arc.c revision 288561
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26 * Copyright 2014 Nexenta Systems, Inc.  All rights reserved.
27 */
28
29/*
30 * DVA-based Adjustable Replacement Cache
31 *
32 * While much of the theory of operation used here is
33 * based on the self-tuning, low overhead replacement cache
34 * presented by Megiddo and Modha at FAST 2003, there are some
35 * significant differences:
36 *
37 * 1. The Megiddo and Modha model assumes any page is evictable.
38 * Pages in its cache cannot be "locked" into memory.  This makes
39 * the eviction algorithm simple: evict the last page in the list.
40 * This also make the performance characteristics easy to reason
41 * about.  Our cache is not so simple.  At any given moment, some
42 * subset of the blocks in the cache are un-evictable because we
43 * have handed out a reference to them.  Blocks are only evictable
44 * when there are no external references active.  This makes
45 * eviction far more problematic:  we choose to evict the evictable
46 * blocks that are the "lowest" in the list.
47 *
48 * There are times when it is not possible to evict the requested
49 * space.  In these circumstances we are unable to adjust the cache
50 * size.  To prevent the cache growing unbounded at these times we
51 * implement a "cache throttle" that slows the flow of new data
52 * into the cache until we can make space available.
53 *
54 * 2. The Megiddo and Modha model assumes a fixed cache size.
55 * Pages are evicted when the cache is full and there is a cache
56 * miss.  Our model has a variable sized cache.  It grows with
57 * high use, but also tries to react to memory pressure from the
58 * operating system: decreasing its size when system memory is
59 * tight.
60 *
61 * 3. The Megiddo and Modha model assumes a fixed page size. All
62 * elements of the cache are therefore exactly the same size.  So
63 * when adjusting the cache size following a cache miss, its simply
64 * a matter of choosing a single page to evict.  In our model, we
65 * have variable sized cache blocks (rangeing from 512 bytes to
66 * 128K bytes).  We therefore choose a set of blocks to evict to make
67 * space for a cache miss that approximates as closely as possible
68 * the space used by the new block.
69 *
70 * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71 * by N. Megiddo & D. Modha, FAST 2003
72 */
73
74/*
75 * The locking model:
76 *
77 * A new reference to a cache buffer can be obtained in two
78 * ways: 1) via a hash table lookup using the DVA as a key,
79 * or 2) via one of the ARC lists.  The arc_read() interface
80 * uses method 1, while the internal arc algorithms for
81 * adjusting the cache use method 2.  We therefore provide two
82 * types of locks: 1) the hash table lock array, and 2) the
83 * arc list locks.
84 *
85 * Buffers do not have their own mutexs, rather they rely on the
86 * hash table mutexs for the bulk of their protection (i.e. most
87 * fields in the arc_buf_hdr_t are protected by these mutexs).
88 *
89 * buf_hash_find() returns the appropriate mutex (held) when it
90 * locates the requested buffer in the hash table.  It returns
91 * NULL for the mutex if the buffer was not in the table.
92 *
93 * buf_hash_remove() expects the appropriate hash mutex to be
94 * already held before it is invoked.
95 *
96 * Each arc state also has a mutex which is used to protect the
97 * buffer list associated with the state.  When attempting to
98 * obtain a hash table lock while holding an arc list lock you
99 * must use: mutex_tryenter() to avoid deadlock.  Also note that
100 * the active state mutex must be held before the ghost state mutex.
101 *
102 * Arc buffers may have an associated eviction callback function.
103 * This function will be invoked prior to removing the buffer (e.g.
104 * in arc_do_user_evicts()).  Note however that the data associated
105 * with the buffer may be evicted prior to the callback.  The callback
106 * must be made with *no locks held* (to prevent deadlock).  Additionally,
107 * the users of callbacks must ensure that their private data is
108 * protected from simultaneous callbacks from arc_clear_callback()
109 * and arc_do_user_evicts().
110 *
111 * Note that the majority of the performance stats are manipulated
112 * with atomic operations.
113 *
114 * The L2ARC uses the l2ad_mtx on each vdev for the following:
115 *
116 *	- L2ARC buflist creation
117 *	- L2ARC buflist eviction
118 *	- L2ARC write completion, which walks L2ARC buflists
119 *	- ARC header destruction, as it removes from L2ARC buflists
120 *	- ARC header release, as it removes from L2ARC buflists
121 */
122
123#include <sys/spa.h>
124#include <sys/zio.h>
125#include <sys/zio_compress.h>
126#include <sys/zfs_context.h>
127#include <sys/arc.h>
128#include <sys/refcount.h>
129#include <sys/vdev.h>
130#include <sys/vdev_impl.h>
131#include <sys/dsl_pool.h>
132#ifdef _KERNEL
133#include <sys/dnlc.h>
134#endif
135#include <sys/callb.h>
136#include <sys/kstat.h>
137#include <sys/trim_map.h>
138#include <zfs_fletcher.h>
139#include <sys/sdt.h>
140
141#include <vm/vm_pageout.h>
142#include <machine/vmparam.h>
143
144#ifdef illumos
145#ifndef _KERNEL
146/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
147boolean_t arc_watch = B_FALSE;
148int arc_procfd;
149#endif
150#endif /* illumos */
151
152static kmutex_t		arc_reclaim_thr_lock;
153static kcondvar_t	arc_reclaim_thr_cv;	/* used to signal reclaim thr */
154static uint8_t		arc_thread_exit;
155
156#define	ARC_REDUCE_DNLC_PERCENT	3
157uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
158
159typedef enum arc_reclaim_strategy {
160	ARC_RECLAIM_AGGR,		/* Aggressive reclaim strategy */
161	ARC_RECLAIM_CONS		/* Conservative reclaim strategy */
162} arc_reclaim_strategy_t;
163
164/*
165 * The number of iterations through arc_evict_*() before we
166 * drop & reacquire the lock.
167 */
168int arc_evict_iterations = 100;
169
170/* number of seconds before growing cache again */
171static int		arc_grow_retry = 60;
172
173/* shift of arc_c for calculating both min and max arc_p */
174static int		arc_p_min_shift = 4;
175
176/* log2(fraction of arc to reclaim) */
177static int		arc_shrink_shift = 5;
178
179/*
180 * minimum lifespan of a prefetch block in clock ticks
181 * (initialized in arc_init())
182 */
183static int		arc_min_prefetch_lifespan;
184
185/*
186 * If this percent of memory is free, don't throttle.
187 */
188int arc_lotsfree_percent = 10;
189
190static int arc_dead;
191extern int zfs_prefetch_disable;
192
193/*
194 * The arc has filled available memory and has now warmed up.
195 */
196static boolean_t arc_warm;
197
198uint64_t zfs_arc_max;
199uint64_t zfs_arc_min;
200uint64_t zfs_arc_meta_limit = 0;
201uint64_t zfs_arc_meta_min = 0;
202int zfs_arc_grow_retry = 0;
203int zfs_arc_shrink_shift = 0;
204int zfs_arc_p_min_shift = 0;
205int zfs_disable_dup_eviction = 0;
206uint64_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
207u_int zfs_arc_free_target = 0;
208
209static int sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS);
210static int sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS);
211
212#ifdef _KERNEL
213static void
214arc_free_target_init(void *unused __unused)
215{
216
217	zfs_arc_free_target = vm_pageout_wakeup_thresh;
218}
219SYSINIT(arc_free_target_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_ANY,
220    arc_free_target_init, NULL);
221
222TUNABLE_QUAD("vfs.zfs.arc_max", &zfs_arc_max);
223TUNABLE_QUAD("vfs.zfs.arc_min", &zfs_arc_min);
224TUNABLE_QUAD("vfs.zfs.arc_meta_limit", &zfs_arc_meta_limit);
225TUNABLE_QUAD("vfs.zfs.arc_meta_min", &zfs_arc_meta_min);
226TUNABLE_QUAD("vfs.zfs.arc_average_blocksize", &zfs_arc_average_blocksize);
227TUNABLE_INT("vfs.zfs.arc_shrink_shift", &zfs_arc_shrink_shift);
228SYSCTL_DECL(_vfs_zfs);
229SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_max, CTLFLAG_RDTUN, &zfs_arc_max, 0,
230    "Maximum ARC size");
231SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_min, CTLFLAG_RDTUN, &zfs_arc_min, 0,
232    "Minimum ARC size");
233SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_average_blocksize, CTLFLAG_RDTUN,
234    &zfs_arc_average_blocksize, 0,
235    "ARC average blocksize");
236SYSCTL_INT(_vfs_zfs, OID_AUTO, arc_shrink_shift, CTLFLAG_RW,
237    &arc_shrink_shift, 0,
238    "log2(fraction of arc to reclaim)");
239
240/*
241 * We don't have a tunable for arc_free_target due to the dependency on
242 * pagedaemon initialisation.
243 */
244SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_free_target,
245    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(u_int),
246    sysctl_vfs_zfs_arc_free_target, "IU",
247    "Desired number of free pages below which ARC triggers reclaim");
248
249static int
250sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS)
251{
252	u_int val;
253	int err;
254
255	val = zfs_arc_free_target;
256	err = sysctl_handle_int(oidp, &val, 0, req);
257	if (err != 0 || req->newptr == NULL)
258		return (err);
259
260	if (val < minfree)
261		return (EINVAL);
262	if (val > cnt.v_page_count)
263		return (EINVAL);
264
265	zfs_arc_free_target = val;
266
267	return (0);
268}
269
270/*
271 * Must be declared here, before the definition of corresponding kstat
272 * macro which uses the same names will confuse the compiler.
273 */
274SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_meta_limit,
275    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
276    sysctl_vfs_zfs_arc_meta_limit, "QU",
277    "ARC metadata limit");
278#endif
279
280/*
281 * Note that buffers can be in one of 6 states:
282 *	ARC_anon	- anonymous (discussed below)
283 *	ARC_mru		- recently used, currently cached
284 *	ARC_mru_ghost	- recentely used, no longer in cache
285 *	ARC_mfu		- frequently used, currently cached
286 *	ARC_mfu_ghost	- frequently used, no longer in cache
287 *	ARC_l2c_only	- exists in L2ARC but not other states
288 * When there are no active references to the buffer, they are
289 * are linked onto a list in one of these arc states.  These are
290 * the only buffers that can be evicted or deleted.  Within each
291 * state there are multiple lists, one for meta-data and one for
292 * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
293 * etc.) is tracked separately so that it can be managed more
294 * explicitly: favored over data, limited explicitly.
295 *
296 * Anonymous buffers are buffers that are not associated with
297 * a DVA.  These are buffers that hold dirty block copies
298 * before they are written to stable storage.  By definition,
299 * they are "ref'd" and are considered part of arc_mru
300 * that cannot be freed.  Generally, they will aquire a DVA
301 * as they are written and migrate onto the arc_mru list.
302 *
303 * The ARC_l2c_only state is for buffers that are in the second
304 * level ARC but no longer in any of the ARC_m* lists.  The second
305 * level ARC itself may also contain buffers that are in any of
306 * the ARC_m* states - meaning that a buffer can exist in two
307 * places.  The reason for the ARC_l2c_only state is to keep the
308 * buffer header in the hash table, so that reads that hit the
309 * second level ARC benefit from these fast lookups.
310 */
311
312#define	ARCS_LOCK_PAD		CACHE_LINE_SIZE
313struct arcs_lock {
314	kmutex_t	arcs_lock;
315#ifdef _KERNEL
316	unsigned char	pad[(ARCS_LOCK_PAD - sizeof (kmutex_t))];
317#endif
318};
319
320/*
321 * must be power of two for mask use to work
322 *
323 */
324#define ARC_BUFC_NUMDATALISTS		16
325#define ARC_BUFC_NUMMETADATALISTS	16
326#define ARC_BUFC_NUMLISTS	(ARC_BUFC_NUMMETADATALISTS + ARC_BUFC_NUMDATALISTS)
327
328typedef struct arc_state {
329	uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];	/* amount of evictable data */
330	uint64_t arcs_size;	/* total amount of data in this state */
331	list_t	arcs_lists[ARC_BUFC_NUMLISTS]; /* list of evictable buffers */
332	struct arcs_lock arcs_locks[ARC_BUFC_NUMLISTS] __aligned(CACHE_LINE_SIZE);
333} arc_state_t;
334
335#define ARCS_LOCK(s, i)	(&((s)->arcs_locks[(i)].arcs_lock))
336
337/* The 6 states: */
338static arc_state_t ARC_anon;
339static arc_state_t ARC_mru;
340static arc_state_t ARC_mru_ghost;
341static arc_state_t ARC_mfu;
342static arc_state_t ARC_mfu_ghost;
343static arc_state_t ARC_l2c_only;
344
345typedef struct arc_stats {
346	kstat_named_t arcstat_hits;
347	kstat_named_t arcstat_misses;
348	kstat_named_t arcstat_demand_data_hits;
349	kstat_named_t arcstat_demand_data_misses;
350	kstat_named_t arcstat_demand_metadata_hits;
351	kstat_named_t arcstat_demand_metadata_misses;
352	kstat_named_t arcstat_prefetch_data_hits;
353	kstat_named_t arcstat_prefetch_data_misses;
354	kstat_named_t arcstat_prefetch_metadata_hits;
355	kstat_named_t arcstat_prefetch_metadata_misses;
356	kstat_named_t arcstat_mru_hits;
357	kstat_named_t arcstat_mru_ghost_hits;
358	kstat_named_t arcstat_mfu_hits;
359	kstat_named_t arcstat_mfu_ghost_hits;
360	kstat_named_t arcstat_allocated;
361	kstat_named_t arcstat_deleted;
362	kstat_named_t arcstat_stolen;
363	kstat_named_t arcstat_recycle_miss;
364	/*
365	 * Number of buffers that could not be evicted because the hash lock
366	 * was held by another thread.  The lock may not necessarily be held
367	 * by something using the same buffer, since hash locks are shared
368	 * by multiple buffers.
369	 */
370	kstat_named_t arcstat_mutex_miss;
371	/*
372	 * Number of buffers skipped because they have I/O in progress, are
373	 * indrect prefetch buffers that have not lived long enough, or are
374	 * not from the spa we're trying to evict from.
375	 */
376	kstat_named_t arcstat_evict_skip;
377	kstat_named_t arcstat_evict_l2_cached;
378	kstat_named_t arcstat_evict_l2_eligible;
379	kstat_named_t arcstat_evict_l2_ineligible;
380	kstat_named_t arcstat_hash_elements;
381	kstat_named_t arcstat_hash_elements_max;
382	kstat_named_t arcstat_hash_collisions;
383	kstat_named_t arcstat_hash_chains;
384	kstat_named_t arcstat_hash_chain_max;
385	kstat_named_t arcstat_p;
386	kstat_named_t arcstat_c;
387	kstat_named_t arcstat_c_min;
388	kstat_named_t arcstat_c_max;
389	kstat_named_t arcstat_size;
390	/*
391	 * Number of bytes consumed by internal ARC structures necessary
392	 * for tracking purposes; these structures are not actually
393	 * backed by ARC buffers. This includes arc_buf_hdr_t structures
394	 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
395	 * caches), and arc_buf_t structures (allocated via arc_buf_t
396	 * cache).
397	 */
398	kstat_named_t arcstat_hdr_size;
399	/*
400	 * Number of bytes consumed by ARC buffers of type equal to
401	 * ARC_BUFC_DATA. This is generally consumed by buffers backing
402	 * on disk user data (e.g. plain file contents).
403	 */
404	kstat_named_t arcstat_data_size;
405	/*
406	 * Number of bytes consumed by ARC buffers of type equal to
407	 * ARC_BUFC_METADATA. This is generally consumed by buffers
408	 * backing on disk data that is used for internal ZFS
409	 * structures (e.g. ZAP, dnode, indirect blocks, etc).
410	 */
411	kstat_named_t arcstat_metadata_size;
412	/*
413	 * Number of bytes consumed by various buffers and structures
414	 * not actually backed with ARC buffers. This includes bonus
415	 * buffers (allocated directly via zio_buf_* functions),
416	 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t
417	 * cache), and dnode_t structures (allocated via dnode_t cache).
418	 */
419	kstat_named_t arcstat_other_size;
420	/*
421	 * Total number of bytes consumed by ARC buffers residing in the
422	 * arc_anon state. This includes *all* buffers in the arc_anon
423	 * state; e.g. data, metadata, evictable, and unevictable buffers
424	 * are all included in this value.
425	 */
426	kstat_named_t arcstat_anon_size;
427	/*
428	 * Number of bytes consumed by ARC buffers that meet the
429	 * following criteria: backing buffers of type ARC_BUFC_DATA,
430	 * residing in the arc_anon state, and are eligible for eviction
431	 * (e.g. have no outstanding holds on the buffer).
432	 */
433	kstat_named_t arcstat_anon_evictable_data;
434	/*
435	 * Number of bytes consumed by ARC buffers that meet the
436	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
437	 * residing in the arc_anon state, and are eligible for eviction
438	 * (e.g. have no outstanding holds on the buffer).
439	 */
440	kstat_named_t arcstat_anon_evictable_metadata;
441	/*
442	 * Total number of bytes consumed by ARC buffers residing in the
443	 * arc_mru state. This includes *all* buffers in the arc_mru
444	 * state; e.g. data, metadata, evictable, and unevictable buffers
445	 * are all included in this value.
446	 */
447	kstat_named_t arcstat_mru_size;
448	/*
449	 * Number of bytes consumed by ARC buffers that meet the
450	 * following criteria: backing buffers of type ARC_BUFC_DATA,
451	 * residing in the arc_mru state, and are eligible for eviction
452	 * (e.g. have no outstanding holds on the buffer).
453	 */
454	kstat_named_t arcstat_mru_evictable_data;
455	/*
456	 * Number of bytes consumed by ARC buffers that meet the
457	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
458	 * residing in the arc_mru state, and are eligible for eviction
459	 * (e.g. have no outstanding holds on the buffer).
460	 */
461	kstat_named_t arcstat_mru_evictable_metadata;
462	/*
463	 * Total number of bytes that *would have been* consumed by ARC
464	 * buffers in the arc_mru_ghost state. The key thing to note
465	 * here, is the fact that this size doesn't actually indicate
466	 * RAM consumption. The ghost lists only consist of headers and
467	 * don't actually have ARC buffers linked off of these headers.
468	 * Thus, *if* the headers had associated ARC buffers, these
469	 * buffers *would have* consumed this number of bytes.
470	 */
471	kstat_named_t arcstat_mru_ghost_size;
472	/*
473	 * Number of bytes that *would have been* consumed by ARC
474	 * buffers that are eligible for eviction, of type
475	 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
476	 */
477	kstat_named_t arcstat_mru_ghost_evictable_data;
478	/*
479	 * Number of bytes that *would have been* consumed by ARC
480	 * buffers that are eligible for eviction, of type
481	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
482	 */
483	kstat_named_t arcstat_mru_ghost_evictable_metadata;
484	/*
485	 * Total number of bytes consumed by ARC buffers residing in the
486	 * arc_mfu state. This includes *all* buffers in the arc_mfu
487	 * state; e.g. data, metadata, evictable, and unevictable buffers
488	 * are all included in this value.
489	 */
490	kstat_named_t arcstat_mfu_size;
491	/*
492	 * Number of bytes consumed by ARC buffers that are eligible for
493	 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
494	 * state.
495	 */
496	kstat_named_t arcstat_mfu_evictable_data;
497	/*
498	 * Number of bytes consumed by ARC buffers that are eligible for
499	 * eviction, of type ARC_BUFC_METADATA, and reside in the
500	 * arc_mfu state.
501	 */
502	kstat_named_t arcstat_mfu_evictable_metadata;
503	/*
504	 * Total number of bytes that *would have been* consumed by ARC
505	 * buffers in the arc_mfu_ghost state. See the comment above
506	 * arcstat_mru_ghost_size for more details.
507	 */
508	kstat_named_t arcstat_mfu_ghost_size;
509	/*
510	 * Number of bytes that *would have been* consumed by ARC
511	 * buffers that are eligible for eviction, of type
512	 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
513	 */
514	kstat_named_t arcstat_mfu_ghost_evictable_data;
515	/*
516	 * Number of bytes that *would have been* consumed by ARC
517	 * buffers that are eligible for eviction, of type
518	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
519	 */
520	kstat_named_t arcstat_mfu_ghost_evictable_metadata;
521	kstat_named_t arcstat_l2_hits;
522	kstat_named_t arcstat_l2_misses;
523	kstat_named_t arcstat_l2_feeds;
524	kstat_named_t arcstat_l2_rw_clash;
525	kstat_named_t arcstat_l2_read_bytes;
526	kstat_named_t arcstat_l2_write_bytes;
527	kstat_named_t arcstat_l2_writes_sent;
528	kstat_named_t arcstat_l2_writes_done;
529	kstat_named_t arcstat_l2_writes_error;
530	kstat_named_t arcstat_l2_writes_hdr_miss;
531	kstat_named_t arcstat_l2_evict_lock_retry;
532	kstat_named_t arcstat_l2_evict_reading;
533	kstat_named_t arcstat_l2_evict_l1cached;
534	kstat_named_t arcstat_l2_free_on_write;
535	kstat_named_t arcstat_l2_cdata_free_on_write;
536	kstat_named_t arcstat_l2_abort_lowmem;
537	kstat_named_t arcstat_l2_cksum_bad;
538	kstat_named_t arcstat_l2_io_error;
539	kstat_named_t arcstat_l2_size;
540	kstat_named_t arcstat_l2_asize;
541	kstat_named_t arcstat_l2_hdr_size;
542	kstat_named_t arcstat_l2_compress_successes;
543	kstat_named_t arcstat_l2_compress_zeros;
544	kstat_named_t arcstat_l2_compress_failures;
545	kstat_named_t arcstat_l2_write_trylock_fail;
546	kstat_named_t arcstat_l2_write_passed_headroom;
547	kstat_named_t arcstat_l2_write_spa_mismatch;
548	kstat_named_t arcstat_l2_write_in_l2;
549	kstat_named_t arcstat_l2_write_hdr_io_in_progress;
550	kstat_named_t arcstat_l2_write_not_cacheable;
551	kstat_named_t arcstat_l2_write_full;
552	kstat_named_t arcstat_l2_write_buffer_iter;
553	kstat_named_t arcstat_l2_write_pios;
554	kstat_named_t arcstat_l2_write_buffer_bytes_scanned;
555	kstat_named_t arcstat_l2_write_buffer_list_iter;
556	kstat_named_t arcstat_l2_write_buffer_list_null_iter;
557	kstat_named_t arcstat_memory_throttle_count;
558	kstat_named_t arcstat_duplicate_buffers;
559	kstat_named_t arcstat_duplicate_buffers_size;
560	kstat_named_t arcstat_duplicate_reads;
561	kstat_named_t arcstat_meta_used;
562	kstat_named_t arcstat_meta_limit;
563	kstat_named_t arcstat_meta_max;
564	kstat_named_t arcstat_meta_min;
565} arc_stats_t;
566
567static arc_stats_t arc_stats = {
568	{ "hits",			KSTAT_DATA_UINT64 },
569	{ "misses",			KSTAT_DATA_UINT64 },
570	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
571	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
572	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
573	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
574	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
575	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
576	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
577	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
578	{ "mru_hits",			KSTAT_DATA_UINT64 },
579	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
580	{ "mfu_hits",			KSTAT_DATA_UINT64 },
581	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
582	{ "allocated",			KSTAT_DATA_UINT64 },
583	{ "deleted",			KSTAT_DATA_UINT64 },
584	{ "stolen",			KSTAT_DATA_UINT64 },
585	{ "recycle_miss",		KSTAT_DATA_UINT64 },
586	{ "mutex_miss",			KSTAT_DATA_UINT64 },
587	{ "evict_skip",			KSTAT_DATA_UINT64 },
588	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
589	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
590	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
591	{ "hash_elements",		KSTAT_DATA_UINT64 },
592	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
593	{ "hash_collisions",		KSTAT_DATA_UINT64 },
594	{ "hash_chains",		KSTAT_DATA_UINT64 },
595	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
596	{ "p",				KSTAT_DATA_UINT64 },
597	{ "c",				KSTAT_DATA_UINT64 },
598	{ "c_min",			KSTAT_DATA_UINT64 },
599	{ "c_max",			KSTAT_DATA_UINT64 },
600	{ "size",			KSTAT_DATA_UINT64 },
601	{ "hdr_size",			KSTAT_DATA_UINT64 },
602	{ "data_size",			KSTAT_DATA_UINT64 },
603	{ "metadata_size",		KSTAT_DATA_UINT64 },
604	{ "other_size",			KSTAT_DATA_UINT64 },
605	{ "anon_size",			KSTAT_DATA_UINT64 },
606	{ "anon_evictable_data",	KSTAT_DATA_UINT64 },
607	{ "anon_evictable_metadata",	KSTAT_DATA_UINT64 },
608	{ "mru_size",			KSTAT_DATA_UINT64 },
609	{ "mru_evictable_data",		KSTAT_DATA_UINT64 },
610	{ "mru_evictable_metadata",	KSTAT_DATA_UINT64 },
611	{ "mru_ghost_size",		KSTAT_DATA_UINT64 },
612	{ "mru_ghost_evictable_data",	KSTAT_DATA_UINT64 },
613	{ "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
614	{ "mfu_size",			KSTAT_DATA_UINT64 },
615	{ "mfu_evictable_data",		KSTAT_DATA_UINT64 },
616	{ "mfu_evictable_metadata",	KSTAT_DATA_UINT64 },
617	{ "mfu_ghost_size",		KSTAT_DATA_UINT64 },
618	{ "mfu_ghost_evictable_data",	KSTAT_DATA_UINT64 },
619	{ "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
620	{ "l2_hits",			KSTAT_DATA_UINT64 },
621	{ "l2_misses",			KSTAT_DATA_UINT64 },
622	{ "l2_feeds",			KSTAT_DATA_UINT64 },
623	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
624	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
625	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
626	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
627	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
628	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
629	{ "l2_writes_hdr_miss",		KSTAT_DATA_UINT64 },
630	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
631	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
632	{ "l2_evict_l1cached",		KSTAT_DATA_UINT64 },
633	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
634	{ "l2_cdata_free_on_write",	KSTAT_DATA_UINT64 },
635	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
636	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
637	{ "l2_io_error",		KSTAT_DATA_UINT64 },
638	{ "l2_size",			KSTAT_DATA_UINT64 },
639	{ "l2_asize",			KSTAT_DATA_UINT64 },
640	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
641	{ "l2_compress_successes",	KSTAT_DATA_UINT64 },
642	{ "l2_compress_zeros",		KSTAT_DATA_UINT64 },
643	{ "l2_compress_failures",	KSTAT_DATA_UINT64 },
644	{ "l2_write_trylock_fail",	KSTAT_DATA_UINT64 },
645	{ "l2_write_passed_headroom",	KSTAT_DATA_UINT64 },
646	{ "l2_write_spa_mismatch",	KSTAT_DATA_UINT64 },
647	{ "l2_write_in_l2",		KSTAT_DATA_UINT64 },
648	{ "l2_write_io_in_progress",	KSTAT_DATA_UINT64 },
649	{ "l2_write_not_cacheable",	KSTAT_DATA_UINT64 },
650	{ "l2_write_full",		KSTAT_DATA_UINT64 },
651	{ "l2_write_buffer_iter",	KSTAT_DATA_UINT64 },
652	{ "l2_write_pios",		KSTAT_DATA_UINT64 },
653	{ "l2_write_buffer_bytes_scanned", KSTAT_DATA_UINT64 },
654	{ "l2_write_buffer_list_iter",	KSTAT_DATA_UINT64 },
655	{ "l2_write_buffer_list_null_iter", KSTAT_DATA_UINT64 },
656	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
657	{ "duplicate_buffers",		KSTAT_DATA_UINT64 },
658	{ "duplicate_buffers_size",	KSTAT_DATA_UINT64 },
659	{ "duplicate_reads",		KSTAT_DATA_UINT64 },
660	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
661	{ "arc_meta_limit",		KSTAT_DATA_UINT64 },
662	{ "arc_meta_max",		KSTAT_DATA_UINT64 },
663	{ "arc_meta_min",		KSTAT_DATA_UINT64 }
664};
665
666#define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
667
668#define	ARCSTAT_INCR(stat, val) \
669	atomic_add_64(&arc_stats.stat.value.ui64, (val))
670
671#define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
672#define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
673
674#define	ARCSTAT_MAX(stat, val) {					\
675	uint64_t m;							\
676	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
677	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
678		continue;						\
679}
680
681#define	ARCSTAT_MAXSTAT(stat) \
682	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
683
684/*
685 * We define a macro to allow ARC hits/misses to be easily broken down by
686 * two separate conditions, giving a total of four different subtypes for
687 * each of hits and misses (so eight statistics total).
688 */
689#define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
690	if (cond1) {							\
691		if (cond2) {						\
692			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
693		} else {						\
694			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
695		}							\
696	} else {							\
697		if (cond2) {						\
698			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
699		} else {						\
700			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
701		}							\
702	}
703
704kstat_t			*arc_ksp;
705static arc_state_t	*arc_anon;
706static arc_state_t	*arc_mru;
707static arc_state_t	*arc_mru_ghost;
708static arc_state_t	*arc_mfu;
709static arc_state_t	*arc_mfu_ghost;
710static arc_state_t	*arc_l2c_only;
711
712/*
713 * There are several ARC variables that are critical to export as kstats --
714 * but we don't want to have to grovel around in the kstat whenever we wish to
715 * manipulate them.  For these variables, we therefore define them to be in
716 * terms of the statistic variable.  This assures that we are not introducing
717 * the possibility of inconsistency by having shadow copies of the variables,
718 * while still allowing the code to be readable.
