	 * arc_buf_hdr_t will remain constant throughout it's lifetime
5220	 * (i.e. it's b_spa, b_dva, and b_birth fields don't change).
5221	 * Thus, we don't need to store the header's sublist index
5222	 * on insertion, as this index can be recalculated on removal.
5223	 *
5224	 * Also, the low order bits of the hash value are thought to be
5225	 * distributed evenly. Otherwise, in the case that the multilist
5226	 * has a power of two number of sublists, each sublists' usage
5227	 * would not be evenly distributed.
5228	 */
5229	return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
5230	    multilist_get_num_sublists(ml));
5231}
5232
5233#ifdef _KERNEL
5234static eventhandler_tag arc_event_lowmem = NULL;
5235
5236static void
5237arc_lowmem(void *arg __unused, int howto __unused)
5238{
5239
5240	mutex_enter(&arc_reclaim_lock);
5241	/* XXX: Memory deficit should be passed as argument. */
5242	needfree = btoc(arc_c >> arc_shrink_shift);
5243	DTRACE_PROBE(arc__needfree);
5244	cv_signal(&arc_reclaim_thread_cv);
5245
5246	/*
5247	 * It is unsafe to block here in arbitrary threads, because we can come
5248	 * here from ARC itself and may hold ARC locks and thus risk a deadlock
5249	 * with ARC reclaim thread.
5250	 */
5251	if (curproc == pageproc)
5252		(void) cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
5253	mutex_exit(&arc_reclaim_lock);
5254}
5255#endif
5256
5257void
5258arc_init(void)
5259{
5260	int i, prefetch_tunable_set = 0;
5261
5262	mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
5263	cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
5264	cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
5265
5266	mutex_init(&arc_user_evicts_lock, NULL, MUTEX_DEFAULT, NULL);
5267	cv_init(&arc_user_evicts_cv, NULL, CV_DEFAULT, NULL);
5268
5269	/* Convert seconds to clock ticks */
5270	arc_min_prefetch_lifespan = 1 * hz;
5271
5272	/* Start out with 1/8 of all memory */
5273	arc_c = kmem_size() / 8;
5274
5275#ifdef sun
5276#ifdef _KERNEL
5277	/*
5278	 * On architectures where the physical memory can be larger
5279	 * than the addressable space (intel in 32-bit mode), we may
5280	 * need to limit the cache to 1/8 of VM size.
5281	 */
5282	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
5283#endif
5284#endif	/* sun */
5285	/* set min cache to 1/32 of all memory, or 16MB, whichever is more */
5286	arc_c_min = MAX(arc_c / 4, 16 << 20);
5287	/* set max to 1/2 of all memory, or all but 1GB, whichever is more */
5288	if (arc_c * 8 >= 1 << 30)
5289		arc_c_max = (arc_c * 8) - (1 << 30);
5290	else
5291		arc_c_max = arc_c_min;
5292	arc_c_max = MAX(arc_c * 5, arc_c_max);
5293
5294#ifdef _KERNEL
5295	/*
5296	 * Allow the tunables to override our calculations if they are
5297	 * reasonable (ie. over 16MB)
5298	 */
5299	if (zfs_arc_max > 16 << 20 && zfs_arc_max < kmem_size())
5300		arc_c_max = zfs_arc_max;
5301	if (zfs_arc_min > 16 << 20 && zfs_arc_min <= arc_c_max)
5302		arc_c_min = zfs_arc_min;
5303#endif
5304
5305	arc_c = arc_c_max;
5306	arc_p = (arc_c >> 1);
5307
5308	/* limit meta-data to 1/4 of the arc capacity */
5309	arc_meta_limit = arc_c_max / 4;
5310
5311	/* Allow the tunable to override if it is reasonable */
5312	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
5313		arc_meta_limit = zfs_arc_meta_limit;
5314
5315	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
5316		arc_c_min = arc_meta_limit / 2;
5317
5318	if (zfs_arc_meta_min > 0) {
5319		arc_meta_min = zfs_arc_meta_min;
5320	} else {
5321		arc_meta_min = arc_c_min / 2;
5322	}
5323
5324	if (zfs_arc_grow_retry > 0)
5325		arc_grow_retry = zfs_arc_grow_retry;
5326
5327	if (zfs_arc_shrink_shift > 0)
5328		arc_shrink_shift = zfs_arc_shrink_shift;
5329
5330	/*
5331	 * Ensure that arc_no_grow_shift is less than arc_shrink_shift.
5332	 */
5333	if (arc_no_grow_shift >= arc_shrink_shift)
5334		arc_no_grow_shift = arc_shrink_shift - 1;
5335
5336	if (zfs_arc_p_min_shift > 0)
5337		arc_p_min_shift = zfs_arc_p_min_shift;
5338
5339	if (zfs_arc_num_sublists_per_state < 1)
5340		zfs_arc_num_sublists_per_state = MAX(max_ncpus, 1);
5341
5342	/* if kmem_flags are set, lets try to use less memory */
5343	if (kmem_debugging())
5344		arc_c = arc_c / 2;
5345	if (arc_c < arc_c_min)
5346		arc_c = arc_c_min;
5347
5348	zfs_arc_min = arc_c_min;
5349	zfs_arc_max = arc_c_max;
5350
5351	arc_anon = &ARC_anon;
5352	arc_mru = &ARC_mru;
5353	arc_mru_ghost = &ARC_mru_ghost;
5354	arc_mfu = &ARC_mfu;
5355	arc_mfu_ghost = &ARC_mfu_ghost;
5356	arc_l2c_only = &ARC_l2c_only;
5357	arc_size = 0;
5358
5359	multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
5360	    sizeof (arc_buf_hdr_t),
5361	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5362	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5363	multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
5364	    sizeof (arc_buf_hdr_t),
5365	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5366	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5367	multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
5368	    sizeof (arc_buf_hdr_t),
5369	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5370	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5371	multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
5372	    sizeof (arc_buf_hdr_t),
5373	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5374	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5375	multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
5376	    sizeof (arc_buf_hdr_t),
5377	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5378	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5379	multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
5380	    sizeof (arc_buf_hdr_t),
5381	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5382	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5383	multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
5384	    sizeof (arc_buf_hdr_t),
5385	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5386	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5387	multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
5388	    sizeof (arc_buf_hdr_t),
5389	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5390	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5391	multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
5392	    sizeof (arc_buf_hdr_t),
5393	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5394	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5395	multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
5396	    sizeof (arc_buf_hdr_t),
5397	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5398	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5399
5400	refcount_create(&arc_anon->arcs_size);
5401	refcount_create(&arc_mru->arcs_size);
5402	refcount_create(&arc_mru_ghost->arcs_size);
5403	refcount_create(&arc_mfu->arcs_size);
5404	refcount_create(&arc_mfu_ghost->arcs_size);
5405	refcount_create(&arc_l2c_only->arcs_size);
5406
5407	buf_init();
5408
5409	arc_reclaim_thread_exit = FALSE;
5410	arc_user_evicts_thread_exit = FALSE;
5411	arc_eviction_list = NULL;
5412	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
5413
5414	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
5415	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
5416
5417	if (arc_ksp != NULL) {
5418		arc_ksp->ks_data = &arc_stats;
5419		arc_ksp->ks_update = arc_kstat_update;
5420		kstat_install(arc_ksp);
5421	}
5422
5423	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
5424	    TS_RUN, minclsyspri);
5425
5426#ifdef _KERNEL
5427	arc_event_lowmem = EVENTHANDLER_REGISTER(vm_lowmem, arc_lowmem, NULL,
5428	    EVENTHANDLER_PRI_FIRST);
5429#endif
5430
5431	(void) thread_create(NULL, 0, arc_user_evicts_thread, NULL, 0, &p0,
5432	    TS_RUN, minclsyspri);
5433
5434	arc_dead = FALSE;
5435	arc_warm = B_FALSE;
5436
5437	/*
5438	 * Calculate maximum amount of dirty data per pool.
5439	 *
5440	 * If it has been set by /etc/system, take that.
