arc.c revision 288550
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26 * Copyright 2014 Nexenta Systems, Inc.  All rights reserved.
27 */
28
29/*
30 * DVA-based Adjustable Replacement Cache
31 *
32 * While much of the theory of operation used here is
33 * based on the self-tuning, low overhead replacement cache
34 * presented by Megiddo and Modha at FAST 2003, there are some
35 * significant differences:
36 *
37 * 1. The Megiddo and Modha model assumes any page is evictable.
38 * Pages in its cache cannot be "locked" into memory.  This makes
39 * the eviction algorithm simple: evict the last page in the list.
40 * This also make the performance characteristics easy to reason
41 * about.  Our cache is not so simple.  At any given moment, some
42 * subset of the blocks in the cache are un-evictable because we
43 * have handed out a reference to them.  Blocks are only evictable
44 * when there are no external references active.  This makes
45 * eviction far more problematic:  we choose to evict the evictable
46 * blocks that are the "lowest" in the list.
47 *
48 * There are times when it is not possible to evict the requested
49 * space.  In these circumstances we are unable to adjust the cache
50 * size.  To prevent the cache growing unbounded at these times we
51 * implement a "cache throttle" that slows the flow of new data
52 * into the cache until we can make space available.
53 *
54 * 2. The Megiddo and Modha model assumes a fixed cache size.
55 * Pages are evicted when the cache is full and there is a cache
56 * miss.  Our model has a variable sized cache.  It grows with
57 * high use, but also tries to react to memory pressure from the
58 * operating system: decreasing its size when system memory is
59 * tight.
60 *
61 * 3. The Megiddo and Modha model assumes a fixed page size. All
62 * elements of the cache are therefore exactly the same size.  So
63 * when adjusting the cache size following a cache miss, its simply
64 * a matter of choosing a single page to evict.  In our model, we
65 * have variable sized cache blocks (rangeing from 512 bytes to
66 * 128K bytes).  We therefore choose a set of blocks to evict to make
67 * space for a cache miss that approximates as closely as possible
68 * the space used by the new block.
69 *
70 * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71 * by N. Megiddo & D. Modha, FAST 2003
72 */
73
74/*
75 * The locking model:
76 *
77 * A new reference to a cache buffer can be obtained in two
78 * ways: 1) via a hash table lookup using the DVA as a key,
79 * or 2) via one of the ARC lists.  The arc_read() interface
80 * uses method 1, while the internal arc algorithms for
81 * adjusting the cache use method 2.  We therefore provide two
82 * types of locks: 1) the hash table lock array, and 2) the
83 * arc list locks.
84 *
85 * Buffers do not have their own mutexs, rather they rely on the
86 * hash table mutexs for the bulk of their protection (i.e. most
87 * fields in the arc_buf_hdr_t are protected by these mutexs).
88 *
89 * buf_hash_find() returns the appropriate mutex (held) when it
90 * locates the requested buffer in the hash table.  It returns
91 * NULL for the mutex if the buffer was not in the table.
92 *
93 * buf_hash_remove() expects the appropriate hash mutex to be
94 * already held before it is invoked.
95 *
96 * Each arc state also has a mutex which is used to protect the
97 * buffer list associated with the state.  When attempting to
98 * obtain a hash table lock while holding an arc list lock you
99 * must use: mutex_tryenter() to avoid deadlock.  Also note that
100 * the active state mutex must be held before the ghost state mutex.
101 *
102 * Arc buffers may have an associated eviction callback function.
103 * This function will be invoked prior to removing the buffer (e.g.
104 * in arc_do_user_evicts()).  Note however that the data associated
105 * with the buffer may be evicted prior to the callback.  The callback
106 * must be made with *no locks held* (to prevent deadlock).  Additionally,
107 * the users of callbacks must ensure that their private data is
108 * protected from simultaneous callbacks from arc_clear_callback()
109 * and arc_do_user_evicts().
110 *
111 * Note that the majority of the performance stats are manipulated
112 * with atomic operations.
113 *
114 * The L2ARC uses the l2ad_mtx on each vdev for the following:
115 *
116 *	- L2ARC buflist creation
117 *	- L2ARC buflist eviction
118 *	- L2ARC write completion, which walks L2ARC buflists
119 *	- ARC header destruction, as it removes from L2ARC buflists
120 *	- ARC header release, as it removes from L2ARC buflists
121 */
122
123#include <sys/spa.h>
124#include <sys/zio.h>
125#include <sys/zio_compress.h>
126#include <sys/zfs_context.h>
127#include <sys/arc.h>
128#include <sys/refcount.h>
129#include <sys/vdev.h>
130#include <sys/vdev_impl.h>
131#include <sys/dsl_pool.h>
132#ifdef _KERNEL
133#include <sys/dnlc.h>
134#endif
135#include <sys/callb.h>
136#include <sys/kstat.h>
137#include <sys/trim_map.h>
138#include <zfs_fletcher.h>
139#include <sys/sdt.h>
140
141#include <vm/vm_pageout.h>
142#include <machine/vmparam.h>
143
144#ifdef illumos
145#ifndef _KERNEL
146/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
147boolean_t arc_watch = B_FALSE;
148int arc_procfd;
149#endif
150#endif /* illumos */
151
152static kmutex_t		arc_reclaim_thr_lock;
153static kcondvar_t	arc_reclaim_thr_cv;	/* used to signal reclaim thr */
154static uint8_t		arc_thread_exit;
155
156#define	ARC_REDUCE_DNLC_PERCENT	3
157uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
158
159typedef enum arc_reclaim_strategy {
160	ARC_RECLAIM_AGGR,		/* Aggressive reclaim strategy */
161	ARC_RECLAIM_CONS		/* Conservative reclaim strategy */
162} arc_reclaim_strategy_t;
163
164/*
165 * The number of iterations through arc_evict_*() before we
166 * drop & reacquire the lock.
167 */
168int arc_evict_iterations = 100;
169
170/* number of seconds before growing cache again */
171static int		arc_grow_retry = 60;
172
173/* shift of arc_c for calculating both min and max arc_p */
174static int		arc_p_min_shift = 4;
175
176/* log2(fraction of arc to reclaim) */
177static int		arc_shrink_shift = 5;
178
179/*
180 * minimum lifespan of a prefetch block in clock ticks
181 * (initialized in arc_init())
182 */
183static int		arc_min_prefetch_lifespan;
184
185/*
186 * If this percent of memory is free, don't throttle.
187 */
188int arc_lotsfree_percent = 10;
189
190static int arc_dead;
191extern int zfs_prefetch_disable;
192
193/*
194 * The arc has filled available memory and has now warmed up.
195 */
196static boolean_t arc_warm;
197
198uint64_t zfs_arc_max;
199uint64_t zfs_arc_min;
200uint64_t zfs_arc_meta_limit = 0;
201uint64_t zfs_arc_meta_min = 0;
202int zfs_arc_grow_retry = 0;
203int zfs_arc_shrink_shift = 0;
204int zfs_arc_p_min_shift = 0;
205int zfs_disable_dup_eviction = 0;
206uint64_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
207u_int zfs_arc_free_target = 0;
208
209static int sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS);
210static int sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS);
211
212#ifdef _KERNEL
213static void
214arc_free_target_init(void *unused __unused)
215{
216
217	zfs_arc_free_target = vm_pageout_wakeup_thresh;
218}
219SYSINIT(arc_free_target_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_ANY,
220    arc_free_target_init, NULL);
221
222TUNABLE_QUAD("vfs.zfs.arc_max", &zfs_arc_max);
223TUNABLE_QUAD("vfs.zfs.arc_min", &zfs_arc_min);
224TUNABLE_QUAD("vfs.zfs.arc_meta_limit", &zfs_arc_meta_limit);
225TUNABLE_QUAD("vfs.zfs.arc_meta_min", &zfs_arc_meta_min);
226TUNABLE_QUAD("vfs.zfs.arc_average_blocksize", &zfs_arc_average_blocksize);
227TUNABLE_INT("vfs.zfs.arc_shrink_shift", &zfs_arc_shrink_shift);
228SYSCTL_DECL(_vfs_zfs);
229SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_max, CTLFLAG_RDTUN, &zfs_arc_max, 0,
230    "Maximum ARC size");
231SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_min, CTLFLAG_RDTUN, &zfs_arc_min, 0,
232    "Minimum ARC size");
233SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_average_blocksize, CTLFLAG_RDTUN,
234    &zfs_arc_average_blocksize, 0,
235    "ARC average blocksize");
236SYSCTL_INT(_vfs_zfs, OID_AUTO, arc_shrink_shift, CTLFLAG_RW,
237    &arc_shrink_shift, 0,
238    "log2(fraction of arc to reclaim)");
239
240/*
241 * We don't have a tunable for arc_free_target due to the dependency on
242 * pagedaemon initialisation.
243 */
244SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_free_target,
245    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(u_int),
246    sysctl_vfs_zfs_arc_free_target, "IU",
247    "Desired number of free pages below which ARC triggers reclaim");
248
249static int
250sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS)
251{
252	u_int val;
253	int err;
254
255	val = zfs_arc_free_target;
256	err = sysctl_handle_int(oidp, &val, 0, req);
257	if (err != 0 || req->newptr == NULL)
258		return (err);
259
260	if (val < minfree)
261		return (EINVAL);
262	if (val > cnt.v_page_count)
263		return (EINVAL);
264
265	zfs_arc_free_target = val;
266
267	return (0);
268}
269
270/*
271 * Must be declared here, before the definition of corresponding kstat
272 * macro which uses the same names will confuse the compiler.
273 */
274SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_meta_limit,
275    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
276    sysctl_vfs_zfs_arc_meta_limit, "QU",
277    "ARC metadata limit");
278#endif
279
280/*
281 * Note that buffers can be in one of 6 states:
282 *	ARC_anon	- anonymous (discussed below)
283 *	ARC_mru		- recently used, currently cached
284 *	ARC_mru_ghost	- recentely used, no longer in cache
285 *	ARC_mfu		- frequently used, currently cached
286 *	ARC_mfu_ghost	- frequently used, no longer in cache
287 *	ARC_l2c_only	- exists in L2ARC but not other states
288 * When there are no active references to the buffer, they are
289 * are linked onto a list in one of these arc states.  These are
290 * the only buffers that can be evicted or deleted.  Within each
291 * state there are multiple lists, one for meta-data and one for
292 * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
293 * etc.) is tracked separately so that it can be managed more
294 * explicitly: favored over data, limited explicitly.
295 *
296 * Anonymous buffers are buffers that are not associated with
297 * a DVA.  These are buffers that hold dirty block copies
298 * before they are written to stable storage.  By definition,
299 * they are "ref'd" and are considered part of arc_mru
300 * that cannot be freed.  Generally, they will aquire a DVA
301 * as they are written and migrate onto the arc_mru list.
302 *
303 * The ARC_l2c_only state is for buffers that are in the second
304 * level ARC but no longer in any of the ARC_m* lists.  The second
305 * level ARC itself may also contain buffers that are in any of
306 * the ARC_m* states - meaning that a buffer can exist in two
307 * places.  The reason for the ARC_l2c_only state is to keep the
308 * buffer header in the hash table, so that reads that hit the
309 * second level ARC benefit from these fast lookups.
310 */
311
312#define	ARCS_LOCK_PAD		CACHE_LINE_SIZE
313struct arcs_lock {
314	kmutex_t	arcs_lock;
315#ifdef _KERNEL
316	unsigned char	pad[(ARCS_LOCK_PAD - sizeof (kmutex_t))];
317#endif
318};
319
320/*
321 * must be power of two for mask use to work
322 *
323 */
324#define ARC_BUFC_NUMDATALISTS		16
325#define ARC_BUFC_NUMMETADATALISTS	16
326#define ARC_BUFC_NUMLISTS	(ARC_BUFC_NUMMETADATALISTS + ARC_BUFC_NUMDATALISTS)
327
328typedef struct arc_state {
329	uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];	/* amount of evictable data */
330	uint64_t arcs_size;	/* total amount of data in this state */
331	list_t	arcs_lists[ARC_BUFC_NUMLISTS]; /* list of evictable buffers */
332	struct arcs_lock arcs_locks[ARC_BUFC_NUMLISTS] __aligned(CACHE_LINE_SIZE);
333} arc_state_t;
334
335#define ARCS_LOCK(s, i)	(&((s)->arcs_locks[(i)].arcs_lock))
336
337/* The 6 states: */
338static arc_state_t ARC_anon;
339static arc_state_t ARC_mru;
340static arc_state_t ARC_mru_ghost;
341static arc_state_t ARC_mfu;
342static arc_state_t ARC_mfu_ghost;
343static arc_state_t ARC_l2c_only;
344
345typedef struct arc_stats {
346	kstat_named_t arcstat_hits;
347	kstat_named_t arcstat_misses;
348	kstat_named_t arcstat_demand_data_hits;
349	kstat_named_t arcstat_demand_data_misses;
350	kstat_named_t arcstat_demand_metadata_hits;
351	kstat_named_t arcstat_demand_metadata_misses;
352	kstat_named_t arcstat_prefetch_data_hits;
353	kstat_named_t arcstat_prefetch_data_misses;
354	kstat_named_t arcstat_prefetch_metadata_hits;
355	kstat_named_t arcstat_prefetch_metadata_misses;
356	kstat_named_t arcstat_mru_hits;
357	kstat_named_t arcstat_mru_ghost_hits;
358	kstat_named_t arcstat_mfu_hits;
359	kstat_named_t arcstat_mfu_ghost_hits;
360	kstat_named_t arcstat_allocated;
361	kstat_named_t arcstat_deleted;
362	kstat_named_t arcstat_stolen;
363	kstat_named_t arcstat_recycle_miss;
364	/*
365	 * Number of buffers that could not be evicted because the hash lock
366	 * was held by another thread.  The lock may not necessarily be held
367	 * by something using the same buffer, since hash locks are shared
368	 * by multiple buffers.
369	 */
370	kstat_named_t arcstat_mutex_miss;
371	/*
372	 * Number of buffers skipped because they have I/O in progress, are
373	 * indrect prefetch buffers that have not lived long enough, or are
374	 * not from the spa we're trying to evict from.
375	 */
376	kstat_named_t arcstat_evict_skip;
377	kstat_named_t arcstat_evict_l2_cached;
378	kstat_named_t arcstat_evict_l2_eligible;
379	kstat_named_t arcstat_evict_l2_ineligible;
380	kstat_named_t arcstat_hash_elements;
381	kstat_named_t arcstat_hash_elements_max;
382	kstat_named_t arcstat_hash_collisions;
383	kstat_named_t arcstat_hash_chains;
384	kstat_named_t arcstat_hash_chain_max;
385	kstat_named_t arcstat_p;
386	kstat_named_t arcstat_c;
387	kstat_named_t arcstat_c_min;
388	kstat_named_t arcstat_c_max;
389	kstat_named_t arcstat_size;
390	/*
391	 * Number of bytes consumed by internal ARC structures necessary
392	 * for tracking purposes; these structures are not actually
393	 * backed by ARC buffers. This includes arc_buf_hdr_t structures
394	 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
395	 * caches), and arc_buf_t structures (allocated via arc_buf_t
396	 * cache).
397	 */
398	kstat_named_t arcstat_hdr_size;
399	/*
400	 * Number of bytes consumed by ARC buffers of type equal to
401	 * ARC_BUFC_DATA. This is generally consumed by buffers backing
402	 * on disk user data (e.g. plain file contents).
403	 */
404	kstat_named_t arcstat_data_size;
405	/*
406	 * Number of bytes consumed by ARC buffers of type equal to
407	 * ARC_BUFC_METADATA. This is generally consumed by buffers
408	 * backing on disk data that is used for internal ZFS
409	 * structures (e.g. ZAP, dnode, indirect blocks, etc).
410	 */
411	kstat_named_t arcstat_metadata_size;
412	/*
413	 * Number of bytes consumed by various buffers and structures
414	 * not actually backed with ARC buffers. This includes bonus
415	 * buffers (allocated directly via zio_buf_* functions),
416	 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t
417	 * cache), and dnode_t structures (allocated via dnode_t cache).
418	 */
419	kstat_named_t arcstat_other_size;
420	/*
421	 * Total number of bytes consumed by ARC buffers residing in the
422	 * arc_anon state. This includes *all* buffers in the arc_anon
423	 * state; e.g. data, metadata, evictable, and unevictable buffers
424	 * are all included in this value.
425	 */
426	kstat_named_t arcstat_anon_size;
427	/*
428	 * Number of bytes consumed by ARC buffers that meet the
429	 * following criteria: backing buffers of type ARC_BUFC_DATA,
430	 * residing in the arc_anon state, and are eligible for eviction
431	 * (e.g. have no outstanding holds on the buffer).
432	 */
433	kstat_named_t arcstat_anon_evictable_data;
434	/*
435	 * Number of bytes consumed by ARC buffers that meet the
436	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
437	 * residing in the arc_anon state, and are eligible for eviction
438	 * (e.g. have no outstanding holds on the buffer).
439	 */
440	kstat_named_t arcstat_anon_evictable_metadata;
441	/*
442	 * Total number of bytes consumed by ARC buffers residing in the
443	 * arc_mru state. This includes *all* buffers in the arc_mru
444	 * state; e.g. data, metadata, evictable, and unevictable buffers
445	 * are all included in this value.
446	 */
447	kstat_named_t arcstat_mru_size;
448	/*
449	 * Number of bytes consumed by ARC buffers that meet the
450	 * following criteria: backing buffers of type ARC_BUFC_DATA,
451	 * residing in the arc_mru state, and are eligible for eviction
452	 * (e.g. have no outstanding holds on the buffer).
453	 */
454	kstat_named_t arcstat_mru_evictable_data;
455	/*
456	 * Number of bytes consumed by ARC buffers that meet the
457	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
458	 * residing in the arc_mru state, and are eligible for eviction
459	 * (e.g. have no outstanding holds on the buffer).
460	 */
461	kstat_named_t arcstat_mru_evictable_metadata;
462	/*
463	 * Total number of bytes that *would have been* consumed by ARC
464	 * buffers in the arc_mru_ghost state. The key thing to note
465	 * here, is the fact that this size doesn't actually indicate
466	 * RAM consumption. The ghost lists only consist of headers and
467	 * don't actually have ARC buffers linked off of these headers.
468	 * Thus, *if* the headers had associated ARC buffers, these
469	 * buffers *would have* consumed this number of bytes.
470	 */
471	kstat_named_t arcstat_mru_ghost_size;
472	/*
473	 * Number of bytes that *would have been* consumed by ARC
474	 * buffers that are eligible for eviction, of type
475	 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
476	 */
477	kstat_named_t arcstat_mru_ghost_evictable_data;
478	/*
479	 * Number of bytes that *would have been* consumed by ARC
480	 * buffers that are eligible for eviction, of type
481	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
482	 */
483	kstat_named_t arcstat_mru_ghost_evictable_metadata;
484	/*
485	 * Total number of bytes consumed by ARC buffers residing in the
486	 * arc_mfu state. This includes *all* buffers in the arc_mfu
487	 * state; e.g. data, metadata, evictable, and unevictable buffers
488	 * are all included in this value.
489	 */
490	kstat_named_t arcstat_mfu_size;
491	/*
492	 * Number of bytes consumed by ARC buffers that are eligible for
493	 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
494	 * state.
495	 */
496	kstat_named_t arcstat_mfu_evictable_data;
497	/*
498	 * Number of bytes consumed by ARC buffers that are eligible for
499	 * eviction, of type ARC_BUFC_METADATA, and reside in the
500	 * arc_mfu state.
501	 */
502	kstat_named_t arcstat_mfu_evictable_metadata;
503	/*
504	 * Total number of bytes that *would have been* consumed by ARC
505	 * buffers in the arc_mfu_ghost state. See the comment above
506	 * arcstat_mru_ghost_size for more details.
507	 */
508	kstat_named_t arcstat_mfu_ghost_size;
509	/*
510	 * Number of bytes that *would have been* consumed by ARC
511	 * buffers that are eligible for eviction, of type
512	 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
513	 */
514	kstat_named_t arcstat_mfu_ghost_evictable_data;
515	/*
516	 * Number of bytes that *would have been* consumed by ARC
517	 * buffers that are eligible for eviction, of type
518	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
519	 */
520	kstat_named_t arcstat_mfu_ghost_evictable_metadata;
521	kstat_named_t arcstat_l2_hits;
522	kstat_named_t arcstat_l2_misses;
523	kstat_named_t arcstat_l2_feeds;
524	kstat_named_t arcstat_l2_rw_clash;
525	kstat_named_t arcstat_l2_read_bytes;
526	kstat_named_t arcstat_l2_write_bytes;
527	kstat_named_t arcstat_l2_writes_sent;
528	kstat_named_t arcstat_l2_writes_done;
529	kstat_named_t arcstat_l2_writes_error;
530	kstat_named_t arcstat_l2_writes_hdr_miss;
531	kstat_named_t arcstat_l2_evict_lock_retry;
532	kstat_named_t arcstat_l2_evict_reading;
533	kstat_named_t arcstat_l2_evict_l1cached;
534	kstat_named_t arcstat_l2_free_on_write;
535	kstat_named_t arcstat_l2_cdata_free_on_write;
536	kstat_named_t arcstat_l2_abort_lowmem;
537	kstat_named_t arcstat_l2_cksum_bad;
538	kstat_named_t arcstat_l2_io_error;
539	kstat_named_t arcstat_l2_size;
540	kstat_named_t arcstat_l2_asize;
541	kstat_named_t arcstat_l2_hdr_size;
542	kstat_named_t arcstat_l2_compress_successes;
543	kstat_named_t arcstat_l2_compress_zeros;
544	kstat_named_t arcstat_l2_compress_failures;
545	kstat_named_t arcstat_l2_write_trylock_fail;
546	kstat_named_t arcstat_l2_write_passed_headroom;
547	kstat_named_t arcstat_l2_write_spa_mismatch;
548	kstat_named_t arcstat_l2_write_in_l2;
549	kstat_named_t arcstat_l2_write_hdr_io_in_progress;
550	kstat_named_t arcstat_l2_write_not_cacheable;
551	kstat_named_t arcstat_l2_write_full;
552	kstat_named_t arcstat_l2_write_buffer_iter;
553	kstat_named_t arcstat_l2_write_pios;
554	kstat_named_t arcstat_l2_write_buffer_bytes_scanned;
555	kstat_named_t arcstat_l2_write_buffer_list_iter;
556	kstat_named_t arcstat_l2_write_buffer_list_null_iter;
557	kstat_named_t arcstat_memory_throttle_count;
558	kstat_named_t arcstat_duplicate_buffers;
559	kstat_named_t arcstat_duplicate_buffers_size;
560	kstat_named_t arcstat_duplicate_reads;
561	kstat_named_t arcstat_meta_used;
562	kstat_named_t arcstat_meta_limit;
563	kstat_named_t arcstat_meta_max;
564	kstat_named_t arcstat_meta_min;
565} arc_stats_t;
566
567static arc_stats_t arc_stats = {
568	{ "hits",			KSTAT_DATA_UINT64 },
569	{ "misses",			KSTAT_DATA_UINT64 },
570	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
571	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
572	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
573	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
574	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
575	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
576	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
577	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
578	{ "mru_hits",			KSTAT_DATA_UINT64 },
579	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
580	{ "mfu_hits",			KSTAT_DATA_UINT64 },
581	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
582	{ "allocated",			KSTAT_DATA_UINT64 },
583	{ "deleted",			KSTAT_DATA_UINT64 },
584	{ "stolen",			KSTAT_DATA_UINT64 },
585	{ "recycle_miss",		KSTAT_DATA_UINT64 },
586	{ "mutex_miss",			KSTAT_DATA_UINT64 },
587	{ "evict_skip",			KSTAT_DATA_UINT64 },
588	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
589	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
590	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
591	{ "hash_elements",		KSTAT_DATA_UINT64 },
592	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
593	{ "hash_collisions",		KSTAT_DATA_UINT64 },
594	{ "hash_chains",		KSTAT_DATA_UINT64 },
595	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
596	{ "p",				KSTAT_DATA_UINT64 },
597	{ "c",				KSTAT_DATA_UINT64 },
598	{ "c_min",			KSTAT_DATA_UINT64 },
599	{ "c_max",			KSTAT_DATA_UINT64 },
600	{ "size",			KSTAT_DATA_UINT64 },
601	{ "hdr_size",			KSTAT_DATA_UINT64 },
602	{ "data_size",			KSTAT_DATA_UINT64 },
603	{ "metadata_size",		KSTAT_DATA_UINT64 },
604	{ "other_size",			KSTAT_DATA_UINT64 },
605	{ "anon_size",			KSTAT_DATA_UINT64 },
606	{ "anon_evictable_data",	KSTAT_DATA_UINT64 },
607	{ "anon_evictable_metadata",	KSTAT_DATA_UINT64 },
608	{ "mru_size",			KSTAT_DATA_UINT64 },
609	{ "mru_evictable_data",		KSTAT_DATA_UINT64 },
610	{ "mru_evictable_metadata",	KSTAT_DATA_UINT64 },
611	{ "mru_ghost_size",		KSTAT_DATA_UINT64 },
612	{ "mru_ghost_evictable_data",	KSTAT_DATA_UINT64 },
613	{ "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
614	{ "mfu_size",			KSTAT_DATA_UINT64 },
615	{ "mfu_evictable_data",		KSTAT_DATA_UINT64 },
616	{ "mfu_evictable_metadata",	KSTAT_DATA_UINT64 },
617	{ "mfu_ghost_size",		KSTAT_DATA_UINT64 },
618	{ "mfu_ghost_evictable_data",	KSTAT_DATA_UINT64 },
619	{ "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
620	{ "l2_hits",			KSTAT_DATA_UINT64 },
621	{ "l2_misses",			KSTAT_DATA_UINT64 },
622	{ "l2_feeds",			KSTAT_DATA_UINT64 },
623	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
624	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
625	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
626	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
627	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
628	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
629	{ "l2_writes_hdr_miss",		KSTAT_DATA_UINT64 },
630	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
631	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
632	{ "l2_evict_l1cached",		KSTAT_DATA_UINT64 },
633	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
634	{ "l2_cdata_free_on_write",	KSTAT_DATA_UINT64 },
635	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
636	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
637	{ "l2_io_error",		KSTAT_DATA_UINT64 },
638	{ "l2_size",			KSTAT_DATA_UINT64 },
639	{ "l2_asize",			KSTAT_DATA_UINT64 },
640	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
641	{ "l2_compress_successes",	KSTAT_DATA_UINT64 },
642	{ "l2_compress_zeros",		KSTAT_DATA_UINT64 },
643	{ "l2_compress_failures",	KSTAT_DATA_UINT64 },
644	{ "l2_write_trylock_fail",	KSTAT_DATA_UINT64 },
645	{ "l2_write_passed_headroom",	KSTAT_DATA_UINT64 },
646	{ "l2_write_spa_mismatch",	KSTAT_DATA_UINT64 },
647	{ "l2_write_in_l2",		KSTAT_DATA_UINT64 },
648	{ "l2_write_io_in_progress",	KSTAT_DATA_UINT64 },
649	{ "l2_write_not_cacheable",	KSTAT_DATA_UINT64 },
650	{ "l2_write_full",		KSTAT_DATA_UINT64 },
651	{ "l2_write_buffer_iter",	KSTAT_DATA_UINT64 },
652	{ "l2_write_pios",		KSTAT_DATA_UINT64 },
653	{ "l2_write_buffer_bytes_scanned", KSTAT_DATA_UINT64 },
654	{ "l2_write_buffer_list_iter",	KSTAT_DATA_UINT64 },
655	{ "l2_write_buffer_list_null_iter", KSTAT_DATA_UINT64 },
656	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
657	{ "duplicate_buffers",		KSTAT_DATA_UINT64 },
658	{ "duplicate_buffers_size",	KSTAT_DATA_UINT64 },
659	{ "duplicate_reads",		KSTAT_DATA_UINT64 },
660	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
661	{ "arc_meta_limit",		KSTAT_DATA_UINT64 },
662	{ "arc_meta_max",		KSTAT_DATA_UINT64 },
663	{ "arc_meta_min",		KSTAT_DATA_UINT64 }
664};
665
666#define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
667
668#define	ARCSTAT_INCR(stat, val) \
669	atomic_add_64(&arc_stats.stat.value.ui64, (val))
670
671#define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
672#define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
673
674#define	ARCSTAT_MAX(stat, val) {					\
675	uint64_t m;							\
676	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
677	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
678		continue;						\
679}
680
681#define	ARCSTAT_MAXSTAT(stat) \
682	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
683
684/*
685 * We define a macro to allow ARC hits/misses to be easily broken down by
686 * two separate conditions, giving a total of four different subtypes for
687 * each of hits and misses (so eight statistics total).