719 */
720#define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
721#define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
722#define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
723#define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
724#define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
725#define	arc_meta_limit	ARCSTAT(arcstat_meta_limit) /* max size for metadata */
726#define	arc_meta_min	ARCSTAT(arcstat_meta_min) /* min size for metadata */
727#define	arc_meta_used	ARCSTAT(arcstat_meta_used) /* size of metadata */
728#define	arc_meta_max	ARCSTAT(arcstat_meta_max) /* max size of metadata */
729
730#define	L2ARC_IS_VALID_COMPRESS(_c_) \
731	((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY)
732
733static int		arc_no_grow;	/* Don't try to grow cache size */
734static uint64_t		arc_tempreserve;
735static uint64_t		arc_loaned_bytes;
736
737typedef struct arc_callback arc_callback_t;
738
739struct arc_callback {
740	void			*acb_private;
741	arc_done_func_t		*acb_done;
742	arc_buf_t		*acb_buf;
743	zio_t			*acb_zio_dummy;
744	arc_callback_t		*acb_next;
745};
746
747typedef struct arc_write_callback arc_write_callback_t;
748
749struct arc_write_callback {
750	void		*awcb_private;
751	arc_done_func_t	*awcb_ready;
752	arc_done_func_t	*awcb_physdone;
753	arc_done_func_t	*awcb_done;
754	arc_buf_t	*awcb_buf;
755};
756
757/*
758 * ARC buffers are separated into multiple structs as a memory saving measure:
759 *   - Common fields struct, always defined, and embedded within it:
760 *       - L2-only fields, always allocated but undefined when not in L2ARC
761 *       - L1-only fields, only allocated when in L1ARC
762 *
763 *           Buffer in L1                     Buffer only in L2
764 *    +------------------------+          +------------------------+
765 *    | arc_buf_hdr_t          |          | arc_buf_hdr_t          |
766 *    |                        |          |                        |
767 *    |                        |          |                        |
768 *    |                        |          |                        |
769 *    +------------------------+          +------------------------+
770 *    | l2arc_buf_hdr_t        |          | l2arc_buf_hdr_t        |
771 *    | (undefined if L1-only) |          |                        |
772 *    +------------------------+          +------------------------+
773 *    | l1arc_buf_hdr_t        |
774 *    |                        |
775 *    |                        |
776 *    |                        |
777 *    |                        |
778 *    +------------------------+
779 *
780 * Because it's possible for the L2ARC to become extremely large, we can wind
781 * up eating a lot of memory in L2ARC buffer headers, so the size of a header
782 * is minimized by only allocating the fields necessary for an L1-cached buffer
783 * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and
784 * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple
785 * words in pointers. arc_hdr_realloc() is used to switch a header between
786 * these two allocation states.
787 */
788typedef struct l1arc_buf_hdr {
789	kmutex_t		b_freeze_lock;
790#ifdef ZFS_DEBUG
791	/*
792	 * used for debugging wtih kmem_flags - by allocating and freeing
793	 * b_thawed when the buffer is thawed, we get a record of the stack
794	 * trace that thawed it.
795	 */
796	void			*b_thawed;
797#endif
798
799	arc_buf_t		*b_buf;
800	uint32_t		b_datacnt;
801	/* for waiting on writes to complete */
802	kcondvar_t		b_cv;
803
804	/* protected by arc state mutex */
805	arc_state_t		*b_state;
806	list_node_t		b_arc_node;
807
808	/* updated atomically */
809	clock_t			b_arc_access;
810
811	/* self protecting */
812	refcount_t		b_refcnt;
813
814	arc_callback_t		*b_acb;
815	/* temporary buffer holder for in-flight compressed data */
816	void			*b_tmp_cdata;
817} l1arc_buf_hdr_t;
818
819typedef struct l2arc_dev l2arc_dev_t;
820
821typedef struct l2arc_buf_hdr {
822	/* protected by arc_buf_hdr mutex */
823	l2arc_dev_t		*b_dev;		/* L2ARC device */
824	uint64_t		b_daddr;	/* disk address, offset byte */
825	/* real alloc'd buffer size depending on b_compress applied */
826	int32_t			b_asize;
827
828	list_node_t		b_l2node;
829} l2arc_buf_hdr_t;
830
831struct arc_buf_hdr {
832	/* protected by hash lock */
833	dva_t			b_dva;
834	uint64_t		b_birth;
835	/*
836	 * Even though this checksum is only set/verified when a buffer is in
837	 * the L1 cache, it needs to be in the set of common fields because it
838	 * must be preserved from the time before a buffer is written out to
839	 * L2ARC until after it is read back in.
840	 */
841	zio_cksum_t		*b_freeze_cksum;
842
843	arc_buf_hdr_t		*b_hash_next;
844	arc_flags_t		b_flags;
845
846	/* immutable */
847	int32_t			b_size;
848	uint64_t		b_spa;
849
850	/* L2ARC fields. Undefined when not in L2ARC. */
851	l2arc_buf_hdr_t		b_l2hdr;
852	/* L1ARC fields. Undefined when in l2arc_only state */
853	l1arc_buf_hdr_t		b_l1hdr;
854};
855
856#ifdef _KERNEL
857static int
858sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS)
859{
860	uint64_t val;
861	int err;
862
863	val = arc_meta_limit;
864	err = sysctl_handle_64(oidp, &val, 0, req);
865	if (err != 0 || req->newptr == NULL)
866		return (err);
867
868        if (val <= 0 || val > arc_c_max)
869		return (EINVAL);
870
871	arc_meta_limit = val;
872	return (0);
873}
874#endif
875
876static arc_buf_t *arc_eviction_list;
877static kmutex_t arc_eviction_mtx;
878static arc_buf_hdr_t arc_eviction_hdr;
879
880#define	GHOST_STATE(state)	\
881	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
882	(state) == arc_l2c_only)
883
884#define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
885#define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
886#define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_FLAG_IO_ERROR)
887#define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_FLAG_PREFETCH)
888#define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FLAG_FREED_IN_READ)
889#define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_FLAG_BUF_AVAILABLE)
890
891#define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_FLAG_L2CACHE)
892#define	HDR_L2COMPRESS(hdr)	((hdr)->b_flags & ARC_FLAG_L2COMPRESS)
893#define	HDR_L2_READING(hdr)	\
894	    (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&	\
895	    ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
896#define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITING)
897#define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
898#define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
899
900#define	HDR_ISTYPE_METADATA(hdr)	\
901	    ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
902#define	HDR_ISTYPE_DATA(hdr)	(!HDR_ISTYPE_METADATA(hdr))
903
904#define	HDR_HAS_L1HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
905#define	HDR_HAS_L2HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
906
907/* For storing compression mode in b_flags */
908#define	HDR_COMPRESS_OFFSET	24
909#define	HDR_COMPRESS_NBITS	7
910
911#define	HDR_GET_COMPRESS(hdr)	((enum zio_compress)BF32_GET(hdr->b_flags, \
912	    HDR_COMPRESS_OFFSET, HDR_COMPRESS_NBITS))
913#define	HDR_SET_COMPRESS(hdr, cmp) BF32_SET(hdr->b_flags, \
914	    HDR_COMPRESS_OFFSET, HDR_COMPRESS_NBITS, (cmp))
915
916/*
917 * Other sizes
918 */
919
920#define	HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
921#define	HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
922
923/*
924 * Hash table routines
925 */
926
927#define	HT_LOCK_PAD	CACHE_LINE_SIZE
928
929struct ht_lock {
930	kmutex_t	ht_lock;
931#ifdef _KERNEL
932	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
933#endif
934};
935
936#define	BUF_LOCKS 256
937typedef struct buf_hash_table {
938	uint64_t ht_mask;
939	arc_buf_hdr_t **ht_table;
940	struct ht_lock ht_locks[BUF_LOCKS] __aligned(CACHE_LINE_SIZE);
941} buf_hash_table_t;
942
943static buf_hash_table_t buf_hash_table;
944
945#define	BUF_HASH_INDEX(spa, dva, birth) \
946	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
947#define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
948#define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
949#define	HDR_LOCK(hdr) \
950	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
951
952uint64_t zfs_crc64_table[256];
953
954/*
955 * Level 2 ARC
956 */
957
958#define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
959#define	L2ARC_HEADROOM		2			/* num of writes */
960/*
961 * If we discover during ARC scan any buffers to be compressed, we boost
962 * our headroom for the next scanning cycle by this percentage multiple.
963 */
964#define	L2ARC_HEADROOM_BOOST	200
965#define	L2ARC_FEED_SECS		1		/* caching interval secs */
966#define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
967
968/*
969 * Used to distinguish headers that are being process by
970 * l2arc_write_buffers(), but have yet to be assigned to a l2arc disk
971 * address. This can happen when the header is added to the l2arc's list
972 * of buffers to write in the first stage of l2arc_write_buffers(), but
973 * has not yet been written out which happens in the second stage of
974 * l2arc_write_buffers().
975 */
976#define	L2ARC_ADDR_UNSET	((uint64_t)(-1))
977
978#define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
979#define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
980
981/* L2ARC Performance Tunables */
982uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
983uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
984uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
985uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
986uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
987uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
988boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
989boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
990boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
991
992SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_max, CTLFLAG_RW,
993    &l2arc_write_max, 0, "max write size");
994SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_boost, CTLFLAG_RW,
995    &l2arc_write_boost, 0, "extra write during warmup");
996SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_headroom, CTLFLAG_RW,
997    &l2arc_headroom, 0, "number of dev writes");
998SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_secs, CTLFLAG_RW,
999    &l2arc_feed_secs, 0, "interval seconds");
1000SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_min_ms, CTLFLAG_RW,
1001    &l2arc_feed_min_ms, 0, "min interval milliseconds");
1002
1003SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_noprefetch, CTLFLAG_RW,
1004    &l2arc_noprefetch, 0, "don't cache prefetch bufs");
1005SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_feed_again, CTLFLAG_RW,
1006    &l2arc_feed_again, 0, "turbo warmup");
1007SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_norw, CTLFLAG_RW,
1008    &l2arc_norw, 0, "no reads during writes");
1009
1010SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_size, CTLFLAG_RD,
1011    &ARC_anon.arcs_size, 0, "size of anonymous state");
1012SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_metadata_lsize, CTLFLAG_RD,
1013    &ARC_anon.arcs_lsize[ARC_BUFC_METADATA], 0, "size of anonymous state");
1014SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_data_lsize, CTLFLAG_RD,
1015    &ARC_anon.arcs_lsize[ARC_BUFC_DATA], 0, "size of anonymous state");
1016
1017SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_size, CTLFLAG_RD,
1018    &ARC_mru.arcs_size, 0, "size of mru state");
1019SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_metadata_lsize, CTLFLAG_RD,
1020    &ARC_mru.arcs_lsize[ARC_BUFC_METADATA], 0, "size of metadata in mru state");
1021SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_data_lsize, CTLFLAG_RD,
1022    &ARC_mru.arcs_lsize[ARC_BUFC_DATA], 0, "size of data in mru state");
1023
1024SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_size, CTLFLAG_RD,
1025    &ARC_mru_ghost.arcs_size, 0, "size of mru ghost state");
1026SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_metadata_lsize, CTLFLAG_RD,
1027    &ARC_mru_ghost.arcs_lsize[ARC_BUFC_METADATA], 0,
1028    "size of metadata in mru ghost state");
1029SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_data_lsize, CTLFLAG_RD,
1030    &ARC_mru_ghost.arcs_lsize[ARC_BUFC_DATA], 0,
1031    "size of data in mru ghost state");
1032
1033SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_size, CTLFLAG_RD,
1034    &ARC_mfu.arcs_size, 0, "size of mfu state");
1035SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_metadata_lsize, CTLFLAG_RD,
1036    &ARC_mfu.arcs_lsize[ARC_BUFC_METADATA], 0, "size of metadata in mfu state");
1037SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_data_lsize, CTLFLAG_RD,
1038    &ARC_mfu.arcs_lsize[ARC_BUFC_DATA], 0, "size of data in mfu state");
1039
1040SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_size, CTLFLAG_RD,
1041    &ARC_mfu_ghost.arcs_size, 0, "size of mfu ghost state");
1042SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_metadata_lsize, CTLFLAG_RD,
1043    &ARC_mfu_ghost.arcs_lsize[ARC_BUFC_METADATA], 0,
1044    "size of metadata in mfu ghost state");
1045SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_data_lsize, CTLFLAG_RD,
1046    &ARC_mfu_ghost.arcs_lsize[ARC_BUFC_DATA], 0,
1047    "size of data in mfu ghost state");
1048
1049SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2c_only_size, CTLFLAG_RD,
1050    &ARC_l2c_only.arcs_size, 0, "size of mru state");
1051
1052/*
1053 * L2ARC Internals
1054 */
1055struct l2arc_dev {
1056	vdev_t			*l2ad_vdev;	/* vdev */
1057	spa_t			*l2ad_spa;	/* spa */
1058	uint64_t		l2ad_hand;	/* next write location */
1059	uint64_t		l2ad_start;	/* first addr on device */
1060	uint64_t		l2ad_end;	/* last addr on device */
1061	boolean_t		l2ad_first;	/* first sweep through */
1062	boolean_t		l2ad_writing;	/* currently writing */
1063	kmutex_t		l2ad_mtx;	/* lock for buffer list */
1064	list_t			l2ad_buflist;	/* buffer list */
1065	list_node_t		l2ad_node;	/* device list node */
1066	refcount_t		l2ad_alloc;	/* allocated bytes */
1067};
1068
1069static list_t L2ARC_dev_list;			/* device list */
1070static list_t *l2arc_dev_list;			/* device list pointer */
1071static kmutex_t l2arc_dev_mtx;			/* device list mutex */
1072static l2arc_dev_t *l2arc_dev_last;		/* last device used */
1073static list_t L2ARC_free_on_write;		/* free after write buf list */
1074static list_t *l2arc_free_on_write;		/* free after write list ptr */
1075static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
1076static uint64_t l2arc_ndev;			/* number of devices */
1077
1078typedef struct l2arc_read_callback {
1079	arc_buf_t		*l2rcb_buf;		/* read buffer */
1080	spa_t			*l2rcb_spa;		/* spa */
1081	blkptr_t		l2rcb_bp;		/* original blkptr */
1082	zbookmark_phys_t	l2rcb_zb;		/* original bookmark */
1083	int			l2rcb_flags;		/* original flags */
1084	enum zio_compress	l2rcb_compress;		/* applied compress */
1085} l2arc_read_callback_t;
1086
1087typedef struct l2arc_write_callback {
1088	l2arc_dev_t	*l2wcb_dev;		/* device info */
1089	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
1090} l2arc_write_callback_t;
1091
1092typedef struct l2arc_data_free {
1093	/* protected by l2arc_free_on_write_mtx */
1094	void		*l2df_data;
1095	size_t		l2df_size;
1096	void		(*l2df_func)(void *, size_t);
1097	list_node_t	l2df_list_node;
1098} l2arc_data_free_t;
1099
1100static kmutex_t l2arc_feed_thr_lock;
1101static kcondvar_t l2arc_feed_thr_cv;
1102static uint8_t l2arc_thread_exit;
1103
1104static void arc_get_data_buf(arc_buf_t *);
1105static void arc_access(arc_buf_hdr_t *, kmutex_t *);
1106static int arc_evict_needed(arc_buf_contents_t);
1107static void arc_evict_ghost(arc_state_t *, uint64_t, int64_t);
1108static void arc_buf_watch(arc_buf_t *);
1109
1110static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
1111static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
1112
1113static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
1114static void l2arc_read_done(zio_t *);
1115
1116static boolean_t l2arc_compress_buf(arc_buf_hdr_t *);
1117static void l2arc_decompress_zio(zio_t *, arc_buf_hdr_t *, enum zio_compress);
1118static void l2arc_release_cdata_buf(arc_buf_hdr_t *);
1119
1120static uint64_t
1121buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
1122{
1123	uint8_t *vdva = (uint8_t *)dva;
1124	uint64_t crc = -1ULL;
1125	int i;
1126
1127	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
1128
1129	for (i = 0; i < sizeof (dva_t); i++)
1130		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
1131
1132	crc ^= (spa>>8) ^ birth;
1133
1134	return (crc);
1135}
1136
1137#define	BUF_EMPTY(buf)						\
1138	((buf)->b_dva.dva_word[0] == 0 &&			\
1139	(buf)->b_dva.dva_word[1] == 0)
1140
1141#define	BUF_EQUAL(spa, dva, birth, buf)				\
1142	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
1143	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
1144	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
1145
1146static void
1147buf_discard_identity(arc_buf_hdr_t *hdr)
1148{
1149	hdr->b_dva.dva_word[0] = 0;
1150	hdr->b_dva.dva_word[1] = 0;
1151	hdr->b_birth = 0;
1152}
1153
1154static arc_buf_hdr_t *
1155buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1156{
1157	const dva_t *dva = BP_IDENTITY(bp);
1158	uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1159	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1160	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1161	arc_buf_hdr_t *hdr;
1162
1163	mutex_enter(hash_lock);
1164	for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1165	    hdr = hdr->b_hash_next) {
1166		if (BUF_EQUAL(spa, dva, birth, hdr)) {
1167			*lockp = hash_lock;
1168			return (hdr);
1169		}
1170	}
1171	mutex_exit(hash_lock);
1172	*lockp = NULL;
1173	return (NULL);
1174}
1175
1176/*
1177 * Insert an entry into the hash table.  If there is already an element
1178 * equal to elem in the hash table, then the already existing element
1179 * will be returned and the new element will not be inserted.
1180 * Otherwise returns NULL.
1181 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1182 */
1183static arc_buf_hdr_t *
1184buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1185{
1186	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1187	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1188	arc_buf_hdr_t *fhdr;
1189	uint32_t i;
1190
1191	ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1192	ASSERT(hdr->b_birth != 0);
1193	ASSERT(!HDR_IN_HASH_TABLE(hdr));
1194
1195	if (lockp != NULL) {
1196		*lockp = hash_lock;
1197		mutex_enter(hash_lock);
1198	} else {
1199		ASSERT(MUTEX_HELD(hash_lock));
1200	}
1201
1202	for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1203	    fhdr = fhdr->b_hash_next, i++) {
1204		if (BUF_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1205			return (fhdr);
1206	}
1207
1208	hdr->b_hash_next = buf_hash_table.ht_table[idx];
1209	buf_hash_table.ht_table[idx] = hdr;
1210	hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
1211
1212	/* collect some hash table performance data */
1213	if (i > 0) {
1214		ARCSTAT_BUMP(arcstat_hash_collisions);
1215		if (i == 1)
1216			ARCSTAT_BUMP(arcstat_hash_chains);
1217
1218		ARCSTAT_MAX(arcstat_hash_chain_max, i);
1219	}
1220
1221	ARCSTAT_BUMP(arcstat_hash_elements);
1222	ARCSTAT_MAXSTAT(arcstat_hash_elements);
1223
1224	return (NULL);
1225}
1226
1227static void
1228buf_hash_remove(arc_buf_hdr_t *hdr)
1229{
1230	arc_buf_hdr_t *fhdr, **hdrp;
1231	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1232
1233	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1234	ASSERT(HDR_IN_HASH_TABLE(hdr));
1235
1236	hdrp = &buf_hash_table.ht_table[idx];
1237	while ((fhdr = *hdrp) != hdr) {
1238		ASSERT(fhdr != NULL);
1239		hdrp = &fhdr->b_hash_next;
1240	}
1241	*hdrp = hdr->b_hash_next;
1242	hdr->b_hash_next = NULL;
1243	hdr->b_flags &= ~ARC_FLAG_IN_HASH_TABLE;
1244
1245	/* collect some hash table performance data */
1246	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1247
1248	if (buf_hash_table.ht_table[idx] &&
1249	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1250		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1251}
1252
1253/*
1254 * Global data structures and functions for the buf kmem cache.
1255 */
1256static kmem_cache_t *hdr_full_cache;
1257static kmem_cache_t *hdr_l2only_cache;
1258static kmem_cache_t *buf_cache;
1259
1260static void
1261buf_fini(void)
1262{
1263	int i;
1264
1265	kmem_free(buf_hash_table.ht_table,
1266	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1267	for (i = 0; i < BUF_LOCKS; i++)
1268		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1269	kmem_cache_destroy(hdr_full_cache);
1270	kmem_cache_destroy(hdr_l2only_cache);
1271	kmem_cache_destroy(buf_cache);
1272}
1273
1274/*
1275 * Constructor callback - called when the cache is empty
1276 * and a new buf is requested.
1277 */
1278/* ARGSUSED */
1279static int
1280hdr_full_cons(void *vbuf, void *unused, int kmflag)
1281{
1282	arc_buf_hdr_t *hdr = vbuf;
1283
1284	bzero(hdr, HDR_FULL_SIZE);
1285	cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1286	refcount_create(&hdr->b_l1hdr.b_refcnt);
1287	mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1288	arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1289
1290	return (0);
1291}
1292
1293/* ARGSUSED */
1294static int
1295hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1296{
1297	arc_buf_hdr_t *hdr = vbuf;
1298
1299	bzero(hdr, HDR_L2ONLY_SIZE);
1300	arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1301
1302	return (0);
1303}
1304
1305/* ARGSUSED */
1306static int
1307buf_cons(void *vbuf, void *unused, int kmflag)
1308{
1309	arc_buf_t *buf = vbuf;
1310
1311	bzero(buf, sizeof (arc_buf_t));
1312	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1313	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1314
1315	return (0);
1316}
1317
1318/*
1319 * Destructor callback - called when a cached buf is
1320 * no longer required.
1321 */
1322/* ARGSUSED */
1323static void
1324hdr_full_dest(void *vbuf, void *unused)
1325{
1326	arc_buf_hdr_t *hdr = vbuf;
1327
1328	ASSERT(BUF_EMPTY(hdr));
1329	cv_destroy(&hdr->b_l1hdr.b_cv);
1330	refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1331	mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1332	arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1333}
1334
1335/* ARGSUSED */
1336static void
1337hdr_l2only_dest(void *vbuf, void *unused)
1338{
1339	arc_buf_hdr_t *hdr = vbuf;
1340
1341	ASSERT(BUF_EMPTY(hdr));
1342	arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1343}
1344
1345/* ARGSUSED */
1346static void
1347buf_dest(void *vbuf, void *unused)
1348{
1349	arc_buf_t *buf = vbuf;
1350
1351	mutex_destroy(&buf->b_evict_lock);
1352	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1353}
1354
1355/*
1356 * Reclaim callback -- invoked when memory is low.
1357 */
1358/* ARGSUSED */
1359static void
1360hdr_recl(void *unused)
1361{
1362	dprintf("hdr_recl called\n");
1363	/*
1364	 * umem calls the reclaim func when we destroy the buf cache,
1365	 * which is after we do arc_fini().
1366	 */
1367	if (!arc_dead)
1368		cv_signal(&arc_reclaim_thr_cv);
1369}
1370
1371static void
1372buf_init(void)
1373{
1374	uint64_t *ct;
1375	uint64_t hsize = 1ULL << 12;
1376	int i, j;
1377
1378	/*
1379	 * The hash table is big enough to fill all of physical memory
1380	 * with an average block size of zfs_arc_average_blocksize (default 8K).
1381	 * By default, the table will take up
1382	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1383	 */
1384	while (hsize * zfs_arc_average_blocksize < (uint64_t)physmem * PAGESIZE)
1385		hsize <<= 1;
1386retry:
1387	buf_hash_table.ht_mask = hsize - 1;
1388	buf_hash_table.ht_table =
1389	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1390	if (buf_hash_table.ht_table == NULL) {
1391		ASSERT(hsize > (1ULL << 8));
1392		hsize >>= 1;
1393		goto retry;
1394	}
1395
1396	hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1397	    0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1398	hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1399	    HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1400	    NULL, NULL, 0);
1401	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1402	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1403
1404	for (i = 0; i < 256; i++)
1405		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1406			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1407
1408	for (i = 0; i < BUF_LOCKS; i++) {
1409		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1410		    NULL, MUTEX_DEFAULT, NULL);
1411	}
1412}
1413
1414/*
1415 * Transition between the two allocation states for the arc_buf_hdr struct.
1416 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
1417 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
1418 * version is used when a cache buffer is only in the L2ARC in order to reduce
1419 * memory usage.
1420 */
1421static arc_buf_hdr_t *
1422arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
1423{
1424	ASSERT(HDR_HAS_L2HDR(hdr));
1425
1426	arc_buf_hdr_t *nhdr;
1427	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
1428
1429	ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
1430	    (old == hdr_l2only_cache && new == hdr_full_cache));
1431
1432	nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
1433
1434	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
1435	buf_hash_remove(hdr);
1436
1437	bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
1438
1439	if (new == hdr_full_cache) {
1440		nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
1441		/*
1442		 * arc_access and arc_change_state need to be aware that a
1443		 * header has just come out of L2ARC, so we set its state to
1444		 * l2c_only even though it's about to change.
1445		 */
1446		nhdr->b_l1hdr.b_state = arc_l2c_only;
1447	} else {
1448		ASSERT(hdr->b_l1hdr.b_buf == NULL);
1449		ASSERT0(hdr->b_l1hdr.b_datacnt);
1450		ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
1451		/*
1452		 * We might be removing the L1hdr of a buffer which was just
1453		 * written out to L2ARC. If such a buffer is compressed then we
1454		 * need to free its b_tmp_cdata before destroying the header.
1455		 */
1456		if (hdr->b_l1hdr.b_tmp_cdata != NULL &&
1457		    HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF)
1458			l2arc_release_cdata_buf(hdr);
1459		nhdr->b_flags &= ~ARC_FLAG_HAS_L1HDR;
1460	}
1461	/*
1462	 * The header has been reallocated so we need to re-insert it into any
1463	 * lists it was on.
1464	 */
1465	(void) buf_hash_insert(nhdr, NULL);
1466
1467	ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
1468
1469	mutex_enter(&dev->l2ad_mtx);
1470
1471	/*
1472	 * We must place the realloc'ed header back into the list at
1473	 * the same spot. Otherwise, if it's placed earlier in the list,
1474	 * l2arc_write_buffers() could find it during the function's
1475	 * write phase, and try to write it out to the l2arc.
1476	 */
1477	list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
1478	list_remove(&dev->l2ad_buflist, hdr);
1479
1480	mutex_exit(&dev->l2ad_mtx);
1481
1482	/*
1483	 * Since we're using the pointer address as the tag when
1484	 * incrementing and decrementing the l2ad_alloc refcount, we
1485	 * must remove the old pointer (that we're about to destroy) and
1486	 * add the new pointer to the refcount. Otherwise we'd remove
1487	 * the wrong pointer address when calling arc_hdr_destroy() later.