5441	 * Otherwise, use a percentage of physical memory defined by
5442	 * zfs_dirty_data_max_percent (default 10%) with a cap at
5443	 * zfs_dirty_data_max_max (default 4GB).
5444	 */
5445	if (zfs_dirty_data_max == 0) {
5446		zfs_dirty_data_max = ptob(physmem) *
5447		    zfs_dirty_data_max_percent / 100;
5448		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
5449		    zfs_dirty_data_max_max);
5450	}
5451
5452#ifdef _KERNEL
5453	if (TUNABLE_INT_FETCH("vfs.zfs.prefetch_disable", &zfs_prefetch_disable))
5454		prefetch_tunable_set = 1;
5455
5456#ifdef __i386__
5457	if (prefetch_tunable_set == 0) {
5458		printf("ZFS NOTICE: Prefetch is disabled by default on i386 "
5459		    "-- to enable,\n");
5460		printf("            add \"vfs.zfs.prefetch_disable=0\" "
5461		    "to /boot/loader.conf.\n");
5462		zfs_prefetch_disable = 1;
5463	}
5464#else
5465	if ((((uint64_t)physmem * PAGESIZE) < (1ULL << 32)) &&
5466	    prefetch_tunable_set == 0) {
5467		printf("ZFS NOTICE: Prefetch is disabled by default if less "
5468		    "than 4GB of RAM is present;\n"
5469		    "            to enable, add \"vfs.zfs.prefetch_disable=0\" "
5470		    "to /boot/loader.conf.\n");
5471		zfs_prefetch_disable = 1;
5472	}
5473#endif
5474	/* Warn about ZFS memory and address space requirements. */
5475	if (((uint64_t)physmem * PAGESIZE) < (256 + 128 + 64) * (1 << 20)) {
5476		printf("ZFS WARNING: Recommended minimum RAM size is 512MB; "
5477		    "expect unstable behavior.\n");
5478	}
5479	if (kmem_size() < 512 * (1 << 20)) {
5480		printf("ZFS WARNING: Recommended minimum kmem_size is 512MB; "
5481		    "expect unstable behavior.\n");
5482		printf("             Consider tuning vm.kmem_size and "
5483		    "vm.kmem_size_max\n");
5484		printf("             in /boot/loader.conf.\n");
5485	}
5486#endif
5487}
5488
5489void
5490arc_fini(void)
5491{
5492	mutex_enter(&arc_reclaim_lock);
5493	arc_reclaim_thread_exit = TRUE;
5494	/*
5495	 * The reclaim thread will set arc_reclaim_thread_exit back to
5496	 * FALSE when it is finished exiting; we're waiting for that.
5497	 */
5498	while (arc_reclaim_thread_exit) {
5499		cv_signal(&arc_reclaim_thread_cv);
5500		cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
5501	}
5502	mutex_exit(&arc_reclaim_lock);
5503
5504	mutex_enter(&arc_user_evicts_lock);
5505	arc_user_evicts_thread_exit = TRUE;
5506	/*
5507	 * The user evicts thread will set arc_user_evicts_thread_exit
5508	 * to FALSE when it is finished exiting; we're waiting for that.
5509	 */
5510	while (arc_user_evicts_thread_exit) {
5511		cv_signal(&arc_user_evicts_cv);
5512		cv_wait(&arc_user_evicts_cv, &arc_user_evicts_lock);
5513	}
5514	mutex_exit(&arc_user_evicts_lock);
5515
5516	/* Use TRUE to ensure *all* buffers are evicted */
5517	arc_flush(NULL, TRUE);
5518
5519	arc_dead = TRUE;
5520
5521	if (arc_ksp != NULL) {
5522		kstat_delete(arc_ksp);
5523		arc_ksp = NULL;
5524	}
5525
5526	mutex_destroy(&arc_reclaim_lock);
5527	cv_destroy(&arc_reclaim_thread_cv);
5528	cv_destroy(&arc_reclaim_waiters_cv);
5529
5530	mutex_destroy(&arc_user_evicts_lock);
5531	cv_destroy(&arc_user_evicts_cv);
5532
5533	refcount_destroy(&arc_anon->arcs_size);
5534	refcount_destroy(&arc_mru->arcs_size);
5535	refcount_destroy(&arc_mru_ghost->arcs_size);
5536	refcount_destroy(&arc_mfu->arcs_size);
5537	refcount_destroy(&arc_mfu_ghost->arcs_size);
5538	refcount_destroy(&arc_l2c_only->arcs_size);
5539
5540	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
5541	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
5542	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
5543	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
5544	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
5545	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
5546	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
5547	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
5548
5549	buf_fini();
5550
5551	ASSERT0(arc_loaned_bytes);
5552
5553#ifdef _KERNEL
5554	if (arc_event_lowmem != NULL)
5555		EVENTHANDLER_DEREGISTER(vm_lowmem, arc_event_lowmem);
5556#endif
5557}
5558
5559/*
5560 * Level 2 ARC
5561 *
5562 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
5563 * It uses dedicated storage devices to hold cached data, which are populated
5564 * using large infrequent writes.  The main role of this cache is to boost
5565 * the performance of random read workloads.  The intended L2ARC devices
5566 * include short-stroked disks, solid state disks, and other media with
5567 * substantially faster read latency than disk.
5568 *
5569 *                 +-----------------------+
5570 *                 |         ARC           |
5571 *                 +-----------------------+
5572 *                    |         ^     ^
5573 *                    |         |     |
5574 *      l2arc_feed_thread()    arc_read()
5575 *                    |         |     |
5576 *                    |  l2arc read   |
5577 *                    V         |     |
5578 *               +---------------+    |
5579 *               |     L2ARC     |    |
5580 *               +---------------+    |
5581 *                   |    ^           |
5582 *          l2arc_write() |           |
5583 *                   |    |           |
5584 *                   V    |           |
5585 *                 +-------+      +-------+
5586 *                 | vdev  |      | vdev  |
5587 *                 | cache |      | cache |
5588 *                 +-------+      +-------+
5589 *                 +=========+     .-----.
5590 *                 :  L2ARC  :    |-_____-|
5591 *                 : devices :    | Disks |
5592 *                 +=========+    `-_____-'
5593 *
5594 * Read requests are satisfied from the following sources, in order:
5595 *
5596 *	1) ARC
5597 *	2) vdev cache of L2ARC devices
5598 *	3) L2ARC devices
5599 *	4) vdev cache of disks
5600 *	5) disks
5601 *
5602 * Some L2ARC device types exhibit extremely slow write performance.
5603 * To accommodate for this there are some significant differences between
5604 * the L2ARC and traditional cache design:
5605 *
5606 * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
5607 * the ARC behave as usual, freeing buffers and placing headers on ghost
5608 * lists.  The ARC does not send buffers to the L2ARC during eviction as
5609 * this would add inflated write latencies for all ARC memory pressure.
5610 *
5611 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
5612 * It does this by periodically scanning buffers from the eviction-end of
5613 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
5614 * not already there. It scans until a headroom of buffers is satisfied,
5615 * which itself is a buffer for ARC eviction. If a compressible buffer is
5616 * found during scanning and selected for writing to an L2ARC device, we
5617 * temporarily boost scanning headroom during the next scan cycle to make
5618 * sure we adapt to compression effects (which might significantly reduce
5619 * the data volume we write to L2ARC). The thread that does this is
5620 * l2arc_feed_thread(), illustrated below; example sizes are included to
5621 * provide a better sense of ratio than this diagram:
5622 *
5623 *	       head -->                        tail
5624 *	        +---------------------+----------+
5625 *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
5626 *	        +---------------------+----------+   |   o L2ARC eligible
5627 *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
5628 *	        +---------------------+----------+   |
5629 *	             15.9 Gbytes      ^ 32 Mbytes    |
5630 *	                           headroom          |
5631 *	                                      l2arc_feed_thread()
5632 *	                                             |
5633 *	                 l2arc write hand <--[oooo]--'
5634 *	                         |           8 Mbyte
5635 *	                         |          write max
5636 *	                         V
5637 *		  +==============================+
5638 *	L2ARC dev |####|#|###|###|    |####| ... |
5639 *	          +==============================+
5640 *	                     32 Gbytes
5641 *
5642 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
5643 * evicted, then the L2ARC has cached a buffer much sooner than it probably
5644 * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
5645 * safe to say that this is an uncommon case, since buffers at the end of
5646 * the ARC lists have moved there due to inactivity.
