arc.c revision 288583
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26 * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
27 */
28
29/*
30 * DVA-based Adjustable Replacement Cache
31 *
32 * While much of the theory of operation used here is
33 * based on the self-tuning, low overhead replacement cache
34 * presented by Megiddo and Modha at FAST 2003, there are some
35 * significant differences:
36 *
37 * 1. The Megiddo and Modha model assumes any page is evictable.
38 * Pages in its cache cannot be "locked" into memory.  This makes
39 * the eviction algorithm simple: evict the last page in the list.
40 * This also make the performance characteristics easy to reason
41 * about.  Our cache is not so simple.  At any given moment, some
42 * subset of the blocks in the cache are un-evictable because we
43 * have handed out a reference to them.  Blocks are only evictable
44 * when there are no external references active.  This makes
45 * eviction far more problematic:  we choose to evict the evictable
46 * blocks that are the "lowest" in the list.
47 *
48 * There are times when it is not possible to evict the requested
49 * space.  In these circumstances we are unable to adjust the cache
50 * size.  To prevent the cache growing unbounded at these times we
51 * implement a "cache throttle" that slows the flow of new data
52 * into the cache until we can make space available.
53 *
54 * 2. The Megiddo and Modha model assumes a fixed cache size.
55 * Pages are evicted when the cache is full and there is a cache
56 * miss.  Our model has a variable sized cache.  It grows with
57 * high use, but also tries to react to memory pressure from the
58 * operating system: decreasing its size when system memory is
59 * tight.
60 *
61 * 3. The Megiddo and Modha model assumes a fixed page size. All
62 * elements of the cache are therefore exactly the same size.  So
63 * when adjusting the cache size following a cache miss, its simply
64 * a matter of choosing a single page to evict.  In our model, we
65 * have variable sized cache blocks (rangeing from 512 bytes to
66 * 128K bytes).  We therefore choose a set of blocks to evict to make
67 * space for a cache miss that approximates as closely as possible
68 * the space used by the new block.
69 *
70 * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71 * by N. Megiddo & D. Modha, FAST 2003
72 */
73
74/*
75 * The locking model:
76 *
77 * A new reference to a cache buffer can be obtained in two
78 * ways: 1) via a hash table lookup using the DVA as a key,
79 * or 2) via one of the ARC lists.  The arc_read() interface
80 * uses method 1, while the internal arc algorithms for
81 * adjusting the cache use method 2.  We therefore provide two
82 * types of locks: 1) the hash table lock array, and 2) the
83 * arc list locks.
84 *
85 * Buffers do not have their own mutexs, rather they rely on the
86 * hash table mutexs for the bulk of their protection (i.e. most
87 * fields in the arc_buf_hdr_t are protected by these mutexs).
88 *
89 * buf_hash_find() returns the appropriate mutex (held) when it
90 * locates the requested buffer in the hash table.  It returns
91 * NULL for the mutex if the buffer was not in the table.
92 *
93 * buf_hash_remove() expects the appropriate hash mutex to be
94 * already held before it is invoked.
95 *
96 * Each arc state also has a mutex which is used to protect the
97 * buffer list associated with the state.  When attempting to
98 * obtain a hash table lock while holding an arc list lock you
99 * must use: mutex_tryenter() to avoid deadlock.  Also note that
100 * the active state mutex must be held before the ghost state mutex.
101 *
102 * Arc buffers may have an associated eviction callback function.
103 * This function will be invoked prior to removing the buffer (e.g.
104 * in arc_do_user_evicts()).  Note however that the data associated
105 * with the buffer may be evicted prior to the callback.  The callback
106 * must be made with *no locks held* (to prevent deadlock).  Additionally,
107 * the users of callbacks must ensure that their private data is
108 * protected from simultaneous callbacks from arc_clear_callback()
109 * and arc_do_user_evicts().
110 *
111 * Note that the majority of the performance stats are manipulated
112 * with atomic operations.
113 *
114 * The L2ARC uses the l2ad_mtx on each vdev for the following:
115 *
116 *	- L2ARC buflist creation
117 *	- L2ARC buflist eviction
118 *	- L2ARC write completion, which walks L2ARC buflists
119 *	- ARC header destruction, as it removes from L2ARC buflists
120 *	- ARC header release, as it removes from L2ARC buflists
121 */
122
123#include <sys/spa.h>
124#include <sys/zio.h>
125#include <sys/zio_compress.h>
126#include <sys/zfs_context.h>
127#include <sys/arc.h>
128#include <sys/refcount.h>
129#include <sys/vdev.h>
130#include <sys/vdev_impl.h>
131#include <sys/dsl_pool.h>
132#include <sys/multilist.h>
133#ifdef _KERNEL
134#include <sys/dnlc.h>
135#endif
136#include <sys/callb.h>
137#include <sys/kstat.h>
138#include <sys/trim_map.h>
139#include <zfs_fletcher.h>
140#include <sys/sdt.h>
141
142#include <vm/vm_pageout.h>
143#include <machine/vmparam.h>
144
145#ifdef illumos
146#ifndef _KERNEL
147/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
148boolean_t arc_watch = B_FALSE;
149int arc_procfd;
150#endif
151#endif /* illumos */
152
153static kmutex_t		arc_reclaim_lock;
154static kcondvar_t	arc_reclaim_thread_cv;
155static boolean_t	arc_reclaim_thread_exit;
156static kcondvar_t	arc_reclaim_waiters_cv;
157
158static kmutex_t		arc_user_evicts_lock;
159static kcondvar_t	arc_user_evicts_cv;
160static boolean_t	arc_user_evicts_thread_exit;
161
162uint_t arc_reduce_dnlc_percent = 3;
163
164/*
165 * The number of headers to evict in arc_evict_state_impl() before
166 * dropping the sublist lock and evicting from another sublist. A lower
167 * value means we're more likely to evict the "correct" header (i.e. the
168 * oldest header in the arc state), but comes with higher overhead
169 * (i.e. more invocations of arc_evict_state_impl()).
170 */
171int zfs_arc_evict_batch_limit = 10;
172
173/*
174 * The number of sublists used for each of the arc state lists. If this
175 * is not set to a suitable value by the user, it will be configured to
176 * the number of CPUs on the system in arc_init().
177 */
178int zfs_arc_num_sublists_per_state = 0;
179
180/* number of seconds before growing cache again */
181static int		arc_grow_retry = 60;
182
183/* shift of arc_c for calculating overflow limit in arc_get_data_buf */
184int		zfs_arc_overflow_shift = 8;
185
186/* shift of arc_c for calculating both min and max arc_p */
187static int		arc_p_min_shift = 4;
188
189/* log2(fraction of arc to reclaim) */
190static int		arc_shrink_shift = 7;
191
192/*
193 * log2(fraction of ARC which must be free to allow growing).
194 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
195 * when reading a new block into the ARC, we will evict an equal-sized block
196 * from the ARC.
197 *
198 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
199 * we will still not allow it to grow.
200 */
201int			arc_no_grow_shift = 5;
202
203
204/*
205 * minimum lifespan of a prefetch block in clock ticks
206 * (initialized in arc_init())
207 */
208static int		arc_min_prefetch_lifespan;
209
210/*
211 * If this percent of memory is free, don't throttle.
212 */
213int arc_lotsfree_percent = 10;
214
215static int arc_dead;
216extern int zfs_prefetch_disable;
217
218/*
219 * The arc has filled available memory and has now warmed up.
220 */
221static boolean_t arc_warm;
222
223/*
224 * These tunables are for performance analysis.
225 */
226uint64_t zfs_arc_max;
227uint64_t zfs_arc_min;
228uint64_t zfs_arc_meta_limit = 0;
229uint64_t zfs_arc_meta_min = 0;
230int zfs_arc_grow_retry = 0;
231int zfs_arc_shrink_shift = 0;
232int zfs_arc_p_min_shift = 0;
233int zfs_disable_dup_eviction = 0;
234uint64_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
235u_int zfs_arc_free_target = 0;
236
237static int sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS);
238static int sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS);
239
240#ifdef _KERNEL
241static void
242arc_free_target_init(void *unused __unused)
243{
244
245	zfs_arc_free_target = vm_pageout_wakeup_thresh;
246}
247SYSINIT(arc_free_target_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_ANY,
248    arc_free_target_init, NULL);
249
250TUNABLE_QUAD("vfs.zfs.arc_max", &zfs_arc_max);
251TUNABLE_QUAD("vfs.zfs.arc_min", &zfs_arc_min);
252TUNABLE_QUAD("vfs.zfs.arc_meta_limit", &zfs_arc_meta_limit);
253TUNABLE_QUAD("vfs.zfs.arc_meta_min", &zfs_arc_meta_min);
254TUNABLE_QUAD("vfs.zfs.arc_average_blocksize", &zfs_arc_average_blocksize);
255TUNABLE_INT("vfs.zfs.arc_shrink_shift", &zfs_arc_shrink_shift);
256SYSCTL_DECL(_vfs_zfs);
257SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_max, CTLFLAG_RDTUN, &zfs_arc_max, 0,
258    "Maximum ARC size");
259SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_min, CTLFLAG_RDTUN, &zfs_arc_min, 0,
260    "Minimum ARC size");
261SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_average_blocksize, CTLFLAG_RDTUN,
262    &zfs_arc_average_blocksize, 0,
263    "ARC average blocksize");
264SYSCTL_INT(_vfs_zfs, OID_AUTO, arc_shrink_shift, CTLFLAG_RW,
265    &arc_shrink_shift, 0,
266    "log2(fraction of arc to reclaim)");
267
268/*
269 * We don't have a tunable for arc_free_target due to the dependency on
270 * pagedaemon initialisation.
271 */
272SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_free_target,
273    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(u_int),
274    sysctl_vfs_zfs_arc_free_target, "IU",
275    "Desired number of free pages below which ARC triggers reclaim");
276
277static int
278sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS)
279{
280	u_int val;
281	int err;
282
283	val = zfs_arc_free_target;
284	err = sysctl_handle_int(oidp, &val, 0, req);
285	if (err != 0 || req->newptr == NULL)
286		return (err);
287
288	if (val < minfree)
289		return (EINVAL);
290	if (val > cnt.v_page_count)
291		return (EINVAL);
292
293	zfs_arc_free_target = val;
294
295	return (0);
296}
297
298/*
299 * Must be declared here, before the definition of corresponding kstat
300 * macro which uses the same names will confuse the compiler.
301 */
302SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_meta_limit,
303    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
304    sysctl_vfs_zfs_arc_meta_limit, "QU",
305    "ARC metadata limit");
306#endif
307
308/*
309 * Note that buffers can be in one of 6 states:
310 *	ARC_anon	- anonymous (discussed below)
311 *	ARC_mru		- recently used, currently cached
312 *	ARC_mru_ghost	- recentely used, no longer in cache
313 *	ARC_mfu		- frequently used, currently cached
314 *	ARC_mfu_ghost	- frequently used, no longer in cache
315 *	ARC_l2c_only	- exists in L2ARC but not other states
316 * When there are no active references to the buffer, they are
317 * are linked onto a list in one of these arc states.  These are
318 * the only buffers that can be evicted or deleted.  Within each
319 * state there are multiple lists, one for meta-data and one for
320 * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
321 * etc.) is tracked separately so that it can be managed more
322 * explicitly: favored over data, limited explicitly.
323 *
324 * Anonymous buffers are buffers that are not associated with
325 * a DVA.  These are buffers that hold dirty block copies
326 * before they are written to stable storage.  By definition,
327 * they are "ref'd" and are considered part of arc_mru
328 * that cannot be freed.  Generally, they will aquire a DVA
329 * as they are written and migrate onto the arc_mru list.
330 *
331 * The ARC_l2c_only state is for buffers that are in the second
332 * level ARC but no longer in any of the ARC_m* lists.  The second
333 * level ARC itself may also contain buffers that are in any of
334 * the ARC_m* states - meaning that a buffer can exist in two
335 * places.  The reason for the ARC_l2c_only state is to keep the
336 * buffer header in the hash table, so that reads that hit the
337 * second level ARC benefit from these fast lookups.
338 */
339
340typedef struct arc_state {
341	/*
342	 * list of evictable buffers
343	 */
344	multilist_t arcs_list[ARC_BUFC_NUMTYPES];
345	/*
346	 * total amount of evictable data in this state
347	 */
348	uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];
349	/*
350	 * total amount of data in this state; this includes: evictable,
351	 * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA.
352	 */
353	refcount_t arcs_size;
354} arc_state_t;
355
356/* The 6 states: */
357static arc_state_t ARC_anon;
358static arc_state_t ARC_mru;
359static arc_state_t ARC_mru_ghost;
360static arc_state_t ARC_mfu;
361static arc_state_t ARC_mfu_ghost;
362static arc_state_t ARC_l2c_only;
363
364typedef struct arc_stats {
365	kstat_named_t arcstat_hits;
366	kstat_named_t arcstat_misses;
367	kstat_named_t arcstat_demand_data_hits;
368	kstat_named_t arcstat_demand_data_misses;
369	kstat_named_t arcstat_demand_metadata_hits;
370	kstat_named_t arcstat_demand_metadata_misses;
371	kstat_named_t arcstat_prefetch_data_hits;
372	kstat_named_t arcstat_prefetch_data_misses;
373	kstat_named_t arcstat_prefetch_metadata_hits;
374	kstat_named_t arcstat_prefetch_metadata_misses;
375	kstat_named_t arcstat_mru_hits;
376	kstat_named_t arcstat_mru_ghost_hits;
377	kstat_named_t arcstat_mfu_hits;
378	kstat_named_t arcstat_mfu_ghost_hits;
379	kstat_named_t arcstat_allocated;
380	kstat_named_t arcstat_deleted;
381	/*
382	 * Number of buffers that could not be evicted because the hash lock
383	 * was held by another thread.  The lock may not necessarily be held
384	 * by something using the same buffer, since hash locks are shared
385	 * by multiple buffers.
386	 */
387	kstat_named_t arcstat_mutex_miss;
388	/*
389	 * Number of buffers skipped because they have I/O in progress, are
390	 * indrect prefetch buffers that have not lived long enough, or are
391	 * not from the spa we're trying to evict from.
392	 */
393	kstat_named_t arcstat_evict_skip;
394	/*
395	 * Number of times arc_evict_state() was unable to evict enough
396	 * buffers to reach it's target amount.
397	 */
398	kstat_named_t arcstat_evict_not_enough;
399	kstat_named_t arcstat_evict_l2_cached;
400	kstat_named_t arcstat_evict_l2_eligible;
401	kstat_named_t arcstat_evict_l2_ineligible;
402	kstat_named_t arcstat_evict_l2_skip;
403	kstat_named_t arcstat_hash_elements;
404	kstat_named_t arcstat_hash_elements_max;
405	kstat_named_t arcstat_hash_collisions;
406	kstat_named_t arcstat_hash_chains;
407	kstat_named_t arcstat_hash_chain_max;
408	kstat_named_t arcstat_p;
409	kstat_named_t arcstat_c;
410	kstat_named_t arcstat_c_min;
411	kstat_named_t arcstat_c_max;
412	kstat_named_t arcstat_size;
413	/*
414	 * Number of bytes consumed by internal ARC structures necessary
415	 * for tracking purposes; these structures are not actually
416	 * backed by ARC buffers. This includes arc_buf_hdr_t structures
417	 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
418	 * caches), and arc_buf_t structures (allocated via arc_buf_t
419	 * cache).
420	 */
421	kstat_named_t arcstat_hdr_size;
422	/*
423	 * Number of bytes consumed by ARC buffers of type equal to
424	 * ARC_BUFC_DATA. This is generally consumed by buffers backing
425	 * on disk user data (e.g. plain file contents).
426	 */
427	kstat_named_t arcstat_data_size;
428	/*
429	 * Number of bytes consumed by ARC buffers of type equal to
430	 * ARC_BUFC_METADATA. This is generally consumed by buffers
431	 * backing on disk data that is used for internal ZFS
432	 * structures (e.g. ZAP, dnode, indirect blocks, etc).
433	 */
434	kstat_named_t arcstat_metadata_size;
435	/*
436	 * Number of bytes consumed by various buffers and structures
437	 * not actually backed with ARC buffers. This includes bonus
438	 * buffers (allocated directly via zio_buf_* functions),
439	 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t
440	 * cache), and dnode_t structures (allocated via dnode_t cache).
441	 */
442	kstat_named_t arcstat_other_size;
443	/*
444	 * Total number of bytes consumed by ARC buffers residing in the
445	 * arc_anon state. This includes *all* buffers in the arc_anon
446	 * state; e.g. data, metadata, evictable, and unevictable buffers
447	 * are all included in this value.
448	 */
449	kstat_named_t arcstat_anon_size;
450	/*
451	 * Number of bytes consumed by ARC buffers that meet the
452	 * following criteria: backing buffers of type ARC_BUFC_DATA,
453	 * residing in the arc_anon state, and are eligible for eviction
454	 * (e.g. have no outstanding holds on the buffer).
455	 */
456	kstat_named_t arcstat_anon_evictable_data;
457	/*
458	 * Number of bytes consumed by ARC buffers that meet the
459	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
460	 * residing in the arc_anon state, and are eligible for eviction
461	 * (e.g. have no outstanding holds on the buffer).
462	 */
463	kstat_named_t arcstat_anon_evictable_metadata;
464	/*
465	 * Total number of bytes consumed by ARC buffers residing in the
466	 * arc_mru state. This includes *all* buffers in the arc_mru
467	 * state; e.g. data, metadata, evictable, and unevictable buffers
468	 * are all included in this value.
469	 */
470	kstat_named_t arcstat_mru_size;
471	/*
472	 * Number of bytes consumed by ARC buffers that meet the
473	 * following criteria: backing buffers of type ARC_BUFC_DATA,
474	 * residing in the arc_mru state, and are eligible for eviction
475	 * (e.g. have no outstanding holds on the buffer).
476	 */
477	kstat_named_t arcstat_mru_evictable_data;
478	/*
479	 * Number of bytes consumed by ARC buffers that meet the
480	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
481	 * residing in the arc_mru state, and are eligible for eviction
482	 * (e.g. have no outstanding holds on the buffer).
483	 */
484	kstat_named_t arcstat_mru_evictable_metadata;
485	/*
486	 * Total number of bytes that *would have been* consumed by ARC
487	 * buffers in the arc_mru_ghost state. The key thing to note
488	 * here, is the fact that this size doesn't actually indicate
489	 * RAM consumption. The ghost lists only consist of headers and
490	 * don't actually have ARC buffers linked off of these headers.
491	 * Thus, *if* the headers had associated ARC buffers, these
492	 * buffers *would have* consumed this number of bytes.
493	 */
494	kstat_named_t arcstat_mru_ghost_size;
495	/*
496	 * Number of bytes that *would have been* consumed by ARC
497	 * buffers that are eligible for eviction, of type
498	 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
499	 */
500	kstat_named_t arcstat_mru_ghost_evictable_data;
501	/*
502	 * Number of bytes that *would have been* consumed by ARC
503	 * buffers that are eligible for eviction, of type
504	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
505	 */
506	kstat_named_t arcstat_mru_ghost_evictable_metadata;
507	/*
508	 * Total number of bytes consumed by ARC buffers residing in the
509	 * arc_mfu state. This includes *all* buffers in the arc_mfu
510	 * state; e.g. data, metadata, evictable, and unevictable buffers
511	 * are all included in this value.
512	 */
513	kstat_named_t arcstat_mfu_size;
514	/*
515	 * Number of bytes consumed by ARC buffers that are eligible for
516	 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
517	 * state.
518	 */
519	kstat_named_t arcstat_mfu_evictable_data;
520	/*
521	 * Number of bytes consumed by ARC buffers that are eligible for
522	 * eviction, of type ARC_BUFC_METADATA, and reside in the
523	 * arc_mfu state.
524	 */
525	kstat_named_t arcstat_mfu_evictable_metadata;
526	/*
527	 * Total number of bytes that *would have been* consumed by ARC
528	 * buffers in the arc_mfu_ghost state. See the comment above
529	 * arcstat_mru_ghost_size for more details.
530	 */
531	kstat_named_t arcstat_mfu_ghost_size;
532	/*
533	 * Number of bytes that *would have been* consumed by ARC
534	 * buffers that are eligible for eviction, of type
535	 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
536	 */
537	kstat_named_t arcstat_mfu_ghost_evictable_data;
538	/*
539	 * Number of bytes that *would have been* consumed by ARC
540	 * buffers that are eligible for eviction, of type
541	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
542	 */
543	kstat_named_t arcstat_mfu_ghost_evictable_metadata;
544	kstat_named_t arcstat_l2_hits;
545	kstat_named_t arcstat_l2_misses;
546	kstat_named_t arcstat_l2_feeds;
547	kstat_named_t arcstat_l2_rw_clash;
548	kstat_named_t arcstat_l2_read_bytes;
549	kstat_named_t arcstat_l2_write_bytes;
550	kstat_named_t arcstat_l2_writes_sent;
551	kstat_named_t arcstat_l2_writes_done;
552	kstat_named_t arcstat_l2_writes_error;
553	kstat_named_t arcstat_l2_writes_lock_retry;
554	kstat_named_t arcstat_l2_evict_lock_retry;
555	kstat_named_t arcstat_l2_evict_reading;
556	kstat_named_t arcstat_l2_evict_l1cached;
557	kstat_named_t arcstat_l2_free_on_write;
558	kstat_named_t arcstat_l2_cdata_free_on_write;
559	kstat_named_t arcstat_l2_abort_lowmem;
560	kstat_named_t arcstat_l2_cksum_bad;
561	kstat_named_t arcstat_l2_io_error;
562	kstat_named_t arcstat_l2_size;
563	kstat_named_t arcstat_l2_asize;
564	kstat_named_t arcstat_l2_hdr_size;
565	kstat_named_t arcstat_l2_compress_successes;
566	kstat_named_t arcstat_l2_compress_zeros;
567	kstat_named_t arcstat_l2_compress_failures;
568	kstat_named_t arcstat_l2_write_trylock_fail;
569	kstat_named_t arcstat_l2_write_passed_headroom;
570	kstat_named_t arcstat_l2_write_spa_mismatch;
571	kstat_named_t arcstat_l2_write_in_l2;
572	kstat_named_t arcstat_l2_write_hdr_io_in_progress;
573	kstat_named_t arcstat_l2_write_not_cacheable;
574	kstat_named_t arcstat_l2_write_full;
575	kstat_named_t arcstat_l2_write_buffer_iter;
576	kstat_named_t arcstat_l2_write_pios;
577	kstat_named_t arcstat_l2_write_buffer_bytes_scanned;
578	kstat_named_t arcstat_l2_write_buffer_list_iter;
579	kstat_named_t arcstat_l2_write_buffer_list_null_iter;
580	kstat_named_t arcstat_memory_throttle_count;
581	kstat_named_t arcstat_duplicate_buffers;
582	kstat_named_t arcstat_duplicate_buffers_size;
583	kstat_named_t arcstat_duplicate_reads;
584	kstat_named_t arcstat_meta_used;
585	kstat_named_t arcstat_meta_limit;
586	kstat_named_t arcstat_meta_max;
587	kstat_named_t arcstat_meta_min;
588} arc_stats_t;
589
590static arc_stats_t arc_stats = {
591	{ "hits",			KSTAT_DATA_UINT64 },
592	{ "misses",			KSTAT_DATA_UINT64 },
593	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
594	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
595	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
596	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
597	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
598	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
599	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
600	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
601	{ "mru_hits",			KSTAT_DATA_UINT64 },
602	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
603	{ "mfu_hits",			KSTAT_DATA_UINT64 },
604	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
605	{ "allocated",			KSTAT_DATA_UINT64 },
606	{ "deleted",			KSTAT_DATA_UINT64 },
607	{ "mutex_miss",			KSTAT_DATA_UINT64 },
608	{ "evict_skip",			KSTAT_DATA_UINT64 },
609	{ "evict_not_enough",		KSTAT_DATA_UINT64 },
610	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
611	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
612	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
613	{ "evict_l2_skip",		KSTAT_DATA_UINT64 },
614	{ "hash_elements",		KSTAT_DATA_UINT64 },
615	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
616	{ "hash_collisions",		KSTAT_DATA_UINT64 },
617	{ "hash_chains",		KSTAT_DATA_UINT64 },
618	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
619	{ "p",				KSTAT_DATA_UINT64 },
620	{ "c",				KSTAT_DATA_UINT64 },
621	{ "c_min",			KSTAT_DATA_UINT64 },
622	{ "c_max",			KSTAT_DATA_UINT64 },
623	{ "size",			KSTAT_DATA_UINT64 },
624	{ "hdr_size",			KSTAT_DATA_UINT64 },
625	{ "data_size",			KSTAT_DATA_UINT64 },
626	{ "metadata_size",		KSTAT_DATA_UINT64 },
627	{ "other_size",			KSTAT_DATA_UINT64 },
628	{ "anon_size",			KSTAT_DATA_UINT64 },
629	{ "anon_evictable_data",	KSTAT_DATA_UINT64 },
630	{ "anon_evictable_metadata",	KSTAT_DATA_UINT64 },
631	{ "mru_size",			KSTAT_DATA_UINT64 },
632	{ "mru_evictable_data",		KSTAT_DATA_UINT64 },
633	{ "mru_evictable_metadata",	KSTAT_DATA_UINT64 },
634	{ "mru_ghost_size",		KSTAT_DATA_UINT64 },
635	{ "mru_ghost_evictable_data",	KSTAT_DATA_UINT64 },
636	{ "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
637	{ "mfu_size",			KSTAT_DATA_UINT64 },
638	{ "mfu_evictable_data",		KSTAT_DATA_UINT64 },
639	{ "mfu_evictable_metadata",	KSTAT_DATA_UINT64 },
640	{ "mfu_ghost_size",		KSTAT_DATA_UINT64 },
641	{ "mfu_ghost_evictable_data",	KSTAT_DATA_UINT64 },
642	{ "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
643	{ "l2_hits",			KSTAT_DATA_UINT64 },
644	{ "l2_misses",			KSTAT_DATA_UINT64 },
645	{ "l2_feeds",			KSTAT_DATA_UINT64 },
646	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
647	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
648	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
649	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
650	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
651	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
652	{ "l2_writes_lock_retry",	KSTAT_DATA_UINT64 },
653	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
654	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
655	{ "l2_evict_l1cached",		KSTAT_DATA_UINT64 },
656	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
657	{ "l2_cdata_free_on_write",	KSTAT_DATA_UINT64 },
658	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
659	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
660	{ "l2_io_error",		KSTAT_DATA_UINT64 },
661	{ "l2_size",			KSTAT_DATA_UINT64 },
662	{ "l2_asize",			KSTAT_DATA_UINT64 },
663	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
664	{ "l2_compress_successes",	KSTAT_DATA_UINT64 },
665	{ "l2_compress_zeros",		KSTAT_DATA_UINT64 },
666	{ "l2_compress_failures",	KSTAT_DATA_UINT64 },
667	{ "l2_write_trylock_fail",	KSTAT_DATA_UINT64 },
668	{ "l2_write_passed_headroom",	KSTAT_DATA_UINT64 },
669	{ "l2_write_spa_mismatch",	KSTAT_DATA_UINT64 },
670	{ "l2_write_in_l2",		KSTAT_DATA_UINT64 },
671	{ "l2_write_io_in_progress",	KSTAT_DATA_UINT64 },
672	{ "l2_write_not_cacheable",	KSTAT_DATA_UINT64 },
673	{ "l2_write_full",		KSTAT_DATA_UINT64 },
674	{ "l2_write_buffer_iter",	KSTAT_DATA_UINT64 },
675	{ "l2_write_pios",		KSTAT_DATA_UINT64 },
676	{ "l2_write_buffer_bytes_scanned", KSTAT_DATA_UINT64 },
677	{ "l2_write_buffer_list_iter",	KSTAT_DATA_UINT64 },
678	{ "l2_write_buffer_list_null_iter", KSTAT_DATA_UINT64 },
679	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
680	{ "duplicate_buffers",		KSTAT_DATA_UINT64 },
681	{ "duplicate_buffers_size",	KSTAT_DATA_UINT64 },
682	{ "duplicate_reads",		KSTAT_DATA_UINT64 },
683	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
684	{ "arc_meta_limit",		KSTAT_DATA_UINT64 },
685	{ "arc_meta_max",		KSTAT_DATA_UINT64 },
686	{ "arc_meta_min",		KSTAT_DATA_UINT64 }
687};
688
689#define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
690
691#define	ARCSTAT_INCR(stat, val) \
692	atomic_add_64(&arc_stats.stat.value.ui64, (val))
693
694#define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
695#define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
696
697#define	ARCSTAT_MAX(stat, val) {					\
698	uint64_t m;							\
699	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
700	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
701		continue;						\
702}
703
704#define	ARCSTAT_MAXSTAT(stat) \
705	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
706
707/*
708 * We define a macro to allow ARC hits/misses to be easily broken down by
709 * two separate conditions, giving a total of four different subtypes for
710 * each of hits and misses (so eight statistics total).
711 */
712#define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
713	if (cond1) {							\
714		if (cond2) {						\
715			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
716		} else {						\
717			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
718		}							\
719	} else {							\
720		if (cond2) {						\
721			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
722		} else {						\
723			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
724		}							\
725	}
726
727kstat_t			*arc_ksp;
728static arc_state_t	*arc_anon;
729static arc_state_t	*arc_mru;
730static arc_state_t	*arc_mru_ghost;
731static arc_state_t	*arc_mfu;
732static arc_state_t	*arc_mfu_ghost;
733static arc_state_t	*arc_l2c_only;
734
735/*
736 * There are several ARC variables that are critical to export as kstats --
737 * but we don't want to have to grovel around in the kstat whenever we wish to
738 * manipulate them.  For these variables, we therefore define them to be in
739 * terms of the statistic variable.  This assures that we are not introducing
740 * the possibility of inconsistency by having shadow copies of the variables,
741 * while still allowing the code to be readable.