688 */
689#define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
690	if (cond1) {							\
691		if (cond2) {						\
692			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
693		} else {						\
694			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
695		}							\
696	} else {							\
697		if (cond2) {						\
698			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
699		} else {						\
700			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
701		}							\
702	}
703
704kstat_t			*arc_ksp;
705static arc_state_t	*arc_anon;
706static arc_state_t	*arc_mru;
707static arc_state_t	*arc_mru_ghost;
708static arc_state_t	*arc_mfu;
709static arc_state_t	*arc_mfu_ghost;
710static arc_state_t	*arc_l2c_only;
711
712/*
713 * There are several ARC variables that are critical to export as kstats --
714 * but we don't want to have to grovel around in the kstat whenever we wish to
715 * manipulate them.  For these variables, we therefore define them to be in
716 * terms of the statistic variable.  This assures that we are not introducing
717 * the possibility of inconsistency by having shadow copies of the variables,
718 * while still allowing the code to be readable.
719 */
720#define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
721#define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
722#define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
723#define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
724#define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
725#define	arc_meta_limit	ARCSTAT(arcstat_meta_limit) /* max size for metadata */
726#define	arc_meta_min	ARCSTAT(arcstat_meta_min) /* min size for metadata */
727#define	arc_meta_used	ARCSTAT(arcstat_meta_used) /* size of metadata */
728#define	arc_meta_max	ARCSTAT(arcstat_meta_max) /* max size of metadata */
729
730#define	L2ARC_IS_VALID_COMPRESS(_c_) \
731	((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY)
732
733static int		arc_no_grow;	/* Don't try to grow cache size */
734static uint64_t		arc_tempreserve;
735static uint64_t		arc_loaned_bytes;
736
737typedef struct arc_callback arc_callback_t;
738
739struct arc_callback {
740	void			*acb_private;
741	arc_done_func_t		*acb_done;
742	arc_buf_t		*acb_buf;
743	zio_t			*acb_zio_dummy;
744	arc_callback_t		*acb_next;
745};
746
747typedef struct arc_write_callback arc_write_callback_t;
748
749struct arc_write_callback {
750	void		*awcb_private;
751	arc_done_func_t	*awcb_ready;
752	arc_done_func_t	*awcb_physdone;
753	arc_done_func_t	*awcb_done;
754	arc_buf_t	*awcb_buf;
755};
756
757/*
758 * ARC buffers are separated into multiple structs as a memory saving measure:
759 *   - Common fields struct, always defined, and embedded within it:
760 *       - L2-only fields, always allocated but undefined when not in L2ARC
761 *       - L1-only fields, only allocated when in L1ARC
762 *
763 *           Buffer in L1                     Buffer only in L2
764 *    +------------------------+          +------------------------+
765 *    | arc_buf_hdr_t          |          | arc_buf_hdr_t          |
766 *    |                        |          |                        |
767 *    |                        |          |                        |
768 *    |                        |          |                        |
769 *    +------------------------+          +------------------------+
770 *    | l2arc_buf_hdr_t        |          | l2arc_buf_hdr_t        |
771 *    | (undefined if L1-only) |          |                        |
772 *    +------------------------+          +------------------------+
773 *    | l1arc_buf_hdr_t        |
774 *    |                        |
775 *    |                        |
776 *    |                        |
777 *    |                        |
778 *    +------------------------+
779 *
780 * Because it's possible for the L2ARC to become extremely large, we can wind
781 * up eating a lot of memory in L2ARC buffer headers, so the size of a header
782 * is minimized by only allocating the fields necessary for an L1-cached buffer
783 * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and
784 * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple
785 * words in pointers. arc_hdr_realloc() is used to switch a header between
786 * these two allocation states.
787 */
788typedef struct l1arc_buf_hdr {
789	kmutex_t		b_freeze_lock;
790#ifdef ZFS_DEBUG
791	/*
792	 * used for debugging wtih kmem_flags - by allocating and freeing
793	 * b_thawed when the buffer is thawed, we get a record of the stack
794	 * trace that thawed it.
795	 */
796	void			*b_thawed;
797#endif
798
799	arc_buf_t		*b_buf;
800	uint32_t		b_datacnt;
801	/* for waiting on writes to complete */
802	kcondvar_t		b_cv;
803
804	/* protected by arc state mutex */
805	arc_state_t		*b_state;
806	list_node_t		b_arc_node;
807
808	/* updated atomically */
809	clock_t			b_arc_access;
810
811	/* self protecting */
812	refcount_t		b_refcnt;
813
814	arc_callback_t		*b_acb;
815	/* temporary buffer holder for in-flight compressed data */
816	void			*b_tmp_cdata;
817} l1arc_buf_hdr_t;
818
819typedef struct l2arc_dev l2arc_dev_t;
820
821typedef struct l2arc_buf_hdr {
822	/* protected by arc_buf_hdr mutex */
823	l2arc_dev_t		*b_dev;		/* L2ARC device */
824	uint64_t		b_daddr;	/* disk address, offset byte */
825	/* real alloc'd buffer size depending on b_compress applied */
826	int32_t			b_asize;
827
828	list_node_t		b_l2node;
829} l2arc_buf_hdr_t;
830
831struct arc_buf_hdr {
832	/* protected by hash lock */
833	dva_t			b_dva;
834	uint64_t		b_birth;
835	/*
836	 * Even though this checksum is only set/verified when a buffer is in
837	 * the L1 cache, it needs to be in the set of common fields because it
838	 * must be preserved from the time before a buffer is written out to
839	 * L2ARC until after it is read back in.
840	 */
841	zio_cksum_t		*b_freeze_cksum;
842
843	arc_buf_hdr_t		*b_hash_next;
844	arc_flags_t		b_flags;
845
846	/* immutable */
847	int32_t			b_size;
848	uint64_t		b_spa;
849
850	/* L2ARC fields. Undefined when not in L2ARC. */
851	l2arc_buf_hdr_t		b_l2hdr;
852	/* L1ARC fields. Undefined when in l2arc_only state */
853	l1arc_buf_hdr_t		b_l1hdr;
854};
855
856#ifdef _KERNEL
857static int
858sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS)
859{
860	uint64_t val;
861	int err;
862
863	val = arc_meta_limit;
864	err = sysctl_handle_64(oidp, &val, 0, req);
865	if (err != 0 || req->newptr == NULL)
866		return (err);
867
868        if (val <= 0 || val > arc_c_max)
869		return (EINVAL);
870
871	arc_meta_limit = val;
872	return (0);
873}
874#endif
875
876static arc_buf_t *arc_eviction_list;
877static kmutex_t arc_eviction_mtx;
878static arc_buf_hdr_t arc_eviction_hdr;
879
880#define	GHOST_STATE(state)	\
881	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
882	(state) == arc_l2c_only)
883
884#define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
885#define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
886#define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_FLAG_IO_ERROR)
887#define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_FLAG_PREFETCH)
888#define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FLAG_FREED_IN_READ)
889#define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_FLAG_BUF_AVAILABLE)
890
891#define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_FLAG_L2CACHE)
892#define	HDR_L2COMPRESS(hdr)	((hdr)->b_flags & ARC_FLAG_L2COMPRESS)
893#define	HDR_L2_READING(hdr)	\
894	    (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&	\
895	    ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
896#define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITING)
897#define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
898#define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
899
900#define	HDR_ISTYPE_METADATA(hdr)	\
901	    ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
902#define	HDR_ISTYPE_DATA(hdr)	(!HDR_ISTYPE_METADATA(hdr))
903
904#define	HDR_HAS_L1HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
905#define	HDR_HAS_L2HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
906
907/* For storing compression mode in b_flags */
908#define	HDR_COMPRESS_OFFSET	24
909#define	HDR_COMPRESS_NBITS	7
910
911#define	HDR_GET_COMPRESS(hdr)	((enum zio_compress)BF32_GET(hdr->b_flags, \
912	    HDR_COMPRESS_OFFSET, HDR_COMPRESS_NBITS))
913#define	HDR_SET_COMPRESS(hdr, cmp) BF32_SET(hdr->b_flags, \
914	    HDR_COMPRESS_OFFSET, HDR_COMPRESS_NBITS, (cmp))
915
916/*
917 * Other sizes
918 */
919
920#define	HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
921#define	HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
922
923/*
924 * Hash table routines
925 */
926
927#define	HT_LOCK_PAD	CACHE_LINE_SIZE
928
929struct ht_lock {
930	kmutex_t	ht_lock;
931#ifdef _KERNEL
932	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
933#endif
934};
935
936#define	BUF_LOCKS 256
937typedef struct buf_hash_table {
938	uint64_t ht_mask;
939	arc_buf_hdr_t **ht_table;
940	struct ht_lock ht_locks[BUF_LOCKS] __aligned(CACHE_LINE_SIZE);
941} buf_hash_table_t;
942
943static buf_hash_table_t buf_hash_table;
944
945#define	BUF_HASH_INDEX(spa, dva, birth) \
946	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
947#define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
948#define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
949#define	HDR_LOCK(hdr) \
950	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
951
952uint64_t zfs_crc64_table[256];
953
954/*
955 * Level 2 ARC
956 */
957
958#define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
959#define	L2ARC_HEADROOM		2			/* num of writes */
960/*
961 * If we discover during ARC scan any buffers to be compressed, we boost
962 * our headroom for the next scanning cycle by this percentage multiple.
963 */
964#define	L2ARC_HEADROOM_BOOST	200
965#define	L2ARC_FEED_SECS		1		/* caching interval secs */
966#define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
967
968#define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
969#define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
970
971/* L2ARC Performance Tunables */
972uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
973uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
974uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
975uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
976uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
977uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
978boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
979boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
980boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
981
982SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_max, CTLFLAG_RW,
983    &l2arc_write_max, 0, "max write size");
984SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_boost, CTLFLAG_RW,
985    &l2arc_write_boost, 0, "extra write during warmup");
986SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_headroom, CTLFLAG_RW,
987    &l2arc_headroom, 0, "number of dev writes");
988SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_secs, CTLFLAG_RW,
989    &l2arc_feed_secs, 0, "interval seconds");
990SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_min_ms, CTLFLAG_RW,
991    &l2arc_feed_min_ms, 0, "min interval milliseconds");
992
993SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_noprefetch, CTLFLAG_RW,
994    &l2arc_noprefetch, 0, "don't cache prefetch bufs");
995SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_feed_again, CTLFLAG_RW,
996    &l2arc_feed_again, 0, "turbo warmup");
997SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_norw, CTLFLAG_RW,
998    &l2arc_norw, 0, "no reads during writes");
999
1000SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_size, CTLFLAG_RD,
1001    &ARC_anon.arcs_size, 0, "size of anonymous state");
1002SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_metadata_lsize, CTLFLAG_RD,
1003    &ARC_anon.arcs_lsize[ARC_BUFC_METADATA], 0, "size of anonymous state");
1004SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_data_lsize, CTLFLAG_RD,
1005    &ARC_anon.arcs_lsize[ARC_BUFC_DATA], 0, "size of anonymous state");
1006
1007SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_size, CTLFLAG_RD,
1008    &ARC_mru.arcs_size, 0, "size of mru state");
1009SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_metadata_lsize, CTLFLAG_RD,
1010    &ARC_mru.arcs_lsize[ARC_BUFC_METADATA], 0, "size of metadata in mru state");
1011SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_data_lsize, CTLFLAG_RD,
1012    &ARC_mru.arcs_lsize[ARC_BUFC_DATA], 0, "size of data in mru state");
1013
1014SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_size, CTLFLAG_RD,
1015    &ARC_mru_ghost.arcs_size, 0, "size of mru ghost state");
1016SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_metadata_lsize, CTLFLAG_RD,
1017    &ARC_mru_ghost.arcs_lsize[ARC_BUFC_METADATA], 0,
1018    "size of metadata in mru ghost state");
1019SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_data_lsize, CTLFLAG_RD,
1020    &ARC_mru_ghost.arcs_lsize[ARC_BUFC_DATA], 0,
1021    "size of data in mru ghost state");
1022
1023SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_size, CTLFLAG_RD,
1024    &ARC_mfu.arcs_size, 0, "size of mfu state");
1025SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_metadata_lsize, CTLFLAG_RD,
1026    &ARC_mfu.arcs_lsize[ARC_BUFC_METADATA], 0, "size of metadata in mfu state");
1027SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_data_lsize, CTLFLAG_RD,
1028    &ARC_mfu.arcs_lsize[ARC_BUFC_DATA], 0, "size of data in mfu state");
1029
1030SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_size, CTLFLAG_RD,
1031    &ARC_mfu_ghost.arcs_size, 0, "size of mfu ghost state");
1032SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_metadata_lsize, CTLFLAG_RD,
1033    &ARC_mfu_ghost.arcs_lsize[ARC_BUFC_METADATA], 0,
1034    "size of metadata in mfu ghost state");
1035SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_data_lsize, CTLFLAG_RD,
1036    &ARC_mfu_ghost.arcs_lsize[ARC_BUFC_DATA], 0,
1037    "size of data in mfu ghost state");
1038
1039SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2c_only_size, CTLFLAG_RD,
1040    &ARC_l2c_only.arcs_size, 0, "size of mru state");
1041
1042/*
1043 * L2ARC Internals
1044 */
1045struct l2arc_dev {
1046	vdev_t			*l2ad_vdev;	/* vdev */
1047	spa_t			*l2ad_spa;	/* spa */
1048	uint64_t		l2ad_hand;	/* next write location */
1049	uint64_t		l2ad_start;	/* first addr on device */
1050	uint64_t		l2ad_end;	/* last addr on device */
1051	uint64_t		l2ad_evict;	/* last addr eviction reached */
1052	boolean_t		l2ad_first;	/* first sweep through */
1053	boolean_t		l2ad_writing;	/* currently writing */
1054	kmutex_t		l2ad_mtx;	/* lock for buffer list */
1055	list_t			l2ad_buflist;	/* buffer list */
1056	list_node_t		l2ad_node;	/* device list node */
1057};
1058
1059static list_t L2ARC_dev_list;			/* device list */
1060static list_t *l2arc_dev_list;			/* device list pointer */
1061static kmutex_t l2arc_dev_mtx;			/* device list mutex */
1062static l2arc_dev_t *l2arc_dev_last;		/* last device used */
1063static list_t L2ARC_free_on_write;		/* free after write buf list */
1064static list_t *l2arc_free_on_write;		/* free after write list ptr */
1065static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
1066static uint64_t l2arc_ndev;			/* number of devices */
1067
1068typedef struct l2arc_read_callback {
1069	arc_buf_t		*l2rcb_buf;		/* read buffer */
1070	spa_t			*l2rcb_spa;		/* spa */
1071	blkptr_t		l2rcb_bp;		/* original blkptr */
1072	zbookmark_phys_t	l2rcb_zb;		/* original bookmark */
1073	int			l2rcb_flags;		/* original flags */
1074	enum zio_compress	l2rcb_compress;		/* applied compress */
1075} l2arc_read_callback_t;
1076
1077typedef struct l2arc_write_callback {
1078	l2arc_dev_t	*l2wcb_dev;		/* device info */
1079	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
1080} l2arc_write_callback_t;
1081
1082typedef struct l2arc_data_free {
1083	/* protected by l2arc_free_on_write_mtx */
1084	void		*l2df_data;
1085	size_t		l2df_size;
1086	void		(*l2df_func)(void *, size_t);
1087	list_node_t	l2df_list_node;
1088} l2arc_data_free_t;
1089
1090static kmutex_t l2arc_feed_thr_lock;
1091static kcondvar_t l2arc_feed_thr_cv;
1092static uint8_t l2arc_thread_exit;
1093
1094static void arc_get_data_buf(arc_buf_t *);
1095static void arc_access(arc_buf_hdr_t *, kmutex_t *);
1096static int arc_evict_needed(arc_buf_contents_t);
1097static void arc_evict_ghost(arc_state_t *, uint64_t, int64_t);
1098static void arc_buf_watch(arc_buf_t *);
1099
1100static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
1101static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
1102
1103static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
1104static void l2arc_read_done(zio_t *);
1105
1106static boolean_t l2arc_compress_buf(arc_buf_hdr_t *);
1107static void l2arc_decompress_zio(zio_t *, arc_buf_hdr_t *, enum zio_compress);
1108static void l2arc_release_cdata_buf(arc_buf_hdr_t *);
1109
1110static uint64_t
1111buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
1112{
1113	uint8_t *vdva = (uint8_t *)dva;
1114	uint64_t crc = -1ULL;
1115	int i;
1116
1117	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
1118
1119	for (i = 0; i < sizeof (dva_t); i++)
1120		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
1121
1122	crc ^= (spa>>8) ^ birth;
1123
1124	return (crc);
1125}
1126
1127#define	BUF_EMPTY(buf)						\
1128	((buf)->b_dva.dva_word[0] == 0 &&			\
1129	(buf)->b_dva.dva_word[1] == 0)
1130
1131#define	BUF_EQUAL(spa, dva, birth, buf)				\
1132	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
1133	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
1134	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
1135
1136static void
1137buf_discard_identity(arc_buf_hdr_t *hdr)
1138{
1139	hdr->b_dva.dva_word[0] = 0;
1140	hdr->b_dva.dva_word[1] = 0;
1141	hdr->b_birth = 0;
1142}
1143
1144static arc_buf_hdr_t *
1145buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1146{
1147	const dva_t *dva = BP_IDENTITY(bp);
1148	uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1149	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1150	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1151	arc_buf_hdr_t *hdr;
1152
1153	mutex_enter(hash_lock);
1154	for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1155	    hdr = hdr->b_hash_next) {
1156		if (BUF_EQUAL(spa, dva, birth, hdr)) {
1157			*lockp = hash_lock;
1158			return (hdr);
1159		}
1160	}
1161	mutex_exit(hash_lock);
1162	*lockp = NULL;
1163	return (NULL);
1164}
1165
1166/*
1167 * Insert an entry into the hash table.  If there is already an element
1168 * equal to elem in the hash table, then the already existing element
1169 * will be returned and the new element will not be inserted.
1170 * Otherwise returns NULL.
1171 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1172 */
1173static arc_buf_hdr_t *
1174buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1175{
1176	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1177	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1178	arc_buf_hdr_t *fhdr;
1179	uint32_t i;
1180
1181	ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1182	ASSERT(hdr->b_birth != 0);
1183	ASSERT(!HDR_IN_HASH_TABLE(hdr));
1184
1185	if (lockp != NULL) {
1186		*lockp = hash_lock;
1187		mutex_enter(hash_lock);
1188	} else {
1189		ASSERT(MUTEX_HELD(hash_lock));
1190	}
1191
1192	for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1193	    fhdr = fhdr->b_hash_next, i++) {
1194		if (BUF_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1195			return (fhdr);
1196	}
1197
1198	hdr->b_hash_next = buf_hash_table.ht_table[idx];
1199	buf_hash_table.ht_table[idx] = hdr;
1200	hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
1201
1202	/* collect some hash table performance data */
1203	if (i > 0) {
1204		ARCSTAT_BUMP(arcstat_hash_collisions);
1205		if (i == 1)
1206			ARCSTAT_BUMP(arcstat_hash_chains);
1207
1208		ARCSTAT_MAX(arcstat_hash_chain_max, i);
1209	}
1210
1211	ARCSTAT_BUMP(arcstat_hash_elements);
1212	ARCSTAT_MAXSTAT(arcstat_hash_elements);
1213
1214	return (NULL);
1215}
1216
1217static void
1218buf_hash_remove(arc_buf_hdr_t *hdr)
1219{
1220	arc_buf_hdr_t *fhdr, **hdrp;
1221	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1222
1223	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1224	ASSERT(HDR_IN_HASH_TABLE(hdr));
1225
1226	hdrp = &buf_hash_table.ht_table[idx];
1227	while ((fhdr = *hdrp) != hdr) {
1228		ASSERT(fhdr != NULL);
1229		hdrp = &fhdr->b_hash_next;
1230	}
1231	*hdrp = hdr->b_hash_next;
1232	hdr->b_hash_next = NULL;
1233	hdr->b_flags &= ~ARC_FLAG_IN_HASH_TABLE;
1234
1235	/* collect some hash table performance data */
1236	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1237
1238	if (buf_hash_table.ht_table[idx] &&
1239	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1240		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1241}
1242
1243/*
1244 * Global data structures and functions for the buf kmem cache.
1245 */
1246static kmem_cache_t *hdr_full_cache;
1247static kmem_cache_t *hdr_l2only_cache;
1248static kmem_cache_t *buf_cache;
1249
1250static void
1251buf_fini(void)
1252{
1253	int i;
1254
1255	kmem_free(buf_hash_table.ht_table,
1256	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1257	for (i = 0; i < BUF_LOCKS; i++)
1258		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1259	kmem_cache_destroy(hdr_full_cache);
1260	kmem_cache_destroy(hdr_l2only_cache);
1261	kmem_cache_destroy(buf_cache);
1262}
1263
1264/*
1265 * Constructor callback - called when the cache is empty
1266 * and a new buf is requested.
1267 */
1268/* ARGSUSED */
1269static int
1270hdr_full_cons(void *vbuf, void *unused, int kmflag)
1271{
1272	arc_buf_hdr_t *hdr = vbuf;
1273
1274	bzero(hdr, HDR_FULL_SIZE);
1275	cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1276	refcount_create(&hdr->b_l1hdr.b_refcnt);
1277	mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1278	arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1279
1280	return (0);
1281}
1282
1283/* ARGSUSED */
1284static int
1285hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1286{
1287	arc_buf_hdr_t *hdr = vbuf;
1288
1289	bzero(hdr, HDR_L2ONLY_SIZE);
1290	arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1291
1292	return (0);
1293}
1294
1295/* ARGSUSED */
1296static int
1297buf_cons(void *vbuf, void *unused, int kmflag)
1298{
1299	arc_buf_t *buf = vbuf;
1300
1301	bzero(buf, sizeof (arc_buf_t));
1302	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1303	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1304
1305	return (0);
1306}
1307
1308/*
1309 * Destructor callback - called when a cached buf is
1310 * no longer required.
1311 */
1312/* ARGSUSED */
1313static void
1314hdr_full_dest(void *vbuf, void *unused)
1315{
1316	arc_buf_hdr_t *hdr = vbuf;
1317
1318	ASSERT(BUF_EMPTY(hdr));
1319	cv_destroy(&hdr->b_l1hdr.b_cv);
1320	refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1321	mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1322	arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1323}
1324
1325/* ARGSUSED */
1326static void
1327hdr_l2only_dest(void *vbuf, void *unused)
1328{
1329	arc_buf_hdr_t *hdr = vbuf;
1330
1331	ASSERT(BUF_EMPTY(hdr));
1332	arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1333}
1334
1335/* ARGSUSED */
1336static void
1337buf_dest(void *vbuf, void *unused)
1338{
1339	arc_buf_t *buf = vbuf;
1340
1341	mutex_destroy(&buf->b_evict_lock);
1342	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1343}
1344
1345/*
1346 * Reclaim callback -- invoked when memory is low.
1347 */
1348/* ARGSUSED */
1349static void
1350hdr_recl(void *unused)
1351{
1352	dprintf("hdr_recl called\n");
1353	/*
1354	 * umem calls the reclaim func when we destroy the buf cache,
1355	 * which is after we do arc_fini().
1356	 */
1357	if (!arc_dead)
1358		cv_signal(&arc_reclaim_thr_cv);
1359}
1360
1361static void
1362buf_init(void)
1363{
1364	uint64_t *ct;
1365	uint64_t hsize = 1ULL << 12;
1366	int i, j;
1367
1368	/*
1369	 * The hash table is big enough to fill all of physical memory
1370	 * with an average block size of zfs_arc_average_blocksize (default 8K).
1371	 * By default, the table will take up
1372	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1373	 */
1374	while (hsize * zfs_arc_average_blocksize < (uint64_t)physmem * PAGESIZE)
1375		hsize <<= 1;
1376retry:
1377	buf_hash_table.ht_mask = hsize - 1;
1378	buf_hash_table.ht_table =
1379	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1380	if (buf_hash_table.ht_table == NULL) {
1381		ASSERT(hsize > (1ULL << 8));
1382		hsize >>= 1;
1383		goto retry;
1384	}
1385
1386	hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1387	    0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1388	hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1389	    HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1390	    NULL, NULL, 0);
1391	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1392	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1393
1394	for (i = 0; i < 256; i++)
1395		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1396			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1397
1398	for (i = 0; i < BUF_LOCKS; i++) {
1399		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1400		    NULL, MUTEX_DEFAULT, NULL);
1401	}
1402}
1403
1404/*
1405 * Transition between the two allocation states for the arc_buf_hdr struct.
1406 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
1407 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
1408 * version is used when a cache buffer is only in the L2ARC in order to reduce
1409 * memory usage.
1410 */
1411static arc_buf_hdr_t *
1412arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
1413{
1414	ASSERT(HDR_HAS_L2HDR(hdr));
1415
1416	arc_buf_hdr_t *nhdr;
1417	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
1418
1419	ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
1420	    (old == hdr_l2only_cache && new == hdr_full_cache));
1421
1422	nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
1423
1424	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
1425	buf_hash_remove(hdr);
1426
1427	bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
1428	if (new == hdr_full_cache) {
1429		nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
1430		/*
1431		 * arc_access and arc_change_state need to be aware that a
1432		 * header has just come out of L2ARC, so we set its state to
1433		 * l2c_only even though it's about to change.
1434		 */
1435		nhdr->b_l1hdr.b_state = arc_l2c_only;
1436	} else {
1437		ASSERT(hdr->b_l1hdr.b_buf == NULL);
1438		ASSERT0(hdr->b_l1hdr.b_datacnt);
1439		ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
1440		/*
1441		 * We might be removing the L1hdr of a buffer which was just
1442		 * written out to L2ARC. If such a buffer is compressed then we
1443		 * need to free its b_tmp_cdata before destroying the header.
1444		 */
1445		if (hdr->b_l1hdr.b_tmp_cdata != NULL &&
1446		    HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF)
1447			l2arc_release_cdata_buf(hdr);
1448		nhdr->b_flags &= ~ARC_FLAG_HAS_L1HDR;
1449	}
1450	/*
1451	 * The header has been reallocated so we need to re-insert it into any
1452	 * lists it was on.
1453	 */
1454	(void) buf_hash_insert(nhdr, NULL);
1455
1456	ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
1457
1458	mutex_enter(&dev->l2ad_mtx);
1459
1460	/*
1461	 * We must place the realloc'ed header back into the list at
1462	 * the same spot. Otherwise, if it's placed earlier in the list,
1463	 * l2arc_write_buffers() could find it during the function's
1464	 * write phase, and try to write it out to the l2arc.