5647 *
5648 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
5649 * then the L2ARC simply misses copying some buffers.  This serves as a
5650 * pressure valve to prevent heavy read workloads from both stalling the ARC
5651 * with waits and clogging the L2ARC with writes.  This also helps prevent
5652 * the potential for the L2ARC to churn if it attempts to cache content too
5653 * quickly, such as during backups of the entire pool.
5654 *
5655 * 5. After system boot and before the ARC has filled main memory, there are
5656 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
5657 * lists can remain mostly static.  Instead of searching from tail of these
5658 * lists as pictured, the l2arc_feed_thread() will search from the list heads
5659 * for eligible buffers, greatly increasing its chance of finding them.
5660 *
5661 * The L2ARC device write speed is also boosted during this time so that
5662 * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
5663 * there are no L2ARC reads, and no fear of degrading read performance
5664 * through increased writes.
5665 *
5666 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
5667 * the vdev queue can aggregate them into larger and fewer writes.  Each
5668 * device is written to in a rotor fashion, sweeping writes through
5669 * available space then repeating.
5670 *
5671 * 7. The L2ARC does not store dirty content.  It never needs to flush
5672 * write buffers back to disk based storage.
5673 *
5674 * 8. If an ARC buffer is written (and dirtied) which also exists in the
5675 * L2ARC, the now stale L2ARC buffer is immediately dropped.
5676 *
5677 * The performance of the L2ARC can be tweaked by a number of tunables, which
5678 * may be necessary for different workloads:
5679 *
5680 *	l2arc_write_max		max write bytes per interval
5681 *	l2arc_write_boost	extra write bytes during device warmup
5682 *	l2arc_noprefetch	skip caching prefetched buffers
5683 *	l2arc_headroom		number of max device writes to precache
5684 *	l2arc_headroom_boost	when we find compressed buffers during ARC
5685 *				scanning, we multiply headroom by this
5686 *				percentage factor for the next scan cycle,
5687 *				since more compressed buffers are likely to
5688 *				be present
5689 *	l2arc_feed_secs		seconds between L2ARC writing
5690 *
5691 * Tunables may be removed or added as future performance improvements are
5692 * integrated, and also may become zpool properties.
5693 *
5694 * There are three key functions that control how the L2ARC warms up:
5695 *
5696 *	l2arc_write_eligible()	check if a buffer is eligible to cache
5697 *	l2arc_write_size()	calculate how much to write
5698 *	l2arc_write_interval()	calculate sleep delay between writes
5699 *
5700 * These three functions determine what to write, how much, and how quickly
5701 * to send writes.
5702 */
5703
5704static boolean_t
5705l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
5706{
5707	/*
5708	 * A buffer is *not* eligible for the L2ARC if it:
5709	 * 1. belongs to a different spa.
5710	 * 2. is already cached on the L2ARC.
5711	 * 3. has an I/O in progress (it may be an incomplete read).
5712	 * 4. is flagged not eligible (zfs property).
5713	 */
5714	if (hdr->b_spa != spa_guid) {
5715		ARCSTAT_BUMP(arcstat_l2_write_spa_mismatch);
5716		return (B_FALSE);
5717	}
5718	if (HDR_HAS_L2HDR(hdr)) {
5719		ARCSTAT_BUMP(arcstat_l2_write_in_l2);
5720		return (B_FALSE);
5721	}
5722	if (HDR_IO_IN_PROGRESS(hdr)) {
5723		ARCSTAT_BUMP(arcstat_l2_write_hdr_io_in_progress);
5724		return (B_FALSE);
5725	}
5726	if (!HDR_L2CACHE(hdr)) {
5727		ARCSTAT_BUMP(arcstat_l2_write_not_cacheable);
5728		return (B_FALSE);
5729	}
5730
5731	return (B_TRUE);
5732}
5733
5734static uint64_t
5735l2arc_write_size(void)
5736{
5737	uint64_t size;
5738
5739	/*
5740	 * Make sure our globals have meaningful values in case the user
5741	 * altered them.
5742	 */
5743	size = l2arc_write_max;
5744	if (size == 0) {
5745		cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
5746		    "be greater than zero, resetting it to the default (%d)",
5747		    L2ARC_WRITE_SIZE);
5748		size = l2arc_write_max = L2ARC_WRITE_SIZE;
5749	}
5750
5751	if (arc_warm == B_FALSE)
5752		size += l2arc_write_boost;
5753
5754	return (size);
5755
5756}
5757
5758static clock_t
5759l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
5760{
5761	clock_t interval, next, now;
5762
5763	/*
5764	 * If the ARC lists are busy, increase our write rate; if the
5765	 * lists are stale, idle back.  This is achieved by checking
5766	 * how much we previously wrote - if it was more than half of
5767	 * what we wanted, schedule the next write much sooner.
5768	 */
5769	if (l2arc_feed_again && wrote > (wanted / 2))
5770		interval = (hz * l2arc_feed_min_ms) / 1000;
5771	else
5772		interval = hz * l2arc_feed_secs;
5773
5774	now = ddi_get_lbolt();
5775	next = MAX(now, MIN(now + interval, began + interval));
5776
5777	return (next);
5778}
5779
5780/*
5781 * Cycle through L2ARC devices.  This is how L2ARC load balances.
5782 * If a device is returned, this also returns holding the spa config lock.
5783 */
5784static l2arc_dev_t *
5785l2arc_dev_get_next(void)
5786{
5787	l2arc_dev_t *first, *next = NULL;
5788
5789	/*
5790	 * Lock out the removal of spas (spa_namespace_lock), then removal
5791	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
5792	 * both locks will be dropped and a spa config lock held instead.
5793	 */
5794	mutex_enter(&spa_namespace_lock);
5795	mutex_enter(&l2arc_dev_mtx);
5796
5797	/* if there are no vdevs, there is nothing to do */
5798	if (l2arc_ndev == 0)
5799		goto out;
5800
5801	first = NULL;
5802	next = l2arc_dev_last;
5803	do {
5804		/* loop around the list looking for a non-faulted vdev */
5805		if (next == NULL) {
5806			next = list_head(l2arc_dev_list);
5807		} else {
5808			next = list_next(l2arc_dev_list, next);
5809			if (next == NULL)
5810				next = list_head(l2arc_dev_list);
5811		}
5812
5813		/* if we have come back to the start, bail out */
5814		if (first == NULL)
5815			first = next;
5816		else if (next == first)
5817			break;
5818
5819	} while (vdev_is_dead(next->l2ad_vdev));
5820
5821	/* if we were unable to find any usable vdevs, return NULL */
5822	if (vdev_is_dead(next->l2ad_vdev))
5823		next = NULL;
5824
5825	l2arc_dev_last = next;
5826
5827out:
5828	mutex_exit(&l2arc_dev_mtx);
5829
5830	/*
5831	 * Grab the config lock to prevent the 'next' device from being
5832	 * removed while we are writing to it.
5833	 */
5834	if (next != NULL)
5835		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
5836	mutex_exit(&spa_namespace_lock);
5837
5838	return (next);
5839}
5840
5841/*
5842 * Free buffers that were tagged for destruction.
5843 */
5844static void
5845l2arc_do_free_on_write()
5846{
5847	list_t *buflist;
5848	l2arc_data_free_t *df, *df_prev;
5849
5850	mutex_enter(&l2arc_free_on_write_mtx);
5851	buflist = l2arc_free_on_write;
5852
5853	for (df = list_tail(buflist); df; df = df_prev) {
5854		df_prev = list_prev(buflist, df);
5855		ASSERT(df->l2df_data != NULL);
5856		ASSERT(df->l2df_func != NULL);
5857		df->l2df_func(df->l2df_data, df->l2df_size);
5858		list_remove(buflist, df);
5859		kmem_free(df, sizeof (l2arc_data_free_t));
5860	}
5861
5862	mutex_exit(&l2arc_free_on_write_mtx);
5863}
5864
5865/*
5866 * A write to a cache device has completed.  Update all headers to allow
5867 * reads from these buffers to begin.