742 */
743#define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
744#define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
745#define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
746#define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
747#define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
748#define	arc_meta_limit	ARCSTAT(arcstat_meta_limit) /* max size for metadata */
749#define	arc_meta_min	ARCSTAT(arcstat_meta_min) /* min size for metadata */
750#define	arc_meta_used	ARCSTAT(arcstat_meta_used) /* size of metadata */
751#define	arc_meta_max	ARCSTAT(arcstat_meta_max) /* max size of metadata */
752
753#define	L2ARC_IS_VALID_COMPRESS(_c_) \
754	((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY)
755
756static int		arc_no_grow;	/* Don't try to grow cache size */
757static uint64_t		arc_tempreserve;
758static uint64_t		arc_loaned_bytes;
759
760typedef struct arc_callback arc_callback_t;
761
762struct arc_callback {
763	void			*acb_private;
764	arc_done_func_t		*acb_done;
765	arc_buf_t		*acb_buf;
766	zio_t			*acb_zio_dummy;
767	arc_callback_t		*acb_next;
768};
769
770typedef struct arc_write_callback arc_write_callback_t;
771
772struct arc_write_callback {
773	void		*awcb_private;
774	arc_done_func_t	*awcb_ready;
775	arc_done_func_t	*awcb_physdone;
776	arc_done_func_t	*awcb_done;
777	arc_buf_t	*awcb_buf;
778};
779
780/*
781 * ARC buffers are separated into multiple structs as a memory saving measure:
782 *   - Common fields struct, always defined, and embedded within it:
783 *       - L2-only fields, always allocated but undefined when not in L2ARC
784 *       - L1-only fields, only allocated when in L1ARC
785 *
786 *           Buffer in L1                     Buffer only in L2
787 *    +------------------------+          +------------------------+
788 *    | arc_buf_hdr_t          |          | arc_buf_hdr_t          |
789 *    |                        |          |                        |
790 *    |                        |          |                        |
791 *    |                        |          |                        |
792 *    +------------------------+          +------------------------+
793 *    | l2arc_buf_hdr_t        |          | l2arc_buf_hdr_t        |
794 *    | (undefined if L1-only) |          |                        |
795 *    +------------------------+          +------------------------+
796 *    | l1arc_buf_hdr_t        |
797 *    |                        |
798 *    |                        |
799 *    |                        |
800 *    |                        |
801 *    +------------------------+
802 *
803 * Because it's possible for the L2ARC to become extremely large, we can wind
804 * up eating a lot of memory in L2ARC buffer headers, so the size of a header
805 * is minimized by only allocating the fields necessary for an L1-cached buffer
806 * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and
807 * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple
808 * words in pointers. arc_hdr_realloc() is used to switch a header between
809 * these two allocation states.
810 */
811typedef struct l1arc_buf_hdr {
812	kmutex_t		b_freeze_lock;
813#ifdef ZFS_DEBUG
814	/*
815	 * used for debugging wtih kmem_flags - by allocating and freeing
816	 * b_thawed when the buffer is thawed, we get a record of the stack
817	 * trace that thawed it.
818	 */
819	void			*b_thawed;
820#endif
821
822	arc_buf_t		*b_buf;
823	uint32_t		b_datacnt;
824	/* for waiting on writes to complete */
825	kcondvar_t		b_cv;
826
827	/* protected by arc state mutex */
828	arc_state_t		*b_state;
829	multilist_node_t	b_arc_node;
830
831	/* updated atomically */
832	clock_t			b_arc_access;
833
834	/* self protecting */
835	refcount_t		b_refcnt;
836
837	arc_callback_t		*b_acb;
838	/* temporary buffer holder for in-flight compressed data */
839	void			*b_tmp_cdata;
840} l1arc_buf_hdr_t;
841
842typedef struct l2arc_dev l2arc_dev_t;
843
844typedef struct l2arc_buf_hdr {
845	/* protected by arc_buf_hdr mutex */
846	l2arc_dev_t		*b_dev;		/* L2ARC device */
847	uint64_t		b_daddr;	/* disk address, offset byte */
848	/* real alloc'd buffer size depending on b_compress applied */
849	int32_t			b_asize;
850
851	list_node_t		b_l2node;
852} l2arc_buf_hdr_t;
853
854struct arc_buf_hdr {
855	/* protected by hash lock */
856	dva_t			b_dva;
857	uint64_t		b_birth;
858	/*
859	 * Even though this checksum is only set/verified when a buffer is in
860	 * the L1 cache, it needs to be in the set of common fields because it
861	 * must be preserved from the time before a buffer is written out to
862	 * L2ARC until after it is read back in.
863	 */
864	zio_cksum_t		*b_freeze_cksum;
865
866	arc_buf_hdr_t		*b_hash_next;
867	arc_flags_t		b_flags;
868
869	/* immutable */
870	int32_t			b_size;
871	uint64_t		b_spa;
872
873	/* L2ARC fields. Undefined when not in L2ARC. */
874	l2arc_buf_hdr_t		b_l2hdr;
875	/* L1ARC fields. Undefined when in l2arc_only state */
876	l1arc_buf_hdr_t		b_l1hdr;
877};
878
879#ifdef _KERNEL
880static int
881sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS)
882{
883	uint64_t val;
884	int err;
885
886	val = arc_meta_limit;
887	err = sysctl_handle_64(oidp, &val, 0, req);
888	if (err != 0 || req->newptr == NULL)
889		return (err);
890
891        if (val <= 0 || val > arc_c_max)
892		return (EINVAL);
893
894	arc_meta_limit = val;
895	return (0);
896}
897#endif
898
899static arc_buf_t *arc_eviction_list;
900static arc_buf_hdr_t arc_eviction_hdr;
901
902#define	GHOST_STATE(state)	\
903	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
904	(state) == arc_l2c_only)
905
906#define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
907#define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
908#define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_FLAG_IO_ERROR)
909#define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_FLAG_PREFETCH)
910#define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FLAG_FREED_IN_READ)
911#define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_FLAG_BUF_AVAILABLE)
912
913#define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_FLAG_L2CACHE)
914#define	HDR_L2COMPRESS(hdr)	((hdr)->b_flags & ARC_FLAG_L2COMPRESS)
915#define	HDR_L2_READING(hdr)	\
916	    (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&	\
917	    ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
918#define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITING)
919#define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
920#define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
921
922#define	HDR_ISTYPE_METADATA(hdr)	\
923	    ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
924#define	HDR_ISTYPE_DATA(hdr)	(!HDR_ISTYPE_METADATA(hdr))
925
926#define	HDR_HAS_L1HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
927#define	HDR_HAS_L2HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
928
929/* For storing compression mode in b_flags */
930#define	HDR_COMPRESS_OFFSET	24
931#define	HDR_COMPRESS_NBITS	7
932
933#define	HDR_GET_COMPRESS(hdr)	((enum zio_compress)BF32_GET(hdr->b_flags, \
934	    HDR_COMPRESS_OFFSET, HDR_COMPRESS_NBITS))
935#define	HDR_SET_COMPRESS(hdr, cmp) BF32_SET(hdr->b_flags, \
936	    HDR_COMPRESS_OFFSET, HDR_COMPRESS_NBITS, (cmp))
937
938/*
939 * Other sizes
940 */
941
942#define	HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
943#define	HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
944
945/*
946 * Hash table routines
947 */
948
949#define	HT_LOCK_PAD	CACHE_LINE_SIZE
950
951struct ht_lock {
952	kmutex_t	ht_lock;
953#ifdef _KERNEL
954	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
955#endif
956};
957
958#define	BUF_LOCKS 256
959typedef struct buf_hash_table {
960	uint64_t ht_mask;
961	arc_buf_hdr_t **ht_table;
962	struct ht_lock ht_locks[BUF_LOCKS] __aligned(CACHE_LINE_SIZE);
963} buf_hash_table_t;
964
965static buf_hash_table_t buf_hash_table;
966
967#define	BUF_HASH_INDEX(spa, dva, birth) \
968	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
969#define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
970#define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
971#define	HDR_LOCK(hdr) \
972	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
973
974uint64_t zfs_crc64_table[256];
975
976/*
977 * Level 2 ARC
978 */
979
980#define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
981#define	L2ARC_HEADROOM		2			/* num of writes */
982/*
983 * If we discover during ARC scan any buffers to be compressed, we boost
984 * our headroom for the next scanning cycle by this percentage multiple.
985 */
986#define	L2ARC_HEADROOM_BOOST	200
987#define	L2ARC_FEED_SECS		1		/* caching interval secs */
988#define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
989
990/*
991 * Used to distinguish headers that are being process by
992 * l2arc_write_buffers(), but have yet to be assigned to a l2arc disk
993 * address. This can happen when the header is added to the l2arc's list
994 * of buffers to write in the first stage of l2arc_write_buffers(), but
995 * has not yet been written out which happens in the second stage of
996 * l2arc_write_buffers().
997 */
998#define	L2ARC_ADDR_UNSET	((uint64_t)(-1))
999
1000#define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
1001#define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
1002
1003/* L2ARC Performance Tunables */
1004uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
1005uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
1006uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
1007uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
1008uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
1009uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
1010boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
1011boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
1012boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
1013
1014SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_max, CTLFLAG_RW,
1015    &l2arc_write_max, 0, "max write size");
1016SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_boost, CTLFLAG_RW,
1017    &l2arc_write_boost, 0, "extra write during warmup");
1018SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_headroom, CTLFLAG_RW,
1019    &l2arc_headroom, 0, "number of dev writes");
1020SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_secs, CTLFLAG_RW,
1021    &l2arc_feed_secs, 0, "interval seconds");
1022SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_min_ms, CTLFLAG_RW,
1023    &l2arc_feed_min_ms, 0, "min interval milliseconds");
1024
1025SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_noprefetch, CTLFLAG_RW,
1026    &l2arc_noprefetch, 0, "don't cache prefetch bufs");
1027SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_feed_again, CTLFLAG_RW,
1028    &l2arc_feed_again, 0, "turbo warmup");
1029SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_norw, CTLFLAG_RW,
1030    &l2arc_norw, 0, "no reads during writes");
1031
1032SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_size, CTLFLAG_RD,
1033    &ARC_anon.arcs_size, 0, "size of anonymous state");
1034SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_metadata_lsize, CTLFLAG_RD,
1035    &ARC_anon.arcs_lsize[ARC_BUFC_METADATA], 0, "size of anonymous state");
1036SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_data_lsize, CTLFLAG_RD,
1037    &ARC_anon.arcs_lsize[ARC_BUFC_DATA], 0, "size of anonymous state");
1038
1039SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_size, CTLFLAG_RD,
1040    &ARC_mru.arcs_size, 0, "size of mru state");
1041SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_metadata_lsize, CTLFLAG_RD,
1042    &ARC_mru.arcs_lsize[ARC_BUFC_METADATA], 0, "size of metadata in mru state");
1043SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_data_lsize, CTLFLAG_RD,
1044    &ARC_mru.arcs_lsize[ARC_BUFC_DATA], 0, "size of data in mru state");
1045
1046SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_size, CTLFLAG_RD,
1047    &ARC_mru_ghost.arcs_size, 0, "size of mru ghost state");
1048SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_metadata_lsize, CTLFLAG_RD,
1049    &ARC_mru_ghost.arcs_lsize[ARC_BUFC_METADATA], 0,
1050    "size of metadata in mru ghost state");
1051SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_data_lsize, CTLFLAG_RD,
1052    &ARC_mru_ghost.arcs_lsize[ARC_BUFC_DATA], 0,
1053    "size of data in mru ghost state");
1054
1055SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_size, CTLFLAG_RD,
1056    &ARC_mfu.arcs_size, 0, "size of mfu state");
1057SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_metadata_lsize, CTLFLAG_RD,
1058    &ARC_mfu.arcs_lsize[ARC_BUFC_METADATA], 0, "size of metadata in mfu state");
1059SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_data_lsize, CTLFLAG_RD,
1060    &ARC_mfu.arcs_lsize[ARC_BUFC_DATA], 0, "size of data in mfu state");
1061
1062SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_size, CTLFLAG_RD,
1063    &ARC_mfu_ghost.arcs_size, 0, "size of mfu ghost state");
1064SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_metadata_lsize, CTLFLAG_RD,
1065    &ARC_mfu_ghost.arcs_lsize[ARC_BUFC_METADATA], 0,
1066    "size of metadata in mfu ghost state");
1067SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_data_lsize, CTLFLAG_RD,
1068    &ARC_mfu_ghost.arcs_lsize[ARC_BUFC_DATA], 0,
1069    "size of data in mfu ghost state");
1070
1071SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2c_only_size, CTLFLAG_RD,
1072    &ARC_l2c_only.arcs_size, 0, "size of mru state");
1073
1074/*
1075 * L2ARC Internals
1076 */
1077struct l2arc_dev {
1078	vdev_t			*l2ad_vdev;	/* vdev */
1079	spa_t			*l2ad_spa;	/* spa */
1080	uint64_t		l2ad_hand;	/* next write location */
1081	uint64_t		l2ad_start;	/* first addr on device */
1082	uint64_t		l2ad_end;	/* last addr on device */
1083	boolean_t		l2ad_first;	/* first sweep through */
1084	boolean_t		l2ad_writing;	/* currently writing */
1085	kmutex_t		l2ad_mtx;	/* lock for buffer list */
1086	list_t			l2ad_buflist;	/* buffer list */
1087	list_node_t		l2ad_node;	/* device list node */
1088	refcount_t		l2ad_alloc;	/* allocated bytes */
1089};
1090
1091static list_t L2ARC_dev_list;			/* device list */
1092static list_t *l2arc_dev_list;			/* device list pointer */
1093static kmutex_t l2arc_dev_mtx;			/* device list mutex */
1094static l2arc_dev_t *l2arc_dev_last;		/* last device used */
1095static list_t L2ARC_free_on_write;		/* free after write buf list */
1096static list_t *l2arc_free_on_write;		/* free after write list ptr */
1097static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
1098static uint64_t l2arc_ndev;			/* number of devices */
1099
1100typedef struct l2arc_read_callback {
1101	arc_buf_t		*l2rcb_buf;		/* read buffer */
1102	spa_t			*l2rcb_spa;		/* spa */
1103	blkptr_t		l2rcb_bp;		/* original blkptr */
1104	zbookmark_phys_t	l2rcb_zb;		/* original bookmark */
1105	int			l2rcb_flags;		/* original flags */
1106	enum zio_compress	l2rcb_compress;		/* applied compress */
1107} l2arc_read_callback_t;
1108
1109typedef struct l2arc_write_callback {
1110	l2arc_dev_t	*l2wcb_dev;		/* device info */
1111	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
1112} l2arc_write_callback_t;
1113
1114typedef struct l2arc_data_free {
1115	/* protected by l2arc_free_on_write_mtx */
1116	void		*l2df_data;
1117	size_t		l2df_size;
1118	void		(*l2df_func)(void *, size_t);
1119	list_node_t	l2df_list_node;
1120} l2arc_data_free_t;
1121
1122static kmutex_t l2arc_feed_thr_lock;
1123static kcondvar_t l2arc_feed_thr_cv;
1124static uint8_t l2arc_thread_exit;
1125
1126static void arc_get_data_buf(arc_buf_t *);
1127static void arc_access(arc_buf_hdr_t *, kmutex_t *);
1128static boolean_t arc_is_overflowing();
1129static void arc_buf_watch(arc_buf_t *);
1130
1131static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
1132static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
1133
1134static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
1135static void l2arc_read_done(zio_t *);
1136
1137static boolean_t l2arc_compress_buf(arc_buf_hdr_t *);
1138static void l2arc_decompress_zio(zio_t *, arc_buf_hdr_t *, enum zio_compress);
1139static void l2arc_release_cdata_buf(arc_buf_hdr_t *);
1140
1141static uint64_t
1142buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
1143{
1144	uint8_t *vdva = (uint8_t *)dva;
1145	uint64_t crc = -1ULL;
1146	int i;
1147
1148	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
1149
1150	for (i = 0; i < sizeof (dva_t); i++)
1151		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
1152
1153	crc ^= (spa>>8) ^ birth;
1154
1155	return (crc);
1156}
1157
1158#define	BUF_EMPTY(buf)						\
1159	((buf)->b_dva.dva_word[0] == 0 &&			\
1160	(buf)->b_dva.dva_word[1] == 0)
1161
1162#define	BUF_EQUAL(spa, dva, birth, buf)				\
1163	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
1164	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
1165	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
1166
1167static void
1168buf_discard_identity(arc_buf_hdr_t *hdr)
1169{
1170	hdr->b_dva.dva_word[0] = 0;
1171	hdr->b_dva.dva_word[1] = 0;
1172	hdr->b_birth = 0;
1173}
1174
1175static arc_buf_hdr_t *
1176buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1177{
1178	const dva_t *dva = BP_IDENTITY(bp);
1179	uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1180	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1181	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1182	arc_buf_hdr_t *hdr;
1183
1184	mutex_enter(hash_lock);
1185	for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1186	    hdr = hdr->b_hash_next) {
1187		if (BUF_EQUAL(spa, dva, birth, hdr)) {
1188			*lockp = hash_lock;
1189			return (hdr);
1190		}
1191	}
1192	mutex_exit(hash_lock);
1193	*lockp = NULL;
1194	return (NULL);
1195}
1196
1197/*
1198 * Insert an entry into the hash table.  If there is already an element
1199 * equal to elem in the hash table, then the already existing element
1200 * will be returned and the new element will not be inserted.
1201 * Otherwise returns NULL.
1202 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1203 */
1204static arc_buf_hdr_t *
1205buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1206{
1207	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1208	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1209	arc_buf_hdr_t *fhdr;
1210	uint32_t i;
1211
1212	ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1213	ASSERT(hdr->b_birth != 0);
1214	ASSERT(!HDR_IN_HASH_TABLE(hdr));
1215
1216	if (lockp != NULL) {
1217		*lockp = hash_lock;
1218		mutex_enter(hash_lock);
1219	} else {
1220		ASSERT(MUTEX_HELD(hash_lock));
1221	}
1222
1223	for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1224	    fhdr = fhdr->b_hash_next, i++) {
1225		if (BUF_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1226			return (fhdr);
1227	}
1228
1229	hdr->b_hash_next = buf_hash_table.ht_table[idx];
1230	buf_hash_table.ht_table[idx] = hdr;
1231	hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
1232
1233	/* collect some hash table performance data */
1234	if (i > 0) {
1235		ARCSTAT_BUMP(arcstat_hash_collisions);
1236		if (i == 1)
1237			ARCSTAT_BUMP(arcstat_hash_chains);
1238
1239		ARCSTAT_MAX(arcstat_hash_chain_max, i);
1240	}
1241
1242	ARCSTAT_BUMP(arcstat_hash_elements);
1243	ARCSTAT_MAXSTAT(arcstat_hash_elements);
1244
1245	return (NULL);
1246}
1247
1248static void
1249buf_hash_remove(arc_buf_hdr_t *hdr)
1250{
1251	arc_buf_hdr_t *fhdr, **hdrp;
1252	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1253
1254	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1255	ASSERT(HDR_IN_HASH_TABLE(hdr));
1256
1257	hdrp = &buf_hash_table.ht_table[idx];
1258	while ((fhdr = *hdrp) != hdr) {
1259		ASSERT(fhdr != NULL);
1260		hdrp = &fhdr->b_hash_next;
1261	}
1262	*hdrp = hdr->b_hash_next;
1263	hdr->b_hash_next = NULL;
1264	hdr->b_flags &= ~ARC_FLAG_IN_HASH_TABLE;
1265
1266	/* collect some hash table performance data */
1267	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1268
1269	if (buf_hash_table.ht_table[idx] &&
1270	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1271		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1272}
1273
1274/*
1275 * Global data structures and functions for the buf kmem cache.
1276 */
1277static kmem_cache_t *hdr_full_cache;
1278static kmem_cache_t *hdr_l2only_cache;
1279static kmem_cache_t *buf_cache;
1280
1281static void
1282buf_fini(void)
1283{
1284	int i;
1285
1286	kmem_free(buf_hash_table.ht_table,
1287	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1288	for (i = 0; i < BUF_LOCKS; i++)
1289		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1290	kmem_cache_destroy(hdr_full_cache);
1291	kmem_cache_destroy(hdr_l2only_cache);
1292	kmem_cache_destroy(buf_cache);
1293}
1294
1295/*
1296 * Constructor callback - called when the cache is empty
1297 * and a new buf is requested.
1298 */
1299/* ARGSUSED */
1300static int
1301hdr_full_cons(void *vbuf, void *unused, int kmflag)
1302{
1303	arc_buf_hdr_t *hdr = vbuf;
1304
1305	bzero(hdr, HDR_FULL_SIZE);
1306	cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1307	refcount_create(&hdr->b_l1hdr.b_refcnt);
1308	mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1309	multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1310	arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1311
1312	return (0);
1313}
1314
1315/* ARGSUSED */
1316static int
1317hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1318{
1319	arc_buf_hdr_t *hdr = vbuf;
1320
1321	bzero(hdr, HDR_L2ONLY_SIZE);
1322	arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1323
1324	return (0);
1325}
1326
1327/* ARGSUSED */
1328static int
1329buf_cons(void *vbuf, void *unused, int kmflag)
1330{
1331	arc_buf_t *buf = vbuf;
1332
1333	bzero(buf, sizeof (arc_buf_t));
1334	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1335	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1336
1337	return (0);
1338}
1339
1340/*
1341 * Destructor callback - called when a cached buf is
1342 * no longer required.
1343 */
1344/* ARGSUSED */
1345static void
1346hdr_full_dest(void *vbuf, void *unused)
1347{
1348	arc_buf_hdr_t *hdr = vbuf;
1349
1350	ASSERT(BUF_EMPTY(hdr));
1351	cv_destroy(&hdr->b_l1hdr.b_cv);
1352	refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1353	mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1354	ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1355	arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1356}
1357
1358/* ARGSUSED */
1359static void
1360hdr_l2only_dest(void *vbuf, void *unused)
1361{
1362	arc_buf_hdr_t *hdr = vbuf;
1363
1364	ASSERT(BUF_EMPTY(hdr));
1365	arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1366}
1367
1368/* ARGSUSED */
1369static void
1370buf_dest(void *vbuf, void *unused)
1371{
1372	arc_buf_t *buf = vbuf;
1373
1374	mutex_destroy(&buf->b_evict_lock);
1375	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1376}
1377
1378/*
1379 * Reclaim callback -- invoked when memory is low.
1380 */
1381/* ARGSUSED */
1382static void
1383hdr_recl(void *unused)
1384{
1385	dprintf("hdr_recl called\n");
1386	/*
1387	 * umem calls the reclaim func when we destroy the buf cache,
1388	 * which is after we do arc_fini().
1389	 */
1390	if (!arc_dead)
1391		cv_signal(&arc_reclaim_thread_cv);
1392}
1393
1394static void
1395buf_init(void)
1396{
1397	uint64_t *ct;
1398	uint64_t hsize = 1ULL << 12;
1399	int i, j;
1400
1401	/*
1402	 * The hash table is big enough to fill all of physical memory
1403	 * with an average block size of zfs_arc_average_blocksize (default 8K).
1404	 * By default, the table will take up
1405	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1406	 */
1407	while (hsize * zfs_arc_average_blocksize < (uint64_t)physmem * PAGESIZE)
1408		hsize <<= 1;
1409retry:
1410	buf_hash_table.ht_mask = hsize - 1;
1411	buf_hash_table.ht_table =
1412	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1413	if (buf_hash_table.ht_table == NULL) {
1414		ASSERT(hsize > (1ULL << 8));
1415		hsize >>= 1;
1416		goto retry;
1417	}
1418
1419	hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1420	    0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1421	hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1422	    HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1423	    NULL, NULL, 0);
1424	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1425	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1426
1427	for (i = 0; i < 256; i++)
1428		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1429			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1430
1431	for (i = 0; i < BUF_LOCKS; i++) {
1432		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1433		    NULL, MUTEX_DEFAULT, NULL);
1434	}
1435}
1436
1437/*
1438 * Transition between the two allocation states for the arc_buf_hdr struct.
1439 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
1440 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
1441 * version is used when a cache buffer is only in the L2ARC in order to reduce
1442 * memory usage.
1443 */
1444static arc_buf_hdr_t *
1445arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
1446{
1447	ASSERT(HDR_HAS_L2HDR(hdr));
1448
1449	arc_buf_hdr_t *nhdr;
1450	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
1451
1452	ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
1453	    (old == hdr_l2only_cache && new == hdr_full_cache));
1454
1455	nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
1456
1457	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
1458	buf_hash_remove(hdr);
1459
1460	bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
1461
1462	if (new == hdr_full_cache) {
1463		nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
1464		/*
1465		 * arc_access and arc_change_state need to be aware that a
1466		 * header has just come out of L2ARC, so we set its state to
1467		 * l2c_only even though it's about to change.
1468		 */
1469		nhdr->b_l1hdr.b_state = arc_l2c_only;
1470
1471		/* Verify previous threads set to NULL before freeing */
1472		ASSERT3P(nhdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1473	} else {
1474		ASSERT(hdr->b_l1hdr.b_buf == NULL);
1475		ASSERT0(hdr->b_l1hdr.b_datacnt);
1476
1477		/*
1478		 * If we've reached here, We must have been called from
1479		 * arc_evict_hdr(), as such we should have already been
1480		 * removed from any ghost list we were previously on
1481		 * (which protects us from racing with arc_evict_state),
1482		 * thus no locking is needed during this check.
1483		 */
1484		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1485
1486		/*
1487		 * A buffer must not be moved into the arc_l2c_only
1488		 * state if it's not finished being written out to the
1489		 * l2arc device. Otherwise, the b_l1hdr.b_tmp_cdata field
1490		 * might try to be accessed, even though it was removed.
1491		 */
1492		VERIFY(!HDR_L2_WRITING(hdr));
1493		VERIFY3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1494
1495		nhdr->b_flags &= ~ARC_FLAG_HAS_L1HDR;
1496	}
1497	/*
1498	 * The header has been reallocated so we need to re-insert it into any
1499	 * lists it was on.
1500	 */
1501	(void) buf_hash_insert(nhdr, NULL);
1502
1503	ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
1504
1505	mutex_enter(&dev->l2ad_mtx);
1506
1507	/*
1508	 * We must place the realloc'ed header back into the list at
1509	 * the same spot. Otherwise, if it's placed earlier in the list,
1510	 * l2arc_write_buffers() could find it during the function's
1511	 * write phase, and try to write it out to the l2arc.
1512	 */
1513	list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
1514	list_remove(&dev->l2ad_buflist, hdr);
1515
1516	mutex_exit(&dev->l2ad_mtx);
1517
1518	/*
1519	 * Since we're using the pointer address as the tag when
1520	 * incrementing and decrementing the l2ad_alloc refcount, we
1521	 * must remove the old pointer (that we're about to destroy) and
1522	 * add the new pointer to the refcount. Otherwise we'd remove
1523	 * the wrong pointer address when calling arc_hdr_destroy() later.
1524	 */
1525
1526	(void) refcount_remove_many(&dev->l2ad_alloc,
1527	    hdr->b_l2hdr.b_asize, hdr);
1528
1529	(void) refcount_add_many(&dev->l2ad_alloc,
1530	    nhdr->b_l2hdr.b_asize, nhdr);
1531
1532	buf_discard_identity(hdr);
1533	hdr->b_freeze_cksum = NULL;
1534	kmem_cache_free(old, hdr);
1535
1536	return (nhdr);
1537}
1538
1539
1540#define	ARC_MINTIME	(hz>>4) /* 62 ms */
1541
1542static void
1543arc_cksum_verify(arc_buf_t *buf)
1544{
1545	zio_cksum_t zc;
1546
1547	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1548		return;
1549
1550	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1551	if (buf->b_hdr->b_freeze_cksum == NULL || HDR_IO_ERROR(buf->b_hdr)) {
1552		mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1553		return;
1554	}
1555	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1556	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
1557		panic("buffer modified while frozen!");
1558	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1559}
1560
1561static int
1562arc_cksum_equal(arc_buf_t *buf)
1563{
1564	zio_cksum_t zc;
1565	int equal;
1566
1567	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1568	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1569	equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
1570	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1571
1572	return (equal);
1573}
1574
1575static void
1576arc_cksum_compute(arc_buf_t *buf, boolean_t force)
1577{
1578	if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1579		return;
1580
1581	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1582	if (buf->b_hdr->b_freeze_cksum != NULL) {
1583		mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1584		return;
1585	}
1586	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
1587	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1588	    buf->b_hdr->b_freeze_cksum);
1589	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1590#ifdef illumos
1591	arc_buf_watch(buf);
1592#endif /* illumos */
1593}
1594
1595#ifdef illumos
1596#ifndef _KERNEL
1597typedef struct procctl {
1598	long cmd;
1599	prwatch_t prwatch;
1600} procctl_t;
1601#endif
1602
1603/* ARGSUSED */
1604static void
1605arc_buf_unwatch(arc_buf_t *buf)
1606{
1607#ifndef _KERNEL
1608	if (arc_watch) {
1609		int result;
1610		procctl_t ctl;
1611		ctl.cmd = PCWATCH;
1612		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1613		ctl.prwatch.pr_size = 0;
1614		ctl.prwatch.pr_wflags = 0;
1615		result = write(arc_procfd, &ctl, sizeof (ctl));
1616		ASSERT3U(result, ==, sizeof (ctl));
1617	}
1618#endif
1619}
1620
1621/* ARGSUSED */
1622static void
1623arc_buf_watch(arc_buf_t *buf)
1624{
1625#ifndef _KERNEL
1626	if (arc_watch) {
1627		int result;
1628		procctl_t ctl;
1629		ctl.cmd = PCWATCH;
1630		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1631		ctl.prwatch.pr_size = buf->b_hdr->b_size;
1632		ctl.prwatch.pr_wflags = WA_WRITE;
1633		result = write(arc_procfd, &ctl, sizeof (ctl));
1634		ASSERT3U(result, ==, sizeof (ctl));
1635	}
1636#endif
1637}
1638#endif /* illumos */
1639
1640static arc_buf_contents_t
1641arc_buf_type(arc_buf_hdr_t *hdr)
1642{
1643	if (HDR_ISTYPE_METADATA(hdr)) {
1644		return (ARC_BUFC_METADATA);
1645	} else {
1646		return (ARC_BUFC_DATA);
1647	}
1648}
1649
1650static uint32_t
1651arc_bufc_to_flags(arc_buf_contents_t type)
1652{
1653	switch (type) {
1654	case ARC_BUFC_DATA:
1655		/* metadata field is 0 if buffer contains normal data */
1656		return (0);
1657	case ARC_BUFC_METADATA:
1658		return (ARC_FLAG_BUFC_METADATA);
1659	default:
1660		break;
1661	}
1662	panic("undefined ARC buffer type!");
1663	return ((uint32_t)-1);
1664}
1665
1666void
1667arc_buf_thaw(arc_buf_t *buf)
1668{
1669	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1670		if (buf->b_hdr->b_l1hdr.b_state != arc_anon)
1671			panic("modifying non-anon buffer!");
1672		if (HDR_IO_IN_PROGRESS(buf->b_hdr))
1673			panic("modifying buffer while i/o in progress!");
1674		arc_cksum_verify(buf);
1675	}
1676
1677	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1678	if (buf->b_hdr->b_freeze_cksum != NULL) {
1679		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1680		buf->b_hdr->b_freeze_cksum = NULL;
1681	}
1682
1683#ifdef ZFS_DEBUG
1684	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1685		if (buf->b_hdr->b_l1hdr.b_thawed != NULL)
1686			kmem_free(buf->b_hdr->b_l1hdr.b_thawed, 1);
1687		buf->b_hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP);
1688	}
1689#endif
1690
1691	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1692
1693#ifdef illumos
1694	arc_buf_unwatch(buf);
1695#endif /* illumos */
1696}
1697
1698void
1699arc_buf_freeze(arc_buf_t *buf)
1700{
1701	kmutex_t *hash_lock;
1702
1703	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1704		return;
1705
1706	hash_lock = HDR_LOCK(buf->b_hdr);
1707	mutex_enter(hash_lock);
1708
1709	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1710	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
1711	arc_cksum_compute(buf, B_FALSE);
1712	mutex_exit(hash_lock);
1713
1714}
1715
1716static void
1717add_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1718{
1719	ASSERT(HDR_HAS_L1HDR(hdr));
1720	ASSERT(MUTEX_HELD(hash_lock));
1721	arc_state_t *state = hdr->b_l1hdr.b_state;
1722
1723	if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
1724	    (state != arc_anon)) {
1725		/* We don't use the L2-only state list. */
1726		if (state != arc_l2c_only) {
1727			arc_buf_contents_t type = arc_buf_type(hdr);
1728			uint64_t delta = hdr->b_size * hdr->b_l1hdr.b_datacnt;
1729			multilist_t *list = &state->arcs_list[type];
1730			uint64_t *size = &state->arcs_lsize[type];
1731
1732			multilist_remove(list, hdr);
1733
1734			if (GHOST_STATE(state)) {
1735				ASSERT0(hdr->b_l1hdr.b_datacnt);
1736				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
1737				delta = hdr->b_size;
1738			}
1739			ASSERT(delta > 0);
1740			ASSERT3U(*size, >=, delta);
1741			atomic_add_64(size, -delta);
1742		}
1743		/* remove the prefetch flag if we get a reference */
1744		hdr->b_flags &= ~ARC_FLAG_PREFETCH;
1745	}
1746}
1747
1748static int
1749remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1750{
1751	int cnt;
1752	arc_state_t *state = hdr->b_l1hdr.b_state;
1753
1754	ASSERT(HDR_HAS_L1HDR(hdr));
1755	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1756	ASSERT(!GHOST_STATE(state));
1757
1758	/*
1759	 * arc_l2c_only counts as a ghost state so we don't need to explicitly
1760	 * check to prevent usage of the arc_l2c_only list.