1488	 */
1489
1490	(void) refcount_remove_many(&dev->l2ad_alloc,
1491	    hdr->b_l2hdr.b_asize, hdr);
1492
1493	(void) refcount_add_many(&dev->l2ad_alloc,
1494	    nhdr->b_l2hdr.b_asize, nhdr);
1495
1496	buf_discard_identity(hdr);
1497	hdr->b_freeze_cksum = NULL;
1498	kmem_cache_free(old, hdr);
1499
1500	return (nhdr);
1501}
1502
1503
1504#define	ARC_MINTIME	(hz>>4) /* 62 ms */
1505
1506static void
1507arc_cksum_verify(arc_buf_t *buf)
1508{
1509	zio_cksum_t zc;
1510
1511	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1512		return;
1513
1514	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1515	if (buf->b_hdr->b_freeze_cksum == NULL || HDR_IO_ERROR(buf->b_hdr)) {
1516		mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1517		return;
1518	}
1519	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1520	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
1521		panic("buffer modified while frozen!");
1522	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1523}
1524
1525static int
1526arc_cksum_equal(arc_buf_t *buf)
1527{
1528	zio_cksum_t zc;
1529	int equal;
1530
1531	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1532	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1533	equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
1534	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1535
1536	return (equal);
1537}
1538
1539static void
1540arc_cksum_compute(arc_buf_t *buf, boolean_t force)
1541{
1542	if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1543		return;
1544
1545	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1546	if (buf->b_hdr->b_freeze_cksum != NULL) {
1547		mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1548		return;
1549	}
1550	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
1551	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1552	    buf->b_hdr->b_freeze_cksum);
1553	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1554#ifdef illumos
1555	arc_buf_watch(buf);
1556#endif /* illumos */
1557}
1558
1559#ifdef illumos
1560#ifndef _KERNEL
1561typedef struct procctl {
1562	long cmd;
1563	prwatch_t prwatch;
1564} procctl_t;
1565#endif
1566
1567/* ARGSUSED */
1568static void
1569arc_buf_unwatch(arc_buf_t *buf)
1570{
1571#ifndef _KERNEL
1572	if (arc_watch) {
1573		int result;
1574		procctl_t ctl;
1575		ctl.cmd = PCWATCH;
1576		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1577		ctl.prwatch.pr_size = 0;
1578		ctl.prwatch.pr_wflags = 0;
1579		result = write(arc_procfd, &ctl, sizeof (ctl));
1580		ASSERT3U(result, ==, sizeof (ctl));
1581	}
1582#endif
1583}
1584
1585/* ARGSUSED */
1586static void
1587arc_buf_watch(arc_buf_t *buf)
1588{
1589#ifndef _KERNEL
1590	if (arc_watch) {
1591		int result;
1592		procctl_t ctl;
1593		ctl.cmd = PCWATCH;
1594		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1595		ctl.prwatch.pr_size = buf->b_hdr->b_size;
1596		ctl.prwatch.pr_wflags = WA_WRITE;
1597		result = write(arc_procfd, &ctl, sizeof (ctl));
1598		ASSERT3U(result, ==, sizeof (ctl));
1599	}
1600#endif
1601}
1602#endif /* illumos */
1603
1604static arc_buf_contents_t
1605arc_buf_type(arc_buf_hdr_t *hdr)
1606{
1607	if (HDR_ISTYPE_METADATA(hdr)) {
1608		return (ARC_BUFC_METADATA);
1609	} else {
1610		return (ARC_BUFC_DATA);
1611	}
1612}
1613
1614static uint32_t
1615arc_bufc_to_flags(arc_buf_contents_t type)
1616{
1617	switch (type) {
1618	case ARC_BUFC_DATA:
1619		/* metadata field is 0 if buffer contains normal data */
1620		return (0);
1621	case ARC_BUFC_METADATA:
1622		return (ARC_FLAG_BUFC_METADATA);
1623	default:
1624		break;
1625	}
1626	panic("undefined ARC buffer type!");
1627	return ((uint32_t)-1);
1628}
1629
1630void
1631arc_buf_thaw(arc_buf_t *buf)
1632{
1633	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1634		if (buf->b_hdr->b_l1hdr.b_state != arc_anon)
1635			panic("modifying non-anon buffer!");
1636		if (HDR_IO_IN_PROGRESS(buf->b_hdr))
1637			panic("modifying buffer while i/o in progress!");
1638		arc_cksum_verify(buf);
1639	}
1640
1641	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1642	if (buf->b_hdr->b_freeze_cksum != NULL) {
1643		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1644		buf->b_hdr->b_freeze_cksum = NULL;
1645	}
1646
1647#ifdef ZFS_DEBUG
1648	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1649		if (buf->b_hdr->b_l1hdr.b_thawed != NULL)
1650			kmem_free(buf->b_hdr->b_l1hdr.b_thawed, 1);
1651		buf->b_hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP);
1652	}
1653#endif
1654
1655	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1656
1657#ifdef illumos
1658	arc_buf_unwatch(buf);
1659#endif /* illumos */
1660}
1661
1662void
1663arc_buf_freeze(arc_buf_t *buf)
1664{
1665	kmutex_t *hash_lock;
1666
1667	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1668		return;
1669
1670	hash_lock = HDR_LOCK(buf->b_hdr);
1671	mutex_enter(hash_lock);
1672
1673	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1674	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
1675	arc_cksum_compute(buf, B_FALSE);
1676	mutex_exit(hash_lock);
1677
1678}
1679
1680static void
1681get_buf_info(arc_buf_hdr_t *hdr, arc_state_t *state, list_t **list, kmutex_t **lock)
1682{
1683	uint64_t buf_hashid = buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1684
1685	if (arc_buf_type(hdr) == ARC_BUFC_METADATA)
1686		buf_hashid &= (ARC_BUFC_NUMMETADATALISTS - 1);
1687	else {
1688		buf_hashid &= (ARC_BUFC_NUMDATALISTS - 1);
1689		buf_hashid += ARC_BUFC_NUMMETADATALISTS;
1690	}
1691
1692	*list = &state->arcs_lists[buf_hashid];
1693	*lock = ARCS_LOCK(state, buf_hashid);
1694}
1695
1696
1697static void
1698add_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1699{
1700	ASSERT(HDR_HAS_L1HDR(hdr));
1701	ASSERT(MUTEX_HELD(hash_lock));
1702	arc_state_t *state = hdr->b_l1hdr.b_state;
1703
1704	if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
1705	    (state != arc_anon)) {
1706		/* We don't use the L2-only state list. */
1707		if (state != arc_l2c_only) {
1708			uint64_t delta = hdr->b_size * hdr->b_l1hdr.b_datacnt;
1709			uint64_t *size = &state->arcs_lsize[arc_buf_type(hdr)];
1710			list_t *list;
1711			kmutex_t *lock;
1712
1713			get_buf_info(hdr, state, &list, &lock);
1714			ASSERT(!MUTEX_HELD(lock));
1715			mutex_enter(lock);
1716			ASSERT(list_link_active(&hdr->b_l1hdr.b_arc_node));
1717			list_remove(list, hdr);
1718			if (GHOST_STATE(state)) {
1719				ASSERT0(hdr->b_l1hdr.b_datacnt);
1720				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
1721				delta = hdr->b_size;
1722			}
1723			ASSERT(delta > 0);
1724			ASSERT3U(*size, >=, delta);
1725			atomic_add_64(size, -delta);
1726			mutex_exit(lock);
1727		}
1728		/* remove the prefetch flag if we get a reference */
1729		hdr->b_flags &= ~ARC_FLAG_PREFETCH;
1730	}
1731}
1732
1733static int
1734remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1735{
1736	int cnt;
1737	arc_state_t *state = hdr->b_l1hdr.b_state;
1738
1739	ASSERT(HDR_HAS_L1HDR(hdr));
1740	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1741	ASSERT(!GHOST_STATE(state));
1742
1743	/*
1744	 * arc_l2c_only counts as a ghost state so we don't need to explicitly
1745	 * check to prevent usage of the arc_l2c_only list.
1746	 */
1747	if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
1748	    (state != arc_anon)) {
1749		uint64_t *size = &state->arcs_lsize[arc_buf_type(hdr)];
1750		list_t *list;
1751		kmutex_t *lock;
1752
1753		get_buf_info(hdr, state, &list, &lock);
1754		ASSERT(!MUTEX_HELD(lock));
1755		mutex_enter(lock);
1756		ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
1757		list_insert_head(list, hdr);
1758		ASSERT(hdr->b_l1hdr.b_datacnt > 0);
1759		atomic_add_64(size, hdr->b_size *
1760		    hdr->b_l1hdr.b_datacnt);
1761		mutex_exit(lock);
1762	}
1763	return (cnt);
1764}
1765
1766/*
1767 * Move the supplied buffer to the indicated state.  The mutex
1768 * for the buffer must be held by the caller.
1769 */
1770static void
1771arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
1772    kmutex_t *hash_lock)
1773{
1774	arc_state_t *old_state;
1775	int64_t refcnt;
1776	uint32_t datacnt;
1777	uint64_t from_delta, to_delta;
1778	arc_buf_contents_t buftype = arc_buf_type(hdr);
1779	list_t *list;
1780	kmutex_t *lock;
1781
1782	/*
1783	 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
1784	 * in arc_read() when bringing a buffer out of the L2ARC.  However, the
1785	 * L1 hdr doesn't always exist when we change state to arc_anon before
1786	 * destroying a header, in which case reallocating to add the L1 hdr is
1787	 * pointless.
1788	 */
1789	if (HDR_HAS_L1HDR(hdr)) {
1790		old_state = hdr->b_l1hdr.b_state;
1791		refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
1792		datacnt = hdr->b_l1hdr.b_datacnt;
1793	} else {
1794		old_state = arc_l2c_only;
1795		refcnt = 0;
1796		datacnt = 0;
1797	}
1798
1799	ASSERT(MUTEX_HELD(hash_lock));
1800	ASSERT3P(new_state, !=, old_state);
1801	ASSERT(refcnt == 0 || datacnt > 0);
1802	ASSERT(!GHOST_STATE(new_state) || datacnt == 0);
1803	ASSERT(old_state != arc_anon || datacnt <= 1);
1804
1805	from_delta = to_delta = datacnt * hdr->b_size;
1806
1807	/*
1808	 * If this buffer is evictable, transfer it from the
1809	 * old state list to the new state list.
1810	 */
1811	if (refcnt == 0) {
1812		if (old_state != arc_anon && old_state != arc_l2c_only) {
1813			int use_mutex;
1814			uint64_t *size = &old_state->arcs_lsize[buftype];
1815
1816			get_buf_info(hdr, old_state, &list, &lock);
1817			use_mutex = !MUTEX_HELD(lock);
1818			if (use_mutex)
1819				mutex_enter(lock);
1820
1821			ASSERT(HDR_HAS_L1HDR(hdr));
1822			ASSERT(list_link_active(&hdr->b_l1hdr.b_arc_node));
1823			list_remove(list, hdr);
1824
1825			/*
1826			 * If prefetching out of the ghost cache,
1827			 * we will have a non-zero datacnt.
1828			 */
1829			if (GHOST_STATE(old_state) && datacnt == 0) {
1830				/* ghost elements have a ghost size */
1831				ASSERT(hdr->b_l1hdr.b_buf == NULL);
1832				from_delta = hdr->b_size;
1833			}
1834			ASSERT3U(*size, >=, from_delta);
1835			atomic_add_64(size, -from_delta);
1836
1837			if (use_mutex)
1838				mutex_exit(lock);
1839		}
1840		if (new_state != arc_anon && new_state != arc_l2c_only) {
1841			int use_mutex;
1842			uint64_t *size = &new_state->arcs_lsize[buftype];
1843
1844			/*
1845			 * An L1 header always exists here, since if we're
1846			 * moving to some L1-cached state (i.e. not l2c_only or
1847			 * anonymous), we realloc the header to add an L1hdr
1848			 * beforehand.
1849			 */
1850			ASSERT(HDR_HAS_L1HDR(hdr));
1851			get_buf_info(hdr, new_state, &list, &lock);
1852			use_mutex = !MUTEX_HELD(lock);
1853			if (use_mutex)
1854				mutex_enter(lock);
1855
1856			list_insert_head(list, hdr);
1857
1858			/* ghost elements have a ghost size */
1859			if (GHOST_STATE(new_state)) {
1860				ASSERT(datacnt == 0);
1861				ASSERT(hdr->b_l1hdr.b_buf == NULL);
1862				to_delta = hdr->b_size;
1863			}
1864			atomic_add_64(size, to_delta);
1865
1866			if (use_mutex)
1867				mutex_exit(lock);
1868		}
1869	}
1870
1871	ASSERT(!BUF_EMPTY(hdr));
1872	if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
1873		buf_hash_remove(hdr);
1874
1875	/* adjust state sizes (ignore arc_l2c_only) */
1876	if (to_delta && new_state != arc_l2c_only)
1877		atomic_add_64(&new_state->arcs_size, to_delta);
1878	if (from_delta && old_state != arc_l2c_only) {
1879		ASSERT3U(old_state->arcs_size, >=, from_delta);
1880		atomic_add_64(&old_state->arcs_size, -from_delta);
1881	}
1882	if (HDR_HAS_L1HDR(hdr))
1883		hdr->b_l1hdr.b_state = new_state;
1884
1885	/*
1886	 * L2 headers should never be on the L2 state list since they don't
1887	 * have L1 headers allocated.
1888	 */
1889#ifdef illumos
1890	ASSERT(list_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
1891	    list_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
1892#endif
1893}
1894
1895void
1896arc_space_consume(uint64_t space, arc_space_type_t type)
1897{
1898	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1899
1900	switch (type) {
1901	case ARC_SPACE_DATA:
1902		ARCSTAT_INCR(arcstat_data_size, space);
1903		break;
1904	case ARC_SPACE_META:
1905		ARCSTAT_INCR(arcstat_metadata_size, space);
1906		break;
1907	case ARC_SPACE_OTHER:
1908		ARCSTAT_INCR(arcstat_other_size, space);
1909		break;
1910	case ARC_SPACE_HDRS:
1911		ARCSTAT_INCR(arcstat_hdr_size, space);
1912		break;
1913	case ARC_SPACE_L2HDRS:
1914		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1915		break;
1916	}
1917
1918	if (type != ARC_SPACE_DATA)
1919		ARCSTAT_INCR(arcstat_meta_used, space);
1920
1921	atomic_add_64(&arc_size, space);
1922}
1923
1924void
1925arc_space_return(uint64_t space, arc_space_type_t type)
1926{
1927	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1928
1929	switch (type) {
1930	case ARC_SPACE_DATA:
1931		ARCSTAT_INCR(arcstat_data_size, -space);
1932		break;
1933	case ARC_SPACE_META:
1934		ARCSTAT_INCR(arcstat_metadata_size, -space);
1935		break;
1936	case ARC_SPACE_OTHER:
1937		ARCSTAT_INCR(arcstat_other_size, -space);
1938		break;
1939	case ARC_SPACE_HDRS:
1940		ARCSTAT_INCR(arcstat_hdr_size, -space);
1941		break;
1942	case ARC_SPACE_L2HDRS:
1943		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1944		break;
1945	}
1946
1947	if (type != ARC_SPACE_DATA) {
1948		ASSERT(arc_meta_used >= space);
1949		if (arc_meta_max < arc_meta_used)
1950			arc_meta_max = arc_meta_used;
1951		ARCSTAT_INCR(arcstat_meta_used, -space);
1952	}
1953
1954	ASSERT(arc_size >= space);
1955	atomic_add_64(&arc_size, -space);
1956}
1957
1958arc_buf_t *
1959arc_buf_alloc(spa_t *spa, int32_t size, void *tag, arc_buf_contents_t type)
1960{
1961	arc_buf_hdr_t *hdr;
1962	arc_buf_t *buf;
1963
1964	ASSERT3U(size, >, 0);
1965	hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
1966	ASSERT(BUF_EMPTY(hdr));
1967	ASSERT3P(hdr->b_freeze_cksum, ==, NULL);
1968	hdr->b_size = size;
1969	hdr->b_spa = spa_load_guid(spa);
1970
1971	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1972	buf->b_hdr = hdr;
1973	buf->b_data = NULL;
1974	buf->b_efunc = NULL;
1975	buf->b_private = NULL;
1976	buf->b_next = NULL;
1977
1978	hdr->b_flags = arc_bufc_to_flags(type);
1979	hdr->b_flags |= ARC_FLAG_HAS_L1HDR;
1980
1981	hdr->b_l1hdr.b_buf = buf;
1982	hdr->b_l1hdr.b_state = arc_anon;
1983	hdr->b_l1hdr.b_arc_access = 0;
1984	hdr->b_l1hdr.b_datacnt = 1;
1985
1986	arc_get_data_buf(buf);
1987	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
1988	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
1989
1990	return (buf);
1991}
1992
1993static char *arc_onloan_tag = "onloan";
1994
1995/*
1996 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1997 * flight data by arc_tempreserve_space() until they are "returned". Loaned
1998 * buffers must be returned to the arc before they can be used by the DMU or
1999 * freed.
2000 */
2001arc_buf_t *
2002arc_loan_buf(spa_t *spa, int size)
2003{
2004	arc_buf_t *buf;
2005
2006	buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
2007
2008	atomic_add_64(&arc_loaned_bytes, size);
2009	return (buf);
2010}
2011
2012/*
2013 * Return a loaned arc buffer to the arc.
2014 */
2015void
2016arc_return_buf(arc_buf_t *buf, void *tag)
2017{
2018	arc_buf_hdr_t *hdr = buf->b_hdr;
2019
2020	ASSERT(buf->b_data != NULL);
2021	ASSERT(HDR_HAS_L1HDR(hdr));
2022	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2023	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2024
2025	atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
2026}
2027
2028/* Detach an arc_buf from a dbuf (tag) */
2029void
2030arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2031{
2032	arc_buf_hdr_t *hdr = buf->b_hdr;
2033
2034	ASSERT(buf->b_data != NULL);
2035	ASSERT(HDR_HAS_L1HDR(hdr));
2036	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2037	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2038	buf->b_efunc = NULL;
2039	buf->b_private = NULL;
2040
2041	atomic_add_64(&arc_loaned_bytes, hdr->b_size);
2042}
2043
2044static arc_buf_t *
2045arc_buf_clone(arc_buf_t *from)
2046{
2047	arc_buf_t *buf;
2048	arc_buf_hdr_t *hdr = from->b_hdr;
2049	uint64_t size = hdr->b_size;
2050
2051	ASSERT(HDR_HAS_L1HDR(hdr));
2052	ASSERT(hdr->b_l1hdr.b_state != arc_anon);
2053
2054	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2055	buf->b_hdr = hdr;
2056	buf->b_data = NULL;
2057	buf->b_efunc = NULL;
2058	buf->b_private = NULL;
2059	buf->b_next = hdr->b_l1hdr.b_buf;
2060	hdr->b_l1hdr.b_buf = buf;
2061	arc_get_data_buf(buf);
2062	bcopy(from->b_data, buf->b_data, size);
2063
2064	/*
2065	 * This buffer already exists in the arc so create a duplicate
2066	 * copy for the caller.  If the buffer is associated with user data
2067	 * then track the size and number of duplicates.  These stats will be
2068	 * updated as duplicate buffers are created and destroyed.
2069	 */
2070	if (HDR_ISTYPE_DATA(hdr)) {
2071		ARCSTAT_BUMP(arcstat_duplicate_buffers);
2072		ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
2073	}
2074	hdr->b_l1hdr.b_datacnt += 1;
2075	return (buf);
2076}
2077
2078void
2079arc_buf_add_ref(arc_buf_t *buf, void* tag)
2080{
2081	arc_buf_hdr_t *hdr;
2082	kmutex_t *hash_lock;
2083
2084	/*
2085	 * Check to see if this buffer is evicted.  Callers
2086	 * must verify b_data != NULL to know if the add_ref
2087	 * was successful.
2088	 */
2089	mutex_enter(&buf->b_evict_lock);
2090	if (buf->b_data == NULL) {
2091		mutex_exit(&buf->b_evict_lock);
2092		return;
2093	}
2094	hash_lock = HDR_LOCK(buf->b_hdr);
2095	mutex_enter(hash_lock);
2096	hdr = buf->b_hdr;
2097	ASSERT(HDR_HAS_L1HDR(hdr));
2098	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2099	mutex_exit(&buf->b_evict_lock);
2100
2101	ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
2102	    hdr->b_l1hdr.b_state == arc_mfu);
2103
2104	add_reference(hdr, hash_lock, tag);
2105	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2106	arc_access(hdr, hash_lock);
2107	mutex_exit(hash_lock);
2108	ARCSTAT_BUMP(arcstat_hits);
2109	ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
2110	    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
2111	    data, metadata, hits);
2112}
2113
2114static void
2115arc_buf_free_on_write(void *data, size_t size,
2116    void (*free_func)(void *, size_t))
2117{
2118	l2arc_data_free_t *df;
2119
2120	df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
2121	df->l2df_data = data;
2122	df->l2df_size = size;
2123	df->l2df_func = free_func;
2124	mutex_enter(&l2arc_free_on_write_mtx);
2125	list_insert_head(l2arc_free_on_write, df);
2126	mutex_exit(&l2arc_free_on_write_mtx);
2127}
2128
2129/*
2130 * Free the arc data buffer.  If it is an l2arc write in progress,
2131 * the buffer is placed on l2arc_free_on_write to be freed later.
2132 */
2133static void
2134arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
2135{
2136	arc_buf_hdr_t *hdr = buf->b_hdr;
2137
2138	if (HDR_L2_WRITING(hdr)) {
2139		arc_buf_free_on_write(buf->b_data, hdr->b_size, free_func);
2140		ARCSTAT_BUMP(arcstat_l2_free_on_write);
2141	} else {
2142		free_func(buf->b_data, hdr->b_size);
2143	}
2144}
2145
2146/*
2147 * Free up buf->b_data and if 'remove' is set, then pull the
2148 * arc_buf_t off of the the arc_buf_hdr_t's list and free it.
2149 */
2150static void
2151arc_buf_l2_cdata_free(arc_buf_hdr_t *hdr)
2152{
2153	ASSERT(HDR_HAS_L2HDR(hdr));
2154	ASSERT(MUTEX_HELD(&hdr->b_l2hdr.b_dev->l2ad_mtx));
2155
2156	/*
2157	 * The b_tmp_cdata field is linked off of the b_l1hdr, so if
2158	 * that doesn't exist, the header is in the arc_l2c_only state,
2159	 * and there isn't anything to free (it's already been freed).
2160	 */
2161	if (!HDR_HAS_L1HDR(hdr))
2162		return;
2163
2164	if (hdr->b_l1hdr.b_tmp_cdata == NULL)
2165		return;
2166
2167	ASSERT(HDR_L2_WRITING(hdr));
2168	arc_buf_free_on_write(hdr->b_l1hdr.b_tmp_cdata, hdr->b_size,
2169	    zio_data_buf_free);
2170
2171	ARCSTAT_BUMP(arcstat_l2_cdata_free_on_write);
2172	hdr->b_l1hdr.b_tmp_cdata = NULL;
2173}
2174
2175static void
2176arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t remove)
2177{
2178	arc_buf_t **bufp;
2179
2180	/* free up data associated with the buf */
2181	if (buf->b_data != NULL) {
2182		arc_state_t *state = buf->b_hdr->b_l1hdr.b_state;
2183		uint64_t size = buf->b_hdr->b_size;
2184		arc_buf_contents_t type = arc_buf_type(buf->b_hdr);
2185
2186		arc_cksum_verify(buf);
2187#ifdef illumos
2188		arc_buf_unwatch(buf);
2189#endif /* illumos */
2190
2191		if (!recycle) {
2192			if (type == ARC_BUFC_METADATA) {
2193				arc_buf_data_free(buf, zio_buf_free);
2194				arc_space_return(size, ARC_SPACE_META);
2195			} else {
2196				ASSERT(type == ARC_BUFC_DATA);
2197				arc_buf_data_free(buf, zio_data_buf_free);
2198				arc_space_return(size, ARC_SPACE_DATA);
2199			}
2200		}
2201		if (list_link_active(&buf->b_hdr->b_l1hdr.b_arc_node)) {
2202			uint64_t *cnt = &state->arcs_lsize[type];
2203
2204			ASSERT(refcount_is_zero(
2205			    &buf->b_hdr->b_l1hdr.b_refcnt));
2206			ASSERT(state != arc_anon && state != arc_l2c_only);
2207
2208			ASSERT3U(*cnt, >=, size);
2209			atomic_add_64(cnt, -size);
2210		}
2211		ASSERT3U(state->arcs_size, >=, size);
2212		atomic_add_64(&state->arcs_size, -size);
2213		buf->b_data = NULL;
2214
2215		/*
2216		 * If we're destroying a duplicate buffer make sure
2217		 * that the appropriate statistics are updated.
2218		 */
2219		if (buf->b_hdr->b_l1hdr.b_datacnt > 1 &&
2220		    HDR_ISTYPE_DATA(buf->b_hdr)) {
2221			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
2222			ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
2223		}
2224		ASSERT(buf->b_hdr->b_l1hdr.b_datacnt > 0);
2225		buf->b_hdr->b_l1hdr.b_datacnt -= 1;
2226	}
2227
2228	/* only remove the buf if requested */
2229	if (!remove)
2230		return;
2231
2232	/* remove the buf from the hdr list */
2233	for (bufp = &buf->b_hdr->b_l1hdr.b_buf; *bufp != buf;
2234	    bufp = &(*bufp)->b_next)
2235		continue;
2236	*bufp = buf->b_next;
2237	buf->b_next = NULL;
2238
2239	ASSERT(buf->b_efunc == NULL);
2240
2241	/* clean up the buf */
2242	buf->b_hdr = NULL;
2243	kmem_cache_free(buf_cache, buf);
2244}
2245
2246static void
2247arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
2248{
2249	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
2250	l2arc_dev_t *dev = l2hdr->b_dev;
2251
2252	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
2253	ASSERT(HDR_HAS_L2HDR(hdr));
2254
2255	list_remove(&dev->l2ad_buflist, hdr);
2256
2257	/*
2258	 * We don't want to leak the b_tmp_cdata buffer that was
2259	 * allocated in l2arc_write_buffers()
2260	 */
2261	arc_buf_l2_cdata_free(hdr);
2262
2263	/*
2264	 * If the l2hdr's b_daddr is equal to L2ARC_ADDR_UNSET, then
2265	 * this header is being processed by l2arc_write_buffers() (i.e.
2266	 * it's in the first stage of l2arc_write_buffers()).
2267	 * Re-affirming that truth here, just to serve as a reminder. If
2268	 * b_daddr does not equal L2ARC_ADDR_UNSET, then the header may or
2269	 * may not have its HDR_L2_WRITING flag set. (the write may have
2270	 * completed, in which case HDR_L2_WRITING will be false and the
2271	 * b_daddr field will point to the address of the buffer on disk).
2272	 */
2273	IMPLY(l2hdr->b_daddr == L2ARC_ADDR_UNSET, HDR_L2_WRITING(hdr));
2274
2275	/*
2276	 * If b_daddr is equal to L2ARC_ADDR_UNSET, we're racing with
2277	 * l2arc_write_buffers(). Since we've just removed this header
2278	 * from the l2arc buffer list, this header will never reach the
2279	 * second stage of l2arc_write_buffers(), which increments the
2280	 * accounting stats for this header. Thus, we must be careful
2281	 * not to decrement them for this header either.
2282	 */
2283	if (l2hdr->b_daddr != L2ARC_ADDR_UNSET) {
2284		ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
2285		ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
2286
2287		vdev_space_update(dev->l2ad_vdev,
2288		    -l2hdr->b_asize, 0, 0);
2289
2290		(void) refcount_remove_many(&dev->l2ad_alloc,
2291		    l2hdr->b_asize, hdr);
2292	}
2293
2294	hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
2295}
2296
2297static void
2298arc_hdr_destroy(arc_buf_hdr_t *hdr)
2299{
2300	if (HDR_HAS_L1HDR(hdr)) {
2301		ASSERT(hdr->b_l1hdr.b_buf == NULL ||
2302		    hdr->b_l1hdr.b_datacnt > 0);
2303		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2304		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
2305	}
2306	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2307	ASSERT(!HDR_IN_HASH_TABLE(hdr));
2308
2309	if (HDR_HAS_L2HDR(hdr)) {
2310		l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
2311		boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
2312
2313		if (!buflist_held)
2314			mutex_enter(&dev->l2ad_mtx);
2315
2316		/*
2317		 * Even though we checked this conditional above, we
2318		 * need to check this again now that we have the
2319		 * l2ad_mtx. This is because we could be racing with
2320		 * another thread calling l2arc_evict() which might have
2321		 * destroyed this header's L2 portion as we were waiting
2322		 * to acquire the l2ad_mtx. If that happens, we don't
2323		 * want to re-destroy the header's L2 portion.
2324		 */
2325		if (HDR_HAS_L2HDR(hdr)) {
2326			trim_map_free(dev->l2ad_vdev, hdr->b_l2hdr.b_daddr,
2327			    hdr->b_l2hdr.b_asize, 0);
2328			arc_hdr_l2hdr_destroy(hdr);
2329		}
2330
2331		if (!buflist_held)
2332			mutex_exit(&dev->l2ad_mtx);
2333	}
2334
2335	if (!BUF_EMPTY(hdr))
2336		buf_discard_identity(hdr);
2337	if (hdr->b_freeze_cksum != NULL) {
2338		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
2339		hdr->b_freeze_cksum = NULL;
2340	}
2341
2342	if (HDR_HAS_L1HDR(hdr)) {
2343		while (hdr->b_l1hdr.b_buf) {
2344			arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2345
2346			if (buf->b_efunc != NULL) {
2347				mutex_enter(&arc_eviction_mtx);
2348				mutex_enter(&buf->b_evict_lock);
2349				ASSERT(buf->b_hdr != NULL);
2350				arc_buf_destroy(hdr->b_l1hdr.b_buf, FALSE,
2351				    FALSE);
2352				hdr->b_l1hdr.b_buf = buf->b_next;
2353				buf->b_hdr = &arc_eviction_hdr;
2354				buf->b_next = arc_eviction_list;
2355				arc_eviction_list = buf;
2356				mutex_exit(&buf->b_evict_lock);
2357				mutex_exit(&arc_eviction_mtx);
2358			} else {
2359				arc_buf_destroy(hdr->b_l1hdr.b_buf, FALSE,
2360				    TRUE);
2361			}
2362		}
2363#ifdef ZFS_DEBUG
2364		if (hdr->b_l1hdr.b_thawed != NULL) {
2365			kmem_free(hdr->b_l1hdr.b_thawed, 1);
2366			hdr->b_l1hdr.b_thawed = NULL;
2367		}
2368#endif
2369	}
2370
2371	ASSERT3P(hdr->b_hash_next, ==, NULL);
2372	if (HDR_HAS_L1HDR(hdr)) {
2373		ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
2374		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
2375		kmem_cache_free(hdr_full_cache, hdr);
2376	} else {
2377		kmem_cache_free(hdr_l2only_cache, hdr);
2378	}
2379}
2380
2381void
2382arc_buf_free(arc_buf_t *buf, void *tag)
2383{
2384	arc_buf_hdr_t *hdr = buf->b_hdr;
2385	int hashed = hdr->b_l1hdr.b_state != arc_anon;
2386
2387	ASSERT(buf->b_efunc == NULL);
2388	ASSERT(buf->b_data != NULL);
2389
2390	if (hashed) {
2391		kmutex_t *hash_lock = HDR_LOCK(hdr);
2392
2393		mutex_enter(hash_lock);
2394		hdr = buf->b_hdr;
2395		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2396
2397		(void) remove_reference(hdr, hash_lock, tag);
2398		if (hdr->b_l1hdr.b_datacnt > 1) {
2399			arc_buf_destroy(buf, FALSE, TRUE);
2400		} else {
2401			ASSERT(buf == hdr->b_l1hdr.b_buf);
2402			ASSERT(buf->b_efunc == NULL);
2403			hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
2404		}
2405		mutex_exit(hash_lock);
2406	} else if (HDR_IO_IN_PROGRESS(hdr)) {
2407		int destroy_hdr;
2408		/*
2409		 * We are in the middle of an async write.  Don't destroy
2410		 * this buffer unless the write completes before we finish
2411		 * decrementing the reference count.