5868 */
5869static void
5870l2arc_write_done(zio_t *zio)
5871{
5872	l2arc_write_callback_t *cb;
5873	l2arc_dev_t *dev;
5874	list_t *buflist;
5875	arc_buf_hdr_t *head, *hdr, *hdr_prev;
5876	kmutex_t *hash_lock;
5877	int64_t bytes_dropped = 0;
5878
5879	cb = zio->io_private;
5880	ASSERT(cb != NULL);
5881	dev = cb->l2wcb_dev;
5882	ASSERT(dev != NULL);
5883	head = cb->l2wcb_head;
5884	ASSERT(head != NULL);
5885	buflist = &dev->l2ad_buflist;
5886	ASSERT(buflist != NULL);
5887	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
5888	    l2arc_write_callback_t *, cb);
5889
5890	if (zio->io_error != 0)
5891		ARCSTAT_BUMP(arcstat_l2_writes_error);
5892
5893	/*
5894	 * All writes completed, or an error was hit.
5895	 */
5896top:
5897	mutex_enter(&dev->l2ad_mtx);
5898	for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
5899		hdr_prev = list_prev(buflist, hdr);
5900
5901		hash_lock = HDR_LOCK(hdr);
5902
5903		/*
5904		 * We cannot use mutex_enter or else we can deadlock
5905		 * with l2arc_write_buffers (due to swapping the order
5906		 * the hash lock and l2ad_mtx are taken).
5907		 */
5908		if (!mutex_tryenter(hash_lock)) {
5909			/*
5910			 * Missed the hash lock. We must retry so we
5911			 * don't leave the ARC_FLAG_L2_WRITING bit set.
5912			 */
5913			ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
5914
5915			/*
5916			 * We don't want to rescan the headers we've
5917			 * already marked as having been written out, so
5918			 * we reinsert the head node so we can pick up
5919			 * where we left off.
5920			 */
5921			list_remove(buflist, head);
5922			list_insert_after(buflist, hdr, head);
5923
5924			mutex_exit(&dev->l2ad_mtx);
5925
5926			/*
5927			 * We wait for the hash lock to become available
5928			 * to try and prevent busy waiting, and increase
5929			 * the chance we'll be able to acquire the lock
5930			 * the next time around.
5931			 */
5932			mutex_enter(hash_lock);
5933			mutex_exit(hash_lock);
5934			goto top;
5935		}
5936
5937		/*
5938		 * We could not have been moved into the arc_l2c_only
5939		 * state while in-flight due to our ARC_FLAG_L2_WRITING
5940		 * bit being set. Let's just ensure that's being enforced.
5941		 */
5942		ASSERT(HDR_HAS_L1HDR(hdr));
5943
5944		/*
5945		 * We may have allocated a buffer for L2ARC compression,
5946		 * we must release it to avoid leaking this data.
5947		 */
5948		l2arc_release_cdata_buf(hdr);
5949
5950		if (zio->io_error != 0) {
5951			/*
5952			 * Error - drop L2ARC entry.
5953			 */
5954			list_remove(buflist, hdr);
5955			trim_map_free(hdr->b_l2hdr.b_dev->l2ad_vdev,
5956			    hdr->b_l2hdr.b_daddr, hdr->b_l2hdr.b_asize, 0);
5957			hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
5958
5959			ARCSTAT_INCR(arcstat_l2_asize, -hdr->b_l2hdr.b_asize);
5960			ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
5961
5962			bytes_dropped += hdr->b_l2hdr.b_asize;
5963			(void) refcount_remove_many(&dev->l2ad_alloc,
5964			    hdr->b_l2hdr.b_asize, hdr);
5965		}
5966
5967		/*
5968		 * Allow ARC to begin reads and ghost list evictions to
5969		 * this L2ARC entry.
5970		 */
5971		hdr->b_flags &= ~ARC_FLAG_L2_WRITING;
5972
5973		mutex_exit(hash_lock);
5974	}
5975
5976	atomic_inc_64(&l2arc_writes_done);
5977	list_remove(buflist, head);
5978	ASSERT(!HDR_HAS_L1HDR(head));
5979	kmem_cache_free(hdr_l2only_cache, head);
5980	mutex_exit(&dev->l2ad_mtx);
5981
5982	vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
5983
5984	l2arc_do_free_on_write();
5985
5986	kmem_free(cb, sizeof (l2arc_write_callback_t));
5987}
5988
5989/*
5990 * A read to a cache device completed.  Validate buffer contents before
5991 * handing over to the regular ARC routines.
5992 */
5993static void
5994l2arc_read_done(zio_t *zio)
5995{
5996	l2arc_read_callback_t *cb;
5997	arc_buf_hdr_t *hdr;
5998	arc_buf_t *buf;
5999	kmutex_t *hash_lock;
6000	int equal;
6001
6002	ASSERT(zio->io_vd != NULL);
6003	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
6004
6005	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
6006
6007	cb = zio->io_private;
6008	ASSERT(cb != NULL);
6009	buf = cb->l2rcb_buf;
6010	ASSERT(buf != NULL);
6011
6012	hash_lock = HDR_LOCK(buf->b_hdr);
6013	mutex_enter(hash_lock);
6014	hdr = buf->b_hdr;
6015	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6016
6017	/*
6018	 * If the buffer was compressed, decompress it first.
6019	 */
6020	if (cb->l2rcb_compress != ZIO_COMPRESS_OFF)
6021		l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress);
6022	ASSERT(zio->io_data != NULL);
6023	ASSERT3U(zio->io_size, ==, hdr->b_size);
6024	ASSERT3U(BP_GET_LSIZE(&cb->l2rcb_bp), ==, hdr->b_size);
6025
6026	/*
6027	 * Check this survived the L2ARC journey.
6028	 */
6029	equal = arc_cksum_equal(buf);
6030	if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
6031		mutex_exit(hash_lock);
6032		zio->io_private = buf;
6033		zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
6034		zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
6035		arc_read_done(zio);
6036	} else {
6037		mutex_exit(hash_lock);
6038		/*
6039		 * Buffer didn't survive caching.  Increment stats and
6040		 * reissue to the original storage device.
6041		 */
6042		if (zio->io_error != 0) {
6043			ARCSTAT_BUMP(arcstat_l2_io_error);
6044		} else {
6045			zio->io_error = SET_ERROR(EIO);
6046		}
6047		if (!equal)
6048			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
6049
6050		/*
6051		 * If there's no waiter, issue an async i/o to the primary
6052		 * storage now.  If there *is* a waiter, the caller must
6053		 * issue the i/o in a context where it's OK to block.
6054		 */
6055		if (zio->io_waiter == NULL) {
6056			zio_t *pio = zio_unique_parent(zio);
6057
6058			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
6059
6060			zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
6061			    buf->b_data, hdr->b_size, arc_read_done, buf,
6062			    zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
6063		}
6064	}
6065
6066	kmem_free(cb, sizeof (l2arc_read_callback_t));
6067}
6068
6069/*
6070 * This is the list priority from which the L2ARC will search for pages to
6071 * cache.  This is used within loops (0..3) to cycle through lists in the
6072 * desired order.  This order can have a significant effect on cache
6073 * performance.
6074 *
6075 * Currently the metadata lists are hit first, MFU then MRU, followed by
6076 * the data lists.  This function returns a locked list, and also returns
6077 * the lock pointer.
6078 */
6079static multilist_sublist_t *
6080l2arc_sublist_lock(int list_num)
6081{
6082	multilist_t *ml = NULL;
6083	unsigned int idx;
6084
6085	ASSERT(list_num >= 0 && list_num <= 3);
6086
6087	switch (list_num) {
6088	case 0:
6089		ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
6090		break;
6091	case 1:
6092		ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
6093		break;
6094	case 2:
6095		ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
6096		break;
6097	case 3:
6098		ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
6099		break;
6100	}
6101
6102	/*
6103	 * Return a randomly-selected sublist. This is acceptable
6104	 * because the caller feeds only a little bit of data for each
6105	 * call (8MB). Subsequent calls will result in different
6106	 * sublists being selected.