1761	 */
1762	if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
1763	    (state != arc_anon)) {
1764		arc_buf_contents_t type = arc_buf_type(hdr);
1765		multilist_t *list = &state->arcs_list[type];
1766		uint64_t *size = &state->arcs_lsize[type];
1767
1768		multilist_insert(list, hdr);
1769
1770		ASSERT(hdr->b_l1hdr.b_datacnt > 0);
1771		atomic_add_64(size, hdr->b_size *
1772		    hdr->b_l1hdr.b_datacnt);
1773	}
1774	return (cnt);
1775}
1776
1777/*
1778 * Move the supplied buffer to the indicated state. The hash lock
1779 * for the buffer must be held by the caller.
1780 */
1781static void
1782arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
1783    kmutex_t *hash_lock)
1784{
1785	arc_state_t *old_state;
1786	int64_t refcnt;
1787	uint32_t datacnt;
1788	uint64_t from_delta, to_delta;
1789	arc_buf_contents_t buftype = arc_buf_type(hdr);
1790
1791	/*
1792	 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
1793	 * in arc_read() when bringing a buffer out of the L2ARC.  However, the
1794	 * L1 hdr doesn't always exist when we change state to arc_anon before
1795	 * destroying a header, in which case reallocating to add the L1 hdr is
1796	 * pointless.
1797	 */
1798	if (HDR_HAS_L1HDR(hdr)) {
1799		old_state = hdr->b_l1hdr.b_state;
1800		refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
1801		datacnt = hdr->b_l1hdr.b_datacnt;
1802	} else {
1803		old_state = arc_l2c_only;
1804		refcnt = 0;
1805		datacnt = 0;
1806	}
1807
1808	ASSERT(MUTEX_HELD(hash_lock));
1809	ASSERT3P(new_state, !=, old_state);
1810	ASSERT(refcnt == 0 || datacnt > 0);
1811	ASSERT(!GHOST_STATE(new_state) || datacnt == 0);
1812	ASSERT(old_state != arc_anon || datacnt <= 1);
1813
1814	from_delta = to_delta = datacnt * hdr->b_size;
1815
1816	/*
1817	 * If this buffer is evictable, transfer it from the
1818	 * old state list to the new state list.
1819	 */
1820	if (refcnt == 0) {
1821		if (old_state != arc_anon && old_state != arc_l2c_only) {
1822			uint64_t *size = &old_state->arcs_lsize[buftype];
1823
1824			ASSERT(HDR_HAS_L1HDR(hdr));
1825			multilist_remove(&old_state->arcs_list[buftype], hdr);
1826
1827			/*
1828			 * If prefetching out of the ghost cache,
1829			 * we will have a non-zero datacnt.
1830			 */
1831			if (GHOST_STATE(old_state) && datacnt == 0) {
1832				/* ghost elements have a ghost size */
1833				ASSERT(hdr->b_l1hdr.b_buf == NULL);
1834				from_delta = hdr->b_size;
1835			}
1836			ASSERT3U(*size, >=, from_delta);
1837			atomic_add_64(size, -from_delta);
1838		}
1839		if (new_state != arc_anon && new_state != arc_l2c_only) {
1840			uint64_t *size = &new_state->arcs_lsize[buftype];
1841
1842			/*
1843			 * An L1 header always exists here, since if we're
1844			 * moving to some L1-cached state (i.e. not l2c_only or
1845			 * anonymous), we realloc the header to add an L1hdr
1846			 * beforehand.
1847			 */
1848			ASSERT(HDR_HAS_L1HDR(hdr));
1849			multilist_insert(&new_state->arcs_list[buftype], hdr);
1850
1851			/* ghost elements have a ghost size */
1852			if (GHOST_STATE(new_state)) {
1853				ASSERT0(datacnt);
1854				ASSERT(hdr->b_l1hdr.b_buf == NULL);
1855				to_delta = hdr->b_size;
1856			}
1857			atomic_add_64(size, to_delta);
1858		}
1859	}
1860
1861	ASSERT(!BUF_EMPTY(hdr));
1862	if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
1863		buf_hash_remove(hdr);
1864
1865	/* adjust state sizes (ignore arc_l2c_only) */
1866
1867	if (to_delta && new_state != arc_l2c_only) {
1868		ASSERT(HDR_HAS_L1HDR(hdr));
1869		if (GHOST_STATE(new_state)) {
1870			ASSERT0(datacnt);
1871
1872			/*
1873			 * We moving a header to a ghost state, we first
1874			 * remove all arc buffers. Thus, we'll have a
1875			 * datacnt of zero, and no arc buffer to use for
1876			 * the reference. As a result, we use the arc
1877			 * header pointer for the reference.
1878			 */
1879			(void) refcount_add_many(&new_state->arcs_size,
1880			    hdr->b_size, hdr);
1881		} else {
1882			ASSERT3U(datacnt, !=, 0);
1883
1884			/*
1885			 * Each individual buffer holds a unique reference,
1886			 * thus we must remove each of these references one
1887			 * at a time.
1888			 */
1889			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
1890			    buf = buf->b_next) {
1891				(void) refcount_add_many(&new_state->arcs_size,
1892				    hdr->b_size, buf);
1893			}
1894		}
1895	}
1896
1897	if (from_delta && old_state != arc_l2c_only) {
1898		ASSERT(HDR_HAS_L1HDR(hdr));
1899		if (GHOST_STATE(old_state)) {
1900			/*
1901			 * When moving a header off of a ghost state,
1902			 * there's the possibility for datacnt to be
1903			 * non-zero. This is because we first add the
1904			 * arc buffer to the header prior to changing
1905			 * the header's state. Since we used the header
1906			 * for the reference when putting the header on
1907			 * the ghost state, we must balance that and use
1908			 * the header when removing off the ghost state
1909			 * (even though datacnt is non zero).
1910			 */
1911
1912			IMPLY(datacnt == 0, new_state == arc_anon ||
1913			    new_state == arc_l2c_only);
1914
1915			(void) refcount_remove_many(&old_state->arcs_size,
1916			    hdr->b_size, hdr);
1917		} else {
1918			ASSERT3P(datacnt, !=, 0);
1919
1920			/*
1921			 * Each individual buffer holds a unique reference,
1922			 * thus we must remove each of these references one
1923			 * at a time.
1924			 */
1925			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
1926			    buf = buf->b_next) {
1927				(void) refcount_remove_many(
1928				    &old_state->arcs_size, hdr->b_size, buf);
1929			}
1930		}
1931	}
1932
1933	if (HDR_HAS_L1HDR(hdr))
1934		hdr->b_l1hdr.b_state = new_state;
1935
1936	/*
1937	 * L2 headers should never be on the L2 state list since they don't
1938	 * have L1 headers allocated.
1939	 */
1940	ASSERT(multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
1941	    multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
1942}
1943
1944void
1945arc_space_consume(uint64_t space, arc_space_type_t type)
1946{
1947	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1948
1949	switch (type) {
1950	case ARC_SPACE_DATA:
1951		ARCSTAT_INCR(arcstat_data_size, space);
1952		break;
1953	case ARC_SPACE_META:
1954		ARCSTAT_INCR(arcstat_metadata_size, space);
1955		break;
1956	case ARC_SPACE_OTHER:
1957		ARCSTAT_INCR(arcstat_other_size, space);
1958		break;
1959	case ARC_SPACE_HDRS:
1960		ARCSTAT_INCR(arcstat_hdr_size, space);
1961		break;
1962	case ARC_SPACE_L2HDRS:
1963		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1964		break;
1965	}
1966
1967	if (type != ARC_SPACE_DATA)
1968		ARCSTAT_INCR(arcstat_meta_used, space);
1969
1970	atomic_add_64(&arc_size, space);
1971}
1972
1973void
1974arc_space_return(uint64_t space, arc_space_type_t type)
1975{
1976	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1977
1978	switch (type) {
1979	case ARC_SPACE_DATA:
1980		ARCSTAT_INCR(arcstat_data_size, -space);
1981		break;
1982	case ARC_SPACE_META:
1983		ARCSTAT_INCR(arcstat_metadata_size, -space);
1984		break;
1985	case ARC_SPACE_OTHER:
1986		ARCSTAT_INCR(arcstat_other_size, -space);
1987		break;
1988	case ARC_SPACE_HDRS:
1989		ARCSTAT_INCR(arcstat_hdr_size, -space);
1990		break;
1991	case ARC_SPACE_L2HDRS:
1992		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1993		break;
1994	}
1995
1996	if (type != ARC_SPACE_DATA) {
1997		ASSERT(arc_meta_used >= space);
1998		if (arc_meta_max < arc_meta_used)
1999			arc_meta_max = arc_meta_used;
2000		ARCSTAT_INCR(arcstat_meta_used, -space);
2001	}
2002
2003	ASSERT(arc_size >= space);
2004	atomic_add_64(&arc_size, -space);
2005}
2006
2007arc_buf_t *
2008arc_buf_alloc(spa_t *spa, int32_t size, void *tag, arc_buf_contents_t type)
2009{
2010	arc_buf_hdr_t *hdr;
2011	arc_buf_t *buf;
2012
2013	ASSERT3U(size, >, 0);
2014	hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
2015	ASSERT(BUF_EMPTY(hdr));
2016	ASSERT3P(hdr->b_freeze_cksum, ==, NULL);
2017	hdr->b_size = size;
2018	hdr->b_spa = spa_load_guid(spa);
2019
2020	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2021	buf->b_hdr = hdr;
2022	buf->b_data = NULL;
2023	buf->b_efunc = NULL;
2024	buf->b_private = NULL;
2025	buf->b_next = NULL;
2026
2027	hdr->b_flags = arc_bufc_to_flags(type);
2028	hdr->b_flags |= ARC_FLAG_HAS_L1HDR;
2029
2030	hdr->b_l1hdr.b_buf = buf;
2031	hdr->b_l1hdr.b_state = arc_anon;
2032	hdr->b_l1hdr.b_arc_access = 0;
2033	hdr->b_l1hdr.b_datacnt = 1;
2034	hdr->b_l1hdr.b_tmp_cdata = NULL;
2035
2036	arc_get_data_buf(buf);
2037	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2038	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2039
2040	return (buf);
2041}
2042
2043static char *arc_onloan_tag = "onloan";
2044
2045/*
2046 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2047 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2048 * buffers must be returned to the arc before they can be used by the DMU or
2049 * freed.
2050 */
2051arc_buf_t *
2052arc_loan_buf(spa_t *spa, int size)
2053{
2054	arc_buf_t *buf;
2055
2056	buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
2057
2058	atomic_add_64(&arc_loaned_bytes, size);
2059	return (buf);
2060}
2061
2062/*
2063 * Return a loaned arc buffer to the arc.
2064 */
2065void
2066arc_return_buf(arc_buf_t *buf, void *tag)
2067{
2068	arc_buf_hdr_t *hdr = buf->b_hdr;
2069
2070	ASSERT(buf->b_data != NULL);
2071	ASSERT(HDR_HAS_L1HDR(hdr));
2072	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2073	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2074
2075	atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
2076}
2077
2078/* Detach an arc_buf from a dbuf (tag) */
2079void
2080arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2081{
2082	arc_buf_hdr_t *hdr = buf->b_hdr;
2083
2084	ASSERT(buf->b_data != NULL);
2085	ASSERT(HDR_HAS_L1HDR(hdr));
2086	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2087	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2088	buf->b_efunc = NULL;
2089	buf->b_private = NULL;
2090
2091	atomic_add_64(&arc_loaned_bytes, hdr->b_size);
2092}
2093
2094static arc_buf_t *
2095arc_buf_clone(arc_buf_t *from)
2096{
2097	arc_buf_t *buf;
2098	arc_buf_hdr_t *hdr = from->b_hdr;
2099	uint64_t size = hdr->b_size;
2100
2101	ASSERT(HDR_HAS_L1HDR(hdr));
2102	ASSERT(hdr->b_l1hdr.b_state != arc_anon);
2103
2104	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2105	buf->b_hdr = hdr;
2106	buf->b_data = NULL;
2107	buf->b_efunc = NULL;
2108	buf->b_private = NULL;
2109	buf->b_next = hdr->b_l1hdr.b_buf;
2110	hdr->b_l1hdr.b_buf = buf;
2111	arc_get_data_buf(buf);
2112	bcopy(from->b_data, buf->b_data, size);
2113
2114	/*
2115	 * This buffer already exists in the arc so create a duplicate
2116	 * copy for the caller.  If the buffer is associated with user data
2117	 * then track the size and number of duplicates.  These stats will be
2118	 * updated as duplicate buffers are created and destroyed.
2119	 */
2120	if (HDR_ISTYPE_DATA(hdr)) {
2121		ARCSTAT_BUMP(arcstat_duplicate_buffers);
2122		ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
2123	}
2124	hdr->b_l1hdr.b_datacnt += 1;
2125	return (buf);
2126}
2127
2128void
2129arc_buf_add_ref(arc_buf_t *buf, void* tag)
2130{
2131	arc_buf_hdr_t *hdr;
2132	kmutex_t *hash_lock;
2133
2134	/*
2135	 * Check to see if this buffer is evicted.  Callers
2136	 * must verify b_data != NULL to know if the add_ref
2137	 * was successful.
2138	 */
2139	mutex_enter(&buf->b_evict_lock);
2140	if (buf->b_data == NULL) {
2141		mutex_exit(&buf->b_evict_lock);
2142		return;
2143	}
2144	hash_lock = HDR_LOCK(buf->b_hdr);
2145	mutex_enter(hash_lock);
2146	hdr = buf->b_hdr;
2147	ASSERT(HDR_HAS_L1HDR(hdr));
2148	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2149	mutex_exit(&buf->b_evict_lock);
2150
2151	ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
2152	    hdr->b_l1hdr.b_state == arc_mfu);
2153
2154	add_reference(hdr, hash_lock, tag);
2155	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2156	arc_access(hdr, hash_lock);
2157	mutex_exit(hash_lock);
2158	ARCSTAT_BUMP(arcstat_hits);
2159	ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
2160	    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
2161	    data, metadata, hits);
2162}
2163
2164static void
2165arc_buf_free_on_write(void *data, size_t size,
2166    void (*free_func)(void *, size_t))
2167{
2168	l2arc_data_free_t *df;
2169
2170	df = kmem_alloc(sizeof (*df), KM_SLEEP);
2171	df->l2df_data = data;
2172	df->l2df_size = size;
2173	df->l2df_func = free_func;
2174	mutex_enter(&l2arc_free_on_write_mtx);
2175	list_insert_head(l2arc_free_on_write, df);
2176	mutex_exit(&l2arc_free_on_write_mtx);
2177}
2178
2179/*
2180 * Free the arc data buffer.  If it is an l2arc write in progress,
2181 * the buffer is placed on l2arc_free_on_write to be freed later.
2182 */
2183static void
2184arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
2185{
2186	arc_buf_hdr_t *hdr = buf->b_hdr;
2187
2188	if (HDR_L2_WRITING(hdr)) {
2189		arc_buf_free_on_write(buf->b_data, hdr->b_size, free_func);
2190		ARCSTAT_BUMP(arcstat_l2_free_on_write);
2191	} else {
2192		free_func(buf->b_data, hdr->b_size);
2193	}
2194}
2195
2196/*
2197 * Free up buf->b_data and if 'remove' is set, then pull the
2198 * arc_buf_t off of the the arc_buf_hdr_t's list and free it.
2199 */
2200static void
2201arc_buf_l2_cdata_free(arc_buf_hdr_t *hdr)
2202{
2203	ASSERT(HDR_HAS_L2HDR(hdr));
2204	ASSERT(MUTEX_HELD(&hdr->b_l2hdr.b_dev->l2ad_mtx));
2205
2206	/*
2207	 * The b_tmp_cdata field is linked off of the b_l1hdr, so if
2208	 * that doesn't exist, the header is in the arc_l2c_only state,
2209	 * and there isn't anything to free (it's already been freed).
2210	 */
2211	if (!HDR_HAS_L1HDR(hdr))
2212		return;
2213
2214	/*
2215	 * The header isn't being written to the l2arc device, thus it
2216	 * shouldn't have a b_tmp_cdata to free.
2217	 */
2218	if (!HDR_L2_WRITING(hdr)) {
2219		ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
2220		return;
2221	}
2222
2223	/*
2224	 * The header does not have compression enabled. This can be due
2225	 * to the buffer not being compressible, or because we're
2226	 * freeing the buffer before the second phase of
2227	 * l2arc_write_buffer() has started (which does the compression
2228	 * step). In either case, b_tmp_cdata does not point to a
2229	 * separately compressed buffer, so there's nothing to free (it
2230	 * points to the same buffer as the arc_buf_t's b_data field).
2231	 */
2232	if (HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) {
2233		hdr->b_l1hdr.b_tmp_cdata = NULL;
2234		return;
2235	}
2236
2237	/*
2238	 * There's nothing to free since the buffer was all zero's and
2239	 * compressed to a zero length buffer.
2240	 */
2241	if (HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_EMPTY) {
2242		ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
2243		return;
2244	}
2245
2246	ASSERT(L2ARC_IS_VALID_COMPRESS(HDR_GET_COMPRESS(hdr)));
2247
2248	arc_buf_free_on_write(hdr->b_l1hdr.b_tmp_cdata,
2249	    hdr->b_size, zio_data_buf_free);
2250
2251	ARCSTAT_BUMP(arcstat_l2_cdata_free_on_write);
2252	hdr->b_l1hdr.b_tmp_cdata = NULL;
2253}
2254
2255static void
2256arc_buf_destroy(arc_buf_t *buf, boolean_t remove)
2257{
2258	arc_buf_t **bufp;
2259
2260	/* free up data associated with the buf */
2261	if (buf->b_data != NULL) {
2262		arc_state_t *state = buf->b_hdr->b_l1hdr.b_state;
2263		uint64_t size = buf->b_hdr->b_size;
2264		arc_buf_contents_t type = arc_buf_type(buf->b_hdr);
2265
2266		arc_cksum_verify(buf);
2267#ifdef illumos
2268		arc_buf_unwatch(buf);
2269#endif /* illumos */
2270
2271		if (type == ARC_BUFC_METADATA) {
2272			arc_buf_data_free(buf, zio_buf_free);
2273			arc_space_return(size, ARC_SPACE_META);
2274		} else {
2275			ASSERT(type == ARC_BUFC_DATA);
2276			arc_buf_data_free(buf, zio_data_buf_free);
2277			arc_space_return(size, ARC_SPACE_DATA);
2278		}
2279
2280		/* protected by hash lock, if in the hash table */
2281		if (multilist_link_active(&buf->b_hdr->b_l1hdr.b_arc_node)) {
2282			uint64_t *cnt = &state->arcs_lsize[type];
2283
2284			ASSERT(refcount_is_zero(
2285			    &buf->b_hdr->b_l1hdr.b_refcnt));
2286			ASSERT(state != arc_anon && state != arc_l2c_only);
2287
2288			ASSERT3U(*cnt, >=, size);
2289			atomic_add_64(cnt, -size);
2290		}
2291
2292		(void) refcount_remove_many(&state->arcs_size, size, buf);
2293		buf->b_data = NULL;
2294
2295		/*
2296		 * If we're destroying a duplicate buffer make sure
2297		 * that the appropriate statistics are updated.
2298		 */
2299		if (buf->b_hdr->b_l1hdr.b_datacnt > 1 &&
2300		    HDR_ISTYPE_DATA(buf->b_hdr)) {
2301			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
2302			ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
2303		}
2304		ASSERT(buf->b_hdr->b_l1hdr.b_datacnt > 0);
2305		buf->b_hdr->b_l1hdr.b_datacnt -= 1;
2306	}
2307
2308	/* only remove the buf if requested */
2309	if (!remove)
2310		return;
2311
2312	/* remove the buf from the hdr list */
2313	for (bufp = &buf->b_hdr->b_l1hdr.b_buf; *bufp != buf;
2314	    bufp = &(*bufp)->b_next)
2315		continue;
2316	*bufp = buf->b_next;
2317	buf->b_next = NULL;
2318
2319	ASSERT(buf->b_efunc == NULL);
2320
2321	/* clean up the buf */
2322	buf->b_hdr = NULL;
2323	kmem_cache_free(buf_cache, buf);
2324}
2325
2326static void
2327arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
2328{
2329	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
2330	l2arc_dev_t *dev = l2hdr->b_dev;
2331
2332	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
2333	ASSERT(HDR_HAS_L2HDR(hdr));
2334
2335	list_remove(&dev->l2ad_buflist, hdr);
2336
2337	/*
2338	 * We don't want to leak the b_tmp_cdata buffer that was
2339	 * allocated in l2arc_write_buffers()
2340	 */
2341	arc_buf_l2_cdata_free(hdr);
2342
2343	/*
2344	 * If the l2hdr's b_daddr is equal to L2ARC_ADDR_UNSET, then
2345	 * this header is being processed by l2arc_write_buffers() (i.e.
2346	 * it's in the first stage of l2arc_write_buffers()).
2347	 * Re-affirming that truth here, just to serve as a reminder. If
2348	 * b_daddr does not equal L2ARC_ADDR_UNSET, then the header may or
2349	 * may not have its HDR_L2_WRITING flag set. (the write may have
2350	 * completed, in which case HDR_L2_WRITING will be false and the
2351	 * b_daddr field will point to the address of the buffer on disk).
2352	 */
2353	IMPLY(l2hdr->b_daddr == L2ARC_ADDR_UNSET, HDR_L2_WRITING(hdr));
2354
2355	/*
2356	 * If b_daddr is equal to L2ARC_ADDR_UNSET, we're racing with
2357	 * l2arc_write_buffers(). Since we've just removed this header
2358	 * from the l2arc buffer list, this header will never reach the
2359	 * second stage of l2arc_write_buffers(), which increments the
2360	 * accounting stats for this header. Thus, we must be careful
2361	 * not to decrement them for this header either.
2362	 */
2363	if (l2hdr->b_daddr != L2ARC_ADDR_UNSET) {
2364		ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
2365		ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
2366
2367		vdev_space_update(dev->l2ad_vdev,
2368		    -l2hdr->b_asize, 0, 0);
2369
2370		(void) refcount_remove_many(&dev->l2ad_alloc,
2371		    l2hdr->b_asize, hdr);
2372	}
2373
2374	hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
2375}
2376
2377static void
2378arc_hdr_destroy(arc_buf_hdr_t *hdr)
2379{
2380	if (HDR_HAS_L1HDR(hdr)) {
2381		ASSERT(hdr->b_l1hdr.b_buf == NULL ||
2382		    hdr->b_l1hdr.b_datacnt > 0);
2383		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2384		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
2385	}
2386	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2387	ASSERT(!HDR_IN_HASH_TABLE(hdr));
2388
2389	if (HDR_HAS_L2HDR(hdr)) {
2390		l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
2391		boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
2392
2393		if (!buflist_held)
2394			mutex_enter(&dev->l2ad_mtx);
2395
2396		/*
2397		 * Even though we checked this conditional above, we
2398		 * need to check this again now that we have the
2399		 * l2ad_mtx. This is because we could be racing with
2400		 * another thread calling l2arc_evict() which might have
2401		 * destroyed this header's L2 portion as we were waiting
2402		 * to acquire the l2ad_mtx. If that happens, we don't
2403		 * want to re-destroy the header's L2 portion.
2404		 */
2405		if (HDR_HAS_L2HDR(hdr)) {
2406			if (hdr->b_l2hdr.b_daddr != L2ARC_ADDR_UNSET)
2407				trim_map_free(dev->l2ad_vdev,
2408				    hdr->b_l2hdr.b_daddr,
2409				    hdr->b_l2hdr.b_asize, 0);
2410			arc_hdr_l2hdr_destroy(hdr);
2411		}
2412
2413		if (!buflist_held)
2414			mutex_exit(&dev->l2ad_mtx);
2415	}
2416
2417	if (!BUF_EMPTY(hdr))
2418		buf_discard_identity(hdr);
2419	if (hdr->b_freeze_cksum != NULL) {
2420		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
2421		hdr->b_freeze_cksum = NULL;
2422	}
2423
2424	if (HDR_HAS_L1HDR(hdr)) {
2425		while (hdr->b_l1hdr.b_buf) {
2426			arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2427
2428			if (buf->b_efunc != NULL) {
2429				mutex_enter(&arc_user_evicts_lock);
2430				mutex_enter(&buf->b_evict_lock);
2431				ASSERT(buf->b_hdr != NULL);
2432				arc_buf_destroy(hdr->b_l1hdr.b_buf, FALSE);
2433				hdr->b_l1hdr.b_buf = buf->b_next;
2434				buf->b_hdr = &arc_eviction_hdr;
2435				buf->b_next = arc_eviction_list;
2436				arc_eviction_list = buf;
2437				mutex_exit(&buf->b_evict_lock);
2438				cv_signal(&arc_user_evicts_cv);
2439				mutex_exit(&arc_user_evicts_lock);
2440			} else {
2441				arc_buf_destroy(hdr->b_l1hdr.b_buf, TRUE);
2442			}
2443		}
2444#ifdef ZFS_DEBUG
2445		if (hdr->b_l1hdr.b_thawed != NULL) {
2446			kmem_free(hdr->b_l1hdr.b_thawed, 1);
2447			hdr->b_l1hdr.b_thawed = NULL;
2448		}
2449#endif
2450	}
2451
2452	ASSERT3P(hdr->b_hash_next, ==, NULL);
2453	if (HDR_HAS_L1HDR(hdr)) {
2454		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
2455		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
2456		kmem_cache_free(hdr_full_cache, hdr);
2457	} else {
2458		kmem_cache_free(hdr_l2only_cache, hdr);
2459	}
2460}
2461
2462void
2463arc_buf_free(arc_buf_t *buf, void *tag)
2464{
2465	arc_buf_hdr_t *hdr = buf->b_hdr;
2466	int hashed = hdr->b_l1hdr.b_state != arc_anon;
2467
2468	ASSERT(buf->b_efunc == NULL);
2469	ASSERT(buf->b_data != NULL);
2470
2471	if (hashed) {
2472		kmutex_t *hash_lock = HDR_LOCK(hdr);
2473
2474		mutex_enter(hash_lock);
2475		hdr = buf->b_hdr;
2476		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2477
2478		(void) remove_reference(hdr, hash_lock, tag);
2479		if (hdr->b_l1hdr.b_datacnt > 1) {
2480			arc_buf_destroy(buf, TRUE);
2481		} else {
2482			ASSERT(buf == hdr->b_l1hdr.b_buf);
2483			ASSERT(buf->b_efunc == NULL);
2484			hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
2485		}
2486		mutex_exit(hash_lock);
2487	} else if (HDR_IO_IN_PROGRESS(hdr)) {
2488		int destroy_hdr;
2489		/*
2490		 * We are in the middle of an async write.  Don't destroy
2491		 * this buffer unless the write completes before we finish
2492		 * decrementing the reference count.
2493		 */
2494		mutex_enter(&arc_user_evicts_lock);
2495		(void) remove_reference(hdr, NULL, tag);
2496		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2497		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
2498		mutex_exit(&arc_user_evicts_lock);
2499		if (destroy_hdr)
2500			arc_hdr_destroy(hdr);
2501	} else {
2502		if (remove_reference(hdr, NULL, tag) > 0)
2503			arc_buf_destroy(buf, TRUE);
2504		else
2505			arc_hdr_destroy(hdr);
2506	}
2507}
2508
2509boolean_t
2510arc_buf_remove_ref(arc_buf_t *buf, void* tag)
2511{
2512	arc_buf_hdr_t *hdr = buf->b_hdr;
2513	kmutex_t *hash_lock = HDR_LOCK(hdr);
2514	boolean_t no_callback = (buf->b_efunc == NULL);
2515
2516	if (hdr->b_l1hdr.b_state == arc_anon) {
2517		ASSERT(hdr->b_l1hdr.b_datacnt == 1);
2518		arc_buf_free(buf, tag);
2519		return (no_callback);
2520	}
2521
2522	mutex_enter(hash_lock);
2523	hdr = buf->b_hdr;
2524	ASSERT(hdr->b_l1hdr.b_datacnt > 0);
2525	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2526	ASSERT(hdr->b_l1hdr.b_state != arc_anon);
2527	ASSERT(buf->b_data != NULL);
2528
2529	(void) remove_reference(hdr, hash_lock, tag);
2530	if (hdr->b_l1hdr.b_datacnt > 1) {
2531		if (no_callback)
2532			arc_buf_destroy(buf, TRUE);
2533	} else if (no_callback) {
2534		ASSERT(hdr->b_l1hdr.b_buf == buf && buf->b_next == NULL);
2535		ASSERT(buf->b_efunc == NULL);
2536		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
2537	}
2538	ASSERT(no_callback || hdr->b_l1hdr.b_datacnt > 1 ||
2539	    refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2540	mutex_exit(hash_lock);
2541	return (no_callback);
2542}
2543
2544int32_t
2545arc_buf_size(arc_buf_t *buf)
2546{
2547	return (buf->b_hdr->b_size);
2548}
2549
2550/*
2551 * Called from the DMU to determine if the current buffer should be
2552 * evicted. In order to ensure proper locking, the eviction must be initiated
2553 * from the DMU. Return true if the buffer is associated with user data and
2554 * duplicate buffers still exist.