2412		 */
2413		mutex_enter(&arc_eviction_mtx);
2414		(void) remove_reference(hdr, NULL, tag);
2415		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2416		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
2417		mutex_exit(&arc_eviction_mtx);
2418		if (destroy_hdr)
2419			arc_hdr_destroy(hdr);
2420	} else {
2421		if (remove_reference(hdr, NULL, tag) > 0)
2422			arc_buf_destroy(buf, FALSE, TRUE);
2423		else
2424			arc_hdr_destroy(hdr);
2425	}
2426}
2427
2428boolean_t
2429arc_buf_remove_ref(arc_buf_t *buf, void* tag)
2430{
2431	arc_buf_hdr_t *hdr = buf->b_hdr;
2432	kmutex_t *hash_lock = HDR_LOCK(hdr);
2433	boolean_t no_callback = (buf->b_efunc == NULL);
2434
2435	if (hdr->b_l1hdr.b_state == arc_anon) {
2436		ASSERT(hdr->b_l1hdr.b_datacnt == 1);
2437		arc_buf_free(buf, tag);
2438		return (no_callback);
2439	}
2440
2441	mutex_enter(hash_lock);
2442	hdr = buf->b_hdr;
2443	ASSERT(hdr->b_l1hdr.b_datacnt > 0);
2444	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2445	ASSERT(hdr->b_l1hdr.b_state != arc_anon);
2446	ASSERT(buf->b_data != NULL);
2447
2448	(void) remove_reference(hdr, hash_lock, tag);
2449	if (hdr->b_l1hdr.b_datacnt > 1) {
2450		if (no_callback)
2451			arc_buf_destroy(buf, FALSE, TRUE);
2452	} else if (no_callback) {
2453		ASSERT(hdr->b_l1hdr.b_buf == buf && buf->b_next == NULL);
2454		ASSERT(buf->b_efunc == NULL);
2455		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
2456	}
2457	ASSERT(no_callback || hdr->b_l1hdr.b_datacnt > 1 ||
2458	    refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2459	mutex_exit(hash_lock);
2460	return (no_callback);
2461}
2462
2463int32_t
2464arc_buf_size(arc_buf_t *buf)
2465{
2466	return (buf->b_hdr->b_size);
2467}
2468
2469/*
2470 * Called from the DMU to determine if the current buffer should be
2471 * evicted. In order to ensure proper locking, the eviction must be initiated
2472 * from the DMU. Return true if the buffer is associated with user data and
2473 * duplicate buffers still exist.
2474 */
2475boolean_t
2476arc_buf_eviction_needed(arc_buf_t *buf)
2477{
2478	arc_buf_hdr_t *hdr;
2479	boolean_t evict_needed = B_FALSE;
2480
2481	if (zfs_disable_dup_eviction)
2482		return (B_FALSE);
2483
2484	mutex_enter(&buf->b_evict_lock);
2485	hdr = buf->b_hdr;
2486	if (hdr == NULL) {
2487		/*
2488		 * We are in arc_do_user_evicts(); let that function
2489		 * perform the eviction.
2490		 */
2491		ASSERT(buf->b_data == NULL);
2492		mutex_exit(&buf->b_evict_lock);
2493		return (B_FALSE);
2494	} else if (buf->b_data == NULL) {
2495		/*
2496		 * We have already been added to the arc eviction list;
2497		 * recommend eviction.
2498		 */
2499		ASSERT3P(hdr, ==, &arc_eviction_hdr);
2500		mutex_exit(&buf->b_evict_lock);
2501		return (B_TRUE);
2502	}
2503
2504	if (hdr->b_l1hdr.b_datacnt > 1 && HDR_ISTYPE_DATA(hdr))
2505		evict_needed = B_TRUE;
2506
2507	mutex_exit(&buf->b_evict_lock);
2508	return (evict_needed);
2509}
2510
2511/*
2512 * Evict buffers from list until we've removed the specified number of
2513 * bytes.  Move the removed buffers to the appropriate evict state.
2514 * If the recycle flag is set, then attempt to "recycle" a buffer:
2515 * - look for a buffer to evict that is `bytes' long.
2516 * - return the data block from this buffer rather than freeing it.
2517 * This flag is used by callers that are trying to make space for a
2518 * new buffer in a full arc cache.
2519 *
2520 * This function makes a "best effort".  It skips over any buffers
2521 * it can't get a hash_lock on, and so may not catch all candidates.
2522 * It may also return without evicting as much space as requested.
2523 */
2524static void *
2525arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
2526    arc_buf_contents_t type)
2527{
2528	arc_state_t *evicted_state;
2529	uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
2530	int64_t bytes_remaining;
2531	arc_buf_hdr_t *hdr, *hdr_prev = NULL;
2532	list_t *evicted_list, *list, *evicted_list_start, *list_start;
2533	kmutex_t *lock, *evicted_lock;
2534	kmutex_t *hash_lock;
2535	boolean_t have_lock;
2536	void *stolen = NULL;
2537	arc_buf_hdr_t marker = { 0 };
2538	int count = 0;
2539	static int evict_metadata_offset, evict_data_offset;
2540	int i, idx, offset, list_count, lists;
2541
2542	ASSERT(state == arc_mru || state == arc_mfu);
2543
2544	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
2545
2546	/*
2547	 * Decide which "type" (data vs metadata) to recycle from.
2548	 *
2549	 * If we are over the metadata limit, recycle from metadata.
2550	 * If we are under the metadata minimum, recycle from data.
2551	 * Otherwise, recycle from whichever type has the oldest (least
2552	 * recently accessed) header.  This is not yet implemented.
2553	 */
2554	if (recycle) {
2555		arc_buf_contents_t realtype;
2556		if (state->arcs_lsize[ARC_BUFC_DATA] == 0) {
2557			realtype = ARC_BUFC_METADATA;
2558		} else if (state->arcs_lsize[ARC_BUFC_METADATA] == 0) {
2559			realtype = ARC_BUFC_DATA;
2560		} else if (arc_meta_used >= arc_meta_limit) {
2561			realtype = ARC_BUFC_METADATA;
2562		} else if (arc_meta_used <= arc_meta_min) {
2563			realtype = ARC_BUFC_DATA;
2564#ifdef illumos
2565		} else if (HDR_HAS_L1HDR(data_hdr) &&
2566		    HDR_HAS_L1HDR(metadata_hdr) &&
2567		    data_hdr->b_l1hdr.b_arc_access <
2568		    metadata_hdr->b_l1hdr.b_arc_access) {
2569			realtype = ARC_BUFC_DATA;
2570		} else {
2571			realtype = ARC_BUFC_METADATA;
2572#else
2573		} else {
2574			/* TODO */
2575			realtype = type;
2576#endif
2577		}
2578		if (realtype != type) {
2579			/*
2580			 * If we want to evict from a different list,
2581			 * we can not recycle, because DATA vs METADATA
2582			 * buffers are segregated into different kmem
2583			 * caches (and vmem arenas).
2584			 */
2585			type = realtype;
2586			recycle = B_FALSE;
2587		}
2588	}
2589
2590	if (type == ARC_BUFC_METADATA) {
2591		offset = 0;
2592		list_count = ARC_BUFC_NUMMETADATALISTS;
2593		list_start = &state->arcs_lists[0];
2594		evicted_list_start = &evicted_state->arcs_lists[0];
2595		idx = evict_metadata_offset;
2596	} else {
2597		offset = ARC_BUFC_NUMMETADATALISTS;
2598		list_start = &state->arcs_lists[offset];
2599		evicted_list_start = &evicted_state->arcs_lists[offset];
2600		list_count = ARC_BUFC_NUMDATALISTS;
2601		idx = evict_data_offset;
2602	}
2603	bytes_remaining = evicted_state->arcs_lsize[type];
2604	lists = 0;
2605
2606evict_start:
2607	list = &list_start[idx];
2608	evicted_list = &evicted_list_start[idx];
2609	lock = ARCS_LOCK(state, (offset + idx));
2610	evicted_lock = ARCS_LOCK(evicted_state, (offset + idx));
2611
2612	/*
2613	 * The ghost list lock must be acquired first in order to prevent
2614	 * a 3 party deadlock:
2615	 *
2616	 *  - arc_evict_ghost acquires arc_*_ghost->arcs_mtx, followed by
2617	 *    l2ad_mtx in arc_hdr_realloc
2618	 *  - l2arc_write_buffers acquires l2ad_mtx, followed by arc_*->arcs_mtx
2619	 *  - arc_evict acquires arc_*_ghost->arcs_mtx, followed by
2620	 *    arc_*_ghost->arcs_mtx and forms a deadlock cycle.
2621	 *
2622	 * This situation is avoided by acquiring the ghost list lock first.
2623	 */
2624	mutex_enter(evicted_lock);
2625	mutex_enter(lock);
2626
2627	for (hdr = list_tail(list); hdr; hdr = hdr_prev) {
2628		hdr_prev = list_prev(list, hdr);
2629		if (HDR_HAS_L1HDR(hdr)) {
2630			bytes_remaining -=
2631			    (hdr->b_size * hdr->b_l1hdr.b_datacnt);
2632		}
2633		/* prefetch buffers have a minimum lifespan */
2634		if (HDR_IO_IN_PROGRESS(hdr) ||
2635		    (spa && hdr->b_spa != spa) ||
2636		    ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
2637		    ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
2638		    arc_min_prefetch_lifespan)) {
2639			skipped++;
2640			continue;
2641		}
2642		/* "lookahead" for better eviction candidate */
2643		if (recycle && hdr->b_size != bytes &&
2644		    hdr_prev && hdr_prev->b_size == bytes)
2645			continue;
2646
2647		/* ignore markers */
2648		if (hdr->b_spa == 0)
2649			continue;
2650
2651		/*
2652		 * It may take a long time to evict all the bufs requested.
2653		 * To avoid blocking all arc activity, periodically drop
2654		 * the arcs_mtx and give other threads a chance to run
2655		 * before reacquiring the lock.
2656		 *
2657		 * If we are looking for a buffer to recycle, we are in
2658		 * the hot code path, so don't sleep.
2659		 */
2660		if (!recycle && count++ > arc_evict_iterations) {
2661			list_insert_after(list, hdr, &marker);
2662			mutex_exit(lock);
2663			mutex_exit(evicted_lock);
2664			kpreempt(KPREEMPT_SYNC);
2665			mutex_enter(evicted_lock);
2666			mutex_enter(lock);
2667			hdr_prev = list_prev(list, &marker);
2668			list_remove(list, &marker);
2669			count = 0;
2670			continue;
2671		}
2672
2673		hash_lock = HDR_LOCK(hdr);
2674		have_lock = MUTEX_HELD(hash_lock);
2675		if (have_lock || mutex_tryenter(hash_lock)) {
2676			ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
2677			ASSERT3U(hdr->b_l1hdr.b_datacnt, >, 0);
2678			while (hdr->b_l1hdr.b_buf) {
2679				arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2680				if (!mutex_tryenter(&buf->b_evict_lock)) {
2681					missed += 1;
2682					break;
2683				}
2684				if (buf->b_data != NULL) {
2685					bytes_evicted += hdr->b_size;
2686					if (recycle &&
2687					    arc_buf_type(hdr) == type &&
2688					    hdr->b_size == bytes &&
2689					    !HDR_L2_WRITING(hdr)) {
2690						stolen = buf->b_data;
2691						recycle = FALSE;
2692					}
2693				}
2694				if (buf->b_efunc != NULL) {
2695					mutex_enter(&arc_eviction_mtx);
2696					arc_buf_destroy(buf,
2697					    buf->b_data == stolen, FALSE);
2698					hdr->b_l1hdr.b_buf = buf->b_next;
2699					buf->b_hdr = &arc_eviction_hdr;
2700					buf->b_next = arc_eviction_list;
2701					arc_eviction_list = buf;
2702					mutex_exit(&arc_eviction_mtx);
2703					mutex_exit(&buf->b_evict_lock);
2704				} else {
2705					mutex_exit(&buf->b_evict_lock);
2706					arc_buf_destroy(buf,
2707					    buf->b_data == stolen, TRUE);
2708				}
2709			}
2710
2711			if (HDR_HAS_L2HDR(hdr)) {
2712				ARCSTAT_INCR(arcstat_evict_l2_cached,
2713				    hdr->b_size);
2714			} else {
2715				if (l2arc_write_eligible(hdr->b_spa, hdr)) {
2716					ARCSTAT_INCR(arcstat_evict_l2_eligible,
2717					    hdr->b_size);
2718				} else {
2719					ARCSTAT_INCR(
2720					    arcstat_evict_l2_ineligible,
2721					    hdr->b_size);
2722				}
2723			}
2724
2725			if (hdr->b_l1hdr.b_datacnt == 0) {
2726				arc_change_state(evicted_state, hdr, hash_lock);
2727				ASSERT(HDR_IN_HASH_TABLE(hdr));
2728				hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
2729				hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
2730				DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
2731			}
2732			if (!have_lock)
2733				mutex_exit(hash_lock);
2734			if (bytes >= 0 && bytes_evicted >= bytes)
2735				break;
2736			if (bytes_remaining > 0) {
2737				mutex_exit(evicted_lock);
2738				mutex_exit(lock);
2739				idx  = ((idx + 1) & (list_count - 1));
2740				lists++;
2741				goto evict_start;
2742			}
2743		} else {
2744			missed += 1;
2745		}
2746	}
2747
2748	mutex_exit(lock);
2749	mutex_exit(evicted_lock);
2750
2751	idx  = ((idx + 1) & (list_count - 1));
2752	lists++;
2753
2754	if (bytes_evicted < bytes) {
2755		if (lists < list_count)
2756			goto evict_start;
2757		else
2758			dprintf("only evicted %lld bytes from %x",
2759			    (longlong_t)bytes_evicted, state);
2760	}
2761	if (type == ARC_BUFC_METADATA)
2762		evict_metadata_offset = idx;
2763	else
2764		evict_data_offset = idx;
2765
2766	if (skipped)
2767		ARCSTAT_INCR(arcstat_evict_skip, skipped);
2768
2769	if (missed)
2770		ARCSTAT_INCR(arcstat_mutex_miss, missed);
2771
2772	/*
2773	 * Note: we have just evicted some data into the ghost state,
2774	 * potentially putting the ghost size over the desired size.  Rather
2775	 * that evicting from the ghost list in this hot code path, leave
2776	 * this chore to the arc_reclaim_thread().
2777	 */
2778
2779	if (stolen)
2780		ARCSTAT_BUMP(arcstat_stolen);
2781	return (stolen);
2782}
2783
2784/*
2785 * Remove buffers from list until we've removed the specified number of
2786 * bytes.  Destroy the buffers that are removed.
2787 */
2788static void
2789arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes)
2790{
2791	arc_buf_hdr_t *hdr, *hdr_prev;
2792	arc_buf_hdr_t marker = { 0 };
2793	list_t *list, *list_start;
2794	kmutex_t *hash_lock, *lock;
2795	uint64_t bytes_deleted = 0;
2796	uint64_t bufs_skipped = 0;
2797	int count = 0;
2798	static int evict_offset;
2799	int list_count, idx = evict_offset;
2800	int offset, lists = 0;
2801
2802	ASSERT(GHOST_STATE(state));
2803
2804	/*
2805	 * data lists come after metadata lists
2806	 */
2807	list_start = &state->arcs_lists[ARC_BUFC_NUMMETADATALISTS];
2808	list_count = ARC_BUFC_NUMDATALISTS;
2809	offset = ARC_BUFC_NUMMETADATALISTS;
2810
2811evict_start:
2812	list = &list_start[idx];
2813	lock = ARCS_LOCK(state, idx + offset);
2814
2815	mutex_enter(lock);
2816	for (hdr = list_tail(list); hdr; hdr = hdr_prev) {
2817		hdr_prev = list_prev(list, hdr);
2818		if (arc_buf_type(hdr) >= ARC_BUFC_NUMTYPES)
2819			panic("invalid hdr=%p", (void *)hdr);
2820		if (spa && hdr->b_spa != spa)
2821			continue;
2822
2823		/* ignore markers */
2824		if (hdr->b_spa == 0)
2825			continue;
2826
2827		hash_lock = HDR_LOCK(hdr);
2828		/* caller may be trying to modify this buffer, skip it */
2829		if (MUTEX_HELD(hash_lock))
2830			continue;
2831
2832		/*
2833		 * It may take a long time to evict all the bufs requested.
2834		 * To avoid blocking all arc activity, periodically drop
2835		 * the arcs_mtx and give other threads a chance to run
2836		 * before reacquiring the lock.
2837		 */
2838		if (count++ > arc_evict_iterations) {
2839			list_insert_after(list, hdr, &marker);
2840			mutex_exit(lock);
2841			kpreempt(KPREEMPT_SYNC);
2842			mutex_enter(lock);
2843			hdr_prev = list_prev(list, &marker);
2844			list_remove(list, &marker);
2845			count = 0;
2846			continue;
2847		}
2848		if (mutex_tryenter(hash_lock)) {
2849			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2850			ASSERT(!HDR_HAS_L1HDR(hdr) ||
2851			    hdr->b_l1hdr.b_buf == NULL);
2852			ARCSTAT_BUMP(arcstat_deleted);
2853			bytes_deleted += hdr->b_size;
2854
2855			if (HDR_HAS_L2HDR(hdr)) {
2856				/*
2857				 * This buffer is cached on the 2nd Level ARC;
2858				 * don't destroy the header.
2859				 */
2860				arc_change_state(arc_l2c_only, hdr, hash_lock);
2861				/*
2862				 * dropping from L1+L2 cached to L2-only,
2863				 * realloc to remove the L1 header.
2864				 */
2865				hdr = arc_hdr_realloc(hdr, hdr_full_cache,
2866				    hdr_l2only_cache);
2867				mutex_exit(hash_lock);
2868			} else {
2869				arc_change_state(arc_anon, hdr, hash_lock);
2870				mutex_exit(hash_lock);
2871				arc_hdr_destroy(hdr);
2872			}
2873
2874			DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
2875			if (bytes >= 0 && bytes_deleted >= bytes)
2876				break;
2877		} else if (bytes < 0) {
2878			/*
2879			 * Insert a list marker and then wait for the
2880			 * hash lock to become available. Once its
2881			 * available, restart from where we left off.
2882			 */
2883			list_insert_after(list, hdr, &marker);
2884			mutex_exit(lock);
2885			mutex_enter(hash_lock);
2886			mutex_exit(hash_lock);
2887			mutex_enter(lock);
2888			hdr_prev = list_prev(list, &marker);
2889			list_remove(list, &marker);
2890		} else {
2891			bufs_skipped += 1;
2892		}
2893
2894	}
2895	mutex_exit(lock);
2896	idx  = ((idx + 1) & (ARC_BUFC_NUMDATALISTS - 1));
2897	lists++;
2898
2899	if (lists < list_count)
2900		goto evict_start;
2901
2902	evict_offset = idx;
2903	if ((uintptr_t)list > (uintptr_t)&state->arcs_lists[ARC_BUFC_NUMMETADATALISTS] &&
2904	    (bytes < 0 || bytes_deleted < bytes)) {
2905		list_start = &state->arcs_lists[0];
2906		list_count = ARC_BUFC_NUMMETADATALISTS;
2907		offset = lists = 0;
2908		goto evict_start;
2909	}
2910
2911	if (bufs_skipped) {
2912		ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
2913		ASSERT(bytes >= 0);
2914	}
2915
2916	if (bytes_deleted < bytes)
2917		dprintf("only deleted %lld bytes from %p",
2918		    (longlong_t)bytes_deleted, state);
2919}
2920
2921static void
2922arc_adjust(void)
2923{
2924	int64_t adjustment, delta;
2925
2926	/*
2927	 * Adjust MRU size
2928	 */
2929
2930	adjustment = MIN((int64_t)(arc_size - arc_c),
2931	    (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used -
2932	    arc_p));
2933
2934	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
2935		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment);
2936		(void) arc_evict(arc_mru, 0, delta, FALSE, ARC_BUFC_DATA);
2937		adjustment -= delta;
2938	}
2939
2940	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2941		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
2942		(void) arc_evict(arc_mru, 0, delta, FALSE,
2943		    ARC_BUFC_METADATA);
2944	}
2945
2946	/*
2947	 * Adjust MFU size
2948	 */
2949
2950	adjustment = arc_size - arc_c;
2951
2952	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
2953		delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]);
2954		(void) arc_evict(arc_mfu, 0, delta, FALSE, ARC_BUFC_DATA);
2955		adjustment -= delta;
2956	}
2957
2958	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2959		int64_t delta = MIN(adjustment,
2960		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA]);
2961		(void) arc_evict(arc_mfu, 0, delta, FALSE,
2962		    ARC_BUFC_METADATA);
2963	}
2964
2965	/*
2966	 * Adjust ghost lists
2967	 */
2968
2969	adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
2970
2971	if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
2972		delta = MIN(arc_mru_ghost->arcs_size, adjustment);
2973		arc_evict_ghost(arc_mru_ghost, 0, delta);
2974	}
2975
2976	adjustment =
2977	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
2978
2979	if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
2980		delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
2981		arc_evict_ghost(arc_mfu_ghost, 0, delta);
2982	}
2983}
2984
2985static void
2986arc_do_user_evicts(void)
2987{
2988	static arc_buf_t *tmp_arc_eviction_list;
2989
2990	/*
2991	 * Move list over to avoid LOR
2992	 */
2993restart:
2994	mutex_enter(&arc_eviction_mtx);
2995	tmp_arc_eviction_list = arc_eviction_list;
2996	arc_eviction_list = NULL;
2997	mutex_exit(&arc_eviction_mtx);
2998
2999	while (tmp_arc_eviction_list != NULL) {
3000		arc_buf_t *buf = tmp_arc_eviction_list;
3001		tmp_arc_eviction_list = buf->b_next;
3002		mutex_enter(&buf->b_evict_lock);
3003		buf->b_hdr = NULL;
3004		mutex_exit(&buf->b_evict_lock);
3005
3006		if (buf->b_efunc != NULL)
3007			VERIFY0(buf->b_efunc(buf->b_private));
3008
3009		buf->b_efunc = NULL;
3010		buf->b_private = NULL;
3011		kmem_cache_free(buf_cache, buf);
3012	}
3013
3014	if (arc_eviction_list != NULL)
3015		goto restart;
3016}
3017
3018/*
3019 * Flush all *evictable* data from the cache for the given spa.
3020 * NOTE: this will not touch "active" (i.e. referenced) data.
3021 */
3022void
3023arc_flush(spa_t *spa)
3024{
3025	uint64_t guid = 0;
3026
3027	if (spa != NULL)
3028		guid = spa_load_guid(spa);
3029
3030	while (arc_mru->arcs_lsize[ARC_BUFC_DATA]) {
3031		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
3032		if (spa != NULL)
3033			break;
3034	}
3035	while (arc_mru->arcs_lsize[ARC_BUFC_METADATA]) {
3036		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
3037		if (spa != NULL)
3038			break;
3039	}
3040	while (arc_mfu->arcs_lsize[ARC_BUFC_DATA]) {
3041		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
3042		if (spa != NULL)
3043			break;
3044	}
3045	while (arc_mfu->arcs_lsize[ARC_BUFC_METADATA]) {
3046		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
3047		if (spa != NULL)
3048			break;
3049	}
3050
3051	arc_evict_ghost(arc_mru_ghost, guid, -1);
3052	arc_evict_ghost(arc_mfu_ghost, guid, -1);
3053
3054	mutex_enter(&arc_reclaim_thr_lock);
3055	arc_do_user_evicts();
3056	mutex_exit(&arc_reclaim_thr_lock);
3057	ASSERT(spa || arc_eviction_list == NULL);
3058}
3059
3060void
3061arc_shrink(void)
3062{
3063
3064	if (arc_c > arc_c_min) {
3065		uint64_t to_free;
3066
3067		to_free = arc_c >> arc_shrink_shift;
3068		DTRACE_PROBE4(arc__shrink, uint64_t, arc_c, uint64_t,
3069			arc_c_min, uint64_t, arc_p, uint64_t, to_free);
3070		if (arc_c > arc_c_min + to_free)
3071			atomic_add_64(&arc_c, -to_free);
3072		else
3073			arc_c = arc_c_min;
3074
3075		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
3076		if (arc_c > arc_size)
3077			arc_c = MAX(arc_size, arc_c_min);
3078		if (arc_p > arc_c)
3079			arc_p = (arc_c >> 1);
3080
3081		DTRACE_PROBE2(arc__shrunk, uint64_t, arc_c, uint64_t,
3082			arc_p);
3083
3084		ASSERT(arc_c >= arc_c_min);
3085		ASSERT((int64_t)arc_p >= 0);
3086	}
3087
3088	if (arc_size > arc_c) {
3089		DTRACE_PROBE2(arc__shrink_adjust, uint64_t, arc_size,
3090			uint64_t, arc_c);
3091		arc_adjust();
3092	}
3093}
3094
3095static int needfree = 0;
3096
3097static int
3098arc_reclaim_needed(void)
3099{
3100
3101#ifdef _KERNEL
3102
3103	if (needfree) {
3104		DTRACE_PROBE(arc__reclaim_needfree);
3105		return (1);
3106	}
3107
3108	/*
3109	 * Cooperate with pagedaemon when it's time for it to scan
3110	 * and reclaim some pages.
3111	 */
3112	if (freemem < zfs_arc_free_target) {
3113		DTRACE_PROBE2(arc__reclaim_freemem, uint64_t,
3114		    freemem, uint64_t, zfs_arc_free_target);
3115		return (1);
3116	}
3117
3118#ifdef sun
3119	/*
3120	 * take 'desfree' extra pages, so we reclaim sooner, rather than later
3121	 */
3122	extra = desfree;
3123
3124	/*
3125	 * check that we're out of range of the pageout scanner.  It starts to
3126	 * schedule paging if freemem is less than lotsfree and needfree.
3127	 * lotsfree is the high-water mark for pageout, and needfree is the
3128	 * number of needed free pages.  We add extra pages here to make sure
3129	 * the scanner doesn't start up while we're freeing memory.
3130	 */
3131	if (freemem < lotsfree + needfree + extra)
3132		return (1);
3133
3134	/*
3135	 * check to make sure that swapfs has enough space so that anon
3136	 * reservations can still succeed. anon_resvmem() checks that the
3137	 * availrmem is greater than swapfs_minfree, and the number of reserved
3138	 * swap pages.  We also add a bit of extra here just to prevent
3139	 * circumstances from getting really dire.
3140	 */
3141	if (availrmem < swapfs_minfree + swapfs_reserve + extra)
3142		return (1);
3143
3144	/*
3145	 * Check that we have enough availrmem that memory locking (e.g., via
3146	 * mlock(3C) or memcntl(2)) can still succeed.  (pages_pp_maximum
3147	 * stores the number of pages that cannot be locked; when availrmem
3148	 * drops below pages_pp_maximum, page locking mechanisms such as
3149	 * page_pp_lock() will fail.)
3150	 */
3151	if (availrmem <= pages_pp_maximum)
3152		return (1);
3153
3154#endif	/* sun */
3155#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
3156	/*
3157	 * If we're on an i386 platform, it's possible that we'll exhaust the
3158	 * kernel heap space before we ever run out of available physical
3159	 * memory.  Most checks of the size of the heap_area compare against
3160	 * tune.t_minarmem, which is the minimum available real memory that we
3161	 * can have in the system.  However, this is generally fixed at 25 pages
3162	 * which is so low that it's useless.  In this comparison, we seek to
3163	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
3164	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
3165	 * free)
3166	 */
3167	if (vmem_size(heap_arena, VMEM_FREE) <
3168	    (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2)) {
3169		DTRACE_PROBE2(arc__reclaim_used, uint64_t,
3170		    vmem_size(heap_arena, VMEM_FREE), uint64_t,
3171		    (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2);
3172		return (1);
3173	}
3174#define	zio_arena	NULL
3175#else
3176#define	zio_arena	heap_arena
3177#endif
3178
3179	/*
3180	 * If zio data pages are being allocated out of a separate heap segment,
3181	 * then enforce that the size of available vmem for this arena remains
3182	 * above about 1/16th free.
3183	 *
3184	 * Note: The 1/16th arena free requirement was put in place
3185	 * to aggressively evict memory from the arc in order to avoid
3186	 * memory fragmentation issues.
3187	 */
3188	if (zio_arena != NULL &&
3189	    vmem_size(zio_arena, VMEM_FREE) <
3190	    (vmem_size(zio_arena, VMEM_ALLOC) >> 4))
3191		return (1);
3192
3193	/*
3194	 * Above limits know nothing about real level of KVA fragmentation.
