arc.c revision 288536
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26 * Copyright 2014 Nexenta Systems, Inc.  All rights reserved.
27 */
28
29/*
30 * DVA-based Adjustable Replacement Cache
31 *
32 * While much of the theory of operation used here is
33 * based on the self-tuning, low overhead replacement cache
34 * presented by Megiddo and Modha at FAST 2003, there are some
35 * significant differences:
36 *
37 * 1. The Megiddo and Modha model assumes any page is evictable.
38 * Pages in its cache cannot be "locked" into memory.  This makes
39 * the eviction algorithm simple: evict the last page in the list.
40 * This also make the performance characteristics easy to reason
41 * about.  Our cache is not so simple.  At any given moment, some
42 * subset of the blocks in the cache are un-evictable because we
43 * have handed out a reference to them.  Blocks are only evictable
44 * when there are no external references active.  This makes
45 * eviction far more problematic:  we choose to evict the evictable
46 * blocks that are the "lowest" in the list.
47 *
48 * There are times when it is not possible to evict the requested
49 * space.  In these circumstances we are unable to adjust the cache
50 * size.  To prevent the cache growing unbounded at these times we
51 * implement a "cache throttle" that slows the flow of new data
52 * into the cache until we can make space available.
53 *
54 * 2. The Megiddo and Modha model assumes a fixed cache size.
55 * Pages are evicted when the cache is full and there is a cache
56 * miss.  Our model has a variable sized cache.  It grows with
57 * high use, but also tries to react to memory pressure from the
58 * operating system: decreasing its size when system memory is
59 * tight.
60 *
61 * 3. The Megiddo and Modha model assumes a fixed page size. All
62 * elements of the cache are therefore exactly the same size.  So
63 * when adjusting the cache size following a cache miss, its simply
64 * a matter of choosing a single page to evict.  In our model, we
65 * have variable sized cache blocks (rangeing from 512 bytes to
66 * 128K bytes).  We therefore choose a set of blocks to evict to make
67 * space for a cache miss that approximates as closely as possible
68 * the space used by the new block.
69 *
70 * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71 * by N. Megiddo & D. Modha, FAST 2003
72 */
73
74/*
75 * The locking model:
76 *
77 * A new reference to a cache buffer can be obtained in two
78 * ways: 1) via a hash table lookup using the DVA as a key,
79 * or 2) via one of the ARC lists.  The arc_read() interface
80 * uses method 1, while the internal arc algorithms for
81 * adjusting the cache use method 2.  We therefore provide two
82 * types of locks: 1) the hash table lock array, and 2) the
83 * arc list locks.
84 *
85 * Buffers do not have their own mutexs, rather they rely on the
86 * hash table mutexs for the bulk of their protection (i.e. most
87 * fields in the arc_buf_hdr_t are protected by these mutexs).
88 *
89 * buf_hash_find() returns the appropriate mutex (held) when it
90 * locates the requested buffer in the hash table.  It returns
91 * NULL for the mutex if the buffer was not in the table.
92 *
93 * buf_hash_remove() expects the appropriate hash mutex to be
94 * already held before it is invoked.
95 *
96 * Each arc state also has a mutex which is used to protect the
97 * buffer list associated with the state.  When attempting to
98 * obtain a hash table lock while holding an arc list lock you
99 * must use: mutex_tryenter() to avoid deadlock.  Also note that
100 * the active state mutex must be held before the ghost state mutex.
101 *
102 * Arc buffers may have an associated eviction callback function.
103 * This function will be invoked prior to removing the buffer (e.g.
104 * in arc_do_user_evicts()).  Note however that the data associated
105 * with the buffer may be evicted prior to the callback.  The callback
106 * must be made with *no locks held* (to prevent deadlock).  Additionally,
107 * the users of callbacks must ensure that their private data is
108 * protected from simultaneous callbacks from arc_clear_callback()
109 * and arc_do_user_evicts().
110 *
111 * Note that the majority of the performance stats are manipulated
112 * with atomic operations.
113 *
114 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
115 *
116 *	- L2ARC buflist creation
117 *	- L2ARC buflist eviction
118 *	- L2ARC write completion, which walks L2ARC buflists
119 *	- ARC header destruction, as it removes from L2ARC buflists
120 *	- ARC header release, as it removes from L2ARC buflists
121 */
122
123#include <sys/spa.h>
124#include <sys/zio.h>
125#include <sys/zio_compress.h>
126#include <sys/zfs_context.h>
127#include <sys/arc.h>
128#include <sys/refcount.h>
129#include <sys/vdev.h>
130#include <sys/vdev_impl.h>
131#include <sys/dsl_pool.h>
132#ifdef _KERNEL
133#include <sys/dnlc.h>
134#endif
135#include <sys/callb.h>
136#include <sys/kstat.h>
137#include <sys/trim_map.h>
138#include <zfs_fletcher.h>
139#include <sys/sdt.h>
140
141#include <vm/vm_pageout.h>
142#include <machine/vmparam.h>
143
144#ifdef illumos
145#ifndef _KERNEL
146/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
147boolean_t arc_watch = B_FALSE;
148int arc_procfd;
149#endif
150#endif /* illumos */
151
152static kmutex_t		arc_reclaim_thr_lock;
153static kcondvar_t	arc_reclaim_thr_cv;	/* used to signal reclaim thr */
154static uint8_t		arc_thread_exit;
155
156#define	ARC_REDUCE_DNLC_PERCENT	3
157uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
158
159typedef enum arc_reclaim_strategy {
160	ARC_RECLAIM_AGGR,		/* Aggressive reclaim strategy */
161	ARC_RECLAIM_CONS		/* Conservative reclaim strategy */
162} arc_reclaim_strategy_t;
163
164/*
165 * The number of iterations through arc_evict_*() before we
166 * drop & reacquire the lock.
167 */
168int arc_evict_iterations = 100;
169
170/* number of seconds before growing cache again */
171static int		arc_grow_retry = 60;
172
173/* shift of arc_c for calculating both min and max arc_p */
174static int		arc_p_min_shift = 4;
175
176/* log2(fraction of arc to reclaim) */
177static int		arc_shrink_shift = 5;
178
179/*
180 * minimum lifespan of a prefetch block in clock ticks
181 * (initialized in arc_init())
182 */
183static int		arc_min_prefetch_lifespan;
184
185/*
186 * If this percent of memory is free, don't throttle.
187 */
188int arc_lotsfree_percent = 10;
189
190static int arc_dead;
191extern int zfs_prefetch_disable;
192
193/*
194 * The arc has filled available memory and has now warmed up.
195 */
196static boolean_t arc_warm;
197
198uint64_t zfs_arc_max;
199uint64_t zfs_arc_min;
200uint64_t zfs_arc_meta_limit = 0;
201uint64_t zfs_arc_meta_min = 0;
202int zfs_arc_grow_retry = 0;
203int zfs_arc_shrink_shift = 0;
204int zfs_arc_p_min_shift = 0;
205int zfs_disable_dup_eviction = 0;
206uint64_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
207u_int zfs_arc_free_target = 0;
208
209static int sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS);
210static int sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS);
211
212#ifdef _KERNEL
213static void
214arc_free_target_init(void *unused __unused)
215{
216
217	zfs_arc_free_target = vm_pageout_wakeup_thresh;
218}
219SYSINIT(arc_free_target_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_ANY,
220    arc_free_target_init, NULL);
221
222TUNABLE_QUAD("vfs.zfs.arc_max", &zfs_arc_max);
223TUNABLE_QUAD("vfs.zfs.arc_min", &zfs_arc_min);
224TUNABLE_QUAD("vfs.zfs.arc_meta_limit", &zfs_arc_meta_limit);
225TUNABLE_QUAD("vfs.zfs.arc_meta_min", &zfs_arc_meta_min);
226TUNABLE_QUAD("vfs.zfs.arc_average_blocksize", &zfs_arc_average_blocksize);
227TUNABLE_INT("vfs.zfs.arc_shrink_shift", &zfs_arc_shrink_shift);
228SYSCTL_DECL(_vfs_zfs);
229SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_max, CTLFLAG_RDTUN, &zfs_arc_max, 0,
230    "Maximum ARC size");
231SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_min, CTLFLAG_RDTUN, &zfs_arc_min, 0,
232    "Minimum ARC size");
233SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_average_blocksize, CTLFLAG_RDTUN,
234    &zfs_arc_average_blocksize, 0,
235    "ARC average blocksize");
236SYSCTL_INT(_vfs_zfs, OID_AUTO, arc_shrink_shift, CTLFLAG_RW,
237    &arc_shrink_shift, 0,
238    "log2(fraction of arc to reclaim)");
239
240/*
241 * We don't have a tunable for arc_free_target due to the dependency on
242 * pagedaemon initialisation.
243 */
244SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_free_target,
245    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(u_int),
246    sysctl_vfs_zfs_arc_free_target, "IU",
247    "Desired number of free pages below which ARC triggers reclaim");
248
249static int
250sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS)
251{
252	u_int val;
253	int err;
254
255	val = zfs_arc_free_target;
256	err = sysctl_handle_int(oidp, &val, 0, req);
257	if (err != 0 || req->newptr == NULL)
258		return (err);
259
260	if (val < minfree)
261		return (EINVAL);
262	if (val > cnt.v_page_count)
263		return (EINVAL);
264
265	zfs_arc_free_target = val;
266
267	return (0);
268}
269
270/*
271 * Must be declared here, before the definition of corresponding kstat
272 * macro which uses the same names will confuse the compiler.
273 */
274SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_meta_limit,
275    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
276    sysctl_vfs_zfs_arc_meta_limit, "QU",
277    "ARC metadata limit");
278#endif
279
280/*
281 * Note that buffers can be in one of 6 states:
282 *	ARC_anon	- anonymous (discussed below)
283 *	ARC_mru		- recently used, currently cached
284 *	ARC_mru_ghost	- recentely used, no longer in cache
285 *	ARC_mfu		- frequently used, currently cached
286 *	ARC_mfu_ghost	- frequently used, no longer in cache
287 *	ARC_l2c_only	- exists in L2ARC but not other states
288 * When there are no active references to the buffer, they are
289 * are linked onto a list in one of these arc states.  These are
290 * the only buffers that can be evicted or deleted.  Within each
291 * state there are multiple lists, one for meta-data and one for
292 * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
293 * etc.) is tracked separately so that it can be managed more
294 * explicitly: favored over data, limited explicitly.
295 *
296 * Anonymous buffers are buffers that are not associated with
297 * a DVA.  These are buffers that hold dirty block copies
298 * before they are written to stable storage.  By definition,
299 * they are "ref'd" and are considered part of arc_mru
300 * that cannot be freed.  Generally, they will aquire a DVA
301 * as they are written and migrate onto the arc_mru list.
302 *
303 * The ARC_l2c_only state is for buffers that are in the second
304 * level ARC but no longer in any of the ARC_m* lists.  The second
305 * level ARC itself may also contain buffers that are in any of
306 * the ARC_m* states - meaning that a buffer can exist in two
307 * places.  The reason for the ARC_l2c_only state is to keep the
308 * buffer header in the hash table, so that reads that hit the
309 * second level ARC benefit from these fast lookups.