2555 */
2556boolean_t
2557arc_buf_eviction_needed(arc_buf_t *buf)
2558{
2559	arc_buf_hdr_t *hdr;
2560	boolean_t evict_needed = B_FALSE;
2561
2562	if (zfs_disable_dup_eviction)
2563		return (B_FALSE);
2564
2565	mutex_enter(&buf->b_evict_lock);
2566	hdr = buf->b_hdr;
2567	if (hdr == NULL) {
2568		/*
2569		 * We are in arc_do_user_evicts(); let that function
2570		 * perform the eviction.
2571		 */
2572		ASSERT(buf->b_data == NULL);
2573		mutex_exit(&buf->b_evict_lock);
2574		return (B_FALSE);
2575	} else if (buf->b_data == NULL) {
2576		/*
2577		 * We have already been added to the arc eviction list;
2578		 * recommend eviction.
2579		 */
2580		ASSERT3P(hdr, ==, &arc_eviction_hdr);
2581		mutex_exit(&buf->b_evict_lock);
2582		return (B_TRUE);
2583	}
2584
2585	if (hdr->b_l1hdr.b_datacnt > 1 && HDR_ISTYPE_DATA(hdr))
2586		evict_needed = B_TRUE;
2587
2588	mutex_exit(&buf->b_evict_lock);
2589	return (evict_needed);
2590}
2591
2592/*
2593 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
2594 * state of the header is dependent on it's state prior to entering this
2595 * function. The following transitions are possible:
2596 *
2597 *    - arc_mru -> arc_mru_ghost
2598 *    - arc_mfu -> arc_mfu_ghost
2599 *    - arc_mru_ghost -> arc_l2c_only
2600 *    - arc_mru_ghost -> deleted
2601 *    - arc_mfu_ghost -> arc_l2c_only
2602 *    - arc_mfu_ghost -> deleted
2603 */
2604static int64_t
2605arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
2606{
2607	arc_state_t *evicted_state, *state;
2608	int64_t bytes_evicted = 0;
2609
2610	ASSERT(MUTEX_HELD(hash_lock));
2611	ASSERT(HDR_HAS_L1HDR(hdr));
2612
2613	state = hdr->b_l1hdr.b_state;
2614	if (GHOST_STATE(state)) {
2615		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2616		ASSERT(hdr->b_l1hdr.b_buf == NULL);
2617
2618		/*
2619		 * l2arc_write_buffers() relies on a header's L1 portion
2620		 * (i.e. it's b_tmp_cdata field) during it's write phase.
2621		 * Thus, we cannot push a header onto the arc_l2c_only
2622		 * state (removing it's L1 piece) until the header is
2623		 * done being written to the l2arc.
2624		 */
2625		if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
2626			ARCSTAT_BUMP(arcstat_evict_l2_skip);
2627			return (bytes_evicted);
2628		}
2629
2630		ARCSTAT_BUMP(arcstat_deleted);
2631		bytes_evicted += hdr->b_size;
2632
2633		DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
2634
2635		if (HDR_HAS_L2HDR(hdr)) {
2636			/*
2637			 * This buffer is cached on the 2nd Level ARC;
2638			 * don't destroy the header.
2639			 */
2640			arc_change_state(arc_l2c_only, hdr, hash_lock);
2641			/*
2642			 * dropping from L1+L2 cached to L2-only,
2643			 * realloc to remove the L1 header.
2644			 */
2645			hdr = arc_hdr_realloc(hdr, hdr_full_cache,
2646			    hdr_l2only_cache);
2647		} else {
2648			arc_change_state(arc_anon, hdr, hash_lock);
2649			arc_hdr_destroy(hdr);
2650		}
2651		return (bytes_evicted);
2652	}
2653
2654	ASSERT(state == arc_mru || state == arc_mfu);
2655	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
2656
2657	/* prefetch buffers have a minimum lifespan */
2658	if (HDR_IO_IN_PROGRESS(hdr) ||
2659	    ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
2660	    ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
2661	    arc_min_prefetch_lifespan)) {
2662		ARCSTAT_BUMP(arcstat_evict_skip);
2663		return (bytes_evicted);
2664	}
2665
2666	ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
2667	ASSERT3U(hdr->b_l1hdr.b_datacnt, >, 0);
2668	while (hdr->b_l1hdr.b_buf) {
2669		arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2670		if (!mutex_tryenter(&buf->b_evict_lock)) {
2671			ARCSTAT_BUMP(arcstat_mutex_miss);
2672			break;
2673		}
2674		if (buf->b_data != NULL)
2675			bytes_evicted += hdr->b_size;
2676		if (buf->b_efunc != NULL) {
2677			mutex_enter(&arc_user_evicts_lock);
2678			arc_buf_destroy(buf, FALSE);
2679			hdr->b_l1hdr.b_buf = buf->b_next;
2680			buf->b_hdr = &arc_eviction_hdr;
2681			buf->b_next = arc_eviction_list;
2682			arc_eviction_list = buf;
2683			cv_signal(&arc_user_evicts_cv);
2684			mutex_exit(&arc_user_evicts_lock);
2685			mutex_exit(&buf->b_evict_lock);
2686		} else {
2687			mutex_exit(&buf->b_evict_lock);
2688			arc_buf_destroy(buf, TRUE);
2689		}
2690	}
2691
2692	if (HDR_HAS_L2HDR(hdr)) {
2693		ARCSTAT_INCR(arcstat_evict_l2_cached, hdr->b_size);
2694	} else {
2695		if (l2arc_write_eligible(hdr->b_spa, hdr))
2696			ARCSTAT_INCR(arcstat_evict_l2_eligible, hdr->b_size);
2697		else
2698			ARCSTAT_INCR(arcstat_evict_l2_ineligible, hdr->b_size);
2699	}
2700
2701	if (hdr->b_l1hdr.b_datacnt == 0) {
2702		arc_change_state(evicted_state, hdr, hash_lock);
2703		ASSERT(HDR_IN_HASH_TABLE(hdr));
2704		hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
2705		hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
2706		DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
2707	}
2708
2709	return (bytes_evicted);
2710}
2711
2712static uint64_t
2713arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
2714    uint64_t spa, int64_t bytes)
2715{
2716	multilist_sublist_t *mls;
2717	uint64_t bytes_evicted = 0;
2718	arc_buf_hdr_t *hdr;
2719	kmutex_t *hash_lock;
2720	int evict_count = 0;
2721
2722	ASSERT3P(marker, !=, NULL);
2723	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
2724
2725	mls = multilist_sublist_lock(ml, idx);
2726
2727	for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
2728	    hdr = multilist_sublist_prev(mls, marker)) {
2729		if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
2730		    (evict_count >= zfs_arc_evict_batch_limit))
2731			break;
2732
2733		/*
2734		 * To keep our iteration location, move the marker
2735		 * forward. Since we're not holding hdr's hash lock, we
2736		 * must be very careful and not remove 'hdr' from the
2737		 * sublist. Otherwise, other consumers might mistake the
2738		 * 'hdr' as not being on a sublist when they call the
2739		 * multilist_link_active() function (they all rely on
2740		 * the hash lock protecting concurrent insertions and
2741		 * removals). multilist_sublist_move_forward() was
2742		 * specifically implemented to ensure this is the case
2743		 * (only 'marker' will be removed and re-inserted).
2744		 */
2745		multilist_sublist_move_forward(mls, marker);
2746
2747		/*
2748		 * The only case where the b_spa field should ever be
2749		 * zero, is the marker headers inserted by
2750		 * arc_evict_state(). It's possible for multiple threads
2751		 * to be calling arc_evict_state() concurrently (e.g.
2752		 * dsl_pool_close() and zio_inject_fault()), so we must
2753		 * skip any markers we see from these other threads.
2754		 */
2755		if (hdr->b_spa == 0)
2756			continue;
2757
2758		/* we're only interested in evicting buffers of a certain spa */
2759		if (spa != 0 && hdr->b_spa != spa) {
2760			ARCSTAT_BUMP(arcstat_evict_skip);
2761			continue;
2762		}
2763
2764		hash_lock = HDR_LOCK(hdr);
2765
2766		/*
2767		 * We aren't calling this function from any code path
2768		 * that would already be holding a hash lock, so we're
2769		 * asserting on this assumption to be defensive in case
2770		 * this ever changes. Without this check, it would be
2771		 * possible to incorrectly increment arcstat_mutex_miss
2772		 * below (e.g. if the code changed such that we called
2773		 * this function with a hash lock held).
2774		 */
2775		ASSERT(!MUTEX_HELD(hash_lock));
2776
2777		if (mutex_tryenter(hash_lock)) {
2778			uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
2779			mutex_exit(hash_lock);
2780
2781			bytes_evicted += evicted;
2782
2783			/*
2784			 * If evicted is zero, arc_evict_hdr() must have
2785			 * decided to skip this header, don't increment
2786			 * evict_count in this case.
2787			 */
2788			if (evicted != 0)
2789				evict_count++;
2790
2791			/*
2792			 * If arc_size isn't overflowing, signal any
2793			 * threads that might happen to be waiting.
2794			 *
2795			 * For each header evicted, we wake up a single
2796			 * thread. If we used cv_broadcast, we could
2797			 * wake up "too many" threads causing arc_size
2798			 * to significantly overflow arc_c; since
2799			 * arc_get_data_buf() doesn't check for overflow
2800			 * when it's woken up (it doesn't because it's
2801			 * possible for the ARC to be overflowing while
2802			 * full of un-evictable buffers, and the
2803			 * function should proceed in this case).
2804			 *
2805			 * If threads are left sleeping, due to not
2806			 * using cv_broadcast, they will be woken up
2807			 * just before arc_reclaim_thread() sleeps.
2808			 */
2809			mutex_enter(&arc_reclaim_lock);
2810			if (!arc_is_overflowing())
2811				cv_signal(&arc_reclaim_waiters_cv);
2812			mutex_exit(&arc_reclaim_lock);
2813		} else {
2814			ARCSTAT_BUMP(arcstat_mutex_miss);
2815		}
2816	}
2817
2818	multilist_sublist_unlock(mls);
2819
2820	return (bytes_evicted);
2821}
2822
2823/*
2824 * Evict buffers from the given arc state, until we've removed the
2825 * specified number of bytes. Move the removed buffers to the
2826 * appropriate evict state.
2827 *
2828 * This function makes a "best effort". It skips over any buffers
2829 * it can't get a hash_lock on, and so, may not catch all candidates.
2830 * It may also return without evicting as much space as requested.
2831 *
2832 * If bytes is specified using the special value ARC_EVICT_ALL, this
2833 * will evict all available (i.e. unlocked and evictable) buffers from
2834 * the given arc state; which is used by arc_flush().
2835 */
2836static uint64_t
2837arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
2838    arc_buf_contents_t type)
2839{
2840	uint64_t total_evicted = 0;
2841	multilist_t *ml = &state->arcs_list[type];
2842	int num_sublists;
2843	arc_buf_hdr_t **markers;
2844
2845	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
2846
2847	num_sublists = multilist_get_num_sublists(ml);
2848
2849	/*
2850	 * If we've tried to evict from each sublist, made some
2851	 * progress, but still have not hit the target number of bytes
2852	 * to evict, we want to keep trying. The markers allow us to
2853	 * pick up where we left off for each individual sublist, rather
2854	 * than starting from the tail each time.
2855	 */
2856	markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
2857	for (int i = 0; i < num_sublists; i++) {
2858		markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
2859
2860		/*
2861		 * A b_spa of 0 is used to indicate that this header is
2862		 * a marker. This fact is used in arc_adjust_type() and
2863		 * arc_evict_state_impl().
2864		 */
2865		markers[i]->b_spa = 0;
2866
2867		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
2868		multilist_sublist_insert_tail(mls, markers[i]);
2869		multilist_sublist_unlock(mls);
2870	}
2871
2872	/*
2873	 * While we haven't hit our target number of bytes to evict, or
2874	 * we're evicting all available buffers.
2875	 */
2876	while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
2877		/*
2878		 * Start eviction using a randomly selected sublist,
2879		 * this is to try and evenly balance eviction across all
2880		 * sublists. Always starting at the same sublist
2881		 * (e.g. index 0) would cause evictions to favor certain
2882		 * sublists over others.
2883		 */
2884		int sublist_idx = multilist_get_random_index(ml);
2885		uint64_t scan_evicted = 0;
2886
2887		for (int i = 0; i < num_sublists; i++) {
2888			uint64_t bytes_remaining;
2889			uint64_t bytes_evicted;
2890
2891			if (bytes == ARC_EVICT_ALL)
2892				bytes_remaining = ARC_EVICT_ALL;
2893			else if (total_evicted < bytes)
2894				bytes_remaining = bytes - total_evicted;
2895			else
2896				break;
2897
2898			bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
2899			    markers[sublist_idx], spa, bytes_remaining);
2900
2901			scan_evicted += bytes_evicted;
2902			total_evicted += bytes_evicted;
2903
2904			/* we've reached the end, wrap to the beginning */
2905			if (++sublist_idx >= num_sublists)
2906				sublist_idx = 0;
2907		}
2908
2909		/*
2910		 * If we didn't evict anything during this scan, we have
2911		 * no reason to believe we'll evict more during another
2912		 * scan, so break the loop.
2913		 */
2914		if (scan_evicted == 0) {
2915			/* This isn't possible, let's make that obvious */
2916			ASSERT3S(bytes, !=, 0);
2917
2918			/*
2919			 * When bytes is ARC_EVICT_ALL, the only way to
2920			 * break the loop is when scan_evicted is zero.
2921			 * In that case, we actually have evicted enough,
2922			 * so we don't want to increment the kstat.
2923			 */
2924			if (bytes != ARC_EVICT_ALL) {
2925				ASSERT3S(total_evicted, <, bytes);
2926				ARCSTAT_BUMP(arcstat_evict_not_enough);
2927			}
2928
2929			break;
2930		}
2931	}
2932
2933	for (int i = 0; i < num_sublists; i++) {
2934		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
2935		multilist_sublist_remove(mls, markers[i]);
2936		multilist_sublist_unlock(mls);
2937
2938		kmem_cache_free(hdr_full_cache, markers[i]);
2939	}
2940	kmem_free(markers, sizeof (*markers) * num_sublists);
2941
2942	return (total_evicted);
2943}
2944
2945/*
2946 * Flush all "evictable" data of the given type from the arc state
2947 * specified. This will not evict any "active" buffers (i.e. referenced).
2948 *
2949 * When 'retry' is set to FALSE, the function will make a single pass
2950 * over the state and evict any buffers that it can. Since it doesn't
2951 * continually retry the eviction, it might end up leaving some buffers
2952 * in the ARC due to lock misses.
2953 *
2954 * When 'retry' is set to TRUE, the function will continually retry the
2955 * eviction until *all* evictable buffers have been removed from the
2956 * state. As a result, if concurrent insertions into the state are
2957 * allowed (e.g. if the ARC isn't shutting down), this function might
2958 * wind up in an infinite loop, continually trying to evict buffers.
2959 */
2960static uint64_t
2961arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
2962    boolean_t retry)
2963{
2964	uint64_t evicted = 0;
2965
2966	while (state->arcs_lsize[type] != 0) {
2967		evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
2968
2969		if (!retry)
2970			break;
2971	}
2972
2973	return (evicted);
2974}
2975
2976/*
2977 * Evict the specified number of bytes from the state specified,
2978 * restricting eviction to the spa and type given. This function
2979 * prevents us from trying to evict more from a state's list than
2980 * is "evictable", and to skip evicting altogether when passed a
2981 * negative value for "bytes". In contrast, arc_evict_state() will
2982 * evict everything it can, when passed a negative value for "bytes".
2983 */
2984static uint64_t
2985arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
2986    arc_buf_contents_t type)
2987{
2988	int64_t delta;
2989
2990	if (bytes > 0 && state->arcs_lsize[type] > 0) {
2991		delta = MIN(state->arcs_lsize[type], bytes);
2992		return (arc_evict_state(state, spa, delta, type));
2993	}
2994
2995	return (0);
2996}
2997
2998/*
2999 * Evict metadata buffers from the cache, such that arc_meta_used is
3000 * capped by the arc_meta_limit tunable.
3001 */
3002static uint64_t
3003arc_adjust_meta(void)
3004{
3005	uint64_t total_evicted = 0;
3006	int64_t target;
3007
3008	/*
3009	 * If we're over the meta limit, we want to evict enough
3010	 * metadata to get back under the meta limit. We don't want to
3011	 * evict so much that we drop the MRU below arc_p, though. If
3012	 * we're over the meta limit more than we're over arc_p, we
3013	 * evict some from the MRU here, and some from the MFU below.
3014	 */
3015	target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3016	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
3017	    refcount_count(&arc_mru->arcs_size) - arc_p));
3018
3019	total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3020
3021	/*
3022	 * Similar to the above, we want to evict enough bytes to get us
3023	 * below the meta limit, but not so much as to drop us below the
3024	 * space alloted to the MFU (which is defined as arc_c - arc_p).
3025	 */
3026	target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3027	    (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p)));
3028
3029	total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3030
3031	return (total_evicted);
3032}
3033
3034/*
3035 * Return the type of the oldest buffer in the given arc state
3036 *
3037 * This function will select a random sublist of type ARC_BUFC_DATA and
3038 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
3039 * is compared, and the type which contains the "older" buffer will be
3040 * returned.
3041 */
3042static arc_buf_contents_t
3043arc_adjust_type(arc_state_t *state)
3044{
3045	multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA];
3046	multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA];
3047	int data_idx = multilist_get_random_index(data_ml);
3048	int meta_idx = multilist_get_random_index(meta_ml);
3049	multilist_sublist_t *data_mls;
3050	multilist_sublist_t *meta_mls;
3051	arc_buf_contents_t type;
3052	arc_buf_hdr_t *data_hdr;
3053	arc_buf_hdr_t *meta_hdr;
3054
3055	/*
3056	 * We keep the sublist lock until we're finished, to prevent
3057	 * the headers from being destroyed via arc_evict_state().
3058	 */
3059	data_mls = multilist_sublist_lock(data_ml, data_idx);
3060	meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
3061
3062	/*
3063	 * These two loops are to ensure we skip any markers that
3064	 * might be at the tail of the lists due to arc_evict_state().
3065	 */
3066
3067	for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
3068	    data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
3069		if (data_hdr->b_spa != 0)
3070			break;
3071	}
3072
3073	for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
3074	    meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
3075		if (meta_hdr->b_spa != 0)
3076			break;
3077	}
3078
3079	if (data_hdr == NULL && meta_hdr == NULL) {
3080		type = ARC_BUFC_DATA;
3081	} else if (data_hdr == NULL) {
3082		ASSERT3P(meta_hdr, !=, NULL);
3083		type = ARC_BUFC_METADATA;
3084	} else if (meta_hdr == NULL) {
3085		ASSERT3P(data_hdr, !=, NULL);
3086		type = ARC_BUFC_DATA;
3087	} else {
3088		ASSERT3P(data_hdr, !=, NULL);
3089		ASSERT3P(meta_hdr, !=, NULL);
3090
3091		/* The headers can't be on the sublist without an L1 header */
3092		ASSERT(HDR_HAS_L1HDR(data_hdr));
3093		ASSERT(HDR_HAS_L1HDR(meta_hdr));
3094
3095		if (data_hdr->b_l1hdr.b_arc_access <
3096		    meta_hdr->b_l1hdr.b_arc_access) {
3097			type = ARC_BUFC_DATA;
3098		} else {
3099			type = ARC_BUFC_METADATA;
3100		}
3101	}
3102
3103	multilist_sublist_unlock(meta_mls);
3104	multilist_sublist_unlock(data_mls);
3105
3106	return (type);
3107}
3108
3109/*
3110 * Evict buffers from the cache, such that arc_size is capped by arc_c.
3111 */
3112static uint64_t
3113arc_adjust(void)
3114{
3115	uint64_t total_evicted = 0;
3116	uint64_t bytes;
3117	int64_t target;
3118
3119	/*
3120	 * If we're over arc_meta_limit, we want to correct that before
3121	 * potentially evicting data buffers below.
3122	 */
3123	total_evicted += arc_adjust_meta();
3124
3125	/*
3126	 * Adjust MRU size
3127	 *
3128	 * If we're over the target cache size, we want to evict enough
3129	 * from the list to get back to our target size. We don't want
3130	 * to evict too much from the MRU, such that it drops below
3131	 * arc_p. So, if we're over our target cache size more than
3132	 * the MRU is over arc_p, we'll evict enough to get back to
3133	 * arc_p here, and then evict more from the MFU below.
3134	 */
3135	target = MIN((int64_t)(arc_size - arc_c),
3136	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
3137	    refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p));
3138
3139	/*
3140	 * If we're below arc_meta_min, always prefer to evict data.
3141	 * Otherwise, try to satisfy the requested number of bytes to
3142	 * evict from the type which contains older buffers; in an
3143	 * effort to keep newer buffers in the cache regardless of their
3144	 * type. If we cannot satisfy the number of bytes from this
3145	 * type, spill over into the next type.
3146	 */
3147	if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
3148	    arc_meta_used > arc_meta_min) {
3149		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3150		total_evicted += bytes;
3151
3152		/*
3153		 * If we couldn't evict our target number of bytes from
3154		 * metadata, we try to get the rest from data.
3155		 */
3156		target -= bytes;
3157
3158		total_evicted +=
3159		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3160	} else {
3161		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3162		total_evicted += bytes;
3163
3164		/*
3165		 * If we couldn't evict our target number of bytes from
3166		 * data, we try to get the rest from metadata.
3167		 */
3168		target -= bytes;
3169
3170		total_evicted +=
3171		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3172	}
3173
3174	/*
3175	 * Adjust MFU size
3176	 *
3177	 * Now that we've tried to evict enough from the MRU to get its
3178	 * size back to arc_p, if we're still above the target cache
3179	 * size, we evict the rest from the MFU.
3180	 */
3181	target = arc_size - arc_c;
3182
3183	if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
3184	    arc_meta_used > arc_meta_min) {
3185		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3186		total_evicted += bytes;
3187
3188		/*
3189		 * If we couldn't evict our target number of bytes from
3190		 * metadata, we try to get the rest from data.
3191		 */
3192		target -= bytes;
3193
3194		total_evicted +=
3195		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3196	} else {
3197		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3198		total_evicted += bytes;
3199
3200		/*
3201		 * If we couldn't evict our target number of bytes from
3202		 * data, we try to get the rest from data.
3203		 */
3204		target -= bytes;
3205
3206		total_evicted +=
3207		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3208	}
3209
3210	/*
3211	 * Adjust ghost lists
3212	 *
3213	 * In addition to the above, the ARC also defines target values
3214	 * for the ghost lists. The sum of the mru list and mru ghost
3215	 * list should never exceed the target size of the cache, and
3216	 * the sum of the mru list, mfu list, mru ghost list, and mfu
3217	 * ghost list should never exceed twice the target size of the
3218	 * cache. The following logic enforces these limits on the ghost
3219	 * caches, and evicts from them as needed.
3220	 */
3221	target = refcount_count(&arc_mru->arcs_size) +
3222	    refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
3223
3224	bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
3225	total_evicted += bytes;
3226
3227	target -= bytes;
3228
3229	total_evicted +=
3230	    arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
3231
3232	/*
3233	 * We assume the sum of the mru list and mfu list is less than
3234	 * or equal to arc_c (we enforced this above), which means we
3235	 * can use the simpler of the two equations below:
3236	 *
3237	 *	mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
3238	 *		    mru ghost + mfu ghost <= arc_c
3239	 */
3240	target = refcount_count(&arc_mru_ghost->arcs_size) +
3241	    refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
3242
3243	bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
3244	total_evicted += bytes;
3245
3246	target -= bytes;
3247
3248	total_evicted +=
3249	    arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
3250
3251	return (total_evicted);
3252}
3253
3254static void
3255arc_do_user_evicts(void)
3256{
3257	mutex_enter(&arc_user_evicts_lock);
3258	while (arc_eviction_list != NULL) {
3259		arc_buf_t *buf = arc_eviction_list;
3260		arc_eviction_list = buf->b_next;
3261		mutex_enter(&buf->b_evict_lock);
3262		buf->b_hdr = NULL;
3263		mutex_exit(&buf->b_evict_lock);
3264		mutex_exit(&arc_user_evicts_lock);
3265
3266		if (buf->b_efunc != NULL)
3267			VERIFY0(buf->b_efunc(buf->b_private));
3268
3269		buf->b_efunc = NULL;
3270		buf->b_private = NULL;
3271		kmem_cache_free(buf_cache, buf);
3272		mutex_enter(&arc_user_evicts_lock);
3273	}
3274	mutex_exit(&arc_user_evicts_lock);
3275}
3276
3277void
3278arc_flush(spa_t *spa, boolean_t retry)
3279{
3280	uint64_t guid = 0;
3281
3282	/*
3283	 * If retry is TRUE, a spa must not be specified since we have
3284	 * no good way to determine if all of a spa's buffers have been
3285	 * evicted from an arc state.
3286	 */
3287	ASSERT(!retry || spa == 0);
3288
3289	if (spa != NULL)
3290		guid = spa_load_guid(spa);
3291
3292	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
3293	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
3294
3295	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
3296	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
3297
3298	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
3299	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
3300
3301	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
3302	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
3303
3304	arc_do_user_evicts();
3305	ASSERT(spa || arc_eviction_list == NULL);
3306}
3307
3308void
3309arc_shrink(int64_t to_free)
3310{
3311	if (arc_c > arc_c_min) {
3312		DTRACE_PROBE4(arc__shrink, uint64_t, arc_c, uint64_t,
3313			arc_c_min, uint64_t, arc_p, uint64_t, to_free);
3314		if (arc_c > arc_c_min + to_free)
3315			atomic_add_64(&arc_c, -to_free);
3316		else
3317			arc_c = arc_c_min;
3318
3319		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
3320		if (arc_c > arc_size)
3321			arc_c = MAX(arc_size, arc_c_min);
3322		if (arc_p > arc_c)
3323			arc_p = (arc_c >> 1);
3324
3325		DTRACE_PROBE2(arc__shrunk, uint64_t, arc_c, uint64_t,
3326			arc_p);
3327
3328		ASSERT(arc_c >= arc_c_min);
3329		ASSERT((int64_t)arc_p >= 0);
3330	}
3331
3332	if (arc_size > arc_c) {
3333		DTRACE_PROBE2(arc__shrink_adjust, uint64_t, arc_size,
3334			uint64_t, arc_c);
3335		(void) arc_adjust();
3336	}
3337}
3338
3339static long needfree = 0;
3340
3341typedef enum free_memory_reason_t {
3342	FMR_UNKNOWN,
3343	FMR_NEEDFREE,
3344	FMR_LOTSFREE,
3345	FMR_SWAPFS_MINFREE,
3346	FMR_PAGES_PP_MAXIMUM,
3347	FMR_HEAP_ARENA,
3348	FMR_ZIO_ARENA,
3349	FMR_ZIO_FRAG,
3350} free_memory_reason_t;
3351
3352int64_t last_free_memory;
3353free_memory_reason_t last_free_reason;
3354
3355/*
3356 * Additional reserve of pages for pp_reserve.
3357 */
3358int64_t arc_pages_pp_reserve = 64;
3359
3360/*
3361 * Additional reserve of pages for swapfs.
3362 */
3363int64_t arc_swapfs_reserve = 64;
3364
3365/*
3366 * Return the amount of memory that can be consumed before reclaim will be
3367 * needed.  Positive if there is sufficient free memory, negative indicates
3368 * the amount of memory that needs to be freed up.
3369 */
3370static int64_t
3371arc_available_memory(void)
3372{
3373	int64_t lowest = INT64_MAX;
3374	int64_t n;
3375	free_memory_reason_t r = FMR_UNKNOWN;
3376
3377#ifdef _KERNEL
3378	if (needfree > 0) {
3379		n = PAGESIZE * (-needfree);
3380		if (n < lowest) {
3381			lowest = n;
3382			r = FMR_NEEDFREE;
3383		}
3384	}
3385
3386	/*
3387	 * Cooperate with pagedaemon when it's time for it to scan
3388	 * and reclaim some pages.
3389	 */
3390	n = PAGESIZE * ((int64_t)freemem - zfs_arc_free_target);
3391	if (n < lowest) {
3392		lowest = n;
3393		r = FMR_LOTSFREE;
3394	}
3395
3396#ifdef sun
3397	/*
3398	 * check that we're out of range of the pageout scanner.  It starts to
3399	 * schedule paging if freemem is less than lotsfree and needfree.
3400	 * lotsfree is the high-water mark for pageout, and needfree is the
3401	 * number of needed free pages.  We add extra pages here to make sure
3402	 * the scanner doesn't start up while we're freeing memory.
3403	 */
3404	n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
3405	if (n < lowest) {
3406		lowest = n;
3407		r = FMR_LOTSFREE;
3408	}
3409
3410	/*
3411	 * check to make sure that swapfs has enough space so that anon
3412	 * reservations can still succeed. anon_resvmem() checks that the
3413	 * availrmem is greater than swapfs_minfree, and the number of reserved
3414	 * swap pages.  We also add a bit of extra here just to prevent
3415	 * circumstances from getting really dire.
3416	 */
3417	n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
3418	    desfree - arc_swapfs_reserve);
3419	if (n < lowest) {
3420		lowest = n;
3421		r = FMR_SWAPFS_MINFREE;
3422	}
3423
3424
3425	/*
3426	 * Check that we have enough availrmem that memory locking (e.g., via
3427	 * mlock(3C) or memcntl(2)) can still succeed.  (pages_pp_maximum
3428	 * stores the number of pages that cannot be locked; when availrmem
3429	 * drops below pages_pp_maximum, page locking mechanisms such as
3430	 * page_pp_lock() will fail.)
3431	 */
3432	n = PAGESIZE * (availrmem - pages_pp_maximum -
3433	    arc_pages_pp_reserve);
3434	if (n < lowest) {
3435		lowest = n;
3436		r = FMR_PAGES_PP_MAXIMUM;
3437	}
3438
3439#endif	/* sun */
3440#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
3441	/*
3442	 * If we're on an i386 platform, it's possible that we'll exhaust the
3443	 * kernel heap space before we ever run out of available physical
3444	 * memory.  Most checks of the size of the heap_area compare against
3445	 * tune.t_minarmem, which is the minimum available real memory that we
3446	 * can have in the system.  However, this is generally fixed at 25 pages
3447	 * which is so low that it's useless.  In this comparison, we seek to
3448	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
3449	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
3450	 * free)
3451	 */
3452	n = (int64_t)vmem_size(heap_arena, VMEM_FREE) -
3453	    (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
3454	if (n < lowest) {
3455		lowest = n;
3456		r = FMR_HEAP_ARENA;
3457	}
3458#define	zio_arena	NULL
3459#else
3460#define	zio_arena	heap_arena
3461#endif
3462
3463	/*
3464	 * If zio data pages are being allocated out of a separate heap segment,
3465	 * then enforce that the size of available vmem for this arena remains
3466	 * above about 1/16th free.
3467	 *
3468	 * Note: The 1/16th arena free requirement was put in place
3469	 * to aggressively evict memory from the arc in order to avoid
3470	 * memory fragmentation issues.