6107	 */
6108	idx = multilist_get_random_index(ml);
6109	return (multilist_sublist_lock(ml, idx));
6110}
6111
6112/*
6113 * Evict buffers from the device write hand to the distance specified in
6114 * bytes.  This distance may span populated buffers, it may span nothing.
6115 * This is clearing a region on the L2ARC device ready for writing.
6116 * If the 'all' boolean is set, every buffer is evicted.
6117 */
6118static void
6119l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
6120{
6121	list_t *buflist;
6122	arc_buf_hdr_t *hdr, *hdr_prev;
6123	kmutex_t *hash_lock;
6124	uint64_t taddr;
6125
6126	buflist = &dev->l2ad_buflist;
6127
6128	if (!all && dev->l2ad_first) {
6129		/*
6130		 * This is the first sweep through the device.  There is
6131		 * nothing to evict.
6132		 */
6133		return;
6134	}
6135
6136	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
6137		/*
6138		 * When nearing the end of the device, evict to the end
6139		 * before the device write hand jumps to the start.
6140		 */
6141		taddr = dev->l2ad_end;
6142	} else {
6143		taddr = dev->l2ad_hand + distance;
6144	}
6145	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
6146	    uint64_t, taddr, boolean_t, all);
6147
6148top:
6149	mutex_enter(&dev->l2ad_mtx);
6150	for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
6151		hdr_prev = list_prev(buflist, hdr);
6152
6153		hash_lock = HDR_LOCK(hdr);
6154
6155		/*
6156		 * We cannot use mutex_enter or else we can deadlock
6157		 * with l2arc_write_buffers (due to swapping the order
6158		 * the hash lock and l2ad_mtx are taken).
6159		 */
6160		if (!mutex_tryenter(hash_lock)) {
6161			/*
6162			 * Missed the hash lock.  Retry.
6163			 */
6164			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
6165			mutex_exit(&dev->l2ad_mtx);
6166			mutex_enter(hash_lock);
6167			mutex_exit(hash_lock);
6168			goto top;
6169		}
6170
6171		if (HDR_L2_WRITE_HEAD(hdr)) {
6172			/*
6173			 * We hit a write head node.  Leave it for
6174			 * l2arc_write_done().
6175			 */
6176			list_remove(buflist, hdr);
6177			mutex_exit(hash_lock);
6178			continue;
6179		}
6180
6181		if (!all && HDR_HAS_L2HDR(hdr) &&
6182		    (hdr->b_l2hdr.b_daddr > taddr ||
6183		    hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
6184			/*
6185			 * We've evicted to the target address,
6186			 * or the end of the device.
6187			 */
6188			mutex_exit(hash_lock);
6189			break;
6190		}
6191
6192		ASSERT(HDR_HAS_L2HDR(hdr));
6193		if (!HDR_HAS_L1HDR(hdr)) {
6194			ASSERT(!HDR_L2_READING(hdr));
6195			/*
6196			 * This doesn't exist in the ARC.  Destroy.
6197			 * arc_hdr_destroy() will call list_remove()
6198			 * and decrement arcstat_l2_size.
6199			 */
6200			arc_change_state(arc_anon, hdr, hash_lock);
6201			arc_hdr_destroy(hdr);
6202		} else {
6203			ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
6204			ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
6205			/*
6206			 * Invalidate issued or about to be issued
6207			 * reads, since we may be about to write
6208			 * over this location.
6209			 */
6210			if (HDR_L2_READING(hdr)) {
6211				ARCSTAT_BUMP(arcstat_l2_evict_reading);
6212				hdr->b_flags |= ARC_FLAG_L2_EVICTED;
6213			}
6214
6215			/* Ensure this header has finished being written */
6216			ASSERT(!HDR_L2_WRITING(hdr));
6217			ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
6218
6219			arc_hdr_l2hdr_destroy(hdr);
6220		}
6221		mutex_exit(hash_lock);
6222	}
6223	mutex_exit(&dev->l2ad_mtx);
6224}
6225
6226/*
6227 * Find and write ARC buffers to the L2ARC device.
6228 *
6229 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
6230 * for reading until they have completed writing.
6231 * The headroom_boost is an in-out parameter used to maintain headroom boost
6232 * state between calls to this function.
6233 *
6234 * Returns the number of bytes actually written (which may be smaller than
6235 * the delta by which the device hand has changed due to alignment).
6236 */
6237static uint64_t
6238l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz,
6239    boolean_t *headroom_boost)
6240{
6241	arc_buf_hdr_t *hdr, *hdr_prev, *head;
6242	uint64_t write_asize, write_sz, headroom, buf_compress_minsz;
6243	void *buf_data;
6244	boolean_t full;
6245	l2arc_write_callback_t *cb;
6246	zio_t *pio, *wzio;
6247	uint64_t guid = spa_load_guid(spa);
6248	const boolean_t do_headroom_boost = *headroom_boost;
6249	int try;
6250
6251	ASSERT(dev->l2ad_vdev != NULL);
6252
6253	/* Lower the flag now, we might want to raise it again later. */
6254	*headroom_boost = B_FALSE;
6255
6256	pio = NULL;
6257	write_sz = write_asize = 0;
6258	full = B_FALSE;
6259	head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
6260	head->b_flags |= ARC_FLAG_L2_WRITE_HEAD;
6261	head->b_flags |= ARC_FLAG_HAS_L2HDR;
6262
6263	ARCSTAT_BUMP(arcstat_l2_write_buffer_iter);
6264	/*
6265	 * We will want to try to compress buffers that are at least 2x the
6266	 * device sector size.
6267	 */
6268	buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift;
6269
6270	/*
6271	 * Copy buffers for L2ARC writing.
6272	 */
6273	for (try = 0; try <= 3; try++) {
6274		multilist_sublist_t *mls = l2arc_sublist_lock(try);
6275		uint64_t passed_sz = 0;
6276
6277		ARCSTAT_BUMP(arcstat_l2_write_buffer_list_iter);
6278
6279		/*
6280		 * L2ARC fast warmup.
6281		 *
6282		 * Until the ARC is warm and starts to evict, read from the
6283		 * head of the ARC lists rather than the tail.
6284		 */
6285		if (arc_warm == B_FALSE)
6286			hdr = multilist_sublist_head(mls);
6287		else
6288			hdr = multilist_sublist_tail(mls);
6289		if (hdr == NULL)
6290			ARCSTAT_BUMP(arcstat_l2_write_buffer_list_null_iter);
6291
6292		headroom = target_sz * l2arc_headroom;
6293		if (do_headroom_boost)
6294			headroom = (headroom * l2arc_headroom_boost) / 100;
6295
6296		for (; hdr; hdr = hdr_prev) {
6297			kmutex_t *hash_lock;
6298			uint64_t buf_sz;
6299			uint64_t buf_a_sz;
6300
6301			if (arc_warm == B_FALSE)
6302				hdr_prev = multilist_sublist_next(mls, hdr);
6303			else
6304				hdr_prev = multilist_sublist_prev(mls, hdr);
6305			ARCSTAT_INCR(arcstat_l2_write_buffer_bytes_scanned, hdr->b_size);
6306
6307			hash_lock = HDR_LOCK(hdr);
6308			if (!mutex_tryenter(hash_lock)) {
6309				ARCSTAT_BUMP(arcstat_l2_write_trylock_fail);
6310				/*
6311				 * Skip this buffer rather than waiting.
6312				 */
6313				continue;
6314			}
6315
6316			passed_sz += hdr->b_size;
6317			if (passed_sz > headroom) {
6318				/*
6319				 * Searched too far.
6320				 */
6321				mutex_exit(hash_lock);
6322				ARCSTAT_BUMP(arcstat_l2_write_passed_headroom);
6323				break;
6324			}
6325
6326			if (!l2arc_write_eligible(guid, hdr)) {
6327				mutex_exit(hash_lock);
6328				continue;
6329			}
6330
6331			/*
6332			 * Assume that the buffer is not going to be compressed
6333			 * and could take more space on disk because of a larger
6334			 * disk block size.