310 */
311
312#define	ARCS_LOCK_PAD		CACHE_LINE_SIZE
313struct arcs_lock {
314	kmutex_t	arcs_lock;
315#ifdef _KERNEL
316	unsigned char	pad[(ARCS_LOCK_PAD - sizeof (kmutex_t))];
317#endif
318};
319
320/*
321 * must be power of two for mask use to work
322 *
323 */
324#define ARC_BUFC_NUMDATALISTS		16
325#define ARC_BUFC_NUMMETADATALISTS	16
326#define ARC_BUFC_NUMLISTS	(ARC_BUFC_NUMMETADATALISTS + ARC_BUFC_NUMDATALISTS)
327
328typedef struct arc_state {
329	uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];	/* amount of evictable data */
330	uint64_t arcs_size;	/* total amount of data in this state */
331	list_t	arcs_lists[ARC_BUFC_NUMLISTS]; /* list of evictable buffers */
332	struct arcs_lock arcs_locks[ARC_BUFC_NUMLISTS] __aligned(CACHE_LINE_SIZE);
333} arc_state_t;
334
335#define ARCS_LOCK(s, i)	(&((s)->arcs_locks[(i)].arcs_lock))
336
337/* The 6 states: */
338static arc_state_t ARC_anon;
339static arc_state_t ARC_mru;
340static arc_state_t ARC_mru_ghost;
341static arc_state_t ARC_mfu;
342static arc_state_t ARC_mfu_ghost;
343static arc_state_t ARC_l2c_only;
344
345typedef struct arc_stats {
346	kstat_named_t arcstat_hits;
347	kstat_named_t arcstat_misses;
348	kstat_named_t arcstat_demand_data_hits;
349	kstat_named_t arcstat_demand_data_misses;
350	kstat_named_t arcstat_demand_metadata_hits;
351	kstat_named_t arcstat_demand_metadata_misses;
352	kstat_named_t arcstat_prefetch_data_hits;
353	kstat_named_t arcstat_prefetch_data_misses;
354	kstat_named_t arcstat_prefetch_metadata_hits;
355	kstat_named_t arcstat_prefetch_metadata_misses;
356	kstat_named_t arcstat_mru_hits;
357	kstat_named_t arcstat_mru_ghost_hits;
358	kstat_named_t arcstat_mfu_hits;
359	kstat_named_t arcstat_mfu_ghost_hits;
360	kstat_named_t arcstat_allocated;
361	kstat_named_t arcstat_deleted;
362	kstat_named_t arcstat_stolen;
363	kstat_named_t arcstat_recycle_miss;
364	/*
365	 * Number of buffers that could not be evicted because the hash lock
366	 * was held by another thread.  The lock may not necessarily be held
367	 * by something using the same buffer, since hash locks are shared
368	 * by multiple buffers.
369	 */
370	kstat_named_t arcstat_mutex_miss;
371	/*
372	 * Number of buffers skipped because they have I/O in progress, are
373	 * indrect prefetch buffers that have not lived long enough, or are
374	 * not from the spa we're trying to evict from.
375	 */
376	kstat_named_t arcstat_evict_skip;
377	kstat_named_t arcstat_evict_l2_cached;
378	kstat_named_t arcstat_evict_l2_eligible;
379	kstat_named_t arcstat_evict_l2_ineligible;
380	kstat_named_t arcstat_hash_elements;
381	kstat_named_t arcstat_hash_elements_max;
382	kstat_named_t arcstat_hash_collisions;
383	kstat_named_t arcstat_hash_chains;
384	kstat_named_t arcstat_hash_chain_max;
385	kstat_named_t arcstat_p;
386	kstat_named_t arcstat_c;
387	kstat_named_t arcstat_c_min;
388	kstat_named_t arcstat_c_max;
389	kstat_named_t arcstat_size;
390	kstat_named_t arcstat_hdr_size;
391	kstat_named_t arcstat_data_size;
392	kstat_named_t arcstat_other_size;
393	kstat_named_t arcstat_l2_hits;
394	kstat_named_t arcstat_l2_misses;
395	kstat_named_t arcstat_l2_feeds;
396	kstat_named_t arcstat_l2_rw_clash;
397	kstat_named_t arcstat_l2_read_bytes;
398	kstat_named_t arcstat_l2_write_bytes;
399	kstat_named_t arcstat_l2_writes_sent;
400	kstat_named_t arcstat_l2_writes_done;
401	kstat_named_t arcstat_l2_writes_error;
402	kstat_named_t arcstat_l2_writes_hdr_miss;
403	kstat_named_t arcstat_l2_evict_lock_retry;
404	kstat_named_t arcstat_l2_evict_reading;
405	kstat_named_t arcstat_l2_free_on_write;
406	kstat_named_t arcstat_l2_cdata_free_on_write;
407	kstat_named_t arcstat_l2_abort_lowmem;
408	kstat_named_t arcstat_l2_cksum_bad;
409	kstat_named_t arcstat_l2_io_error;
410	kstat_named_t arcstat_l2_size;
411	kstat_named_t arcstat_l2_asize;
412	kstat_named_t arcstat_l2_hdr_size;
413	kstat_named_t arcstat_l2_compress_successes;
414	kstat_named_t arcstat_l2_compress_zeros;
415	kstat_named_t arcstat_l2_compress_failures;
416	kstat_named_t arcstat_l2_write_trylock_fail;
417	kstat_named_t arcstat_l2_write_passed_headroom;
418	kstat_named_t arcstat_l2_write_spa_mismatch;
419	kstat_named_t arcstat_l2_write_in_l2;
420	kstat_named_t arcstat_l2_write_hdr_io_in_progress;
421	kstat_named_t arcstat_l2_write_not_cacheable;
422	kstat_named_t arcstat_l2_write_full;
423	kstat_named_t arcstat_l2_write_buffer_iter;
424	kstat_named_t arcstat_l2_write_pios;
425	kstat_named_t arcstat_l2_write_buffer_bytes_scanned;
426	kstat_named_t arcstat_l2_write_buffer_list_iter;
427	kstat_named_t arcstat_l2_write_buffer_list_null_iter;
428	kstat_named_t arcstat_memory_throttle_count;
429	kstat_named_t arcstat_duplicate_buffers;
430	kstat_named_t arcstat_duplicate_buffers_size;
431	kstat_named_t arcstat_duplicate_reads;
432	kstat_named_t arcstat_meta_used;
433	kstat_named_t arcstat_meta_limit;
434	kstat_named_t arcstat_meta_max;
435	kstat_named_t arcstat_meta_min;
436} arc_stats_t;
437
438static arc_stats_t arc_stats = {
439	{ "hits",			KSTAT_DATA_UINT64 },
440	{ "misses",			KSTAT_DATA_UINT64 },
441	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
442	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
443	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
444	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
445	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
446	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
447	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
448	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
449	{ "mru_hits",			KSTAT_DATA_UINT64 },
450	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
451	{ "mfu_hits",			KSTAT_DATA_UINT64 },
452	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
453	{ "allocated",			KSTAT_DATA_UINT64 },
454	{ "deleted",			KSTAT_DATA_UINT64 },
455	{ "stolen",			KSTAT_DATA_UINT64 },
456	{ "recycle_miss",		KSTAT_DATA_UINT64 },
457	{ "mutex_miss",			KSTAT_DATA_UINT64 },
458	{ "evict_skip",			KSTAT_DATA_UINT64 },
459	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
460	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
461	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
462	{ "hash_elements",		KSTAT_DATA_UINT64 },
463	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
464	{ "hash_collisions",		KSTAT_DATA_UINT64 },
465	{ "hash_chains",		KSTAT_DATA_UINT64 },
466	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
467	{ "p",				KSTAT_DATA_UINT64 },
468	{ "c",				KSTAT_DATA_UINT64 },
469	{ "c_min",			KSTAT_DATA_UINT64 },
470	{ "c_max",			KSTAT_DATA_UINT64 },
471	{ "size",			KSTAT_DATA_UINT64 },
472	{ "hdr_size",			KSTAT_DATA_UINT64 },
473	{ "data_size",			KSTAT_DATA_UINT64 },
474	{ "other_size",			KSTAT_DATA_UINT64 },
475	{ "l2_hits",			KSTAT_DATA_UINT64 },
476	{ "l2_misses",			KSTAT_DATA_UINT64 },
477	{ "l2_feeds",			KSTAT_DATA_UINT64 },
478	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
479	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
480	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
481	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
482	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
483	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
484	{ "l2_writes_hdr_miss",		KSTAT_DATA_UINT64 },
485	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
486	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
487	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
488	{ "l2_cdata_free_on_write",	KSTAT_DATA_UINT64 },
489	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
490	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
491	{ "l2_io_error",		KSTAT_DATA_UINT64 },
492	{ "l2_size",			KSTAT_DATA_UINT64 },
493	{ "l2_asize",			KSTAT_DATA_UINT64 },
494	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
495	{ "l2_compress_successes",	KSTAT_DATA_UINT64 },
496	{ "l2_compress_zeros",		KSTAT_DATA_UINT64 },
497	{ "l2_compress_failures",	KSTAT_DATA_UINT64 },
498	{ "l2_write_trylock_fail",	KSTAT_DATA_UINT64 },
499	{ "l2_write_passed_headroom",	KSTAT_DATA_UINT64 },
500	{ "l2_write_spa_mismatch",	KSTAT_DATA_UINT64 },
501	{ "l2_write_in_l2",		KSTAT_DATA_UINT64 },
502	{ "l2_write_io_in_progress",	KSTAT_DATA_UINT64 },
503	{ "l2_write_not_cacheable",	KSTAT_DATA_UINT64 },
504	{ "l2_write_full",		KSTAT_DATA_UINT64 },
505	{ "l2_write_buffer_iter",	KSTAT_DATA_UINT64 },
506	{ "l2_write_pios",		KSTAT_DATA_UINT64 },
507	{ "l2_write_buffer_bytes_scanned", KSTAT_DATA_UINT64 },
508	{ "l2_write_buffer_list_iter",	KSTAT_DATA_UINT64 },
509	{ "l2_write_buffer_list_null_iter", KSTAT_DATA_UINT64 },
510	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
511	{ "duplicate_buffers",		KSTAT_DATA_UINT64 },
512	{ "duplicate_buffers_size",	KSTAT_DATA_UINT64 },
513	{ "duplicate_reads",		KSTAT_DATA_UINT64 },
514	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
515	{ "arc_meta_limit",		KSTAT_DATA_UINT64 },
516	{ "arc_meta_max",		KSTAT_DATA_UINT64 },
517	{ "arc_meta_min",		KSTAT_DATA_UINT64 }
518};
519
520#define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
521
522#define	ARCSTAT_INCR(stat, val) \
523	atomic_add_64(&arc_stats.stat.value.ui64, (val))
524
525#define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
526#define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
527
528#define	ARCSTAT_MAX(stat, val) {					\
529	uint64_t m;							\
530	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
531	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
532		continue;						\
533}
534
535#define	ARCSTAT_MAXSTAT(stat) \
536	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
537
538/*
539 * We define a macro to allow ARC hits/misses to be easily broken down by
540 * two separate conditions, giving a total of four different subtypes for
541 * each of hits and misses (so eight statistics total).
542 */
543#define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
544	if (cond1) {							\
545		if (cond2) {						\
546			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
547		} else {						\
548			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
549		}							\
550	} else {							\
551		if (cond2) {						\
552			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
553		} else {						\
554			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
555		}							\
556	}
557
558kstat_t			*arc_ksp;
559static arc_state_t	*arc_anon;
560static arc_state_t	*arc_mru;
561static arc_state_t	*arc_mru_ghost;
562static arc_state_t	*arc_mfu;
563static arc_state_t	*arc_mfu_ghost;
564static arc_state_t	*arc_l2c_only;
565
566/*
567 * There are several ARC variables that are critical to export as kstats --
568 * but we don't want to have to grovel around in the kstat whenever we wish to
569 * manipulate them.  For these variables, we therefore define them to be in
570 * terms of the statistic variable.  This assures that we are not introducing
571 * the possibility of inconsistency by having shadow copies of the variables,
572 * while still allowing the code to be readable.