3471	 */
3472	if (zio_arena != NULL) {
3473		n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
3474		    (vmem_size(zio_arena, VMEM_ALLOC) >> 4);
3475		if (n < lowest) {
3476			lowest = n;
3477			r = FMR_ZIO_ARENA;
3478		}
3479	}
3480
3481	/*
3482	 * Above limits know nothing about real level of KVA fragmentation.
3483	 * Start aggressive reclamation if too little sequential KVA left.
3484	 */
3485	if (lowest > 0) {
3486		n = (vmem_size(heap_arena, VMEM_MAXFREE) < zfs_max_recordsize) ?
3487		    -((int64_t)vmem_size(heap_arena, VMEM_ALLOC) >> 4) :
3488		    INT64_MAX;
3489		if (n < lowest) {
3490			lowest = n;
3491			r = FMR_ZIO_FRAG;
3492		}
3493	}
3494
3495#else	/* _KERNEL */
3496	/* Every 100 calls, free a small amount */
3497	if (spa_get_random(100) == 0)
3498		lowest = -1024;
3499#endif	/* _KERNEL */
3500
3501	last_free_memory = lowest;
3502	last_free_reason = r;
3503	DTRACE_PROBE2(arc__available_memory, int64_t, lowest, int, r);
3504	return (lowest);
3505}
3506
3507
3508/*
3509 * Determine if the system is under memory pressure and is asking
3510 * to reclaim memory. A return value of TRUE indicates that the system
3511 * is under memory pressure and that the arc should adjust accordingly.
3512 */
3513static boolean_t
3514arc_reclaim_needed(void)
3515{
3516	return (arc_available_memory() < 0);
3517}
3518
3519extern kmem_cache_t	*zio_buf_cache[];
3520extern kmem_cache_t	*zio_data_buf_cache[];
3521extern kmem_cache_t	*range_seg_cache;
3522
3523static __noinline void
3524arc_kmem_reap_now(void)
3525{
3526	size_t			i;
3527	kmem_cache_t		*prev_cache = NULL;
3528	kmem_cache_t		*prev_data_cache = NULL;
3529
3530	DTRACE_PROBE(arc__kmem_reap_start);
3531#ifdef _KERNEL
3532	if (arc_meta_used >= arc_meta_limit) {
3533		/*
3534		 * We are exceeding our meta-data cache limit.
3535		 * Purge some DNLC entries to release holds on meta-data.
3536		 */
3537		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
3538	}
3539#if defined(__i386)
3540	/*
3541	 * Reclaim unused memory from all kmem caches.
3542	 */
3543	kmem_reap();
3544#endif
3545#endif
3546
3547	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
3548		if (zio_buf_cache[i] != prev_cache) {
3549			prev_cache = zio_buf_cache[i];
3550			kmem_cache_reap_now(zio_buf_cache[i]);
3551		}
3552		if (zio_data_buf_cache[i] != prev_data_cache) {
3553			prev_data_cache = zio_data_buf_cache[i];
3554			kmem_cache_reap_now(zio_data_buf_cache[i]);
3555		}
3556	}
3557	kmem_cache_reap_now(buf_cache);
3558	kmem_cache_reap_now(hdr_full_cache);
3559	kmem_cache_reap_now(hdr_l2only_cache);
3560	kmem_cache_reap_now(range_seg_cache);
3561
3562#ifdef sun
3563	if (zio_arena != NULL) {
3564		/*
3565		 * Ask the vmem arena to reclaim unused memory from its
3566		 * quantum caches.
3567		 */
3568		vmem_qcache_reap(zio_arena);
3569	}
3570#endif
3571	DTRACE_PROBE(arc__kmem_reap_end);
3572}
3573
3574/*
3575 * Threads can block in arc_get_data_buf() waiting for this thread to evict
3576 * enough data and signal them to proceed. When this happens, the threads in
3577 * arc_get_data_buf() are sleeping while holding the hash lock for their
3578 * particular arc header. Thus, we must be careful to never sleep on a
3579 * hash lock in this thread. This is to prevent the following deadlock:
3580 *
3581 *  - Thread A sleeps on CV in arc_get_data_buf() holding hash lock "L",
3582 *    waiting for the reclaim thread to signal it.
3583 *
3584 *  - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
3585 *    fails, and goes to sleep forever.
3586 *
3587 * This possible deadlock is avoided by always acquiring a hash lock
3588 * using mutex_tryenter() from arc_reclaim_thread().
3589 */
3590static void
3591arc_reclaim_thread(void *dummy __unused)
3592{
3593	clock_t			growtime = 0;
3594	callb_cpr_t		cpr;
3595
3596	CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
3597
3598	mutex_enter(&arc_reclaim_lock);
3599	while (!arc_reclaim_thread_exit) {
3600		int64_t free_memory = arc_available_memory();
3601		uint64_t evicted = 0;
3602
3603		mutex_exit(&arc_reclaim_lock);
3604
3605		if (free_memory < 0) {
3606
3607			arc_no_grow = B_TRUE;
3608			arc_warm = B_TRUE;
3609
3610			/*
3611			 * Wait at least zfs_grow_retry (default 60) seconds
3612			 * before considering growing.
3613			 */
3614			growtime = ddi_get_lbolt() + (arc_grow_retry * hz);
3615
3616			arc_kmem_reap_now();
3617
3618			/*
3619			 * If we are still low on memory, shrink the ARC
3620			 * so that we have arc_shrink_min free space.
3621			 */
3622			free_memory = arc_available_memory();
3623
3624			int64_t to_free =
3625			    (arc_c >> arc_shrink_shift) - free_memory;
3626			if (to_free > 0) {
3627#ifdef _KERNEL
3628				to_free = MAX(to_free, ptob(needfree));
3629#endif
3630				arc_shrink(to_free);
3631			}
3632		} else if (free_memory < arc_c >> arc_no_grow_shift) {
3633			arc_no_grow = B_TRUE;
3634		} else if (ddi_get_lbolt() >= growtime) {
3635			arc_no_grow = B_FALSE;
3636		}
3637
3638		evicted = arc_adjust();
3639
3640		mutex_enter(&arc_reclaim_lock);
3641
3642		/*
3643		 * If evicted is zero, we couldn't evict anything via
3644		 * arc_adjust(). This could be due to hash lock
3645		 * collisions, but more likely due to the majority of
3646		 * arc buffers being unevictable. Therefore, even if
3647		 * arc_size is above arc_c, another pass is unlikely to
3648		 * be helpful and could potentially cause us to enter an
3649		 * infinite loop.
3650		 */
3651		if (arc_size <= arc_c || evicted == 0) {
3652#ifdef _KERNEL
3653			needfree = 0;
3654#endif
3655			/*
3656			 * We're either no longer overflowing, or we
3657			 * can't evict anything more, so we should wake
3658			 * up any threads before we go to sleep.
3659			 */
3660			cv_broadcast(&arc_reclaim_waiters_cv);
3661
3662			/*
3663			 * Block until signaled, or after one second (we
3664			 * might need to perform arc_kmem_reap_now()
3665			 * even if we aren't being signalled)
3666			 */
3667			CALLB_CPR_SAFE_BEGIN(&cpr);
3668			(void) cv_timedwait(&arc_reclaim_thread_cv,
3669			    &arc_reclaim_lock, hz);
3670			CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
3671		}
3672	}
3673
3674	arc_reclaim_thread_exit = FALSE;
3675	cv_broadcast(&arc_reclaim_thread_cv);
3676	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_lock */
3677	thread_exit();
3678}
3679
3680static void
3681arc_user_evicts_thread(void *dummy __unused)
3682{
3683	callb_cpr_t cpr;
3684
3685	CALLB_CPR_INIT(&cpr, &arc_user_evicts_lock, callb_generic_cpr, FTAG);
3686
3687	mutex_enter(&arc_user_evicts_lock);
3688	while (!arc_user_evicts_thread_exit) {
3689		mutex_exit(&arc_user_evicts_lock);
3690
3691		arc_do_user_evicts();
3692
3693		/*
3694		 * This is necessary in order for the mdb ::arc dcmd to
3695		 * show up to date information. Since the ::arc command
3696		 * does not call the kstat's update function, without
3697		 * this call, the command may show stale stats for the
3698		 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
3699		 * with this change, the data might be up to 1 second
3700		 * out of date; but that should suffice. The arc_state_t
3701		 * structures can be queried directly if more accurate
3702		 * information is needed.
3703		 */
3704		if (arc_ksp != NULL)
3705			arc_ksp->ks_update(arc_ksp, KSTAT_READ);
3706
3707		mutex_enter(&arc_user_evicts_lock);
3708
3709		/*
3710		 * Block until signaled, or after one second (we need to
3711		 * call the arc's kstat update function regularly).
3712		 */
3713		CALLB_CPR_SAFE_BEGIN(&cpr);
3714		(void) cv_timedwait(&arc_user_evicts_cv,
3715		    &arc_user_evicts_lock, hz);
3716		CALLB_CPR_SAFE_END(&cpr, &arc_user_evicts_lock);
3717	}
3718
3719	arc_user_evicts_thread_exit = FALSE;
3720	cv_broadcast(&arc_user_evicts_cv);
3721	CALLB_CPR_EXIT(&cpr);		/* drops arc_user_evicts_lock */
3722	thread_exit();
3723}
3724
3725/*
3726 * Adapt arc info given the number of bytes we are trying to add and
3727 * the state that we are comming from.  This function is only called
3728 * when we are adding new content to the cache.
3729 */
3730static void
3731arc_adapt(int bytes, arc_state_t *state)
3732{
3733	int mult;
3734	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
3735	int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
3736	int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
3737
3738	if (state == arc_l2c_only)
3739		return;
3740
3741	ASSERT(bytes > 0);
3742	/*
3743	 * Adapt the target size of the MRU list:
3744	 *	- if we just hit in the MRU ghost list, then increase
3745	 *	  the target size of the MRU list.
3746	 *	- if we just hit in the MFU ghost list, then increase
3747	 *	  the target size of the MFU list by decreasing the
3748	 *	  target size of the MRU list.
3749	 */
3750	if (state == arc_mru_ghost) {
3751		mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
3752		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
3753
3754		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
3755	} else if (state == arc_mfu_ghost) {
3756		uint64_t delta;
3757
3758		mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
3759		mult = MIN(mult, 10);
3760
3761		delta = MIN(bytes * mult, arc_p);
3762		arc_p = MAX(arc_p_min, arc_p - delta);
3763	}
3764	ASSERT((int64_t)arc_p >= 0);
3765
3766	if (arc_reclaim_needed()) {
3767		cv_signal(&arc_reclaim_thread_cv);
3768		return;
3769	}
3770
3771	if (arc_no_grow)
3772		return;
3773
3774	if (arc_c >= arc_c_max)
3775		return;
3776
3777	/*
3778	 * If we're within (2 * maxblocksize) bytes of the target
3779	 * cache size, increment the target cache size
3780	 */
3781	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
3782		DTRACE_PROBE1(arc__inc_adapt, int, bytes);
3783		atomic_add_64(&arc_c, (int64_t)bytes);
3784		if (arc_c > arc_c_max)
3785			arc_c = arc_c_max;
3786		else if (state == arc_anon)
3787			atomic_add_64(&arc_p, (int64_t)bytes);
3788		if (arc_p > arc_c)
3789			arc_p = arc_c;
3790	}
3791	ASSERT((int64_t)arc_p >= 0);
3792}
3793
3794/*
3795 * Check if arc_size has grown past our upper threshold, determined by
3796 * zfs_arc_overflow_shift.
3797 */
3798static boolean_t
3799arc_is_overflowing(void)
3800{
3801	/* Always allow at least one block of overflow */
3802	uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
3803	    arc_c >> zfs_arc_overflow_shift);
3804
3805	return (arc_size >= arc_c + overflow);
3806}
3807
3808/*
3809 * The buffer, supplied as the first argument, needs a data block. If we
3810 * are hitting the hard limit for the cache size, we must sleep, waiting
3811 * for the eviction thread to catch up. If we're past the target size
3812 * but below the hard limit, we'll only signal the reclaim thread and
3813 * continue on.
3814 */
3815static void
3816arc_get_data_buf(arc_buf_t *buf)
3817{
3818	arc_state_t		*state = buf->b_hdr->b_l1hdr.b_state;
3819	uint64_t		size = buf->b_hdr->b_size;
3820	arc_buf_contents_t	type = arc_buf_type(buf->b_hdr);
3821
3822	arc_adapt(size, state);
3823
3824	/*
3825	 * If arc_size is currently overflowing, and has grown past our
3826	 * upper limit, we must be adding data faster than the evict
3827	 * thread can evict. Thus, to ensure we don't compound the
3828	 * problem by adding more data and forcing arc_size to grow even
3829	 * further past it's target size, we halt and wait for the
3830	 * eviction thread to catch up.
3831	 *
3832	 * It's also possible that the reclaim thread is unable to evict
3833	 * enough buffers to get arc_size below the overflow limit (e.g.
3834	 * due to buffers being un-evictable, or hash lock collisions).
3835	 * In this case, we want to proceed regardless if we're
3836	 * overflowing; thus we don't use a while loop here.
3837	 */
3838	if (arc_is_overflowing()) {
3839		mutex_enter(&arc_reclaim_lock);
3840
3841		/*
3842		 * Now that we've acquired the lock, we may no longer be
3843		 * over the overflow limit, lets check.
3844		 *
3845		 * We're ignoring the case of spurious wake ups. If that
3846		 * were to happen, it'd let this thread consume an ARC
3847		 * buffer before it should have (i.e. before we're under
3848		 * the overflow limit and were signalled by the reclaim
3849		 * thread). As long as that is a rare occurrence, it
3850		 * shouldn't cause any harm.
3851		 */
3852		if (arc_is_overflowing()) {
3853			cv_signal(&arc_reclaim_thread_cv);
3854			cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
3855		}
3856
3857		mutex_exit(&arc_reclaim_lock);
3858	}
3859
3860	if (type == ARC_BUFC_METADATA) {
3861		buf->b_data = zio_buf_alloc(size);
3862		arc_space_consume(size, ARC_SPACE_META);
3863	} else {
3864		ASSERT(type == ARC_BUFC_DATA);
3865		buf->b_data = zio_data_buf_alloc(size);
3866		arc_space_consume(size, ARC_SPACE_DATA);
3867	}
3868
3869	/*
3870	 * Update the state size.  Note that ghost states have a
3871	 * "ghost size" and so don't need to be updated.
3872	 */
3873	if (!GHOST_STATE(buf->b_hdr->b_l1hdr.b_state)) {
3874		arc_buf_hdr_t *hdr = buf->b_hdr;
3875		arc_state_t *state = hdr->b_l1hdr.b_state;
3876
3877		(void) refcount_add_many(&state->arcs_size, size, buf);
3878
3879		/*
3880		 * If this is reached via arc_read, the link is
3881		 * protected by the hash lock. If reached via
3882		 * arc_buf_alloc, the header should not be accessed by
3883		 * any other thread. And, if reached via arc_read_done,
3884		 * the hash lock will protect it if it's found in the
3885		 * hash table; otherwise no other thread should be
3886		 * trying to [add|remove]_reference it.
3887		 */
3888		if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
3889			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3890			atomic_add_64(&hdr->b_l1hdr.b_state->arcs_lsize[type],
3891			    size);
3892		}
3893		/*
3894		 * If we are growing the cache, and we are adding anonymous
3895		 * data, and we have outgrown arc_p, update arc_p
3896		 */
3897		if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
3898		    (refcount_count(&arc_anon->arcs_size) +
3899		    refcount_count(&arc_mru->arcs_size) > arc_p))
3900			arc_p = MIN(arc_c, arc_p + size);
3901	}
3902	ARCSTAT_BUMP(arcstat_allocated);
3903}
3904
3905/*
3906 * This routine is called whenever a buffer is accessed.
3907 * NOTE: the hash lock is dropped in this function.
3908 */
3909static void
3910arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3911{
3912	clock_t now;
3913
3914	ASSERT(MUTEX_HELD(hash_lock));
3915	ASSERT(HDR_HAS_L1HDR(hdr));
3916
3917	if (hdr->b_l1hdr.b_state == arc_anon) {
3918		/*
3919		 * This buffer is not in the cache, and does not
3920		 * appear in our "ghost" list.  Add the new buffer
3921		 * to the MRU state.
3922		 */
3923
3924		ASSERT0(hdr->b_l1hdr.b_arc_access);
3925		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3926		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
3927		arc_change_state(arc_mru, hdr, hash_lock);
3928
3929	} else if (hdr->b_l1hdr.b_state == arc_mru) {
3930		now = ddi_get_lbolt();
3931
3932		/*
3933		 * If this buffer is here because of a prefetch, then either:
3934		 * - clear the flag if this is a "referencing" read
3935		 *   (any subsequent access will bump this into the MFU state).
3936		 * or
3937		 * - move the buffer to the head of the list if this is
3938		 *   another prefetch (to make it less likely to be evicted).
3939		 */
3940		if (HDR_PREFETCH(hdr)) {
3941			if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
3942				/* link protected by hash lock */
3943				ASSERT(multilist_link_active(
3944				    &hdr->b_l1hdr.b_arc_node));
3945			} else {
3946				hdr->b_flags &= ~ARC_FLAG_PREFETCH;
3947				ARCSTAT_BUMP(arcstat_mru_hits);
3948			}
3949			hdr->b_l1hdr.b_arc_access = now;
3950			return;
3951		}
3952
3953		/*
3954		 * This buffer has been "accessed" only once so far,
3955		 * but it is still in the cache. Move it to the MFU
3956		 * state.
3957		 */
3958		if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) {
3959			/*
3960			 * More than 125ms have passed since we
3961			 * instantiated this buffer.  Move it to the
3962			 * most frequently used state.
3963			 */
3964			hdr->b_l1hdr.b_arc_access = now;
3965			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3966			arc_change_state(arc_mfu, hdr, hash_lock);
3967		}
3968		ARCSTAT_BUMP(arcstat_mru_hits);
3969	} else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
3970		arc_state_t	*new_state;
3971		/*
3972		 * This buffer has been "accessed" recently, but
3973		 * was evicted from the cache.  Move it to the
3974		 * MFU state.
3975		 */
3976
3977		if (HDR_PREFETCH(hdr)) {
3978			new_state = arc_mru;
3979			if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
3980				hdr->b_flags &= ~ARC_FLAG_PREFETCH;
3981			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
3982		} else {
3983			new_state = arc_mfu;
3984			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3985		}
3986
3987		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3988		arc_change_state(new_state, hdr, hash_lock);
3989
3990		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
3991	} else if (hdr->b_l1hdr.b_state == arc_mfu) {
3992		/*
3993		 * This buffer has been accessed more than once and is
3994		 * still in the cache.  Keep it in the MFU state.
3995		 *
3996		 * NOTE: an add_reference() that occurred when we did
3997		 * the arc_read() will have kicked this off the list.
3998		 * If it was a prefetch, we will explicitly move it to
3999		 * the head of the list now.
4000		 */
4001		if ((HDR_PREFETCH(hdr)) != 0) {
4002			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4003			/* link protected by hash_lock */
4004			ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4005		}
4006		ARCSTAT_BUMP(arcstat_mfu_hits);
4007		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4008	} else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
4009		arc_state_t	*new_state = arc_mfu;
4010		/*
4011		 * This buffer has been accessed more than once but has
4012		 * been evicted from the cache.  Move it back to the
4013		 * MFU state.
4014		 */
4015
4016		if (HDR_PREFETCH(hdr)) {
4017			/*
4018			 * This is a prefetch access...
4019			 * move this block back to the MRU state.
4020			 */
4021			ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
4022			new_state = arc_mru;
4023		}
4024
4025		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4026		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4027		arc_change_state(new_state, hdr, hash_lock);
4028
4029		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
4030	} else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
4031		/*
4032		 * This buffer is on the 2nd Level ARC.
4033		 */
4034
4035		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4036		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4037		arc_change_state(arc_mfu, hdr, hash_lock);
4038	} else {
4039		ASSERT(!"invalid arc state");
4040	}
4041}
4042
4043/* a generic arc_done_func_t which you can use */
4044/* ARGSUSED */
4045void
4046arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
4047{
4048	if (zio == NULL || zio->io_error == 0)
4049		bcopy(buf->b_data, arg, buf->b_hdr->b_size);
4050	VERIFY(arc_buf_remove_ref(buf, arg));
4051}
4052
4053/* a generic arc_done_func_t */
4054void
4055arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
4056{
4057	arc_buf_t **bufp = arg;
4058	if (zio && zio->io_error) {
4059		VERIFY(arc_buf_remove_ref(buf, arg));
4060		*bufp = NULL;
4061	} else {
4062		*bufp = buf;
4063		ASSERT(buf->b_data);
4064	}
4065}
4066
4067static void
4068arc_read_done(zio_t *zio)
4069{
4070	arc_buf_hdr_t	*hdr;
4071	arc_buf_t	*buf;
4072	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
4073	kmutex_t	*hash_lock = NULL;
4074	arc_callback_t	*callback_list, *acb;
4075	int		freeable = FALSE;
4076
4077	buf = zio->io_private;
4078	hdr = buf->b_hdr;
4079
4080	/*
4081	 * The hdr was inserted into hash-table and removed from lists
4082	 * prior to starting I/O.  We should find this header, since
4083	 * it's in the hash table, and it should be legit since it's
4084	 * not possible to evict it during the I/O.  The only possible
4085	 * reason for it not to be found is if we were freed during the
4086	 * read.
4087	 */
4088	if (HDR_IN_HASH_TABLE(hdr)) {
4089		ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
4090		ASSERT3U(hdr->b_dva.dva_word[0], ==,
4091		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
4092		ASSERT3U(hdr->b_dva.dva_word[1], ==,
4093		    BP_IDENTITY(zio->io_bp)->dva_word[1]);
4094
4095		arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
4096		    &hash_lock);
4097
4098		ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) &&
4099		    hash_lock == NULL) ||
4100		    (found == hdr &&
4101		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
4102		    (found == hdr && HDR_L2_READING(hdr)));
4103	}
4104
4105	hdr->b_flags &= ~ARC_FLAG_L2_EVICTED;
4106	if (l2arc_noprefetch && HDR_PREFETCH(hdr))
4107		hdr->b_flags &= ~ARC_FLAG_L2CACHE;
4108
4109	/* byteswap if necessary */
4110	callback_list = hdr->b_l1hdr.b_acb;
4111	ASSERT(callback_list != NULL);
4112	if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
4113		dmu_object_byteswap_t bswap =
4114		    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
4115		arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
4116		    byteswap_uint64_array :
4117		    dmu_ot_byteswap[bswap].ob_func;
4118		func(buf->b_data, hdr->b_size);
4119	}
4120
4121	arc_cksum_compute(buf, B_FALSE);
4122#ifdef illumos
4123	arc_buf_watch(buf);
4124#endif /* illumos */
4125
4126	if (hash_lock && zio->io_error == 0 &&
4127	    hdr->b_l1hdr.b_state == arc_anon) {
4128		/*
4129		 * Only call arc_access on anonymous buffers.  This is because
4130		 * if we've issued an I/O for an evicted buffer, we've already
4131		 * called arc_access (to prevent any simultaneous readers from
4132		 * getting confused).
4133		 */
4134		arc_access(hdr, hash_lock);
4135	}
4136
4137	/* create copies of the data buffer for the callers */
4138	abuf = buf;
4139	for (acb = callback_list; acb; acb = acb->acb_next) {
4140		if (acb->acb_done) {
4141			if (abuf == NULL) {
4142				ARCSTAT_BUMP(arcstat_duplicate_reads);
4143				abuf = arc_buf_clone(buf);
4144			}
4145			acb->acb_buf = abuf;
4146			abuf = NULL;
4147		}
4148	}
4149	hdr->b_l1hdr.b_acb = NULL;
4150	hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
4151	ASSERT(!HDR_BUF_AVAILABLE(hdr));
4152	if (abuf == buf) {
4153		ASSERT(buf->b_efunc == NULL);
4154		ASSERT(hdr->b_l1hdr.b_datacnt == 1);
4155		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
4156	}
4157
4158	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
4159	    callback_list != NULL);
4160
4161	if (zio->io_error != 0) {
4162		hdr->b_flags |= ARC_FLAG_IO_ERROR;
4163		if (hdr->b_l1hdr.b_state != arc_anon)
4164			arc_change_state(arc_anon, hdr, hash_lock);
4165		if (HDR_IN_HASH_TABLE(hdr))
4166			buf_hash_remove(hdr);
4167		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4168	}
4169
4170	/*
4171	 * Broadcast before we drop the hash_lock to avoid the possibility
4172	 * that the hdr (and hence the cv) might be freed before we get to
4173	 * the cv_broadcast().
4174	 */
4175	cv_broadcast(&hdr->b_l1hdr.b_cv);
4176
4177	if (hash_lock != NULL) {
4178		mutex_exit(hash_lock);
4179	} else {
4180		/*
4181		 * This block was freed while we waited for the read to
4182		 * complete.  It has been removed from the hash table and
4183		 * moved to the anonymous state (so that it won't show up
4184		 * in the cache).
4185		 */
4186		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
4187		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4188	}
4189
4190	/* execute each callback and free its structure */
4191	while ((acb = callback_list) != NULL) {
4192		if (acb->acb_done)
4193			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
4194
4195		if (acb->acb_zio_dummy != NULL) {
4196			acb->acb_zio_dummy->io_error = zio->io_error;
4197			zio_nowait(acb->acb_zio_dummy);
4198		}
4199
4200		callback_list = acb->acb_next;
4201		kmem_free(acb, sizeof (arc_callback_t));
4202	}
4203
4204	if (freeable)
4205		arc_hdr_destroy(hdr);
4206}
4207
4208/*
4209 * "Read" the block at the specified DVA (in bp) via the
4210 * cache.  If the block is found in the cache, invoke the provided
4211 * callback immediately and return.  Note that the `zio' parameter
4212 * in the callback will be NULL in this case, since no IO was
4213 * required.  If the block is not in the cache pass the read request
4214 * on to the spa with a substitute callback function, so that the
4215 * requested block will be added to the cache.
4216 *
4217 * If a read request arrives for a block that has a read in-progress,
4218 * either wait for the in-progress read to complete (and return the
4219 * results); or, if this is a read with a "done" func, add a record
4220 * to the read to invoke the "done" func when the read completes,
4221 * and return; or just return.
4222 *
4223 * arc_read_done() will invoke all the requested "done" functions
4224 * for readers of this block.
4225 */
4226int
4227arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
4228    void *private, zio_priority_t priority, int zio_flags,
4229    arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
4230{
4231	arc_buf_hdr_t *hdr = NULL;
4232	arc_buf_t *buf = NULL;
4233	kmutex_t *hash_lock = NULL;
4234	zio_t *rzio;
4235	uint64_t guid = spa_load_guid(spa);
4236
4237	ASSERT(!BP_IS_EMBEDDED(bp) ||
4238	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
4239
4240top:
4241	if (!BP_IS_EMBEDDED(bp)) {
4242		/*
4243		 * Embedded BP's have no DVA and require no I/O to "read".
4244		 * Create an anonymous arc buf to back it.
4245		 */
4246		hdr = buf_hash_find(guid, bp, &hash_lock);
4247	}
4248
4249	if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_datacnt > 0) {
4250
4251		*arc_flags |= ARC_FLAG_CACHED;
4252
4253		if (HDR_IO_IN_PROGRESS(hdr)) {
4254
4255			if (*arc_flags & ARC_FLAG_WAIT) {
4256				cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
4257				mutex_exit(hash_lock);
4258				goto top;
4259			}
4260			ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4261
4262			if (done) {
4263				arc_callback_t	*acb = NULL;
4264
4265				acb = kmem_zalloc(sizeof (arc_callback_t),
4266				    KM_SLEEP);
4267				acb->acb_done = done;
4268				acb->acb_private = private;
4269				if (pio != NULL)
4270					acb->acb_zio_dummy = zio_null(pio,
4271					    spa, NULL, NULL, NULL, zio_flags);
4272
4273				ASSERT(acb->acb_done != NULL);
4274				acb->acb_next = hdr->b_l1hdr.b_acb;
4275				hdr->b_l1hdr.b_acb = acb;
4276				add_reference(hdr, hash_lock, private);
4277				mutex_exit(hash_lock);
4278				return (0);
4279			}
4280			mutex_exit(hash_lock);
4281			return (0);
4282		}
4283
4284		ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4285		    hdr->b_l1hdr.b_state == arc_mfu);
4286
4287		if (done) {
4288			add_reference(hdr, hash_lock, private);
4289			/*
4290			 * If this block is already in use, create a new
4291			 * copy of the data so that we will be guaranteed
4292			 * that arc_release() will always succeed.
4293			 */
4294			buf = hdr->b_l1hdr.b_buf;
4295			ASSERT(buf);
4296			ASSERT(buf->b_data);
4297			if (HDR_BUF_AVAILABLE(hdr)) {
4298				ASSERT(buf->b_efunc == NULL);
4299				hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
4300			} else {
4301				buf = arc_buf_clone(buf);
4302			}
4303
4304		} else if (*arc_flags & ARC_FLAG_PREFETCH &&
4305		    refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4306			hdr->b_flags |= ARC_FLAG_PREFETCH;
4307		}
4308		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
4309		arc_access(hdr, hash_lock);
4310		if (*arc_flags & ARC_FLAG_L2CACHE)
4311			hdr->b_flags |= ARC_FLAG_L2CACHE;
4312		if (*arc_flags & ARC_FLAG_L2COMPRESS)
4313			hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4314		mutex_exit(hash_lock);
4315		ARCSTAT_BUMP(arcstat_hits);
4316		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4317		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
4318		    data, metadata, hits);
4319
4320		if (done)
4321			done(NULL, buf, private);
4322	} else {
4323		uint64_t size = BP_GET_LSIZE(bp);
4324		arc_callback_t *acb;
4325		vdev_t *vd = NULL;
4326		uint64_t addr = 0;
4327		boolean_t devw = B_FALSE;
4328		enum zio_compress b_compress = ZIO_COMPRESS_OFF;
4329		int32_t b_asize = 0;
4330
4331		if (hdr == NULL) {
4332			/* this block is not in the cache */
4333			arc_buf_hdr_t *exists = NULL;
4334			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
4335			buf = arc_buf_alloc(spa, size, private, type);
4336			hdr = buf->b_hdr;
4337			if (!BP_IS_EMBEDDED(bp)) {
4338				hdr->b_dva = *BP_IDENTITY(bp);
4339				hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
4340				exists = buf_hash_insert(hdr, &hash_lock);
4341			}
4342			if (exists != NULL) {
4343				/* somebody beat us to the hash insert */
4344				mutex_exit(hash_lock);
4345				buf_discard_identity(hdr);
4346				(void) arc_buf_remove_ref(buf, private);
4347				goto top; /* restart the IO request */
4348			}
4349
4350			/* if this is a prefetch, we don't have a reference */
4351			if (*arc_flags & ARC_FLAG_PREFETCH) {
4352				(void) remove_reference(hdr, hash_lock,
4353				    private);
4354				hdr->b_flags |= ARC_FLAG_PREFETCH;
4355			}
4356			if (*arc_flags & ARC_FLAG_L2CACHE)
4357				hdr->b_flags |= ARC_FLAG_L2CACHE;
4358			if (*arc_flags & ARC_FLAG_L2COMPRESS)
4359				hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4360			if (BP_GET_LEVEL(bp) > 0)
4361				hdr->b_flags |= ARC_FLAG_INDIRECT;
4362		} else {
4363			/*
4364			 * This block is in the ghost cache. If it was L2-only
4365			 * (and thus didn't have an L1 hdr), we realloc the
4366			 * header to add an L1 hdr.