3195	 * Start aggressive reclamation if too little sequential KVA left.
3196	 */
3197	if (vmem_size(heap_arena, VMEM_MAXFREE) < zfs_max_recordsize) {
3198		DTRACE_PROBE2(arc__reclaim_maxfree, uint64_t,
3199		    vmem_size(heap_arena, VMEM_MAXFREE),
3200		    uint64_t, zfs_max_recordsize);
3201		return (1);
3202	}
3203
3204#else	/* _KERNEL */
3205	if (spa_get_random(100) == 0)
3206		return (1);
3207#endif	/* _KERNEL */
3208	DTRACE_PROBE(arc__reclaim_no);
3209
3210	return (0);
3211}
3212
3213extern kmem_cache_t	*zio_buf_cache[];
3214extern kmem_cache_t	*zio_data_buf_cache[];
3215extern kmem_cache_t	*range_seg_cache;
3216
3217static __noinline void
3218arc_kmem_reap_now(arc_reclaim_strategy_t strat)
3219{
3220	size_t			i;
3221	kmem_cache_t		*prev_cache = NULL;
3222	kmem_cache_t		*prev_data_cache = NULL;
3223
3224	DTRACE_PROBE(arc__kmem_reap_start);
3225#ifdef _KERNEL
3226	if (arc_meta_used >= arc_meta_limit) {
3227		/*
3228		 * We are exceeding our meta-data cache limit.
3229		 * Purge some DNLC entries to release holds on meta-data.
3230		 */
3231		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
3232	}
3233#if defined(__i386)
3234	/*
3235	 * Reclaim unused memory from all kmem caches.
3236	 */
3237	kmem_reap();
3238#endif
3239#endif
3240
3241	/*
3242	 * An aggressive reclamation will shrink the cache size as well as
3243	 * reap free buffers from the arc kmem caches.
3244	 */
3245	if (strat == ARC_RECLAIM_AGGR)
3246		arc_shrink();
3247
3248	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
3249		if (zio_buf_cache[i] != prev_cache) {
3250			prev_cache = zio_buf_cache[i];
3251			kmem_cache_reap_now(zio_buf_cache[i]);
3252		}
3253		if (zio_data_buf_cache[i] != prev_data_cache) {
3254			prev_data_cache = zio_data_buf_cache[i];
3255			kmem_cache_reap_now(zio_data_buf_cache[i]);
3256		}
3257	}
3258	kmem_cache_reap_now(buf_cache);
3259	kmem_cache_reap_now(hdr_full_cache);
3260	kmem_cache_reap_now(hdr_l2only_cache);
3261	kmem_cache_reap_now(range_seg_cache);
3262
3263#ifdef sun
3264	/*
3265	 * Ask the vmem arena to reclaim unused memory from its
3266	 * quantum caches.
3267	 */
3268	if (zio_arena != NULL && strat == ARC_RECLAIM_AGGR)
3269		vmem_qcache_reap(zio_arena);
3270#endif
3271	DTRACE_PROBE(arc__kmem_reap_end);
3272}
3273
3274static void
3275arc_reclaim_thread(void *dummy __unused)
3276{
3277	clock_t			growtime = 0;
3278	arc_reclaim_strategy_t	last_reclaim = ARC_RECLAIM_CONS;
3279	callb_cpr_t		cpr;
3280
3281	CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
3282
3283	mutex_enter(&arc_reclaim_thr_lock);
3284	while (arc_thread_exit == 0) {
3285		if (arc_reclaim_needed()) {
3286
3287			if (arc_no_grow) {
3288				if (last_reclaim == ARC_RECLAIM_CONS) {
3289					DTRACE_PROBE(arc__reclaim_aggr_no_grow);
3290					last_reclaim = ARC_RECLAIM_AGGR;
3291				} else {
3292					last_reclaim = ARC_RECLAIM_CONS;
3293				}
3294			} else {
3295				arc_no_grow = TRUE;
3296				last_reclaim = ARC_RECLAIM_AGGR;
3297				DTRACE_PROBE(arc__reclaim_aggr);
3298				membar_producer();
3299			}
3300
3301			/* reset the growth delay for every reclaim */
3302			growtime = ddi_get_lbolt() + (arc_grow_retry * hz);
3303
3304			if (needfree && last_reclaim == ARC_RECLAIM_CONS) {
3305				/*
3306				 * If needfree is TRUE our vm_lowmem hook
3307				 * was called and in that case we must free some
3308				 * memory, so switch to aggressive mode.
3309				 */
3310				arc_no_grow = TRUE;
3311				last_reclaim = ARC_RECLAIM_AGGR;
3312			}
3313			arc_kmem_reap_now(last_reclaim);
3314			arc_warm = B_TRUE;
3315
3316		} else if (arc_no_grow && ddi_get_lbolt() >= growtime) {
3317			arc_no_grow = FALSE;
3318		}
3319
3320		arc_adjust();
3321
3322		if (arc_eviction_list != NULL)
3323			arc_do_user_evicts();
3324
3325#ifdef _KERNEL
3326		if (needfree) {
3327			needfree = 0;
3328			wakeup(&needfree);
3329		}
3330#endif
3331
3332		/*
3333		 * This is necessary in order for the mdb ::arc dcmd to
3334		 * show up to date information. Since the ::arc command
3335		 * does not call the kstat's update function, without
3336		 * this call, the command may show stale stats for the
3337		 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
3338		 * with this change, the data might be up to 1 second
3339		 * out of date; but that should suffice. The arc_state_t
3340		 * structures can be queried directly if more accurate
3341		 * information is needed.
3342		 */
3343		if (arc_ksp != NULL)
3344			arc_ksp->ks_update(arc_ksp, KSTAT_READ);
3345
3346		/* block until needed, or one second, whichever is shorter */
3347		CALLB_CPR_SAFE_BEGIN(&cpr);
3348		(void) cv_timedwait(&arc_reclaim_thr_cv,
3349		    &arc_reclaim_thr_lock, hz);
3350		CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
3351	}
3352
3353	arc_thread_exit = 0;
3354	cv_broadcast(&arc_reclaim_thr_cv);
3355	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_thr_lock */
3356	thread_exit();
3357}
3358
3359/*
3360 * Adapt arc info given the number of bytes we are trying to add and
3361 * the state that we are comming from.  This function is only called
3362 * when we are adding new content to the cache.
3363 */
3364static void
3365arc_adapt(int bytes, arc_state_t *state)
3366{
3367	int mult;
3368	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
3369
3370	if (state == arc_l2c_only)
3371		return;
3372
3373	ASSERT(bytes > 0);
3374	/*
3375	 * Adapt the target size of the MRU list:
3376	 *	- if we just hit in the MRU ghost list, then increase
3377	 *	  the target size of the MRU list.
3378	 *	- if we just hit in the MFU ghost list, then increase
3379	 *	  the target size of the MFU list by decreasing the
3380	 *	  target size of the MRU list.
3381	 */
3382	if (state == arc_mru_ghost) {
3383		mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
3384		    1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
3385		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
3386
3387		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
3388	} else if (state == arc_mfu_ghost) {
3389		uint64_t delta;
3390
3391		mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
3392		    1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
3393		mult = MIN(mult, 10);
3394
3395		delta = MIN(bytes * mult, arc_p);
3396		arc_p = MAX(arc_p_min, arc_p - delta);
3397	}
3398	ASSERT((int64_t)arc_p >= 0);
3399
3400	if (arc_reclaim_needed()) {
3401		cv_signal(&arc_reclaim_thr_cv);
3402		return;
3403	}
3404
3405	if (arc_no_grow)
3406		return;
3407
3408	if (arc_c >= arc_c_max)
3409		return;
3410
3411	/*
3412	 * If we're within (2 * maxblocksize) bytes of the target
3413	 * cache size, increment the target cache size
3414	 */
3415	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
3416		DTRACE_PROBE1(arc__inc_adapt, int, bytes);
3417		atomic_add_64(&arc_c, (int64_t)bytes);
3418		if (arc_c > arc_c_max)
3419			arc_c = arc_c_max;
3420		else if (state == arc_anon)
3421			atomic_add_64(&arc_p, (int64_t)bytes);
3422		if (arc_p > arc_c)
3423			arc_p = arc_c;
3424	}
3425	ASSERT((int64_t)arc_p >= 0);
3426}
3427
3428/*
3429 * Check if the cache has reached its limits and eviction is required
3430 * prior to insert.
3431 */
3432static int
3433arc_evict_needed(arc_buf_contents_t type)
3434{
3435	if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
3436		return (1);
3437
3438	if (arc_reclaim_needed())
3439		return (1);
3440
3441	return (arc_size > arc_c);
3442}
3443
3444/*
3445 * The buffer, supplied as the first argument, needs a data block.
3446 * So, if we are at cache max, determine which cache should be victimized.
3447 * We have the following cases:
3448 *
3449 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
3450 * In this situation if we're out of space, but the resident size of the MFU is
3451 * under the limit, victimize the MFU cache to satisfy this insertion request.
3452 *
3453 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
3454 * Here, we've used up all of the available space for the MRU, so we need to
3455 * evict from our own cache instead.  Evict from the set of resident MRU
3456 * entries.
3457 *
3458 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
3459 * c minus p represents the MFU space in the cache, since p is the size of the
3460 * cache that is dedicated to the MRU.  In this situation there's still space on
3461 * the MFU side, so the MRU side needs to be victimized.
3462 *
3463 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
3464 * MFU's resident set is consuming more space than it has been allotted.  In
3465 * this situation, we must victimize our own cache, the MFU, for this insertion.
3466 */
3467static void
3468arc_get_data_buf(arc_buf_t *buf)
3469{
3470	arc_state_t		*state = buf->b_hdr->b_l1hdr.b_state;
3471	uint64_t		size = buf->b_hdr->b_size;
3472	arc_buf_contents_t	type = arc_buf_type(buf->b_hdr);
3473
3474	arc_adapt(size, state);
3475
3476	/*
3477	 * We have not yet reached cache maximum size,
3478	 * just allocate a new buffer.
3479	 */
3480	if (!arc_evict_needed(type)) {
3481		if (type == ARC_BUFC_METADATA) {
3482			buf->b_data = zio_buf_alloc(size);
3483			arc_space_consume(size, ARC_SPACE_META);
3484		} else {
3485			ASSERT(type == ARC_BUFC_DATA);
3486			buf->b_data = zio_data_buf_alloc(size);
3487			arc_space_consume(size, ARC_SPACE_DATA);
3488		}
3489		goto out;
3490	}
3491
3492	/*
3493	 * If we are prefetching from the mfu ghost list, this buffer
3494	 * will end up on the mru list; so steal space from there.
3495	 */
3496	if (state == arc_mfu_ghost)
3497		state = HDR_PREFETCH(buf->b_hdr) ? arc_mru : arc_mfu;
3498	else if (state == arc_mru_ghost)
3499		state = arc_mru;
3500
3501	if (state == arc_mru || state == arc_anon) {
3502		uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
3503		state = (arc_mfu->arcs_lsize[type] >= size &&
3504		    arc_p > mru_used) ? arc_mfu : arc_mru;
3505	} else {
3506		/* MFU cases */
3507		uint64_t mfu_space = arc_c - arc_p;
3508		state =  (arc_mru->arcs_lsize[type] >= size &&
3509		    mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
3510	}
3511	if ((buf->b_data = arc_evict(state, 0, size, TRUE, type)) == NULL) {
3512		if (type == ARC_BUFC_METADATA) {
3513			buf->b_data = zio_buf_alloc(size);
3514			arc_space_consume(size, ARC_SPACE_META);
3515		} else {
3516			ASSERT(type == ARC_BUFC_DATA);
3517			buf->b_data = zio_data_buf_alloc(size);
3518			arc_space_consume(size, ARC_SPACE_DATA);
3519		}
3520		ARCSTAT_BUMP(arcstat_recycle_miss);
3521	}
3522	ASSERT(buf->b_data != NULL);
3523out:
3524	/*
3525	 * Update the state size.  Note that ghost states have a
3526	 * "ghost size" and so don't need to be updated.
3527	 */
3528	if (!GHOST_STATE(buf->b_hdr->b_l1hdr.b_state)) {
3529		arc_buf_hdr_t *hdr = buf->b_hdr;
3530
3531		atomic_add_64(&hdr->b_l1hdr.b_state->arcs_size, size);
3532		if (list_link_active(&hdr->b_l1hdr.b_arc_node)) {
3533			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3534			atomic_add_64(&hdr->b_l1hdr.b_state->arcs_lsize[type],
3535			    size);
3536		}
3537		/*
3538		 * If we are growing the cache, and we are adding anonymous
3539		 * data, and we have outgrown arc_p, update arc_p
3540		 */
3541		if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
3542		    arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
3543			arc_p = MIN(arc_c, arc_p + size);
3544	}
3545	ARCSTAT_BUMP(arcstat_allocated);
3546}
3547
3548/*
3549 * This routine is called whenever a buffer is accessed.
3550 * NOTE: the hash lock is dropped in this function.
3551 */
3552static void
3553arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3554{
3555	clock_t now;
3556
3557	ASSERT(MUTEX_HELD(hash_lock));
3558	ASSERT(HDR_HAS_L1HDR(hdr));
3559
3560	if (hdr->b_l1hdr.b_state == arc_anon) {
3561		/*
3562		 * This buffer is not in the cache, and does not
3563		 * appear in our "ghost" list.  Add the new buffer
3564		 * to the MRU state.
3565		 */
3566
3567		ASSERT0(hdr->b_l1hdr.b_arc_access);
3568		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3569		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
3570		arc_change_state(arc_mru, hdr, hash_lock);
3571
3572	} else if (hdr->b_l1hdr.b_state == arc_mru) {
3573		now = ddi_get_lbolt();
3574
3575		/*
3576		 * If this buffer is here because of a prefetch, then either:
3577		 * - clear the flag if this is a "referencing" read
3578		 *   (any subsequent access will bump this into the MFU state).
3579		 * or
3580		 * - move the buffer to the head of the list if this is
3581		 *   another prefetch (to make it less likely to be evicted).
3582		 */
3583		if (HDR_PREFETCH(hdr)) {
3584			if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
3585				ASSERT(list_link_active(
3586				    &hdr->b_l1hdr.b_arc_node));
3587			} else {
3588				hdr->b_flags &= ~ARC_FLAG_PREFETCH;
3589				ARCSTAT_BUMP(arcstat_mru_hits);
3590			}
3591			hdr->b_l1hdr.b_arc_access = now;
3592			return;
3593		}
3594
3595		/*
3596		 * This buffer has been "accessed" only once so far,
3597		 * but it is still in the cache. Move it to the MFU
3598		 * state.
3599		 */
3600		if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) {
3601			/*
3602			 * More than 125ms have passed since we
3603			 * instantiated this buffer.  Move it to the
3604			 * most frequently used state.
3605			 */
3606			hdr->b_l1hdr.b_arc_access = now;
3607			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3608			arc_change_state(arc_mfu, hdr, hash_lock);
3609		}
3610		ARCSTAT_BUMP(arcstat_mru_hits);
3611	} else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
3612		arc_state_t	*new_state;
3613		/*
3614		 * This buffer has been "accessed" recently, but
3615		 * was evicted from the cache.  Move it to the
3616		 * MFU state.
3617		 */
3618
3619		if (HDR_PREFETCH(hdr)) {
3620			new_state = arc_mru;
3621			if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
3622				hdr->b_flags &= ~ARC_FLAG_PREFETCH;
3623			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
3624		} else {
3625			new_state = arc_mfu;
3626			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3627		}
3628
3629		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3630		arc_change_state(new_state, hdr, hash_lock);
3631
3632		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
3633	} else if (hdr->b_l1hdr.b_state == arc_mfu) {
3634		/*
3635		 * This buffer has been accessed more than once and is
3636		 * still in the cache.  Keep it in the MFU state.
3637		 *
3638		 * NOTE: an add_reference() that occurred when we did
3639		 * the arc_read() will have kicked this off the list.
3640		 * If it was a prefetch, we will explicitly move it to
3641		 * the head of the list now.
3642		 */
3643		if ((HDR_PREFETCH(hdr)) != 0) {
3644			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3645			ASSERT(list_link_active(&hdr->b_l1hdr.b_arc_node));
3646		}
3647		ARCSTAT_BUMP(arcstat_mfu_hits);
3648		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3649	} else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
3650		arc_state_t	*new_state = arc_mfu;
3651		/*
3652		 * This buffer has been accessed more than once but has
3653		 * been evicted from the cache.  Move it back to the
3654		 * MFU state.
3655		 */
3656
3657		if (HDR_PREFETCH(hdr)) {
3658			/*
3659			 * This is a prefetch access...
3660			 * move this block back to the MRU state.
3661			 */
3662			ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
3663			new_state = arc_mru;
3664		}
3665
3666		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3667		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3668		arc_change_state(new_state, hdr, hash_lock);
3669
3670		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
3671	} else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
3672		/*
3673		 * This buffer is on the 2nd Level ARC.
3674		 */
3675
3676		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3677		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3678		arc_change_state(arc_mfu, hdr, hash_lock);
3679	} else {
3680		ASSERT(!"invalid arc state");
3681	}
3682}
3683
3684/* a generic arc_done_func_t which you can use */
3685/* ARGSUSED */
3686void
3687arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
3688{
3689	if (zio == NULL || zio->io_error == 0)
3690		bcopy(buf->b_data, arg, buf->b_hdr->b_size);
3691	VERIFY(arc_buf_remove_ref(buf, arg));
3692}
3693
3694/* a generic arc_done_func_t */
3695void
3696arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
3697{
3698	arc_buf_t **bufp = arg;
3699	if (zio && zio->io_error) {
3700		VERIFY(arc_buf_remove_ref(buf, arg));
3701		*bufp = NULL;
3702	} else {
3703		*bufp = buf;
3704		ASSERT(buf->b_data);
3705	}
3706}
3707
3708static void
3709arc_read_done(zio_t *zio)
3710{
3711	arc_buf_hdr_t	*hdr;
3712	arc_buf_t	*buf;
3713	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
3714	kmutex_t	*hash_lock = NULL;
3715	arc_callback_t	*callback_list, *acb;
3716	int		freeable = FALSE;
3717
3718	buf = zio->io_private;
3719	hdr = buf->b_hdr;
3720
3721	/*
3722	 * The hdr was inserted into hash-table and removed from lists
3723	 * prior to starting I/O.  We should find this header, since
3724	 * it's in the hash table, and it should be legit since it's
3725	 * not possible to evict it during the I/O.  The only possible
3726	 * reason for it not to be found is if we were freed during the
3727	 * read.
3728	 */
3729	if (HDR_IN_HASH_TABLE(hdr)) {
3730		ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
3731		ASSERT3U(hdr->b_dva.dva_word[0], ==,
3732		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
3733		ASSERT3U(hdr->b_dva.dva_word[1], ==,
3734		    BP_IDENTITY(zio->io_bp)->dva_word[1]);
3735
3736		arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
3737		    &hash_lock);
3738
3739		ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) &&
3740		    hash_lock == NULL) ||
3741		    (found == hdr &&
3742		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
3743		    (found == hdr && HDR_L2_READING(hdr)));
3744	}
3745
3746	hdr->b_flags &= ~ARC_FLAG_L2_EVICTED;
3747	if (l2arc_noprefetch && HDR_PREFETCH(hdr))
3748		hdr->b_flags &= ~ARC_FLAG_L2CACHE;
3749
3750	/* byteswap if necessary */
3751	callback_list = hdr->b_l1hdr.b_acb;
3752	ASSERT(callback_list != NULL);
3753	if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
3754		dmu_object_byteswap_t bswap =
3755		    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
3756		arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
3757		    byteswap_uint64_array :
3758		    dmu_ot_byteswap[bswap].ob_func;
3759		func(buf->b_data, hdr->b_size);
3760	}
3761
3762	arc_cksum_compute(buf, B_FALSE);
3763#ifdef illumos
3764	arc_buf_watch(buf);
3765#endif /* illumos */
3766
3767	if (hash_lock && zio->io_error == 0 &&
3768	    hdr->b_l1hdr.b_state == arc_anon) {
3769		/*
3770		 * Only call arc_access on anonymous buffers.  This is because
3771		 * if we've issued an I/O for an evicted buffer, we've already
3772		 * called arc_access (to prevent any simultaneous readers from
3773		 * getting confused).
3774		 */
3775		arc_access(hdr, hash_lock);
3776	}
3777
3778	/* create copies of the data buffer for the callers */
3779	abuf = buf;
3780	for (acb = callback_list; acb; acb = acb->acb_next) {
3781		if (acb->acb_done) {
3782			if (abuf == NULL) {
3783				ARCSTAT_BUMP(arcstat_duplicate_reads);
3784				abuf = arc_buf_clone(buf);
3785			}
3786			acb->acb_buf = abuf;
3787			abuf = NULL;
3788		}
3789	}
3790	hdr->b_l1hdr.b_acb = NULL;
3791	hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
3792	ASSERT(!HDR_BUF_AVAILABLE(hdr));
3793	if (abuf == buf) {
3794		ASSERT(buf->b_efunc == NULL);
3795		ASSERT(hdr->b_l1hdr.b_datacnt == 1);
3796		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
3797	}
3798
3799	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
3800	    callback_list != NULL);
3801
3802	if (zio->io_error != 0) {
3803		hdr->b_flags |= ARC_FLAG_IO_ERROR;
3804		if (hdr->b_l1hdr.b_state != arc_anon)
3805			arc_change_state(arc_anon, hdr, hash_lock);
3806		if (HDR_IN_HASH_TABLE(hdr))
3807			buf_hash_remove(hdr);
3808		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
3809	}
3810
3811	/*
3812	 * Broadcast before we drop the hash_lock to avoid the possibility
3813	 * that the hdr (and hence the cv) might be freed before we get to
3814	 * the cv_broadcast().
3815	 */
3816	cv_broadcast(&hdr->b_l1hdr.b_cv);
3817
3818	if (hash_lock != NULL) {
3819		mutex_exit(hash_lock);
3820	} else {
3821		/*
3822		 * This block was freed while we waited for the read to
3823		 * complete.  It has been removed from the hash table and
3824		 * moved to the anonymous state (so that it won't show up
3825		 * in the cache).
3826		 */
3827		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3828		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
3829	}
3830
3831	/* execute each callback and free its structure */
3832	while ((acb = callback_list) != NULL) {
3833		if (acb->acb_done)
3834			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
3835
3836		if (acb->acb_zio_dummy != NULL) {
3837			acb->acb_zio_dummy->io_error = zio->io_error;
3838			zio_nowait(acb->acb_zio_dummy);
3839		}
3840
3841		callback_list = acb->acb_next;
3842		kmem_free(acb, sizeof (arc_callback_t));
3843	}
3844
3845	if (freeable)
3846		arc_hdr_destroy(hdr);
3847}
3848
3849/*
3850 * "Read" the block block at the specified DVA (in bp) via the
3851 * cache.  If the block is found in the cache, invoke the provided
3852 * callback immediately and return.  Note that the `zio' parameter
3853 * in the callback will be NULL in this case, since no IO was
3854 * required.  If the block is not in the cache pass the read request
3855 * on to the spa with a substitute callback function, so that the
3856 * requested block will be added to the cache.
3857 *
3858 * If a read request arrives for a block that has a read in-progress,
3859 * either wait for the in-progress read to complete (and return the
3860 * results); or, if this is a read with a "done" func, add a record
3861 * to the read to invoke the "done" func when the read completes,
3862 * and return; or just return.
3863 *
3864 * arc_read_done() will invoke all the requested "done" functions
3865 * for readers of this block.
3866 */
3867int
3868arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
3869    void *private, zio_priority_t priority, int zio_flags,
3870    arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
3871{
3872	arc_buf_hdr_t *hdr = NULL;
3873	arc_buf_t *buf = NULL;
3874	kmutex_t *hash_lock = NULL;
3875	zio_t *rzio;
3876	uint64_t guid = spa_load_guid(spa);
3877
3878	ASSERT(!BP_IS_EMBEDDED(bp) ||
3879	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
3880
3881top:
3882	if (!BP_IS_EMBEDDED(bp)) {
3883		/*
3884		 * Embedded BP's have no DVA and require no I/O to "read".
3885		 * Create an anonymous arc buf to back it.
3886		 */
3887		hdr = buf_hash_find(guid, bp, &hash_lock);
3888	}
3889
3890	if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_datacnt > 0) {
3891
3892		*arc_flags |= ARC_FLAG_CACHED;
3893
3894		if (HDR_IO_IN_PROGRESS(hdr)) {
3895
3896			if (*arc_flags & ARC_FLAG_WAIT) {
3897				cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
3898				mutex_exit(hash_lock);
3899				goto top;
3900			}
3901			ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
3902
3903			if (done) {
3904				arc_callback_t	*acb = NULL;
3905
3906				acb = kmem_zalloc(sizeof (arc_callback_t),
3907				    KM_SLEEP);
3908				acb->acb_done = done;
3909				acb->acb_private = private;
3910				if (pio != NULL)
3911					acb->acb_zio_dummy = zio_null(pio,
3912					    spa, NULL, NULL, NULL, zio_flags);
3913
3914				ASSERT(acb->acb_done != NULL);
3915				acb->acb_next = hdr->b_l1hdr.b_acb;
3916				hdr->b_l1hdr.b_acb = acb;
3917				add_reference(hdr, hash_lock, private);
3918				mutex_exit(hash_lock);
3919				return (0);
3920			}
3921			mutex_exit(hash_lock);
3922			return (0);
3923		}
3924
3925		ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
3926		    hdr->b_l1hdr.b_state == arc_mfu);
3927
3928		if (done) {
3929			add_reference(hdr, hash_lock, private);
3930			/*
3931			 * If this block is already in use, create a new
3932			 * copy of the data so that we will be guaranteed
3933			 * that arc_release() will always succeed.
3934			 */
3935			buf = hdr->b_l1hdr.b_buf;
3936			ASSERT(buf);
3937			ASSERT(buf->b_data);
3938			if (HDR_BUF_AVAILABLE(hdr)) {
3939				ASSERT(buf->b_efunc == NULL);
3940				hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
3941			} else {
3942				buf = arc_buf_clone(buf);
3943			}
3944
3945		} else if (*arc_flags & ARC_FLAG_PREFETCH &&
3946		    refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
3947			hdr->b_flags |= ARC_FLAG_PREFETCH;
3948		}
3949		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
3950		arc_access(hdr, hash_lock);
3951		if (*arc_flags & ARC_FLAG_L2CACHE)
3952			hdr->b_flags |= ARC_FLAG_L2CACHE;
3953		if (*arc_flags & ARC_FLAG_L2COMPRESS)
3954			hdr->b_flags |= ARC_FLAG_L2COMPRESS;
3955		mutex_exit(hash_lock);
3956		ARCSTAT_BUMP(arcstat_hits);
3957		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
3958		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
3959		    data, metadata, hits);
3960
3961		if (done)
3962			done(NULL, buf, private);
3963	} else {
3964		uint64_t size = BP_GET_LSIZE(bp);
3965		arc_callback_t *acb;
3966		vdev_t *vd = NULL;
3967		uint64_t addr = 0;
3968		boolean_t devw = B_FALSE;
3969		enum zio_compress b_compress = ZIO_COMPRESS_OFF;
3970		int32_t b_asize = 0;
3971
3972		if (hdr == NULL) {
3973			/* this block is not in the cache */
3974			arc_buf_hdr_t *exists = NULL;
3975			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
3976			buf = arc_buf_alloc(spa, size, private, type);
3977			hdr = buf->b_hdr;
3978			if (!BP_IS_EMBEDDED(bp)) {
3979				hdr->b_dva = *BP_IDENTITY(bp);
3980				hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
3981				exists = buf_hash_insert(hdr, &hash_lock);
3982			}
3983			if (exists != NULL) {
3984				/* somebody beat us to the hash insert */
3985				mutex_exit(hash_lock);
3986				buf_discard_identity(hdr);
3987				(void) arc_buf_remove_ref(buf, private);
3988				goto top; /* restart the IO request */
3989			}
3990
3991			/* if this is a prefetch, we don't have a reference */
3992			if (*arc_flags & ARC_FLAG_PREFETCH) {
3993				(void) remove_reference(hdr, hash_lock,
3994				    private);
3995				hdr->b_flags |= ARC_FLAG_PREFETCH;
3996			}
3997			if (*arc_flags & ARC_FLAG_L2CACHE)
3998				hdr->b_flags |= ARC_FLAG_L2CACHE;
3999			if (*arc_flags & ARC_FLAG_L2COMPRESS)
4000				hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4001			if (BP_GET_LEVEL(bp) > 0)
4002				hdr->b_flags |= ARC_FLAG_INDIRECT;
4003		} else {
4004			/*
4005			 * This block is in the ghost cache. If it was L2-only
4006			 * (and thus didn't have an L1 hdr), we realloc the
4007			 * header to add an L1 hdr.