6335			 */
6336			buf_sz = hdr->b_size;
6337			buf_a_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
6338
6339			if ((write_asize + buf_a_sz) > target_sz) {
6340				full = B_TRUE;
6341				mutex_exit(hash_lock);
6342				ARCSTAT_BUMP(arcstat_l2_write_full);
6343				break;
6344			}
6345
6346			if (pio == NULL) {
6347				/*
6348				 * Insert a dummy header on the buflist so
6349				 * l2arc_write_done() can find where the
6350				 * write buffers begin without searching.
6351				 */
6352				mutex_enter(&dev->l2ad_mtx);
6353				list_insert_head(&dev->l2ad_buflist, head);
6354				mutex_exit(&dev->l2ad_mtx);
6355
6356				cb = kmem_alloc(
6357				    sizeof (l2arc_write_callback_t), KM_SLEEP);
6358				cb->l2wcb_dev = dev;
6359				cb->l2wcb_head = head;
6360				pio = zio_root(spa, l2arc_write_done, cb,
6361				    ZIO_FLAG_CANFAIL);
6362				ARCSTAT_BUMP(arcstat_l2_write_pios);
6363			}
6364
6365			/*
6366			 * Create and add a new L2ARC header.
6367			 */
6368			hdr->b_l2hdr.b_dev = dev;
6369			hdr->b_flags |= ARC_FLAG_L2_WRITING;
6370			/*
6371			 * Temporarily stash the data buffer in b_tmp_cdata.
6372			 * The subsequent write step will pick it up from
6373			 * there. This is because can't access b_l1hdr.b_buf
6374			 * without holding the hash_lock, which we in turn
6375			 * can't access without holding the ARC list locks
6376			 * (which we want to avoid during compression/writing).
6377			 */
6378			hdr->b_l2hdr.b_compress = ZIO_COMPRESS_OFF;
6379			hdr->b_l2hdr.b_asize = hdr->b_size;
6380			hdr->b_l1hdr.b_tmp_cdata = hdr->b_l1hdr.b_buf->b_data;
6381
6382			/*
6383			 * Explicitly set the b_daddr field to a known
6384			 * value which means "invalid address". This
6385			 * enables us to differentiate which stage of
6386			 * l2arc_write_buffers() the particular header
6387			 * is in (e.g. this loop, or the one below).
6388			 * ARC_FLAG_L2_WRITING is not enough to make
6389			 * this distinction, and we need to know in
6390			 * order to do proper l2arc vdev accounting in
6391			 * arc_release() and arc_hdr_destroy().
6392			 *
6393			 * Note, we can't use a new flag to distinguish
6394			 * the two stages because we don't hold the
6395			 * header's hash_lock below, in the second stage
6396			 * of this function. Thus, we can't simply
6397			 * change the b_flags field to denote that the
6398			 * IO has been sent. We can change the b_daddr
6399			 * field of the L2 portion, though, since we'll
6400			 * be holding the l2ad_mtx; which is why we're
6401			 * using it to denote the header's state change.
6402			 */
6403			hdr->b_l2hdr.b_daddr = L2ARC_ADDR_UNSET;
6404			hdr->b_flags |= ARC_FLAG_HAS_L2HDR;
6405
6406			mutex_enter(&dev->l2ad_mtx);
6407			list_insert_head(&dev->l2ad_buflist, hdr);
6408			mutex_exit(&dev->l2ad_mtx);
6409
6410			/*
6411			 * Compute and store the buffer cksum before
6412			 * writing.  On debug the cksum is verified first.
6413			 */
6414			arc_cksum_verify(hdr->b_l1hdr.b_buf);
6415			arc_cksum_compute(hdr->b_l1hdr.b_buf, B_TRUE);
6416
6417			mutex_exit(hash_lock);
6418
6419			write_sz += buf_sz;
6420			write_asize += buf_a_sz;
6421		}
6422
6423		multilist_sublist_unlock(mls);
6424
6425		if (full == B_TRUE)
6426			break;
6427	}
6428
6429	/* No buffers selected for writing? */
6430	if (pio == NULL) {
6431		ASSERT0(write_sz);
6432		ASSERT(!HDR_HAS_L1HDR(head));
6433		kmem_cache_free(hdr_l2only_cache, head);
6434		return (0);
6435	}
6436
6437	mutex_enter(&dev->l2ad_mtx);
6438
6439	/*
6440	 * Note that elsewhere in this file arcstat_l2_asize
6441	 * and the used space on l2ad_vdev are updated using b_asize,
6442	 * which is not necessarily rounded up to the device block size.
6443	 * Too keep accounting consistent we do the same here as well:
6444	 * stats_size accumulates the sum of b_asize of the written buffers,
6445	 * while write_asize accumulates the sum of b_asize rounded up
6446	 * to the device block size.
6447	 * The latter sum is used only to validate the corectness of the code.
6448	 */
6449	uint64_t stats_size = 0;
6450	write_asize = 0;
6451
6452	/*
6453	 * Now start writing the buffers. We're starting at the write head
6454	 * and work backwards, retracing the course of the buffer selector
6455	 * loop above.
6456	 */
6457	for (hdr = list_prev(&dev->l2ad_buflist, head); hdr;
6458	    hdr = list_prev(&dev->l2ad_buflist, hdr)) {
6459		uint64_t buf_sz;
6460
6461		/*
6462		 * We rely on the L1 portion of the header below, so
6463		 * it's invalid for this header to have been evicted out
6464		 * of the ghost cache, prior to being written out. The
6465		 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
6466		 */
6467		ASSERT(HDR_HAS_L1HDR(hdr));
6468
6469		/*
6470		 * We shouldn't need to lock the buffer here, since we flagged
6471		 * it as ARC_FLAG_L2_WRITING in the previous step, but we must
6472		 * take care to only access its L2 cache parameters. In
6473		 * particular, hdr->l1hdr.b_buf may be invalid by now due to
6474		 * ARC eviction.
6475		 */
6476		hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
6477
6478		if ((HDR_L2COMPRESS(hdr)) &&
6479		    hdr->b_l2hdr.b_asize >= buf_compress_minsz) {
6480			if (l2arc_compress_buf(hdr)) {
6481				/*
6482				 * If compression succeeded, enable headroom
6483				 * boost on the next scan cycle.
6484				 */
6485				*headroom_boost = B_TRUE;
6486			}
6487		}
6488
6489		/*
6490		 * Pick up the buffer data we had previously stashed away
6491		 * (and now potentially also compressed).
6492		 */
6493		buf_data = hdr->b_l1hdr.b_tmp_cdata;
6494		buf_sz = hdr->b_l2hdr.b_asize;
6495
6496		/*
6497		 * We need to do this regardless if buf_sz is zero or
6498		 * not, otherwise, when this l2hdr is evicted we'll
6499		 * remove a reference that was never added.
6500		 */
6501		(void) refcount_add_many(&dev->l2ad_alloc, buf_sz, hdr);
6502
6503		/* Compression may have squashed the buffer to zero length. */
6504		if (buf_sz != 0) {
6505			uint64_t buf_a_sz;
6506
6507			wzio = zio_write_phys(pio, dev->l2ad_vdev,
6508			    dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
6509			    NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
6510			    ZIO_FLAG_CANFAIL, B_FALSE);
6511
6512			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
6513			    zio_t *, wzio);
6514			(void) zio_nowait(wzio);
6515
6516			stats_size += buf_sz;
6517
6518			/*
6519			 * Keep the clock hand suitably device-aligned.
6520			 */
6521			buf_a_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
6522			write_asize += buf_a_sz;
6523			dev->l2ad_hand += buf_a_sz;
6524		}
6525	}
6526
6527	mutex_exit(&dev->l2ad_mtx);
6528
6529	ASSERT3U(write_asize, <=, target_sz);
6530	ARCSTAT_BUMP(arcstat_l2_writes_sent);
6531	ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
6532	ARCSTAT_INCR(arcstat_l2_size, write_sz);
6533	ARCSTAT_INCR(arcstat_l2_asize, stats_size);
6534	vdev_space_update(dev->l2ad_vdev, stats_size, 0, 0);
6535
6536	/*
6537	 * Bump device hand to the device start if it is approaching the end.
6538	 * l2arc_evict() will already have evicted ahead for this case.