4367			 */
4368			if (!HDR_HAS_L1HDR(hdr)) {
4369				hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
4370				    hdr_full_cache);
4371			}
4372
4373			ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
4374			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4375			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4376			ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
4377
4378			/* if this is a prefetch, we don't have a reference */
4379			if (*arc_flags & ARC_FLAG_PREFETCH)
4380				hdr->b_flags |= ARC_FLAG_PREFETCH;
4381			else
4382				add_reference(hdr, hash_lock, private);
4383			if (*arc_flags & ARC_FLAG_L2CACHE)
4384				hdr->b_flags |= ARC_FLAG_L2CACHE;
4385			if (*arc_flags & ARC_FLAG_L2COMPRESS)
4386				hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4387			buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
4388			buf->b_hdr = hdr;
4389			buf->b_data = NULL;
4390			buf->b_efunc = NULL;
4391			buf->b_private = NULL;
4392			buf->b_next = NULL;
4393			hdr->b_l1hdr.b_buf = buf;
4394			ASSERT0(hdr->b_l1hdr.b_datacnt);
4395			hdr->b_l1hdr.b_datacnt = 1;
4396			arc_get_data_buf(buf);
4397			arc_access(hdr, hash_lock);
4398		}
4399
4400		ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
4401
4402		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
4403		acb->acb_done = done;
4404		acb->acb_private = private;
4405
4406		ASSERT(hdr->b_l1hdr.b_acb == NULL);
4407		hdr->b_l1hdr.b_acb = acb;
4408		hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
4409
4410		if (HDR_HAS_L2HDR(hdr) &&
4411		    (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
4412			devw = hdr->b_l2hdr.b_dev->l2ad_writing;
4413			addr = hdr->b_l2hdr.b_daddr;
4414			b_compress = HDR_GET_COMPRESS(hdr);
4415			b_asize = hdr->b_l2hdr.b_asize;
4416			/*
4417			 * Lock out device removal.
4418			 */
4419			if (vdev_is_dead(vd) ||
4420			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
4421				vd = NULL;
4422		}
4423
4424		if (hash_lock != NULL)
4425			mutex_exit(hash_lock);
4426
4427		/*
4428		 * At this point, we have a level 1 cache miss.  Try again in
4429		 * L2ARC if possible.
4430		 */
4431		ASSERT3U(hdr->b_size, ==, size);
4432		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
4433		    uint64_t, size, zbookmark_phys_t *, zb);
4434		ARCSTAT_BUMP(arcstat_misses);
4435		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4436		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
4437		    data, metadata, misses);
4438#ifdef _KERNEL
4439		curthread->td_ru.ru_inblock++;
4440#endif
4441
4442		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
4443			/*
4444			 * Read from the L2ARC if the following are true:
4445			 * 1. The L2ARC vdev was previously cached.
4446			 * 2. This buffer still has L2ARC metadata.
4447			 * 3. This buffer isn't currently writing to the L2ARC.
4448			 * 4. The L2ARC entry wasn't evicted, which may
4449			 *    also have invalidated the vdev.
4450			 * 5. This isn't prefetch and l2arc_noprefetch is set.
4451			 */
4452			if (HDR_HAS_L2HDR(hdr) &&
4453			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
4454			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
4455				l2arc_read_callback_t *cb;
4456
4457				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
4458				ARCSTAT_BUMP(arcstat_l2_hits);
4459
4460				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
4461				    KM_SLEEP);
4462				cb->l2rcb_buf = buf;
4463				cb->l2rcb_spa = spa;
4464				cb->l2rcb_bp = *bp;
4465				cb->l2rcb_zb = *zb;
4466				cb->l2rcb_flags = zio_flags;
4467				cb->l2rcb_compress = b_compress;
4468
4469				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
4470				    addr + size < vd->vdev_psize -
4471				    VDEV_LABEL_END_SIZE);
4472
4473				/*
4474				 * l2arc read.  The SCL_L2ARC lock will be
4475				 * released by l2arc_read_done().
4476				 * Issue a null zio if the underlying buffer
4477				 * was squashed to zero size by compression.
4478				 */
4479				if (b_compress == ZIO_COMPRESS_EMPTY) {
4480					rzio = zio_null(pio, spa, vd,
4481					    l2arc_read_done, cb,
4482					    zio_flags | ZIO_FLAG_DONT_CACHE |
4483					    ZIO_FLAG_CANFAIL |
4484					    ZIO_FLAG_DONT_PROPAGATE |
4485					    ZIO_FLAG_DONT_RETRY);
4486				} else {
4487					rzio = zio_read_phys(pio, vd, addr,
4488					    b_asize, buf->b_data,
4489					    ZIO_CHECKSUM_OFF,
4490					    l2arc_read_done, cb, priority,
4491					    zio_flags | ZIO_FLAG_DONT_CACHE |
4492					    ZIO_FLAG_CANFAIL |
4493					    ZIO_FLAG_DONT_PROPAGATE |
4494					    ZIO_FLAG_DONT_RETRY, B_FALSE);
4495				}
4496				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
4497				    zio_t *, rzio);
4498				ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize);
4499
4500				if (*arc_flags & ARC_FLAG_NOWAIT) {
4501					zio_nowait(rzio);
4502					return (0);
4503				}
4504
4505				ASSERT(*arc_flags & ARC_FLAG_WAIT);
4506				if (zio_wait(rzio) == 0)
4507					return (0);
4508
4509				/* l2arc read error; goto zio_read() */
4510			} else {
4511				DTRACE_PROBE1(l2arc__miss,
4512				    arc_buf_hdr_t *, hdr);
4513				ARCSTAT_BUMP(arcstat_l2_misses);
4514				if (HDR_L2_WRITING(hdr))
4515					ARCSTAT_BUMP(arcstat_l2_rw_clash);
4516				spa_config_exit(spa, SCL_L2ARC, vd);
4517			}
4518		} else {
4519			if (vd != NULL)
4520				spa_config_exit(spa, SCL_L2ARC, vd);
4521			if (l2arc_ndev != 0) {
4522				DTRACE_PROBE1(l2arc__miss,
4523				    arc_buf_hdr_t *, hdr);
4524				ARCSTAT_BUMP(arcstat_l2_misses);
4525			}
4526		}
4527
4528		rzio = zio_read(pio, spa, bp, buf->b_data, size,
4529		    arc_read_done, buf, priority, zio_flags, zb);
4530
4531		if (*arc_flags & ARC_FLAG_WAIT)
4532			return (zio_wait(rzio));
4533
4534		ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4535		zio_nowait(rzio);
4536	}
4537	return (0);
4538}
4539
4540void
4541arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
4542{
4543	ASSERT(buf->b_hdr != NULL);
4544	ASSERT(buf->b_hdr->b_l1hdr.b_state != arc_anon);
4545	ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt) ||
4546	    func == NULL);
4547	ASSERT(buf->b_efunc == NULL);
4548	ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
4549
4550	buf->b_efunc = func;
4551	buf->b_private = private;
4552}
4553
4554/*
4555 * Notify the arc that a block was freed, and thus will never be used again.
4556 */
4557void
4558arc_freed(spa_t *spa, const blkptr_t *bp)
4559{
4560	arc_buf_hdr_t *hdr;
4561	kmutex_t *hash_lock;
4562	uint64_t guid = spa_load_guid(spa);
4563
4564	ASSERT(!BP_IS_EMBEDDED(bp));
4565
4566	hdr = buf_hash_find(guid, bp, &hash_lock);
4567	if (hdr == NULL)
4568		return;
4569	if (HDR_BUF_AVAILABLE(hdr)) {
4570		arc_buf_t *buf = hdr->b_l1hdr.b_buf;
4571		add_reference(hdr, hash_lock, FTAG);
4572		hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
4573		mutex_exit(hash_lock);
4574
4575		arc_release(buf, FTAG);
4576		(void) arc_buf_remove_ref(buf, FTAG);
4577	} else {
4578		mutex_exit(hash_lock);
4579	}
4580
4581}
4582
4583/*
4584 * Clear the user eviction callback set by arc_set_callback(), first calling
4585 * it if it exists.  Because the presence of a callback keeps an arc_buf cached
4586 * clearing the callback may result in the arc_buf being destroyed.  However,
4587 * it will not result in the *last* arc_buf being destroyed, hence the data
4588 * will remain cached in the ARC. We make a copy of the arc buffer here so
4589 * that we can process the callback without holding any locks.
4590 *
4591 * It's possible that the callback is already in the process of being cleared
4592 * by another thread.  In this case we can not clear the callback.
4593 *
4594 * Returns B_TRUE if the callback was successfully called and cleared.
4595 */
4596boolean_t
4597arc_clear_callback(arc_buf_t *buf)
4598{
4599	arc_buf_hdr_t *hdr;
4600	kmutex_t *hash_lock;
4601	arc_evict_func_t *efunc = buf->b_efunc;
4602	void *private = buf->b_private;
4603
4604	mutex_enter(&buf->b_evict_lock);
4605	hdr = buf->b_hdr;
4606	if (hdr == NULL) {
4607		/*
4608		 * We are in arc_do_user_evicts().
4609		 */
4610		ASSERT(buf->b_data == NULL);
4611		mutex_exit(&buf->b_evict_lock);
4612		return (B_FALSE);
4613	} else if (buf->b_data == NULL) {
4614		/*
4615		 * We are on the eviction list; process this buffer now
4616		 * but let arc_do_user_evicts() do the reaping.
4617		 */
4618		buf->b_efunc = NULL;
4619		mutex_exit(&buf->b_evict_lock);
4620		VERIFY0(efunc(private));
4621		return (B_TRUE);
4622	}
4623	hash_lock = HDR_LOCK(hdr);
4624	mutex_enter(hash_lock);
4625	hdr = buf->b_hdr;
4626	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4627
4628	ASSERT3U(refcount_count(&hdr->b_l1hdr.b_refcnt), <,
4629	    hdr->b_l1hdr.b_datacnt);
4630	ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4631	    hdr->b_l1hdr.b_state == arc_mfu);
4632
4633	buf->b_efunc = NULL;
4634	buf->b_private = NULL;
4635
4636	if (hdr->b_l1hdr.b_datacnt > 1) {
4637		mutex_exit(&buf->b_evict_lock);
4638		arc_buf_destroy(buf, TRUE);
4639	} else {
4640		ASSERT(buf == hdr->b_l1hdr.b_buf);
4641		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
4642		mutex_exit(&buf->b_evict_lock);
4643	}
4644
4645	mutex_exit(hash_lock);
4646	VERIFY0(efunc(private));
4647	return (B_TRUE);
4648}
4649
4650/*
4651 * Release this buffer from the cache, making it an anonymous buffer.  This
4652 * must be done after a read and prior to modifying the buffer contents.
4653 * If the buffer has more than one reference, we must make
4654 * a new hdr for the buffer.
4655 */
4656void
4657arc_release(arc_buf_t *buf, void *tag)
4658{
4659	arc_buf_hdr_t *hdr = buf->b_hdr;
4660
4661	ASSERT(HDR_HAS_L1HDR(hdr));
4662
4663	/*
4664	 * It would be nice to assert that if it's DMU metadata (level >
4665	 * 0 || it's the dnode file), then it must be syncing context.
4666	 * But we don't know that information at this level.
4667	 */
4668
4669	mutex_enter(&buf->b_evict_lock);
4670	/*
4671	 * We don't grab the hash lock prior to this check, because if
4672	 * the buffer's header is in the arc_anon state, it won't be
4673	 * linked into the hash table.
4674	 */
4675	if (hdr->b_l1hdr.b_state == arc_anon) {
4676		mutex_exit(&buf->b_evict_lock);
4677		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4678		ASSERT(!HDR_IN_HASH_TABLE(hdr));
4679		ASSERT(!HDR_HAS_L2HDR(hdr));
4680		ASSERT(BUF_EMPTY(hdr));
4681		ASSERT3U(hdr->b_l1hdr.b_datacnt, ==, 1);
4682		ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
4683		ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
4684
4685		ASSERT3P(buf->b_efunc, ==, NULL);
4686		ASSERT3P(buf->b_private, ==, NULL);
4687
4688		hdr->b_l1hdr.b_arc_access = 0;
4689		arc_buf_thaw(buf);
4690
4691		return;
4692	}
4693
4694	kmutex_t *hash_lock = HDR_LOCK(hdr);
4695	mutex_enter(hash_lock);
4696
4697	/*
4698	 * This assignment is only valid as long as the hash_lock is
4699	 * held, we must be careful not to reference state or the
4700	 * b_state field after dropping the lock.
4701	 */
4702	arc_state_t *state = hdr->b_l1hdr.b_state;
4703	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4704	ASSERT3P(state, !=, arc_anon);
4705
4706	/* this buffer is not on any list */
4707	ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) > 0);
4708
4709	if (HDR_HAS_L2HDR(hdr)) {
4710		mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
4711
4712		/*
4713		 * We have to recheck this conditional again now that
4714		 * we're holding the l2ad_mtx to prevent a race with
4715		 * another thread which might be concurrently calling
4716		 * l2arc_evict(). In that case, l2arc_evict() might have
4717		 * destroyed the header's L2 portion as we were waiting
4718		 * to acquire the l2ad_mtx.
4719		 */
4720		if (HDR_HAS_L2HDR(hdr)) {
4721			if (hdr->b_l2hdr.b_daddr != L2ARC_ADDR_UNSET)
4722				trim_map_free(hdr->b_l2hdr.b_dev->l2ad_vdev,
4723				    hdr->b_l2hdr.b_daddr,
4724				    hdr->b_l2hdr.b_asize, 0);
4725			arc_hdr_l2hdr_destroy(hdr);
4726		}
4727
4728		mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
4729	}
4730
4731	/*
4732	 * Do we have more than one buf?
4733	 */
4734	if (hdr->b_l1hdr.b_datacnt > 1) {
4735		arc_buf_hdr_t *nhdr;
4736		arc_buf_t **bufp;
4737		uint64_t blksz = hdr->b_size;
4738		uint64_t spa = hdr->b_spa;
4739		arc_buf_contents_t type = arc_buf_type(hdr);
4740		uint32_t flags = hdr->b_flags;
4741
4742		ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
4743		/*
4744		 * Pull the data off of this hdr and attach it to
4745		 * a new anonymous hdr.
4746		 */
4747		(void) remove_reference(hdr, hash_lock, tag);
4748		bufp = &hdr->b_l1hdr.b_buf;
4749		while (*bufp != buf)
4750			bufp = &(*bufp)->b_next;
4751		*bufp = buf->b_next;
4752		buf->b_next = NULL;
4753
4754		ASSERT3P(state, !=, arc_l2c_only);
4755
4756		(void) refcount_remove_many(
4757		    &state->arcs_size, hdr->b_size, buf);
4758
4759		if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
4760			ASSERT3P(state, !=, arc_l2c_only);
4761			uint64_t *size = &state->arcs_lsize[type];
4762			ASSERT3U(*size, >=, hdr->b_size);
4763			atomic_add_64(size, -hdr->b_size);
4764		}
4765
4766		/*
4767		 * We're releasing a duplicate user data buffer, update
4768		 * our statistics accordingly.
4769		 */
4770		if (HDR_ISTYPE_DATA(hdr)) {
4771			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
4772			ARCSTAT_INCR(arcstat_duplicate_buffers_size,
4773			    -hdr->b_size);
4774		}
4775		hdr->b_l1hdr.b_datacnt -= 1;
4776		arc_cksum_verify(buf);
4777#ifdef illumos
4778		arc_buf_unwatch(buf);
4779#endif /* illumos */
4780
4781		mutex_exit(hash_lock);
4782
4783		nhdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
4784		nhdr->b_size = blksz;
4785		nhdr->b_spa = spa;
4786
4787		nhdr->b_flags = flags & ARC_FLAG_L2_WRITING;
4788		nhdr->b_flags |= arc_bufc_to_flags(type);
4789		nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
4790
4791		nhdr->b_l1hdr.b_buf = buf;
4792		nhdr->b_l1hdr.b_datacnt = 1;
4793		nhdr->b_l1hdr.b_state = arc_anon;
4794		nhdr->b_l1hdr.b_arc_access = 0;
4795		nhdr->b_l1hdr.b_tmp_cdata = NULL;
4796		nhdr->b_freeze_cksum = NULL;
4797
4798		(void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
4799		buf->b_hdr = nhdr;
4800		mutex_exit(&buf->b_evict_lock);
4801		(void) refcount_add_many(&arc_anon->arcs_size, blksz, buf);
4802	} else {
4803		mutex_exit(&buf->b_evict_lock);
4804		ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
4805		/* protected by hash lock, or hdr is on arc_anon */
4806		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4807		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4808		arc_change_state(arc_anon, hdr, hash_lock);
4809		hdr->b_l1hdr.b_arc_access = 0;
4810		mutex_exit(hash_lock);
4811
4812		buf_discard_identity(hdr);
4813		arc_buf_thaw(buf);
4814	}
4815	buf->b_efunc = NULL;
4816	buf->b_private = NULL;
4817}
4818
4819int
4820arc_released(arc_buf_t *buf)
4821{
4822	int released;
4823
4824	mutex_enter(&buf->b_evict_lock);
4825	released = (buf->b_data != NULL &&
4826	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
4827	mutex_exit(&buf->b_evict_lock);
4828	return (released);
4829}
4830
4831#ifdef ZFS_DEBUG
4832int
4833arc_referenced(arc_buf_t *buf)
4834{
4835	int referenced;
4836
4837	mutex_enter(&buf->b_evict_lock);
4838	referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
4839	mutex_exit(&buf->b_evict_lock);
4840	return (referenced);
4841}
4842#endif
4843
4844static void
4845arc_write_ready(zio_t *zio)
4846{
4847	arc_write_callback_t *callback = zio->io_private;
4848	arc_buf_t *buf = callback->awcb_buf;
4849	arc_buf_hdr_t *hdr = buf->b_hdr;
4850
4851	ASSERT(HDR_HAS_L1HDR(hdr));
4852	ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
4853	ASSERT(hdr->b_l1hdr.b_datacnt > 0);
4854	callback->awcb_ready(zio, buf, callback->awcb_private);
4855
4856	/*
4857	 * If the IO is already in progress, then this is a re-write
4858	 * attempt, so we need to thaw and re-compute the cksum.
4859	 * It is the responsibility of the callback to handle the
4860	 * accounting for any re-write attempt.
4861	 */
4862	if (HDR_IO_IN_PROGRESS(hdr)) {
4863		mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
4864		if (hdr->b_freeze_cksum != NULL) {
4865			kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
4866			hdr->b_freeze_cksum = NULL;
4867		}
4868		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
4869	}
4870	arc_cksum_compute(buf, B_FALSE);
4871	hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
4872}
4873
4874/*
4875 * The SPA calls this callback for each physical write that happens on behalf
4876 * of a logical write.  See the comment in dbuf_write_physdone() for details.
4877 */
4878static void
4879arc_write_physdone(zio_t *zio)
4880{
4881	arc_write_callback_t *cb = zio->io_private;
4882	if (cb->awcb_physdone != NULL)
4883		cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
4884}
4885
4886static void
4887arc_write_done(zio_t *zio)
4888{
4889	arc_write_callback_t *callback = zio->io_private;
4890	arc_buf_t *buf = callback->awcb_buf;
4891	arc_buf_hdr_t *hdr = buf->b_hdr;
4892
4893	ASSERT(hdr->b_l1hdr.b_acb == NULL);
4894
4895	if (zio->io_error == 0) {
4896		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
4897			buf_discard_identity(hdr);
4898		} else {
4899			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
4900			hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
4901		}
4902	} else {
4903		ASSERT(BUF_EMPTY(hdr));
4904	}
4905
4906	/*
4907	 * If the block to be written was all-zero or compressed enough to be
4908	 * embedded in the BP, no write was performed so there will be no
4909	 * dva/birth/checksum.  The buffer must therefore remain anonymous
4910	 * (and uncached).
4911	 */
4912	if (!BUF_EMPTY(hdr)) {
4913		arc_buf_hdr_t *exists;
4914		kmutex_t *hash_lock;
4915
4916		ASSERT(zio->io_error == 0);
4917
4918		arc_cksum_verify(buf);
4919
4920		exists = buf_hash_insert(hdr, &hash_lock);
4921		if (exists != NULL) {
4922			/*
4923			 * This can only happen if we overwrite for
4924			 * sync-to-convergence, because we remove
4925			 * buffers from the hash table when we arc_free().
4926			 */
4927			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
4928				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
4929					panic("bad overwrite, hdr=%p exists=%p",
4930					    (void *)hdr, (void *)exists);
4931				ASSERT(refcount_is_zero(
4932				    &exists->b_l1hdr.b_refcnt));
4933				arc_change_state(arc_anon, exists, hash_lock);
4934				mutex_exit(hash_lock);
4935				arc_hdr_destroy(exists);
4936				exists = buf_hash_insert(hdr, &hash_lock);
4937				ASSERT3P(exists, ==, NULL);
4938			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
4939				/* nopwrite */
4940				ASSERT(zio->io_prop.zp_nopwrite);
4941				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
4942					panic("bad nopwrite, hdr=%p exists=%p",
4943					    (void *)hdr, (void *)exists);
4944			} else {
4945				/* Dedup */
4946				ASSERT(hdr->b_l1hdr.b_datacnt == 1);
4947				ASSERT(hdr->b_l1hdr.b_state == arc_anon);
4948				ASSERT(BP_GET_DEDUP(zio->io_bp));
4949				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
4950			}
4951		}
4952		hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
4953		/* if it's not anon, we are doing a scrub */
4954		if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
4955			arc_access(hdr, hash_lock);
4956		mutex_exit(hash_lock);
4957	} else {
4958		hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
4959	}
4960
4961	ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4962	callback->awcb_done(zio, buf, callback->awcb_private);
4963
4964	kmem_free(callback, sizeof (arc_write_callback_t));
4965}
4966
4967zio_t *
4968arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
4969    blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
4970    const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone,
4971    arc_done_func_t *done, void *private, zio_priority_t priority,
4972    int zio_flags, const zbookmark_phys_t *zb)
4973{
4974	arc_buf_hdr_t *hdr = buf->b_hdr;
4975	arc_write_callback_t *callback;
4976	zio_t *zio;
4977
4978	ASSERT(ready != NULL);
4979	ASSERT(done != NULL);
4980	ASSERT(!HDR_IO_ERROR(hdr));
4981	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4982	ASSERT(hdr->b_l1hdr.b_acb == NULL);
4983	ASSERT(hdr->b_l1hdr.b_datacnt > 0);
4984	if (l2arc)
4985		hdr->b_flags |= ARC_FLAG_L2CACHE;
4986	if (l2arc_compress)
4987		hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4988	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
4989	callback->awcb_ready = ready;
4990	callback->awcb_physdone = physdone;
4991	callback->awcb_done = done;
4992	callback->awcb_private = private;
4993	callback->awcb_buf = buf;
4994
4995	zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
4996	    arc_write_ready, arc_write_physdone, arc_write_done, callback,
4997	    priority, zio_flags, zb);
4998
4999	return (zio);
5000}
5001
5002static int
5003arc_memory_throttle(uint64_t reserve, uint64_t txg)
5004{
5005#ifdef _KERNEL
5006	uint64_t available_memory = ptob(freemem);
5007	static uint64_t page_load = 0;
5008	static uint64_t last_txg = 0;
5009
5010#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
5011	available_memory =
5012	    MIN(available_memory, ptob(vmem_size(heap_arena, VMEM_FREE)));
5013#endif
5014
5015	if (freemem > (uint64_t)physmem * arc_lotsfree_percent / 100)
5016		return (0);
5017
5018	if (txg > last_txg) {
5019		last_txg = txg;
5020		page_load = 0;
5021	}
5022	/*
5023	 * If we are in pageout, we know that memory is already tight,
5024	 * the arc is already going to be evicting, so we just want to
5025	 * continue to let page writes occur as quickly as possible.
5026	 */
5027	if (curproc == pageproc) {
5028		if (page_load > MAX(ptob(minfree), available_memory) / 4)
5029			return (SET_ERROR(ERESTART));
5030		/* Note: reserve is inflated, so we deflate */
5031		page_load += reserve / 8;
5032		return (0);
5033	} else if (page_load > 0 && arc_reclaim_needed()) {
5034		/* memory is low, delay before restarting */
5035		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
5036		return (SET_ERROR(EAGAIN));
5037	}
5038	page_load = 0;
5039#endif
5040	return (0);
5041}
5042
5043void
5044arc_tempreserve_clear(uint64_t reserve)
5045{
5046	atomic_add_64(&arc_tempreserve, -reserve);
5047	ASSERT((int64_t)arc_tempreserve >= 0);
5048}
5049
5050int
5051arc_tempreserve_space(uint64_t reserve, uint64_t txg)
5052{
5053	int error;
5054	uint64_t anon_size;
5055
5056	if (reserve > arc_c/4 && !arc_no_grow) {
5057		arc_c = MIN(arc_c_max, reserve * 4);
5058		DTRACE_PROBE1(arc__set_reserve, uint64_t, arc_c);
5059	}
5060	if (reserve > arc_c)
5061		return (SET_ERROR(ENOMEM));
5062
5063	/*
5064	 * Don't count loaned bufs as in flight dirty data to prevent long
5065	 * network delays from blocking transactions that are ready to be
5066	 * assigned to a txg.
5067	 */
5068	anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
5069	    arc_loaned_bytes), 0);
5070
5071	/*
5072	 * Writes will, almost always, require additional memory allocations
5073	 * in order to compress/encrypt/etc the data.  We therefore need to
5074	 * make sure that there is sufficient available memory for this.
5075	 */
5076	error = arc_memory_throttle(reserve, txg);
5077	if (error != 0)
5078		return (error);
5079
5080	/*
5081	 * Throttle writes when the amount of dirty data in the cache
5082	 * gets too large.  We try to keep the cache less than half full
5083	 * of dirty blocks so that our sync times don't grow too large.
5084	 * Note: if two requests come in concurrently, we might let them
5085	 * both succeed, when one of them should fail.  Not a huge deal.
5086	 */
5087
5088	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
5089	    anon_size > arc_c / 4) {
5090		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
5091		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
5092		    arc_tempreserve>>10,
5093		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
5094		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
5095		    reserve>>10, arc_c>>10);
5096		return (SET_ERROR(ERESTART));
5097	}
5098	atomic_add_64(&arc_tempreserve, reserve);
5099	return (0);
5100}
5101
5102static void
5103arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
5104    kstat_named_t *evict_data, kstat_named_t *evict_metadata)
5105{
5106	size->value.ui64 = refcount_count(&state->arcs_size);
5107	evict_data->value.ui64 = state->arcs_lsize[ARC_BUFC_DATA];
5108	evict_metadata->value.ui64 = state->arcs_lsize[ARC_BUFC_METADATA];
5109}
5110
5111static int
5112arc_kstat_update(kstat_t *ksp, int rw)
5113{
5114	arc_stats_t *as = ksp->ks_data;
5115
5116	if (rw == KSTAT_WRITE) {
5117		return (EACCES);
5118	} else {
5119		arc_kstat_update_state(arc_anon,
5120		    &as->arcstat_anon_size,
5121		    &as->arcstat_anon_evictable_data,
5122		    &as->arcstat_anon_evictable_metadata);
5123		arc_kstat_update_state(arc_mru,
5124		    &as->arcstat_mru_size,
5125		    &as->arcstat_mru_evictable_data,
5126		    &as->arcstat_mru_evictable_metadata);
5127		arc_kstat_update_state(arc_mru_ghost,
5128		    &as->arcstat_mru_ghost_size,
5129		    &as->arcstat_mru_ghost_evictable_data,
5130		    &as->arcstat_mru_ghost_evictable_metadata);
5131		arc_kstat_update_state(arc_mfu,
5132		    &as->arcstat_mfu_size,
5133		    &as->arcstat_mfu_evictable_data,
5134		    &as->arcstat_mfu_evictable_metadata);
5135		arc_kstat_update_state(arc_mfu_ghost,
5136		    &as->arcstat_mfu_ghost_size,
5137		    &as->arcstat_mfu_ghost_evictable_data,
5138		    &as->arcstat_mfu_ghost_evictable_metadata);
5139	}
5140
5141	return (0);
5142}
5143
5144/*
5145 * This function *must* return indices evenly distributed between all
5146 * sublists of the multilist. This is needed due to how the ARC eviction
5147 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
5148 * distributed between all sublists and uses this assumption when
5149 * deciding which sublist to evict from and how much to evict from it.
5150 */
5151unsigned int
5152arc_state_multilist_index_func(multilist_t *ml, void *obj)
5153{
5154	arc_buf_hdr_t *hdr = obj;
5155
5156	/*
5157	 * We rely on b_dva to generate evenly distributed index
5158	 * numbers using buf_hash below. So, as an added precaution,
5159	 * let's make sure we never add empty buffers to the arc lists.
5160	 */
5161	ASSERT(!BUF_EMPTY(hdr));
5162
5163	/*
5164	 * The assumption here, is the hash value for a given
5165	 * arc_buf_hdr_t will remain constant throughout it's lifetime
5166	 * (i.e. it's b_spa, b_dva, and b_birth fields don't change).
5167	 * Thus, we don't need to store the header's sublist index
5168	 * on insertion, as this index can be recalculated on removal.
5169	 *
5170	 * Also, the low order bits of the hash value are thought to be
5171	 * distributed evenly. Otherwise, in the case that the multilist
5172	 * has a power of two number of sublists, each sublists' usage
5173	 * would not be evenly distributed.
5174	 */
5175	return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
5176	    multilist_get_num_sublists(ml));
5177}
5178
5179#ifdef _KERNEL
5180static eventhandler_tag arc_event_lowmem = NULL;
5181
5182static void
5183arc_lowmem(void *arg __unused, int howto __unused)
5184{
5185
5186	mutex_enter(&arc_reclaim_lock);
5187	/* XXX: Memory deficit should be passed as argument. */
5188	needfree = btoc(arc_c >> arc_shrink_shift);
5189	DTRACE_PROBE(arc__needfree);
5190	cv_signal(&arc_reclaim_thread_cv);
5191
5192	/*
5193	 * It is unsafe to block here in arbitrary threads, because we can come
5194	 * here from ARC itself and may hold ARC locks and thus risk a deadlock
5195	 * with ARC reclaim thread.