573 */
574#define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
575#define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
576#define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
577#define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
578#define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
579#define	arc_meta_limit	ARCSTAT(arcstat_meta_limit) /* max size for metadata */
580#define	arc_meta_min	ARCSTAT(arcstat_meta_min) /* min size for metadata */
581#define	arc_meta_used	ARCSTAT(arcstat_meta_used) /* size of metadata */
582#define	arc_meta_max	ARCSTAT(arcstat_meta_max) /* max size of metadata */
583
584#define	L2ARC_IS_VALID_COMPRESS(_c_) \
585	((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY)
586
587static int		arc_no_grow;	/* Don't try to grow cache size */
588static uint64_t		arc_tempreserve;
589static uint64_t		arc_loaned_bytes;
590
591typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
592
593typedef struct arc_callback arc_callback_t;
594
595struct arc_callback {
596	void			*acb_private;
597	arc_done_func_t		*acb_done;
598	arc_buf_t		*acb_buf;
599	zio_t			*acb_zio_dummy;
600	arc_callback_t		*acb_next;
601};
602
603typedef struct arc_write_callback arc_write_callback_t;
604
605struct arc_write_callback {
606	void		*awcb_private;
607	arc_done_func_t	*awcb_ready;
608	arc_done_func_t	*awcb_physdone;
609	arc_done_func_t	*awcb_done;
610	arc_buf_t	*awcb_buf;
611};
612
613struct arc_buf_hdr {
614	/* protected by hash lock */
615	dva_t			b_dva;
616	uint64_t		b_birth;
617	uint64_t		b_cksum0;
618
619	kmutex_t		b_freeze_lock;
620	zio_cksum_t		*b_freeze_cksum;
621	void			*b_thawed;
622
623	arc_buf_hdr_t		*b_hash_next;
624	arc_buf_t		*b_buf;
625	arc_flags_t		b_flags;
626	uint32_t		b_datacnt;
627
628	arc_callback_t		*b_acb;
629	kcondvar_t		b_cv;
630
631	/* immutable */
632	arc_buf_contents_t	b_type;
633	uint64_t		b_size;
634	uint64_t		b_spa;
635
636	/* protected by arc state mutex */
637	arc_state_t		*b_state;
638	list_node_t		b_arc_node;
639
640	/* updated atomically */
641	clock_t			b_arc_access;
642
643	/* self protecting */
644	refcount_t		b_refcnt;
645
646	l2arc_buf_hdr_t		*b_l2hdr;
647	list_node_t		b_l2node;
648};
649
650#ifdef _KERNEL
651static int
652sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS)
653{
654	uint64_t val;
655	int err;
656
657	val = arc_meta_limit;
658	err = sysctl_handle_64(oidp, &val, 0, req);
659	if (err != 0 || req->newptr == NULL)
660		return (err);
661
662        if (val <= 0 || val > arc_c_max)
663		return (EINVAL);
664
665	arc_meta_limit = val;
666	return (0);
667}
668#endif
669
670static arc_buf_t *arc_eviction_list;
671static kmutex_t arc_eviction_mtx;
672static arc_buf_hdr_t arc_eviction_hdr;
673
674#define	GHOST_STATE(state)	\
675	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
676	(state) == arc_l2c_only)
677
678#define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
679#define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
680#define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_FLAG_IO_ERROR)
681#define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_FLAG_PREFETCH)
682#define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FLAG_FREED_IN_READ)
683#define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_FLAG_BUF_AVAILABLE)
684#define	HDR_FREE_IN_PROGRESS(hdr)	\
685	((hdr)->b_flags & ARC_FLAG_FREE_IN_PROGRESS)
686#define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_FLAG_L2CACHE)
687#define	HDR_L2_READING(hdr)	\
688	((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS &&	\
689	    (hdr)->b_l2hdr != NULL)
690#define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITING)
691#define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
692#define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
693
694/*
695 * Other sizes
696 */
697
698#define	HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
699#define	L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
700
701/*
702 * Hash table routines
703 */
704
705#define	HT_LOCK_PAD	CACHE_LINE_SIZE
706
707struct ht_lock {
708	kmutex_t	ht_lock;
709#ifdef _KERNEL
710	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
711#endif
712};
713
714#define	BUF_LOCKS 256
715typedef struct buf_hash_table {
716	uint64_t ht_mask;
717	arc_buf_hdr_t **ht_table;
718	struct ht_lock ht_locks[BUF_LOCKS] __aligned(CACHE_LINE_SIZE);
719} buf_hash_table_t;
720
721static buf_hash_table_t buf_hash_table;
722
723#define	BUF_HASH_INDEX(spa, dva, birth) \
724	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
725#define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
726#define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
727#define	HDR_LOCK(hdr) \
728	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
729
730uint64_t zfs_crc64_table[256];
731
732/*
733 * Level 2 ARC
734 */
735
736#define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
737#define	L2ARC_HEADROOM		2			/* num of writes */
738/*
739 * If we discover during ARC scan any buffers to be compressed, we boost
740 * our headroom for the next scanning cycle by this percentage multiple.
741 */
742#define	L2ARC_HEADROOM_BOOST	200
743#define	L2ARC_FEED_SECS		1		/* caching interval secs */
744#define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
745
746#define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
747#define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
748
749/* L2ARC Performance Tunables */
750uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
751uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
752uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
753uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
754uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
755uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
756boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
757boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
758boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
759
760SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_max, CTLFLAG_RW,
761    &l2arc_write_max, 0, "max write size");
762SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_boost, CTLFLAG_RW,
763    &l2arc_write_boost, 0, "extra write during warmup");
764SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_headroom, CTLFLAG_RW,
765    &l2arc_headroom, 0, "number of dev writes");
766SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_secs, CTLFLAG_RW,
767    &l2arc_feed_secs, 0, "interval seconds");
768SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_min_ms, CTLFLAG_RW,
769    &l2arc_feed_min_ms, 0, "min interval milliseconds");
770
771SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_noprefetch, CTLFLAG_RW,
772    &l2arc_noprefetch, 0, "don't cache prefetch bufs");
773SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_feed_again, CTLFLAG_RW,
774    &l2arc_feed_again, 0, "turbo warmup");
775SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_norw, CTLFLAG_RW,
776    &l2arc_norw, 0, "no reads during writes");
777
778SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_size, CTLFLAG_RD,
779    &ARC_anon.arcs_size, 0, "size of anonymous state");
780SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_metadata_lsize, CTLFLAG_RD,
781    &ARC_anon.arcs_lsize[ARC_BUFC_METADATA], 0, "size of anonymous state");
782SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_data_lsize, CTLFLAG_RD,
783    &ARC_anon.arcs_lsize[ARC_BUFC_DATA], 0, "size of anonymous state");
784
785SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_size, CTLFLAG_RD,
786    &ARC_mru.arcs_size, 0, "size of mru state");
787SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_metadata_lsize, CTLFLAG_RD,
788    &ARC_mru.arcs_lsize[ARC_BUFC_METADATA], 0, "size of metadata in mru state");
789SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_data_lsize, CTLFLAG_RD,
790    &ARC_mru.arcs_lsize[ARC_BUFC_DATA], 0, "size of data in mru state");
791
792SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_size, CTLFLAG_RD,
793    &ARC_mru_ghost.arcs_size, 0, "size of mru ghost state");
794SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_metadata_lsize, CTLFLAG_RD,
795    &ARC_mru_ghost.arcs_lsize[ARC_BUFC_METADATA], 0,
796    "size of metadata in mru ghost state");
797SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_data_lsize, CTLFLAG_RD,
798    &ARC_mru_ghost.arcs_lsize[ARC_BUFC_DATA], 0,
799    "size of data in mru ghost state");
800
801SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_size, CTLFLAG_RD,
802    &ARC_mfu.arcs_size, 0, "size of mfu state");
803SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_metadata_lsize, CTLFLAG_RD,
804    &ARC_mfu.arcs_lsize[ARC_BUFC_METADATA], 0, "size of metadata in mfu state");
805SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_data_lsize, CTLFLAG_RD,
806    &ARC_mfu.arcs_lsize[ARC_BUFC_DATA], 0, "size of data in mfu state");
807
808SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_size, CTLFLAG_RD,
809    &ARC_mfu_ghost.arcs_size, 0, "size of mfu ghost state");
810SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_metadata_lsize, CTLFLAG_RD,
811    &ARC_mfu_ghost.arcs_lsize[ARC_BUFC_METADATA], 0,
812    "size of metadata in mfu ghost state");
813SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_data_lsize, CTLFLAG_RD,
814    &ARC_mfu_ghost.arcs_lsize[ARC_BUFC_DATA], 0,
815    "size of data in mfu ghost state");
816
817SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2c_only_size, CTLFLAG_RD,
818    &ARC_l2c_only.arcs_size, 0, "size of mru state");
819
820/*
821 * L2ARC Internals
822 */
823typedef struct l2arc_dev {
824	vdev_t			*l2ad_vdev;	/* vdev */
825	spa_t			*l2ad_spa;	/* spa */
826	uint64_t		l2ad_hand;	/* next write location */
827	uint64_t		l2ad_start;	/* first addr on device */
828	uint64_t		l2ad_end;	/* last addr on device */
829	uint64_t		l2ad_evict;	/* last addr eviction reached */
830	boolean_t		l2ad_first;	/* first sweep through */
831	boolean_t		l2ad_writing;	/* currently writing */
832	list_t			*l2ad_buflist;	/* buffer list */
833	list_node_t		l2ad_node;	/* device list node */
834} l2arc_dev_t;
835
836static list_t L2ARC_dev_list;			/* device list */
837static list_t *l2arc_dev_list;			/* device list pointer */
838static kmutex_t l2arc_dev_mtx;			/* device list mutex */
839static l2arc_dev_t *l2arc_dev_last;		/* last device used */
840static kmutex_t l2arc_buflist_mtx;		/* mutex for all buflists */
841static list_t L2ARC_free_on_write;		/* free after write buf list */
842static list_t *l2arc_free_on_write;		/* free after write list ptr */
843static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
844static uint64_t l2arc_ndev;			/* number of devices */
845
846typedef struct l2arc_read_callback {
847	arc_buf_t		*l2rcb_buf;		/* read buffer */
848	spa_t			*l2rcb_spa;		/* spa */
849	blkptr_t		l2rcb_bp;		/* original blkptr */
850	zbookmark_phys_t	l2rcb_zb;		/* original bookmark */
851	int			l2rcb_flags;		/* original flags */
852	enum zio_compress	l2rcb_compress;		/* applied compress */
853} l2arc_read_callback_t;
854
855typedef struct l2arc_write_callback {
856	l2arc_dev_t	*l2wcb_dev;		/* device info */
857	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
858} l2arc_write_callback_t;
859
860struct l2arc_buf_hdr {
861	/* protected by arc_buf_hdr  mutex */
862	l2arc_dev_t		*b_dev;		/* L2ARC device */
863	uint64_t		b_daddr;	/* disk address, offset byte */
864	/* compression applied to buffer data */
865	enum zio_compress	b_compress;
866	/* real alloc'd buffer size depending on b_compress applied */
867	int			b_asize;
868	/* temporary buffer holder for in-flight compressed data */
869	void			*b_tmp_cdata;
870};
871
872typedef struct l2arc_data_free {
873	/* protected by l2arc_free_on_write_mtx */
874	void		*l2df_data;
875	size_t		l2df_size;
876	void		(*l2df_func)(void *, size_t);
877	list_node_t	l2df_list_node;
878} l2arc_data_free_t;
879
880static kmutex_t l2arc_feed_thr_lock;
881static kcondvar_t l2arc_feed_thr_cv;
882static uint8_t l2arc_thread_exit;
883
884static void arc_get_data_buf(arc_buf_t *);
885static void arc_access(arc_buf_hdr_t *, kmutex_t *);
886static int arc_evict_needed(arc_buf_contents_t);
887static void arc_evict_ghost(arc_state_t *, uint64_t, int64_t);
888static void arc_buf_watch(arc_buf_t *);
889
890static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
891static void l2arc_read_done(zio_t *);
892static void l2arc_hdr_stat_add(void);
893static void l2arc_hdr_stat_remove(void);
894
895static boolean_t l2arc_compress_buf(l2arc_buf_hdr_t *);
896static void l2arc_decompress_zio(zio_t *, arc_buf_hdr_t *, enum zio_compress);
897static void l2arc_release_cdata_buf(arc_buf_hdr_t *);
898
899static uint64_t
900buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
901{
902	uint8_t *vdva = (uint8_t *)dva;
903	uint64_t crc = -1ULL;
904	int i;
905
906	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
907
908	for (i = 0; i < sizeof (dva_t); i++)
909		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
910
911	crc ^= (spa>>8) ^ birth;
912
913	return (crc);
914}
915
916#define	BUF_EMPTY(buf)						\
917	((buf)->b_dva.dva_word[0] == 0 &&			\
918	(buf)->b_dva.dva_word[1] == 0 &&			\
919	(buf)->b_cksum0 == 0)
920
921#define	BUF_EQUAL(spa, dva, birth, buf)				\
922	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
923	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
924	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
925
926static void
927buf_discard_identity(arc_buf_hdr_t *hdr)
928{
929	hdr->b_dva.dva_word[0] = 0;
930	hdr->b_dva.dva_word[1] = 0;
931	hdr->b_birth = 0;
932	hdr->b_cksum0 = 0;
933}
934
935static arc_buf_hdr_t *
936buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
937{
938	const dva_t *dva = BP_IDENTITY(bp);
939	uint64_t birth = BP_PHYSICAL_BIRTH(bp);
940	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
941	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
942	arc_buf_hdr_t *hdr;
943
944	mutex_enter(hash_lock);
945	for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
946	    hdr = hdr->b_hash_next) {
947		if (BUF_EQUAL(spa, dva, birth, hdr)) {
948			*lockp = hash_lock;
949			return (hdr);
950		}
951	}
952	mutex_exit(hash_lock);
953	*lockp = NULL;
954	return (NULL);
955}
956
957/*
958 * Insert an entry into the hash table.  If there is already an element
959 * equal to elem in the hash table, then the already existing element
960 * will be returned and the new element will not be inserted.