1465	 */
1466	list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
1467	list_remove(&dev->l2ad_buflist, hdr);
1468
1469	mutex_exit(&dev->l2ad_mtx);
1470
1471	buf_discard_identity(hdr);
1472	hdr->b_freeze_cksum = NULL;
1473	kmem_cache_free(old, hdr);
1474
1475	return (nhdr);
1476}
1477
1478
1479#define	ARC_MINTIME	(hz>>4) /* 62 ms */
1480
1481static void
1482arc_cksum_verify(arc_buf_t *buf)
1483{
1484	zio_cksum_t zc;
1485
1486	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1487		return;
1488
1489	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1490	if (buf->b_hdr->b_freeze_cksum == NULL || HDR_IO_ERROR(buf->b_hdr)) {
1491		mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1492		return;
1493	}
1494	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1495	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
1496		panic("buffer modified while frozen!");
1497	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1498}
1499
1500static int
1501arc_cksum_equal(arc_buf_t *buf)
1502{
1503	zio_cksum_t zc;
1504	int equal;
1505
1506	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1507	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1508	equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
1509	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1510
1511	return (equal);
1512}
1513
1514static void
1515arc_cksum_compute(arc_buf_t *buf, boolean_t force)
1516{
1517	if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1518		return;
1519
1520	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1521	if (buf->b_hdr->b_freeze_cksum != NULL) {
1522		mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1523		return;
1524	}
1525	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
1526	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1527	    buf->b_hdr->b_freeze_cksum);
1528	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1529#ifdef illumos
1530	arc_buf_watch(buf);
1531#endif /* illumos */
1532}
1533
1534#ifdef illumos
1535#ifndef _KERNEL
1536typedef struct procctl {
1537	long cmd;
1538	prwatch_t prwatch;
1539} procctl_t;
1540#endif
1541
1542/* ARGSUSED */
1543static void
1544arc_buf_unwatch(arc_buf_t *buf)
1545{
1546#ifndef _KERNEL
1547	if (arc_watch) {
1548		int result;
1549		procctl_t ctl;
1550		ctl.cmd = PCWATCH;
1551		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1552		ctl.prwatch.pr_size = 0;
1553		ctl.prwatch.pr_wflags = 0;
1554		result = write(arc_procfd, &ctl, sizeof (ctl));
1555		ASSERT3U(result, ==, sizeof (ctl));
1556	}
1557#endif
1558}
1559
1560/* ARGSUSED */
1561static void
1562arc_buf_watch(arc_buf_t *buf)
1563{
1564#ifndef _KERNEL
1565	if (arc_watch) {
1566		int result;
1567		procctl_t ctl;
1568		ctl.cmd = PCWATCH;
1569		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1570		ctl.prwatch.pr_size = buf->b_hdr->b_size;
1571		ctl.prwatch.pr_wflags = WA_WRITE;
1572		result = write(arc_procfd, &ctl, sizeof (ctl));
1573		ASSERT3U(result, ==, sizeof (ctl));
1574	}
1575#endif
1576}
1577#endif /* illumos */
1578
1579static arc_buf_contents_t
1580arc_buf_type(arc_buf_hdr_t *hdr)
1581{
1582	if (HDR_ISTYPE_METADATA(hdr)) {
1583		return (ARC_BUFC_METADATA);
1584	} else {
1585		return (ARC_BUFC_DATA);
1586	}
1587}
1588
1589static uint32_t
1590arc_bufc_to_flags(arc_buf_contents_t type)
1591{
1592	switch (type) {
1593	case ARC_BUFC_DATA:
1594		/* metadata field is 0 if buffer contains normal data */
1595		return (0);
1596	case ARC_BUFC_METADATA:
1597		return (ARC_FLAG_BUFC_METADATA);
1598	default:
1599		break;
1600	}
1601	panic("undefined ARC buffer type!");
1602	return ((uint32_t)-1);
1603}
1604
1605void
1606arc_buf_thaw(arc_buf_t *buf)
1607{
1608	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1609		if (buf->b_hdr->b_l1hdr.b_state != arc_anon)
1610			panic("modifying non-anon buffer!");
1611		if (HDR_IO_IN_PROGRESS(buf->b_hdr))
1612			panic("modifying buffer while i/o in progress!");
1613		arc_cksum_verify(buf);
1614	}
1615
1616	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1617	if (buf->b_hdr->b_freeze_cksum != NULL) {
1618		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1619		buf->b_hdr->b_freeze_cksum = NULL;
1620	}
1621
1622#ifdef ZFS_DEBUG
1623	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1624		if (buf->b_hdr->b_l1hdr.b_thawed != NULL)
1625			kmem_free(buf->b_hdr->b_l1hdr.b_thawed, 1);
1626		buf->b_hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP);
1627	}
1628#endif
1629
1630	mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1631
1632#ifdef illumos
1633	arc_buf_unwatch(buf);
1634#endif /* illumos */
1635}
1636
1637void
1638arc_buf_freeze(arc_buf_t *buf)
1639{
1640	kmutex_t *hash_lock;
1641
1642	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1643		return;
1644
1645	hash_lock = HDR_LOCK(buf->b_hdr);
1646	mutex_enter(hash_lock);
1647
1648	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1649	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
1650	arc_cksum_compute(buf, B_FALSE);
1651	mutex_exit(hash_lock);
1652
1653}
1654
1655static void
1656get_buf_info(arc_buf_hdr_t *hdr, arc_state_t *state, list_t **list, kmutex_t **lock)
1657{
1658	uint64_t buf_hashid = buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1659
1660	if (arc_buf_type(hdr) == ARC_BUFC_METADATA)
1661		buf_hashid &= (ARC_BUFC_NUMMETADATALISTS - 1);
1662	else {
1663		buf_hashid &= (ARC_BUFC_NUMDATALISTS - 1);
1664		buf_hashid += ARC_BUFC_NUMMETADATALISTS;
1665	}
1666
1667	*list = &state->arcs_lists[buf_hashid];
1668	*lock = ARCS_LOCK(state, buf_hashid);
1669}
1670
1671
1672static void
1673add_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1674{
1675	ASSERT(HDR_HAS_L1HDR(hdr));
1676	ASSERT(MUTEX_HELD(hash_lock));
1677	arc_state_t *state = hdr->b_l1hdr.b_state;
1678
1679	if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
1680	    (state != arc_anon)) {
1681		/* We don't use the L2-only state list. */
1682		if (state != arc_l2c_only) {
1683			uint64_t delta = hdr->b_size * hdr->b_l1hdr.b_datacnt;
1684			uint64_t *size = &state->arcs_lsize[arc_buf_type(hdr)];
1685			list_t *list;
1686			kmutex_t *lock;
1687
1688			get_buf_info(hdr, state, &list, &lock);
1689			ASSERT(!MUTEX_HELD(lock));
1690			mutex_enter(lock);
1691			ASSERT(list_link_active(&hdr->b_l1hdr.b_arc_node));
1692			list_remove(list, hdr);
1693			if (GHOST_STATE(state)) {
1694				ASSERT0(hdr->b_l1hdr.b_datacnt);
1695				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
1696				delta = hdr->b_size;
1697			}
1698			ASSERT(delta > 0);
1699			ASSERT3U(*size, >=, delta);
1700			atomic_add_64(size, -delta);
1701			mutex_exit(lock);
1702		}
1703		/* remove the prefetch flag if we get a reference */
1704		hdr->b_flags &= ~ARC_FLAG_PREFETCH;
1705	}
1706}
1707
1708static int
1709remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1710{
1711	int cnt;
1712	arc_state_t *state = hdr->b_l1hdr.b_state;
1713
1714	ASSERT(HDR_HAS_L1HDR(hdr));
1715	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1716	ASSERT(!GHOST_STATE(state));
1717
1718	/*
1719	 * arc_l2c_only counts as a ghost state so we don't need to explicitly
1720	 * check to prevent usage of the arc_l2c_only list.
1721	 */
1722	if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
1723	    (state != arc_anon)) {
1724		uint64_t *size = &state->arcs_lsize[arc_buf_type(hdr)];
1725		list_t *list;
1726		kmutex_t *lock;
1727
1728		get_buf_info(hdr, state, &list, &lock);
1729		ASSERT(!MUTEX_HELD(lock));
1730		mutex_enter(lock);
1731		ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
1732		list_insert_head(list, hdr);
1733		ASSERT(hdr->b_l1hdr.b_datacnt > 0);
1734		atomic_add_64(size, hdr->b_size *
1735		    hdr->b_l1hdr.b_datacnt);
1736		mutex_exit(lock);
1737	}
1738	return (cnt);
1739}
1740
1741/*
1742 * Move the supplied buffer to the indicated state.  The mutex
1743 * for the buffer must be held by the caller.
1744 */
1745static void
1746arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
1747    kmutex_t *hash_lock)
1748{
1749	arc_state_t *old_state;
1750	int64_t refcnt;
1751	uint32_t datacnt;
1752	uint64_t from_delta, to_delta;
1753	arc_buf_contents_t buftype = arc_buf_type(hdr);
1754	list_t *list;
1755	kmutex_t *lock;
1756
1757	/*
1758	 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
1759	 * in arc_read() when bringing a buffer out of the L2ARC.  However, the
1760	 * L1 hdr doesn't always exist when we change state to arc_anon before
1761	 * destroying a header, in which case reallocating to add the L1 hdr is
1762	 * pointless.
1763	 */
1764	if (HDR_HAS_L1HDR(hdr)) {
1765		old_state = hdr->b_l1hdr.b_state;
1766		refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
1767		datacnt = hdr->b_l1hdr.b_datacnt;
1768	} else {
1769		old_state = arc_l2c_only;
1770		refcnt = 0;
1771		datacnt = 0;
1772	}
1773
1774	ASSERT(MUTEX_HELD(hash_lock));
1775	ASSERT3P(new_state, !=, old_state);
1776	ASSERT(refcnt == 0 || datacnt > 0);
1777	ASSERT(!GHOST_STATE(new_state) || datacnt == 0);
1778	ASSERT(old_state != arc_anon || datacnt <= 1);
1779
1780	from_delta = to_delta = datacnt * hdr->b_size;
1781
1782	/*
1783	 * If this buffer is evictable, transfer it from the
1784	 * old state list to the new state list.
1785	 */
1786	if (refcnt == 0) {
1787		if (old_state != arc_anon && old_state != arc_l2c_only) {
1788			int use_mutex;
1789			uint64_t *size = &old_state->arcs_lsize[buftype];
1790
1791			get_buf_info(hdr, old_state, &list, &lock);
1792			use_mutex = !MUTEX_HELD(lock);
1793			if (use_mutex)
1794				mutex_enter(lock);
1795
1796			ASSERT(HDR_HAS_L1HDR(hdr));
1797			ASSERT(list_link_active(&hdr->b_l1hdr.b_arc_node));
1798			list_remove(list, hdr);
1799
1800			/*
1801			 * If prefetching out of the ghost cache,
1802			 * we will have a non-zero datacnt.
1803			 */
1804			if (GHOST_STATE(old_state) && datacnt == 0) {
1805				/* ghost elements have a ghost size */
1806				ASSERT(hdr->b_l1hdr.b_buf == NULL);
1807				from_delta = hdr->b_size;
1808			}
1809			ASSERT3U(*size, >=, from_delta);
1810			atomic_add_64(size, -from_delta);
1811
1812			if (use_mutex)
1813				mutex_exit(lock);
1814		}
1815		if (new_state != arc_anon && new_state != arc_l2c_only) {
1816			int use_mutex;
1817			uint64_t *size = &new_state->arcs_lsize[buftype];
1818
1819			/*
1820			 * An L1 header always exists here, since if we're
1821			 * moving to some L1-cached state (i.e. not l2c_only or
1822			 * anonymous), we realloc the header to add an L1hdr
1823			 * beforehand.
1824			 */
1825			ASSERT(HDR_HAS_L1HDR(hdr));
1826			get_buf_info(hdr, new_state, &list, &lock);
1827			use_mutex = !MUTEX_HELD(lock);
1828			if (use_mutex)
1829				mutex_enter(lock);
1830
1831			list_insert_head(list, hdr);
1832
1833			/* ghost elements have a ghost size */
1834			if (GHOST_STATE(new_state)) {
1835				ASSERT(datacnt == 0);
1836				ASSERT(hdr->b_l1hdr.b_buf == NULL);
1837				to_delta = hdr->b_size;
1838			}
1839			atomic_add_64(size, to_delta);
1840
1841			if (use_mutex)
1842				mutex_exit(lock);
1843		}
1844	}
1845
1846	ASSERT(!BUF_EMPTY(hdr));
1847	if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
1848		buf_hash_remove(hdr);
1849
1850	/* adjust state sizes (ignore arc_l2c_only) */
1851	if (to_delta && new_state != arc_l2c_only)
1852		atomic_add_64(&new_state->arcs_size, to_delta);
1853	if (from_delta && old_state != arc_l2c_only) {
1854		ASSERT3U(old_state->arcs_size, >=, from_delta);
1855		atomic_add_64(&old_state->arcs_size, -from_delta);
1856	}
1857	if (HDR_HAS_L1HDR(hdr))
1858		hdr->b_l1hdr.b_state = new_state;
1859
1860	/*
1861	 * L2 headers should never be on the L2 state list since they don't
1862	 * have L1 headers allocated.
1863	 */
1864#ifdef illumos
1865	ASSERT(list_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
1866	    list_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
1867#endif
1868}
1869
1870void
1871arc_space_consume(uint64_t space, arc_space_type_t type)
1872{
1873	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1874
1875	switch (type) {
1876	case ARC_SPACE_DATA:
1877		ARCSTAT_INCR(arcstat_data_size, space);
1878		break;
1879	case ARC_SPACE_META:
1880		ARCSTAT_INCR(arcstat_metadata_size, space);
1881		break;
1882	case ARC_SPACE_OTHER:
1883		ARCSTAT_INCR(arcstat_other_size, space);
1884		break;
1885	case ARC_SPACE_HDRS:
1886		ARCSTAT_INCR(arcstat_hdr_size, space);
1887		break;
1888	case ARC_SPACE_L2HDRS:
1889		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1890		break;
1891	}
1892
1893	if (type != ARC_SPACE_DATA)
1894		ARCSTAT_INCR(arcstat_meta_used, space);
1895
1896	atomic_add_64(&arc_size, space);
1897}
1898
1899void
1900arc_space_return(uint64_t space, arc_space_type_t type)
1901{
1902	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1903
1904	switch (type) {
1905	case ARC_SPACE_DATA:
1906		ARCSTAT_INCR(arcstat_data_size, -space);
1907		break;
1908	case ARC_SPACE_META:
1909		ARCSTAT_INCR(arcstat_metadata_size, -space);
1910		break;
1911	case ARC_SPACE_OTHER:
1912		ARCSTAT_INCR(arcstat_other_size, -space);
1913		break;
1914	case ARC_SPACE_HDRS:
1915		ARCSTAT_INCR(arcstat_hdr_size, -space);
1916		break;
1917	case ARC_SPACE_L2HDRS:
1918		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1919		break;
1920	}
1921
1922	if (type != ARC_SPACE_DATA) {
1923		ASSERT(arc_meta_used >= space);
1924		if (arc_meta_max < arc_meta_used)
1925			arc_meta_max = arc_meta_used;
1926		ARCSTAT_INCR(arcstat_meta_used, -space);
1927	}
1928
1929	ASSERT(arc_size >= space);
1930	atomic_add_64(&arc_size, -space);
1931}
1932
1933arc_buf_t *
1934arc_buf_alloc(spa_t *spa, int32_t size, void *tag, arc_buf_contents_t type)
1935{
1936	arc_buf_hdr_t *hdr;
1937	arc_buf_t *buf;
1938
1939	ASSERT3U(size, >, 0);
1940	hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
1941	ASSERT(BUF_EMPTY(hdr));
1942	ASSERT3P(hdr->b_freeze_cksum, ==, NULL);
1943	hdr->b_size = size;
1944	hdr->b_spa = spa_load_guid(spa);
1945
1946	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1947	buf->b_hdr = hdr;
1948	buf->b_data = NULL;
1949	buf->b_efunc = NULL;
1950	buf->b_private = NULL;
1951	buf->b_next = NULL;
1952
1953	hdr->b_flags = arc_bufc_to_flags(type);
1954	hdr->b_flags |= ARC_FLAG_HAS_L1HDR;
1955
1956	hdr->b_l1hdr.b_buf = buf;
1957	hdr->b_l1hdr.b_state = arc_anon;
1958	hdr->b_l1hdr.b_arc_access = 0;
1959	hdr->b_l1hdr.b_datacnt = 1;
1960
1961	arc_get_data_buf(buf);
1962	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
1963	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
1964
1965	return (buf);
1966}
1967
1968static char *arc_onloan_tag = "onloan";
1969
1970/*
1971 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1972 * flight data by arc_tempreserve_space() until they are "returned". Loaned
1973 * buffers must be returned to the arc before they can be used by the DMU or
1974 * freed.
1975 */
1976arc_buf_t *
1977arc_loan_buf(spa_t *spa, int size)
1978{
1979	arc_buf_t *buf;
1980
1981	buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1982
1983	atomic_add_64(&arc_loaned_bytes, size);
1984	return (buf);
1985}
1986
1987/*
1988 * Return a loaned arc buffer to the arc.
1989 */
1990void
1991arc_return_buf(arc_buf_t *buf, void *tag)
1992{
1993	arc_buf_hdr_t *hdr = buf->b_hdr;
1994
1995	ASSERT(buf->b_data != NULL);
1996	ASSERT(HDR_HAS_L1HDR(hdr));
1997	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
1998	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
1999
2000	atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
2001}
2002
2003/* Detach an arc_buf from a dbuf (tag) */
2004void
2005arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2006{
2007	arc_buf_hdr_t *hdr = buf->b_hdr;
2008
2009	ASSERT(buf->b_data != NULL);
2010	ASSERT(HDR_HAS_L1HDR(hdr));
2011	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2012	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2013	buf->b_efunc = NULL;
2014	buf->b_private = NULL;
2015
2016	atomic_add_64(&arc_loaned_bytes, hdr->b_size);
2017}
2018
2019static arc_buf_t *
2020arc_buf_clone(arc_buf_t *from)
2021{
2022	arc_buf_t *buf;
2023	arc_buf_hdr_t *hdr = from->b_hdr;
2024	uint64_t size = hdr->b_size;
2025
2026	ASSERT(HDR_HAS_L1HDR(hdr));
2027	ASSERT(hdr->b_l1hdr.b_state != arc_anon);
2028
2029	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2030	buf->b_hdr = hdr;
2031	buf->b_data = NULL;
2032	buf->b_efunc = NULL;
2033	buf->b_private = NULL;
2034	buf->b_next = hdr->b_l1hdr.b_buf;
2035	hdr->b_l1hdr.b_buf = buf;
2036	arc_get_data_buf(buf);
2037	bcopy(from->b_data, buf->b_data, size);
2038
2039	/*
2040	 * This buffer already exists in the arc so create a duplicate
2041	 * copy for the caller.  If the buffer is associated with user data
2042	 * then track the size and number of duplicates.  These stats will be
2043	 * updated as duplicate buffers are created and destroyed.
2044	 */
2045	if (HDR_ISTYPE_DATA(hdr)) {
2046		ARCSTAT_BUMP(arcstat_duplicate_buffers);
2047		ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
2048	}
2049	hdr->b_l1hdr.b_datacnt += 1;
2050	return (buf);
2051}
2052
2053void
2054arc_buf_add_ref(arc_buf_t *buf, void* tag)
2055{
2056	arc_buf_hdr_t *hdr;
2057	kmutex_t *hash_lock;
2058
2059	/*
2060	 * Check to see if this buffer is evicted.  Callers
2061	 * must verify b_data != NULL to know if the add_ref
2062	 * was successful.
2063	 */
2064	mutex_enter(&buf->b_evict_lock);
2065	if (buf->b_data == NULL) {
2066		mutex_exit(&buf->b_evict_lock);
2067		return;
2068	}
2069	hash_lock = HDR_LOCK(buf->b_hdr);
2070	mutex_enter(hash_lock);
2071	hdr = buf->b_hdr;
2072	ASSERT(HDR_HAS_L1HDR(hdr));
2073	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2074	mutex_exit(&buf->b_evict_lock);
2075
2076	ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
2077	    hdr->b_l1hdr.b_state == arc_mfu);
2078
2079	add_reference(hdr, hash_lock, tag);
2080	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2081	arc_access(hdr, hash_lock);
2082	mutex_exit(hash_lock);
2083	ARCSTAT_BUMP(arcstat_hits);
2084	ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
2085	    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
2086	    data, metadata, hits);
2087}
2088
2089static void
2090arc_buf_free_on_write(void *data, size_t size,
2091    void (*free_func)(void *, size_t))
2092{
2093	l2arc_data_free_t *df;
2094
2095	df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
2096	df->l2df_data = data;
2097	df->l2df_size = size;
2098	df->l2df_func = free_func;
2099	mutex_enter(&l2arc_free_on_write_mtx);
2100	list_insert_head(l2arc_free_on_write, df);
2101	mutex_exit(&l2arc_free_on_write_mtx);
2102}
2103
2104/*
2105 * Free the arc data buffer.  If it is an l2arc write in progress,
2106 * the buffer is placed on l2arc_free_on_write to be freed later.
2107 */
2108static void
2109arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
2110{
2111	arc_buf_hdr_t *hdr = buf->b_hdr;
2112
2113	if (HDR_L2_WRITING(hdr)) {
2114		arc_buf_free_on_write(buf->b_data, hdr->b_size, free_func);
2115		ARCSTAT_BUMP(arcstat_l2_free_on_write);
2116	} else {
2117		free_func(buf->b_data, hdr->b_size);
2118	}
2119}
2120
2121/*
2122 * Free up buf->b_data and if 'remove' is set, then pull the
2123 * arc_buf_t off of the the arc_buf_hdr_t's list and free it.
2124 */
2125static void
2126arc_buf_l2_cdata_free(arc_buf_hdr_t *hdr)
2127{
2128	ASSERT(HDR_HAS_L2HDR(hdr));
2129	ASSERT(MUTEX_HELD(&hdr->b_l2hdr.b_dev->l2ad_mtx));
2130
2131	/*
2132	 * The b_tmp_cdata field is linked off of the b_l1hdr, so if
2133	 * that doesn't exist, the header is in the arc_l2c_only state,
2134	 * and there isn't anything to free (it's already been freed).
2135	 */
2136	if (!HDR_HAS_L1HDR(hdr))
2137		return;
2138
2139	if (hdr->b_l1hdr.b_tmp_cdata == NULL)
2140		return;
2141
2142	ASSERT(HDR_L2_WRITING(hdr));
2143	arc_buf_free_on_write(hdr->b_l1hdr.b_tmp_cdata, hdr->b_size,
2144	    zio_data_buf_free);
2145
2146	ARCSTAT_BUMP(arcstat_l2_cdata_free_on_write);
2147	hdr->b_l1hdr.b_tmp_cdata = NULL;
2148}
2149
2150static void
2151arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t remove)
2152{
2153	arc_buf_t **bufp;
2154
2155	/* free up data associated with the buf */
2156	if (buf->b_data != NULL) {
2157		arc_state_t *state = buf->b_hdr->b_l1hdr.b_state;
2158		uint64_t size = buf->b_hdr->b_size;
2159		arc_buf_contents_t type = arc_buf_type(buf->b_hdr);
2160
2161		arc_cksum_verify(buf);
2162#ifdef illumos
2163		arc_buf_unwatch(buf);
2164#endif /* illumos */
2165
2166		if (!recycle) {
2167			if (type == ARC_BUFC_METADATA) {
2168				arc_buf_data_free(buf, zio_buf_free);
2169				arc_space_return(size, ARC_SPACE_META);
2170			} else {
2171				ASSERT(type == ARC_BUFC_DATA);
2172				arc_buf_data_free(buf, zio_data_buf_free);
2173				arc_space_return(size, ARC_SPACE_DATA);
2174			}
2175		}
2176		if (list_link_active(&buf->b_hdr->b_l1hdr.b_arc_node)) {
2177			uint64_t *cnt = &state->arcs_lsize[type];
2178
2179			ASSERT(refcount_is_zero(
2180			    &buf->b_hdr->b_l1hdr.b_refcnt));
2181			ASSERT(state != arc_anon && state != arc_l2c_only);
2182
2183			ASSERT3U(*cnt, >=, size);
2184			atomic_add_64(cnt, -size);
2185		}
2186		ASSERT3U(state->arcs_size, >=, size);
2187		atomic_add_64(&state->arcs_size, -size);
2188		buf->b_data = NULL;
2189
2190		/*
2191		 * If we're destroying a duplicate buffer make sure
2192		 * that the appropriate statistics are updated.
2193		 */
2194		if (buf->b_hdr->b_l1hdr.b_datacnt > 1 &&
2195		    HDR_ISTYPE_DATA(buf->b_hdr)) {
2196			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
2197			ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
2198		}
2199		ASSERT(buf->b_hdr->b_l1hdr.b_datacnt > 0);
2200		buf->b_hdr->b_l1hdr.b_datacnt -= 1;
2201	}
2202
2203	/* only remove the buf if requested */
2204	if (!remove)
2205		return;
2206
2207	/* remove the buf from the hdr list */
2208	for (bufp = &buf->b_hdr->b_l1hdr.b_buf; *bufp != buf;
2209	    bufp = &(*bufp)->b_next)
2210		continue;
2211	*bufp = buf->b_next;
2212	buf->b_next = NULL;
2213
2214	ASSERT(buf->b_efunc == NULL);
2215
2216	/* clean up the buf */
2217	buf->b_hdr = NULL;
2218	kmem_cache_free(buf_cache, buf);
2219}
2220
2221static void
2222arc_hdr_destroy(arc_buf_hdr_t *hdr)
2223{
2224	if (HDR_HAS_L1HDR(hdr)) {
2225		ASSERT(hdr->b_l1hdr.b_buf == NULL ||
2226		    hdr->b_l1hdr.b_datacnt > 0);
2227		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2228		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
2229	}
2230	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2231	ASSERT(!HDR_IN_HASH_TABLE(hdr));
2232
2233	if (HDR_HAS_L2HDR(hdr)) {
2234		l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
2235		boolean_t buflist_held = MUTEX_HELD(&l2hdr->b_dev->l2ad_mtx);
2236
2237		if (!buflist_held) {
2238			mutex_enter(&l2hdr->b_dev->l2ad_mtx);
2239			l2hdr = &hdr->b_l2hdr;
2240		}
2241
2242		trim_map_free(l2hdr->b_dev->l2ad_vdev, l2hdr->b_daddr,
2243		    l2hdr->b_asize, 0);
2244		list_remove(&l2hdr->b_dev->l2ad_buflist, hdr);
2245
2246		/*
2247		 * We don't want to leak the b_tmp_cdata buffer that was
2248		 * allocated in l2arc_write_buffers()
2249		 */
2250		arc_buf_l2_cdata_free(hdr);
2251
2252		ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
2253		ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
2254
2255		if (!buflist_held)
2256			mutex_exit(&l2hdr->b_dev->l2ad_mtx);
2257
2258		hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
2259	}
2260
2261	if (!BUF_EMPTY(hdr))
2262		buf_discard_identity(hdr);
2263	if (hdr->b_freeze_cksum != NULL) {
2264		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
2265		hdr->b_freeze_cksum = NULL;
2266	}
2267
2268	if (HDR_HAS_L1HDR(hdr)) {
2269		while (hdr->b_l1hdr.b_buf) {
2270			arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2271
2272			if (buf->b_efunc != NULL) {
2273				mutex_enter(&arc_eviction_mtx);
2274				mutex_enter(&buf->b_evict_lock);
2275				ASSERT(buf->b_hdr != NULL);
2276				arc_buf_destroy(hdr->b_l1hdr.b_buf, FALSE,
2277				    FALSE);
2278				hdr->b_l1hdr.b_buf = buf->b_next;
2279				buf->b_hdr = &arc_eviction_hdr;
2280				buf->b_next = arc_eviction_list;
2281				arc_eviction_list = buf;
2282				mutex_exit(&buf->b_evict_lock);
2283				mutex_exit(&arc_eviction_mtx);
2284			} else {
2285				arc_buf_destroy(hdr->b_l1hdr.b_buf, FALSE,
2286				    TRUE);
2287			}
2288		}
2289#ifdef ZFS_DEBUG
2290		if (hdr->b_l1hdr.b_thawed != NULL) {
2291			kmem_free(hdr->b_l1hdr.b_thawed, 1);
2292			hdr->b_l1hdr.b_thawed = NULL;
2293		}
2294#endif
2295	}
2296
2297	ASSERT3P(hdr->b_hash_next, ==, NULL);
2298	if (HDR_HAS_L1HDR(hdr)) {
2299		ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
2300		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
2301		kmem_cache_free(hdr_full_cache, hdr);
2302	} else {
2303		kmem_cache_free(hdr_l2only_cache, hdr);
2304	}
2305}
2306
2307void
2308arc_buf_free(arc_buf_t *buf, void *tag)
2309{
2310	arc_buf_hdr_t *hdr = buf->b_hdr;
2311	int hashed = hdr->b_l1hdr.b_state != arc_anon;
2312
2313	ASSERT(buf->b_efunc == NULL);
2314	ASSERT(buf->b_data != NULL);
2315
2316	if (hashed) {
2317		kmutex_t *hash_lock = HDR_LOCK(hdr);
2318
2319		mutex_enter(hash_lock);
2320		hdr = buf->b_hdr;
2321		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2322
2323		(void) remove_reference(hdr, hash_lock, tag);
2324		if (hdr->b_l1hdr.b_datacnt > 1) {
2325			arc_buf_destroy(buf, FALSE, TRUE);
2326		} else {
2327			ASSERT(buf == hdr->b_l1hdr.b_buf);
2328			ASSERT(buf->b_efunc == NULL);
2329			hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
2330		}
2331		mutex_exit(hash_lock);
2332	} else if (HDR_IO_IN_PROGRESS(hdr)) {
2333		int destroy_hdr;
2334		/*
2335		 * We are in the middle of an async write.  Don't destroy
2336		 * this buffer unless the write completes before we finish
2337		 * decrementing the reference count.