5196	 */
5197	if (curproc == pageproc)
5198		(void) cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
5199	mutex_exit(&arc_reclaim_lock);
5200}
5201#endif
5202
5203void
5204arc_init(void)
5205{
5206	int i, prefetch_tunable_set = 0;
5207
5208	mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
5209	cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
5210	cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
5211
5212	mutex_init(&arc_user_evicts_lock, NULL, MUTEX_DEFAULT, NULL);
5213	cv_init(&arc_user_evicts_cv, NULL, CV_DEFAULT, NULL);
5214
5215	/* Convert seconds to clock ticks */
5216	arc_min_prefetch_lifespan = 1 * hz;
5217
5218	/* Start out with 1/8 of all memory */
5219	arc_c = kmem_size() / 8;
5220
5221#ifdef sun
5222#ifdef _KERNEL
5223	/*
5224	 * On architectures where the physical memory can be larger
5225	 * than the addressable space (intel in 32-bit mode), we may
5226	 * need to limit the cache to 1/8 of VM size.
5227	 */
5228	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
5229#endif
5230#endif	/* sun */
5231	/* set min cache to 1/32 of all memory, or 16MB, whichever is more */
5232	arc_c_min = MAX(arc_c / 4, 16 << 20);
5233	/* set max to 1/2 of all memory, or all but 1GB, whichever is more */
5234	if (arc_c * 8 >= 1 << 30)
5235		arc_c_max = (arc_c * 8) - (1 << 30);
5236	else
5237		arc_c_max = arc_c_min;
5238	arc_c_max = MAX(arc_c * 5, arc_c_max);
5239
5240#ifdef _KERNEL
5241	/*
5242	 * Allow the tunables to override our calculations if they are
5243	 * reasonable (ie. over 16MB)
5244	 */
5245	if (zfs_arc_max > 16 << 20 && zfs_arc_max < kmem_size())
5246		arc_c_max = zfs_arc_max;
5247	if (zfs_arc_min > 16 << 20 && zfs_arc_min <= arc_c_max)
5248		arc_c_min = zfs_arc_min;
5249#endif
5250
5251	arc_c = arc_c_max;
5252	arc_p = (arc_c >> 1);
5253
5254	/* limit meta-data to 1/4 of the arc capacity */
5255	arc_meta_limit = arc_c_max / 4;
5256
5257	/* Allow the tunable to override if it is reasonable */
5258	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
5259		arc_meta_limit = zfs_arc_meta_limit;
5260
5261	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
5262		arc_c_min = arc_meta_limit / 2;
5263
5264	if (zfs_arc_meta_min > 0) {
5265		arc_meta_min = zfs_arc_meta_min;
5266	} else {
5267		arc_meta_min = arc_c_min / 2;
5268	}
5269
5270	if (zfs_arc_grow_retry > 0)
5271		arc_grow_retry = zfs_arc_grow_retry;
5272
5273	if (zfs_arc_shrink_shift > 0)
5274		arc_shrink_shift = zfs_arc_shrink_shift;
5275
5276	/*
5277	 * Ensure that arc_no_grow_shift is less than arc_shrink_shift.
5278	 */
5279	if (arc_no_grow_shift >= arc_shrink_shift)
5280		arc_no_grow_shift = arc_shrink_shift - 1;
5281
5282	if (zfs_arc_p_min_shift > 0)
5283		arc_p_min_shift = zfs_arc_p_min_shift;
5284
5285	if (zfs_arc_num_sublists_per_state < 1)
5286		zfs_arc_num_sublists_per_state = MAX(max_ncpus, 1);
5287
5288	/* if kmem_flags are set, lets try to use less memory */
5289	if (kmem_debugging())
5290		arc_c = arc_c / 2;
5291	if (arc_c < arc_c_min)
5292		arc_c = arc_c_min;
5293
5294	zfs_arc_min = arc_c_min;
5295	zfs_arc_max = arc_c_max;
5296
5297	arc_anon = &ARC_anon;
5298	arc_mru = &ARC_mru;
5299	arc_mru_ghost = &ARC_mru_ghost;
5300	arc_mfu = &ARC_mfu;
5301	arc_mfu_ghost = &ARC_mfu_ghost;
5302	arc_l2c_only = &ARC_l2c_only;
5303	arc_size = 0;
5304
5305	multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
5306	    sizeof (arc_buf_hdr_t),
5307	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5308	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5309	multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
5310	    sizeof (arc_buf_hdr_t),
5311	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5312	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5313	multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
5314	    sizeof (arc_buf_hdr_t),
5315	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5316	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5317	multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
5318	    sizeof (arc_buf_hdr_t),
5319	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5320	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5321	multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
5322	    sizeof (arc_buf_hdr_t),
5323	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5324	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5325	multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
5326	    sizeof (arc_buf_hdr_t),
5327	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5328	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5329	multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
5330	    sizeof (arc_buf_hdr_t),
5331	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5332	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5333	multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
5334	    sizeof (arc_buf_hdr_t),
5335	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5336	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5337	multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
5338	    sizeof (arc_buf_hdr_t),
5339	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5340	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5341	multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
5342	    sizeof (arc_buf_hdr_t),
5343	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5344	    zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5345
5346	refcount_create(&arc_anon->arcs_size);
5347	refcount_create(&arc_mru->arcs_size);
5348	refcount_create(&arc_mru_ghost->arcs_size);
5349	refcount_create(&arc_mfu->arcs_size);
5350	refcount_create(&arc_mfu_ghost->arcs_size);
5351	refcount_create(&arc_l2c_only->arcs_size);
5352
5353	buf_init();
5354
5355	arc_reclaim_thread_exit = FALSE;
5356	arc_user_evicts_thread_exit = FALSE;
5357	arc_eviction_list = NULL;
5358	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
5359
5360	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
5361	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
5362
5363	if (arc_ksp != NULL) {
5364		arc_ksp->ks_data = &arc_stats;
5365		arc_ksp->ks_update = arc_kstat_update;
5366		kstat_install(arc_ksp);
5367	}
5368
5369	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
5370	    TS_RUN, minclsyspri);
5371
5372#ifdef _KERNEL
5373	arc_event_lowmem = EVENTHANDLER_REGISTER(vm_lowmem, arc_lowmem, NULL,
5374	    EVENTHANDLER_PRI_FIRST);
5375#endif
5376
5377	(void) thread_create(NULL, 0, arc_user_evicts_thread, NULL, 0, &p0,
5378	    TS_RUN, minclsyspri);
5379
5380	arc_dead = FALSE;
5381	arc_warm = B_FALSE;
5382
5383	/*
5384	 * Calculate maximum amount of dirty data per pool.
5385	 *
5386	 * If it has been set by /etc/system, take that.
5387	 * Otherwise, use a percentage of physical memory defined by
5388	 * zfs_dirty_data_max_percent (default 10%) with a cap at
5389	 * zfs_dirty_data_max_max (default 4GB).
5390	 */
5391	if (zfs_dirty_data_max == 0) {
5392		zfs_dirty_data_max = ptob(physmem) *
5393		    zfs_dirty_data_max_percent / 100;
5394		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
5395		    zfs_dirty_data_max_max);
5396	}
5397
5398#ifdef _KERNEL
5399	if (TUNABLE_INT_FETCH("vfs.zfs.prefetch_disable", &zfs_prefetch_disable))
5400		prefetch_tunable_set = 1;
5401
5402#ifdef __i386__
5403	if (prefetch_tunable_set == 0) {
5404		printf("ZFS NOTICE: Prefetch is disabled by default on i386 "
5405		    "-- to enable,\n");
5406		printf("            add \"vfs.zfs.prefetch_disable=0\" "
5407		    "to /boot/loader.conf.\n");
5408		zfs_prefetch_disable = 1;
5409	}
5410#else
5411	if ((((uint64_t)physmem * PAGESIZE) < (1ULL << 32)) &&
5412	    prefetch_tunable_set == 0) {
5413		printf("ZFS NOTICE: Prefetch is disabled by default if less "
5414		    "than 4GB of RAM is present;\n"
5415		    "            to enable, add \"vfs.zfs.prefetch_disable=0\" "
5416		    "to /boot/loader.conf.\n");
5417		zfs_prefetch_disable = 1;
5418	}
5419#endif
5420	/* Warn about ZFS memory and address space requirements. */
5421	if (((uint64_t)physmem * PAGESIZE) < (256 + 128 + 64) * (1 << 20)) {
5422		printf("ZFS WARNING: Recommended minimum RAM size is 512MB; "
5423		    "expect unstable behavior.\n");
5424	}
5425	if (kmem_size() < 512 * (1 << 20)) {
5426		printf("ZFS WARNING: Recommended minimum kmem_size is 512MB; "
5427		    "expect unstable behavior.\n");
5428		printf("             Consider tuning vm.kmem_size and "
5429		    "vm.kmem_size_max\n");
5430		printf("             in /boot/loader.conf.\n");
5431	}
5432#endif
5433}
5434
5435void
5436arc_fini(void)
5437{
5438	mutex_enter(&arc_reclaim_lock);
5439	arc_reclaim_thread_exit = TRUE;
5440	/*
5441	 * The reclaim thread will set arc_reclaim_thread_exit back to
5442	 * FALSE when it is finished exiting; we're waiting for that.
5443	 */
5444	while (arc_reclaim_thread_exit) {
5445		cv_signal(&arc_reclaim_thread_cv);
5446		cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
5447	}
5448	mutex_exit(&arc_reclaim_lock);
5449
5450	mutex_enter(&arc_user_evicts_lock);
5451	arc_user_evicts_thread_exit = TRUE;
5452	/*
5453	 * The user evicts thread will set arc_user_evicts_thread_exit
5454	 * to FALSE when it is finished exiting; we're waiting for that.
5455	 */
5456	while (arc_user_evicts_thread_exit) {
5457		cv_signal(&arc_user_evicts_cv);
5458		cv_wait(&arc_user_evicts_cv, &arc_user_evicts_lock);
5459	}
5460	mutex_exit(&arc_user_evicts_lock);
5461
5462	/* Use TRUE to ensure *all* buffers are evicted */
5463	arc_flush(NULL, TRUE);
5464
5465	arc_dead = TRUE;
5466
5467	if (arc_ksp != NULL) {
5468		kstat_delete(arc_ksp);
5469		arc_ksp = NULL;
5470	}
5471
5472	mutex_destroy(&arc_reclaim_lock);
5473	cv_destroy(&arc_reclaim_thread_cv);
5474	cv_destroy(&arc_reclaim_waiters_cv);
5475
5476	mutex_destroy(&arc_user_evicts_lock);
5477	cv_destroy(&arc_user_evicts_cv);
5478
5479	refcount_destroy(&arc_anon->arcs_size);
5480	refcount_destroy(&arc_mru->arcs_size);
5481	refcount_destroy(&arc_mru_ghost->arcs_size);
5482	refcount_destroy(&arc_mfu->arcs_size);
5483	refcount_destroy(&arc_mfu_ghost->arcs_size);
5484	refcount_destroy(&arc_l2c_only->arcs_size);
5485
5486	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
5487	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
5488	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
5489	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
5490	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
5491	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
5492	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
5493	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
5494
5495	buf_fini();
5496
5497	ASSERT0(arc_loaned_bytes);
5498
5499#ifdef _KERNEL
5500	if (arc_event_lowmem != NULL)
5501		EVENTHANDLER_DEREGISTER(vm_lowmem, arc_event_lowmem);
5502#endif
5503}
5504
5505/*
5506 * Level 2 ARC
5507 *
5508 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
5509 * It uses dedicated storage devices to hold cached data, which are populated
5510 * using large infrequent writes.  The main role of this cache is to boost
5511 * the performance of random read workloads.  The intended L2ARC devices
5512 * include short-stroked disks, solid state disks, and other media with
5513 * substantially faster read latency than disk.
5514 *
5515 *                 +-----------------------+
5516 *                 |         ARC           |
5517 *                 +-----------------------+
5518 *                    |         ^     ^
5519 *                    |         |     |
5520 *      l2arc_feed_thread()    arc_read()
5521 *                    |         |     |
5522 *                    |  l2arc read   |
5523 *                    V         |     |
5524 *               +---------------+    |
5525 *               |     L2ARC     |    |
5526 *               +---------------+    |
5527 *                   |    ^           |
5528 *          l2arc_write() |           |
5529 *                   |    |           |
5530 *                   V    |           |
5531 *                 +-------+      +-------+
5532 *                 | vdev  |      | vdev  |
5533 *                 | cache |      | cache |
5534 *                 +-------+      +-------+
5535 *                 +=========+     .-----.
5536 *                 :  L2ARC  :    |-_____-|
5537 *                 : devices :    | Disks |
5538 *                 +=========+    `-_____-'
5539 *
5540 * Read requests are satisfied from the following sources, in order:
5541 *
5542 *	1) ARC
5543 *	2) vdev cache of L2ARC devices
5544 *	3) L2ARC devices
5545 *	4) vdev cache of disks
5546 *	5) disks
5547 *
5548 * Some L2ARC device types exhibit extremely slow write performance.
5549 * To accommodate for this there are some significant differences between
5550 * the L2ARC and traditional cache design:
5551 *
5552 * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
5553 * the ARC behave as usual, freeing buffers and placing headers on ghost
5554 * lists.  The ARC does not send buffers to the L2ARC during eviction as
5555 * this would add inflated write latencies for all ARC memory pressure.
5556 *
5557 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
5558 * It does this by periodically scanning buffers from the eviction-end of
5559 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
5560 * not already there. It scans until a headroom of buffers is satisfied,
5561 * which itself is a buffer for ARC eviction. If a compressible buffer is
5562 * found during scanning and selected for writing to an L2ARC device, we
5563 * temporarily boost scanning headroom during the next scan cycle to make
5564 * sure we adapt to compression effects (which might significantly reduce
5565 * the data volume we write to L2ARC). The thread that does this is
5566 * l2arc_feed_thread(), illustrated below; example sizes are included to
5567 * provide a better sense of ratio than this diagram:
5568 *
5569 *	       head -->                        tail
5570 *	        +---------------------+----------+
5571 *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
5572 *	        +---------------------+----------+   |   o L2ARC eligible
5573 *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
5574 *	        +---------------------+----------+   |
5575 *	             15.9 Gbytes      ^ 32 Mbytes    |
5576 *	                           headroom          |
5577 *	                                      l2arc_feed_thread()
5578 *	                                             |
5579 *	                 l2arc write hand <--[oooo]--'
5580 *	                         |           8 Mbyte
5581 *	                         |          write max
5582 *	                         V
5583 *		  +==============================+
5584 *	L2ARC dev |####|#|###|###|    |####| ... |
5585 *	          +==============================+
5586 *	                     32 Gbytes
5587 *
5588 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
5589 * evicted, then the L2ARC has cached a buffer much sooner than it probably
5590 * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
5591 * safe to say that this is an uncommon case, since buffers at the end of
5592 * the ARC lists have moved there due to inactivity.
5593 *
5594 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
5595 * then the L2ARC simply misses copying some buffers.  This serves as a
5596 * pressure valve to prevent heavy read workloads from both stalling the ARC
5597 * with waits and clogging the L2ARC with writes.  This also helps prevent
5598 * the potential for the L2ARC to churn if it attempts to cache content too
5599 * quickly, such as during backups of the entire pool.
5600 *
5601 * 5. After system boot and before the ARC has filled main memory, there are
5602 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
5603 * lists can remain mostly static.  Instead of searching from tail of these
5604 * lists as pictured, the l2arc_feed_thread() will search from the list heads
5605 * for eligible buffers, greatly increasing its chance of finding them.
5606 *
5607 * The L2ARC device write speed is also boosted during this time so that
5608 * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
5609 * there are no L2ARC reads, and no fear of degrading read performance
5610 * through increased writes.
5611 *
5612 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
5613 * the vdev queue can aggregate them into larger and fewer writes.  Each
5614 * device is written to in a rotor fashion, sweeping writes through
5615 * available space then repeating.
5616 *
5617 * 7. The L2ARC does not store dirty content.  It never needs to flush
5618 * write buffers back to disk based storage.
5619 *
5620 * 8. If an ARC buffer is written (and dirtied) which also exists in the
5621 * L2ARC, the now stale L2ARC buffer is immediately dropped.
5622 *
5623 * The performance of the L2ARC can be tweaked by a number of tunables, which
5624 * may be necessary for different workloads:
5625 *
5626 *	l2arc_write_max		max write bytes per interval
5627 *	l2arc_write_boost	extra write bytes during device warmup
5628 *	l2arc_noprefetch	skip caching prefetched buffers
5629 *	l2arc_headroom		number of max device writes to precache
5630 *	l2arc_headroom_boost	when we find compressed buffers during ARC
5631 *				scanning, we multiply headroom by this
5632 *				percentage factor for the next scan cycle,
5633 *				since more compressed buffers are likely to
5634 *				be present
5635 *	l2arc_feed_secs		seconds between L2ARC writing
5636 *
5637 * Tunables may be removed or added as future performance improvements are
5638 * integrated, and also may become zpool properties.
5639 *
5640 * There are three key functions that control how the L2ARC warms up:
5641 *
5642 *	l2arc_write_eligible()	check if a buffer is eligible to cache
5643 *	l2arc_write_size()	calculate how much to write
5644 *	l2arc_write_interval()	calculate sleep delay between writes
5645 *
5646 * These three functions determine what to write, how much, and how quickly
5647 * to send writes.
5648 */
5649
5650static boolean_t
5651l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
5652{
5653	/*
5654	 * A buffer is *not* eligible for the L2ARC if it:
5655	 * 1. belongs to a different spa.
5656	 * 2. is already cached on the L2ARC.
5657	 * 3. has an I/O in progress (it may be an incomplete read).
5658	 * 4. is flagged not eligible (zfs property).
5659	 */
5660	if (hdr->b_spa != spa_guid) {
5661		ARCSTAT_BUMP(arcstat_l2_write_spa_mismatch);
5662		return (B_FALSE);
5663	}
5664	if (HDR_HAS_L2HDR(hdr)) {
5665		ARCSTAT_BUMP(arcstat_l2_write_in_l2);
5666		return (B_FALSE);
5667	}
5668	if (HDR_IO_IN_PROGRESS(hdr)) {
5669		ARCSTAT_BUMP(arcstat_l2_write_hdr_io_in_progress);
5670		return (B_FALSE);
5671	}
5672	if (!HDR_L2CACHE(hdr)) {
5673		ARCSTAT_BUMP(arcstat_l2_write_not_cacheable);
5674		return (B_FALSE);
5675	}
5676
5677	return (B_TRUE);
5678}
5679
5680static uint64_t
5681l2arc_write_size(void)
5682{
5683	uint64_t size;
5684
5685	/*
5686	 * Make sure our globals have meaningful values in case the user
5687	 * altered them.
5688	 */
5689	size = l2arc_write_max;
5690	if (size == 0) {
5691		cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
5692		    "be greater than zero, resetting it to the default (%d)",
5693		    L2ARC_WRITE_SIZE);
5694		size = l2arc_write_max = L2ARC_WRITE_SIZE;
5695	}
5696
5697	if (arc_warm == B_FALSE)
5698		size += l2arc_write_boost;
5699
5700	return (size);
5701
5702}
5703
5704static clock_t
5705l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
5706{
5707	clock_t interval, next, now;
5708
5709	/*
5710	 * If the ARC lists are busy, increase our write rate; if the
5711	 * lists are stale, idle back.  This is achieved by checking
5712	 * how much we previously wrote - if it was more than half of
5713	 * what we wanted, schedule the next write much sooner.
5714	 */
5715	if (l2arc_feed_again && wrote > (wanted / 2))
5716		interval = (hz * l2arc_feed_min_ms) / 1000;
5717	else
5718		interval = hz * l2arc_feed_secs;
5719
5720	now = ddi_get_lbolt();
5721	next = MAX(now, MIN(now + interval, began + interval));
5722
5723	return (next);
5724}
5725
5726/*
5727 * Cycle through L2ARC devices.  This is how L2ARC load balances.
5728 * If a device is returned, this also returns holding the spa config lock.
5729 */
5730static l2arc_dev_t *
5731l2arc_dev_get_next(void)
5732{
5733	l2arc_dev_t *first, *next = NULL;
5734
5735	/*
5736	 * Lock out the removal of spas (spa_namespace_lock), then removal
5737	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
5738	 * both locks will be dropped and a spa config lock held instead.
5739	 */
5740	mutex_enter(&spa_namespace_lock);
5741	mutex_enter(&l2arc_dev_mtx);
5742
5743	/* if there are no vdevs, there is nothing to do */
5744	if (l2arc_ndev == 0)
5745		goto out;
5746
5747	first = NULL;
5748	next = l2arc_dev_last;
5749	do {
5750		/* loop around the list looking for a non-faulted vdev */
5751		if (next == NULL) {
5752			next = list_head(l2arc_dev_list);
5753		} else {
5754			next = list_next(l2arc_dev_list, next);
5755			if (next == NULL)
5756				next = list_head(l2arc_dev_list);
5757		}
5758
5759		/* if we have come back to the start, bail out */
5760		if (first == NULL)
5761			first = next;
5762		else if (next == first)
5763			break;
5764
5765	} while (vdev_is_dead(next->l2ad_vdev));
5766
5767	/* if we were unable to find any usable vdevs, return NULL */
5768	if (vdev_is_dead(next->l2ad_vdev))
5769		next = NULL;
5770
5771	l2arc_dev_last = next;
5772
5773out:
5774	mutex_exit(&l2arc_dev_mtx);
5775
5776	/*
5777	 * Grab the config lock to prevent the 'next' device from being
5778	 * removed while we are writing to it.
5779	 */
5780	if (next != NULL)
5781		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
5782	mutex_exit(&spa_namespace_lock);
5783
5784	return (next);
5785}
5786
5787/*
5788 * Free buffers that were tagged for destruction.
5789 */
5790static void
5791l2arc_do_free_on_write()
5792{
5793	list_t *buflist;
5794	l2arc_data_free_t *df, *df_prev;
5795
5796	mutex_enter(&l2arc_free_on_write_mtx);
5797	buflist = l2arc_free_on_write;
5798
5799	for (df = list_tail(buflist); df; df = df_prev) {
5800		df_prev = list_prev(buflist, df);
5801		ASSERT(df->l2df_data != NULL);
5802		ASSERT(df->l2df_func != NULL);
5803		df->l2df_func(df->l2df_data, df->l2df_size);
5804		list_remove(buflist, df);
5805		kmem_free(df, sizeof (l2arc_data_free_t));
5806	}
5807
5808	mutex_exit(&l2arc_free_on_write_mtx);
5809}
5810
5811/*
5812 * A write to a cache device has completed.  Update all headers to allow
5813 * reads from these buffers to begin.
5814 */
5815static void
5816l2arc_write_done(zio_t *zio)
5817{
5818	l2arc_write_callback_t *cb;
5819	l2arc_dev_t *dev;
5820	list_t *buflist;
5821	arc_buf_hdr_t *head, *hdr, *hdr_prev;
5822	kmutex_t *hash_lock;
5823	int64_t bytes_dropped = 0;
5824
5825	cb = zio->io_private;
5826	ASSERT(cb != NULL);
5827	dev = cb->l2wcb_dev;
5828	ASSERT(dev != NULL);
5829	head = cb->l2wcb_head;
5830	ASSERT(head != NULL);
5831	buflist = &dev->l2ad_buflist;
5832	ASSERT(buflist != NULL);
5833	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
5834	    l2arc_write_callback_t *, cb);
5835
5836	if (zio->io_error != 0)
5837		ARCSTAT_BUMP(arcstat_l2_writes_error);
5838
5839	/*
5840	 * All writes completed, or an error was hit.
5841	 */
5842top:
5843	mutex_enter(&dev->l2ad_mtx);
5844	for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
5845		hdr_prev = list_prev(buflist, hdr);
5846
5847		hash_lock = HDR_LOCK(hdr);
5848
5849		/*
5850		 * We cannot use mutex_enter or else we can deadlock
5851		 * with l2arc_write_buffers (due to swapping the order
5852		 * the hash lock and l2ad_mtx are taken).
5853		 */
5854		if (!mutex_tryenter(hash_lock)) {
5855			/*
5856			 * Missed the hash lock. We must retry so we
5857			 * don't leave the ARC_FLAG_L2_WRITING bit set.
5858			 */
5859			ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
5860
5861			/*
5862			 * We don't want to rescan the headers we've
5863			 * already marked as having been written out, so
5864			 * we reinsert the head node so we can pick up
5865			 * where we left off.
5866			 */
5867			list_remove(buflist, head);
5868			list_insert_after(buflist, hdr, head);
5869
5870			mutex_exit(&dev->l2ad_mtx);
5871
5872			/*
5873			 * We wait for the hash lock to become available
5874			 * to try and prevent busy waiting, and increase
5875			 * the chance we'll be able to acquire the lock
5876			 * the next time around.
5877			 */
5878			mutex_enter(hash_lock);
5879			mutex_exit(hash_lock);
5880			goto top;
5881		}
5882
5883		/*
5884		 * We could not have been moved into the arc_l2c_only
5885		 * state while in-flight due to our ARC_FLAG_L2_WRITING
5886		 * bit being set. Let's just ensure that's being enforced.
5887		 */
5888		ASSERT(HDR_HAS_L1HDR(hdr));
5889
5890		/*
5891		 * We may have allocated a buffer for L2ARC compression,
5892		 * we must release it to avoid leaking this data.
5893		 */
5894		l2arc_release_cdata_buf(hdr);
5895
5896		if (zio->io_error != 0) {
5897			/*
5898			 * Error - drop L2ARC entry.
5899			 */
5900			trim_map_free(hdr->b_l2hdr.b_dev->l2ad_vdev,
5901			    hdr->b_l2hdr.b_daddr, hdr->b_l2hdr.b_asize, 0);
5902			hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
5903
5904			ARCSTAT_INCR(arcstat_l2_asize, -hdr->b_l2hdr.b_asize);
5905			ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
5906
5907			bytes_dropped += hdr->b_l2hdr.b_asize;
5908			(void) refcount_remove_many(&dev->l2ad_alloc,
5909			    hdr->b_l2hdr.b_asize, hdr);
5910		}
5911
5912		/*
5913		 * Allow ARC to begin reads and ghost list evictions to
5914		 * this L2ARC entry.
5915		 */
5916		hdr->b_flags &= ~ARC_FLAG_L2_WRITING;
5917
5918		mutex_exit(hash_lock);
5919	}
5920
5921	atomic_inc_64(&l2arc_writes_done);
5922	list_remove(buflist, head);
5923	ASSERT(!HDR_HAS_L1HDR(head));
5924	kmem_cache_free(hdr_l2only_cache, head);
5925	mutex_exit(&dev->l2ad_mtx);
5926
5927	vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
5928
5929	l2arc_do_free_on_write();
5930
5931	kmem_free(cb, sizeof (l2arc_write_callback_t));
5932}
5933
5934/*
5935 * A read to a cache device completed.  Validate buffer contents before
5936 * handing over to the regular ARC routines.
5937 */
5938static void
5939l2arc_read_done(zio_t *zio)
5940{
5941	l2arc_read_callback_t *cb;
5942	arc_buf_hdr_t *hdr;
5943	arc_buf_t *buf;
5944	kmutex_t *hash_lock;
5945	int equal;
5946
5947	ASSERT(zio->io_vd != NULL);
5948	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
5949
5950	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
5951
5952	cb = zio->io_private;
5953	ASSERT(cb != NULL);
5954	buf = cb->l2rcb_buf;
5955	ASSERT(buf != NULL);
5956
5957	hash_lock = HDR_LOCK(buf->b_hdr);
5958	mutex_enter(hash_lock);
5959	hdr = buf->b_hdr;
5960	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
5961
5962	/*
5963	 * If the buffer was compressed, decompress it first.
5964	 */
5965	if (cb->l2rcb_compress != ZIO_COMPRESS_OFF)
5966		l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress);
5967	ASSERT(zio->io_data != NULL);
5968
5969	/*
5970	 * Check this survived the L2ARC journey.
5971	 */
5972	equal = arc_cksum_equal(buf);
5973	if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
5974		mutex_exit(hash_lock);
5975		zio->io_private = buf;
5976		zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
5977		zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
5978		arc_read_done(zio);
5979	} else {
5980		mutex_exit(hash_lock);
5981		/*
5982		 * Buffer didn't survive caching.  Increment stats and
5983		 * reissue to the original storage device.
5984		 */
5985		if (zio->io_error != 0) {
5986			ARCSTAT_BUMP(arcstat_l2_io_error);
5987		} else {
5988			zio->io_error = SET_ERROR(EIO);
5989		}
5990		if (!equal)
5991			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
5992
5993		/*
5994		 * If there's no waiter, issue an async i/o to the primary
5995		 * storage now.  If there *is* a waiter, the caller must
5996		 * issue the i/o in a context where it's OK to block.
5997		 */
5998		if (zio->io_waiter == NULL) {
5999			zio_t *pio = zio_unique_parent(zio);
6000
6001			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
6002
6003			zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
6004			    buf->b_data, zio->io_size, arc_read_done, buf,
6005			    zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
6006		}
6007	}
6008
6009	kmem_free(cb, sizeof (l2arc_read_callback_t));
6010}
6011
6012/*
6013 * This is the list priority from which the L2ARC will search for pages to
6014 * cache.  This is used within loops (0..3) to cycle through lists in the
6015 * desired order.  This order can have a significant effect on cache
6016 * performance.
6017 *
6018 * Currently the metadata lists are hit first, MFU then MRU, followed by
6019 * the data lists.  This function returns a locked list, and also returns
6020 * the lock pointer.
6021 */
6022static multilist_sublist_t *
6023l2arc_sublist_lock(int list_num)
6024{
6025	multilist_t *ml = NULL;
6026	unsigned int idx;
6027
6028	ASSERT(list_num >= 0 && list_num <= 3);
6029
6030	switch (list_num) {
6031	case 0:
6032		ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
6033		break;
6034	case 1:
6035		ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
6036		break;
6037	case 2:
6038		ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
6039		break;
6040	case 3:
6041		ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
6042		break;
6043	}
6044
6045	/*
6046	 * Return a randomly-selected sublist. This is acceptable
6047	 * because the caller feeds only a little bit of data for each
6048	 * call (8MB). Subsequent calls will result in different
6049	 * sublists being selected.
6050	 */
6051	idx = multilist_get_random_index(ml);
6052	return (multilist_sublist_lock(ml, idx));
6053}
6054
6055/*
6056 * Evict buffers from the device write hand to the distance specified in
6057 * bytes.  This distance may span populated buffers, it may span nothing.
6058 * This is clearing a region on the L2ARC device ready for writing.
6059 * If the 'all' boolean is set, every buffer is evicted.
6060 */
6061static void
6062l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
6063{
6064	list_t *buflist;
6065	arc_buf_hdr_t *hdr, *hdr_prev;
6066	kmutex_t *hash_lock;
6067	uint64_t taddr;
6068
6069	buflist = &dev->l2ad_buflist;
6070
6071	if (!all && dev->l2ad_first) {
6072		/*
6073		 * This is the first sweep through the device.  There is
6074		 * nothing to evict.