961 * Otherwise returns NULL.
962 */
963static arc_buf_hdr_t *
964buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
965{
966	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
967	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
968	arc_buf_hdr_t *fhdr;
969	uint32_t i;
970
971	ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
972	ASSERT(hdr->b_birth != 0);
973	ASSERT(!HDR_IN_HASH_TABLE(hdr));
974	*lockp = hash_lock;
975	mutex_enter(hash_lock);
976	for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
977	    fhdr = fhdr->b_hash_next, i++) {
978		if (BUF_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
979			return (fhdr);
980	}
981
982	hdr->b_hash_next = buf_hash_table.ht_table[idx];
983	buf_hash_table.ht_table[idx] = hdr;
984	hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
985
986	/* collect some hash table performance data */
987	if (i > 0) {
988		ARCSTAT_BUMP(arcstat_hash_collisions);
989		if (i == 1)
990			ARCSTAT_BUMP(arcstat_hash_chains);
991
992		ARCSTAT_MAX(arcstat_hash_chain_max, i);
993	}
994
995	ARCSTAT_BUMP(arcstat_hash_elements);
996	ARCSTAT_MAXSTAT(arcstat_hash_elements);
997
998	return (NULL);
999}
1000
1001static void
1002buf_hash_remove(arc_buf_hdr_t *hdr)
1003{
1004	arc_buf_hdr_t *fhdr, **hdrp;
1005	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1006
1007	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1008	ASSERT(HDR_IN_HASH_TABLE(hdr));
1009
1010	hdrp = &buf_hash_table.ht_table[idx];
1011	while ((fhdr = *hdrp) != hdr) {
1012		ASSERT(fhdr != NULL);
1013		hdrp = &fhdr->b_hash_next;
1014	}
1015	*hdrp = hdr->b_hash_next;
1016	hdr->b_hash_next = NULL;
1017	hdr->b_flags &= ~ARC_FLAG_IN_HASH_TABLE;
1018
1019	/* collect some hash table performance data */
1020	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1021
1022	if (buf_hash_table.ht_table[idx] &&
1023	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1024		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1025}
1026
1027/*
1028 * Global data structures and functions for the buf kmem cache.
1029 */
1030static kmem_cache_t *hdr_cache;
1031static kmem_cache_t *buf_cache;
1032
1033static void
1034buf_fini(void)
1035{
1036	int i;
1037
1038	kmem_free(buf_hash_table.ht_table,
1039	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1040	for (i = 0; i < BUF_LOCKS; i++)
1041		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1042	kmem_cache_destroy(hdr_cache);
1043	kmem_cache_destroy(buf_cache);
1044}
1045
1046/*
1047 * Constructor callback - called when the cache is empty
1048 * and a new buf is requested.
1049 */
1050/* ARGSUSED */
1051static int
1052hdr_cons(void *vbuf, void *unused, int kmflag)
1053{
1054	arc_buf_hdr_t *hdr = vbuf;
1055
1056	bzero(hdr, sizeof (arc_buf_hdr_t));
1057	refcount_create(&hdr->b_refcnt);
1058	cv_init(&hdr->b_cv, NULL, CV_DEFAULT, NULL);
1059	mutex_init(&hdr->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1060	arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
1061
1062	return (0);
1063}
1064
1065/* ARGSUSED */
1066static int
1067buf_cons(void *vbuf, void *unused, int kmflag)
1068{
1069	arc_buf_t *buf = vbuf;
1070
1071	bzero(buf, sizeof (arc_buf_t));
1072	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1073	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1074
1075	return (0);
1076}
1077
1078/*
1079 * Destructor callback - called when a cached buf is
1080 * no longer required.
1081 */
1082/* ARGSUSED */
1083static void
1084hdr_dest(void *vbuf, void *unused)
1085{
1086	arc_buf_hdr_t *hdr = vbuf;
1087
1088	ASSERT(BUF_EMPTY(hdr));
1089	refcount_destroy(&hdr->b_refcnt);
1090	cv_destroy(&hdr->b_cv);
1091	mutex_destroy(&hdr->b_freeze_lock);
1092	arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
1093}
1094
1095/* ARGSUSED */
1096static void
1097buf_dest(void *vbuf, void *unused)
1098{
1099	arc_buf_t *buf = vbuf;
1100
1101	mutex_destroy(&buf->b_evict_lock);
1102	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1103}
1104
1105/*
1106 * Reclaim callback -- invoked when memory is low.
1107 */
1108/* ARGSUSED */
1109static void
1110hdr_recl(void *unused)
1111{
1112	dprintf("hdr_recl called\n");
1113	/*
1114	 * umem calls the reclaim func when we destroy the buf cache,
1115	 * which is after we do arc_fini().
1116	 */
1117	if (!arc_dead)
1118		cv_signal(&arc_reclaim_thr_cv);
1119}
1120
1121static void
1122buf_init(void)
1123{
1124	uint64_t *ct;
1125	uint64_t hsize = 1ULL << 12;
1126	int i, j;
1127
1128	/*
1129	 * The hash table is big enough to fill all of physical memory
1130	 * with an average block size of zfs_arc_average_blocksize (default 8K).
1131	 * By default, the table will take up
1132	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1133	 */
1134	while (hsize * zfs_arc_average_blocksize < (uint64_t)physmem * PAGESIZE)
1135		hsize <<= 1;
1136retry:
1137	buf_hash_table.ht_mask = hsize - 1;
1138	buf_hash_table.ht_table =
1139	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1140	if (buf_hash_table.ht_table == NULL) {
1141		ASSERT(hsize > (1ULL << 8));
1142		hsize >>= 1;
1143		goto retry;
1144	}
1145
1146	hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
1147	    0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
1148	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1149	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1150
1151	for (i = 0; i < 256; i++)
1152		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1153			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1154
1155	for (i = 0; i < BUF_LOCKS; i++) {
1156		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1157		    NULL, MUTEX_DEFAULT, NULL);
1158	}
1159}
1160
1161#define	ARC_MINTIME	(hz>>4) /* 62 ms */
1162
1163static void
1164arc_cksum_verify(arc_buf_t *buf)
1165{
1166	zio_cksum_t zc;
1167
1168	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1169		return;
1170
1171	mutex_enter(&buf->b_hdr->b_freeze_lock);
1172	if (buf->b_hdr->b_freeze_cksum == NULL ||
1173	    (buf->b_hdr->b_flags & ARC_FLAG_IO_ERROR)) {
1174		mutex_exit(&buf->b_hdr->b_freeze_lock);
1175		return;
1176	}
1177	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1178	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
1179		panic("buffer modified while frozen!");
1180	mutex_exit(&buf->b_hdr->b_freeze_lock);
1181}
1182
1183static int
1184arc_cksum_equal(arc_buf_t *buf)
1185{
1186	zio_cksum_t zc;
1187	int equal;
1188
1189	mutex_enter(&buf->b_hdr->b_freeze_lock);
1190	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1191	equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
1192	mutex_exit(&buf->b_hdr->b_freeze_lock);
1193
1194	return (equal);
1195}
1196
1197static void
1198arc_cksum_compute(arc_buf_t *buf, boolean_t force)
1199{
1200	if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1201		return;
1202
1203	mutex_enter(&buf->b_hdr->b_freeze_lock);
1204	if (buf->b_hdr->b_freeze_cksum != NULL) {
1205		mutex_exit(&buf->b_hdr->b_freeze_lock);
1206		return;
1207	}
1208	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
1209	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1210	    buf->b_hdr->b_freeze_cksum);
1211	mutex_exit(&buf->b_hdr->b_freeze_lock);
1212#ifdef illumos
1213	arc_buf_watch(buf);
1214#endif /* illumos */
1215}
1216
1217#ifdef illumos
1218#ifndef _KERNEL
1219typedef struct procctl {
1220	long cmd;
1221	prwatch_t prwatch;
1222} procctl_t;
1223#endif
1224
1225/* ARGSUSED */
1226static void
1227arc_buf_unwatch(arc_buf_t *buf)
1228{
1229#ifndef _KERNEL
1230	if (arc_watch) {
1231		int result;
1232		procctl_t ctl;
1233		ctl.cmd = PCWATCH;
1234		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1235		ctl.prwatch.pr_size = 0;
1236		ctl.prwatch.pr_wflags = 0;
1237		result = write(arc_procfd, &ctl, sizeof (ctl));
1238		ASSERT3U(result, ==, sizeof (ctl));
1239	}
1240#endif
1241}
1242
1243/* ARGSUSED */
1244static void
1245arc_buf_watch(arc_buf_t *buf)
1246{
1247#ifndef _KERNEL
1248	if (arc_watch) {
1249		int result;
1250		procctl_t ctl;
1251		ctl.cmd = PCWATCH;
1252		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1253		ctl.prwatch.pr_size = buf->b_hdr->b_size;
1254		ctl.prwatch.pr_wflags = WA_WRITE;
1255		result = write(arc_procfd, &ctl, sizeof (ctl));
1256		ASSERT3U(result, ==, sizeof (ctl));
1257	}
1258#endif
1259}
1260#endif /* illumos */
1261
1262void
1263arc_buf_thaw(arc_buf_t *buf)
1264{
1265	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1266		if (buf->b_hdr->b_state != arc_anon)
1267			panic("modifying non-anon buffer!");
1268		if (buf->b_hdr->b_flags & ARC_FLAG_IO_IN_PROGRESS)
1269			panic("modifying buffer while i/o in progress!");
1270		arc_cksum_verify(buf);
1271	}
1272
1273	mutex_enter(&buf->b_hdr->b_freeze_lock);
1274	if (buf->b_hdr->b_freeze_cksum != NULL) {
1275		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1276		buf->b_hdr->b_freeze_cksum = NULL;
1277	}
1278
1279	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1280		if (buf->b_hdr->b_thawed)
1281			kmem_free(buf->b_hdr->b_thawed, 1);
1282		buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP);
1283	}
1284
1285	mutex_exit(&buf->b_hdr->b_freeze_lock);
1286
1287#ifdef illumos
1288	arc_buf_unwatch(buf);
1289#endif /* illumos */
1290}
1291
1292void
1293arc_buf_freeze(arc_buf_t *buf)
1294{
1295	kmutex_t *hash_lock;
1296
1297	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1298		return;
1299
1300	hash_lock = HDR_LOCK(buf->b_hdr);
1301	mutex_enter(hash_lock);
1302
1303	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1304	    buf->b_hdr->b_state == arc_anon);
1305	arc_cksum_compute(buf, B_FALSE);
1306	mutex_exit(hash_lock);