6539	 */
6540	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
6541		dev->l2ad_hand = dev->l2ad_start;
6542		dev->l2ad_first = B_FALSE;
6543	}
6544
6545	dev->l2ad_writing = B_TRUE;
6546	(void) zio_wait(pio);
6547	dev->l2ad_writing = B_FALSE;
6548
6549	return (write_asize);
6550}
6551
6552/*
6553 * Compresses an L2ARC buffer.
6554 * The data to be compressed must be prefilled in l1hdr.b_tmp_cdata and its
6555 * size in l2hdr->b_asize. This routine tries to compress the data and
6556 * depending on the compression result there are three possible outcomes:
6557 * *) The buffer was incompressible. The original l2hdr contents were left
6558 *    untouched and are ready for writing to an L2 device.
6559 * *) The buffer was all-zeros, so there is no need to write it to an L2
6560 *    device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is
6561 *    set to zero and b_compress is set to ZIO_COMPRESS_EMPTY.
6562 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary
6563 *    data buffer which holds the compressed data to be written, and b_asize
6564 *    tells us how much data there is. b_compress is set to the appropriate
6565 *    compression algorithm. Once writing is done, invoke
6566 *    l2arc_release_cdata_buf on this l2hdr to free this temporary buffer.
6567 *
6568 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the
6569 * buffer was incompressible).
6570 */
6571static boolean_t
6572l2arc_compress_buf(arc_buf_hdr_t *hdr)
6573{
6574	void *cdata;
6575	size_t csize, len, rounded;
6576	ASSERT(HDR_HAS_L2HDR(hdr));
6577	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
6578
6579	ASSERT(HDR_HAS_L1HDR(hdr));
6580	ASSERT3S(l2hdr->b_compress, ==, ZIO_COMPRESS_OFF);
6581	ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
6582
6583	len = l2hdr->b_asize;
6584	cdata = zio_data_buf_alloc(len);
6585	ASSERT3P(cdata, !=, NULL);
6586	csize = zio_compress_data(ZIO_COMPRESS_LZ4, hdr->b_l1hdr.b_tmp_cdata,
6587	    cdata, l2hdr->b_asize);
6588
6589	if (csize == 0) {
6590		/* zero block, indicate that there's nothing to write */
6591		zio_data_buf_free(cdata, len);
6592		l2hdr->b_compress = ZIO_COMPRESS_EMPTY;
6593		l2hdr->b_asize = 0;
6594		hdr->b_l1hdr.b_tmp_cdata = NULL;
6595		ARCSTAT_BUMP(arcstat_l2_compress_zeros);
6596		return (B_TRUE);
6597	}
6598
6599	rounded = P2ROUNDUP(csize,
6600	    (size_t)1 << l2hdr->b_dev->l2ad_vdev->vdev_ashift);
6601	if (rounded < len) {
6602		/*
6603		 * Compression succeeded, we'll keep the cdata around for
6604		 * writing and release it afterwards.
6605		 */
6606		if (rounded > csize) {
6607			bzero((char *)cdata + csize, rounded - csize);
6608			csize = rounded;
6609		}
6610		l2hdr->b_compress = ZIO_COMPRESS_LZ4;
6611		l2hdr->b_asize = csize;
6612		hdr->b_l1hdr.b_tmp_cdata = cdata;
6613		ARCSTAT_BUMP(arcstat_l2_compress_successes);
6614		return (B_TRUE);
6615	} else {
6616		/*
6617		 * Compression failed, release the compressed buffer.
6618		 * l2hdr will be left unmodified.
6619		 */
6620		zio_data_buf_free(cdata, len);
6621		ARCSTAT_BUMP(arcstat_l2_compress_failures);
6622		return (B_FALSE);
6623	}
6624}
6625
6626/*
6627 * Decompresses a zio read back from an l2arc device. On success, the
6628 * underlying zio's io_data buffer is overwritten by the uncompressed
6629 * version. On decompression error (corrupt compressed stream), the
6630 * zio->io_error value is set to signal an I/O error.
6631 *
6632 * Please note that the compressed data stream is not checksummed, so
6633 * if the underlying device is experiencing data corruption, we may feed
6634 * corrupt data to the decompressor, so the decompressor needs to be
6635 * able to handle this situation (LZ4 does).
6636 */
6637static void
6638l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c)
6639{
6640	ASSERT(L2ARC_IS_VALID_COMPRESS(c));
6641
6642	if (zio->io_error != 0) {
6643		/*
6644		 * An io error has occured, just restore the original io
6645		 * size in preparation for a main pool read.
6646		 */
6647		zio->io_orig_size = zio->io_size = hdr->b_size;
6648		return;
6649	}
6650
6651	if (c == ZIO_COMPRESS_EMPTY) {
6652		/*
6653		 * An empty buffer results in a null zio, which means we
6654		 * need to fill its io_data after we're done restoring the
6655		 * buffer's contents.
6656		 */
6657		ASSERT(hdr->b_l1hdr.b_buf != NULL);
6658		bzero(hdr->b_l1hdr.b_buf->b_data, hdr->b_size);
6659		zio->io_data = zio->io_orig_data = hdr->b_l1hdr.b_buf->b_data;
6660	} else {
6661		ASSERT(zio->io_data != NULL);
6662		/*
6663		 * We copy the compressed data from the start of the arc buffer
6664		 * (the zio_read will have pulled in only what we need, the
6665		 * rest is garbage which we will overwrite at decompression)
6666		 * and then decompress back to the ARC data buffer. This way we
6667		 * can minimize copying by simply decompressing back over the
6668		 * original compressed data (rather than decompressing to an
6669		 * aux buffer and then copying back the uncompressed buffer,
6670		 * which is likely to be much larger).
6671		 */
6672		uint64_t csize;
6673		void *cdata;
6674
6675		csize = zio->io_size;
6676		cdata = zio_data_buf_alloc(csize);
6677		bcopy(zio->io_data, cdata, csize);
6678		if (zio_decompress_data(c, cdata, zio->io_data, csize,
6679		    hdr->b_size) != 0)
6680			zio->io_error = EIO;
6681		zio_data_buf_free(cdata, csize);
6682	}
6683
6684	/* Restore the expected uncompressed IO size. */
6685	zio->io_orig_size = zio->io_size = hdr->b_size;
6686}
6687
6688/*
6689 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure.
6690 * This buffer serves as a temporary holder of compressed data while
6691 * the buffer entry is being written to an l2arc device. Once that is
6692 * done, we can dispose of it.
6693 */
6694static void
6695l2arc_release_cdata_buf(arc_buf_hdr_t *hdr)
6696{
6697	ASSERT(HDR_HAS_L2HDR(hdr));
6698	enum zio_compress comp = hdr->b_l2hdr.b_compress;
6699
6700	ASSERT(HDR_HAS_L1HDR(hdr));
6701	ASSERT(comp == ZIO_COMPRESS_OFF || L2ARC_IS_VALID_COMPRESS(comp));
6702
6703	if (comp == ZIO_COMPRESS_OFF) {
6704		/*
6705		 * In this case, b_tmp_cdata points to the same buffer
6706		 * as the arc_buf_t's b_data field. We don't want to
6707		 * free it, since the arc_buf_t will handle that.
6708		 */
6709		hdr->b_l1hdr.b_tmp_cdata = NULL;
6710	} else if (comp == ZIO_COMPRESS_EMPTY) {
6711		/*
6712		 * In this case, b_tmp_cdata was compressed to an empty
6713		 * buffer, thus there's nothing to free and b_tmp_cdata
6714		 * should have been set to NULL in l2arc_write_buffers().
6715		 */
6716		ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
6717	} else {
6718		/*
6719		 * If the data was compressed, then we've allocated a
6720		 * temporary buffer for it, so now we need to release it.
6721		 */
6722		ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
6723		zio_data_buf_free(hdr->b_l1hdr.b_tmp_cdata,
6724		    hdr->b_size);
6725		hdr->b_l1hdr.b_tmp_cdata = NULL;
6726	}
6727
6728}
6729
6730/*
6731 * This thread feeds the L2ARC at regular intervals.  This is the beating
6732 * heart of the L2ARC.