2338		 */
2339		mutex_enter(&arc_eviction_mtx);
2340		(void) remove_reference(hdr, NULL, tag);
2341		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2342		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
2343		mutex_exit(&arc_eviction_mtx);
2344		if (destroy_hdr)
2345			arc_hdr_destroy(hdr);
2346	} else {
2347		if (remove_reference(hdr, NULL, tag) > 0)
2348			arc_buf_destroy(buf, FALSE, TRUE);
2349		else
2350			arc_hdr_destroy(hdr);
2351	}
2352}
2353
2354boolean_t
2355arc_buf_remove_ref(arc_buf_t *buf, void* tag)
2356{
2357	arc_buf_hdr_t *hdr = buf->b_hdr;
2358	kmutex_t *hash_lock = HDR_LOCK(hdr);
2359	boolean_t no_callback = (buf->b_efunc == NULL);
2360
2361	if (hdr->b_l1hdr.b_state == arc_anon) {
2362		ASSERT(hdr->b_l1hdr.b_datacnt == 1);
2363		arc_buf_free(buf, tag);
2364		return (no_callback);
2365	}
2366
2367	mutex_enter(hash_lock);
2368	hdr = buf->b_hdr;
2369	ASSERT(hdr->b_l1hdr.b_datacnt > 0);
2370	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2371	ASSERT(hdr->b_l1hdr.b_state != arc_anon);
2372	ASSERT(buf->b_data != NULL);
2373
2374	(void) remove_reference(hdr, hash_lock, tag);
2375	if (hdr->b_l1hdr.b_datacnt > 1) {
2376		if (no_callback)
2377			arc_buf_destroy(buf, FALSE, TRUE);
2378	} else if (no_callback) {
2379		ASSERT(hdr->b_l1hdr.b_buf == buf && buf->b_next == NULL);
2380		ASSERT(buf->b_efunc == NULL);
2381		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
2382	}
2383	ASSERT(no_callback || hdr->b_l1hdr.b_datacnt > 1 ||
2384	    refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2385	mutex_exit(hash_lock);
2386	return (no_callback);
2387}
2388
2389int32_t
2390arc_buf_size(arc_buf_t *buf)
2391{
2392	return (buf->b_hdr->b_size);
2393}
2394
2395/*
2396 * Called from the DMU to determine if the current buffer should be
2397 * evicted. In order to ensure proper locking, the eviction must be initiated
2398 * from the DMU. Return true if the buffer is associated with user data and
2399 * duplicate buffers still exist.
2400 */
2401boolean_t
2402arc_buf_eviction_needed(arc_buf_t *buf)
2403{
2404	arc_buf_hdr_t *hdr;
2405	boolean_t evict_needed = B_FALSE;
2406
2407	if (zfs_disable_dup_eviction)
2408		return (B_FALSE);
2409
2410	mutex_enter(&buf->b_evict_lock);
2411	hdr = buf->b_hdr;
2412	if (hdr == NULL) {
2413		/*
2414		 * We are in arc_do_user_evicts(); let that function
2415		 * perform the eviction.
2416		 */
2417		ASSERT(buf->b_data == NULL);
2418		mutex_exit(&buf->b_evict_lock);
2419		return (B_FALSE);
2420	} else if (buf->b_data == NULL) {
2421		/*
2422		 * We have already been added to the arc eviction list;
2423		 * recommend eviction.
2424		 */
2425		ASSERT3P(hdr, ==, &arc_eviction_hdr);
2426		mutex_exit(&buf->b_evict_lock);
2427		return (B_TRUE);
2428	}
2429
2430	if (hdr->b_l1hdr.b_datacnt > 1 && HDR_ISTYPE_DATA(hdr))
2431		evict_needed = B_TRUE;
2432
2433	mutex_exit(&buf->b_evict_lock);
2434	return (evict_needed);
2435}
2436
2437/*
2438 * Evict buffers from list until we've removed the specified number of
2439 * bytes.  Move the removed buffers to the appropriate evict state.
2440 * If the recycle flag is set, then attempt to "recycle" a buffer:
2441 * - look for a buffer to evict that is `bytes' long.
2442 * - return the data block from this buffer rather than freeing it.
2443 * This flag is used by callers that are trying to make space for a
2444 * new buffer in a full arc cache.
2445 *
2446 * This function makes a "best effort".  It skips over any buffers
2447 * it can't get a hash_lock on, and so may not catch all candidates.
2448 * It may also return without evicting as much space as requested.
2449 */
2450static void *
2451arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
2452    arc_buf_contents_t type)
2453{
2454	arc_state_t *evicted_state;
2455	uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
2456	int64_t bytes_remaining;
2457	arc_buf_hdr_t *hdr, *hdr_prev = NULL;
2458	list_t *evicted_list, *list, *evicted_list_start, *list_start;
2459	kmutex_t *lock, *evicted_lock;
2460	kmutex_t *hash_lock;
2461	boolean_t have_lock;
2462	void *stolen = NULL;
2463	arc_buf_hdr_t marker = { 0 };
2464	int count = 0;
2465	static int evict_metadata_offset, evict_data_offset;
2466	int i, idx, offset, list_count, lists;
2467
2468	ASSERT(state == arc_mru || state == arc_mfu);
2469
2470	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
2471
2472	/*
2473	 * Decide which "type" (data vs metadata) to recycle from.
2474	 *
2475	 * If we are over the metadata limit, recycle from metadata.
2476	 * If we are under the metadata minimum, recycle from data.
2477	 * Otherwise, recycle from whichever type has the oldest (least
2478	 * recently accessed) header.  This is not yet implemented.
2479	 */
2480	if (recycle) {
2481		arc_buf_contents_t realtype;
2482		if (state->arcs_lsize[ARC_BUFC_DATA] == 0) {
2483			realtype = ARC_BUFC_METADATA;
2484		} else if (state->arcs_lsize[ARC_BUFC_METADATA] == 0) {
2485			realtype = ARC_BUFC_DATA;
2486		} else if (arc_meta_used >= arc_meta_limit) {
2487			realtype = ARC_BUFC_METADATA;
2488		} else if (arc_meta_used <= arc_meta_min) {
2489			realtype = ARC_BUFC_DATA;
2490#ifdef illumos
2491		} else if (HDR_HAS_L1HDR(data_hdr) &&
2492		    HDR_HAS_L1HDR(metadata_hdr) &&
2493		    data_hdr->b_l1hdr.b_arc_access <
2494		    metadata_hdr->b_l1hdr.b_arc_access) {
2495			realtype = ARC_BUFC_DATA;
2496		} else {
2497			realtype = ARC_BUFC_METADATA;
2498#else
2499		} else {
2500			/* TODO */
2501			realtype = type;
2502#endif
2503		}
2504		if (realtype != type) {
2505			/*
2506			 * If we want to evict from a different list,
2507			 * we can not recycle, because DATA vs METADATA
2508			 * buffers are segregated into different kmem
2509			 * caches (and vmem arenas).
2510			 */
2511			type = realtype;
2512			recycle = B_FALSE;
2513		}
2514	}
2515
2516	if (type == ARC_BUFC_METADATA) {
2517		offset = 0;
2518		list_count = ARC_BUFC_NUMMETADATALISTS;
2519		list_start = &state->arcs_lists[0];
2520		evicted_list_start = &evicted_state->arcs_lists[0];
2521		idx = evict_metadata_offset;
2522	} else {
2523		offset = ARC_BUFC_NUMMETADATALISTS;
2524		list_start = &state->arcs_lists[offset];
2525		evicted_list_start = &evicted_state->arcs_lists[offset];
2526		list_count = ARC_BUFC_NUMDATALISTS;
2527		idx = evict_data_offset;
2528	}
2529	bytes_remaining = evicted_state->arcs_lsize[type];
2530	lists = 0;
2531
2532evict_start:
2533	list = &list_start[idx];
2534	evicted_list = &evicted_list_start[idx];
2535	lock = ARCS_LOCK(state, (offset + idx));
2536	evicted_lock = ARCS_LOCK(evicted_state, (offset + idx));
2537
2538	/*
2539	 * The ghost list lock must be acquired first in order to prevent
2540	 * a 3 party deadlock:
2541	 *
2542	 *  - arc_evict_ghost acquires arc_*_ghost->arcs_mtx, followed by
2543	 *    l2ad_mtx in arc_hdr_realloc
2544	 *  - l2arc_write_buffers acquires l2ad_mtx, followed by arc_*->arcs_mtx
2545	 *  - arc_evict acquires arc_*_ghost->arcs_mtx, followed by
2546	 *    arc_*_ghost->arcs_mtx and forms a deadlock cycle.
2547	 *
2548	 * This situation is avoided by acquiring the ghost list lock first.
2549	 */
2550	mutex_enter(evicted_lock);
2551	mutex_enter(lock);
2552
2553	for (hdr = list_tail(list); hdr; hdr = hdr_prev) {
2554		hdr_prev = list_prev(list, hdr);
2555		if (HDR_HAS_L1HDR(hdr)) {
2556			bytes_remaining -=
2557			    (hdr->b_size * hdr->b_l1hdr.b_datacnt);
2558		}
2559		/* prefetch buffers have a minimum lifespan */
2560		if (HDR_IO_IN_PROGRESS(hdr) ||
2561		    (spa && hdr->b_spa != spa) ||
2562		    ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
2563		    ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
2564		    arc_min_prefetch_lifespan)) {
2565			skipped++;
2566			continue;
2567		}
2568		/* "lookahead" for better eviction candidate */
2569		if (recycle && hdr->b_size != bytes &&
2570		    hdr_prev && hdr_prev->b_size == bytes)
2571			continue;
2572
2573		/* ignore markers */
2574		if (hdr->b_spa == 0)
2575			continue;
2576
2577		/*
2578		 * It may take a long time to evict all the bufs requested.
2579		 * To avoid blocking all arc activity, periodically drop
2580		 * the arcs_mtx and give other threads a chance to run
2581		 * before reacquiring the lock.
2582		 *
2583		 * If we are looking for a buffer to recycle, we are in
2584		 * the hot code path, so don't sleep.
2585		 */
2586		if (!recycle && count++ > arc_evict_iterations) {
2587			list_insert_after(list, hdr, &marker);
2588			mutex_exit(lock);
2589			mutex_exit(evicted_lock);
2590			kpreempt(KPREEMPT_SYNC);
2591			mutex_enter(evicted_lock);
2592			mutex_enter(lock);
2593			hdr_prev = list_prev(list, &marker);
2594			list_remove(list, &marker);
2595			count = 0;
2596			continue;
2597		}
2598
2599		hash_lock = HDR_LOCK(hdr);
2600		have_lock = MUTEX_HELD(hash_lock);
2601		if (have_lock || mutex_tryenter(hash_lock)) {
2602			ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
2603			ASSERT3U(hdr->b_l1hdr.b_datacnt, >, 0);
2604			while (hdr->b_l1hdr.b_buf) {
2605				arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2606				if (!mutex_tryenter(&buf->b_evict_lock)) {
2607					missed += 1;
2608					break;
2609				}
2610				if (buf->b_data != NULL) {
2611					bytes_evicted += hdr->b_size;
2612					if (recycle &&
2613					    arc_buf_type(hdr) == type &&
2614					    hdr->b_size == bytes &&
2615					    !HDR_L2_WRITING(hdr)) {
2616						stolen = buf->b_data;
2617						recycle = FALSE;
2618					}
2619				}
2620				if (buf->b_efunc != NULL) {
2621					mutex_enter(&arc_eviction_mtx);
2622					arc_buf_destroy(buf,
2623					    buf->b_data == stolen, FALSE);
2624					hdr->b_l1hdr.b_buf = buf->b_next;
2625					buf->b_hdr = &arc_eviction_hdr;
2626					buf->b_next = arc_eviction_list;
2627					arc_eviction_list = buf;
2628					mutex_exit(&arc_eviction_mtx);
2629					mutex_exit(&buf->b_evict_lock);
2630				} else {
2631					mutex_exit(&buf->b_evict_lock);
2632					arc_buf_destroy(buf,
2633					    buf->b_data == stolen, TRUE);
2634				}
2635			}
2636
2637			if (HDR_HAS_L2HDR(hdr)) {
2638				ARCSTAT_INCR(arcstat_evict_l2_cached,
2639				    hdr->b_size);
2640			} else {
2641				if (l2arc_write_eligible(hdr->b_spa, hdr)) {
2642					ARCSTAT_INCR(arcstat_evict_l2_eligible,
2643					    hdr->b_size);
2644				} else {
2645					ARCSTAT_INCR(
2646					    arcstat_evict_l2_ineligible,
2647					    hdr->b_size);
2648				}
2649			}
2650
2651			if (hdr->b_l1hdr.b_datacnt == 0) {
2652				arc_change_state(evicted_state, hdr, hash_lock);
2653				ASSERT(HDR_IN_HASH_TABLE(hdr));
2654				hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
2655				hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
2656				DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
2657			}
2658			if (!have_lock)
2659				mutex_exit(hash_lock);
2660			if (bytes >= 0 && bytes_evicted >= bytes)
2661				break;
2662			if (bytes_remaining > 0) {
2663				mutex_exit(evicted_lock);
2664				mutex_exit(lock);
2665				idx  = ((idx + 1) & (list_count - 1));
2666				lists++;
2667				goto evict_start;
2668			}
2669		} else {
2670			missed += 1;
2671		}
2672	}
2673
2674	mutex_exit(lock);
2675	mutex_exit(evicted_lock);
2676
2677	idx  = ((idx + 1) & (list_count - 1));
2678	lists++;
2679
2680	if (bytes_evicted < bytes) {
2681		if (lists < list_count)
2682			goto evict_start;
2683		else
2684			dprintf("only evicted %lld bytes from %x",
2685			    (longlong_t)bytes_evicted, state);
2686	}
2687	if (type == ARC_BUFC_METADATA)
2688		evict_metadata_offset = idx;
2689	else
2690		evict_data_offset = idx;
2691
2692	if (skipped)
2693		ARCSTAT_INCR(arcstat_evict_skip, skipped);
2694
2695	if (missed)
2696		ARCSTAT_INCR(arcstat_mutex_miss, missed);
2697
2698	/*
2699	 * Note: we have just evicted some data into the ghost state,
2700	 * potentially putting the ghost size over the desired size.  Rather
2701	 * that evicting from the ghost list in this hot code path, leave
2702	 * this chore to the arc_reclaim_thread().
2703	 */
2704
2705	if (stolen)
2706		ARCSTAT_BUMP(arcstat_stolen);
2707	return (stolen);
2708}
2709
2710/*
2711 * Remove buffers from list until we've removed the specified number of
2712 * bytes.  Destroy the buffers that are removed.
2713 */
2714static void
2715arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes)
2716{
2717	arc_buf_hdr_t *hdr, *hdr_prev;
2718	arc_buf_hdr_t marker = { 0 };
2719	list_t *list, *list_start;
2720	kmutex_t *hash_lock, *lock;
2721	uint64_t bytes_deleted = 0;
2722	uint64_t bufs_skipped = 0;
2723	int count = 0;
2724	static int evict_offset;
2725	int list_count, idx = evict_offset;
2726	int offset, lists = 0;
2727
2728	ASSERT(GHOST_STATE(state));
2729
2730	/*
2731	 * data lists come after metadata lists
2732	 */
2733	list_start = &state->arcs_lists[ARC_BUFC_NUMMETADATALISTS];
2734	list_count = ARC_BUFC_NUMDATALISTS;
2735	offset = ARC_BUFC_NUMMETADATALISTS;
2736
2737evict_start:
2738	list = &list_start[idx];
2739	lock = ARCS_LOCK(state, idx + offset);
2740
2741	mutex_enter(lock);
2742	for (hdr = list_tail(list); hdr; hdr = hdr_prev) {
2743		hdr_prev = list_prev(list, hdr);
2744		if (arc_buf_type(hdr) >= ARC_BUFC_NUMTYPES)
2745			panic("invalid hdr=%p", (void *)hdr);
2746		if (spa && hdr->b_spa != spa)
2747			continue;
2748
2749		/* ignore markers */
2750		if (hdr->b_spa == 0)
2751			continue;
2752
2753		hash_lock = HDR_LOCK(hdr);
2754		/* caller may be trying to modify this buffer, skip it */
2755		if (MUTEX_HELD(hash_lock))
2756			continue;
2757
2758		/*
2759		 * It may take a long time to evict all the bufs requested.
2760		 * To avoid blocking all arc activity, periodically drop
2761		 * the arcs_mtx and give other threads a chance to run
2762		 * before reacquiring the lock.
2763		 */
2764		if (count++ > arc_evict_iterations) {
2765			list_insert_after(list, hdr, &marker);
2766			mutex_exit(lock);
2767			kpreempt(KPREEMPT_SYNC);
2768			mutex_enter(lock);
2769			hdr_prev = list_prev(list, &marker);
2770			list_remove(list, &marker);
2771			count = 0;
2772			continue;
2773		}
2774		if (mutex_tryenter(hash_lock)) {
2775			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2776			ASSERT(!HDR_HAS_L1HDR(hdr) ||
2777			    hdr->b_l1hdr.b_buf == NULL);
2778			ARCSTAT_BUMP(arcstat_deleted);
2779			bytes_deleted += hdr->b_size;
2780
2781			if (HDR_HAS_L2HDR(hdr)) {
2782				/*
2783				 * This buffer is cached on the 2nd Level ARC;
2784				 * don't destroy the header.
2785				 */
2786				arc_change_state(arc_l2c_only, hdr, hash_lock);
2787				/*
2788				 * dropping from L1+L2 cached to L2-only,
2789				 * realloc to remove the L1 header.
2790				 */
2791				hdr = arc_hdr_realloc(hdr, hdr_full_cache,
2792				    hdr_l2only_cache);
2793				mutex_exit(hash_lock);
2794			} else {
2795				arc_change_state(arc_anon, hdr, hash_lock);
2796				mutex_exit(hash_lock);
2797				arc_hdr_destroy(hdr);
2798			}
2799
2800			DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
2801			if (bytes >= 0 && bytes_deleted >= bytes)
2802				break;
2803		} else if (bytes < 0) {
2804			/*
2805			 * Insert a list marker and then wait for the
2806			 * hash lock to become available. Once its
2807			 * available, restart from where we left off.
2808			 */
2809			list_insert_after(list, hdr, &marker);
2810			mutex_exit(lock);
2811			mutex_enter(hash_lock);
2812			mutex_exit(hash_lock);
2813			mutex_enter(lock);
2814			hdr_prev = list_prev(list, &marker);
2815			list_remove(list, &marker);
2816		} else {
2817			bufs_skipped += 1;
2818		}
2819
2820	}
2821	mutex_exit(lock);
2822	idx  = ((idx + 1) & (ARC_BUFC_NUMDATALISTS - 1));
2823	lists++;
2824
2825	if (lists < list_count)
2826		goto evict_start;
2827
2828	evict_offset = idx;
2829	if ((uintptr_t)list > (uintptr_t)&state->arcs_lists[ARC_BUFC_NUMMETADATALISTS] &&
2830	    (bytes < 0 || bytes_deleted < bytes)) {
2831		list_start = &state->arcs_lists[0];
2832		list_count = ARC_BUFC_NUMMETADATALISTS;
2833		offset = lists = 0;
2834		goto evict_start;
2835	}
2836
2837	if (bufs_skipped) {
2838		ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
2839		ASSERT(bytes >= 0);
2840	}
2841
2842	if (bytes_deleted < bytes)
2843		dprintf("only deleted %lld bytes from %p",
2844		    (longlong_t)bytes_deleted, state);
2845}
2846
2847static void
2848arc_adjust(void)
2849{
2850	int64_t adjustment, delta;
2851
2852	/*
2853	 * Adjust MRU size
2854	 */
2855
2856	adjustment = MIN((int64_t)(arc_size - arc_c),
2857	    (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used -
2858	    arc_p));
2859
2860	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
2861		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment);
2862		(void) arc_evict(arc_mru, 0, delta, FALSE, ARC_BUFC_DATA);
2863		adjustment -= delta;
2864	}
2865
2866	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2867		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
2868		(void) arc_evict(arc_mru, 0, delta, FALSE,
2869		    ARC_BUFC_METADATA);
2870	}
2871
2872	/*
2873	 * Adjust MFU size
2874	 */
2875
2876	adjustment = arc_size - arc_c;
2877
2878	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
2879		delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]);
2880		(void) arc_evict(arc_mfu, 0, delta, FALSE, ARC_BUFC_DATA);
2881		adjustment -= delta;
2882	}
2883
2884	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2885		int64_t delta = MIN(adjustment,
2886		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA]);
2887		(void) arc_evict(arc_mfu, 0, delta, FALSE,
2888		    ARC_BUFC_METADATA);
2889	}
2890
2891	/*
2892	 * Adjust ghost lists
2893	 */
2894
2895	adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
2896
2897	if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
2898		delta = MIN(arc_mru_ghost->arcs_size, adjustment);
2899		arc_evict_ghost(arc_mru_ghost, 0, delta);
2900	}
2901
2902	adjustment =
2903	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
2904
2905	if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
2906		delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
2907		arc_evict_ghost(arc_mfu_ghost, 0, delta);
2908	}
2909}
2910
2911static void
2912arc_do_user_evicts(void)
2913{
2914	static arc_buf_t *tmp_arc_eviction_list;
2915
2916	/*
2917	 * Move list over to avoid LOR
2918	 */
2919restart:
2920	mutex_enter(&arc_eviction_mtx);
2921	tmp_arc_eviction_list = arc_eviction_list;
2922	arc_eviction_list = NULL;
2923	mutex_exit(&arc_eviction_mtx);
2924
2925	while (tmp_arc_eviction_list != NULL) {
2926		arc_buf_t *buf = tmp_arc_eviction_list;
2927		tmp_arc_eviction_list = buf->b_next;
2928		mutex_enter(&buf->b_evict_lock);
2929		buf->b_hdr = NULL;
2930		mutex_exit(&buf->b_evict_lock);
2931
2932		if (buf->b_efunc != NULL)
2933			VERIFY0(buf->b_efunc(buf->b_private));
2934
2935		buf->b_efunc = NULL;
2936		buf->b_private = NULL;
2937		kmem_cache_free(buf_cache, buf);
2938	}
2939
2940	if (arc_eviction_list != NULL)
2941		goto restart;
2942}
2943
2944/*
2945 * Flush all *evictable* data from the cache for the given spa.
2946 * NOTE: this will not touch "active" (i.e. referenced) data.
2947 */
2948void
2949arc_flush(spa_t *spa)
2950{
2951	uint64_t guid = 0;
2952
2953	if (spa != NULL)
2954		guid = spa_load_guid(spa);
2955
2956	while (arc_mru->arcs_lsize[ARC_BUFC_DATA]) {
2957		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
2958		if (spa != NULL)
2959			break;
2960	}
2961	while (arc_mru->arcs_lsize[ARC_BUFC_METADATA]) {
2962		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
2963		if (spa != NULL)
2964			break;
2965	}
2966	while (arc_mfu->arcs_lsize[ARC_BUFC_DATA]) {
2967		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
2968		if (spa != NULL)
2969			break;
2970	}
2971	while (arc_mfu->arcs_lsize[ARC_BUFC_METADATA]) {
2972		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
2973		if (spa != NULL)
2974			break;
2975	}
2976
2977	arc_evict_ghost(arc_mru_ghost, guid, -1);
2978	arc_evict_ghost(arc_mfu_ghost, guid, -1);
2979
2980	mutex_enter(&arc_reclaim_thr_lock);
2981	arc_do_user_evicts();
2982	mutex_exit(&arc_reclaim_thr_lock);
2983	ASSERT(spa || arc_eviction_list == NULL);
2984}
2985
2986void
2987arc_shrink(void)
2988{
2989
2990	if (arc_c > arc_c_min) {
2991		uint64_t to_free;
2992
2993		to_free = arc_c >> arc_shrink_shift;
2994		DTRACE_PROBE4(arc__shrink, uint64_t, arc_c, uint64_t,
2995			arc_c_min, uint64_t, arc_p, uint64_t, to_free);
2996		if (arc_c > arc_c_min + to_free)
2997			atomic_add_64(&arc_c, -to_free);
2998		else
2999			arc_c = arc_c_min;
3000
3001		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
3002		if (arc_c > arc_size)
3003			arc_c = MAX(arc_size, arc_c_min);
3004		if (arc_p > arc_c)
3005			arc_p = (arc_c >> 1);
3006
3007		DTRACE_PROBE2(arc__shrunk, uint64_t, arc_c, uint64_t,
3008			arc_p);
3009
3010		ASSERT(arc_c >= arc_c_min);
3011		ASSERT((int64_t)arc_p >= 0);
3012	}
3013
3014	if (arc_size > arc_c) {
3015		DTRACE_PROBE2(arc__shrink_adjust, uint64_t, arc_size,
3016			uint64_t, arc_c);
3017		arc_adjust();
3018	}
3019}
3020
3021static int needfree = 0;
3022
3023static int
3024arc_reclaim_needed(void)
3025{
3026
3027#ifdef _KERNEL
3028
3029	if (needfree) {
3030		DTRACE_PROBE(arc__reclaim_needfree);
3031		return (1);
3032	}
3033
3034	/*
3035	 * Cooperate with pagedaemon when it's time for it to scan
3036	 * and reclaim some pages.
3037	 */
3038	if (freemem < zfs_arc_free_target) {
3039		DTRACE_PROBE2(arc__reclaim_freemem, uint64_t,
3040		    freemem, uint64_t, zfs_arc_free_target);
3041		return (1);
3042	}
3043
3044#ifdef sun
3045	/*
3046	 * take 'desfree' extra pages, so we reclaim sooner, rather than later
3047	 */
3048	extra = desfree;
3049
3050	/*
3051	 * check that we're out of range of the pageout scanner.  It starts to
3052	 * schedule paging if freemem is less than lotsfree and needfree.
3053	 * lotsfree is the high-water mark for pageout, and needfree is the
3054	 * number of needed free pages.  We add extra pages here to make sure
3055	 * the scanner doesn't start up while we're freeing memory.
3056	 */
3057	if (freemem < lotsfree + needfree + extra)
3058		return (1);
3059
3060	/*
3061	 * check to make sure that swapfs has enough space so that anon
3062	 * reservations can still succeed. anon_resvmem() checks that the
3063	 * availrmem is greater than swapfs_minfree, and the number of reserved
3064	 * swap pages.  We also add a bit of extra here just to prevent
3065	 * circumstances from getting really dire.
3066	 */
3067	if (availrmem < swapfs_minfree + swapfs_reserve + extra)
3068		return (1);
3069
3070	/*
3071	 * Check that we have enough availrmem that memory locking (e.g., via
3072	 * mlock(3C) or memcntl(2)) can still succeed.  (pages_pp_maximum
3073	 * stores the number of pages that cannot be locked; when availrmem
3074	 * drops below pages_pp_maximum, page locking mechanisms such as
3075	 * page_pp_lock() will fail.)
3076	 */
3077	if (availrmem <= pages_pp_maximum)
3078		return (1);
3079
3080#endif	/* sun */
3081#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
3082	/*
3083	 * If we're on an i386 platform, it's possible that we'll exhaust the
3084	 * kernel heap space before we ever run out of available physical
3085	 * memory.  Most checks of the size of the heap_area compare against
3086	 * tune.t_minarmem, which is the minimum available real memory that we
3087	 * can have in the system.  However, this is generally fixed at 25 pages
3088	 * which is so low that it's useless.  In this comparison, we seek to
3089	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
3090	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
3091	 * free)
3092	 */
3093	if (vmem_size(heap_arena, VMEM_FREE) <
3094	    (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2)) {
3095		DTRACE_PROBE2(arc__reclaim_used, uint64_t,
3096		    vmem_size(heap_arena, VMEM_FREE), uint64_t,
3097		    (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2);
3098		return (1);
3099	}
3100#define	zio_arena	NULL
3101#else
3102#define	zio_arena	heap_arena
3103#endif
3104
3105	/*
3106	 * If zio data pages are being allocated out of a separate heap segment,
3107	 * then enforce that the size of available vmem for this arena remains
3108	 * above about 1/16th free.
3109	 *
3110	 * Note: The 1/16th arena free requirement was put in place
3111	 * to aggressively evict memory from the arc in order to avoid
3112	 * memory fragmentation issues.
3113	 */
3114	if (zio_arena != NULL &&
3115	    vmem_size(zio_arena, VMEM_FREE) <
3116	    (vmem_size(zio_arena, VMEM_ALLOC) >> 4))
3117		return (1);
3118
3119	/*
3120	 * Above limits know nothing about real level of KVA fragmentation.
3121	 * Start aggressive reclamation if too little sequential KVA left.
3122	 */
3123	if (vmem_size(heap_arena, VMEM_MAXFREE) < zfs_max_recordsize) {
3124		DTRACE_PROBE2(arc__reclaim_maxfree, uint64_t,
3125		    vmem_size(heap_arena, VMEM_MAXFREE),
3126		    uint64_t, zfs_max_recordsize);
3127		return (1);
3128	}
3129
3130#else	/* _KERNEL */
3131	if (spa_get_random(100) == 0)
3132		return (1);
3133#endif	/* _KERNEL */
3134	DTRACE_PROBE(arc__reclaim_no);
3135
3136	return (0);
3137}
3138
3139extern kmem_cache_t	*zio_buf_cache[];
3140extern kmem_cache_t	*zio_data_buf_cache[];
3141extern kmem_cache_t	*range_seg_cache;
3142
3143static __noinline void
3144arc_kmem_reap_now(arc_reclaim_strategy_t strat)
3145{
3146	size_t			i;
3147	kmem_cache_t		*prev_cache = NULL;
3148	kmem_cache_t		*prev_data_cache = NULL;
3149
3150	DTRACE_PROBE(arc__kmem_reap_start);
3151#ifdef _KERNEL
3152	if (arc_meta_used >= arc_meta_limit) {
3153		/*
3154		 * We are exceeding our meta-data cache limit.