1307
1308}
1309
1310static void
1311get_buf_info(arc_buf_hdr_t *hdr, arc_state_t *state, list_t **list, kmutex_t **lock)
1312{
1313	uint64_t buf_hashid = buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1314
1315	if (hdr->b_type == ARC_BUFC_METADATA)
1316		buf_hashid &= (ARC_BUFC_NUMMETADATALISTS - 1);
1317	else {
1318		buf_hashid &= (ARC_BUFC_NUMDATALISTS - 1);
1319		buf_hashid += ARC_BUFC_NUMMETADATALISTS;
1320	}
1321
1322	*list = &state->arcs_lists[buf_hashid];
1323	*lock = ARCS_LOCK(state, buf_hashid);
1324}
1325
1326
1327static void
1328add_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1329{
1330	ASSERT(MUTEX_HELD(hash_lock));
1331
1332	if ((refcount_add(&hdr->b_refcnt, tag) == 1) &&
1333	    (hdr->b_state != arc_anon)) {
1334		uint64_t delta = hdr->b_size * hdr->b_datacnt;
1335		uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
1336		list_t *list;
1337		kmutex_t *lock;
1338
1339		get_buf_info(hdr, hdr->b_state, &list, &lock);
1340		ASSERT(!MUTEX_HELD(lock));
1341		mutex_enter(lock);
1342		ASSERT(list_link_active(&hdr->b_arc_node));
1343		list_remove(list, hdr);
1344		if (GHOST_STATE(hdr->b_state)) {
1345			ASSERT0(hdr->b_datacnt);
1346			ASSERT3P(hdr->b_buf, ==, NULL);
1347			delta = hdr->b_size;
1348		}
1349		ASSERT(delta > 0);
1350		ASSERT3U(*size, >=, delta);
1351		atomic_add_64(size, -delta);
1352		mutex_exit(lock);
1353		/* remove the prefetch flag if we get a reference */
1354		if (hdr->b_flags & ARC_FLAG_PREFETCH)
1355			hdr->b_flags &= ~ARC_FLAG_PREFETCH;
1356	}
1357}
1358
1359static int
1360remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1361{
1362	int cnt;
1363	arc_state_t *state = hdr->b_state;
1364
1365	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1366	ASSERT(!GHOST_STATE(state));
1367
1368	if (((cnt = refcount_remove(&hdr->b_refcnt, tag)) == 0) &&
1369	    (state != arc_anon)) {
1370		uint64_t *size = &state->arcs_lsize[hdr->b_type];
1371		list_t *list;
1372		kmutex_t *lock;
1373
1374		get_buf_info(hdr, state, &list, &lock);
1375		ASSERT(!MUTEX_HELD(lock));
1376		mutex_enter(lock);
1377		ASSERT(!list_link_active(&hdr->b_arc_node));
1378		list_insert_head(list, hdr);
1379		ASSERT(hdr->b_datacnt > 0);
1380		atomic_add_64(size, hdr->b_size * hdr->b_datacnt);
1381		mutex_exit(lock);
1382	}
1383	return (cnt);
1384}
1385
1386/*
1387 * Move the supplied buffer to the indicated state.  The mutex
1388 * for the buffer must be held by the caller.
1389 */
1390static void
1391arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
1392    kmutex_t *hash_lock)
1393{
1394	arc_state_t *old_state = hdr->b_state;
1395	int64_t refcnt = refcount_count(&hdr->b_refcnt);
1396	uint64_t from_delta, to_delta;
1397	list_t *list;
1398	kmutex_t *lock;
1399
1400	ASSERT(MUTEX_HELD(hash_lock));
1401	ASSERT3P(new_state, !=, old_state);
1402	ASSERT(refcnt == 0 || hdr->b_datacnt > 0);
1403	ASSERT(hdr->b_datacnt == 0 || !GHOST_STATE(new_state));
1404	ASSERT(hdr->b_datacnt <= 1 || old_state != arc_anon);
1405
1406	from_delta = to_delta = hdr->b_datacnt * hdr->b_size;
1407
1408	/*
1409	 * If this buffer is evictable, transfer it from the
1410	 * old state list to the new state list.
1411	 */
1412	if (refcnt == 0) {
1413		if (old_state != arc_anon) {
1414			int use_mutex;
1415			uint64_t *size = &old_state->arcs_lsize[hdr->b_type];
1416
1417			get_buf_info(hdr, old_state, &list, &lock);
1418			use_mutex = !MUTEX_HELD(lock);
1419			if (use_mutex)
1420				mutex_enter(lock);
1421
1422			ASSERT(list_link_active(&hdr->b_arc_node));
1423			list_remove(list, hdr);
1424
1425			/*
1426			 * If prefetching out of the ghost cache,
1427			 * we will have a non-zero datacnt.
1428			 */
1429			if (GHOST_STATE(old_state) && hdr->b_datacnt == 0) {
1430				/* ghost elements have a ghost size */
1431				ASSERT(hdr->b_buf == NULL);
1432				from_delta = hdr->b_size;
1433			}
1434			ASSERT3U(*size, >=, from_delta);
1435			atomic_add_64(size, -from_delta);
1436
1437			if (use_mutex)
1438				mutex_exit(lock);
1439		}
1440		if (new_state != arc_anon) {
1441			int use_mutex;
1442			uint64_t *size = &new_state->arcs_lsize[hdr->b_type];
1443
1444			get_buf_info(hdr, new_state, &list, &lock);
1445			use_mutex = !MUTEX_HELD(lock);
1446			if (use_mutex)
1447				mutex_enter(lock);
1448
1449			list_insert_head(list, hdr);
1450
1451			/* ghost elements have a ghost size */
1452			if (GHOST_STATE(new_state)) {
1453				ASSERT(hdr->b_datacnt == 0);
1454				ASSERT(hdr->b_buf == NULL);
1455				to_delta = hdr->b_size;
1456			}
1457			atomic_add_64(size, to_delta);
1458
1459			if (use_mutex)
1460				mutex_exit(lock);
1461		}
1462	}
1463
1464	ASSERT(!BUF_EMPTY(hdr));
1465	if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
1466		buf_hash_remove(hdr);
1467
1468	/* adjust state sizes */
1469	if (to_delta)
1470		atomic_add_64(&new_state->arcs_size, to_delta);
1471	if (from_delta) {
1472		ASSERT3U(old_state->arcs_size, >=, from_delta);
1473		atomic_add_64(&old_state->arcs_size, -from_delta);
1474	}
1475	hdr->b_state = new_state;
1476
1477	/* adjust l2arc hdr stats */
1478	if (new_state == arc_l2c_only)
1479		l2arc_hdr_stat_add();
1480	else if (old_state == arc_l2c_only)
1481		l2arc_hdr_stat_remove();
1482}
1483
1484void
1485arc_space_consume(uint64_t space, arc_space_type_t type)
1486{
1487	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1488
1489	switch (type) {
1490	case ARC_SPACE_DATA:
1491		ARCSTAT_INCR(arcstat_data_size, space);
1492		break;
1493	case ARC_SPACE_OTHER:
1494		ARCSTAT_INCR(arcstat_other_size, space);
1495		break;
1496	case ARC_SPACE_HDRS:
1497		ARCSTAT_INCR(arcstat_hdr_size, space);
1498		break;
1499	case ARC_SPACE_L2HDRS:
1500		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1501		break;
1502	}
1503
1504	ARCSTAT_INCR(arcstat_meta_used, space);
1505	atomic_add_64(&arc_size, space);
1506}
1507
1508void
1509arc_space_return(uint64_t space, arc_space_type_t type)
1510{
1511	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1512
1513	switch (type) {
1514	case ARC_SPACE_DATA:
1515		ARCSTAT_INCR(arcstat_data_size, -space);
1516		break;
1517	case ARC_SPACE_OTHER:
1518		ARCSTAT_INCR(arcstat_other_size, -space);
1519		break;
1520	case ARC_SPACE_HDRS:
1521		ARCSTAT_INCR(arcstat_hdr_size, -space);
1522		break;
1523	case ARC_SPACE_L2HDRS:
1524		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1525		break;
1526	}
1527
1528	ASSERT(arc_meta_used >= space);
1529	if (arc_meta_max < arc_meta_used)
1530		arc_meta_max = arc_meta_used;
1531	ARCSTAT_INCR(arcstat_meta_used, -space);
1532	ASSERT(arc_size >= space);
1533	atomic_add_64(&arc_size, -space);
1534}
1535
1536arc_buf_t *
1537arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1538{
1539	arc_buf_hdr_t *hdr;
1540	arc_buf_t *buf;
1541
1542	ASSERT3U(size, >, 0);
1543	hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1544	ASSERT(BUF_EMPTY(hdr));
1545	hdr->b_size = size;
1546	hdr->b_type = type;
1547	hdr->b_spa = spa_load_guid(spa);
1548	hdr->b_state = arc_anon;
1549	hdr->b_arc_access = 0;
1550	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1551	buf->b_hdr = hdr;
1552	buf->b_data = NULL;
1553	buf->b_efunc = NULL;
1554	buf->b_private = NULL;
1555	buf->b_next = NULL;
1556	hdr->b_buf = buf;
1557	arc_get_data_buf(buf);
1558	hdr->b_datacnt = 1;
1559	hdr->b_flags = 0;
1560	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1561	(void) refcount_add(&hdr->b_refcnt, tag);
1562
1563	return (buf);
1564}
1565
1566static char *arc_onloan_tag = "onloan";
1567
1568/*
1569 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1570 * flight data by arc_tempreserve_space() until they are "returned". Loaned
1571 * buffers must be returned to the arc before they can be used by the DMU or
1572 * freed.
1573 */
1574arc_buf_t *
1575arc_loan_buf(spa_t *spa, int size)
1576{
1577	arc_buf_t *buf;
1578
1579	buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1580
1581	atomic_add_64(&arc_loaned_bytes, size);
1582	return (buf);
1583}
1584
1585/*
1586 * Return a loaned arc buffer to the arc.
1587 */
1588void
1589arc_return_buf(arc_buf_t *buf, void *tag)
1590{
1591	arc_buf_hdr_t *hdr = buf->b_hdr;
1592
1593	ASSERT(buf->b_data != NULL);
1594	(void) refcount_add(&hdr->b_refcnt, tag);
1595	(void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag);
1596
1597	atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1598}
1599
1600/* Detach an arc_buf from a dbuf (tag) */
1601void
1602arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1603{
1604	arc_buf_hdr_t *hdr;
1605
1606	ASSERT(buf->b_data != NULL);
1607	hdr = buf->b_hdr;
1608	(void) refcount_add(&hdr->b_refcnt, arc_onloan_tag);
1609	(void) refcount_remove(&hdr->b_refcnt, tag);
1610	buf->b_efunc = NULL;
1611	buf->b_private = NULL;
1612
1613	atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1614}
1615
1616static arc_buf_t *
1617arc_buf_clone(arc_buf_t *from)
1618{
1619	arc_buf_t *buf;
1620	arc_buf_hdr_t *hdr = from->b_hdr;
1621	uint64_t size = hdr->b_size;
1622
1623	ASSERT(hdr->b_state != arc_anon);
1624
1625	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1626	buf->b_hdr = hdr;
1627	buf->b_data = NULL;
1628	buf->b_efunc = NULL;
1629	buf->b_private = NULL;
1630	buf->b_next = hdr->b_buf;
1631	hdr->b_buf = buf;
1632	arc_get_data_buf(buf);
1633	bcopy(from->b_data, buf->b_data, size);
1634
1635	/*
1636	 * This buffer already exists in the arc so create a duplicate
1637	 * copy for the caller.  If the buffer is associated with user data
1638	 * then track the size and number of duplicates.  These stats will be
1639	 * updated as duplicate buffers are created and destroyed.