6733 */
6734static void
6735l2arc_feed_thread(void *dummy __unused)
6736{
6737	callb_cpr_t cpr;
6738	l2arc_dev_t *dev;
6739	spa_t *spa;
6740	uint64_t size, wrote;
6741	clock_t begin, next = ddi_get_lbolt();
6742	boolean_t headroom_boost = B_FALSE;
6743
6744	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
6745
6746	mutex_enter(&l2arc_feed_thr_lock);
6747
6748	while (l2arc_thread_exit == 0) {
6749		CALLB_CPR_SAFE_BEGIN(&cpr);
6750		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
6751		    next - ddi_get_lbolt());
6752		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
6753		next = ddi_get_lbolt() + hz;
6754
6755		/*
6756		 * Quick check for L2ARC devices.
6757		 */
6758		mutex_enter(&l2arc_dev_mtx);
6759		if (l2arc_ndev == 0) {
6760			mutex_exit(&l2arc_dev_mtx);
6761			continue;
6762		}
6763		mutex_exit(&l2arc_dev_mtx);
6764		begin = ddi_get_lbolt();
6765
6766		/*
6767		 * This selects the next l2arc device to write to, and in
6768		 * doing so the next spa to feed from: dev->l2ad_spa.   This
6769		 * will return NULL if there are now no l2arc devices or if
6770		 * they are all faulted.
6771		 *
6772		 * If a device is returned, its spa's config lock is also
6773		 * held to prevent device removal.  l2arc_dev_get_next()
6774		 * will grab and release l2arc_dev_mtx.
6775		 */
6776		if ((dev = l2arc_dev_get_next()) == NULL)
6777			continue;
6778
6779		spa = dev->l2ad_spa;
6780		ASSERT(spa != NULL);
6781
6782		/*
6783		 * If the pool is read-only then force the feed thread to
6784		 * sleep a little longer.
6785		 */
6786		if (!spa_writeable(spa)) {
6787			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
6788			spa_config_exit(spa, SCL_L2ARC, dev);
6789			continue;
6790		}
6791
6792		/*
6793		 * Avoid contributing to memory pressure.
6794		 */
6795		if (arc_reclaim_needed()) {
6796			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
6797			spa_config_exit(spa, SCL_L2ARC, dev);
6798			continue;
6799		}
6800
6801		ARCSTAT_BUMP(arcstat_l2_feeds);
6802
6803		size = l2arc_write_size();
6804
6805		/*
6806		 * Evict L2ARC buffers that will be overwritten.
6807		 */
6808		l2arc_evict(dev, size, B_FALSE);
6809
6810		/*
6811		 * Write ARC buffers.
6812		 */
6813		wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost);
6814
6815		/*
6816		 * Calculate interval between writes.
6817		 */
6818		next = l2arc_write_interval(begin, size, wrote);
6819		spa_config_exit(spa, SCL_L2ARC, dev);
6820	}
6821
6822	l2arc_thread_exit = 0;
6823	cv_broadcast(&l2arc_feed_thr_cv);
6824	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
6825	thread_exit();
6826}
6827
6828boolean_t
6829l2arc_vdev_present(vdev_t *vd)
6830{
6831	l2arc_dev_t *dev;
6832
6833	mutex_enter(&l2arc_dev_mtx);
6834	for (dev = list_head(l2arc_dev_list); dev != NULL;
6835	    dev = list_next(l2arc_dev_list, dev)) {
6836		if (dev->l2ad_vdev == vd)
6837			break;
6838	}
6839	mutex_exit(&l2arc_dev_mtx);
6840
6841	return (dev != NULL);
6842}
6843
6844/*
6845 * Add a vdev for use by the L2ARC.  By this point the spa has already
6846 * validated the vdev and opened it.
6847 */
6848void
6849l2arc_add_vdev(spa_t *spa, vdev_t *vd)
6850{
6851	l2arc_dev_t *adddev;
6852
6853	ASSERT(!l2arc_vdev_present(vd));
6854
6855	vdev_ashift_optimize(vd);
6856
6857	/*
6858	 * Create a new l2arc device entry.
6859	 */
6860	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
6861	adddev->l2ad_spa = spa;
6862	adddev->l2ad_vdev = vd;
6863	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
6864	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
6865	adddev->l2ad_hand = adddev->l2ad_start;
6866	adddev->l2ad_first = B_TRUE;
6867	adddev->l2ad_writing = B_FALSE;
6868
6869	mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
6870	/*
6871	 * This is a list of all ARC buffers that are still valid on the
6872	 * device.
6873	 */
6874	list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
6875	    offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
6876
6877	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
6878	refcount_create(&adddev->l2ad_alloc);
6879
6880	/*
6881	 * Add device to global list
6882	 */
6883	mutex_enter(&l2arc_dev_mtx);
6884	list_insert_head(l2arc_dev_list, adddev);
6885	atomic_inc_64(&l2arc_ndev);
6886	mutex_exit(&l2arc_dev_mtx);
6887}
6888
6889/*
6890 * Remove a vdev from the L2ARC.
6891 */
6892void
6893l2arc_remove_vdev(vdev_t *vd)
6894{
6895	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
6896
6897	/*
6898	 * Find the device by vdev
6899	 */
6900	mutex_enter(&l2arc_dev_mtx);
6901	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
6902		nextdev = list_next(l2arc_dev_list, dev);
6903		if (vd == dev->l2ad_vdev) {
6904			remdev = dev;
6905			break;
6906		}
6907	}
6908	ASSERT(remdev != NULL);
6909
6910	/*
6911	 * Remove device from global list
6912	 */
6913	list_remove(l2arc_dev_list, remdev);
6914	l2arc_dev_last = NULL;		/* may have been invalidated */
6915	atomic_dec_64(&l2arc_ndev);
6916	mutex_exit(&l2arc_dev_mtx);
6917
6918	/*
6919	 * Clear all buflists and ARC references.  L2ARC device flush.
6920	 */
6921	l2arc_evict(remdev, 0, B_TRUE);
6922	list_destroy(&remdev->l2ad_buflist);
6923	mutex_destroy(&remdev->l2ad_mtx);
6924	refcount_destroy(&remdev->l2ad_alloc);
6925	kmem_free(remdev, sizeof (l2arc_dev_t));
6926}
6927
6928void
6929l2arc_init(void)
6930{
6931	l2arc_thread_exit = 0;
6932	l2arc_ndev = 0;
6933	l2arc_writes_sent = 0;
6934	l2arc_writes_done = 0;
6935
6936	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
6937	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
6938	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
6939	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
6940
6941	l2arc_dev_list = &L2ARC_dev_list;
6942	l2arc_free_on_write = &L2ARC_free_on_write;
6943	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
6944	    offsetof(l2arc_dev_t, l2ad_node));
6945	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
6946	    offsetof(l2arc_data_free_t, l2df_list_node));
6947}
6948
6949void
6950l2arc_fini(void)
6951{
6952	/*
6953	 * This is called from dmu_fini(), which is called from spa_fini();
6954	 * Because of this, we can assume that all l2arc devices have
6955	 * already been removed when the pools themselves were removed.
6956	 */
6957
6958	l2arc_do_free_on_write();
6959
6960	mutex_destroy(&l2arc_feed_thr_lock);
6961	cv_destroy(&l2arc_feed_thr_cv);
6962	mutex_destroy(&l2arc_dev_mtx);
6963	mutex_destroy(&l2arc_free_on_write_mtx);
6964
6965	list_destroy(l2arc_dev_list);
6966	list_destroy(l2arc_free_on_write);
6967}
6968
6969void
6970l2arc_start(void)
6971{
6972	if (!(spa_mode_global & FWRITE))
6973		return;
6974
6975	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
6976	    TS_RUN, minclsyspri);
6977}
6978
6979void
6980l2arc_stop(void)
6981{
6982	if (!(spa_mode_global & FWRITE))
6983		return;
6984
6985	mutex_enter(&l2arc_feed_thr_lock);
6986	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
6987	l2arc_thread_exit = 1;
6988	while (l2arc_thread_exit != 0)
6989		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
6990	mutex_exit(&l2arc_feed_thr_lock);
6991}
6992