6075		 */
6076		return;
6077	}
6078
6079	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
6080		/*
6081		 * When nearing the end of the device, evict to the end
6082		 * before the device write hand jumps to the start.
6083		 */
6084		taddr = dev->l2ad_end;
6085	} else {
6086		taddr = dev->l2ad_hand + distance;
6087	}
6088	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
6089	    uint64_t, taddr, boolean_t, all);
6090
6091top:
6092	mutex_enter(&dev->l2ad_mtx);
6093	for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
6094		hdr_prev = list_prev(buflist, hdr);
6095
6096		hash_lock = HDR_LOCK(hdr);
6097
6098		/*
6099		 * We cannot use mutex_enter or else we can deadlock
6100		 * with l2arc_write_buffers (due to swapping the order
6101		 * the hash lock and l2ad_mtx are taken).
6102		 */
6103		if (!mutex_tryenter(hash_lock)) {
6104			/*
6105			 * Missed the hash lock.  Retry.
6106			 */
6107			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
6108			mutex_exit(&dev->l2ad_mtx);
6109			mutex_enter(hash_lock);
6110			mutex_exit(hash_lock);
6111			goto top;
6112		}
6113
6114		if (HDR_L2_WRITE_HEAD(hdr)) {
6115			/*
6116			 * We hit a write head node.  Leave it for
6117			 * l2arc_write_done().
6118			 */
6119			list_remove(buflist, hdr);
6120			mutex_exit(hash_lock);
6121			continue;
6122		}
6123
6124		if (!all && HDR_HAS_L2HDR(hdr) &&
6125		    (hdr->b_l2hdr.b_daddr > taddr ||
6126		    hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
6127			/*
6128			 * We've evicted to the target address,
6129			 * or the end of the device.
6130			 */
6131			mutex_exit(hash_lock);
6132			break;
6133		}
6134
6135		ASSERT(HDR_HAS_L2HDR(hdr));
6136		if (!HDR_HAS_L1HDR(hdr)) {
6137			ASSERT(!HDR_L2_READING(hdr));
6138			/*
6139			 * This doesn't exist in the ARC.  Destroy.
6140			 * arc_hdr_destroy() will call list_remove()
6141			 * and decrement arcstat_l2_size.
6142			 */
6143			arc_change_state(arc_anon, hdr, hash_lock);
6144			arc_hdr_destroy(hdr);
6145		} else {
6146			ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
6147			ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
6148			/*
6149			 * Invalidate issued or about to be issued
6150			 * reads, since we may be about to write
6151			 * over this location.
6152			 */
6153			if (HDR_L2_READING(hdr)) {
6154				ARCSTAT_BUMP(arcstat_l2_evict_reading);
6155				hdr->b_flags |= ARC_FLAG_L2_EVICTED;
6156			}
6157
6158			/* Ensure this header has finished being written */
6159			ASSERT(!HDR_L2_WRITING(hdr));
6160			ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
6161
6162			arc_hdr_l2hdr_destroy(hdr);
6163		}
6164		mutex_exit(hash_lock);
6165	}
6166	mutex_exit(&dev->l2ad_mtx);
6167}
6168
6169/*
6170 * Find and write ARC buffers to the L2ARC device.
6171 *
6172 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
6173 * for reading until they have completed writing.
6174 * The headroom_boost is an in-out parameter used to maintain headroom boost
6175 * state between calls to this function.
6176 *
6177 * Returns the number of bytes actually written (which may be smaller than
6178 * the delta by which the device hand has changed due to alignment).
6179 */
6180static uint64_t
6181l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz,
6182    boolean_t *headroom_boost)
6183{
6184	arc_buf_hdr_t *hdr, *hdr_prev, *head;
6185	uint64_t write_asize, write_sz, headroom, buf_compress_minsz;
6186	void *buf_data;
6187	boolean_t full;
6188	l2arc_write_callback_t *cb;
6189	zio_t *pio, *wzio;
6190	uint64_t guid = spa_load_guid(spa);
6191	const boolean_t do_headroom_boost = *headroom_boost;
6192	int try;
6193
6194	ASSERT(dev->l2ad_vdev != NULL);
6195
6196	/* Lower the flag now, we might want to raise it again later. */
6197	*headroom_boost = B_FALSE;
6198
6199	pio = NULL;
6200	write_sz = write_asize = 0;
6201	full = B_FALSE;
6202	head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
6203	head->b_flags |= ARC_FLAG_L2_WRITE_HEAD;
6204	head->b_flags |= ARC_FLAG_HAS_L2HDR;
6205
6206	ARCSTAT_BUMP(arcstat_l2_write_buffer_iter);
6207	/*
6208	 * We will want to try to compress buffers that are at least 2x the
6209	 * device sector size.
6210	 */
6211	buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift;
6212
6213	/*
6214	 * Copy buffers for L2ARC writing.
6215	 */
6216	for (try = 0; try <= 3; try++) {
6217		multilist_sublist_t *mls = l2arc_sublist_lock(try);
6218		uint64_t passed_sz = 0;
6219
6220		ARCSTAT_BUMP(arcstat_l2_write_buffer_list_iter);
6221
6222		/*
6223		 * L2ARC fast warmup.
6224		 *
6225		 * Until the ARC is warm and starts to evict, read from the
6226		 * head of the ARC lists rather than the tail.
6227		 */
6228		if (arc_warm == B_FALSE)
6229			hdr = multilist_sublist_head(mls);
6230		else
6231			hdr = multilist_sublist_tail(mls);
6232		if (hdr == NULL)
6233			ARCSTAT_BUMP(arcstat_l2_write_buffer_list_null_iter);
6234
6235		headroom = target_sz * l2arc_headroom;
6236		if (do_headroom_boost)
6237			headroom = (headroom * l2arc_headroom_boost) / 100;
6238
6239		for (; hdr; hdr = hdr_prev) {
6240			kmutex_t *hash_lock;
6241			uint64_t buf_sz;
6242			uint64_t buf_a_sz;
6243
6244			if (arc_warm == B_FALSE)
6245				hdr_prev = multilist_sublist_next(mls, hdr);
6246			else
6247				hdr_prev = multilist_sublist_prev(mls, hdr);
6248			ARCSTAT_INCR(arcstat_l2_write_buffer_bytes_scanned, hdr->b_size);
6249
6250			hash_lock = HDR_LOCK(hdr);
6251			if (!mutex_tryenter(hash_lock)) {
6252				ARCSTAT_BUMP(arcstat_l2_write_trylock_fail);
6253				/*
6254				 * Skip this buffer rather than waiting.
6255				 */
6256				continue;
6257			}
6258
6259			passed_sz += hdr->b_size;
6260			if (passed_sz > headroom) {
6261				/*
6262				 * Searched too far.
6263				 */
6264				mutex_exit(hash_lock);
6265				ARCSTAT_BUMP(arcstat_l2_write_passed_headroom);
6266				break;
6267			}
6268
6269			if (!l2arc_write_eligible(guid, hdr)) {
6270				mutex_exit(hash_lock);
6271				continue;
6272			}
6273
6274			/*
6275			 * Assume that the buffer is not going to be compressed
6276			 * and could take more space on disk because of a larger
6277			 * disk block size.
6278			 */
6279			buf_sz = hdr->b_size;
6280			buf_a_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
6281
6282			if ((write_asize + buf_a_sz) > target_sz) {
6283				full = B_TRUE;
6284				mutex_exit(hash_lock);
6285				ARCSTAT_BUMP(arcstat_l2_write_full);
6286				break;
6287			}
6288
6289			if (pio == NULL) {
6290				/*
6291				 * Insert a dummy header on the buflist so
6292				 * l2arc_write_done() can find where the
6293				 * write buffers begin without searching.
6294				 */
6295				mutex_enter(&dev->l2ad_mtx);
6296				list_insert_head(&dev->l2ad_buflist, head);
6297				mutex_exit(&dev->l2ad_mtx);
6298
6299				cb = kmem_alloc(
6300				    sizeof (l2arc_write_callback_t), KM_SLEEP);
6301				cb->l2wcb_dev = dev;
6302				cb->l2wcb_head = head;
6303				pio = zio_root(spa, l2arc_write_done, cb,
6304				    ZIO_FLAG_CANFAIL);
6305				ARCSTAT_BUMP(arcstat_l2_write_pios);
6306			}
6307
6308			/*
6309			 * Create and add a new L2ARC header.
6310			 */
6311			hdr->b_l2hdr.b_dev = dev;
6312			hdr->b_flags |= ARC_FLAG_L2_WRITING;
6313			/*
6314			 * Temporarily stash the data buffer in b_tmp_cdata.
6315			 * The subsequent write step will pick it up from
6316			 * there. This is because can't access b_l1hdr.b_buf
6317			 * without holding the hash_lock, which we in turn
6318			 * can't access without holding the ARC list locks
6319			 * (which we want to avoid during compression/writing).
6320			 */
6321			HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
6322			hdr->b_l2hdr.b_asize = hdr->b_size;
6323			hdr->b_l1hdr.b_tmp_cdata = hdr->b_l1hdr.b_buf->b_data;
6324
6325			/*
6326			 * Explicitly set the b_daddr field to a known
6327			 * value which means "invalid address". This
6328			 * enables us to differentiate which stage of
6329			 * l2arc_write_buffers() the particular header
6330			 * is in (e.g. this loop, or the one below).
6331			 * ARC_FLAG_L2_WRITING is not enough to make
6332			 * this distinction, and we need to know in
6333			 * order to do proper l2arc vdev accounting in
6334			 * arc_release() and arc_hdr_destroy().
6335			 *
6336			 * Note, we can't use a new flag to distinguish
6337			 * the two stages because we don't hold the
6338			 * header's hash_lock below, in the second stage
6339			 * of this function. Thus, we can't simply
6340			 * change the b_flags field to denote that the
6341			 * IO has been sent. We can change the b_daddr
6342			 * field of the L2 portion, though, since we'll
6343			 * be holding the l2ad_mtx; which is why we're
6344			 * using it to denote the header's state change.
6345			 */
6346			hdr->b_l2hdr.b_daddr = L2ARC_ADDR_UNSET;
6347			hdr->b_flags |= ARC_FLAG_HAS_L2HDR;
6348
6349			mutex_enter(&dev->l2ad_mtx);
6350			list_insert_head(&dev->l2ad_buflist, hdr);
6351			mutex_exit(&dev->l2ad_mtx);
6352
6353			/*
6354			 * Compute and store the buffer cksum before
6355			 * writing.  On debug the cksum is verified first.
6356			 */
6357			arc_cksum_verify(hdr->b_l1hdr.b_buf);
6358			arc_cksum_compute(hdr->b_l1hdr.b_buf, B_TRUE);
6359
6360			mutex_exit(hash_lock);
6361
6362			write_sz += buf_sz;
6363			write_asize += buf_a_sz;
6364		}
6365
6366		multilist_sublist_unlock(mls);
6367
6368		if (full == B_TRUE)
6369			break;
6370	}
6371
6372	/* No buffers selected for writing? */
6373	if (pio == NULL) {
6374		ASSERT0(write_sz);
6375		ASSERT(!HDR_HAS_L1HDR(head));
6376		kmem_cache_free(hdr_l2only_cache, head);
6377		return (0);
6378	}
6379
6380	mutex_enter(&dev->l2ad_mtx);
6381
6382	/*
6383	 * Note that elsewhere in this file arcstat_l2_asize
6384	 * and the used space on l2ad_vdev are updated using b_asize,
6385	 * which is not necessarily rounded up to the device block size.
6386	 * Too keep accounting consistent we do the same here as well:
6387	 * stats_size accumulates the sum of b_asize of the written buffers,
6388	 * while write_asize accumulates the sum of b_asize rounded up
6389	 * to the device block size.
6390	 * The latter sum is used only to validate the corectness of the code.
6391	 */
6392	uint64_t stats_size = 0;
6393	write_asize = 0;
6394
6395	/*
6396	 * Now start writing the buffers. We're starting at the write head
6397	 * and work backwards, retracing the course of the buffer selector
6398	 * loop above.
6399	 */
6400	for (hdr = list_prev(&dev->l2ad_buflist, head); hdr;
6401	    hdr = list_prev(&dev->l2ad_buflist, hdr)) {
6402		uint64_t buf_sz;
6403
6404		/*
6405		 * We rely on the L1 portion of the header below, so
6406		 * it's invalid for this header to have been evicted out
6407		 * of the ghost cache, prior to being written out. The
6408		 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
6409		 */
6410		ASSERT(HDR_HAS_L1HDR(hdr));
6411
6412		/*
6413		 * We shouldn't need to lock the buffer here, since we flagged
6414		 * it as ARC_FLAG_L2_WRITING in the previous step, but we must
6415		 * take care to only access its L2 cache parameters. In
6416		 * particular, hdr->l1hdr.b_buf may be invalid by now due to
6417		 * ARC eviction.
6418		 */
6419		hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
6420
6421		if ((HDR_L2COMPRESS(hdr)) &&
6422		    hdr->b_l2hdr.b_asize >= buf_compress_minsz) {
6423			if (l2arc_compress_buf(hdr)) {
6424				/*
6425				 * If compression succeeded, enable headroom
6426				 * boost on the next scan cycle.
6427				 */
6428				*headroom_boost = B_TRUE;
6429			}
6430		}
6431
6432		/*
6433		 * Pick up the buffer data we had previously stashed away
6434		 * (and now potentially also compressed).
6435		 */
6436		buf_data = hdr->b_l1hdr.b_tmp_cdata;
6437		buf_sz = hdr->b_l2hdr.b_asize;
6438
6439		/*
6440		 * If the data has not been compressed, then clear b_tmp_cdata
6441		 * to make sure that it points only to a temporary compression
6442		 * buffer.
6443		 */
6444		if (!L2ARC_IS_VALID_COMPRESS(HDR_GET_COMPRESS(hdr)))
6445			hdr->b_l1hdr.b_tmp_cdata = NULL;
6446
6447		/*
6448		 * We need to do this regardless if buf_sz is zero or
6449		 * not, otherwise, when this l2hdr is evicted we'll
6450		 * remove a reference that was never added.
6451		 */
6452		(void) refcount_add_many(&dev->l2ad_alloc, buf_sz, hdr);
6453
6454		/* Compression may have squashed the buffer to zero length. */
6455		if (buf_sz != 0) {
6456			uint64_t buf_a_sz;
6457
6458			wzio = zio_write_phys(pio, dev->l2ad_vdev,
6459			    dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
6460			    NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
6461			    ZIO_FLAG_CANFAIL, B_FALSE);
6462
6463			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
6464			    zio_t *, wzio);
6465			(void) zio_nowait(wzio);
6466
6467			stats_size += buf_sz;
6468
6469			/*
6470			 * Keep the clock hand suitably device-aligned.
6471			 */
6472			buf_a_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
6473			write_asize += buf_a_sz;
6474			dev->l2ad_hand += buf_a_sz;
6475		}
6476	}
6477
6478	mutex_exit(&dev->l2ad_mtx);
6479
6480	ASSERT3U(write_asize, <=, target_sz);
6481	ARCSTAT_BUMP(arcstat_l2_writes_sent);
6482	ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
6483	ARCSTAT_INCR(arcstat_l2_size, write_sz);
6484	ARCSTAT_INCR(arcstat_l2_asize, stats_size);
6485	vdev_space_update(dev->l2ad_vdev, stats_size, 0, 0);
6486
6487	/*
6488	 * Bump device hand to the device start if it is approaching the end.
6489	 * l2arc_evict() will already have evicted ahead for this case.
6490	 */
6491	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
6492		dev->l2ad_hand = dev->l2ad_start;
6493		dev->l2ad_first = B_FALSE;
6494	}
6495
6496	dev->l2ad_writing = B_TRUE;
6497	(void) zio_wait(pio);
6498	dev->l2ad_writing = B_FALSE;
6499
6500	return (write_asize);
6501}
6502
6503/*
6504 * Compresses an L2ARC buffer.
6505 * The data to be compressed must be prefilled in l1hdr.b_tmp_cdata and its
6506 * size in l2hdr->b_asize. This routine tries to compress the data and
6507 * depending on the compression result there are three possible outcomes:
6508 * *) The buffer was incompressible. The original l2hdr contents were left
6509 *    untouched and are ready for writing to an L2 device.
6510 * *) The buffer was all-zeros, so there is no need to write it to an L2
6511 *    device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is
6512 *    set to zero and b_compress is set to ZIO_COMPRESS_EMPTY.
6513 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary
6514 *    data buffer which holds the compressed data to be written, and b_asize
6515 *    tells us how much data there is. b_compress is set to the appropriate
6516 *    compression algorithm. Once writing is done, invoke
6517 *    l2arc_release_cdata_buf on this l2hdr to free this temporary buffer.
6518 *
6519 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the
6520 * buffer was incompressible).
6521 */
6522static boolean_t
6523l2arc_compress_buf(arc_buf_hdr_t *hdr)
6524{
6525	void *cdata;
6526	size_t csize, len, rounded;
6527	ASSERT(HDR_HAS_L2HDR(hdr));
6528	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
6529
6530	ASSERT(HDR_HAS_L1HDR(hdr));
6531	ASSERT(HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF);
6532	ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
6533
6534	len = l2hdr->b_asize;
6535	cdata = zio_data_buf_alloc(len);
6536	ASSERT3P(cdata, !=, NULL);
6537	csize = zio_compress_data(ZIO_COMPRESS_LZ4, hdr->b_l1hdr.b_tmp_cdata,
6538	    cdata, l2hdr->b_asize);
6539
6540	if (csize == 0) {
6541		/* zero block, indicate that there's nothing to write */
6542		zio_data_buf_free(cdata, len);
6543		HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_EMPTY);
6544		l2hdr->b_asize = 0;
6545		hdr->b_l1hdr.b_tmp_cdata = NULL;
6546		ARCSTAT_BUMP(arcstat_l2_compress_zeros);
6547		return (B_TRUE);
6548	}
6549
6550	rounded = P2ROUNDUP(csize,
6551	    (size_t)1 << l2hdr->b_dev->l2ad_vdev->vdev_ashift);
6552	if (rounded < len) {
6553		/*
6554		 * Compression succeeded, we'll keep the cdata around for
6555		 * writing and release it afterwards.
6556		 */
6557		if (rounded > csize) {
6558			bzero((char *)cdata + csize, rounded - csize);
6559			csize = rounded;
6560		}
6561		HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_LZ4);
6562		l2hdr->b_asize = csize;
6563		hdr->b_l1hdr.b_tmp_cdata = cdata;
6564		ARCSTAT_BUMP(arcstat_l2_compress_successes);
6565		return (B_TRUE);
6566	} else {
6567		/*
6568		 * Compression failed, release the compressed buffer.
6569		 * l2hdr will be left unmodified.
6570		 */
6571		zio_data_buf_free(cdata, len);
6572		ARCSTAT_BUMP(arcstat_l2_compress_failures);
6573		return (B_FALSE);
6574	}
6575}
6576
6577/*
6578 * Decompresses a zio read back from an l2arc device. On success, the
6579 * underlying zio's io_data buffer is overwritten by the uncompressed
6580 * version. On decompression error (corrupt compressed stream), the
6581 * zio->io_error value is set to signal an I/O error.
6582 *
6583 * Please note that the compressed data stream is not checksummed, so
6584 * if the underlying device is experiencing data corruption, we may feed
6585 * corrupt data to the decompressor, so the decompressor needs to be
6586 * able to handle this situation (LZ4 does).
6587 */
6588static void
6589l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c)
6590{
6591	ASSERT(L2ARC_IS_VALID_COMPRESS(c));
6592
6593	if (zio->io_error != 0) {
6594		/*
6595		 * An io error has occured, just restore the original io
6596		 * size in preparation for a main pool read.
6597		 */
6598		zio->io_orig_size = zio->io_size = hdr->b_size;
6599		return;
6600	}
6601
6602	if (c == ZIO_COMPRESS_EMPTY) {
6603		/*
6604		 * An empty buffer results in a null zio, which means we
6605		 * need to fill its io_data after we're done restoring the
6606		 * buffer's contents.
6607		 */
6608		ASSERT(hdr->b_l1hdr.b_buf != NULL);
6609		bzero(hdr->b_l1hdr.b_buf->b_data, hdr->b_size);
6610		zio->io_data = zio->io_orig_data = hdr->b_l1hdr.b_buf->b_data;
6611	} else {
6612		ASSERT(zio->io_data != NULL);
6613		/*
6614		 * We copy the compressed data from the start of the arc buffer
6615		 * (the zio_read will have pulled in only what we need, the
6616		 * rest is garbage which we will overwrite at decompression)
6617		 * and then decompress back to the ARC data buffer. This way we
6618		 * can minimize copying by simply decompressing back over the
6619		 * original compressed data (rather than decompressing to an
6620		 * aux buffer and then copying back the uncompressed buffer,
6621		 * which is likely to be much larger).
6622		 */
6623		uint64_t csize;
6624		void *cdata;
6625
6626		csize = zio->io_size;
6627		cdata = zio_data_buf_alloc(csize);
6628		bcopy(zio->io_data, cdata, csize);
6629		if (zio_decompress_data(c, cdata, zio->io_data, csize,
6630		    hdr->b_size) != 0)
6631			zio->io_error = EIO;
6632		zio_data_buf_free(cdata, csize);
6633	}
6634
6635	/* Restore the expected uncompressed IO size. */
6636	zio->io_orig_size = zio->io_size = hdr->b_size;
6637}
6638
6639/*
6640 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure.
6641 * This buffer serves as a temporary holder of compressed data while
6642 * the buffer entry is being written to an l2arc device. Once that is
6643 * done, we can dispose of it.
6644 */
6645static void
6646l2arc_release_cdata_buf(arc_buf_hdr_t *hdr)
6647{
6648	enum zio_compress comp = HDR_GET_COMPRESS(hdr);
6649
6650	ASSERT(HDR_HAS_L1HDR(hdr));
6651	ASSERT(comp == ZIO_COMPRESS_OFF || L2ARC_IS_VALID_COMPRESS(comp));
6652
6653	if (comp == ZIO_COMPRESS_OFF) {
6654		/*
6655		 * In this case, b_tmp_cdata points to the same buffer
6656		 * as the arc_buf_t's b_data field. We don't want to
6657		 * free it, since the arc_buf_t will handle that.
6658		 */
6659		hdr->b_l1hdr.b_tmp_cdata = NULL;
6660	} else if (comp == ZIO_COMPRESS_EMPTY) {
6661		/*
6662		 * In this case, b_tmp_cdata was compressed to an empty
6663		 * buffer, thus there's nothing to free and b_tmp_cdata
6664		 * should have been set to NULL in l2arc_write_buffers().
6665		 */
6666		ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
6667	} else {
6668		/*
6669		 * If the data was compressed, then we've allocated a
6670		 * temporary buffer for it, so now we need to release it.
6671		 */
6672		ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
6673		zio_data_buf_free(hdr->b_l1hdr.b_tmp_cdata,
6674		    hdr->b_size);
6675		hdr->b_l1hdr.b_tmp_cdata = NULL;
6676	}
6677}
6678
6679/*
6680 * This thread feeds the L2ARC at regular intervals.  This is the beating
6681 * heart of the L2ARC.
6682 */
6683static void
6684l2arc_feed_thread(void *dummy __unused)
6685{
6686	callb_cpr_t cpr;
6687	l2arc_dev_t *dev;
6688	spa_t *spa;
6689	uint64_t size, wrote;
6690	clock_t begin, next = ddi_get_lbolt();
6691	boolean_t headroom_boost = B_FALSE;
6692
6693	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
6694
6695	mutex_enter(&l2arc_feed_thr_lock);
6696
6697	while (l2arc_thread_exit == 0) {
6698		CALLB_CPR_SAFE_BEGIN(&cpr);
6699		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
6700		    next - ddi_get_lbolt());
6701		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
6702		next = ddi_get_lbolt() + hz;
6703
6704		/*
6705		 * Quick check for L2ARC devices.
6706		 */
6707		mutex_enter(&l2arc_dev_mtx);
6708		if (l2arc_ndev == 0) {
6709			mutex_exit(&l2arc_dev_mtx);
6710			continue;
6711		}
6712		mutex_exit(&l2arc_dev_mtx);
6713		begin = ddi_get_lbolt();
6714
6715		/*
6716		 * This selects the next l2arc device to write to, and in
6717		 * doing so the next spa to feed from: dev->l2ad_spa.   This
6718		 * will return NULL if there are now no l2arc devices or if
6719		 * they are all faulted.
6720		 *
6721		 * If a device is returned, its spa's config lock is also
6722		 * held to prevent device removal.  l2arc_dev_get_next()
6723		 * will grab and release l2arc_dev_mtx.
6724		 */
6725		if ((dev = l2arc_dev_get_next()) == NULL)
6726			continue;
6727
6728		spa = dev->l2ad_spa;
6729		ASSERT(spa != NULL);
6730
6731		/*
6732		 * If the pool is read-only then force the feed thread to
6733		 * sleep a little longer.
6734		 */
6735		if (!spa_writeable(spa)) {
6736			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
6737			spa_config_exit(spa, SCL_L2ARC, dev);
6738			continue;
6739		}
6740
6741		/*
6742		 * Avoid contributing to memory pressure.
6743		 */
6744		if (arc_reclaim_needed()) {
6745			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
6746			spa_config_exit(spa, SCL_L2ARC, dev);
6747			continue;
6748		}
6749
6750		ARCSTAT_BUMP(arcstat_l2_feeds);
6751
6752		size = l2arc_write_size();
6753
6754		/*
6755		 * Evict L2ARC buffers that will be overwritten.
6756		 */
6757		l2arc_evict(dev, size, B_FALSE);
6758
6759		/*
6760		 * Write ARC buffers.
6761		 */
6762		wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost);
6763
6764		/*
6765		 * Calculate interval between writes.
6766		 */
6767		next = l2arc_write_interval(begin, size, wrote);
6768		spa_config_exit(spa, SCL_L2ARC, dev);
6769	}
6770
6771	l2arc_thread_exit = 0;
6772	cv_broadcast(&l2arc_feed_thr_cv);
6773	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
6774	thread_exit();
6775}
6776
6777boolean_t
6778l2arc_vdev_present(vdev_t *vd)
6779{
6780	l2arc_dev_t *dev;
6781
6782	mutex_enter(&l2arc_dev_mtx);
6783	for (dev = list_head(l2arc_dev_list); dev != NULL;
6784	    dev = list_next(l2arc_dev_list, dev)) {
6785		if (dev->l2ad_vdev == vd)
6786			break;
6787	}
6788	mutex_exit(&l2arc_dev_mtx);
6789
6790	return (dev != NULL);
6791}
6792
6793/*
6794 * Add a vdev for use by the L2ARC.  By this point the spa has already
6795 * validated the vdev and opened it.
6796 */
6797void
6798l2arc_add_vdev(spa_t *spa, vdev_t *vd)
6799{
6800	l2arc_dev_t *adddev;
6801
6802	ASSERT(!l2arc_vdev_present(vd));
6803
6804	vdev_ashift_optimize(vd);
6805
6806	/*
6807	 * Create a new l2arc device entry.
6808	 */
6809	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
6810	adddev->l2ad_spa = spa;
6811	adddev->l2ad_vdev = vd;
6812	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
6813	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
6814	adddev->l2ad_hand = adddev->l2ad_start;
6815	adddev->l2ad_first = B_TRUE;
6816	adddev->l2ad_writing = B_FALSE;
6817
6818	mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
6819	/*
6820	 * This is a list of all ARC buffers that are still valid on the
6821	 * device.
6822	 */
6823	list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
6824	    offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
6825
6826	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
6827	refcount_create(&adddev->l2ad_alloc);
6828
6829	/*
6830	 * Add device to global list
6831	 */
6832	mutex_enter(&l2arc_dev_mtx);
6833	list_insert_head(l2arc_dev_list, adddev);
6834	atomic_inc_64(&l2arc_ndev);
6835	mutex_exit(&l2arc_dev_mtx);
6836}
6837
6838/*
6839 * Remove a vdev from the L2ARC.
6840 */
6841void
6842l2arc_remove_vdev(vdev_t *vd)
6843{
6844	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
6845
6846	/*
6847	 * Find the device by vdev
6848	 */
6849	mutex_enter(&l2arc_dev_mtx);
6850	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
6851		nextdev = list_next(l2arc_dev_list, dev);
6852		if (vd == dev->l2ad_vdev) {
6853			remdev = dev;
6854			break;
6855		}
6856	}
6857	ASSERT(remdev != NULL);
6858
6859	/*
6860	 * Remove device from global list
6861	 */
6862	list_remove(l2arc_dev_list, remdev);
6863	l2arc_dev_last = NULL;		/* may have been invalidated */
6864	atomic_dec_64(&l2arc_ndev);
6865	mutex_exit(&l2arc_dev_mtx);
6866
6867	/*
6868	 * Clear all buflists and ARC references.  L2ARC device flush.
6869	 */
6870	l2arc_evict(remdev, 0, B_TRUE);
6871	list_destroy(&remdev->l2ad_buflist);
6872	mutex_destroy(&remdev->l2ad_mtx);
6873	refcount_destroy(&remdev->l2ad_alloc);
6874	kmem_free(remdev, sizeof (l2arc_dev_t));
6875}
6876
6877void
6878l2arc_init(void)
6879{
6880	l2arc_thread_exit = 0;
6881	l2arc_ndev = 0;
6882	l2arc_writes_sent = 0;
6883	l2arc_writes_done = 0;
6884
6885	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
6886	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
6887	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
6888	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
6889
6890	l2arc_dev_list = &L2ARC_dev_list;
6891	l2arc_free_on_write = &L2ARC_free_on_write;
6892	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
6893	    offsetof(l2arc_dev_t, l2ad_node));
6894	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
6895	    offsetof(l2arc_data_free_t, l2df_list_node));
6896}
6897
6898void
6899l2arc_fini(void)
6900{
6901	/*
6902	 * This is called from dmu_fini(), which is called from spa_fini();
6903	 * Because of this, we can assume that all l2arc devices have
6904	 * already been removed when the pools themselves were removed.
6905	 */
6906
6907	l2arc_do_free_on_write();
6908
6909	mutex_destroy(&l2arc_feed_thr_lock);
6910	cv_destroy(&l2arc_feed_thr_cv);
6911	mutex_destroy(&l2arc_dev_mtx);
6912	mutex_destroy(&l2arc_free_on_write_mtx);
6913
6914	list_destroy(l2arc_dev_list);
6915	list_destroy(l2arc_free_on_write);
6916}
6917
6918void
6919l2arc_start(void)
6920{
6921	if (!(spa_mode_global & FWRITE))
6922		return;
6923
6924	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
6925	    TS_RUN, minclsyspri);
6926}
6927
6928void
6929l2arc_stop(void)
6930{
6931	if (!(spa_mode_global & FWRITE))
6932		return;
6933
6934	mutex_enter(&l2arc_feed_thr_lock);
6935	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
6936	l2arc_thread_exit = 1;
6937	while (l2arc_thread_exit != 0)
6938		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
6939	mutex_exit(&l2arc_feed_thr_lock);
6940}
6941