1640	 */
1641	if (hdr->b_type == ARC_BUFC_DATA) {
1642		ARCSTAT_BUMP(arcstat_duplicate_buffers);
1643		ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
1644	}
1645	hdr->b_datacnt += 1;
1646	return (buf);
1647}
1648
1649void
1650arc_buf_add_ref(arc_buf_t *buf, void* tag)
1651{
1652	arc_buf_hdr_t *hdr;
1653	kmutex_t *hash_lock;
1654
1655	/*
1656	 * Check to see if this buffer is evicted.  Callers
1657	 * must verify b_data != NULL to know if the add_ref
1658	 * was successful.
1659	 */
1660	mutex_enter(&buf->b_evict_lock);
1661	if (buf->b_data == NULL) {
1662		mutex_exit(&buf->b_evict_lock);
1663		return;
1664	}
1665	hash_lock = HDR_LOCK(buf->b_hdr);
1666	mutex_enter(hash_lock);
1667	hdr = buf->b_hdr;
1668	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1669	mutex_exit(&buf->b_evict_lock);
1670
1671	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1672	add_reference(hdr, hash_lock, tag);
1673	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
1674	arc_access(hdr, hash_lock);
1675	mutex_exit(hash_lock);
1676	ARCSTAT_BUMP(arcstat_hits);
1677	ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_FLAG_PREFETCH),
1678	    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1679	    data, metadata, hits);
1680}
1681
1682static void
1683arc_buf_free_on_write(void *data, size_t size,
1684    void (*free_func)(void *, size_t))
1685{
1686	l2arc_data_free_t *df;
1687
1688	df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
1689	df->l2df_data = data;
1690	df->l2df_size = size;
1691	df->l2df_func = free_func;
1692	mutex_enter(&l2arc_free_on_write_mtx);
1693	list_insert_head(l2arc_free_on_write, df);
1694	mutex_exit(&l2arc_free_on_write_mtx);
1695}
1696
1697/*
1698 * Free the arc data buffer.  If it is an l2arc write in progress,
1699 * the buffer is placed on l2arc_free_on_write to be freed later.
1700 */
1701static void
1702arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
1703{
1704	arc_buf_hdr_t *hdr = buf->b_hdr;
1705
1706	if (HDR_L2_WRITING(hdr)) {
1707		arc_buf_free_on_write(buf->b_data, hdr->b_size, free_func);
1708		ARCSTAT_BUMP(arcstat_l2_free_on_write);
1709	} else {
1710		free_func(buf->b_data, hdr->b_size);
1711	}
1712}
1713
1714/*
1715 * Free up buf->b_data and if 'remove' is set, then pull the
1716 * arc_buf_t off of the the arc_buf_hdr_t's list and free it.
1717 */
1718static void
1719arc_buf_l2_cdata_free(arc_buf_hdr_t *hdr)
1720{
1721	l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr;
1722
1723	ASSERT(MUTEX_HELD(&l2arc_buflist_mtx));
1724
1725	if (l2hdr->b_tmp_cdata == NULL)
1726		return;
1727
1728	ASSERT(HDR_L2_WRITING(hdr));
1729	arc_buf_free_on_write(l2hdr->b_tmp_cdata, hdr->b_size,
1730	    zio_data_buf_free);
1731	ARCSTAT_BUMP(arcstat_l2_cdata_free_on_write);
1732	l2hdr->b_tmp_cdata = NULL;
1733}
1734
1735static void
1736arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t remove)
1737{
1738	arc_buf_t **bufp;
1739
1740	/* free up data associated with the buf */
1741	if (buf->b_data) {
1742		arc_state_t *state = buf->b_hdr->b_state;
1743		uint64_t size = buf->b_hdr->b_size;
1744		arc_buf_contents_t type = buf->b_hdr->b_type;
1745
1746		arc_cksum_verify(buf);
1747#ifdef illumos
1748		arc_buf_unwatch(buf);
1749#endif /* illumos */
1750
1751		if (!recycle) {
1752			if (type == ARC_BUFC_METADATA) {
1753				arc_buf_data_free(buf, zio_buf_free);
1754				arc_space_return(size, ARC_SPACE_DATA);
1755			} else {
1756				ASSERT(type == ARC_BUFC_DATA);
1757				arc_buf_data_free(buf, zio_data_buf_free);
1758				ARCSTAT_INCR(arcstat_data_size, -size);
1759				atomic_add_64(&arc_size, -size);
1760			}
1761		}
1762		if (list_link_active(&buf->b_hdr->b_arc_node)) {
1763			uint64_t *cnt = &state->arcs_lsize[type];
1764
1765			ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1766			ASSERT(state != arc_anon);
1767
1768			ASSERT3U(*cnt, >=, size);
1769			atomic_add_64(cnt, -size);
1770		}
1771		ASSERT3U(state->arcs_size, >=, size);
1772		atomic_add_64(&state->arcs_size, -size);
1773		buf->b_data = NULL;
1774
1775		/*
1776		 * If we're destroying a duplicate buffer make sure
1777		 * that the appropriate statistics are updated.
1778		 */
1779		if (buf->b_hdr->b_datacnt > 1 &&
1780		    buf->b_hdr->b_type == ARC_BUFC_DATA) {
1781			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
1782			ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
1783		}
1784		ASSERT(buf->b_hdr->b_datacnt > 0);
1785		buf->b_hdr->b_datacnt -= 1;
1786	}
1787
1788	/* only remove the buf if requested */
1789	if (!remove)
1790		return;
1791
1792	/* remove the buf from the hdr list */
1793	for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1794		continue;
1795	*bufp = buf->b_next;
1796	buf->b_next = NULL;
1797
1798	ASSERT(buf->b_efunc == NULL);
1799
1800	/* clean up the buf */
1801	buf->b_hdr = NULL;
1802	kmem_cache_free(buf_cache, buf);
1803}
1804
1805static void
1806arc_hdr_destroy(arc_buf_hdr_t *hdr)
1807{
1808	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1809	ASSERT3P(hdr->b_state, ==, arc_anon);
1810	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1811	l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr;
1812
1813	if (l2hdr != NULL) {
1814		boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx);
1815		/*
1816		 * To prevent arc_free() and l2arc_evict() from
1817		 * attempting to free the same buffer at the same time,
1818		 * a FREE_IN_PROGRESS flag is given to arc_free() to
1819		 * give it priority.  l2arc_evict() can't destroy this
1820		 * header while we are waiting on l2arc_buflist_mtx.
1821		 *
1822		 * The hdr may be removed from l2ad_buflist before we
1823		 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
1824		 */
1825		if (!buflist_held) {
1826			mutex_enter(&l2arc_buflist_mtx);
1827			l2hdr = hdr->b_l2hdr;
1828		}
1829
1830		if (l2hdr != NULL) {
1831			trim_map_free(l2hdr->b_dev->l2ad_vdev, l2hdr->b_daddr,
1832			    l2hdr->b_asize, 0);
1833			list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
1834			arc_buf_l2_cdata_free(hdr);
1835			ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1836			ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
1837			vdev_space_update(l2hdr->b_dev->l2ad_vdev,
1838			    -l2hdr->b_asize, 0, 0);
1839			kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
1840			if (hdr->b_state == arc_l2c_only)
1841				l2arc_hdr_stat_remove();
1842			hdr->b_l2hdr = NULL;
1843		}
1844
1845		if (!buflist_held)
1846			mutex_exit(&l2arc_buflist_mtx);
1847	}
1848
1849	if (!BUF_EMPTY(hdr)) {
1850		ASSERT(!HDR_IN_HASH_TABLE(hdr));
1851		buf_discard_identity(hdr);
1852	}
1853	while (hdr->b_buf) {
1854		arc_buf_t *buf = hdr->b_buf;
1855
1856		if (buf->b_efunc) {
1857			mutex_enter(&arc_eviction_mtx);
1858			mutex_enter(&buf->b_evict_lock);
1859			ASSERT(buf->b_hdr != NULL);
1860			arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1861			hdr->b_buf = buf->b_next;
1862			buf->b_hdr = &arc_eviction_hdr;
1863			buf->b_next = arc_eviction_list;
1864			arc_eviction_list = buf;
1865			mutex_exit(&buf->b_evict_lock);
1866			mutex_exit(&arc_eviction_mtx);
1867		} else {
1868			arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1869		}
1870	}
1871	if (hdr->b_freeze_cksum != NULL) {
1872		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1873		hdr->b_freeze_cksum = NULL;
1874	}
1875	if (hdr->b_thawed) {
1876		kmem_free(hdr->b_thawed, 1);
1877		hdr->b_thawed = NULL;
1878	}
1879
1880	ASSERT(!list_link_active(&hdr->b_arc_node));
1881	ASSERT3P(hdr->b_hash_next, ==, NULL);
1882	ASSERT3P(hdr->b_acb, ==, NULL);
1883	kmem_cache_free(hdr_cache, hdr);
1884}
1885
1886void
1887arc_buf_free(arc_buf_t *buf, void *tag)
1888{
1889	arc_buf_hdr_t *hdr = buf->b_hdr;
1890	int hashed = hdr->b_state != arc_anon;
1891
1892	ASSERT(buf->b_efunc == NULL);
1893	ASSERT(buf->b_data != NULL);
1894
1895	if (hashed) {
1896		kmutex_t *hash_lock = HDR_LOCK(hdr);
1897
1898		mutex_enter(hash_lock);
1899		hdr = buf->b_hdr;
1900		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1901
1902		(void) remove_reference(hdr, hash_lock, tag);
1903		if (hdr->b_datacnt > 1) {
1904			arc_buf_destroy(buf, FALSE, TRUE);
1905		} else {
1906			ASSERT(buf == hdr->b_buf);
1907			ASSERT(buf->b_efunc == NULL);
1908			hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
1909		}
1910		mutex_exit(hash_lock);
1911	} else if (HDR_IO_IN_PROGRESS(hdr)) {
1912		int destroy_hdr;
1913		/*
1914		 * We are in the middle of an async write.  Don't destroy
1915		 * this buffer unless the write completes before we finish
1916		 * decrementing the reference count.
1917		 */
1918		mutex_enter(&arc_eviction_mtx);
1919		(void) remove_reference(hdr, NULL, tag);
1920		ASSERT(refcount_is_zero(&hdr->b_refcnt));
1921		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1922		mutex_exit(&arc_eviction_mtx);
1923		if (destroy_hdr)
1924			arc_hdr_destroy(hdr);
1925	} else {
1926		if (remove_reference(hdr, NULL, tag) > 0)
1927			arc_buf_destroy(buf, FALSE, TRUE);
1928		else
1929			arc_hdr_destroy(hdr);
1930	}
1931}
1932
1933boolean_t
1934arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1935{
1936	arc_buf_hdr_t *hdr = buf->b_hdr;
1937	kmutex_t *hash_lock = HDR_LOCK(hdr);
1938	boolean_t no_callback = (buf->b_efunc == NULL);
1939
1940	if (hdr->b_state == arc_anon) {
1941		ASSERT(hdr->b_datacnt == 1);
1942		arc_buf_free(buf, tag);
1943		return (no_callback);
1944	}
1945
1946	mutex_enter(hash_lock);
1947	hdr = buf->b_hdr;
1948	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1949	ASSERT(hdr->b_state != arc_anon);
1950	ASSERT(buf->b_data != NULL);
1951
1952	(void) remove_reference(hdr, hash_lock, tag);
1953	if (hdr->b_datacnt > 1) {
1954		if (no_callback)
1955			arc_buf_destroy(buf, FALSE, TRUE);
1956	} else if (no_callback) {
1957		ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1958		ASSERT(buf->b_efunc == NULL);
1959		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
1960	}
1961	ASSERT(no_callback || hdr->b_datacnt > 1 ||
1962	    refcount_is_zero(&hdr->b_refcnt));
1963	mutex_exit(hash_lock);
1964	return (no_callback);
1965}
1966
1967int
1968arc_buf_size(arc_buf_t *buf)
1969{
1970	return (buf->b_hdr->b_size);
1971}
1972
1973/*
1974 * Called from the DMU to determine if the current buffer should be
1975 * evicted. In order to ensure proper locking, the eviction must be initiated
1976 * from the DMU. Return true if the buffer is associated with user data and
1977 * duplicate buffers still exist.