3155		 * Purge some DNLC entries to release holds on meta-data.
3156		 */
3157		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
3158	}
3159#if defined(__i386)
3160	/*
3161	 * Reclaim unused memory from all kmem caches.
3162	 */
3163	kmem_reap();
3164#endif
3165#endif
3166
3167	/*
3168	 * An aggressive reclamation will shrink the cache size as well as
3169	 * reap free buffers from the arc kmem caches.
3170	 */
3171	if (strat == ARC_RECLAIM_AGGR)
3172		arc_shrink();
3173
3174	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
3175		if (zio_buf_cache[i] != prev_cache) {
3176			prev_cache = zio_buf_cache[i];
3177			kmem_cache_reap_now(zio_buf_cache[i]);
3178		}
3179		if (zio_data_buf_cache[i] != prev_data_cache) {
3180			prev_data_cache = zio_data_buf_cache[i];
3181			kmem_cache_reap_now(zio_data_buf_cache[i]);
3182		}
3183	}
3184	kmem_cache_reap_now(buf_cache);
3185	kmem_cache_reap_now(hdr_full_cache);
3186	kmem_cache_reap_now(hdr_l2only_cache);
3187	kmem_cache_reap_now(range_seg_cache);
3188
3189#ifdef sun
3190	/*
3191	 * Ask the vmem arena to reclaim unused memory from its
3192	 * quantum caches.
3193	 */
3194	if (zio_arena != NULL && strat == ARC_RECLAIM_AGGR)
3195		vmem_qcache_reap(zio_arena);
3196#endif
3197	DTRACE_PROBE(arc__kmem_reap_end);
3198}
3199
3200static void
3201arc_reclaim_thread(void *dummy __unused)
3202{
3203	clock_t			growtime = 0;
3204	arc_reclaim_strategy_t	last_reclaim = ARC_RECLAIM_CONS;
3205	callb_cpr_t		cpr;
3206
3207	CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
3208
3209	mutex_enter(&arc_reclaim_thr_lock);
3210	while (arc_thread_exit == 0) {
3211		if (arc_reclaim_needed()) {
3212
3213			if (arc_no_grow) {
3214				if (last_reclaim == ARC_RECLAIM_CONS) {
3215					DTRACE_PROBE(arc__reclaim_aggr_no_grow);
3216					last_reclaim = ARC_RECLAIM_AGGR;
3217				} else {
3218					last_reclaim = ARC_RECLAIM_CONS;
3219				}
3220			} else {
3221				arc_no_grow = TRUE;
3222				last_reclaim = ARC_RECLAIM_AGGR;
3223				DTRACE_PROBE(arc__reclaim_aggr);
3224				membar_producer();
3225			}
3226
3227			/* reset the growth delay for every reclaim */
3228			growtime = ddi_get_lbolt() + (arc_grow_retry * hz);
3229
3230			if (needfree && last_reclaim == ARC_RECLAIM_CONS) {
3231				/*
3232				 * If needfree is TRUE our vm_lowmem hook
3233				 * was called and in that case we must free some
3234				 * memory, so switch to aggressive mode.
3235				 */
3236				arc_no_grow = TRUE;
3237				last_reclaim = ARC_RECLAIM_AGGR;
3238			}
3239			arc_kmem_reap_now(last_reclaim);
3240			arc_warm = B_TRUE;
3241
3242		} else if (arc_no_grow && ddi_get_lbolt() >= growtime) {
3243			arc_no_grow = FALSE;
3244		}
3245
3246		arc_adjust();
3247
3248		if (arc_eviction_list != NULL)
3249			arc_do_user_evicts();
3250
3251#ifdef _KERNEL
3252		if (needfree) {
3253			needfree = 0;
3254			wakeup(&needfree);
3255		}
3256#endif
3257
3258		/*
3259		 * This is necessary in order for the mdb ::arc dcmd to
3260		 * show up to date information. Since the ::arc command
3261		 * does not call the kstat's update function, without
3262		 * this call, the command may show stale stats for the
3263		 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
3264		 * with this change, the data might be up to 1 second
3265		 * out of date; but that should suffice. The arc_state_t
3266		 * structures can be queried directly if more accurate
3267		 * information is needed.
3268		 */
3269		if (arc_ksp != NULL)
3270			arc_ksp->ks_update(arc_ksp, KSTAT_READ);
3271
3272		/* block until needed, or one second, whichever is shorter */
3273		CALLB_CPR_SAFE_BEGIN(&cpr);
3274		(void) cv_timedwait(&arc_reclaim_thr_cv,
3275		    &arc_reclaim_thr_lock, hz);
3276		CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
3277	}
3278
3279	arc_thread_exit = 0;
3280	cv_broadcast(&arc_reclaim_thr_cv);
3281	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_thr_lock */
3282	thread_exit();
3283}
3284
3285/*
3286 * Adapt arc info given the number of bytes we are trying to add and
3287 * the state that we are comming from.  This function is only called
3288 * when we are adding new content to the cache.
3289 */
3290static void
3291arc_adapt(int bytes, arc_state_t *state)
3292{
3293	int mult;
3294	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
3295
3296	if (state == arc_l2c_only)
3297		return;
3298
3299	ASSERT(bytes > 0);
3300	/*
3301	 * Adapt the target size of the MRU list:
3302	 *	- if we just hit in the MRU ghost list, then increase
3303	 *	  the target size of the MRU list.
3304	 *	- if we just hit in the MFU ghost list, then increase
3305	 *	  the target size of the MFU list by decreasing the
3306	 *	  target size of the MRU list.
3307	 */
3308	if (state == arc_mru_ghost) {
3309		mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
3310		    1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
3311		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
3312
3313		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
3314	} else if (state == arc_mfu_ghost) {
3315		uint64_t delta;
3316
3317		mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
3318		    1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
3319		mult = MIN(mult, 10);
3320
3321		delta = MIN(bytes * mult, arc_p);
3322		arc_p = MAX(arc_p_min, arc_p - delta);
3323	}
3324	ASSERT((int64_t)arc_p >= 0);
3325
3326	if (arc_reclaim_needed()) {
3327		cv_signal(&arc_reclaim_thr_cv);
3328		return;
3329	}
3330
3331	if (arc_no_grow)
3332		return;
3333
3334	if (arc_c >= arc_c_max)
3335		return;
3336
3337	/*
3338	 * If we're within (2 * maxblocksize) bytes of the target
3339	 * cache size, increment the target cache size
3340	 */
3341	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
3342		DTRACE_PROBE1(arc__inc_adapt, int, bytes);
3343		atomic_add_64(&arc_c, (int64_t)bytes);
3344		if (arc_c > arc_c_max)
3345			arc_c = arc_c_max;
3346		else if (state == arc_anon)
3347			atomic_add_64(&arc_p, (int64_t)bytes);
3348		if (arc_p > arc_c)
3349			arc_p = arc_c;
3350	}
3351	ASSERT((int64_t)arc_p >= 0);
3352}
3353
3354/*
3355 * Check if the cache has reached its limits and eviction is required
3356 * prior to insert.
3357 */
3358static int
3359arc_evict_needed(arc_buf_contents_t type)
3360{
3361	if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
3362		return (1);
3363
3364	if (arc_reclaim_needed())
3365		return (1);
3366
3367	return (arc_size > arc_c);
3368}
3369
3370/*
3371 * The buffer, supplied as the first argument, needs a data block.
3372 * So, if we are at cache max, determine which cache should be victimized.
3373 * We have the following cases:
3374 *
3375 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
3376 * In this situation if we're out of space, but the resident size of the MFU is
3377 * under the limit, victimize the MFU cache to satisfy this insertion request.
3378 *
3379 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
3380 * Here, we've used up all of the available space for the MRU, so we need to
3381 * evict from our own cache instead.  Evict from the set of resident MRU
3382 * entries.
3383 *
3384 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
3385 * c minus p represents the MFU space in the cache, since p is the size of the
3386 * cache that is dedicated to the MRU.  In this situation there's still space on
3387 * the MFU side, so the MRU side needs to be victimized.
3388 *
3389 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
3390 * MFU's resident set is consuming more space than it has been allotted.  In
3391 * this situation, we must victimize our own cache, the MFU, for this insertion.
3392 */
3393static void
3394arc_get_data_buf(arc_buf_t *buf)
3395{
3396	arc_state_t		*state = buf->b_hdr->b_l1hdr.b_state;
3397	uint64_t		size = buf->b_hdr->b_size;
3398	arc_buf_contents_t	type = arc_buf_type(buf->b_hdr);
3399
3400	arc_adapt(size, state);
3401
3402	/*
3403	 * We have not yet reached cache maximum size,
3404	 * just allocate a new buffer.
3405	 */
3406	if (!arc_evict_needed(type)) {
3407		if (type == ARC_BUFC_METADATA) {
3408			buf->b_data = zio_buf_alloc(size);
3409			arc_space_consume(size, ARC_SPACE_META);
3410		} else {
3411			ASSERT(type == ARC_BUFC_DATA);
3412			buf->b_data = zio_data_buf_alloc(size);
3413			arc_space_consume(size, ARC_SPACE_DATA);
3414		}
3415		goto out;
3416	}
3417
3418	/*
3419	 * If we are prefetching from the mfu ghost list, this buffer
3420	 * will end up on the mru list; so steal space from there.
3421	 */
3422	if (state == arc_mfu_ghost)
3423		state = HDR_PREFETCH(buf->b_hdr) ? arc_mru : arc_mfu;
3424	else if (state == arc_mru_ghost)
3425		state = arc_mru;
3426
3427	if (state == arc_mru || state == arc_anon) {
3428		uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
3429		state = (arc_mfu->arcs_lsize[type] >= size &&
3430		    arc_p > mru_used) ? arc_mfu : arc_mru;
3431	} else {
3432		/* MFU cases */
3433		uint64_t mfu_space = arc_c - arc_p;
3434		state =  (arc_mru->arcs_lsize[type] >= size &&
3435		    mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
3436	}
3437	if ((buf->b_data = arc_evict(state, 0, size, TRUE, type)) == NULL) {
3438		if (type == ARC_BUFC_METADATA) {
3439			buf->b_data = zio_buf_alloc(size);
3440			arc_space_consume(size, ARC_SPACE_META);
3441		} else {
3442			ASSERT(type == ARC_BUFC_DATA);
3443			buf->b_data = zio_data_buf_alloc(size);
3444			arc_space_consume(size, ARC_SPACE_DATA);
3445		}
3446		ARCSTAT_BUMP(arcstat_recycle_miss);
3447	}
3448	ASSERT(buf->b_data != NULL);
3449out:
3450	/*
3451	 * Update the state size.  Note that ghost states have a
3452	 * "ghost size" and so don't need to be updated.
3453	 */
3454	if (!GHOST_STATE(buf->b_hdr->b_l1hdr.b_state)) {
3455		arc_buf_hdr_t *hdr = buf->b_hdr;
3456
3457		atomic_add_64(&hdr->b_l1hdr.b_state->arcs_size, size);
3458		if (list_link_active(&hdr->b_l1hdr.b_arc_node)) {
3459			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3460			atomic_add_64(&hdr->b_l1hdr.b_state->arcs_lsize[type],
3461			    size);
3462		}
3463		/*
3464		 * If we are growing the cache, and we are adding anonymous
3465		 * data, and we have outgrown arc_p, update arc_p
3466		 */
3467		if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
3468		    arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
3469			arc_p = MIN(arc_c, arc_p + size);
3470	}
3471	ARCSTAT_BUMP(arcstat_allocated);
3472}
3473
3474/*
3475 * This routine is called whenever a buffer is accessed.
3476 * NOTE: the hash lock is dropped in this function.
3477 */
3478static void
3479arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3480{
3481	clock_t now;
3482
3483	ASSERT(MUTEX_HELD(hash_lock));
3484	ASSERT(HDR_HAS_L1HDR(hdr));
3485
3486	if (hdr->b_l1hdr.b_state == arc_anon) {
3487		/*
3488		 * This buffer is not in the cache, and does not
3489		 * appear in our "ghost" list.  Add the new buffer
3490		 * to the MRU state.
3491		 */
3492
3493		ASSERT0(hdr->b_l1hdr.b_arc_access);
3494		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3495		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
3496		arc_change_state(arc_mru, hdr, hash_lock);
3497
3498	} else if (hdr->b_l1hdr.b_state == arc_mru) {
3499		now = ddi_get_lbolt();
3500
3501		/*
3502		 * If this buffer is here because of a prefetch, then either:
3503		 * - clear the flag if this is a "referencing" read
3504		 *   (any subsequent access will bump this into the MFU state).
3505		 * or
3506		 * - move the buffer to the head of the list if this is
3507		 *   another prefetch (to make it less likely to be evicted).
3508		 */
3509		if (HDR_PREFETCH(hdr)) {
3510			if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
3511				ASSERT(list_link_active(
3512				    &hdr->b_l1hdr.b_arc_node));
3513			} else {
3514				hdr->b_flags &= ~ARC_FLAG_PREFETCH;
3515				ARCSTAT_BUMP(arcstat_mru_hits);
3516			}
3517			hdr->b_l1hdr.b_arc_access = now;
3518			return;
3519		}
3520
3521		/*
3522		 * This buffer has been "accessed" only once so far,
3523		 * but it is still in the cache. Move it to the MFU
3524		 * state.
3525		 */
3526		if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) {
3527			/*
3528			 * More than 125ms have passed since we
3529			 * instantiated this buffer.  Move it to the
3530			 * most frequently used state.
3531			 */
3532			hdr->b_l1hdr.b_arc_access = now;
3533			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3534			arc_change_state(arc_mfu, hdr, hash_lock);
3535		}
3536		ARCSTAT_BUMP(arcstat_mru_hits);
3537	} else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
3538		arc_state_t	*new_state;
3539		/*
3540		 * This buffer has been "accessed" recently, but
3541		 * was evicted from the cache.  Move it to the
3542		 * MFU state.
3543		 */
3544
3545		if (HDR_PREFETCH(hdr)) {
3546			new_state = arc_mru;
3547			if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
3548				hdr->b_flags &= ~ARC_FLAG_PREFETCH;
3549			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
3550		} else {
3551			new_state = arc_mfu;
3552			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3553		}
3554
3555		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3556		arc_change_state(new_state, hdr, hash_lock);
3557
3558		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
3559	} else if (hdr->b_l1hdr.b_state == arc_mfu) {
3560		/*
3561		 * This buffer has been accessed more than once and is
3562		 * still in the cache.  Keep it in the MFU state.
3563		 *
3564		 * NOTE: an add_reference() that occurred when we did
3565		 * the arc_read() will have kicked this off the list.
3566		 * If it was a prefetch, we will explicitly move it to
3567		 * the head of the list now.
3568		 */
3569		if ((HDR_PREFETCH(hdr)) != 0) {
3570			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3571			ASSERT(list_link_active(&hdr->b_l1hdr.b_arc_node));
3572		}
3573		ARCSTAT_BUMP(arcstat_mfu_hits);
3574		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3575	} else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
3576		arc_state_t	*new_state = arc_mfu;
3577		/*
3578		 * This buffer has been accessed more than once but has
3579		 * been evicted from the cache.  Move it back to the
3580		 * MFU state.
3581		 */
3582
3583		if (HDR_PREFETCH(hdr)) {
3584			/*
3585			 * This is a prefetch access...
3586			 * move this block back to the MRU state.
3587			 */
3588			ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
3589			new_state = arc_mru;
3590		}
3591
3592		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3593		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3594		arc_change_state(new_state, hdr, hash_lock);
3595
3596		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
3597	} else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
3598		/*
3599		 * This buffer is on the 2nd Level ARC.
3600		 */
3601
3602		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3603		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3604		arc_change_state(arc_mfu, hdr, hash_lock);
3605	} else {
3606		ASSERT(!"invalid arc state");
3607	}
3608}
3609
3610/* a generic arc_done_func_t which you can use */
3611/* ARGSUSED */
3612void
3613arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
3614{
3615	if (zio == NULL || zio->io_error == 0)
3616		bcopy(buf->b_data, arg, buf->b_hdr->b_size);
3617	VERIFY(arc_buf_remove_ref(buf, arg));
3618}
3619
3620/* a generic arc_done_func_t */
3621void
3622arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
3623{
3624	arc_buf_t **bufp = arg;
3625	if (zio && zio->io_error) {
3626		VERIFY(arc_buf_remove_ref(buf, arg));
3627		*bufp = NULL;
3628	} else {
3629		*bufp = buf;
3630		ASSERT(buf->b_data);
3631	}
3632}
3633
3634static void
3635arc_read_done(zio_t *zio)
3636{
3637	arc_buf_hdr_t	*hdr;
3638	arc_buf_t	*buf;
3639	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
3640	kmutex_t	*hash_lock = NULL;
3641	arc_callback_t	*callback_list, *acb;
3642	int		freeable = FALSE;
3643
3644	buf = zio->io_private;
3645	hdr = buf->b_hdr;
3646
3647	/*
3648	 * The hdr was inserted into hash-table and removed from lists
3649	 * prior to starting I/O.  We should find this header, since
3650	 * it's in the hash table, and it should be legit since it's
3651	 * not possible to evict it during the I/O.  The only possible
3652	 * reason for it not to be found is if we were freed during the
3653	 * read.
3654	 */
3655	if (HDR_IN_HASH_TABLE(hdr)) {
3656		ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
3657		ASSERT3U(hdr->b_dva.dva_word[0], ==,
3658		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
3659		ASSERT3U(hdr->b_dva.dva_word[1], ==,
3660		    BP_IDENTITY(zio->io_bp)->dva_word[1]);
3661
3662		arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
3663		    &hash_lock);
3664
3665		ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) &&
3666		    hash_lock == NULL) ||
3667		    (found == hdr &&
3668		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
3669		    (found == hdr && HDR_L2_READING(hdr)));
3670	}
3671
3672	hdr->b_flags &= ~ARC_FLAG_L2_EVICTED;
3673	if (l2arc_noprefetch && HDR_PREFETCH(hdr))
3674		hdr->b_flags &= ~ARC_FLAG_L2CACHE;
3675
3676	/* byteswap if necessary */
3677	callback_list = hdr->b_l1hdr.b_acb;
3678	ASSERT(callback_list != NULL);
3679	if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
3680		dmu_object_byteswap_t bswap =
3681		    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
3682		arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
3683		    byteswap_uint64_array :
3684		    dmu_ot_byteswap[bswap].ob_func;
3685		func(buf->b_data, hdr->b_size);
3686	}
3687
3688	arc_cksum_compute(buf, B_FALSE);
3689#ifdef illumos
3690	arc_buf_watch(buf);
3691#endif /* illumos */
3692
3693	if (hash_lock && zio->io_error == 0 &&
3694	    hdr->b_l1hdr.b_state == arc_anon) {
3695		/*
3696		 * Only call arc_access on anonymous buffers.  This is because
3697		 * if we've issued an I/O for an evicted buffer, we've already
3698		 * called arc_access (to prevent any simultaneous readers from
3699		 * getting confused).
3700		 */
3701		arc_access(hdr, hash_lock);
3702	}
3703
3704	/* create copies of the data buffer for the callers */
3705	abuf = buf;
3706	for (acb = callback_list; acb; acb = acb->acb_next) {
3707		if (acb->acb_done) {
3708			if (abuf == NULL) {
3709				ARCSTAT_BUMP(arcstat_duplicate_reads);
3710				abuf = arc_buf_clone(buf);
3711			}
3712			acb->acb_buf = abuf;
3713			abuf = NULL;
3714		}
3715	}
3716	hdr->b_l1hdr.b_acb = NULL;
3717	hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
3718	ASSERT(!HDR_BUF_AVAILABLE(hdr));
3719	if (abuf == buf) {
3720		ASSERT(buf->b_efunc == NULL);
3721		ASSERT(hdr->b_l1hdr.b_datacnt == 1);
3722		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
3723	}
3724
3725	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
3726	    callback_list != NULL);
3727
3728	if (zio->io_error != 0) {
3729		hdr->b_flags |= ARC_FLAG_IO_ERROR;
3730		if (hdr->b_l1hdr.b_state != arc_anon)
3731			arc_change_state(arc_anon, hdr, hash_lock);
3732		if (HDR_IN_HASH_TABLE(hdr))
3733			buf_hash_remove(hdr);
3734		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
3735	}
3736
3737	/*
3738	 * Broadcast before we drop the hash_lock to avoid the possibility
3739	 * that the hdr (and hence the cv) might be freed before we get to
3740	 * the cv_broadcast().
3741	 */
3742	cv_broadcast(&hdr->b_l1hdr.b_cv);
3743
3744	if (hash_lock != NULL) {
3745		mutex_exit(hash_lock);
3746	} else {
3747		/*
3748		 * This block was freed while we waited for the read to
3749		 * complete.  It has been removed from the hash table and
3750		 * moved to the anonymous state (so that it won't show up
3751		 * in the cache).
3752		 */
3753		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3754		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
3755	}
3756
3757	/* execute each callback and free its structure */
3758	while ((acb = callback_list) != NULL) {
3759		if (acb->acb_done)
3760			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
3761
3762		if (acb->acb_zio_dummy != NULL) {
3763			acb->acb_zio_dummy->io_error = zio->io_error;
3764			zio_nowait(acb->acb_zio_dummy);
3765		}
3766
3767		callback_list = acb->acb_next;
3768		kmem_free(acb, sizeof (arc_callback_t));
3769	}
3770
3771	if (freeable)
3772		arc_hdr_destroy(hdr);
3773}
3774
3775/*
3776 * "Read" the block block at the specified DVA (in bp) via the
3777 * cache.  If the block is found in the cache, invoke the provided
3778 * callback immediately and return.  Note that the `zio' parameter
3779 * in the callback will be NULL in this case, since no IO was
3780 * required.  If the block is not in the cache pass the read request
3781 * on to the spa with a substitute callback function, so that the
3782 * requested block will be added to the cache.
3783 *
3784 * If a read request arrives for a block that has a read in-progress,
3785 * either wait for the in-progress read to complete (and return the
3786 * results); or, if this is a read with a "done" func, add a record
3787 * to the read to invoke the "done" func when the read completes,
3788 * and return; or just return.
3789 *
3790 * arc_read_done() will invoke all the requested "done" functions
3791 * for readers of this block.
3792 */
3793int
3794arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
3795    void *private, zio_priority_t priority, int zio_flags,
3796    arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
3797{
3798	arc_buf_hdr_t *hdr = NULL;
3799	arc_buf_t *buf = NULL;
3800	kmutex_t *hash_lock = NULL;
3801	zio_t *rzio;
3802	uint64_t guid = spa_load_guid(spa);
3803
3804	ASSERT(!BP_IS_EMBEDDED(bp) ||
3805	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
3806
3807top:
3808	if (!BP_IS_EMBEDDED(bp)) {
3809		/*
3810		 * Embedded BP's have no DVA and require no I/O to "read".
3811		 * Create an anonymous arc buf to back it.
3812		 */
3813		hdr = buf_hash_find(guid, bp, &hash_lock);
3814	}
3815
3816	if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_datacnt > 0) {
3817
3818		*arc_flags |= ARC_FLAG_CACHED;
3819
3820		if (HDR_IO_IN_PROGRESS(hdr)) {
3821
3822			if (*arc_flags & ARC_FLAG_WAIT) {
3823				cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
3824				mutex_exit(hash_lock);
3825				goto top;
3826			}
3827			ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
3828
3829			if (done) {
3830				arc_callback_t	*acb = NULL;
3831
3832				acb = kmem_zalloc(sizeof (arc_callback_t),
3833				    KM_SLEEP);
3834				acb->acb_done = done;
3835				acb->acb_private = private;
3836				if (pio != NULL)
3837					acb->acb_zio_dummy = zio_null(pio,
3838					    spa, NULL, NULL, NULL, zio_flags);
3839
3840				ASSERT(acb->acb_done != NULL);
3841				acb->acb_next = hdr->b_l1hdr.b_acb;
3842				hdr->b_l1hdr.b_acb = acb;
3843				add_reference(hdr, hash_lock, private);
3844				mutex_exit(hash_lock);
3845				return (0);
3846			}
3847			mutex_exit(hash_lock);
3848			return (0);
3849		}
3850
3851		ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
3852		    hdr->b_l1hdr.b_state == arc_mfu);
3853
3854		if (done) {
3855			add_reference(hdr, hash_lock, private);
3856			/*
3857			 * If this block is already in use, create a new
3858			 * copy of the data so that we will be guaranteed
3859			 * that arc_release() will always succeed.
3860			 */
3861			buf = hdr->b_l1hdr.b_buf;
3862			ASSERT(buf);
3863			ASSERT(buf->b_data);
3864			if (HDR_BUF_AVAILABLE(hdr)) {
3865				ASSERT(buf->b_efunc == NULL);
3866				hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
3867			} else {
3868				buf = arc_buf_clone(buf);
3869			}
3870
3871		} else if (*arc_flags & ARC_FLAG_PREFETCH &&
3872		    refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
3873			hdr->b_flags |= ARC_FLAG_PREFETCH;
3874		}
3875		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
3876		arc_access(hdr, hash_lock);
3877		if (*arc_flags & ARC_FLAG_L2CACHE)
3878			hdr->b_flags |= ARC_FLAG_L2CACHE;
3879		if (*arc_flags & ARC_FLAG_L2COMPRESS)
3880			hdr->b_flags |= ARC_FLAG_L2COMPRESS;
3881		mutex_exit(hash_lock);
3882		ARCSTAT_BUMP(arcstat_hits);
3883		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
3884		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
3885		    data, metadata, hits);
3886
3887		if (done)
3888			done(NULL, buf, private);
3889	} else {
3890		uint64_t size = BP_GET_LSIZE(bp);
3891		arc_callback_t *acb;
3892		vdev_t *vd = NULL;
3893		uint64_t addr = 0;
3894		boolean_t devw = B_FALSE;
3895		enum zio_compress b_compress = ZIO_COMPRESS_OFF;
3896		int32_t b_asize = 0;
3897
3898		if (hdr == NULL) {
3899			/* this block is not in the cache */
3900			arc_buf_hdr_t *exists = NULL;
3901			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
3902			buf = arc_buf_alloc(spa, size, private, type);
3903			hdr = buf->b_hdr;
3904			if (!BP_IS_EMBEDDED(bp)) {
3905				hdr->b_dva = *BP_IDENTITY(bp);
3906				hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
3907				exists = buf_hash_insert(hdr, &hash_lock);
3908			}
3909			if (exists != NULL) {
3910				/* somebody beat us to the hash insert */
3911				mutex_exit(hash_lock);
3912				buf_discard_identity(hdr);
3913				(void) arc_buf_remove_ref(buf, private);
3914				goto top; /* restart the IO request */
3915			}
3916
3917			/* if this is a prefetch, we don't have a reference */
3918			if (*arc_flags & ARC_FLAG_PREFETCH) {
3919				(void) remove_reference(hdr, hash_lock,
3920				    private);
3921				hdr->b_flags |= ARC_FLAG_PREFETCH;
3922			}
3923			if (*arc_flags & ARC_FLAG_L2CACHE)
3924				hdr->b_flags |= ARC_FLAG_L2CACHE;
3925			if (*arc_flags & ARC_FLAG_L2COMPRESS)
3926				hdr->b_flags |= ARC_FLAG_L2COMPRESS;
3927			if (BP_GET_LEVEL(bp) > 0)
3928				hdr->b_flags |= ARC_FLAG_INDIRECT;
3929		} else {
3930			/*
3931			 * This block is in the ghost cache. If it was L2-only
3932			 * (and thus didn't have an L1 hdr), we realloc the
3933			 * header to add an L1 hdr.
3934			 */
3935			if (!HDR_HAS_L1HDR(hdr)) {
3936				hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
3937				    hdr_full_cache);
3938			}
3939
3940			ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
3941			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3942			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3943			ASSERT(hdr->b_l1hdr.b_buf == NULL);
3944
3945			/* if this is a prefetch, we don't have a reference */
3946			if (*arc_flags & ARC_FLAG_PREFETCH)
3947				hdr->b_flags |= ARC_FLAG_PREFETCH;
3948			else
3949				add_reference(hdr, hash_lock, private);
3950			if (*arc_flags & ARC_FLAG_L2CACHE)
3951				hdr->b_flags |= ARC_FLAG_L2CACHE;
3952			if (*arc_flags & ARC_FLAG_L2COMPRESS)
3953				hdr->b_flags |= ARC_FLAG_L2COMPRESS;
3954			buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
3955			buf->b_hdr = hdr;
3956			buf->b_data = NULL;
3957			buf->b_efunc = NULL;
3958			buf->b_private = NULL;
3959			buf->b_next = NULL;
3960			hdr->b_l1hdr.b_buf = buf;
3961			ASSERT0(hdr->b_l1hdr.b_datacnt);
3962			hdr->b_l1hdr.b_datacnt = 1;
3963			arc_get_data_buf(buf);
3964			arc_access(hdr, hash_lock);
3965		}
3966
3967		ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
3968
3969		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
3970		acb->acb_done = done;
3971		acb->acb_private = private;
3972
3973		ASSERT(hdr->b_l1hdr.b_acb == NULL);
3974		hdr->b_l1hdr.b_acb = acb;
3975		hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
3976
3977		if (HDR_HAS_L2HDR(hdr) &&
3978		    (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
3979			devw = hdr->b_l2hdr.b_dev->l2ad_writing;
3980			addr = hdr->b_l2hdr.b_daddr;
3981			b_compress = HDR_GET_COMPRESS(hdr);
3982			b_asize = hdr->b_l2hdr.b_asize;
3983			/*
3984			 * Lock out device removal.