4008			 */
4009			if (!HDR_HAS_L1HDR(hdr)) {
4010				hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
4011				    hdr_full_cache);
4012			}
4013
4014			ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
4015			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4016			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4017			ASSERT(hdr->b_l1hdr.b_buf == NULL);
4018
4019			/* if this is a prefetch, we don't have a reference */
4020			if (*arc_flags & ARC_FLAG_PREFETCH)
4021				hdr->b_flags |= ARC_FLAG_PREFETCH;
4022			else
4023				add_reference(hdr, hash_lock, private);
4024			if (*arc_flags & ARC_FLAG_L2CACHE)
4025				hdr->b_flags |= ARC_FLAG_L2CACHE;
4026			if (*arc_flags & ARC_FLAG_L2COMPRESS)
4027				hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4028			buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
4029			buf->b_hdr = hdr;
4030			buf->b_data = NULL;
4031			buf->b_efunc = NULL;
4032			buf->b_private = NULL;
4033			buf->b_next = NULL;
4034			hdr->b_l1hdr.b_buf = buf;
4035			ASSERT0(hdr->b_l1hdr.b_datacnt);
4036			hdr->b_l1hdr.b_datacnt = 1;
4037			arc_get_data_buf(buf);
4038			arc_access(hdr, hash_lock);
4039		}
4040
4041		ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
4042
4043		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
4044		acb->acb_done = done;
4045		acb->acb_private = private;
4046
4047		ASSERT(hdr->b_l1hdr.b_acb == NULL);
4048		hdr->b_l1hdr.b_acb = acb;
4049		hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
4050
4051		if (HDR_HAS_L2HDR(hdr) &&
4052		    (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
4053			devw = hdr->b_l2hdr.b_dev->l2ad_writing;
4054			addr = hdr->b_l2hdr.b_daddr;
4055			b_compress = HDR_GET_COMPRESS(hdr);
4056			b_asize = hdr->b_l2hdr.b_asize;
4057			/*
4058			 * Lock out device removal.
4059			 */
4060			if (vdev_is_dead(vd) ||
4061			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
4062				vd = NULL;
4063		}
4064
4065		if (hash_lock != NULL)
4066			mutex_exit(hash_lock);
4067
4068		/*
4069		 * At this point, we have a level 1 cache miss.  Try again in
4070		 * L2ARC if possible.
4071		 */
4072		ASSERT3U(hdr->b_size, ==, size);
4073		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
4074		    uint64_t, size, zbookmark_phys_t *, zb);
4075		ARCSTAT_BUMP(arcstat_misses);
4076		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4077		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
4078		    data, metadata, misses);
4079#ifdef _KERNEL
4080		curthread->td_ru.ru_inblock++;
4081#endif
4082
4083		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
4084			/*
4085			 * Read from the L2ARC if the following are true:
4086			 * 1. The L2ARC vdev was previously cached.
4087			 * 2. This buffer still has L2ARC metadata.
4088			 * 3. This buffer isn't currently writing to the L2ARC.
4089			 * 4. The L2ARC entry wasn't evicted, which may
4090			 *    also have invalidated the vdev.
4091			 * 5. This isn't prefetch and l2arc_noprefetch is set.
4092			 */
4093			if (HDR_HAS_L2HDR(hdr) &&
4094			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
4095			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
4096				l2arc_read_callback_t *cb;
4097
4098				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
4099				ARCSTAT_BUMP(arcstat_l2_hits);
4100
4101				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
4102				    KM_SLEEP);
4103				cb->l2rcb_buf = buf;
4104				cb->l2rcb_spa = spa;
4105				cb->l2rcb_bp = *bp;
4106				cb->l2rcb_zb = *zb;
4107				cb->l2rcb_flags = zio_flags;
4108				cb->l2rcb_compress = b_compress;
4109
4110				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
4111				    addr + size < vd->vdev_psize -
4112				    VDEV_LABEL_END_SIZE);
4113
4114				/*
4115				 * l2arc read.  The SCL_L2ARC lock will be
4116				 * released by l2arc_read_done().
4117				 * Issue a null zio if the underlying buffer
4118				 * was squashed to zero size by compression.
4119				 */
4120				if (b_compress == ZIO_COMPRESS_EMPTY) {
4121					rzio = zio_null(pio, spa, vd,
4122					    l2arc_read_done, cb,
4123					    zio_flags | ZIO_FLAG_DONT_CACHE |
4124					    ZIO_FLAG_CANFAIL |
4125					    ZIO_FLAG_DONT_PROPAGATE |
4126					    ZIO_FLAG_DONT_RETRY);
4127				} else {
4128					rzio = zio_read_phys(pio, vd, addr,
4129					    b_asize, buf->b_data,
4130					    ZIO_CHECKSUM_OFF,
4131					    l2arc_read_done, cb, priority,
4132					    zio_flags | ZIO_FLAG_DONT_CACHE |
4133					    ZIO_FLAG_CANFAIL |
4134					    ZIO_FLAG_DONT_PROPAGATE |
4135					    ZIO_FLAG_DONT_RETRY, B_FALSE);
4136				}
4137				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
4138				    zio_t *, rzio);
4139				ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize);
4140
4141				if (*arc_flags & ARC_FLAG_NOWAIT) {
4142					zio_nowait(rzio);
4143					return (0);
4144				}
4145
4146				ASSERT(*arc_flags & ARC_FLAG_WAIT);
4147				if (zio_wait(rzio) == 0)
4148					return (0);
4149
4150				/* l2arc read error; goto zio_read() */
4151			} else {
4152				DTRACE_PROBE1(l2arc__miss,
4153				    arc_buf_hdr_t *, hdr);
4154				ARCSTAT_BUMP(arcstat_l2_misses);
4155				if (HDR_L2_WRITING(hdr))
4156					ARCSTAT_BUMP(arcstat_l2_rw_clash);
4157				spa_config_exit(spa, SCL_L2ARC, vd);
4158			}
4159		} else {
4160			if (vd != NULL)
4161				spa_config_exit(spa, SCL_L2ARC, vd);
4162			if (l2arc_ndev != 0) {
4163				DTRACE_PROBE1(l2arc__miss,
4164				    arc_buf_hdr_t *, hdr);
4165				ARCSTAT_BUMP(arcstat_l2_misses);
4166			}
4167		}
4168
4169		rzio = zio_read(pio, spa, bp, buf->b_data, size,
4170		    arc_read_done, buf, priority, zio_flags, zb);
4171
4172		if (*arc_flags & ARC_FLAG_WAIT)
4173			return (zio_wait(rzio));
4174
4175		ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4176		zio_nowait(rzio);
4177	}
4178	return (0);
4179}
4180
4181void
4182arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
4183{
4184	ASSERT(buf->b_hdr != NULL);
4185	ASSERT(buf->b_hdr->b_l1hdr.b_state != arc_anon);
4186	ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt) ||
4187	    func == NULL);
4188	ASSERT(buf->b_efunc == NULL);
4189	ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
4190
4191	buf->b_efunc = func;
4192	buf->b_private = private;
4193}
4194
4195/*
4196 * Notify the arc that a block was freed, and thus will never be used again.
4197 */
4198void
4199arc_freed(spa_t *spa, const blkptr_t *bp)
4200{
4201	arc_buf_hdr_t *hdr;
4202	kmutex_t *hash_lock;
4203	uint64_t guid = spa_load_guid(spa);
4204
4205	ASSERT(!BP_IS_EMBEDDED(bp));
4206
4207	hdr = buf_hash_find(guid, bp, &hash_lock);
4208	if (hdr == NULL)
4209		return;
4210	if (HDR_BUF_AVAILABLE(hdr)) {
4211		arc_buf_t *buf = hdr->b_l1hdr.b_buf;
4212		add_reference(hdr, hash_lock, FTAG);
4213		hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
4214		mutex_exit(hash_lock);
4215
4216		arc_release(buf, FTAG);
4217		(void) arc_buf_remove_ref(buf, FTAG);
4218	} else {
4219		mutex_exit(hash_lock);
4220	}
4221
4222}
4223
4224/*
4225 * Clear the user eviction callback set by arc_set_callback(), first calling
4226 * it if it exists.  Because the presence of a callback keeps an arc_buf cached
4227 * clearing the callback may result in the arc_buf being destroyed.  However,
4228 * it will not result in the *last* arc_buf being destroyed, hence the data
4229 * will remain cached in the ARC. We make a copy of the arc buffer here so
4230 * that we can process the callback without holding any locks.
4231 *
4232 * It's possible that the callback is already in the process of being cleared
4233 * by another thread.  In this case we can not clear the callback.
4234 *
4235 * Returns B_TRUE if the callback was successfully called and cleared.
4236 */
4237boolean_t
4238arc_clear_callback(arc_buf_t *buf)
4239{
4240	arc_buf_hdr_t *hdr;
4241	kmutex_t *hash_lock;
4242	arc_evict_func_t *efunc = buf->b_efunc;
4243	void *private = buf->b_private;
4244	list_t *list, *evicted_list;
4245	kmutex_t *lock, *evicted_lock;
4246
4247	mutex_enter(&buf->b_evict_lock);
4248	hdr = buf->b_hdr;
4249	if (hdr == NULL) {
4250		/*
4251		 * We are in arc_do_user_evicts().
4252		 */
4253		ASSERT(buf->b_data == NULL);
4254		mutex_exit(&buf->b_evict_lock);
4255		return (B_FALSE);
4256	} else if (buf->b_data == NULL) {
4257		/*
4258		 * We are on the eviction list; process this buffer now
4259		 * but let arc_do_user_evicts() do the reaping.
4260		 */
4261		buf->b_efunc = NULL;
4262		mutex_exit(&buf->b_evict_lock);
4263		VERIFY0(efunc(private));
4264		return (B_TRUE);
4265	}
4266	hash_lock = HDR_LOCK(hdr);
4267	mutex_enter(hash_lock);
4268	hdr = buf->b_hdr;
4269	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4270
4271	ASSERT3U(refcount_count(&hdr->b_l1hdr.b_refcnt), <,
4272	    hdr->b_l1hdr.b_datacnt);
4273	ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4274	    hdr->b_l1hdr.b_state == arc_mfu);
4275
4276	buf->b_efunc = NULL;
4277	buf->b_private = NULL;
4278
4279	if (hdr->b_l1hdr.b_datacnt > 1) {
4280		mutex_exit(&buf->b_evict_lock);
4281		arc_buf_destroy(buf, FALSE, TRUE);
4282	} else {
4283		ASSERT(buf == hdr->b_l1hdr.b_buf);
4284		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
4285		mutex_exit(&buf->b_evict_lock);
4286	}
4287
4288	mutex_exit(hash_lock);
4289	VERIFY0(efunc(private));
4290	return (B_TRUE);
4291}
4292
4293/*
4294 * Release this buffer from the cache, making it an anonymous buffer.  This
4295 * must be done after a read and prior to modifying the buffer contents.
4296 * If the buffer has more than one reference, we must make
4297 * a new hdr for the buffer.
4298 */
4299void
4300arc_release(arc_buf_t *buf, void *tag)
4301{
4302	arc_buf_hdr_t *hdr = buf->b_hdr;
4303
4304	/*
4305	 * It would be nice to assert that if it's DMU metadata (level >
4306	 * 0 || it's the dnode file), then it must be syncing context.
4307	 * But we don't know that information at this level.
4308	 */
4309
4310	mutex_enter(&buf->b_evict_lock);
4311	/*
4312	 * We don't grab the hash lock prior to this check, because if
4313	 * the buffer's header is in the arc_anon state, it won't be
4314	 * linked into the hash table.
4315	 */
4316	if (hdr->b_l1hdr.b_state == arc_anon) {
4317		mutex_exit(&buf->b_evict_lock);
4318		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4319		ASSERT(!HDR_IN_HASH_TABLE(hdr));
4320		ASSERT(!HDR_HAS_L2HDR(hdr));
4321		ASSERT(BUF_EMPTY(hdr));
4322		ASSERT3U(hdr->b_l1hdr.b_datacnt, ==, 1);
4323		ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
4324		ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
4325
4326		ASSERT3P(buf->b_efunc, ==, NULL);
4327		ASSERT3P(buf->b_private, ==, NULL);
4328
4329		hdr->b_l1hdr.b_arc_access = 0;
4330		arc_buf_thaw(buf);
4331
4332		return;
4333	}
4334
4335	kmutex_t *hash_lock = HDR_LOCK(hdr);
4336	mutex_enter(hash_lock);
4337
4338	/*
4339	 * This assignment is only valid as long as the hash_lock is
4340	 * held, we must be careful not to reference state or the
4341	 * b_state field after dropping the lock.
4342	 */
4343	arc_state_t *state = hdr->b_l1hdr.b_state;
4344	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4345	ASSERT3P(state, !=, arc_anon);
4346
4347	/* this buffer is not on any list */
4348	ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) > 0);
4349
4350	if (HDR_HAS_L2HDR(hdr)) {
4351		mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
4352
4353		/*
4354		 * We have to recheck this conditional again now that
4355		 * we're holding the l2ad_mtx to prevent a race with
4356		 * another thread which might be concurrently calling
4357		 * l2arc_evict(). In that case, l2arc_evict() might have
4358		 * destroyed the header's L2 portion as we were waiting
4359		 * to acquire the l2ad_mtx.
4360		 */
4361		if (HDR_HAS_L2HDR(hdr)) {
4362			trim_map_free(hdr->b_l2hdr.b_dev->l2ad_vdev,
4363			    hdr->b_l2hdr.b_daddr, hdr->b_l2hdr.b_asize, 0);
4364			arc_hdr_l2hdr_destroy(hdr);
4365		}
4366
4367		mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
4368	}
4369
4370	/*
4371	 * Do we have more than one buf?
4372	 */
4373	if (hdr->b_l1hdr.b_datacnt > 1) {
4374		arc_buf_hdr_t *nhdr;
4375		arc_buf_t **bufp;
4376		uint64_t blksz = hdr->b_size;
4377		uint64_t spa = hdr->b_spa;
4378		arc_buf_contents_t type = arc_buf_type(hdr);
4379		uint32_t flags = hdr->b_flags;
4380
4381		ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
4382		/*
4383		 * Pull the data off of this hdr and attach it to
4384		 * a new anonymous hdr.
4385		 */
4386		(void) remove_reference(hdr, hash_lock, tag);
4387		bufp = &hdr->b_l1hdr.b_buf;
4388		while (*bufp != buf)
4389			bufp = &(*bufp)->b_next;
4390		*bufp = buf->b_next;
4391		buf->b_next = NULL;
4392
4393		ASSERT3P(state, !=, arc_l2c_only);
4394		ASSERT3U(state->arcs_size, >=, hdr->b_size);
4395		atomic_add_64(&state->arcs_size, -hdr->b_size);
4396		if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
4397			ASSERT3P(state, !=, arc_l2c_only);
4398			uint64_t *size = &state->arcs_lsize[type];
4399			ASSERT3U(*size, >=, hdr->b_size);
4400			atomic_add_64(size, -hdr->b_size);
4401		}
4402
4403		/*
4404		 * We're releasing a duplicate user data buffer, update
4405		 * our statistics accordingly.
4406		 */
4407		if (HDR_ISTYPE_DATA(hdr)) {
4408			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
4409			ARCSTAT_INCR(arcstat_duplicate_buffers_size,
4410			    -hdr->b_size);
4411		}
4412		hdr->b_l1hdr.b_datacnt -= 1;
4413		arc_cksum_verify(buf);
4414#ifdef illumos
4415		arc_buf_unwatch(buf);
4416#endif /* illumos */
4417
4418		mutex_exit(hash_lock);
4419
4420		nhdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
4421		nhdr->b_size = blksz;
4422		nhdr->b_spa = spa;
4423
4424		nhdr->b_flags = flags & ARC_FLAG_L2_WRITING;
4425		nhdr->b_flags |= arc_bufc_to_flags(type);
4426		nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
4427
4428		nhdr->b_l1hdr.b_buf = buf;
4429		nhdr->b_l1hdr.b_datacnt = 1;
4430		nhdr->b_l1hdr.b_state = arc_anon;
4431		nhdr->b_l1hdr.b_arc_access = 0;
4432		nhdr->b_freeze_cksum = NULL;
4433
4434		(void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
4435		buf->b_hdr = nhdr;
4436		mutex_exit(&buf->b_evict_lock);
4437		atomic_add_64(&arc_anon->arcs_size, blksz);
4438	} else {
4439		mutex_exit(&buf->b_evict_lock);
4440		ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
4441		/* protected by hash lock */
4442		ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
4443		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4444		arc_change_state(arc_anon, hdr, hash_lock);
4445		hdr->b_l1hdr.b_arc_access = 0;
4446		mutex_exit(hash_lock);
4447
4448		buf_discard_identity(hdr);
4449		arc_buf_thaw(buf);
4450	}
4451	buf->b_efunc = NULL;
4452	buf->b_private = NULL;
4453}
4454
4455int
4456arc_released(arc_buf_t *buf)
4457{
4458	int released;
4459
4460	mutex_enter(&buf->b_evict_lock);
4461	released = (buf->b_data != NULL &&
4462	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
4463	mutex_exit(&buf->b_evict_lock);
4464	return (released);
4465}
4466
4467#ifdef ZFS_DEBUG
4468int
4469arc_referenced(arc_buf_t *buf)
4470{
4471	int referenced;
4472
4473	mutex_enter(&buf->b_evict_lock);
4474	referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
4475	mutex_exit(&buf->b_evict_lock);
4476	return (referenced);
4477}
4478#endif
4479
4480static void
4481arc_write_ready(zio_t *zio)
4482{
4483	arc_write_callback_t *callback = zio->io_private;
4484	arc_buf_t *buf = callback->awcb_buf;
4485	arc_buf_hdr_t *hdr = buf->b_hdr;
4486
4487	ASSERT(HDR_HAS_L1HDR(hdr));
4488	ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
4489	ASSERT(hdr->b_l1hdr.b_datacnt > 0);
4490	callback->awcb_ready(zio, buf, callback->awcb_private);
4491
4492	/*
4493	 * If the IO is already in progress, then this is a re-write
4494	 * attempt, so we need to thaw and re-compute the cksum.
4495	 * It is the responsibility of the callback to handle the
4496	 * accounting for any re-write attempt.
4497	 */
4498	if (HDR_IO_IN_PROGRESS(hdr)) {
4499		mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
4500		if (hdr->b_freeze_cksum != NULL) {
4501			kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
4502			hdr->b_freeze_cksum = NULL;
4503		}
4504		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
4505	}
4506	arc_cksum_compute(buf, B_FALSE);
4507	hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
4508}
4509
4510/*
4511 * The SPA calls this callback for each physical write that happens on behalf
4512 * of a logical write.  See the comment in dbuf_write_physdone() for details.
4513 */
4514static void
4515arc_write_physdone(zio_t *zio)
4516{
4517	arc_write_callback_t *cb = zio->io_private;
4518	if (cb->awcb_physdone != NULL)
4519		cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
4520}
4521
4522static void
4523arc_write_done(zio_t *zio)
4524{
4525	arc_write_callback_t *callback = zio->io_private;
4526	arc_buf_t *buf = callback->awcb_buf;
4527	arc_buf_hdr_t *hdr = buf->b_hdr;
4528
4529	ASSERT(hdr->b_l1hdr.b_acb == NULL);
4530
4531	if (zio->io_error == 0) {
4532		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
4533			buf_discard_identity(hdr);
4534		} else {
4535			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
4536			hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
4537		}
4538	} else {
4539		ASSERT(BUF_EMPTY(hdr));
4540	}
4541
4542	/*
4543	 * If the block to be written was all-zero or compressed enough to be
4544	 * embedded in the BP, no write was performed so there will be no
4545	 * dva/birth/checksum.  The buffer must therefore remain anonymous
4546	 * (and uncached).
4547	 */
4548	if (!BUF_EMPTY(hdr)) {
4549		arc_buf_hdr_t *exists;
4550		kmutex_t *hash_lock;
4551
4552		ASSERT(zio->io_error == 0);
4553
4554		arc_cksum_verify(buf);
4555
4556		exists = buf_hash_insert(hdr, &hash_lock);
4557		if (exists != NULL) {
4558			/*
4559			 * This can only happen if we overwrite for
4560			 * sync-to-convergence, because we remove
4561			 * buffers from the hash table when we arc_free().
4562			 */
4563			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
4564				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
4565					panic("bad overwrite, hdr=%p exists=%p",
4566					    (void *)hdr, (void *)exists);
4567				ASSERT(refcount_is_zero(
4568				    &exists->b_l1hdr.b_refcnt));
4569				arc_change_state(arc_anon, exists, hash_lock);
4570				mutex_exit(hash_lock);
4571				arc_hdr_destroy(exists);
4572				exists = buf_hash_insert(hdr, &hash_lock);
4573				ASSERT3P(exists, ==, NULL);
4574			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
4575				/* nopwrite */
4576				ASSERT(zio->io_prop.zp_nopwrite);
4577				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
4578					panic("bad nopwrite, hdr=%p exists=%p",
4579					    (void *)hdr, (void *)exists);
4580			} else {
4581				/* Dedup */
4582				ASSERT(hdr->b_l1hdr.b_datacnt == 1);
4583				ASSERT(hdr->b_l1hdr.b_state == arc_anon);
4584				ASSERT(BP_GET_DEDUP(zio->io_bp));
4585				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
4586			}
4587		}
4588		hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
4589		/* if it's not anon, we are doing a scrub */
4590		if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
4591			arc_access(hdr, hash_lock);
4592		mutex_exit(hash_lock);
4593	} else {
4594		hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
4595	}
4596
4597	ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4598	callback->awcb_done(zio, buf, callback->awcb_private);
4599
4600	kmem_free(callback, sizeof (arc_write_callback_t));
4601}
4602
4603zio_t *
4604arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
4605    blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
4606    const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone,
4607    arc_done_func_t *done, void *private, zio_priority_t priority,
4608    int zio_flags, const zbookmark_phys_t *zb)
4609{
4610	arc_buf_hdr_t *hdr = buf->b_hdr;
4611	arc_write_callback_t *callback;
4612	zio_t *zio;
4613
4614	ASSERT(ready != NULL);
4615	ASSERT(done != NULL);
4616	ASSERT(!HDR_IO_ERROR(hdr));
4617	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4618	ASSERT(hdr->b_l1hdr.b_acb == NULL);
4619	ASSERT(hdr->b_l1hdr.b_datacnt > 0);
4620	if (l2arc)
4621		hdr->b_flags |= ARC_FLAG_L2CACHE;
4622	if (l2arc_compress)
4623		hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4624	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
4625	callback->awcb_ready = ready;
4626	callback->awcb_physdone = physdone;
4627	callback->awcb_done = done;
4628	callback->awcb_private = private;
4629	callback->awcb_buf = buf;
4630
4631	zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
4632	    arc_write_ready, arc_write_physdone, arc_write_done, callback,
4633	    priority, zio_flags, zb);
4634
4635	return (zio);
4636}
4637
4638static int
4639arc_memory_throttle(uint64_t reserve, uint64_t txg)
4640{
4641#ifdef _KERNEL
4642	uint64_t available_memory = ptob(freemem);
4643	static uint64_t page_load = 0;
4644	static uint64_t last_txg = 0;
4645
4646#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
4647	available_memory =
4648	    MIN(available_memory, ptob(vmem_size(heap_arena, VMEM_FREE)));
4649#endif
4650
4651	if (freemem > (uint64_t)physmem * arc_lotsfree_percent / 100)
4652		return (0);
4653
4654	if (txg > last_txg) {
4655		last_txg = txg;
4656		page_load = 0;
4657	}
4658	/*
4659	 * If we are in pageout, we know that memory is already tight,
4660	 * the arc is already going to be evicting, so we just want to
4661	 * continue to let page writes occur as quickly as possible.
4662	 */
4663	if (curproc == pageproc) {
4664		if (page_load > MAX(ptob(minfree), available_memory) / 4)
4665			return (SET_ERROR(ERESTART));
4666		/* Note: reserve is inflated, so we deflate */
4667		page_load += reserve / 8;
4668		return (0);
4669	} else if (page_load > 0 && arc_reclaim_needed()) {
4670		/* memory is low, delay before restarting */
4671		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
4672		return (SET_ERROR(EAGAIN));
4673	}
4674	page_load = 0;
4675#endif
4676	return (0);
4677}
4678
4679static void
4680arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
4681    kstat_named_t *evict_data, kstat_named_t *evict_metadata)
4682{
4683	size->value.ui64 = state->arcs_size;
4684	evict_data->value.ui64 = state->arcs_lsize[ARC_BUFC_DATA];
4685	evict_metadata->value.ui64 = state->arcs_lsize[ARC_BUFC_METADATA];
4686}
4687
4688static int
4689arc_kstat_update(kstat_t *ksp, int rw)
4690{
4691	arc_stats_t *as = ksp->ks_data;
4692
4693	if (rw == KSTAT_WRITE) {
4694		return (EACCES);
4695	} else {
4696		arc_kstat_update_state(arc_anon,
4697		    &as->arcstat_anon_size,
4698		    &as->arcstat_anon_evictable_data,
4699		    &as->arcstat_anon_evictable_metadata);
4700		arc_kstat_update_state(arc_mru,
4701		    &as->arcstat_mru_size,
4702		    &as->arcstat_mru_evictable_data,
4703		    &as->arcstat_mru_evictable_metadata);
4704		arc_kstat_update_state(arc_mru_ghost,
4705		    &as->arcstat_mru_ghost_size,
4706		    &as->arcstat_mru_ghost_evictable_data,
4707		    &as->arcstat_mru_ghost_evictable_metadata);
4708		arc_kstat_update_state(arc_mfu,
4709		    &as->arcstat_mfu_size,
4710		    &as->arcstat_mfu_evictable_data,
4711		    &as->arcstat_mfu_evictable_metadata);
4712		arc_kstat_update_state(arc_mfu_ghost,
4713		    &as->arcstat_mfu_ghost_size,
4714		    &as->arcstat_mfu_ghost_evictable_data,
4715		    &as->arcstat_mfu_ghost_evictable_metadata);
4716	}
4717
4718	return (0);
4719}
4720
4721void
4722arc_tempreserve_clear(uint64_t reserve)
4723{
4724	atomic_add_64(&arc_tempreserve, -reserve);
4725	ASSERT((int64_t)arc_tempreserve >= 0);
4726}
4727
4728int
4729arc_tempreserve_space(uint64_t reserve, uint64_t txg)
4730{
4731	int error;
4732	uint64_t anon_size;
4733
4734	if (reserve > arc_c/4 && !arc_no_grow) {
4735		arc_c = MIN(arc_c_max, reserve * 4);
4736		DTRACE_PROBE1(arc__set_reserve, uint64_t, arc_c);
4737	}
4738	if (reserve > arc_c)
4739		return (SET_ERROR(ENOMEM));
4740
4741	/*
4742	 * Don't count loaned bufs as in flight dirty data to prevent long
4743	 * network delays from blocking transactions that are ready to be
4744	 * assigned to a txg.
4745	 */
4746	anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
4747
4748	/*
4749	 * Writes will, almost always, require additional memory allocations
4750	 * in order to compress/encrypt/etc the data.  We therefore need to
4751	 * make sure that there is sufficient available memory for this.
4752	 */
4753	error = arc_memory_throttle(reserve, txg);
4754	if (error != 0)
4755		return (error);
4756
4757	/*
4758	 * Throttle writes when the amount of dirty data in the cache
4759	 * gets too large.  We try to keep the cache less than half full
4760	 * of dirty blocks so that our sync times don't grow too large.
4761	 * Note: if two requests come in concurrently, we might let them
4762	 * both succeed, when one of them should fail.  Not a huge deal.
4763	 */
4764
4765	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
4766	    anon_size > arc_c / 4) {
4767		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
4768		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
4769		    arc_tempreserve>>10,
4770		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
4771		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
4772		    reserve>>10, arc_c>>10);
4773		return (SET_ERROR(ERESTART));
4774	}
4775	atomic_add_64(&arc_tempreserve, reserve);
4776	return (0);
4777}
4778
4779#ifdef _KERNEL
4780static eventhandler_tag arc_event_lowmem = NULL;
4781
4782static void
4783arc_lowmem(void *arg __unused, int howto __unused)
4784{
4785
4786	mutex_enter(&arc_reclaim_thr_lock);
4787	needfree = 1;
4788	DTRACE_PROBE(arc__needfree);
4789	cv_signal(&arc_reclaim_thr_cv);
4790
4791	/*
4792	 * It is unsafe to block here in arbitrary threads, because we can come
4793	 * here from ARC itself and may hold ARC locks and thus risk a deadlock
4794	 * with ARC reclaim thread.
4795	 */
4796	if (curproc == pageproc)
4797		msleep(&needfree, &arc_reclaim_thr_lock, 0, "zfs:lowmem", 0);
4798	mutex_exit(&arc_reclaim_thr_lock);
4799}
4800#endif
4801
4802void
4803arc_init(void)
4804{
4805	int i, prefetch_tunable_set = 0;
4806
4807	mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
4808	cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
4809
4810	/* Convert seconds to clock ticks */
4811	arc_min_prefetch_lifespan = 1 * hz;
4812
4813	/* Start out with 1/8 of all memory */
4814	arc_c = kmem_size() / 8;
4815
4816#ifdef sun
4817#ifdef _KERNEL
4818	/*
4819	 * On architectures where the physical memory can be larger
4820	 * than the addressable space (intel in 32-bit mode), we may
4821	 * need to limit the cache to 1/8 of VM size.