1978 */
1979boolean_t
1980arc_buf_eviction_needed(arc_buf_t *buf)
1981{
1982	arc_buf_hdr_t *hdr;
1983	boolean_t evict_needed = B_FALSE;
1984
1985	if (zfs_disable_dup_eviction)
1986		return (B_FALSE);
1987
1988	mutex_enter(&buf->b_evict_lock);
1989	hdr = buf->b_hdr;
1990	if (hdr == NULL) {
1991		/*
1992		 * We are in arc_do_user_evicts(); let that function
1993		 * perform the eviction.
1994		 */
1995		ASSERT(buf->b_data == NULL);
1996		mutex_exit(&buf->b_evict_lock);
1997		return (B_FALSE);
1998	} else if (buf->b_data == NULL) {
1999		/*
2000		 * We have already been added to the arc eviction list;
2001		 * recommend eviction.
2002		 */
2003		ASSERT3P(hdr, ==, &arc_eviction_hdr);
2004		mutex_exit(&buf->b_evict_lock);
2005		return (B_TRUE);
2006	}
2007
2008	if (hdr->b_datacnt > 1 && hdr->b_type == ARC_BUFC_DATA)
2009		evict_needed = B_TRUE;
2010
2011	mutex_exit(&buf->b_evict_lock);
2012	return (evict_needed);
2013}
2014
2015/*
2016 * Evict buffers from list until we've removed the specified number of
2017 * bytes.  Move the removed buffers to the appropriate evict state.
2018 * If the recycle flag is set, then attempt to "recycle" a buffer:
2019 * - look for a buffer to evict that is `bytes' long.
2020 * - return the data block from this buffer rather than freeing it.
2021 * This flag is used by callers that are trying to make space for a
2022 * new buffer in a full arc cache.
2023 *
2024 * This function makes a "best effort".  It skips over any buffers
2025 * it can't get a hash_lock on, and so may not catch all candidates.
2026 * It may also return without evicting as much space as requested.
2027 */
2028static void *
2029arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
2030    arc_buf_contents_t type)
2031{
2032	arc_state_t *evicted_state;
2033	uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
2034	int64_t bytes_remaining;
2035	arc_buf_hdr_t *hdr, *hdr_prev = NULL;
2036	list_t *evicted_list, *list, *evicted_list_start, *list_start;
2037	kmutex_t *lock, *evicted_lock;
2038	kmutex_t *hash_lock;
2039	boolean_t have_lock;
2040	void *stolen = NULL;
2041	arc_buf_hdr_t marker = { 0 };
2042	int count = 0;
2043	static int evict_metadata_offset, evict_data_offset;
2044	int i, idx, offset, list_count, lists;
2045
2046	ASSERT(state == arc_mru || state == arc_mfu);
2047
2048	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
2049
2050	/*
2051	 * Decide which "type" (data vs metadata) to recycle from.
2052	 *
2053	 * If we are over the metadata limit, recycle from metadata.
2054	 * If we are under the metadata minimum, recycle from data.
2055	 * Otherwise, recycle from whichever type has the oldest (least
2056	 * recently accessed) header.  This is not yet implemented.
2057	 */
2058	if (recycle) {
2059		arc_buf_contents_t realtype;
2060		if (state->arcs_lsize[ARC_BUFC_DATA] == 0) {
2061			realtype = ARC_BUFC_METADATA;
2062		} else if (state->arcs_lsize[ARC_BUFC_METADATA] == 0) {
2063			realtype = ARC_BUFC_DATA;
2064		} else if (arc_meta_used >= arc_meta_limit) {
2065			realtype = ARC_BUFC_METADATA;
2066		} else if (arc_meta_used <= arc_meta_min) {
2067			realtype = ARC_BUFC_DATA;
2068		} else {
2069#ifdef illumos
2070			if (data_hdr->b_arc_access <
2071			    metadata_hdr->b_arc_access) {
2072				realtype = ARC_BUFC_DATA;
2073			} else {
2074				realtype = ARC_BUFC_METADATA;
2075			}
2076#else
2077			/* TODO */
2078			realtype = type;
2079#endif
2080		}
2081		if (realtype != type) {
2082			/*
2083			 * If we want to evict from a different list,
2084			 * we can not recycle, because DATA vs METADATA
2085			 * buffers are segregated into different kmem
2086			 * caches (and vmem arenas).
2087			 */
2088			type = realtype;
2089			recycle = B_FALSE;
2090		}
2091	}
2092
2093	if (type == ARC_BUFC_METADATA) {
2094		offset = 0;
2095		list_count = ARC_BUFC_NUMMETADATALISTS;
2096		list_start = &state->arcs_lists[0];
2097		evicted_list_start = &evicted_state->arcs_lists[0];
2098		idx = evict_metadata_offset;
2099	} else {
2100		offset = ARC_BUFC_NUMMETADATALISTS;
2101		list_start = &state->arcs_lists[offset];
2102		evicted_list_start = &evicted_state->arcs_lists[offset];
2103		list_count = ARC_BUFC_NUMDATALISTS;
2104		idx = evict_data_offset;
2105	}
2106	bytes_remaining = evicted_state->arcs_lsize[type];
2107	lists = 0;
2108
2109evict_start:
2110	list = &list_start[idx];
2111	evicted_list = &evicted_list_start[idx];
2112	lock = ARCS_LOCK(state, (offset + idx));
2113	evicted_lock = ARCS_LOCK(evicted_state, (offset + idx));
2114
2115	mutex_enter(lock);
2116	mutex_enter(evicted_lock);
2117
2118	for (hdr = list_tail(list); hdr; hdr = hdr_prev) {
2119		hdr_prev = list_prev(list, hdr);
2120		bytes_remaining -= (hdr->b_size * hdr->b_datacnt);
2121		/* prefetch buffers have a minimum lifespan */
2122		if (HDR_IO_IN_PROGRESS(hdr) ||
2123		    (spa && hdr->b_spa != spa) ||
2124		    (hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT) &&
2125		    ddi_get_lbolt() - hdr->b_arc_access <
2126		    arc_min_prefetch_lifespan)) {
2127			skipped++;
2128			continue;
2129		}
2130		/* "lookahead" for better eviction candidate */
2131		if (recycle && hdr->b_size != bytes &&
2132		    hdr_prev && hdr_prev->b_size == bytes)
2133			continue;
2134
2135		/* ignore markers */
2136		if (hdr->b_spa == 0)
2137			continue;
2138
2139		/*
2140		 * It may take a long time to evict all the bufs requested.
2141		 * To avoid blocking all arc activity, periodically drop
2142		 * the arcs_mtx and give other threads a chance to run
2143		 * before reacquiring the lock.
2144		 *
2145		 * If we are looking for a buffer to recycle, we are in
2146		 * the hot code path, so don't sleep.
2147		 */
2148		if (!recycle && count++ > arc_evict_iterations) {
2149			list_insert_after(list, hdr, &marker);
2150			mutex_exit(evicted_lock);
2151			mutex_exit(lock);
2152			kpreempt(KPREEMPT_SYNC);
2153			mutex_enter(lock);
2154			mutex_enter(evicted_lock);
2155			hdr_prev = list_prev(list, &marker);
2156			list_remove(list, &marker);
2157			count = 0;
2158			continue;
2159		}
2160
2161		hash_lock = HDR_LOCK(hdr);
2162		have_lock = MUTEX_HELD(hash_lock);
2163		if (have_lock || mutex_tryenter(hash_lock)) {
2164			ASSERT0(refcount_count(&hdr->b_refcnt));
2165			ASSERT(hdr->b_datacnt > 0);
2166			while (hdr->b_buf) {
2167				arc_buf_t *buf = hdr->b_buf;
2168				if (!mutex_tryenter(&buf->b_evict_lock)) {
2169					missed += 1;
2170					break;
2171				}
2172				if (buf->b_data) {
2173					bytes_evicted += hdr->b_size;
2174					if (recycle && hdr->b_type == type &&
2175					    hdr->b_size == bytes &&
2176					    !HDR_L2_WRITING(hdr)) {
2177						stolen = buf->b_data;
2178						recycle = FALSE;
2179					}
2180				}
2181				if (buf->b_efunc) {
2182					mutex_enter(&arc_eviction_mtx);
2183					arc_buf_destroy(buf,
2184					    buf->b_data == stolen, FALSE);
2185					hdr->b_buf = buf->b_next;
2186					buf->b_hdr = &arc_eviction_hdr;
2187					buf->b_next = arc_eviction_list;
2188					arc_eviction_list = buf;
2189					mutex_exit(&arc_eviction_mtx);
2190					mutex_exit(&buf->b_evict_lock);
2191				} else {
2192					mutex_exit(&buf->b_evict_lock);
2193					arc_buf_destroy(buf,
2194					    buf->b_data == stolen, TRUE);
2195				}
2196			}
2197
2198			if (hdr->b_l2hdr) {
2199				ARCSTAT_INCR(arcstat_evict_l2_cached,
2200				    hdr->b_size);
2201			} else {
2202				if (l2arc_write_eligible(hdr->b_spa, hdr)) {
2203					ARCSTAT_INCR(arcstat_evict_l2_eligible,
2204					    hdr->b_size);
2205				} else {
2206					ARCSTAT_INCR(
2207					    arcstat_evict_l2_ineligible,
2208					    hdr->b_size);
2209				}
2210			}
2211
2212			if (hdr->b_datacnt == 0) {
2213				arc_change_state(evicted_state, hdr, hash_lock);
2214				ASSERT(HDR_IN_HASH_TABLE(hdr));
2215				hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
2216				hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
2217				DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
2218			}
2219			if (!have_lock)
2220				mutex_exit(hash_lock);
2221			if (bytes >= 0 && bytes_evicted >= bytes)
2222				break;
2223			if (bytes_remaining > 0) {
2224				mutex_exit(evicted_lock);
2225				mutex_exit(lock);
2226				idx  = ((idx + 1) & (list_count - 1));
2227				lists++;
2228				goto evict_start;
2229			}
2230		} else {
2231			missed += 1;
2232		}
2233	}
2234
2235	mutex_exit(evicted_lock);
2236	mutex_exit(lock);
2237
2238	idx  = ((idx + 1) & (list_count - 1));
2239	lists++;
2240
2241	if (bytes_evicted < bytes) {
2242		if (lists < list_count)
2243			goto evict_start;
2244		else
2245			dprintf("only evicted %lld bytes from %x",
2246			    (longlong_t)bytes_evicted, state);
2247	}
2248	if (type == ARC_BUFC_METADATA)
2249		evict_metadata_offset = idx;
2250	else
2251		evict_data_offset = idx;
2252
2253	if (skipped)
2254		ARCSTAT_INCR(arcstat_evict_skip, skipped);
2255
2256	if (missed)
2257		ARCSTAT_INCR(arcstat_mutex_miss, missed);
2258
2259	/*
2260	 * Note: we have just evicted some data into the ghost state,
2261	 * potentially putting the ghost size over the desired size.  Rather
2262	 * that evicting from the ghost list in this hot code path, leave
2263	 * this chore to the arc_reclaim_thread().