3985			 */
3986			if (vdev_is_dead(vd) ||
3987			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
3988				vd = NULL;
3989		}
3990
3991		if (hash_lock != NULL)
3992			mutex_exit(hash_lock);
3993
3994		/*
3995		 * At this point, we have a level 1 cache miss.  Try again in
3996		 * L2ARC if possible.
3997		 */
3998		ASSERT3U(hdr->b_size, ==, size);
3999		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
4000		    uint64_t, size, zbookmark_phys_t *, zb);
4001		ARCSTAT_BUMP(arcstat_misses);
4002		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4003		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
4004		    data, metadata, misses);
4005#ifdef _KERNEL
4006		curthread->td_ru.ru_inblock++;
4007#endif
4008
4009		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
4010			/*
4011			 * Read from the L2ARC if the following are true:
4012			 * 1. The L2ARC vdev was previously cached.
4013			 * 2. This buffer still has L2ARC metadata.
4014			 * 3. This buffer isn't currently writing to the L2ARC.
4015			 * 4. The L2ARC entry wasn't evicted, which may
4016			 *    also have invalidated the vdev.
4017			 * 5. This isn't prefetch and l2arc_noprefetch is set.
4018			 */
4019			if (HDR_HAS_L2HDR(hdr) &&
4020			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
4021			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
4022				l2arc_read_callback_t *cb;
4023
4024				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
4025				ARCSTAT_BUMP(arcstat_l2_hits);
4026
4027				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
4028				    KM_SLEEP);
4029				cb->l2rcb_buf = buf;
4030				cb->l2rcb_spa = spa;
4031				cb->l2rcb_bp = *bp;
4032				cb->l2rcb_zb = *zb;
4033				cb->l2rcb_flags = zio_flags;
4034				cb->l2rcb_compress = b_compress;
4035
4036				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
4037				    addr + size < vd->vdev_psize -
4038				    VDEV_LABEL_END_SIZE);
4039
4040				/*
4041				 * l2arc read.  The SCL_L2ARC lock will be
4042				 * released by l2arc_read_done().
4043				 * Issue a null zio if the underlying buffer
4044				 * was squashed to zero size by compression.
4045				 */
4046				if (b_compress == ZIO_COMPRESS_EMPTY) {
4047					rzio = zio_null(pio, spa, vd,
4048					    l2arc_read_done, cb,
4049					    zio_flags | ZIO_FLAG_DONT_CACHE |
4050					    ZIO_FLAG_CANFAIL |
4051					    ZIO_FLAG_DONT_PROPAGATE |
4052					    ZIO_FLAG_DONT_RETRY);
4053				} else {
4054					rzio = zio_read_phys(pio, vd, addr,
4055					    b_asize, buf->b_data,
4056					    ZIO_CHECKSUM_OFF,
4057					    l2arc_read_done, cb, priority,
4058					    zio_flags | ZIO_FLAG_DONT_CACHE |
4059					    ZIO_FLAG_CANFAIL |
4060					    ZIO_FLAG_DONT_PROPAGATE |
4061					    ZIO_FLAG_DONT_RETRY, B_FALSE);
4062				}
4063				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
4064				    zio_t *, rzio);
4065				ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize);
4066
4067				if (*arc_flags & ARC_FLAG_NOWAIT) {
4068					zio_nowait(rzio);
4069					return (0);
4070				}
4071
4072				ASSERT(*arc_flags & ARC_FLAG_WAIT);
4073				if (zio_wait(rzio) == 0)
4074					return (0);
4075
4076				/* l2arc read error; goto zio_read() */
4077			} else {
4078				DTRACE_PROBE1(l2arc__miss,
4079				    arc_buf_hdr_t *, hdr);
4080				ARCSTAT_BUMP(arcstat_l2_misses);
4081				if (HDR_L2_WRITING(hdr))
4082					ARCSTAT_BUMP(arcstat_l2_rw_clash);
4083				spa_config_exit(spa, SCL_L2ARC, vd);
4084			}
4085		} else {
4086			if (vd != NULL)
4087				spa_config_exit(spa, SCL_L2ARC, vd);
4088			if (l2arc_ndev != 0) {
4089				DTRACE_PROBE1(l2arc__miss,
4090				    arc_buf_hdr_t *, hdr);
4091				ARCSTAT_BUMP(arcstat_l2_misses);
4092			}
4093		}
4094
4095		rzio = zio_read(pio, spa, bp, buf->b_data, size,
4096		    arc_read_done, buf, priority, zio_flags, zb);
4097
4098		if (*arc_flags & ARC_FLAG_WAIT)
4099			return (zio_wait(rzio));
4100
4101		ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4102		zio_nowait(rzio);
4103	}
4104	return (0);
4105}
4106
4107void
4108arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
4109{
4110	ASSERT(buf->b_hdr != NULL);
4111	ASSERT(buf->b_hdr->b_l1hdr.b_state != arc_anon);
4112	ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt) ||
4113	    func == NULL);
4114	ASSERT(buf->b_efunc == NULL);
4115	ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
4116
4117	buf->b_efunc = func;
4118	buf->b_private = private;
4119}
4120
4121/*
4122 * Notify the arc that a block was freed, and thus will never be used again.
4123 */
4124void
4125arc_freed(spa_t *spa, const blkptr_t *bp)
4126{
4127	arc_buf_hdr_t *hdr;
4128	kmutex_t *hash_lock;
4129	uint64_t guid = spa_load_guid(spa);
4130
4131	ASSERT(!BP_IS_EMBEDDED(bp));
4132
4133	hdr = buf_hash_find(guid, bp, &hash_lock);
4134	if (hdr == NULL)
4135		return;
4136	if (HDR_BUF_AVAILABLE(hdr)) {
4137		arc_buf_t *buf = hdr->b_l1hdr.b_buf;
4138		add_reference(hdr, hash_lock, FTAG);
4139		hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
4140		mutex_exit(hash_lock);
4141
4142		arc_release(buf, FTAG);
4143		(void) arc_buf_remove_ref(buf, FTAG);
4144	} else {
4145		mutex_exit(hash_lock);
4146	}
4147
4148}
4149
4150/*
4151 * Clear the user eviction callback set by arc_set_callback(), first calling
4152 * it if it exists.  Because the presence of a callback keeps an arc_buf cached
4153 * clearing the callback may result in the arc_buf being destroyed.  However,
4154 * it will not result in the *last* arc_buf being destroyed, hence the data
4155 * will remain cached in the ARC. We make a copy of the arc buffer here so
4156 * that we can process the callback without holding any locks.
4157 *
4158 * It's possible that the callback is already in the process of being cleared
4159 * by another thread.  In this case we can not clear the callback.
4160 *
4161 * Returns B_TRUE if the callback was successfully called and cleared.
4162 */
4163boolean_t
4164arc_clear_callback(arc_buf_t *buf)
4165{
4166	arc_buf_hdr_t *hdr;
4167	kmutex_t *hash_lock;
4168	arc_evict_func_t *efunc = buf->b_efunc;
4169	void *private = buf->b_private;
4170	list_t *list, *evicted_list;
4171	kmutex_t *lock, *evicted_lock;
4172
4173	mutex_enter(&buf->b_evict_lock);
4174	hdr = buf->b_hdr;
4175	if (hdr == NULL) {
4176		/*
4177		 * We are in arc_do_user_evicts().
4178		 */
4179		ASSERT(buf->b_data == NULL);
4180		mutex_exit(&buf->b_evict_lock);
4181		return (B_FALSE);
4182	} else if (buf->b_data == NULL) {
4183		/*
4184		 * We are on the eviction list; process this buffer now
4185		 * but let arc_do_user_evicts() do the reaping.
4186		 */
4187		buf->b_efunc = NULL;
4188		mutex_exit(&buf->b_evict_lock);
4189		VERIFY0(efunc(private));
4190		return (B_TRUE);
4191	}
4192	hash_lock = HDR_LOCK(hdr);
4193	mutex_enter(hash_lock);
4194	hdr = buf->b_hdr;
4195	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4196
4197	ASSERT3U(refcount_count(&hdr->b_l1hdr.b_refcnt), <,
4198	    hdr->b_l1hdr.b_datacnt);
4199	ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4200	    hdr->b_l1hdr.b_state == arc_mfu);
4201
4202	buf->b_efunc = NULL;
4203	buf->b_private = NULL;
4204
4205	if (hdr->b_l1hdr.b_datacnt > 1) {
4206		mutex_exit(&buf->b_evict_lock);
4207		arc_buf_destroy(buf, FALSE, TRUE);
4208	} else {
4209		ASSERT(buf == hdr->b_l1hdr.b_buf);
4210		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
4211		mutex_exit(&buf->b_evict_lock);
4212	}
4213
4214	mutex_exit(hash_lock);
4215	VERIFY0(efunc(private));
4216	return (B_TRUE);
4217}
4218
4219/*
4220 * Release this buffer from the cache, making it an anonymous buffer.  This
4221 * must be done after a read and prior to modifying the buffer contents.
4222 * If the buffer has more than one reference, we must make
4223 * a new hdr for the buffer.
4224 */
4225void
4226arc_release(arc_buf_t *buf, void *tag)
4227{
4228	arc_buf_hdr_t *hdr = buf->b_hdr;
4229
4230	/*
4231	 * It would be nice to assert that if it's DMU metadata (level >
4232	 * 0 || it's the dnode file), then it must be syncing context.
4233	 * But we don't know that information at this level.
4234	 */
4235
4236	mutex_enter(&buf->b_evict_lock);
4237	/*
4238	 * We don't grab the hash lock prior to this check, because if
4239	 * the buffer's header is in the arc_anon state, it won't be
4240	 * linked into the hash table.
4241	 */
4242	if (hdr->b_l1hdr.b_state == arc_anon) {
4243		mutex_exit(&buf->b_evict_lock);
4244		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4245		ASSERT(!HDR_IN_HASH_TABLE(hdr));
4246		ASSERT(!HDR_HAS_L2HDR(hdr));
4247		ASSERT(BUF_EMPTY(hdr));
4248		ASSERT3U(hdr->b_l1hdr.b_datacnt, ==, 1);
4249		ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
4250		ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
4251
4252		ASSERT3P(buf->b_efunc, ==, NULL);
4253		ASSERT3P(buf->b_private, ==, NULL);
4254
4255		hdr->b_l1hdr.b_arc_access = 0;
4256		arc_buf_thaw(buf);
4257
4258		return;
4259	}
4260
4261	kmutex_t *hash_lock = HDR_LOCK(hdr);
4262	mutex_enter(hash_lock);
4263
4264	/*
4265	 * This assignment is only valid as long as the hash_lock is
4266	 * held, we must be careful not to reference state or the
4267	 * b_state field after dropping the lock.
4268	 */
4269	arc_state_t *state = hdr->b_l1hdr.b_state;
4270	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4271	ASSERT3P(state, !=, arc_anon);
4272
4273	/* this buffer is not on any list */
4274	ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) > 0);
4275
4276	if (HDR_HAS_L2HDR(hdr)) {
4277		ARCSTAT_INCR(arcstat_l2_asize, -hdr->b_l2hdr.b_asize);
4278		ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
4279
4280		mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
4281		trim_map_free(hdr->b_l2hdr.b_dev->l2ad_vdev,
4282		    hdr->b_l2hdr.b_daddr, hdr->b_l2hdr.b_asize, 0);
4283		list_remove(&hdr->b_l2hdr.b_dev->l2ad_buflist, hdr);
4284
4285		/*
4286		 * We don't want to leak the b_tmp_cdata buffer that was
4287		 * allocated in l2arc_write_buffers()
4288		 */
4289		arc_buf_l2_cdata_free(hdr);
4290
4291		mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
4292
4293		hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
4294	}
4295
4296	/*
4297	 * Do we have more than one buf?
4298	 */
4299	if (hdr->b_l1hdr.b_datacnt > 1) {
4300		arc_buf_hdr_t *nhdr;
4301		arc_buf_t **bufp;
4302		uint64_t blksz = hdr->b_size;
4303		uint64_t spa = hdr->b_spa;
4304		arc_buf_contents_t type = arc_buf_type(hdr);
4305		uint32_t flags = hdr->b_flags;
4306
4307		ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
4308		/*
4309		 * Pull the data off of this hdr and attach it to
4310		 * a new anonymous hdr.
4311		 */
4312		(void) remove_reference(hdr, hash_lock, tag);
4313		bufp = &hdr->b_l1hdr.b_buf;
4314		while (*bufp != buf)
4315			bufp = &(*bufp)->b_next;
4316		*bufp = buf->b_next;
4317		buf->b_next = NULL;
4318
4319		ASSERT3P(state, !=, arc_l2c_only);
4320		ASSERT3U(state->arcs_size, >=, hdr->b_size);
4321		atomic_add_64(&state->arcs_size, -hdr->b_size);
4322		if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
4323			ASSERT3P(state, !=, arc_l2c_only);
4324			uint64_t *size = &state->arcs_lsize[type];
4325			ASSERT3U(*size, >=, hdr->b_size);
4326			atomic_add_64(size, -hdr->b_size);
4327		}
4328
4329		/*
4330		 * We're releasing a duplicate user data buffer, update
4331		 * our statistics accordingly.
4332		 */
4333		if (HDR_ISTYPE_DATA(hdr)) {
4334			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
4335			ARCSTAT_INCR(arcstat_duplicate_buffers_size,
4336			    -hdr->b_size);
4337		}
4338		hdr->b_l1hdr.b_datacnt -= 1;
4339		arc_cksum_verify(buf);
4340#ifdef illumos
4341		arc_buf_unwatch(buf);
4342#endif /* illumos */
4343
4344		mutex_exit(hash_lock);
4345
4346		nhdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
4347		nhdr->b_size = blksz;
4348		nhdr->b_spa = spa;
4349
4350		nhdr->b_flags = flags & ARC_FLAG_L2_WRITING;
4351		nhdr->b_flags |= arc_bufc_to_flags(type);
4352		nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
4353
4354		nhdr->b_l1hdr.b_buf = buf;
4355		nhdr->b_l1hdr.b_datacnt = 1;
4356		nhdr->b_l1hdr.b_state = arc_anon;
4357		nhdr->b_l1hdr.b_arc_access = 0;
4358		nhdr->b_freeze_cksum = NULL;
4359
4360		(void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
4361		buf->b_hdr = nhdr;
4362		mutex_exit(&buf->b_evict_lock);
4363		atomic_add_64(&arc_anon->arcs_size, blksz);
4364	} else {
4365		mutex_exit(&buf->b_evict_lock);
4366		ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
4367		/* protected by hash lock */
4368		ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
4369		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4370		arc_change_state(arc_anon, hdr, hash_lock);
4371		hdr->b_l1hdr.b_arc_access = 0;
4372		mutex_exit(hash_lock);
4373
4374		buf_discard_identity(hdr);
4375		arc_buf_thaw(buf);
4376	}
4377	buf->b_efunc = NULL;
4378	buf->b_private = NULL;
4379}
4380
4381int
4382arc_released(arc_buf_t *buf)
4383{
4384	int released;
4385
4386	mutex_enter(&buf->b_evict_lock);
4387	released = (buf->b_data != NULL &&
4388	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
4389	mutex_exit(&buf->b_evict_lock);
4390	return (released);
4391}
4392
4393#ifdef ZFS_DEBUG
4394int
4395arc_referenced(arc_buf_t *buf)
4396{
4397	int referenced;
4398
4399	mutex_enter(&buf->b_evict_lock);
4400	referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
4401	mutex_exit(&buf->b_evict_lock);
4402	return (referenced);
4403}
4404#endif
4405
4406static void
4407arc_write_ready(zio_t *zio)
4408{
4409	arc_write_callback_t *callback = zio->io_private;
4410	arc_buf_t *buf = callback->awcb_buf;
4411	arc_buf_hdr_t *hdr = buf->b_hdr;
4412
4413	ASSERT(HDR_HAS_L1HDR(hdr));
4414	ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
4415	ASSERT(hdr->b_l1hdr.b_datacnt > 0);
4416	callback->awcb_ready(zio, buf, callback->awcb_private);
4417
4418	/*
4419	 * If the IO is already in progress, then this is a re-write
4420	 * attempt, so we need to thaw and re-compute the cksum.
4421	 * It is the responsibility of the callback to handle the
4422	 * accounting for any re-write attempt.
4423	 */
4424	if (HDR_IO_IN_PROGRESS(hdr)) {
4425		mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
4426		if (hdr->b_freeze_cksum != NULL) {
4427			kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
4428			hdr->b_freeze_cksum = NULL;
4429		}
4430		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
4431	}
4432	arc_cksum_compute(buf, B_FALSE);
4433	hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
4434}
4435
4436/*
4437 * The SPA calls this callback for each physical write that happens on behalf
4438 * of a logical write.  See the comment in dbuf_write_physdone() for details.
4439 */
4440static void
4441arc_write_physdone(zio_t *zio)
4442{
4443	arc_write_callback_t *cb = zio->io_private;
4444	if (cb->awcb_physdone != NULL)
4445		cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
4446}
4447
4448static void
4449arc_write_done(zio_t *zio)
4450{
4451	arc_write_callback_t *callback = zio->io_private;
4452	arc_buf_t *buf = callback->awcb_buf;
4453	arc_buf_hdr_t *hdr = buf->b_hdr;
4454
4455	ASSERT(hdr->b_l1hdr.b_acb == NULL);
4456
4457	if (zio->io_error == 0) {
4458		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
4459			buf_discard_identity(hdr);
4460		} else {
4461			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
4462			hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
4463		}
4464	} else {
4465		ASSERT(BUF_EMPTY(hdr));
4466	}
4467
4468	/*
4469	 * If the block to be written was all-zero or compressed enough to be
4470	 * embedded in the BP, no write was performed so there will be no
4471	 * dva/birth/checksum.  The buffer must therefore remain anonymous
4472	 * (and uncached).
4473	 */
4474	if (!BUF_EMPTY(hdr)) {
4475		arc_buf_hdr_t *exists;
4476		kmutex_t *hash_lock;
4477
4478		ASSERT(zio->io_error == 0);
4479
4480		arc_cksum_verify(buf);
4481
4482		exists = buf_hash_insert(hdr, &hash_lock);
4483		if (exists != NULL) {
4484			/*
4485			 * This can only happen if we overwrite for
4486			 * sync-to-convergence, because we remove
4487			 * buffers from the hash table when we arc_free().
4488			 */
4489			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
4490				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
4491					panic("bad overwrite, hdr=%p exists=%p",
4492					    (void *)hdr, (void *)exists);
4493				ASSERT(refcount_is_zero(
4494				    &exists->b_l1hdr.b_refcnt));
4495				arc_change_state(arc_anon, exists, hash_lock);
4496				mutex_exit(hash_lock);
4497				arc_hdr_destroy(exists);
4498				exists = buf_hash_insert(hdr, &hash_lock);
4499				ASSERT3P(exists, ==, NULL);
4500			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
4501				/* nopwrite */
4502				ASSERT(zio->io_prop.zp_nopwrite);
4503				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
4504					panic("bad nopwrite, hdr=%p exists=%p",
4505					    (void *)hdr, (void *)exists);
4506			} else {
4507				/* Dedup */
4508				ASSERT(hdr->b_l1hdr.b_datacnt == 1);
4509				ASSERT(hdr->b_l1hdr.b_state == arc_anon);
4510				ASSERT(BP_GET_DEDUP(zio->io_bp));
4511				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
4512			}
4513		}
4514		hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
4515		/* if it's not anon, we are doing a scrub */
4516		if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
4517			arc_access(hdr, hash_lock);
4518		mutex_exit(hash_lock);
4519	} else {
4520		hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
4521	}
4522
4523	ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4524	callback->awcb_done(zio, buf, callback->awcb_private);
4525
4526	kmem_free(callback, sizeof (arc_write_callback_t));
4527}
4528
4529zio_t *
4530arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
4531    blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
4532    const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone,
4533    arc_done_func_t *done, void *private, zio_priority_t priority,
4534    int zio_flags, const zbookmark_phys_t *zb)
4535{
4536	arc_buf_hdr_t *hdr = buf->b_hdr;
4537	arc_write_callback_t *callback;
4538	zio_t *zio;
4539
4540	ASSERT(ready != NULL);
4541	ASSERT(done != NULL);
4542	ASSERT(!HDR_IO_ERROR(hdr));
4543	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4544	ASSERT(hdr->b_l1hdr.b_acb == NULL);
4545	ASSERT(hdr->b_l1hdr.b_datacnt > 0);
4546	if (l2arc)
4547		hdr->b_flags |= ARC_FLAG_L2CACHE;
4548	if (l2arc_compress)
4549		hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4550	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
4551	callback->awcb_ready = ready;
4552	callback->awcb_physdone = physdone;
4553	callback->awcb_done = done;
4554	callback->awcb_private = private;
4555	callback->awcb_buf = buf;
4556
4557	zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
4558	    arc_write_ready, arc_write_physdone, arc_write_done, callback,
4559	    priority, zio_flags, zb);
4560
4561	return (zio);
4562}
4563
4564static int
4565arc_memory_throttle(uint64_t reserve, uint64_t txg)
4566{
4567#ifdef _KERNEL
4568	uint64_t available_memory = ptob(freemem);
4569	static uint64_t page_load = 0;
4570	static uint64_t last_txg = 0;
4571
4572#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
4573	available_memory =
4574	    MIN(available_memory, ptob(vmem_size(heap_arena, VMEM_FREE)));
4575#endif
4576
4577	if (freemem > (uint64_t)physmem * arc_lotsfree_percent / 100)
4578		return (0);
4579
4580	if (txg > last_txg) {
4581		last_txg = txg;
4582		page_load = 0;
4583	}
4584	/*
4585	 * If we are in pageout, we know that memory is already tight,
4586	 * the arc is already going to be evicting, so we just want to
4587	 * continue to let page writes occur as quickly as possible.
4588	 */
4589	if (curproc == pageproc) {
4590		if (page_load > MAX(ptob(minfree), available_memory) / 4)
4591			return (SET_ERROR(ERESTART));
4592		/* Note: reserve is inflated, so we deflate */
4593		page_load += reserve / 8;
4594		return (0);
4595	} else if (page_load > 0 && arc_reclaim_needed()) {
4596		/* memory is low, delay before restarting */
4597		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
4598		return (SET_ERROR(EAGAIN));
4599	}
4600	page_load = 0;
4601#endif
4602	return (0);
4603}
4604
4605static void
4606arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
4607    kstat_named_t *evict_data, kstat_named_t *evict_metadata)
4608{
4609	size->value.ui64 = state->arcs_size;
4610	evict_data->value.ui64 = state->arcs_lsize[ARC_BUFC_DATA];
4611	evict_metadata->value.ui64 = state->arcs_lsize[ARC_BUFC_METADATA];
4612}
4613
4614static int
4615arc_kstat_update(kstat_t *ksp, int rw)
4616{
4617	arc_stats_t *as = ksp->ks_data;
4618
4619	if (rw == KSTAT_WRITE) {
4620		return (EACCES);
4621	} else {
4622		arc_kstat_update_state(arc_anon,
4623		    &as->arcstat_anon_size,
4624		    &as->arcstat_anon_evictable_data,
4625		    &as->arcstat_anon_evictable_metadata);
4626		arc_kstat_update_state(arc_mru,
4627		    &as->arcstat_mru_size,
4628		    &as->arcstat_mru_evictable_data,
4629		    &as->arcstat_mru_evictable_metadata);
4630		arc_kstat_update_state(arc_mru_ghost,
4631		    &as->arcstat_mru_ghost_size,
4632		    &as->arcstat_mru_ghost_evictable_data,
4633		    &as->arcstat_mru_ghost_evictable_metadata);
4634		arc_kstat_update_state(arc_mfu,
4635		    &as->arcstat_mfu_size,
4636		    &as->arcstat_mfu_evictable_data,
4637		    &as->arcstat_mfu_evictable_metadata);
4638		arc_kstat_update_state(arc_mfu_ghost,
4639		    &as->arcstat_mfu_ghost_size,
4640		    &as->arcstat_mfu_ghost_evictable_data,
4641		    &as->arcstat_mfu_ghost_evictable_metadata);
4642	}
4643
4644	return (0);
4645}
4646
4647void
4648arc_tempreserve_clear(uint64_t reserve)
4649{
4650	atomic_add_64(&arc_tempreserve, -reserve);
4651	ASSERT((int64_t)arc_tempreserve >= 0);
4652}
4653
4654int
4655arc_tempreserve_space(uint64_t reserve, uint64_t txg)
4656{
4657	int error;
4658	uint64_t anon_size;
4659
4660	if (reserve > arc_c/4 && !arc_no_grow) {
4661		arc_c = MIN(arc_c_max, reserve * 4);
4662		DTRACE_PROBE1(arc__set_reserve, uint64_t, arc_c);
4663	}
4664	if (reserve > arc_c)
4665		return (SET_ERROR(ENOMEM));
4666
4667	/*
4668	 * Don't count loaned bufs as in flight dirty data to prevent long
4669	 * network delays from blocking transactions that are ready to be
4670	 * assigned to a txg.
4671	 */
4672	anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
4673
4674	/*
4675	 * Writes will, almost always, require additional memory allocations
4676	 * in order to compress/encrypt/etc the data.  We therefore need to
4677	 * make sure that there is sufficient available memory for this.
4678	 */
4679	error = arc_memory_throttle(reserve, txg);
4680	if (error != 0)
4681		return (error);
4682
4683	/*
4684	 * Throttle writes when the amount of dirty data in the cache
4685	 * gets too large.  We try to keep the cache less than half full
4686	 * of dirty blocks so that our sync times don't grow too large.
4687	 * Note: if two requests come in concurrently, we might let them
4688	 * both succeed, when one of them should fail.  Not a huge deal.
4689	 */
4690
4691	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
4692	    anon_size > arc_c / 4) {
4693		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
4694		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
4695		    arc_tempreserve>>10,
4696		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
4697		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
4698		    reserve>>10, arc_c>>10);
4699		return (SET_ERROR(ERESTART));
4700	}
4701	atomic_add_64(&arc_tempreserve, reserve);
4702	return (0);
4703}
4704
4705static kmutex_t arc_lowmem_lock;
4706#ifdef _KERNEL
4707static eventhandler_tag arc_event_lowmem = NULL;
4708
4709static void
4710arc_lowmem(void *arg __unused, int howto __unused)
4711{
4712
4713	/* Serialize access via arc_lowmem_lock. */
4714	mutex_enter(&arc_lowmem_lock);
4715	mutex_enter(&arc_reclaim_thr_lock);
4716	needfree = 1;
4717	DTRACE_PROBE(arc__needfree);
4718	cv_signal(&arc_reclaim_thr_cv);
4719
4720	/*
4721	 * It is unsafe to block here in arbitrary threads, because we can come
4722	 * here from ARC itself and may hold ARC locks and thus risk a deadlock
4723	 * with ARC reclaim thread.
4724	 */
4725	if (curproc == pageproc) {
4726		while (needfree)
4727			msleep(&needfree, &arc_reclaim_thr_lock, 0, "zfs:lowmem", 0);
4728	}
4729	mutex_exit(&arc_reclaim_thr_lock);
4730	mutex_exit(&arc_lowmem_lock);
4731}
4732#endif
4733
4734void
4735arc_init(void)
4736{
4737	int i, prefetch_tunable_set = 0;
4738
4739	mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
4740	cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
4741	mutex_init(&arc_lowmem_lock, NULL, MUTEX_DEFAULT, NULL);
4742
4743	/* Convert seconds to clock ticks */
4744	arc_min_prefetch_lifespan = 1 * hz;
4745
4746	/* Start out with 1/8 of all memory */
4747	arc_c = kmem_size() / 8;
4748
4749#ifdef sun
4750#ifdef _KERNEL
4751	/*
4752	 * On architectures where the physical memory can be larger
4753	 * than the addressable space (intel in 32-bit mode), we may
4754	 * need to limit the cache to 1/8 of VM size.