4822	 */
4823	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
4824#endif
4825#endif	/* sun */
4826	/* set min cache to 1/32 of all memory, or 16MB, whichever is more */
4827	arc_c_min = MAX(arc_c / 4, 16 << 20);
4828	/* set max to 1/2 of all memory, or all but 1GB, whichever is more */
4829	if (arc_c * 8 >= 1 << 30)
4830		arc_c_max = (arc_c * 8) - (1 << 30);
4831	else
4832		arc_c_max = arc_c_min;
4833	arc_c_max = MAX(arc_c * 5, arc_c_max);
4834
4835#ifdef _KERNEL
4836	/*
4837	 * Allow the tunables to override our calculations if they are
4838	 * reasonable (ie. over 16MB)
4839	 */
4840	if (zfs_arc_max > 16 << 20 && zfs_arc_max < kmem_size())
4841		arc_c_max = zfs_arc_max;
4842	if (zfs_arc_min > 16 << 20 && zfs_arc_min <= arc_c_max)
4843		arc_c_min = zfs_arc_min;
4844#endif
4845
4846	arc_c = arc_c_max;
4847	arc_p = (arc_c >> 1);
4848
4849	/* limit meta-data to 1/4 of the arc capacity */
4850	arc_meta_limit = arc_c_max / 4;
4851
4852	/* Allow the tunable to override if it is reasonable */
4853	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
4854		arc_meta_limit = zfs_arc_meta_limit;
4855
4856	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
4857		arc_c_min = arc_meta_limit / 2;
4858
4859	if (zfs_arc_meta_min > 0) {
4860		arc_meta_min = zfs_arc_meta_min;
4861	} else {
4862		arc_meta_min = arc_c_min / 2;
4863	}
4864
4865	if (zfs_arc_grow_retry > 0)
4866		arc_grow_retry = zfs_arc_grow_retry;
4867
4868	if (zfs_arc_shrink_shift > 0)
4869		arc_shrink_shift = zfs_arc_shrink_shift;
4870
4871	if (zfs_arc_p_min_shift > 0)
4872		arc_p_min_shift = zfs_arc_p_min_shift;
4873
4874	/* if kmem_flags are set, lets try to use less memory */
4875	if (kmem_debugging())
4876		arc_c = arc_c / 2;
4877	if (arc_c < arc_c_min)
4878		arc_c = arc_c_min;
4879
4880	zfs_arc_min = arc_c_min;
4881	zfs_arc_max = arc_c_max;
4882
4883	arc_anon = &ARC_anon;
4884	arc_mru = &ARC_mru;
4885	arc_mru_ghost = &ARC_mru_ghost;
4886	arc_mfu = &ARC_mfu;
4887	arc_mfu_ghost = &ARC_mfu_ghost;
4888	arc_l2c_only = &ARC_l2c_only;
4889	arc_size = 0;
4890
4891	for (i = 0; i < ARC_BUFC_NUMLISTS; i++) {
4892		mutex_init(&arc_anon->arcs_locks[i].arcs_lock,
4893		    NULL, MUTEX_DEFAULT, NULL);
4894		mutex_init(&arc_mru->arcs_locks[i].arcs_lock,
4895		    NULL, MUTEX_DEFAULT, NULL);
4896		mutex_init(&arc_mru_ghost->arcs_locks[i].arcs_lock,
4897		    NULL, MUTEX_DEFAULT, NULL);
4898		mutex_init(&arc_mfu->arcs_locks[i].arcs_lock,
4899		    NULL, MUTEX_DEFAULT, NULL);
4900		mutex_init(&arc_mfu_ghost->arcs_locks[i].arcs_lock,
4901		    NULL, MUTEX_DEFAULT, NULL);
4902		mutex_init(&arc_l2c_only->arcs_locks[i].arcs_lock,
4903		    NULL, MUTEX_DEFAULT, NULL);
4904
4905		list_create(&arc_mru->arcs_lists[i],
4906		    sizeof (arc_buf_hdr_t),
4907		    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node));
4908		list_create(&arc_mru_ghost->arcs_lists[i],
4909		    sizeof (arc_buf_hdr_t),
4910		    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node));
4911		list_create(&arc_mfu->arcs_lists[i],
4912		    sizeof (arc_buf_hdr_t),
4913		    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node));
4914		list_create(&arc_mfu_ghost->arcs_lists[i],
4915		    sizeof (arc_buf_hdr_t),
4916		    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node));
4917		list_create(&arc_mfu_ghost->arcs_lists[i],
4918		    sizeof (arc_buf_hdr_t),
4919		    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node));
4920		list_create(&arc_l2c_only->arcs_lists[i],
4921		    sizeof (arc_buf_hdr_t),
4922		    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node));
4923	}
4924
4925	buf_init();
4926
4927	arc_thread_exit = 0;
4928	arc_eviction_list = NULL;
4929	mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
4930	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
4931
4932	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
4933	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
4934
4935	if (arc_ksp != NULL) {
4936		arc_ksp->ks_data = &arc_stats;
4937		arc_ksp->ks_update = arc_kstat_update;
4938		kstat_install(arc_ksp);
4939	}
4940
4941	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
4942	    TS_RUN, minclsyspri);
4943
4944#ifdef _KERNEL
4945	arc_event_lowmem = EVENTHANDLER_REGISTER(vm_lowmem, arc_lowmem, NULL,
4946	    EVENTHANDLER_PRI_FIRST);
4947#endif
4948
4949	arc_dead = FALSE;
4950	arc_warm = B_FALSE;
4951
4952	/*
4953	 * Calculate maximum amount of dirty data per pool.
4954	 *
4955	 * If it has been set by /etc/system, take that.
4956	 * Otherwise, use a percentage of physical memory defined by
4957	 * zfs_dirty_data_max_percent (default 10%) with a cap at
4958	 * zfs_dirty_data_max_max (default 4GB).
4959	 */
4960	if (zfs_dirty_data_max == 0) {
4961		zfs_dirty_data_max = ptob(physmem) *
4962		    zfs_dirty_data_max_percent / 100;
4963		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
4964		    zfs_dirty_data_max_max);
4965	}
4966
4967#ifdef _KERNEL
4968	if (TUNABLE_INT_FETCH("vfs.zfs.prefetch_disable", &zfs_prefetch_disable))
4969		prefetch_tunable_set = 1;
4970
4971#ifdef __i386__
4972	if (prefetch_tunable_set == 0) {
4973		printf("ZFS NOTICE: Prefetch is disabled by default on i386 "
4974		    "-- to enable,\n");
4975		printf("            add \"vfs.zfs.prefetch_disable=0\" "
4976		    "to /boot/loader.conf.\n");
4977		zfs_prefetch_disable = 1;
4978	}
4979#else
4980	if ((((uint64_t)physmem * PAGESIZE) < (1ULL << 32)) &&
4981	    prefetch_tunable_set == 0) {
4982		printf("ZFS NOTICE: Prefetch is disabled by default if less "
4983		    "than 4GB of RAM is present;\n"
4984		    "            to enable, add \"vfs.zfs.prefetch_disable=0\" "
4985		    "to /boot/loader.conf.\n");
4986		zfs_prefetch_disable = 1;
4987	}
4988#endif
4989	/* Warn about ZFS memory and address space requirements. */
4990	if (((uint64_t)physmem * PAGESIZE) < (256 + 128 + 64) * (1 << 20)) {
4991		printf("ZFS WARNING: Recommended minimum RAM size is 512MB; "
4992		    "expect unstable behavior.\n");
4993	}
4994	if (kmem_size() < 512 * (1 << 20)) {
4995		printf("ZFS WARNING: Recommended minimum kmem_size is 512MB; "
4996		    "expect unstable behavior.\n");
4997		printf("             Consider tuning vm.kmem_size and "
4998		    "vm.kmem_size_max\n");
4999		printf("             in /boot/loader.conf.\n");
5000	}
5001#endif
5002}
5003
5004void
5005arc_fini(void)
5006{
5007	int i;
5008
5009	mutex_enter(&arc_reclaim_thr_lock);
5010	arc_thread_exit = 1;
5011	cv_signal(&arc_reclaim_thr_cv);
5012	while (arc_thread_exit != 0)
5013		cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
5014	mutex_exit(&arc_reclaim_thr_lock);
5015
5016	arc_flush(NULL);
5017
5018	arc_dead = TRUE;
5019
5020	if (arc_ksp != NULL) {
5021		kstat_delete(arc_ksp);
5022		arc_ksp = NULL;
5023	}
5024
5025	mutex_destroy(&arc_eviction_mtx);
5026	mutex_destroy(&arc_reclaim_thr_lock);
5027	cv_destroy(&arc_reclaim_thr_cv);
5028
5029	for (i = 0; i < ARC_BUFC_NUMLISTS; i++) {
5030		list_destroy(&arc_mru->arcs_lists[i]);
5031		list_destroy(&arc_mru_ghost->arcs_lists[i]);
5032		list_destroy(&arc_mfu->arcs_lists[i]);
5033		list_destroy(&arc_mfu_ghost->arcs_lists[i]);
5034		list_destroy(&arc_l2c_only->arcs_lists[i]);
5035
5036		mutex_destroy(&arc_anon->arcs_locks[i].arcs_lock);
5037		mutex_destroy(&arc_mru->arcs_locks[i].arcs_lock);
5038		mutex_destroy(&arc_mru_ghost->arcs_locks[i].arcs_lock);
5039		mutex_destroy(&arc_mfu->arcs_locks[i].arcs_lock);
5040		mutex_destroy(&arc_mfu_ghost->arcs_locks[i].arcs_lock);
5041		mutex_destroy(&arc_l2c_only->arcs_locks[i].arcs_lock);
5042	}
5043
5044	buf_fini();
5045
5046	ASSERT0(arc_loaned_bytes);
5047
5048#ifdef _KERNEL
5049	if (arc_event_lowmem != NULL)
5050		EVENTHANDLER_DEREGISTER(vm_lowmem, arc_event_lowmem);
5051#endif
5052}
5053
5054/*
5055 * Level 2 ARC
5056 *
5057 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
5058 * It uses dedicated storage devices to hold cached data, which are populated
5059 * using large infrequent writes.  The main role of this cache is to boost
5060 * the performance of random read workloads.  The intended L2ARC devices
5061 * include short-stroked disks, solid state disks, and other media with
5062 * substantially faster read latency than disk.
5063 *
5064 *                 +-----------------------+
5065 *                 |         ARC           |
5066 *                 +-----------------------+
5067 *                    |         ^     ^
5068 *                    |         |     |
5069 *      l2arc_feed_thread()    arc_read()
5070 *                    |         |     |
5071 *                    |  l2arc read   |
5072 *                    V         |     |
5073 *               +---------------+    |
5074 *               |     L2ARC     |    |
5075 *               +---------------+    |
5076 *                   |    ^           |
5077 *          l2arc_write() |           |
5078 *                   |    |           |
5079 *                   V    |           |
5080 *                 +-------+      +-------+
5081 *                 | vdev  |      | vdev  |
5082 *                 | cache |      | cache |
5083 *                 +-------+      +-------+
5084 *                 +=========+     .-----.
5085 *                 :  L2ARC  :    |-_____-|
5086 *                 : devices :    | Disks |
5087 *                 +=========+    `-_____-'
5088 *
5089 * Read requests are satisfied from the following sources, in order:
5090 *
5091 *	1) ARC
5092 *	2) vdev cache of L2ARC devices
5093 *	3) L2ARC devices
5094 *	4) vdev cache of disks
5095 *	5) disks
5096 *
5097 * Some L2ARC device types exhibit extremely slow write performance.
5098 * To accommodate for this there are some significant differences between
5099 * the L2ARC and traditional cache design:
5100 *
5101 * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
5102 * the ARC behave as usual, freeing buffers and placing headers on ghost
5103 * lists.  The ARC does not send buffers to the L2ARC during eviction as
5104 * this would add inflated write latencies for all ARC memory pressure.
5105 *
5106 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
5107 * It does this by periodically scanning buffers from the eviction-end of
5108 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
5109 * not already there. It scans until a headroom of buffers is satisfied,
5110 * which itself is a buffer for ARC eviction. If a compressible buffer is
5111 * found during scanning and selected for writing to an L2ARC device, we
5112 * temporarily boost scanning headroom during the next scan cycle to make
5113 * sure we adapt to compression effects (which might significantly reduce
5114 * the data volume we write to L2ARC). The thread that does this is
5115 * l2arc_feed_thread(), illustrated below; example sizes are included to
5116 * provide a better sense of ratio than this diagram:
5117 *
5118 *	       head -->                        tail
5119 *	        +---------------------+----------+
5120 *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
5121 *	        +---------------------+----------+   |   o L2ARC eligible
5122 *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
5123 *	        +---------------------+----------+   |
5124 *	             15.9 Gbytes      ^ 32 Mbytes    |
5125 *	                           headroom          |
5126 *	                                      l2arc_feed_thread()
5127 *	                                             |
5128 *	                 l2arc write hand <--[oooo]--'
5129 *	                         |           8 Mbyte
5130 *	                         |          write max
5131 *	                         V
5132 *		  +==============================+
5133 *	L2ARC dev |####|#|###|###|    |####| ... |
5134 *	          +==============================+
5135 *	                     32 Gbytes
5136 *
5137 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
5138 * evicted, then the L2ARC has cached a buffer much sooner than it probably
5139 * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
5140 * safe to say that this is an uncommon case, since buffers at the end of
5141 * the ARC lists have moved there due to inactivity.
5142 *
5143 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
5144 * then the L2ARC simply misses copying some buffers.  This serves as a
5145 * pressure valve to prevent heavy read workloads from both stalling the ARC
5146 * with waits and clogging the L2ARC with writes.  This also helps prevent
5147 * the potential for the L2ARC to churn if it attempts to cache content too
5148 * quickly, such as during backups of the entire pool.
5149 *
5150 * 5. After system boot and before the ARC has filled main memory, there are
5151 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
5152 * lists can remain mostly static.  Instead of searching from tail of these
5153 * lists as pictured, the l2arc_feed_thread() will search from the list heads
5154 * for eligible buffers, greatly increasing its chance of finding them.
5155 *
5156 * The L2ARC device write speed is also boosted during this time so that
5157 * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
5158 * there are no L2ARC reads, and no fear of degrading read performance
5159 * through increased writes.
5160 *
5161 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
5162 * the vdev queue can aggregate them into larger and fewer writes.  Each
5163 * device is written to in a rotor fashion, sweeping writes through
5164 * available space then repeating.
5165 *
5166 * 7. The L2ARC does not store dirty content.  It never needs to flush
5167 * write buffers back to disk based storage.
5168 *
5169 * 8. If an ARC buffer is written (and dirtied) which also exists in the
5170 * L2ARC, the now stale L2ARC buffer is immediately dropped.
5171 *
5172 * The performance of the L2ARC can be tweaked by a number of tunables, which
5173 * may be necessary for different workloads:
5174 *
5175 *	l2arc_write_max		max write bytes per interval
5176 *	l2arc_write_boost	extra write bytes during device warmup
5177 *	l2arc_noprefetch	skip caching prefetched buffers
5178 *	l2arc_headroom		number of max device writes to precache
5179 *	l2arc_headroom_boost	when we find compressed buffers during ARC
5180 *				scanning, we multiply headroom by this
5181 *				percentage factor for the next scan cycle,
5182 *				since more compressed buffers are likely to
5183 *				be present
5184 *	l2arc_feed_secs		seconds between L2ARC writing
5185 *
5186 * Tunables may be removed or added as future performance improvements are
5187 * integrated, and also may become zpool properties.
5188 *
5189 * There are three key functions that control how the L2ARC warms up:
5190 *
5191 *	l2arc_write_eligible()	check if a buffer is eligible to cache
5192 *	l2arc_write_size()	calculate how much to write
5193 *	l2arc_write_interval()	calculate sleep delay between writes
5194 *
5195 * These three functions determine what to write, how much, and how quickly
5196 * to send writes.
5197 */
5198
5199static boolean_t
5200l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
5201{
5202	/*
5203	 * A buffer is *not* eligible for the L2ARC if it:
5204	 * 1. belongs to a different spa.
5205	 * 2. is already cached on the L2ARC.
5206	 * 3. has an I/O in progress (it may be an incomplete read).
5207	 * 4. is flagged not eligible (zfs property).
5208	 */
5209	if (hdr->b_spa != spa_guid) {
5210		ARCSTAT_BUMP(arcstat_l2_write_spa_mismatch);
5211		return (B_FALSE);
5212	}
5213	if (HDR_HAS_L2HDR(hdr)) {
5214		ARCSTAT_BUMP(arcstat_l2_write_in_l2);
5215		return (B_FALSE);
5216	}
5217	if (HDR_IO_IN_PROGRESS(hdr)) {
5218		ARCSTAT_BUMP(arcstat_l2_write_hdr_io_in_progress);
5219		return (B_FALSE);
5220	}
5221	if (!HDR_L2CACHE(hdr)) {
5222		ARCSTAT_BUMP(arcstat_l2_write_not_cacheable);
5223		return (B_FALSE);
5224	}
5225
5226	return (B_TRUE);
5227}
5228
5229static uint64_t
5230l2arc_write_size(void)
5231{
5232	uint64_t size;
5233
5234	/*
5235	 * Make sure our globals have meaningful values in case the user
5236	 * altered them.
5237	 */
5238	size = l2arc_write_max;
5239	if (size == 0) {
5240		cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
5241		    "be greater than zero, resetting it to the default (%d)",
5242		    L2ARC_WRITE_SIZE);
5243		size = l2arc_write_max = L2ARC_WRITE_SIZE;
5244	}
5245
5246	if (arc_warm == B_FALSE)
5247		size += l2arc_write_boost;
5248
5249	return (size);
5250
5251}
5252
5253static clock_t
5254l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
5255{
5256	clock_t interval, next, now;
5257
5258	/*
5259	 * If the ARC lists are busy, increase our write rate; if the
5260	 * lists are stale, idle back.  This is achieved by checking
5261	 * how much we previously wrote - if it was more than half of
5262	 * what we wanted, schedule the next write much sooner.
5263	 */
5264	if (l2arc_feed_again && wrote > (wanted / 2))
5265		interval = (hz * l2arc_feed_min_ms) / 1000;
5266	else
5267		interval = hz * l2arc_feed_secs;
5268
5269	now = ddi_get_lbolt();
5270	next = MAX(now, MIN(now + interval, began + interval));
5271
5272	return (next);
5273}
5274
5275/*
5276 * Cycle through L2ARC devices.  This is how L2ARC load balances.
5277 * If a device is returned, this also returns holding the spa config lock.
5278 */
5279static l2arc_dev_t *
5280l2arc_dev_get_next(void)
5281{
5282	l2arc_dev_t *first, *next = NULL;
5283
5284	/*
5285	 * Lock out the removal of spas (spa_namespace_lock), then removal
5286	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
5287	 * both locks will be dropped and a spa config lock held instead.
5288	 */
5289	mutex_enter(&spa_namespace_lock);
5290	mutex_enter(&l2arc_dev_mtx);
5291
5292	/* if there are no vdevs, there is nothing to do */
5293	if (l2arc_ndev == 0)
5294		goto out;
5295
5296	first = NULL;
5297	next = l2arc_dev_last;
5298	do {
5299		/* loop around the list looking for a non-faulted vdev */
5300		if (next == NULL) {
5301			next = list_head(l2arc_dev_list);
5302		} else {
5303			next = list_next(l2arc_dev_list, next);
5304			if (next == NULL)
5305				next = list_head(l2arc_dev_list);
5306		}
5307
5308		/* if we have come back to the start, bail out */
5309		if (first == NULL)
5310			first = next;
5311		else if (next == first)
5312			break;
5313
5314	} while (vdev_is_dead(next->l2ad_vdev));
5315
5316	/* if we were unable to find any usable vdevs, return NULL */
5317	if (vdev_is_dead(next->l2ad_vdev))
5318		next = NULL;
5319
5320	l2arc_dev_last = next;
5321
5322out:
5323	mutex_exit(&l2arc_dev_mtx);
5324
5325	/*
5326	 * Grab the config lock to prevent the 'next' device from being
5327	 * removed while we are writing to it.
5328	 */
5329	if (next != NULL)
5330		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
5331	mutex_exit(&spa_namespace_lock);
5332
5333	return (next);
5334}
5335
5336/*
5337 * Free buffers that were tagged for destruction.
5338 */
5339static void
5340l2arc_do_free_on_write()
5341{
5342	list_t *buflist;
5343	l2arc_data_free_t *df, *df_prev;
5344
5345	mutex_enter(&l2arc_free_on_write_mtx);
5346	buflist = l2arc_free_on_write;
5347
5348	for (df = list_tail(buflist); df; df = df_prev) {
5349		df_prev = list_prev(buflist, df);
5350		ASSERT(df->l2df_data != NULL);
5351		ASSERT(df->l2df_func != NULL);
5352		df->l2df_func(df->l2df_data, df->l2df_size);
5353		list_remove(buflist, df);
5354		kmem_free(df, sizeof (l2arc_data_free_t));
5355	}
5356
5357	mutex_exit(&l2arc_free_on_write_mtx);
5358}
5359
5360/*
5361 * A write to a cache device has completed.  Update all headers to allow
5362 * reads from these buffers to begin.
5363 */
5364static void
5365l2arc_write_done(zio_t *zio)
5366{
5367	l2arc_write_callback_t *cb;
5368	l2arc_dev_t *dev;
5369	list_t *buflist;
5370	arc_buf_hdr_t *head, *hdr, *hdr_prev;
5371	kmutex_t *hash_lock;
5372	int64_t bytes_dropped = 0;
5373
5374	cb = zio->io_private;
5375	ASSERT(cb != NULL);
5376	dev = cb->l2wcb_dev;
5377	ASSERT(dev != NULL);
5378	head = cb->l2wcb_head;
5379	ASSERT(head != NULL);
5380	buflist = &dev->l2ad_buflist;
5381	ASSERT(buflist != NULL);
5382	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
5383	    l2arc_write_callback_t *, cb);
5384
5385	if (zio->io_error != 0)
5386		ARCSTAT_BUMP(arcstat_l2_writes_error);
5387
5388	mutex_enter(&dev->l2ad_mtx);
5389
5390	/*
5391	 * All writes completed, or an error was hit.
5392	 */
5393	for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
5394		hdr_prev = list_prev(buflist, hdr);
5395
5396		hash_lock = HDR_LOCK(hdr);
5397		if (!mutex_tryenter(hash_lock)) {
5398			/*
5399			 * This buffer misses out.  It may be in a stage
5400			 * of eviction.  Its ARC_FLAG_L2_WRITING flag will be
5401			 * left set, denying reads to this buffer.
5402			 */
5403			ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
5404			continue;
5405		}
5406
5407		/*
5408		 * It's possible that this buffer got evicted from the L1 cache
5409		 * before we grabbed the vdev + hash locks, in which case
5410		 * arc_hdr_realloc freed b_tmp_cdata for us if it was allocated.
5411		 * Only free the buffer if we still have an L1 hdr.
5412		 */
5413		if (HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_tmp_cdata != NULL &&
5414		    HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF)
5415			l2arc_release_cdata_buf(hdr);
5416
5417		if (zio->io_error != 0) {
5418			/*
5419			 * Error - drop L2ARC entry.
5420			 */
5421			trim_map_free(hdr->b_l2hdr.b_dev->l2ad_vdev,
5422			    hdr->b_l2hdr.b_daddr, hdr->b_l2hdr.b_asize, 0);
5423			hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
5424
5425			ARCSTAT_INCR(arcstat_l2_asize, -hdr->b_l2hdr.b_asize);
5426			ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
5427
5428			bytes_dropped += hdr->b_l2hdr.b_asize;
5429			(void) refcount_remove_many(&dev->l2ad_alloc,
5430			    hdr->b_l2hdr.b_asize, hdr);
5431		}
5432
5433		/*
5434		 * Allow ARC to begin reads to this L2ARC entry.
5435		 */
5436		hdr->b_flags &= ~ARC_FLAG_L2_WRITING;
5437
5438		mutex_exit(hash_lock);
5439	}
5440
5441	atomic_inc_64(&l2arc_writes_done);
5442	list_remove(buflist, head);
5443	ASSERT(!HDR_HAS_L1HDR(head));
5444	kmem_cache_free(hdr_l2only_cache, head);
5445	mutex_exit(&dev->l2ad_mtx);
5446
5447	vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
5448
5449	l2arc_do_free_on_write();
5450
5451	kmem_free(cb, sizeof (l2arc_write_callback_t));
5452}
5453
5454/*
5455 * A read to a cache device completed.  Validate buffer contents before
5456 * handing over to the regular ARC routines.
5457 */
5458static void
5459l2arc_read_done(zio_t *zio)
5460{
5461	l2arc_read_callback_t *cb;
5462	arc_buf_hdr_t *hdr;
5463	arc_buf_t *buf;
5464	kmutex_t *hash_lock;
5465	int equal;
5466
5467	ASSERT(zio->io_vd != NULL);
5468	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
5469
5470	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
5471
5472	cb = zio->io_private;
5473	ASSERT(cb != NULL);
5474	buf = cb->l2rcb_buf;
5475	ASSERT(buf != NULL);
5476
5477	hash_lock = HDR_LOCK(buf->b_hdr);
5478	mutex_enter(hash_lock);
5479	hdr = buf->b_hdr;
5480	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
5481
5482	/*
5483	 * If the buffer was compressed, decompress it first.
5484	 */
5485	if (cb->l2rcb_compress != ZIO_COMPRESS_OFF)
5486		l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress);
5487	ASSERT(zio->io_data != NULL);
5488
5489	/*
5490	 * Check this survived the L2ARC journey.
5491	 */
5492	equal = arc_cksum_equal(buf);
5493	if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
5494		mutex_exit(hash_lock);
5495		zio->io_private = buf;
5496		zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
5497		zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
5498		arc_read_done(zio);
5499	} else {
5500		mutex_exit(hash_lock);
5501		/*
5502		 * Buffer didn't survive caching.  Increment stats and
5503		 * reissue to the original storage device.
5504		 */
5505		if (zio->io_error != 0) {
5506			ARCSTAT_BUMP(arcstat_l2_io_error);
5507		} else {
5508			zio->io_error = SET_ERROR(EIO);
5509		}
5510		if (!equal)
5511			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
5512
5513		/*
5514		 * If there's no waiter, issue an async i/o to the primary
5515		 * storage now.  If there *is* a waiter, the caller must
5516		 * issue the i/o in a context where it's OK to block.
5517		 */
5518		if (zio->io_waiter == NULL) {
5519			zio_t *pio = zio_unique_parent(zio);
5520
5521			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
5522
5523			zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
5524			    buf->b_data, zio->io_size, arc_read_done, buf,
5525			    zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
5526		}
5527	}
5528
5529	kmem_free(cb, sizeof (l2arc_read_callback_t));
5530}
5531
5532/*
5533 * This is the list priority from which the L2ARC will search for pages to
5534 * cache.  This is used within loops (0..3) to cycle through lists in the
5535 * desired order.  This order can have a significant effect on cache
5536 * performance.
5537 *
5538 * Currently the metadata lists are hit first, MFU then MRU, followed by
5539 * the data lists.  This function returns a locked list, and also returns
5540 * the lock pointer.
5541 */
5542static list_t *
5543l2arc_list_locked(int list_num, kmutex_t **lock)
5544{
5545	list_t *list = NULL;
5546	int idx;
5547
5548	ASSERT(list_num >= 0 && list_num < 2 * ARC_BUFC_NUMLISTS);
5549
5550	if (list_num < ARC_BUFC_NUMMETADATALISTS) {
5551		idx = list_num;
5552		list = &arc_mfu->arcs_lists[idx];
5553		*lock = ARCS_LOCK(arc_mfu, idx);
5554	} else if (list_num < ARC_BUFC_NUMMETADATALISTS * 2) {
5555		idx = list_num - ARC_BUFC_NUMMETADATALISTS;
5556		list = &arc_mru->arcs_lists[idx];
5557		*lock = ARCS_LOCK(arc_mru, idx);
5558	} else if (list_num < (ARC_BUFC_NUMMETADATALISTS * 2 +
5559		ARC_BUFC_NUMDATALISTS)) {
5560		idx = list_num - ARC_BUFC_NUMMETADATALISTS;
5561		list = &arc_mfu->arcs_lists[idx];
5562		*lock = ARCS_LOCK(arc_mfu, idx);
5563	} else {
5564		idx = list_num - ARC_BUFC_NUMLISTS;
5565		list = &arc_mru->arcs_lists[idx];
5566		*lock = ARCS_LOCK(arc_mru, idx);
5567	}
5568
5569	ASSERT(!(MUTEX_HELD(*lock)));
5570	mutex_enter(*lock);
5571	return (list);
5572}
5573
5574/*
5575 * Evict buffers from the device write hand to the distance specified in
5576 * bytes.  This distance may span populated buffers, it may span nothing.
5577 * This is clearing a region on the L2ARC device ready for writing.
5578 * If the 'all' boolean is set, every buffer is evicted.
5579 */
5580static void
5581l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
5582{
5583	list_t *buflist;
5584	arc_buf_hdr_t *hdr, *hdr_prev;
5585	kmutex_t *hash_lock;
5586	uint64_t taddr;
5587
5588	buflist = &dev->l2ad_buflist;
5589
5590	if (!all && dev->l2ad_first) {
5591		/*
5592		 * This is the first sweep through the device.  There is
5593		 * nothing to evict.
5594		 */
5595		return;
5596	}
5597
5598	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
5599		/*
5600		 * When nearing the end of the device, evict to the end
5601		 * before the device write hand jumps to the start.