4755	 */
4756	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
4757#endif
4758#endif	/* sun */
4759	/* set min cache to 1/32 of all memory, or 16MB, whichever is more */
4760	arc_c_min = MAX(arc_c / 4, 16 << 20);
4761	/* set max to 1/2 of all memory, or all but 1GB, whichever is more */
4762	if (arc_c * 8 >= 1 << 30)
4763		arc_c_max = (arc_c * 8) - (1 << 30);
4764	else
4765		arc_c_max = arc_c_min;
4766	arc_c_max = MAX(arc_c * 5, arc_c_max);
4767
4768#ifdef _KERNEL
4769	/*
4770	 * Allow the tunables to override our calculations if they are
4771	 * reasonable (ie. over 16MB)
4772	 */
4773	if (zfs_arc_max > 16 << 20 && zfs_arc_max < kmem_size())
4774		arc_c_max = zfs_arc_max;
4775	if (zfs_arc_min > 16 << 20 && zfs_arc_min <= arc_c_max)
4776		arc_c_min = zfs_arc_min;
4777#endif
4778
4779	arc_c = arc_c_max;
4780	arc_p = (arc_c >> 1);
4781
4782	/* limit meta-data to 1/4 of the arc capacity */
4783	arc_meta_limit = arc_c_max / 4;
4784
4785	/* Allow the tunable to override if it is reasonable */
4786	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
4787		arc_meta_limit = zfs_arc_meta_limit;
4788
4789	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
4790		arc_c_min = arc_meta_limit / 2;
4791
4792	if (zfs_arc_meta_min > 0) {
4793		arc_meta_min = zfs_arc_meta_min;
4794	} else {
4795		arc_meta_min = arc_c_min / 2;
4796	}
4797
4798	if (zfs_arc_grow_retry > 0)
4799		arc_grow_retry = zfs_arc_grow_retry;
4800
4801	if (zfs_arc_shrink_shift > 0)
4802		arc_shrink_shift = zfs_arc_shrink_shift;
4803
4804	if (zfs_arc_p_min_shift > 0)
4805		arc_p_min_shift = zfs_arc_p_min_shift;
4806
4807	/* if kmem_flags are set, lets try to use less memory */
4808	if (kmem_debugging())
4809		arc_c = arc_c / 2;
4810	if (arc_c < arc_c_min)
4811		arc_c = arc_c_min;
4812
4813	zfs_arc_min = arc_c_min;
4814	zfs_arc_max = arc_c_max;
4815
4816	arc_anon = &ARC_anon;
4817	arc_mru = &ARC_mru;
4818	arc_mru_ghost = &ARC_mru_ghost;
4819	arc_mfu = &ARC_mfu;
4820	arc_mfu_ghost = &ARC_mfu_ghost;
4821	arc_l2c_only = &ARC_l2c_only;
4822	arc_size = 0;
4823
4824	for (i = 0; i < ARC_BUFC_NUMLISTS; i++) {
4825		mutex_init(&arc_anon->arcs_locks[i].arcs_lock,
4826		    NULL, MUTEX_DEFAULT, NULL);
4827		mutex_init(&arc_mru->arcs_locks[i].arcs_lock,
4828		    NULL, MUTEX_DEFAULT, NULL);
4829		mutex_init(&arc_mru_ghost->arcs_locks[i].arcs_lock,
4830		    NULL, MUTEX_DEFAULT, NULL);
4831		mutex_init(&arc_mfu->arcs_locks[i].arcs_lock,
4832		    NULL, MUTEX_DEFAULT, NULL);
4833		mutex_init(&arc_mfu_ghost->arcs_locks[i].arcs_lock,
4834		    NULL, MUTEX_DEFAULT, NULL);
4835		mutex_init(&arc_l2c_only->arcs_locks[i].arcs_lock,
4836		    NULL, MUTEX_DEFAULT, NULL);
4837
4838		list_create(&arc_mru->arcs_lists[i],
4839		    sizeof (arc_buf_hdr_t),
4840		    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node));
4841		list_create(&arc_mru_ghost->arcs_lists[i],
4842		    sizeof (arc_buf_hdr_t),
4843		    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node));
4844		list_create(&arc_mfu->arcs_lists[i],
4845		    sizeof (arc_buf_hdr_t),
4846		    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node));
4847		list_create(&arc_mfu_ghost->arcs_lists[i],
4848		    sizeof (arc_buf_hdr_t),
4849		    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node));
4850		list_create(&arc_mfu_ghost->arcs_lists[i],
4851		    sizeof (arc_buf_hdr_t),
4852		    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node));
4853		list_create(&arc_l2c_only->arcs_lists[i],
4854		    sizeof (arc_buf_hdr_t),
4855		    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node));
4856	}
4857
4858	buf_init();
4859
4860	arc_thread_exit = 0;
4861	arc_eviction_list = NULL;
4862	mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
4863	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
4864
4865	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
4866	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
4867
4868	if (arc_ksp != NULL) {
4869		arc_ksp->ks_data = &arc_stats;
4870		arc_ksp->ks_update = arc_kstat_update;
4871		kstat_install(arc_ksp);
4872	}
4873
4874	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
4875	    TS_RUN, minclsyspri);
4876
4877#ifdef _KERNEL
4878	arc_event_lowmem = EVENTHANDLER_REGISTER(vm_lowmem, arc_lowmem, NULL,
4879	    EVENTHANDLER_PRI_FIRST);
4880#endif
4881
4882	arc_dead = FALSE;
4883	arc_warm = B_FALSE;
4884
4885	/*
4886	 * Calculate maximum amount of dirty data per pool.
4887	 *
4888	 * If it has been set by /etc/system, take that.
4889	 * Otherwise, use a percentage of physical memory defined by
4890	 * zfs_dirty_data_max_percent (default 10%) with a cap at
4891	 * zfs_dirty_data_max_max (default 4GB).
4892	 */
4893	if (zfs_dirty_data_max == 0) {
4894		zfs_dirty_data_max = ptob(physmem) *
4895		    zfs_dirty_data_max_percent / 100;
4896		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
4897		    zfs_dirty_data_max_max);
4898	}
4899
4900#ifdef _KERNEL
4901	if (TUNABLE_INT_FETCH("vfs.zfs.prefetch_disable", &zfs_prefetch_disable))
4902		prefetch_tunable_set = 1;
4903
4904#ifdef __i386__
4905	if (prefetch_tunable_set == 0) {
4906		printf("ZFS NOTICE: Prefetch is disabled by default on i386 "
4907		    "-- to enable,\n");
4908		printf("            add \"vfs.zfs.prefetch_disable=0\" "
4909		    "to /boot/loader.conf.\n");
4910		zfs_prefetch_disable = 1;
4911	}
4912#else
4913	if ((((uint64_t)physmem * PAGESIZE) < (1ULL << 32)) &&
4914	    prefetch_tunable_set == 0) {
4915		printf("ZFS NOTICE: Prefetch is disabled by default if less "
4916		    "than 4GB of RAM is present;\n"
4917		    "            to enable, add \"vfs.zfs.prefetch_disable=0\" "
4918		    "to /boot/loader.conf.\n");
4919		zfs_prefetch_disable = 1;
4920	}
4921#endif
4922	/* Warn about ZFS memory and address space requirements. */
4923	if (((uint64_t)physmem * PAGESIZE) < (256 + 128 + 64) * (1 << 20)) {
4924		printf("ZFS WARNING: Recommended minimum RAM size is 512MB; "
4925		    "expect unstable behavior.\n");
4926	}
4927	if (kmem_size() < 512 * (1 << 20)) {
4928		printf("ZFS WARNING: Recommended minimum kmem_size is 512MB; "
4929		    "expect unstable behavior.\n");
4930		printf("             Consider tuning vm.kmem_size and "
4931		    "vm.kmem_size_max\n");
4932		printf("             in /boot/loader.conf.\n");
4933	}
4934#endif
4935}
4936
4937void
4938arc_fini(void)
4939{
4940	int i;
4941
4942	mutex_enter(&arc_reclaim_thr_lock);
4943	arc_thread_exit = 1;
4944	cv_signal(&arc_reclaim_thr_cv);
4945	while (arc_thread_exit != 0)
4946		cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
4947	mutex_exit(&arc_reclaim_thr_lock);
4948
4949	arc_flush(NULL);
4950
4951	arc_dead = TRUE;
4952
4953	if (arc_ksp != NULL) {
4954		kstat_delete(arc_ksp);
4955		arc_ksp = NULL;
4956	}
4957
4958	mutex_destroy(&arc_eviction_mtx);
4959	mutex_destroy(&arc_reclaim_thr_lock);
4960	cv_destroy(&arc_reclaim_thr_cv);
4961
4962	for (i = 0; i < ARC_BUFC_NUMLISTS; i++) {
4963		list_destroy(&arc_mru->arcs_lists[i]);
4964		list_destroy(&arc_mru_ghost->arcs_lists[i]);
4965		list_destroy(&arc_mfu->arcs_lists[i]);
4966		list_destroy(&arc_mfu_ghost->arcs_lists[i]);
4967		list_destroy(&arc_l2c_only->arcs_lists[i]);
4968
4969		mutex_destroy(&arc_anon->arcs_locks[i].arcs_lock);
4970		mutex_destroy(&arc_mru->arcs_locks[i].arcs_lock);
4971		mutex_destroy(&arc_mru_ghost->arcs_locks[i].arcs_lock);
4972		mutex_destroy(&arc_mfu->arcs_locks[i].arcs_lock);
4973		mutex_destroy(&arc_mfu_ghost->arcs_locks[i].arcs_lock);
4974		mutex_destroy(&arc_l2c_only->arcs_locks[i].arcs_lock);
4975	}
4976
4977	buf_fini();
4978
4979	ASSERT0(arc_loaned_bytes);
4980
4981	mutex_destroy(&arc_lowmem_lock);
4982#ifdef _KERNEL
4983	if (arc_event_lowmem != NULL)
4984		EVENTHANDLER_DEREGISTER(vm_lowmem, arc_event_lowmem);
4985#endif
4986}
4987
4988/*
4989 * Level 2 ARC
4990 *
4991 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
4992 * It uses dedicated storage devices to hold cached data, which are populated
4993 * using large infrequent writes.  The main role of this cache is to boost
4994 * the performance of random read workloads.  The intended L2ARC devices
4995 * include short-stroked disks, solid state disks, and other media with
4996 * substantially faster read latency than disk.
4997 *
4998 *                 +-----------------------+
4999 *                 |         ARC           |
5000 *                 +-----------------------+
5001 *                    |         ^     ^
5002 *                    |         |     |
5003 *      l2arc_feed_thread()    arc_read()
5004 *                    |         |     |
5005 *                    |  l2arc read   |
5006 *                    V         |     |
5007 *               +---------------+    |
5008 *               |     L2ARC     |    |
5009 *               +---------------+    |
5010 *                   |    ^           |
5011 *          l2arc_write() |           |
5012 *                   |    |           |
5013 *                   V    |           |
5014 *                 +-------+      +-------+
5015 *                 | vdev  |      | vdev  |
5016 *                 | cache |      | cache |
5017 *                 +-------+      +-------+
5018 *                 +=========+     .-----.
5019 *                 :  L2ARC  :    |-_____-|
5020 *                 : devices :    | Disks |
5021 *                 +=========+    `-_____-'
5022 *
5023 * Read requests are satisfied from the following sources, in order:
5024 *
5025 *	1) ARC
5026 *	2) vdev cache of L2ARC devices
5027 *	3) L2ARC devices
5028 *	4) vdev cache of disks
5029 *	5) disks
5030 *
5031 * Some L2ARC device types exhibit extremely slow write performance.
5032 * To accommodate for this there are some significant differences between
5033 * the L2ARC and traditional cache design:
5034 *
5035 * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
5036 * the ARC behave as usual, freeing buffers and placing headers on ghost
5037 * lists.  The ARC does not send buffers to the L2ARC during eviction as
5038 * this would add inflated write latencies for all ARC memory pressure.
5039 *
5040 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
5041 * It does this by periodically scanning buffers from the eviction-end of
5042 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
5043 * not already there. It scans until a headroom of buffers is satisfied,
5044 * which itself is a buffer for ARC eviction. If a compressible buffer is
5045 * found during scanning and selected for writing to an L2ARC device, we
5046 * temporarily boost scanning headroom during the next scan cycle to make
5047 * sure we adapt to compression effects (which might significantly reduce
5048 * the data volume we write to L2ARC). The thread that does this is
5049 * l2arc_feed_thread(), illustrated below; example sizes are included to
5050 * provide a better sense of ratio than this diagram:
5051 *
5052 *	       head -->                        tail
5053 *	        +---------------------+----------+
5054 *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
5055 *	        +---------------------+----------+   |   o L2ARC eligible
5056 *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
5057 *	        +---------------------+----------+   |
5058 *	             15.9 Gbytes      ^ 32 Mbytes    |
5059 *	                           headroom          |
5060 *	                                      l2arc_feed_thread()
5061 *	                                             |
5062 *	                 l2arc write hand <--[oooo]--'
5063 *	                         |           8 Mbyte
5064 *	                         |          write max
5065 *	                         V
5066 *		  +==============================+
5067 *	L2ARC dev |####|#|###|###|    |####| ... |
5068 *	          +==============================+
5069 *	                     32 Gbytes
5070 *
5071 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
5072 * evicted, then the L2ARC has cached a buffer much sooner than it probably
5073 * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
5074 * safe to say that this is an uncommon case, since buffers at the end of
5075 * the ARC lists have moved there due to inactivity.
5076 *
5077 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
5078 * then the L2ARC simply misses copying some buffers.  This serves as a
5079 * pressure valve to prevent heavy read workloads from both stalling the ARC
5080 * with waits and clogging the L2ARC with writes.  This also helps prevent
5081 * the potential for the L2ARC to churn if it attempts to cache content too
5082 * quickly, such as during backups of the entire pool.
5083 *
5084 * 5. After system boot and before the ARC has filled main memory, there are
5085 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
5086 * lists can remain mostly static.  Instead of searching from tail of these
5087 * lists as pictured, the l2arc_feed_thread() will search from the list heads
5088 * for eligible buffers, greatly increasing its chance of finding them.
5089 *
5090 * The L2ARC device write speed is also boosted during this time so that
5091 * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
5092 * there are no L2ARC reads, and no fear of degrading read performance
5093 * through increased writes.
5094 *
5095 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
5096 * the vdev queue can aggregate them into larger and fewer writes.  Each
5097 * device is written to in a rotor fashion, sweeping writes through
5098 * available space then repeating.
5099 *
5100 * 7. The L2ARC does not store dirty content.  It never needs to flush
5101 * write buffers back to disk based storage.
5102 *
5103 * 8. If an ARC buffer is written (and dirtied) which also exists in the
5104 * L2ARC, the now stale L2ARC buffer is immediately dropped.
5105 *
5106 * The performance of the L2ARC can be tweaked by a number of tunables, which
5107 * may be necessary for different workloads:
5108 *
5109 *	l2arc_write_max		max write bytes per interval
5110 *	l2arc_write_boost	extra write bytes during device warmup
5111 *	l2arc_noprefetch	skip caching prefetched buffers
5112 *	l2arc_headroom		number of max device writes to precache
5113 *	l2arc_headroom_boost	when we find compressed buffers during ARC
5114 *				scanning, we multiply headroom by this
5115 *				percentage factor for the next scan cycle,
5116 *				since more compressed buffers are likely to
5117 *				be present
5118 *	l2arc_feed_secs		seconds between L2ARC writing
5119 *
5120 * Tunables may be removed or added as future performance improvements are
5121 * integrated, and also may become zpool properties.
5122 *
5123 * There are three key functions that control how the L2ARC warms up:
5124 *
5125 *	l2arc_write_eligible()	check if a buffer is eligible to cache
5126 *	l2arc_write_size()	calculate how much to write
5127 *	l2arc_write_interval()	calculate sleep delay between writes
5128 *
5129 * These three functions determine what to write, how much, and how quickly
5130 * to send writes.
5131 */
5132
5133static boolean_t
5134l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
5135{
5136	/*
5137	 * A buffer is *not* eligible for the L2ARC if it:
5138	 * 1. belongs to a different spa.
5139	 * 2. is already cached on the L2ARC.
5140	 * 3. has an I/O in progress (it may be an incomplete read).
5141	 * 4. is flagged not eligible (zfs property).
5142	 */
5143	if (hdr->b_spa != spa_guid) {
5144		ARCSTAT_BUMP(arcstat_l2_write_spa_mismatch);
5145		return (B_FALSE);
5146	}
5147	if (HDR_HAS_L2HDR(hdr)) {
5148		ARCSTAT_BUMP(arcstat_l2_write_in_l2);
5149		return (B_FALSE);
5150	}
5151	if (HDR_IO_IN_PROGRESS(hdr)) {
5152		ARCSTAT_BUMP(arcstat_l2_write_hdr_io_in_progress);
5153		return (B_FALSE);
5154	}
5155	if (!HDR_L2CACHE(hdr)) {
5156		ARCSTAT_BUMP(arcstat_l2_write_not_cacheable);
5157		return (B_FALSE);
5158	}
5159
5160	return (B_TRUE);
5161}
5162
5163static uint64_t
5164l2arc_write_size(void)
5165{
5166	uint64_t size;
5167
5168	/*
5169	 * Make sure our globals have meaningful values in case the user
5170	 * altered them.
5171	 */
5172	size = l2arc_write_max;
5173	if (size == 0) {
5174		cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
5175		    "be greater than zero, resetting it to the default (%d)",
5176		    L2ARC_WRITE_SIZE);
5177		size = l2arc_write_max = L2ARC_WRITE_SIZE;
5178	}
5179
5180	if (arc_warm == B_FALSE)
5181		size += l2arc_write_boost;
5182
5183	return (size);
5184
5185}
5186
5187static clock_t
5188l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
5189{
5190	clock_t interval, next, now;
5191
5192	/*
5193	 * If the ARC lists are busy, increase our write rate; if the
5194	 * lists are stale, idle back.  This is achieved by checking
5195	 * how much we previously wrote - if it was more than half of
5196	 * what we wanted, schedule the next write much sooner.
5197	 */
5198	if (l2arc_feed_again && wrote > (wanted / 2))
5199		interval = (hz * l2arc_feed_min_ms) / 1000;
5200	else
5201		interval = hz * l2arc_feed_secs;
5202
5203	now = ddi_get_lbolt();
5204	next = MAX(now, MIN(now + interval, began + interval));
5205
5206	return (next);
5207}
5208
5209/*
5210 * Cycle through L2ARC devices.  This is how L2ARC load balances.
5211 * If a device is returned, this also returns holding the spa config lock.
5212 */
5213static l2arc_dev_t *
5214l2arc_dev_get_next(void)
5215{
5216	l2arc_dev_t *first, *next = NULL;
5217
5218	/*
5219	 * Lock out the removal of spas (spa_namespace_lock), then removal
5220	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
5221	 * both locks will be dropped and a spa config lock held instead.
5222	 */
5223	mutex_enter(&spa_namespace_lock);
5224	mutex_enter(&l2arc_dev_mtx);
5225
5226	/* if there are no vdevs, there is nothing to do */
5227	if (l2arc_ndev == 0)
5228		goto out;
5229
5230	first = NULL;
5231	next = l2arc_dev_last;
5232	do {
5233		/* loop around the list looking for a non-faulted vdev */
5234		if (next == NULL) {
5235			next = list_head(l2arc_dev_list);
5236		} else {
5237			next = list_next(l2arc_dev_list, next);
5238			if (next == NULL)
5239				next = list_head(l2arc_dev_list);
5240		}
5241
5242		/* if we have come back to the start, bail out */
5243		if (first == NULL)
5244			first = next;
5245		else if (next == first)
5246			break;
5247
5248	} while (vdev_is_dead(next->l2ad_vdev));
5249
5250	/* if we were unable to find any usable vdevs, return NULL */
5251	if (vdev_is_dead(next->l2ad_vdev))
5252		next = NULL;
5253
5254	l2arc_dev_last = next;
5255
5256out:
5257	mutex_exit(&l2arc_dev_mtx);
5258
5259	/*
5260	 * Grab the config lock to prevent the 'next' device from being
5261	 * removed while we are writing to it.
5262	 */
5263	if (next != NULL)
5264		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
5265	mutex_exit(&spa_namespace_lock);
5266
5267	return (next);
5268}
5269
5270/*
5271 * Free buffers that were tagged for destruction.
5272 */
5273static void
5274l2arc_do_free_on_write()
5275{
5276	list_t *buflist;
5277	l2arc_data_free_t *df, *df_prev;
5278
5279	mutex_enter(&l2arc_free_on_write_mtx);
5280	buflist = l2arc_free_on_write;
5281
5282	for (df = list_tail(buflist); df; df = df_prev) {
5283		df_prev = list_prev(buflist, df);
5284		ASSERT(df->l2df_data != NULL);
5285		ASSERT(df->l2df_func != NULL);
5286		df->l2df_func(df->l2df_data, df->l2df_size);
5287		list_remove(buflist, df);
5288		kmem_free(df, sizeof (l2arc_data_free_t));
5289	}
5290
5291	mutex_exit(&l2arc_free_on_write_mtx);
5292}
5293
5294/*
5295 * A write to a cache device has completed.  Update all headers to allow
5296 * reads from these buffers to begin.
5297 */
5298static void
5299l2arc_write_done(zio_t *zio)
5300{
5301	l2arc_write_callback_t *cb;
5302	l2arc_dev_t *dev;
5303	list_t *buflist;
5304	arc_buf_hdr_t *head, *hdr, *hdr_prev;
5305	kmutex_t *hash_lock;
5306	int64_t bytes_dropped = 0;
5307
5308	cb = zio->io_private;
5309	ASSERT(cb != NULL);
5310	dev = cb->l2wcb_dev;
5311	ASSERT(dev != NULL);
5312	head = cb->l2wcb_head;
5313	ASSERT(head != NULL);
5314	buflist = &dev->l2ad_buflist;
5315	ASSERT(buflist != NULL);
5316	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
5317	    l2arc_write_callback_t *, cb);
5318
5319	if (zio->io_error != 0)
5320		ARCSTAT_BUMP(arcstat_l2_writes_error);
5321
5322	mutex_enter(&dev->l2ad_mtx);
5323
5324	/*
5325	 * All writes completed, or an error was hit.
5326	 */
5327	for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
5328		hdr_prev = list_prev(buflist, hdr);
5329
5330		hash_lock = HDR_LOCK(hdr);
5331		if (!mutex_tryenter(hash_lock)) {
5332			/*
5333			 * This buffer misses out.  It may be in a stage
5334			 * of eviction.  Its ARC_FLAG_L2_WRITING flag will be
5335			 * left set, denying reads to this buffer.
5336			 */
5337			ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
5338			continue;
5339		}
5340
5341		/*
5342		 * It's possible that this buffer got evicted from the L1 cache
5343		 * before we grabbed the vdev + hash locks, in which case
5344		 * arc_hdr_realloc freed b_tmp_cdata for us if it was allocated.
5345		 * Only free the buffer if we still have an L1 hdr.
5346		 */
5347		if (HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_tmp_cdata != NULL &&
5348		    HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF)
5349			l2arc_release_cdata_buf(hdr);
5350
5351		if (zio->io_error != 0) {
5352			/*
5353			 * Error - drop L2ARC entry.
5354			 */
5355			trim_map_free(hdr->b_l2hdr.b_dev->l2ad_vdev,
5356			    hdr->b_l2hdr.b_daddr, hdr->b_l2hdr.b_asize, 0);
5357			hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
5358
5359			ARCSTAT_INCR(arcstat_l2_asize, -hdr->b_l2hdr.b_asize);
5360			ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
5361		}
5362
5363		/*
5364		 * Allow ARC to begin reads to this L2ARC entry.
5365		 */
5366		hdr->b_flags &= ~ARC_FLAG_L2_WRITING;
5367
5368		mutex_exit(hash_lock);
5369	}
5370
5371	atomic_inc_64(&l2arc_writes_done);
5372	list_remove(buflist, head);
5373	ASSERT(!HDR_HAS_L1HDR(head));
5374	kmem_cache_free(hdr_l2only_cache, head);
5375	mutex_exit(&dev->l2ad_mtx);
5376
5377	vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
5378
5379	l2arc_do_free_on_write();
5380
5381	kmem_free(cb, sizeof (l2arc_write_callback_t));
5382}
5383
5384/*
5385 * A read to a cache device completed.  Validate buffer contents before
5386 * handing over to the regular ARC routines.
5387 */
5388static void
5389l2arc_read_done(zio_t *zio)
5390{
5391	l2arc_read_callback_t *cb;
5392	arc_buf_hdr_t *hdr;
5393	arc_buf_t *buf;
5394	kmutex_t *hash_lock;
5395	int equal;
5396
5397	ASSERT(zio->io_vd != NULL);
5398	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
5399
5400	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
5401
5402	cb = zio->io_private;
5403	ASSERT(cb != NULL);
5404	buf = cb->l2rcb_buf;
5405	ASSERT(buf != NULL);
5406
5407	hash_lock = HDR_LOCK(buf->b_hdr);
5408	mutex_enter(hash_lock);
5409	hdr = buf->b_hdr;
5410	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
5411
5412	/*
5413	 * If the buffer was compressed, decompress it first.
5414	 */
5415	if (cb->l2rcb_compress != ZIO_COMPRESS_OFF)
5416		l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress);
5417	ASSERT(zio->io_data != NULL);
5418
5419	/*
5420	 * Check this survived the L2ARC journey.
5421	 */
5422	equal = arc_cksum_equal(buf);
5423	if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
5424		mutex_exit(hash_lock);
5425		zio->io_private = buf;
5426		zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
5427		zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
5428		arc_read_done(zio);
5429	} else {
5430		mutex_exit(hash_lock);
5431		/*
5432		 * Buffer didn't survive caching.  Increment stats and
5433		 * reissue to the original storage device.
5434		 */
5435		if (zio->io_error != 0) {
5436			ARCSTAT_BUMP(arcstat_l2_io_error);
5437		} else {
5438			zio->io_error = SET_ERROR(EIO);
5439		}
5440		if (!equal)
5441			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
5442
5443		/*
5444		 * If there's no waiter, issue an async i/o to the primary
5445		 * storage now.  If there *is* a waiter, the caller must
5446		 * issue the i/o in a context where it's OK to block.
5447		 */
5448		if (zio->io_waiter == NULL) {
5449			zio_t *pio = zio_unique_parent(zio);
5450
5451			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
5452
5453			zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
5454			    buf->b_data, zio->io_size, arc_read_done, buf,
5455			    zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
5456		}
5457	}
5458
5459	kmem_free(cb, sizeof (l2arc_read_callback_t));
5460}
5461
5462/*
5463 * This is the list priority from which the L2ARC will search for pages to
5464 * cache.  This is used within loops (0..3) to cycle through lists in the
5465 * desired order.  This order can have a significant effect on cache
5466 * performance.
5467 *
5468 * Currently the metadata lists are hit first, MFU then MRU, followed by
5469 * the data lists.  This function returns a locked list, and also returns
5470 * the lock pointer.
5471 */
5472static list_t *
5473l2arc_list_locked(int list_num, kmutex_t **lock)
5474{
5475	list_t *list = NULL;
5476	int idx;
5477
5478	ASSERT(list_num >= 0 && list_num < 2 * ARC_BUFC_NUMLISTS);
5479
5480	if (list_num < ARC_BUFC_NUMMETADATALISTS) {
5481		idx = list_num;
5482		list = &arc_mfu->arcs_lists[idx];
5483		*lock = ARCS_LOCK(arc_mfu, idx);
5484	} else if (list_num < ARC_BUFC_NUMMETADATALISTS * 2) {
5485		idx = list_num - ARC_BUFC_NUMMETADATALISTS;
5486		list = &arc_mru->arcs_lists[idx];
5487		*lock = ARCS_LOCK(arc_mru, idx);
5488	} else if (list_num < (ARC_BUFC_NUMMETADATALISTS * 2 +
5489		ARC_BUFC_NUMDATALISTS)) {
5490		idx = list_num - ARC_BUFC_NUMMETADATALISTS;
5491		list = &arc_mfu->arcs_lists[idx];
5492		*lock = ARCS_LOCK(arc_mfu, idx);
5493	} else {
5494		idx = list_num - ARC_BUFC_NUMLISTS;
5495		list = &arc_mru->arcs_lists[idx];
5496		*lock = ARCS_LOCK(arc_mru, idx);
5497	}
5498
5499	ASSERT(!(MUTEX_HELD(*lock)));
5500	mutex_enter(*lock);
5501	return (list);
5502}
5503
5504/*
5505 * Evict buffers from the device write hand to the distance specified in
5506 * bytes.  This distance may span populated buffers, it may span nothing.
5507 * This is clearing a region on the L2ARC device ready for writing.
5508 * If the 'all' boolean is set, every buffer is evicted.
5509 */
5510static void
5511l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
5512{
5513	list_t *buflist;
5514	arc_buf_hdr_t *hdr, *hdr_prev;
5515	kmutex_t *hash_lock;
5516	uint64_t taddr;
5517	int64_t bytes_evicted = 0;
5518
5519	buflist = &dev->l2ad_buflist;
5520
5521	if (!all && dev->l2ad_first) {
5522		/*
5523		 * This is the first sweep through the device.  There is
5524		 * nothing to evict.