5602		 */
5603		taddr = dev->l2ad_end;
5604	} else {
5605		taddr = dev->l2ad_hand + distance;
5606	}
5607	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
5608	    uint64_t, taddr, boolean_t, all);
5609
5610top:
5611	mutex_enter(&dev->l2ad_mtx);
5612	for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
5613		hdr_prev = list_prev(buflist, hdr);
5614
5615		hash_lock = HDR_LOCK(hdr);
5616		if (!mutex_tryenter(hash_lock)) {
5617			/*
5618			 * Missed the hash lock.  Retry.
5619			 */
5620			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
5621			mutex_exit(&dev->l2ad_mtx);
5622			mutex_enter(hash_lock);
5623			mutex_exit(hash_lock);
5624			goto top;
5625		}
5626
5627		if (HDR_L2_WRITE_HEAD(hdr)) {
5628			/*
5629			 * We hit a write head node.  Leave it for
5630			 * l2arc_write_done().
5631			 */
5632			list_remove(buflist, hdr);
5633			mutex_exit(hash_lock);
5634			continue;
5635		}
5636
5637		if (!all && HDR_HAS_L2HDR(hdr) &&
5638		    (hdr->b_l2hdr.b_daddr > taddr ||
5639		    hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
5640			/*
5641			 * We've evicted to the target address,
5642			 * or the end of the device.
5643			 */
5644			mutex_exit(hash_lock);
5645			break;
5646		}
5647
5648		ASSERT(HDR_HAS_L2HDR(hdr));
5649		if (!HDR_HAS_L1HDR(hdr)) {
5650			ASSERT(!HDR_L2_READING(hdr));
5651			/*
5652			 * This doesn't exist in the ARC.  Destroy.
5653			 * arc_hdr_destroy() will call list_remove()
5654			 * and decrement arcstat_l2_size.
5655			 */
5656			arc_change_state(arc_anon, hdr, hash_lock);
5657			arc_hdr_destroy(hdr);
5658		} else {
5659			ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
5660			ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
5661			/*
5662			 * Invalidate issued or about to be issued
5663			 * reads, since we may be about to write
5664			 * over this location.
5665			 */
5666			if (HDR_L2_READING(hdr)) {
5667				ARCSTAT_BUMP(arcstat_l2_evict_reading);
5668				hdr->b_flags |= ARC_FLAG_L2_EVICTED;
5669			}
5670
5671			arc_hdr_l2hdr_destroy(hdr);
5672		}
5673		mutex_exit(hash_lock);
5674	}
5675	mutex_exit(&dev->l2ad_mtx);
5676}
5677
5678/*
5679 * Find and write ARC buffers to the L2ARC device.
5680 *
5681 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
5682 * for reading until they have completed writing.
5683 * The headroom_boost is an in-out parameter used to maintain headroom boost
5684 * state between calls to this function.
5685 *
5686 * Returns the number of bytes actually written (which may be smaller than
5687 * the delta by which the device hand has changed due to alignment).
5688 */
5689static uint64_t
5690l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz,
5691    boolean_t *headroom_boost)
5692{
5693	arc_buf_hdr_t *hdr, *hdr_prev, *head;
5694	list_t *list;
5695	uint64_t write_asize, write_sz, headroom, buf_compress_minsz;
5696	void *buf_data;
5697	kmutex_t *list_lock;
5698	boolean_t full;
5699	l2arc_write_callback_t *cb;
5700	zio_t *pio, *wzio;
5701	uint64_t guid = spa_load_guid(spa);
5702	const boolean_t do_headroom_boost = *headroom_boost;
5703	int try;
5704
5705	ASSERT(dev->l2ad_vdev != NULL);
5706
5707	/* Lower the flag now, we might want to raise it again later. */
5708	*headroom_boost = B_FALSE;
5709
5710	pio = NULL;
5711	write_sz = write_asize = 0;
5712	full = B_FALSE;
5713	head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
5714	head->b_flags |= ARC_FLAG_L2_WRITE_HEAD;
5715	head->b_flags |= ARC_FLAG_HAS_L2HDR;
5716
5717	ARCSTAT_BUMP(arcstat_l2_write_buffer_iter);
5718	/*
5719	 * We will want to try to compress buffers that are at least 2x the
5720	 * device sector size.
5721	 */
5722	buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift;
5723
5724	/*
5725	 * Copy buffers for L2ARC writing.
5726	 */
5727	mutex_enter(&dev->l2ad_mtx);
5728	for (try = 0; try < 2 * ARC_BUFC_NUMLISTS; try++) {
5729		uint64_t passed_sz = 0;
5730
5731		list = l2arc_list_locked(try, &list_lock);
5732		ARCSTAT_BUMP(arcstat_l2_write_buffer_list_iter);
5733
5734		/*
5735		 * L2ARC fast warmup.
5736		 *
5737		 * Until the ARC is warm and starts to evict, read from the
5738		 * head of the ARC lists rather than the tail.
5739		 */
5740		if (arc_warm == B_FALSE)
5741			hdr = list_head(list);
5742		else
5743			hdr = list_tail(list);
5744		if (hdr == NULL)
5745			ARCSTAT_BUMP(arcstat_l2_write_buffer_list_null_iter);
5746
5747		headroom = target_sz * l2arc_headroom * 2 / ARC_BUFC_NUMLISTS;
5748		if (do_headroom_boost)
5749			headroom = (headroom * l2arc_headroom_boost) / 100;
5750
5751		for (; hdr; hdr = hdr_prev) {
5752			kmutex_t *hash_lock;
5753			uint64_t buf_sz;
5754			uint64_t buf_a_sz;
5755
5756			if (arc_warm == B_FALSE)
5757				hdr_prev = list_next(list, hdr);
5758			else
5759				hdr_prev = list_prev(list, hdr);
5760			ARCSTAT_INCR(arcstat_l2_write_buffer_bytes_scanned, hdr->b_size);
5761
5762			hash_lock = HDR_LOCK(hdr);
5763			if (!mutex_tryenter(hash_lock)) {
5764				ARCSTAT_BUMP(arcstat_l2_write_trylock_fail);
5765				/*
5766				 * Skip this buffer rather than waiting.
5767				 */
5768				continue;
5769			}
5770
5771			passed_sz += hdr->b_size;
5772			if (passed_sz > headroom) {
5773				/*
5774				 * Searched too far.
5775				 */
5776				mutex_exit(hash_lock);
5777				ARCSTAT_BUMP(arcstat_l2_write_passed_headroom);
5778				break;
5779			}
5780
5781			if (!l2arc_write_eligible(guid, hdr)) {
5782				mutex_exit(hash_lock);
5783				continue;
5784			}
5785
5786			/*
5787			 * Assume that the buffer is not going to be compressed
5788			 * and could take more space on disk because of a larger
5789			 * disk block size.
5790			 */
5791			buf_sz = hdr->b_size;
5792			buf_a_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
5793
5794			if ((write_asize + buf_a_sz) > target_sz) {
5795				full = B_TRUE;
5796				mutex_exit(hash_lock);
5797				ARCSTAT_BUMP(arcstat_l2_write_full);
5798				break;
5799			}
5800
5801			if (pio == NULL) {
5802				/*
5803				 * Insert a dummy header on the buflist so
5804				 * l2arc_write_done() can find where the
5805				 * write buffers begin without searching.
5806				 */
5807				list_insert_head(&dev->l2ad_buflist, head);
5808
5809				cb = kmem_alloc(
5810				    sizeof (l2arc_write_callback_t), KM_SLEEP);
5811				cb->l2wcb_dev = dev;
5812				cb->l2wcb_head = head;
5813				pio = zio_root(spa, l2arc_write_done, cb,
5814				    ZIO_FLAG_CANFAIL);
5815				ARCSTAT_BUMP(arcstat_l2_write_pios);
5816			}
5817
5818			/*
5819			 * Create and add a new L2ARC header.
5820			 */
5821			hdr->b_l2hdr.b_dev = dev;
5822			hdr->b_flags |= ARC_FLAG_L2_WRITING;
5823			/*
5824			 * Temporarily stash the data buffer in b_tmp_cdata.
5825			 * The subsequent write step will pick it up from
5826			 * there. This is because can't access b_l1hdr.b_buf
5827			 * without holding the hash_lock, which we in turn
5828			 * can't access without holding the ARC list locks
5829			 * (which we want to avoid during compression/writing).
5830			 */
5831			HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
5832			hdr->b_l2hdr.b_asize = hdr->b_size;
5833			hdr->b_l1hdr.b_tmp_cdata = hdr->b_l1hdr.b_buf->b_data;
5834
5835			/*
5836			 * Explicitly set the b_daddr field to a known
5837			 * value which means "invalid address". This
5838			 * enables us to differentiate which stage of
5839			 * l2arc_write_buffers() the particular header
5840			 * is in (e.g. this loop, or the one below).
5841			 * ARC_FLAG_L2_WRITING is not enough to make
5842			 * this distinction, and we need to know in
5843			 * order to do proper l2arc vdev accounting in
5844			 * arc_release() and arc_hdr_destroy().
5845			 *
5846			 * Note, we can't use a new flag to distinguish
5847			 * the two stages because we don't hold the
5848			 * header's hash_lock below, in the second stage
5849			 * of this function. Thus, we can't simply
5850			 * change the b_flags field to denote that the
5851			 * IO has been sent. We can change the b_daddr
5852			 * field of the L2 portion, though, since we'll
5853			 * be holding the l2ad_mtx; which is why we're
5854			 * using it to denote the header's state change.
5855			 */
5856			hdr->b_l2hdr.b_daddr = L2ARC_ADDR_UNSET;
5857			hdr->b_flags |= ARC_FLAG_HAS_L2HDR;
5858
5859			list_insert_head(&dev->l2ad_buflist, hdr);
5860
5861			/*
5862			 * Compute and store the buffer cksum before
5863			 * writing.  On debug the cksum is verified first.
5864			 */
5865			arc_cksum_verify(hdr->b_l1hdr.b_buf);
5866			arc_cksum_compute(hdr->b_l1hdr.b_buf, B_TRUE);
5867
5868			mutex_exit(hash_lock);
5869
5870			write_sz += buf_sz;
5871			write_asize += buf_a_sz;
5872		}
5873
5874		mutex_exit(list_lock);
5875
5876		if (full == B_TRUE)
5877			break;
5878	}
5879
5880	/* No buffers selected for writing? */
5881	if (pio == NULL) {
5882		ASSERT0(write_sz);
5883		mutex_exit(&dev->l2ad_mtx);
5884		ASSERT(!HDR_HAS_L1HDR(head));
5885		kmem_cache_free(hdr_l2only_cache, head);
5886		return (0);
5887	}
5888
5889	/*
5890	 * Note that elsewhere in this file arcstat_l2_asize
5891	 * and the used space on l2ad_vdev are updated using b_asize,
5892	 * which is not necessarily rounded up to the device block size.
5893	 * Too keep accounting consistent we do the same here as well:
5894	 * stats_size accumulates the sum of b_asize of the written buffers,
5895	 * while write_asize accumulates the sum of b_asize rounded up
5896	 * to the device block size.
5897	 * The latter sum is used only to validate the corectness of the code.
5898	 */
5899	uint64_t stats_size = 0;
5900	write_asize = 0;
5901
5902	/*
5903	 * Now start writing the buffers. We're starting at the write head
5904	 * and work backwards, retracing the course of the buffer selector
5905	 * loop above.
5906	 */
5907	for (hdr = list_prev(&dev->l2ad_buflist, head); hdr;
5908	    hdr = list_prev(&dev->l2ad_buflist, hdr)) {
5909		uint64_t buf_sz;
5910
5911		/*
5912		 * We shouldn't need to lock the buffer here, since we flagged
5913		 * it as ARC_FLAG_L2_WRITING in the previous step, but we must
5914		 * take care to only access its L2 cache parameters. In
5915		 * particular, hdr->l1hdr.b_buf may be invalid by now due to
5916		 * ARC eviction.
5917		 */
5918		hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
5919
5920		if ((HDR_L2COMPRESS(hdr)) &&
5921		    hdr->b_l2hdr.b_asize >= buf_compress_minsz) {
5922			if (l2arc_compress_buf(hdr)) {
5923				/*
5924				 * If compression succeeded, enable headroom
5925				 * boost on the next scan cycle.
5926				 */
5927				*headroom_boost = B_TRUE;
5928			}
5929		}
5930
5931		/*
5932		 * Pick up the buffer data we had previously stashed away
5933		 * (and now potentially also compressed).
5934		 */
5935		buf_data = hdr->b_l1hdr.b_tmp_cdata;
5936		buf_sz = hdr->b_l2hdr.b_asize;
5937
5938		/*
5939		 * If the data has not been compressed, then clear b_tmp_cdata
5940		 * to make sure that it points only to a temporary compression
5941		 * buffer.
5942		 */
5943		if (!L2ARC_IS_VALID_COMPRESS(HDR_GET_COMPRESS(hdr)))
5944			hdr->b_l1hdr.b_tmp_cdata = NULL;
5945
5946		/*
5947		 * We need to do this regardless if buf_sz is zero or
5948		 * not, otherwise, when this l2hdr is evicted we'll
5949		 * remove a reference that was never added.
5950		 */
5951		(void) refcount_add_many(&dev->l2ad_alloc, buf_sz, hdr);
5952
5953		/* Compression may have squashed the buffer to zero length. */
5954		if (buf_sz != 0) {
5955			uint64_t buf_a_sz;
5956
5957			wzio = zio_write_phys(pio, dev->l2ad_vdev,
5958			    dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
5959			    NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
5960			    ZIO_FLAG_CANFAIL, B_FALSE);
5961
5962			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
5963			    zio_t *, wzio);
5964			(void) zio_nowait(wzio);
5965
5966			stats_size += buf_sz;
5967
5968			/*
5969			 * Keep the clock hand suitably device-aligned.
5970			 */
5971			buf_a_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
5972			write_asize += buf_a_sz;
5973			dev->l2ad_hand += buf_a_sz;
5974		}
5975	}
5976
5977	mutex_exit(&dev->l2ad_mtx);
5978
5979	ASSERT3U(write_asize, <=, target_sz);
5980	ARCSTAT_BUMP(arcstat_l2_writes_sent);
5981	ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
5982	ARCSTAT_INCR(arcstat_l2_size, write_sz);
5983	ARCSTAT_INCR(arcstat_l2_asize, stats_size);
5984	vdev_space_update(dev->l2ad_vdev, stats_size, 0, 0);
5985
5986	/*
5987	 * Bump device hand to the device start if it is approaching the end.
5988	 * l2arc_evict() will already have evicted ahead for this case.
5989	 */
5990	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
5991		dev->l2ad_hand = dev->l2ad_start;
5992		dev->l2ad_first = B_FALSE;
5993	}
5994
5995	dev->l2ad_writing = B_TRUE;
5996	(void) zio_wait(pio);
5997	dev->l2ad_writing = B_FALSE;
5998
5999	return (write_asize);
6000}
6001
6002/*
6003 * Compresses an L2ARC buffer.
6004 * The data to be compressed must be prefilled in l1hdr.b_tmp_cdata and its
6005 * size in l2hdr->b_asize. This routine tries to compress the data and
6006 * depending on the compression result there are three possible outcomes:
6007 * *) The buffer was incompressible. The original l2hdr contents were left
6008 *    untouched and are ready for writing to an L2 device.
6009 * *) The buffer was all-zeros, so there is no need to write it to an L2
6010 *    device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is
6011 *    set to zero and b_compress is set to ZIO_COMPRESS_EMPTY.
6012 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary
6013 *    data buffer which holds the compressed data to be written, and b_asize
6014 *    tells us how much data there is. b_compress is set to the appropriate
6015 *    compression algorithm. Once writing is done, invoke
6016 *    l2arc_release_cdata_buf on this l2hdr to free this temporary buffer.
6017 *
6018 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the
6019 * buffer was incompressible).
6020 */
6021static boolean_t
6022l2arc_compress_buf(arc_buf_hdr_t *hdr)
6023{
6024	void *cdata;
6025	size_t csize, len, rounded;
6026	ASSERT(HDR_HAS_L2HDR(hdr));
6027	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
6028
6029	ASSERT(HDR_HAS_L1HDR(hdr));
6030	ASSERT(HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF);
6031	ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
6032
6033	len = l2hdr->b_asize;
6034	cdata = zio_data_buf_alloc(len);
6035	ASSERT3P(cdata, !=, NULL);
6036	csize = zio_compress_data(ZIO_COMPRESS_LZ4, hdr->b_l1hdr.b_tmp_cdata,
6037	    cdata, l2hdr->b_asize);
6038
6039	if (csize == 0) {
6040		/* zero block, indicate that there's nothing to write */
6041		zio_data_buf_free(cdata, len);
6042		HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_EMPTY);
6043		l2hdr->b_asize = 0;
6044		hdr->b_l1hdr.b_tmp_cdata = NULL;
6045		ARCSTAT_BUMP(arcstat_l2_compress_zeros);
6046		return (B_TRUE);
6047	}
6048
6049	rounded = P2ROUNDUP(csize,
6050	    (size_t)1 << l2hdr->b_dev->l2ad_vdev->vdev_ashift);
6051	if (rounded < len) {
6052		/*
6053		 * Compression succeeded, we'll keep the cdata around for
6054		 * writing and release it afterwards.
6055		 */
6056		if (rounded > csize) {
6057			bzero((char *)cdata + csize, rounded - csize);
6058			csize = rounded;
6059		}
6060		HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_LZ4);
6061		l2hdr->b_asize = csize;
6062		hdr->b_l1hdr.b_tmp_cdata = cdata;
6063		ARCSTAT_BUMP(arcstat_l2_compress_successes);
6064		return (B_TRUE);
6065	} else {
6066		/*
6067		 * Compression failed, release the compressed buffer.
6068		 * l2hdr will be left unmodified.
6069		 */
6070		zio_data_buf_free(cdata, len);
6071		ARCSTAT_BUMP(arcstat_l2_compress_failures);
6072		return (B_FALSE);
6073	}
6074}
6075
6076/*
6077 * Decompresses a zio read back from an l2arc device. On success, the
6078 * underlying zio's io_data buffer is overwritten by the uncompressed
6079 * version. On decompression error (corrupt compressed stream), the
6080 * zio->io_error value is set to signal an I/O error.
6081 *
6082 * Please note that the compressed data stream is not checksummed, so
6083 * if the underlying device is experiencing data corruption, we may feed
6084 * corrupt data to the decompressor, so the decompressor needs to be
6085 * able to handle this situation (LZ4 does).
6086 */
6087static void
6088l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c)
6089{
6090	ASSERT(L2ARC_IS_VALID_COMPRESS(c));
6091
6092	if (zio->io_error != 0) {
6093		/*
6094		 * An io error has occured, just restore the original io
6095		 * size in preparation for a main pool read.
6096		 */
6097		zio->io_orig_size = zio->io_size = hdr->b_size;
6098		return;
6099	}
6100
6101	if (c == ZIO_COMPRESS_EMPTY) {
6102		/*
6103		 * An empty buffer results in a null zio, which means we
6104		 * need to fill its io_data after we're done restoring the
6105		 * buffer's contents.
6106		 */
6107		ASSERT(hdr->b_l1hdr.b_buf != NULL);
6108		bzero(hdr->b_l1hdr.b_buf->b_data, hdr->b_size);
6109		zio->io_data = zio->io_orig_data = hdr->b_l1hdr.b_buf->b_data;
6110	} else {
6111		ASSERT(zio->io_data != NULL);
6112		/*
6113		 * We copy the compressed data from the start of the arc buffer
6114		 * (the zio_read will have pulled in only what we need, the
6115		 * rest is garbage which we will overwrite at decompression)
6116		 * and then decompress back to the ARC data buffer. This way we
6117		 * can minimize copying by simply decompressing back over the
6118		 * original compressed data (rather than decompressing to an
6119		 * aux buffer and then copying back the uncompressed buffer,
6120		 * which is likely to be much larger).
6121		 */
6122		uint64_t csize;
6123		void *cdata;
6124
6125		csize = zio->io_size;
6126		cdata = zio_data_buf_alloc(csize);
6127		bcopy(zio->io_data, cdata, csize);
6128		if (zio_decompress_data(c, cdata, zio->io_data, csize,
6129		    hdr->b_size) != 0)
6130			zio->io_error = EIO;
6131		zio_data_buf_free(cdata, csize);
6132	}
6133
6134	/* Restore the expected uncompressed IO size. */
6135	zio->io_orig_size = zio->io_size = hdr->b_size;
6136}
6137
6138/*
6139 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure.
6140 * This buffer serves as a temporary holder of compressed data while
6141 * the buffer entry is being written to an l2arc device. Once that is
6142 * done, we can dispose of it.
6143 */
6144static void
6145l2arc_release_cdata_buf(arc_buf_hdr_t *hdr)
6146{
6147	ASSERT(HDR_HAS_L1HDR(hdr));
6148	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_EMPTY) {
6149		/*
6150		 * If the data was compressed, then we've allocated a
6151		 * temporary buffer for it, so now we need to release it.
6152		 */
6153		ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
6154		zio_data_buf_free(hdr->b_l1hdr.b_tmp_cdata,
6155		    hdr->b_size);
6156		hdr->b_l1hdr.b_tmp_cdata = NULL;
6157	} else {
6158		ASSERT(hdr->b_l1hdr.b_tmp_cdata == NULL);
6159	}
6160}
6161
6162/*
6163 * This thread feeds the L2ARC at regular intervals.  This is the beating
6164 * heart of the L2ARC.
6165 */
6166static void
6167l2arc_feed_thread(void *dummy __unused)
6168{
6169	callb_cpr_t cpr;
6170	l2arc_dev_t *dev;
6171	spa_t *spa;
6172	uint64_t size, wrote;
6173	clock_t begin, next = ddi_get_lbolt();
6174	boolean_t headroom_boost = B_FALSE;
6175
6176	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
6177
6178	mutex_enter(&l2arc_feed_thr_lock);
6179
6180	while (l2arc_thread_exit == 0) {
6181		CALLB_CPR_SAFE_BEGIN(&cpr);
6182		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
6183		    next - ddi_get_lbolt());
6184		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
6185		next = ddi_get_lbolt() + hz;
6186
6187		/*
6188		 * Quick check for L2ARC devices.
6189		 */
6190		mutex_enter(&l2arc_dev_mtx);
6191		if (l2arc_ndev == 0) {
6192			mutex_exit(&l2arc_dev_mtx);
6193			continue;
6194		}
6195		mutex_exit(&l2arc_dev_mtx);
6196		begin = ddi_get_lbolt();
6197
6198		/*
6199		 * This selects the next l2arc device to write to, and in
6200		 * doing so the next spa to feed from: dev->l2ad_spa.   This
6201		 * will return NULL if there are now no l2arc devices or if
6202		 * they are all faulted.
6203		 *
6204		 * If a device is returned, its spa's config lock is also
6205		 * held to prevent device removal.  l2arc_dev_get_next()
6206		 * will grab and release l2arc_dev_mtx.
6207		 */
6208		if ((dev = l2arc_dev_get_next()) == NULL)
6209			continue;
6210
6211		spa = dev->l2ad_spa;
6212		ASSERT(spa != NULL);
6213
6214		/*
6215		 * If the pool is read-only then force the feed thread to
6216		 * sleep a little longer.
6217		 */
6218		if (!spa_writeable(spa)) {
6219			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
6220			spa_config_exit(spa, SCL_L2ARC, dev);
6221			continue;
6222		}
6223
6224		/*
6225		 * Avoid contributing to memory pressure.
6226		 */
6227		if (arc_reclaim_needed()) {
6228			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
6229			spa_config_exit(spa, SCL_L2ARC, dev);
6230			continue;
6231		}
6232
6233		ARCSTAT_BUMP(arcstat_l2_feeds);
6234
6235		size = l2arc_write_size();
6236
6237		/*
6238		 * Evict L2ARC buffers that will be overwritten.
6239		 */
6240		l2arc_evict(dev, size, B_FALSE);
6241
6242		/*
6243		 * Write ARC buffers.
6244		 */
6245		wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost);
6246
6247		/*
6248		 * Calculate interval between writes.
6249		 */
6250		next = l2arc_write_interval(begin, size, wrote);
6251		spa_config_exit(spa, SCL_L2ARC, dev);
6252	}
6253
6254	l2arc_thread_exit = 0;
6255	cv_broadcast(&l2arc_feed_thr_cv);
6256	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
6257	thread_exit();
6258}
6259
6260boolean_t
6261l2arc_vdev_present(vdev_t *vd)
6262{
6263	l2arc_dev_t *dev;
6264
6265	mutex_enter(&l2arc_dev_mtx);
6266	for (dev = list_head(l2arc_dev_list); dev != NULL;
6267	    dev = list_next(l2arc_dev_list, dev)) {
6268		if (dev->l2ad_vdev == vd)
6269			break;
6270	}
6271	mutex_exit(&l2arc_dev_mtx);
6272
6273	return (dev != NULL);
6274}
6275
6276/*
6277 * Add a vdev for use by the L2ARC.  By this point the spa has already
6278 * validated the vdev and opened it.
6279 */
6280void
6281l2arc_add_vdev(spa_t *spa, vdev_t *vd)
6282{
6283	l2arc_dev_t *adddev;
6284
6285	ASSERT(!l2arc_vdev_present(vd));
6286
6287	vdev_ashift_optimize(vd);
6288
6289	/*
6290	 * Create a new l2arc device entry.
6291	 */
6292	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
6293	adddev->l2ad_spa = spa;
6294	adddev->l2ad_vdev = vd;
6295	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
6296	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
6297	adddev->l2ad_hand = adddev->l2ad_start;
6298	adddev->l2ad_first = B_TRUE;
6299	adddev->l2ad_writing = B_FALSE;
6300
6301	mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
6302	/*
6303	 * This is a list of all ARC buffers that are still valid on the
6304	 * device.
6305	 */
6306	list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
6307	    offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
6308
6309	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
6310	refcount_create(&adddev->l2ad_alloc);
6311
6312	/*
6313	 * Add device to global list
6314	 */
6315	mutex_enter(&l2arc_dev_mtx);
6316	list_insert_head(l2arc_dev_list, adddev);
6317	atomic_inc_64(&l2arc_ndev);
6318	mutex_exit(&l2arc_dev_mtx);
6319}
6320
6321/*
6322 * Remove a vdev from the L2ARC.
6323 */
6324void
6325l2arc_remove_vdev(vdev_t *vd)
6326{
6327	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
6328
6329	/*
6330	 * Find the device by vdev
6331	 */
6332	mutex_enter(&l2arc_dev_mtx);
6333	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
6334		nextdev = list_next(l2arc_dev_list, dev);
6335		if (vd == dev->l2ad_vdev) {
6336			remdev = dev;
6337			break;
6338		}
6339	}
6340	ASSERT(remdev != NULL);
6341
6342	/*
6343	 * Remove device from global list
6344	 */
6345	list_remove(l2arc_dev_list, remdev);
6346	l2arc_dev_last = NULL;		/* may have been invalidated */
6347	atomic_dec_64(&l2arc_ndev);
6348	mutex_exit(&l2arc_dev_mtx);
6349
6350	/*
6351	 * Clear all buflists and ARC references.  L2ARC device flush.
6352	 */
6353	l2arc_evict(remdev, 0, B_TRUE);
6354	list_destroy(&remdev->l2ad_buflist);
6355	mutex_destroy(&remdev->l2ad_mtx);
6356	refcount_destroy(&remdev->l2ad_alloc);
6357	kmem_free(remdev, sizeof (l2arc_dev_t));
6358}
6359
6360void
6361l2arc_init(void)
6362{
6363	l2arc_thread_exit = 0;
6364	l2arc_ndev = 0;
6365	l2arc_writes_sent = 0;
6366	l2arc_writes_done = 0;
6367
6368	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
6369	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
6370	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
6371	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
6372
6373	l2arc_dev_list = &L2ARC_dev_list;
6374	l2arc_free_on_write = &L2ARC_free_on_write;
6375	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
6376	    offsetof(l2arc_dev_t, l2ad_node));
6377	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
6378	    offsetof(l2arc_data_free_t, l2df_list_node));
6379}
6380
6381void
6382l2arc_fini(void)
6383{
6384	/*
6385	 * This is called from dmu_fini(), which is called from spa_fini();
6386	 * Because of this, we can assume that all l2arc devices have
6387	 * already been removed when the pools themselves were removed.
6388	 */
6389
6390	l2arc_do_free_on_write();
6391
6392	mutex_destroy(&l2arc_feed_thr_lock);
6393	cv_destroy(&l2arc_feed_thr_cv);
6394	mutex_destroy(&l2arc_dev_mtx);
6395	mutex_destroy(&l2arc_free_on_write_mtx);
6396
6397	list_destroy(l2arc_dev_list);
6398	list_destroy(l2arc_free_on_write);
6399}
6400
6401void
6402l2arc_start(void)
6403{
6404	if (!(spa_mode_global & FWRITE))
6405		return;
6406
6407	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
6408	    TS_RUN, minclsyspri);
6409}
6410
6411void
6412l2arc_stop(void)
6413{
6414	if (!(spa_mode_global & FWRITE))
6415		return;
6416
6417	mutex_enter(&l2arc_feed_thr_lock);
6418	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
6419	l2arc_thread_exit = 1;
6420	while (l2arc_thread_exit != 0)
6421		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
6422	mutex_exit(&l2arc_feed_thr_lock);
6423}
6424