5525		 */
5526		return;
5527	}
5528
5529	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
5530		/*
5531		 * When nearing the end of the device, evict to the end
5532		 * before the device write hand jumps to the start.
5533		 */
5534		taddr = dev->l2ad_end;
5535	} else {
5536		taddr = dev->l2ad_hand + distance;
5537	}
5538	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
5539	    uint64_t, taddr, boolean_t, all);
5540
5541top:
5542	mutex_enter(&dev->l2ad_mtx);
5543	for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
5544		hdr_prev = list_prev(buflist, hdr);
5545
5546		hash_lock = HDR_LOCK(hdr);
5547		if (!mutex_tryenter(hash_lock)) {
5548			/*
5549			 * Missed the hash lock.  Retry.
5550			 */
5551			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
5552			mutex_exit(&dev->l2ad_mtx);
5553			mutex_enter(hash_lock);
5554			mutex_exit(hash_lock);
5555			goto top;
5556		}
5557
5558		if (HDR_L2_WRITE_HEAD(hdr)) {
5559			/*
5560			 * We hit a write head node.  Leave it for
5561			 * l2arc_write_done().
5562			 */
5563			list_remove(buflist, hdr);
5564			mutex_exit(hash_lock);
5565			continue;
5566		}
5567
5568		if (!all && HDR_HAS_L2HDR(hdr) &&
5569		    (hdr->b_l2hdr.b_daddr > taddr ||
5570		    hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
5571			/*
5572			 * We've evicted to the target address,
5573			 * or the end of the device.
5574			 */
5575			mutex_exit(hash_lock);
5576			break;
5577		}
5578
5579		ASSERT(HDR_HAS_L2HDR(hdr));
5580		if (!HDR_HAS_L1HDR(hdr)) {
5581			ASSERT(!HDR_L2_READING(hdr));
5582			/*
5583			 * This doesn't exist in the ARC.  Destroy.
5584			 * arc_hdr_destroy() will call list_remove()
5585			 * and decrement arcstat_l2_size.
5586			 */
5587			arc_change_state(arc_anon, hdr, hash_lock);
5588			arc_hdr_destroy(hdr);
5589		} else {
5590			ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
5591			ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
5592			/*
5593			 * Invalidate issued or about to be issued
5594			 * reads, since we may be about to write
5595			 * over this location.
5596			 */
5597			if (HDR_L2_READING(hdr)) {
5598				ARCSTAT_BUMP(arcstat_l2_evict_reading);
5599				hdr->b_flags |= ARC_FLAG_L2_EVICTED;
5600			}
5601
5602			/* Tell ARC this no longer exists in L2ARC. */
5603			ARCSTAT_INCR(arcstat_l2_asize, -hdr->b_l2hdr.b_asize);
5604			ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
5605			hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
5606			list_remove(buflist, hdr);
5607
5608			/* This may have been leftover after a failed write. */
5609			hdr->b_flags &= ~ARC_FLAG_L2_WRITING;
5610		}
5611		mutex_exit(hash_lock);
5612	}
5613	mutex_exit(&dev->l2ad_mtx);
5614
5615	vdev_space_update(dev->l2ad_vdev, -bytes_evicted, 0, 0);
5616	dev->l2ad_evict = taddr;
5617}
5618
5619/*
5620 * Find and write ARC buffers to the L2ARC device.
5621 *
5622 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
5623 * for reading until they have completed writing.
5624 * The headroom_boost is an in-out parameter used to maintain headroom boost
5625 * state between calls to this function.
5626 *
5627 * Returns the number of bytes actually written (which may be smaller than
5628 * the delta by which the device hand has changed due to alignment).
5629 */
5630static uint64_t
5631l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz,
5632    boolean_t *headroom_boost)
5633{
5634	arc_buf_hdr_t *hdr, *hdr_prev, *head;
5635	list_t *list;
5636	uint64_t write_asize, write_sz, headroom, buf_compress_minsz;
5637	void *buf_data;
5638	kmutex_t *list_lock;
5639	boolean_t full;
5640	l2arc_write_callback_t *cb;
5641	zio_t *pio, *wzio;
5642	uint64_t guid = spa_load_guid(spa);
5643	const boolean_t do_headroom_boost = *headroom_boost;
5644	int try;
5645
5646	ASSERT(dev->l2ad_vdev != NULL);
5647
5648	/* Lower the flag now, we might want to raise it again later. */
5649	*headroom_boost = B_FALSE;
5650
5651	pio = NULL;
5652	write_sz = write_asize = 0;
5653	full = B_FALSE;
5654	head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
5655	head->b_flags |= ARC_FLAG_L2_WRITE_HEAD;
5656	head->b_flags |= ARC_FLAG_HAS_L2HDR;
5657
5658	ARCSTAT_BUMP(arcstat_l2_write_buffer_iter);
5659	/*
5660	 * We will want to try to compress buffers that are at least 2x the
5661	 * device sector size.
5662	 */
5663	buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift;
5664
5665	/*
5666	 * Copy buffers for L2ARC writing.
5667	 */
5668	mutex_enter(&dev->l2ad_mtx);
5669	for (try = 0; try < 2 * ARC_BUFC_NUMLISTS; try++) {
5670		uint64_t passed_sz = 0;
5671
5672		list = l2arc_list_locked(try, &list_lock);
5673		ARCSTAT_BUMP(arcstat_l2_write_buffer_list_iter);
5674
5675		/*
5676		 * L2ARC fast warmup.
5677		 *
5678		 * Until the ARC is warm and starts to evict, read from the
5679		 * head of the ARC lists rather than the tail.
5680		 */
5681		if (arc_warm == B_FALSE)
5682			hdr = list_head(list);
5683		else
5684			hdr = list_tail(list);
5685		if (hdr == NULL)
5686			ARCSTAT_BUMP(arcstat_l2_write_buffer_list_null_iter);
5687
5688		headroom = target_sz * l2arc_headroom * 2 / ARC_BUFC_NUMLISTS;
5689		if (do_headroom_boost)
5690			headroom = (headroom * l2arc_headroom_boost) / 100;
5691
5692		for (; hdr; hdr = hdr_prev) {
5693			kmutex_t *hash_lock;
5694			uint64_t buf_sz;
5695			uint64_t buf_a_sz;
5696
5697			if (arc_warm == B_FALSE)
5698				hdr_prev = list_next(list, hdr);
5699			else
5700				hdr_prev = list_prev(list, hdr);
5701			ARCSTAT_INCR(arcstat_l2_write_buffer_bytes_scanned, hdr->b_size);
5702
5703			hash_lock = HDR_LOCK(hdr);
5704			if (!mutex_tryenter(hash_lock)) {
5705				ARCSTAT_BUMP(arcstat_l2_write_trylock_fail);
5706				/*
5707				 * Skip this buffer rather than waiting.
5708				 */
5709				continue;
5710			}
5711
5712			passed_sz += hdr->b_size;
5713			if (passed_sz > headroom) {
5714				/*
5715				 * Searched too far.
5716				 */
5717				mutex_exit(hash_lock);
5718				ARCSTAT_BUMP(arcstat_l2_write_passed_headroom);
5719				break;
5720			}
5721
5722			if (!l2arc_write_eligible(guid, hdr)) {
5723				mutex_exit(hash_lock);
5724				continue;
5725			}
5726
5727			/*
5728			 * Assume that the buffer is not going to be compressed
5729			 * and could take more space on disk because of a larger
5730			 * disk block size.
5731			 */
5732			buf_sz = hdr->b_size;
5733			buf_a_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
5734
5735			if ((write_asize + buf_a_sz) > target_sz) {
5736				full = B_TRUE;
5737				mutex_exit(hash_lock);
5738				ARCSTAT_BUMP(arcstat_l2_write_full);
5739				break;
5740			}
5741
5742			if (pio == NULL) {
5743				/*
5744				 * Insert a dummy header on the buflist so
5745				 * l2arc_write_done() can find where the
5746				 * write buffers begin without searching.
5747				 */
5748				list_insert_head(&dev->l2ad_buflist, head);
5749
5750				cb = kmem_alloc(
5751				    sizeof (l2arc_write_callback_t), KM_SLEEP);
5752				cb->l2wcb_dev = dev;
5753				cb->l2wcb_head = head;
5754				pio = zio_root(spa, l2arc_write_done, cb,
5755				    ZIO_FLAG_CANFAIL);
5756				ARCSTAT_BUMP(arcstat_l2_write_pios);
5757			}
5758
5759			/*
5760			 * Create and add a new L2ARC header.
5761			 */
5762			hdr->b_l2hdr.b_dev = dev;
5763			hdr->b_flags |= ARC_FLAG_L2_WRITING;
5764			/*
5765			 * Temporarily stash the data buffer in b_tmp_cdata.
5766			 * The subsequent write step will pick it up from
5767			 * there. This is because can't access b_l1hdr.b_buf
5768			 * without holding the hash_lock, which we in turn
5769			 * can't access without holding the ARC list locks
5770			 * (which we want to avoid during compression/writing).
5771			 */
5772			HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
5773			hdr->b_l2hdr.b_asize = hdr->b_size;
5774			hdr->b_l1hdr.b_tmp_cdata = hdr->b_l1hdr.b_buf->b_data;
5775
5776			hdr->b_flags |= ARC_FLAG_HAS_L2HDR;
5777
5778			list_insert_head(&dev->l2ad_buflist, hdr);
5779
5780			/*
5781			 * Compute and store the buffer cksum before
5782			 * writing.  On debug the cksum is verified first.
5783			 */
5784			arc_cksum_verify(hdr->b_l1hdr.b_buf);
5785			arc_cksum_compute(hdr->b_l1hdr.b_buf, B_TRUE);
5786
5787			mutex_exit(hash_lock);
5788
5789			write_sz += buf_sz;
5790			write_asize += buf_a_sz;
5791		}
5792
5793		mutex_exit(list_lock);
5794
5795		if (full == B_TRUE)
5796			break;
5797	}
5798
5799	/* No buffers selected for writing? */
5800	if (pio == NULL) {
5801		ASSERT0(write_sz);
5802		mutex_exit(&dev->l2ad_mtx);
5803		ASSERT(!HDR_HAS_L1HDR(head));
5804		kmem_cache_free(hdr_l2only_cache, head);
5805		return (0);
5806	}
5807
5808	/*
5809	 * Note that elsewhere in this file arcstat_l2_asize
5810	 * and the used space on l2ad_vdev are updated using b_asize,
5811	 * which is not necessarily rounded up to the device block size.
5812	 * Too keep accounting consistent we do the same here as well:
5813	 * stats_size accumulates the sum of b_asize of the written buffers,
5814	 * while write_asize accumulates the sum of b_asize rounded up
5815	 * to the device block size.
5816	 * The latter sum is used only to validate the corectness of the code.
5817	 */
5818	uint64_t stats_size = 0;
5819	write_asize = 0;
5820
5821	/*
5822	 * Now start writing the buffers. We're starting at the write head
5823	 * and work backwards, retracing the course of the buffer selector
5824	 * loop above.
5825	 */
5826	for (hdr = list_prev(&dev->l2ad_buflist, head); hdr;
5827	    hdr = list_prev(&dev->l2ad_buflist, hdr)) {
5828		uint64_t buf_sz;
5829
5830		/*
5831		 * We shouldn't need to lock the buffer here, since we flagged
5832		 * it as ARC_FLAG_L2_WRITING in the previous step, but we must
5833		 * take care to only access its L2 cache parameters. In
5834		 * particular, hdr->l1hdr.b_buf may be invalid by now due to
5835		 * ARC eviction.
5836		 */
5837		hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
5838
5839		if ((HDR_L2COMPRESS(hdr)) &&
5840		    hdr->b_l2hdr.b_asize >= buf_compress_minsz) {
5841			if (l2arc_compress_buf(hdr)) {
5842				/*
5843				 * If compression succeeded, enable headroom
5844				 * boost on the next scan cycle.
5845				 */
5846				*headroom_boost = B_TRUE;
5847			}
5848		}
5849
5850		/*
5851		 * Pick up the buffer data we had previously stashed away
5852		 * (and now potentially also compressed).
5853		 */
5854		buf_data = hdr->b_l1hdr.b_tmp_cdata;
5855		buf_sz = hdr->b_l2hdr.b_asize;
5856
5857		/*
5858		 * If the data has not been compressed, then clear b_tmp_cdata
5859		 * to make sure that it points only to a temporary compression
5860		 * buffer.
5861		 */
5862		if (!L2ARC_IS_VALID_COMPRESS(HDR_GET_COMPRESS(hdr)))
5863			hdr->b_l1hdr.b_tmp_cdata = NULL;
5864
5865		/* Compression may have squashed the buffer to zero length. */
5866		if (buf_sz != 0) {
5867			uint64_t buf_a_sz;
5868
5869			wzio = zio_write_phys(pio, dev->l2ad_vdev,
5870			    dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
5871			    NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
5872			    ZIO_FLAG_CANFAIL, B_FALSE);
5873
5874			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
5875			    zio_t *, wzio);
5876			(void) zio_nowait(wzio);
5877
5878			stats_size += buf_sz;
5879			/*
5880			 * Keep the clock hand suitably device-aligned.
5881			 */
5882			buf_a_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
5883			write_asize += buf_a_sz;
5884			dev->l2ad_hand += buf_a_sz;
5885		}
5886	}
5887
5888	mutex_exit(&dev->l2ad_mtx);
5889
5890	ASSERT3U(write_asize, <=, target_sz);
5891	ARCSTAT_BUMP(arcstat_l2_writes_sent);
5892	ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
5893	ARCSTAT_INCR(arcstat_l2_size, write_sz);
5894	ARCSTAT_INCR(arcstat_l2_asize, stats_size);
5895	vdev_space_update(dev->l2ad_vdev, stats_size, 0, 0);
5896
5897	/*
5898	 * Bump device hand to the device start if it is approaching the end.
5899	 * l2arc_evict() will already have evicted ahead for this case.
5900	 */
5901	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
5902		dev->l2ad_hand = dev->l2ad_start;
5903		dev->l2ad_evict = dev->l2ad_start;
5904		dev->l2ad_first = B_FALSE;
5905	}
5906
5907	dev->l2ad_writing = B_TRUE;
5908	(void) zio_wait(pio);
5909	dev->l2ad_writing = B_FALSE;
5910
5911	return (write_asize);
5912}
5913
5914/*
5915 * Compresses an L2ARC buffer.
5916 * The data to be compressed must be prefilled in l1hdr.b_tmp_cdata and its
5917 * size in l2hdr->b_asize. This routine tries to compress the data and
5918 * depending on the compression result there are three possible outcomes:
5919 * *) The buffer was incompressible. The original l2hdr contents were left
5920 *    untouched and are ready for writing to an L2 device.
5921 * *) The buffer was all-zeros, so there is no need to write it to an L2
5922 *    device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is
5923 *    set to zero and b_compress is set to ZIO_COMPRESS_EMPTY.
5924 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary
5925 *    data buffer which holds the compressed data to be written, and b_asize
5926 *    tells us how much data there is. b_compress is set to the appropriate
5927 *    compression algorithm. Once writing is done, invoke
5928 *    l2arc_release_cdata_buf on this l2hdr to free this temporary buffer.
5929 *
5930 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the
5931 * buffer was incompressible).
5932 */
5933static boolean_t
5934l2arc_compress_buf(arc_buf_hdr_t *hdr)
5935{
5936	void *cdata;
5937	size_t csize, len, rounded;
5938	ASSERT(HDR_HAS_L2HDR(hdr));
5939	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
5940
5941	ASSERT(HDR_HAS_L1HDR(hdr));
5942	ASSERT(HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF);
5943	ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
5944
5945	len = l2hdr->b_asize;
5946	cdata = zio_data_buf_alloc(len);
5947	ASSERT3P(cdata, !=, NULL);
5948	csize = zio_compress_data(ZIO_COMPRESS_LZ4, hdr->b_l1hdr.b_tmp_cdata,
5949	    cdata, l2hdr->b_asize);
5950
5951	if (csize == 0) {
5952		/* zero block, indicate that there's nothing to write */
5953		zio_data_buf_free(cdata, len);
5954		HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_EMPTY);
5955		l2hdr->b_asize = 0;
5956		hdr->b_l1hdr.b_tmp_cdata = NULL;
5957		ARCSTAT_BUMP(arcstat_l2_compress_zeros);
5958		return (B_TRUE);
5959	}
5960
5961	rounded = P2ROUNDUP(csize,
5962	    (size_t)1 << l2hdr->b_dev->l2ad_vdev->vdev_ashift);
5963	if (rounded < len) {
5964		/*
5965		 * Compression succeeded, we'll keep the cdata around for
5966		 * writing and release it afterwards.
5967		 */
5968		if (rounded > csize) {
5969			bzero((char *)cdata + csize, rounded - csize);
5970			csize = rounded;
5971		}
5972		HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_LZ4);
5973		l2hdr->b_asize = csize;
5974		hdr->b_l1hdr.b_tmp_cdata = cdata;
5975		ARCSTAT_BUMP(arcstat_l2_compress_successes);
5976		return (B_TRUE);
5977	} else {
5978		/*
5979		 * Compression failed, release the compressed buffer.
5980		 * l2hdr will be left unmodified.
5981		 */
5982		zio_data_buf_free(cdata, len);
5983		ARCSTAT_BUMP(arcstat_l2_compress_failures);
5984		return (B_FALSE);
5985	}
5986}
5987
5988/*
5989 * Decompresses a zio read back from an l2arc device. On success, the
5990 * underlying zio's io_data buffer is overwritten by the uncompressed
5991 * version. On decompression error (corrupt compressed stream), the
5992 * zio->io_error value is set to signal an I/O error.
5993 *
5994 * Please note that the compressed data stream is not checksummed, so
5995 * if the underlying device is experiencing data corruption, we may feed
5996 * corrupt data to the decompressor, so the decompressor needs to be
5997 * able to handle this situation (LZ4 does).
5998 */
5999static void
6000l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c)
6001{
6002	ASSERT(L2ARC_IS_VALID_COMPRESS(c));
6003
6004	if (zio->io_error != 0) {
6005		/*
6006		 * An io error has occured, just restore the original io
6007		 * size in preparation for a main pool read.
6008		 */
6009		zio->io_orig_size = zio->io_size = hdr->b_size;
6010		return;
6011	}
6012
6013	if (c == ZIO_COMPRESS_EMPTY) {
6014		/*
6015		 * An empty buffer results in a null zio, which means we
6016		 * need to fill its io_data after we're done restoring the
6017		 * buffer's contents.
6018		 */
6019		ASSERT(hdr->b_l1hdr.b_buf != NULL);
6020		bzero(hdr->b_l1hdr.b_buf->b_data, hdr->b_size);
6021		zio->io_data = zio->io_orig_data = hdr->b_l1hdr.b_buf->b_data;
6022	} else {
6023		ASSERT(zio->io_data != NULL);
6024		/*
6025		 * We copy the compressed data from the start of the arc buffer
6026		 * (the zio_read will have pulled in only what we need, the
6027		 * rest is garbage which we will overwrite at decompression)
6028		 * and then decompress back to the ARC data buffer. This way we
6029		 * can minimize copying by simply decompressing back over the
6030		 * original compressed data (rather than decompressing to an
6031		 * aux buffer and then copying back the uncompressed buffer,
6032		 * which is likely to be much larger).
6033		 */
6034		uint64_t csize;
6035		void *cdata;
6036
6037		csize = zio->io_size;
6038		cdata = zio_data_buf_alloc(csize);
6039		bcopy(zio->io_data, cdata, csize);
6040		if (zio_decompress_data(c, cdata, zio->io_data, csize,
6041		    hdr->b_size) != 0)
6042			zio->io_error = EIO;
6043		zio_data_buf_free(cdata, csize);
6044	}
6045
6046	/* Restore the expected uncompressed IO size. */
6047	zio->io_orig_size = zio->io_size = hdr->b_size;
6048}
6049
6050/*
6051 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure.
6052 * This buffer serves as a temporary holder of compressed data while
6053 * the buffer entry is being written to an l2arc device. Once that is
6054 * done, we can dispose of it.
6055 */
6056static void
6057l2arc_release_cdata_buf(arc_buf_hdr_t *hdr)
6058{
6059	ASSERT(HDR_HAS_L1HDR(hdr));
6060	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_EMPTY) {
6061		/*
6062		 * If the data was compressed, then we've allocated a
6063		 * temporary buffer for it, so now we need to release it.
6064		 */
6065		ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
6066		zio_data_buf_free(hdr->b_l1hdr.b_tmp_cdata,
6067		    hdr->b_size);
6068		hdr->b_l1hdr.b_tmp_cdata = NULL;
6069	} else {
6070		ASSERT(hdr->b_l1hdr.b_tmp_cdata == NULL);
6071	}
6072}
6073
6074/*
6075 * This thread feeds the L2ARC at regular intervals.  This is the beating
6076 * heart of the L2ARC.
6077 */
6078static void
6079l2arc_feed_thread(void *dummy __unused)
6080{
6081	callb_cpr_t cpr;
6082	l2arc_dev_t *dev;
6083	spa_t *spa;
6084	uint64_t size, wrote;
6085	clock_t begin, next = ddi_get_lbolt();
6086	boolean_t headroom_boost = B_FALSE;
6087
6088	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
6089
6090	mutex_enter(&l2arc_feed_thr_lock);
6091
6092	while (l2arc_thread_exit == 0) {
6093		CALLB_CPR_SAFE_BEGIN(&cpr);
6094		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
6095		    next - ddi_get_lbolt());
6096		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
6097		next = ddi_get_lbolt() + hz;
6098
6099		/*
6100		 * Quick check for L2ARC devices.
6101		 */
6102		mutex_enter(&l2arc_dev_mtx);
6103		if (l2arc_ndev == 0) {
6104			mutex_exit(&l2arc_dev_mtx);
6105			continue;
6106		}
6107		mutex_exit(&l2arc_dev_mtx);
6108		begin = ddi_get_lbolt();
6109
6110		/*
6111		 * This selects the next l2arc device to write to, and in
6112		 * doing so the next spa to feed from: dev->l2ad_spa.   This
6113		 * will return NULL if there are now no l2arc devices or if
6114		 * they are all faulted.
6115		 *
6116		 * If a device is returned, its spa's config lock is also
6117		 * held to prevent device removal.  l2arc_dev_get_next()
6118		 * will grab and release l2arc_dev_mtx.
6119		 */
6120		if ((dev = l2arc_dev_get_next()) == NULL)
6121			continue;
6122
6123		spa = dev->l2ad_spa;
6124		ASSERT(spa != NULL);
6125
6126		/*
6127		 * If the pool is read-only then force the feed thread to
6128		 * sleep a little longer.
6129		 */
6130		if (!spa_writeable(spa)) {
6131			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
6132			spa_config_exit(spa, SCL_L2ARC, dev);
6133			continue;
6134		}
6135
6136		/*
6137		 * Avoid contributing to memory pressure.
6138		 */
6139		if (arc_reclaim_needed()) {
6140			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
6141			spa_config_exit(spa, SCL_L2ARC, dev);
6142			continue;
6143		}
6144
6145		ARCSTAT_BUMP(arcstat_l2_feeds);
6146
6147		size = l2arc_write_size();
6148
6149		/*
6150		 * Evict L2ARC buffers that will be overwritten.
6151		 */
6152		l2arc_evict(dev, size, B_FALSE);
6153
6154		/*
6155		 * Write ARC buffers.
6156		 */
6157		wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost);
6158
6159		/*
6160		 * Calculate interval between writes.
6161		 */
6162		next = l2arc_write_interval(begin, size, wrote);
6163		spa_config_exit(spa, SCL_L2ARC, dev);
6164	}
6165
6166	l2arc_thread_exit = 0;
6167	cv_broadcast(&l2arc_feed_thr_cv);
6168	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
6169	thread_exit();
6170}
6171
6172boolean_t
6173l2arc_vdev_present(vdev_t *vd)
6174{
6175	l2arc_dev_t *dev;
6176
6177	mutex_enter(&l2arc_dev_mtx);
6178	for (dev = list_head(l2arc_dev_list); dev != NULL;
6179	    dev = list_next(l2arc_dev_list, dev)) {
6180		if (dev->l2ad_vdev == vd)
6181			break;
6182	}
6183	mutex_exit(&l2arc_dev_mtx);
6184
6185	return (dev != NULL);
6186}
6187
6188/*
6189 * Add a vdev for use by the L2ARC.  By this point the spa has already
6190 * validated the vdev and opened it.
6191 */
6192void
6193l2arc_add_vdev(spa_t *spa, vdev_t *vd)
6194{
6195	l2arc_dev_t *adddev;
6196
6197	ASSERT(!l2arc_vdev_present(vd));
6198
6199	vdev_ashift_optimize(vd);
6200
6201	/*
6202	 * Create a new l2arc device entry.
6203	 */
6204	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
6205	adddev->l2ad_spa = spa;
6206	adddev->l2ad_vdev = vd;
6207	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
6208	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
6209	adddev->l2ad_hand = adddev->l2ad_start;
6210	adddev->l2ad_evict = adddev->l2ad_start;
6211	adddev->l2ad_first = B_TRUE;
6212	adddev->l2ad_writing = B_FALSE;
6213
6214	mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
6215	/*
6216	 * This is a list of all ARC buffers that are still valid on the
6217	 * device.
6218	 */
6219	list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
6220	    offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
6221
6222	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
6223
6224	/*
6225	 * Add device to global list
6226	 */
6227	mutex_enter(&l2arc_dev_mtx);
6228	list_insert_head(l2arc_dev_list, adddev);
6229	atomic_inc_64(&l2arc_ndev);
6230	mutex_exit(&l2arc_dev_mtx);
6231}
6232
6233/*
6234 * Remove a vdev from the L2ARC.
6235 */
6236void
6237l2arc_remove_vdev(vdev_t *vd)
6238{
6239	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
6240
6241	/*
6242	 * Find the device by vdev
6243	 */
6244	mutex_enter(&l2arc_dev_mtx);
6245	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
6246		nextdev = list_next(l2arc_dev_list, dev);
6247		if (vd == dev->l2ad_vdev) {
6248			remdev = dev;
6249			break;
6250		}
6251	}
6252	ASSERT(remdev != NULL);
6253
6254	/*
6255	 * Remove device from global list
6256	 */
6257	list_remove(l2arc_dev_list, remdev);
6258	l2arc_dev_last = NULL;		/* may have been invalidated */
6259	atomic_dec_64(&l2arc_ndev);
6260	mutex_exit(&l2arc_dev_mtx);
6261
6262	/*
6263	 * Clear all buflists and ARC references.  L2ARC device flush.
6264	 */
6265	l2arc_evict(remdev, 0, B_TRUE);
6266	list_destroy(&remdev->l2ad_buflist);
6267	mutex_destroy(&remdev->l2ad_mtx);
6268	kmem_free(remdev, sizeof (l2arc_dev_t));
6269}
6270
6271void
6272l2arc_init(void)
6273{
6274	l2arc_thread_exit = 0;
6275	l2arc_ndev = 0;
6276	l2arc_writes_sent = 0;
6277	l2arc_writes_done = 0;
6278
6279	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
6280	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
6281	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
6282	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
6283
6284	l2arc_dev_list = &L2ARC_dev_list;
6285	l2arc_free_on_write = &L2ARC_free_on_write;
6286	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
6287	    offsetof(l2arc_dev_t, l2ad_node));
6288	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
6289	    offsetof(l2arc_data_free_t, l2df_list_node));
6290}
6291
6292void
6293l2arc_fini(void)
6294{
6295	/*
6296	 * This is called from dmu_fini(), which is called from spa_fini();
6297	 * Because of this, we can assume that all l2arc devices have
6298	 * already been removed when the pools themselves were removed.
6299	 */
6300
6301	l2arc_do_free_on_write();
6302
6303	mutex_destroy(&l2arc_feed_thr_lock);
6304	cv_destroy(&l2arc_feed_thr_cv);
6305	mutex_destroy(&l2arc_dev_mtx);
6306	mutex_destroy(&l2arc_free_on_write_mtx);
6307
6308	list_destroy(l2arc_dev_list);
6309	list_destroy(l2arc_free_on_write);
6310}
6311
6312void
6313l2arc_start(void)
6314{
6315	if (!(spa_mode_global & FWRITE))
6316		return;
6317
6318	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
6319	    TS_RUN, minclsyspri);
6320}
6321
6322void
6323l2arc_stop(void)
6324{
6325	if (!(spa_mode_global & FWRITE))
6326		return;
6327
6328	mutex_enter(&l2arc_feed_thr_lock);
6329	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
6330	l2arc_thread_exit = 1;
6331	while (l2arc_thread_exit != 0)
6332		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
6333	mutex_exit(&l2arc_feed_thr_lock);
6334}
6335