2264	 */
2265
2266	if (stolen)
2267		ARCSTAT_BUMP(arcstat_stolen);
2268	return (stolen);
2269}
2270
2271/*
2272 * Remove buffers from list until we've removed the specified number of
2273 * bytes.  Destroy the buffers that are removed.
2274 */
2275static void
2276arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes)
2277{
2278	arc_buf_hdr_t *hdr, *hdr_prev;
2279	arc_buf_hdr_t marker = { 0 };
2280	list_t *list, *list_start;
2281	kmutex_t *hash_lock, *lock;
2282	uint64_t bytes_deleted = 0;
2283	uint64_t bufs_skipped = 0;
2284	int count = 0;
2285	static int evict_offset;
2286	int list_count, idx = evict_offset;
2287	int offset, lists = 0;
2288
2289	ASSERT(GHOST_STATE(state));
2290
2291	/*
2292	 * data lists come after metadata lists
2293	 */
2294	list_start = &state->arcs_lists[ARC_BUFC_NUMMETADATALISTS];
2295	list_count = ARC_BUFC_NUMDATALISTS;
2296	offset = ARC_BUFC_NUMMETADATALISTS;
2297
2298evict_start:
2299	list = &list_start[idx];
2300	lock = ARCS_LOCK(state, idx + offset);
2301
2302	mutex_enter(lock);
2303	for (hdr = list_tail(list); hdr; hdr = hdr_prev) {
2304		hdr_prev = list_prev(list, hdr);
2305		if (hdr->b_type > ARC_BUFC_NUMTYPES)
2306			panic("invalid hdr=%p", (void *)hdr);
2307		if (spa && hdr->b_spa != spa)
2308			continue;
2309
2310		/* ignore markers */
2311		if (hdr->b_spa == 0)
2312			continue;
2313
2314		hash_lock = HDR_LOCK(hdr);
2315		/* caller may be trying to modify this buffer, skip it */
2316		if (MUTEX_HELD(hash_lock))
2317			continue;
2318
2319		/*
2320		 * It may take a long time to evict all the bufs requested.
2321		 * To avoid blocking all arc activity, periodically drop
2322		 * the arcs_mtx and give other threads a chance to run
2323		 * before reacquiring the lock.
2324		 */
2325		if (count++ > arc_evict_iterations) {
2326			list_insert_after(list, hdr, &marker);
2327			mutex_exit(lock);
2328			kpreempt(KPREEMPT_SYNC);
2329			mutex_enter(lock);
2330			hdr_prev = list_prev(list, &marker);
2331			list_remove(list, &marker);
2332			count = 0;
2333			continue;
2334		}
2335		if (mutex_tryenter(hash_lock)) {
2336			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2337			ASSERT(hdr->b_buf == NULL);
2338			ARCSTAT_BUMP(arcstat_deleted);
2339			bytes_deleted += hdr->b_size;
2340
2341			if (hdr->b_l2hdr != NULL) {
2342				/*
2343				 * This buffer is cached on the 2nd Level ARC;
2344				 * don't destroy the header.
2345				 */
2346				arc_change_state(arc_l2c_only, hdr, hash_lock);
2347				mutex_exit(hash_lock);
2348			} else {
2349				arc_change_state(arc_anon, hdr, hash_lock);
2350				mutex_exit(hash_lock);
2351				arc_hdr_destroy(hdr);
2352			}
2353
2354			DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
2355			if (bytes >= 0 && bytes_deleted >= bytes)
2356				break;
2357		} else if (bytes < 0) {
2358			/*
2359			 * Insert a list marker and then wait for the
2360			 * hash lock to become available. Once its
2361			 * available, restart from where we left off.
2362			 */
2363			list_insert_after(list, hdr, &marker);
2364			mutex_exit(lock);
2365			mutex_enter(hash_lock);
2366			mutex_exit(hash_lock);
2367			mutex_enter(lock);
2368			hdr_prev = list_prev(list, &marker);
2369			list_remove(list, &marker);
2370		} else {
2371			bufs_skipped += 1;
2372		}
2373
2374	}
2375	mutex_exit(lock);
2376	idx  = ((idx + 1) & (ARC_BUFC_NUMDATALISTS - 1));
2377	lists++;
2378
2379	if (lists < list_count)
2380		goto evict_start;
2381
2382	evict_offset = idx;
2383	if ((uintptr_t)list > (uintptr_t)&state->arcs_lists[ARC_BUFC_NUMMETADATALISTS] &&
2384	    (bytes < 0 || bytes_deleted < bytes)) {
2385		list_start = &state->arcs_lists[0];
2386		list_count = ARC_BUFC_NUMMETADATALISTS;
2387		offset = lists = 0;
2388		goto evict_start;
2389	}
2390
2391	if (bufs_skipped) {
2392		ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
2393		ASSERT(bytes >= 0);
2394	}
2395
2396	if (bytes_deleted < bytes)
2397		dprintf("only deleted %lld bytes from %p",
2398		    (longlong_t)bytes_deleted, state);
2399}
2400
2401static void
2402arc_adjust(void)
2403{
2404	int64_t adjustment, delta;
2405
2406	/*
2407	 * Adjust MRU size
2408	 */
2409
2410	adjustment = MIN((int64_t)(arc_size - arc_c),
2411	    (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used -
2412	    arc_p));
2413
2414	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
2415		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment);
2416		(void) arc_evict(arc_mru, 0, delta, FALSE, ARC_BUFC_DATA);
2417		adjustment -= delta;
2418	}
2419
2420	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2421		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
2422		(void) arc_evict(arc_mru, 0, delta, FALSE,
2423		    ARC_BUFC_METADATA);
2424	}
2425
2426	/*
2427	 * Adjust MFU size
2428	 */
2429
2430	adjustment = arc_size - arc_c;
2431
2432	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
2433		delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]);
2434		(void) arc_evict(arc_mfu, 0, delta, FALSE, ARC_BUFC_DATA);
2435		adjustment -= delta;
2436	}
2437
2438	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2439		int64_t delta = MIN(adjustment,
2440		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA]);
2441		(void) arc_evict(arc_mfu, 0, delta, FALSE,
2442		    ARC_BUFC_METADATA);
2443	}
2444
2445	/*
2446	 * Adjust ghost lists
2447	 */
2448
2449	adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
2450
2451	if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
2452		delta = MIN(arc_mru_ghost->arcs_size, adjustment);
2453		arc_evict_ghost(arc_mru_ghost, 0, delta);
2454	}
2455
2456	adjustment =
2457	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
2458
2459	if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
2460		delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
2461		arc_evict_ghost(arc_mfu_ghost, 0, delta);
2462	}
2463}
2464
2465static void
2466arc_do_user_evicts(void)
2467{
2468	static arc_buf_t *tmp_arc_eviction_list;
2469
2470	/*
2471	 * Move list over to avoid LOR
2472	 */
2473restart:
2474	mutex_enter(&arc_eviction_mtx);
2475	tmp_arc_eviction_list = arc_eviction_list;
2476	arc_eviction_list = NULL;
2477	mutex_exit(&arc_eviction_mtx);
2478
2479	while (tmp_arc_eviction_list != NULL) {
2480		arc_buf_t *buf = tmp_arc_eviction_list;
2481		tmp_arc_eviction_list = buf->b_next;
2482		mutex_enter(&buf->b_evict_lock);
2483		buf->b_hdr = NULL;
2484		mutex_exit(&buf->b_evict_lock);
2485
2486		if (buf->b_efunc != NULL)
2487			VERIFY0(buf->b_efunc(buf->b_private));
2488
2489		buf->b_efunc = NULL;
2490		buf->b_private = NULL;
2491		kmem_cache_free(buf_cache, buf);
2492	}
2493
2494	if (arc_eviction_list != NULL)
2495		goto restart;
2496}
2497
2498/*
2499 * Flush all *evictable* data from the cache for the given spa.
2500 * NOTE: this will not touch "active" (i.e. referenced) data.
2501 */
2502void
2503arc_flush(spa_t *spa)
2504{
2505	uint64_t guid = 0;
2506
2507	if (spa)
2508		guid = spa_load_guid(spa);
2509
2510	while (arc_mru->arcs_lsize[ARC_BUFC_DATA]) {
2511		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
2512		if (spa)
2513			break;
2514	}
2515	while (arc_mru->arcs_lsize[ARC_BUFC_METADATA]) {
2516		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
2517		if (spa)
2518			break;
2519	}
2520	while (arc_mfu->arcs_lsize[ARC_BUFC_DATA]) {
2521		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
2522		if (spa)
2523			break;
2524	}
2525	while (arc_mfu->arcs_lsize[ARC_BUFC_METADATA]) {
2526		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
2527		if (spa)
2528			break;
2529	}
2530
2531	arc_evict_ghost(arc_mru_ghost, guid, -1);
2532	arc_evict_ghost(arc_mfu_ghost, guid, -1);
2533
2534	mutex_enter(&arc_reclaim_thr_lock);
2535	arc_do_user_evicts();
2536	mutex_exit(&arc_reclaim_thr_lock);
2537	ASSERT(spa || arc_eviction_list == NULL);
2538}
2539
2540void
2541arc_shrink(void)
2542{
2543
2544	if (arc_c > arc_c_min) {
2545		uint64_t to_free;
2546
2547		to_free = arc_c >> arc_shrink_shift;
2548		DTRACE_PROBE4(arc__shrink, uint64_t, arc_c, uint64_t,
2549			arc_c_min, uint64_t, arc_p, uint64_t, to_free);
2550		if (arc_c > arc_c_min + to_free)
2551			atomic_add_64(&arc_c, -to_free);
2552		else
2553			arc_c = arc_c_min;
2554
2555		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
2556		if (arc_c > arc_size)
2557			arc_c = MAX(arc_size, arc_c_min);
2558		if (arc_p > arc_c)
2559			arc_p = (arc_c >> 1);
2560
2561		DTRACE_PROBE2(arc__shrunk, uint64_t, arc_c, uint64_t,
2562			arc_p);
2563
2564		ASSERT(arc_c >= arc_c_min);
2565		ASSERT((int64_t)arc_p >= 0);
2566	}
2567
2568	if (arc_size > arc_c) {
2569		DTRACE_PROBE2(arc__shrink_adjust, uint64_t, arc_size,
2570			uint64_t, arc_c);
2571		arc_adjust();
2572	}
2573}
2574
2575static int needfree = 0;
2576
2577static int
2578arc_reclaim_needed(void)
2579{
2580
2581#ifdef _KERNEL
2582
2583	if (needfree) {
2584		DTRACE_PROBE(arc__reclaim_needfree);
2585		return (1);
2586	}
2587
2588	/*
2589	 * Cooperate with pagedaemon when it's time for it to scan
2590	 * and reclaim some pages.
2591	 */
2592	if (freemem < zfs_arc_free_target) {
2593		DTRACE_PROBE2(arc__reclaim_freemem, uint64_t,
2594		    freemem, uint64_t, zfs_arc_free_target);
2595		return (1);
2596	}
2597
2598#ifdef sun
2599	/*
2600	 * take 'desfree' extra pages, so we reclaim sooner, rather than later
2601	 */
2602	extra = desfree;
2603
2604	/*
2605	 * check that we're out of range of the pageout scanner.  It starts to
2606	 * schedule paging if freemem is less than lotsfree and needfree.
2607	 * lotsfree is the high-water mark for pageout, and needfree is the
2608	 * number of needed free pages.  We add extra pages here to make sure
2609	 * the scanner doesn't start up while we're freeing memory.
2610	 */
2611	if (freemem < lotsfree + needfree + extra)
2612		return (1);
2613
2614	/*
2615	 * check to make sure that swapfs has enough space so that anon
2616	 * reservations can still succeed. anon_resvmem() checks that the
2617	 * availrmem is greater than swapfs_minfree, and the number of reserved
2618	 * swap pages.  We also add a bit of extra here just to prevent
2619	 * circumstances from getting really dire.
2620	 */
2621	if (availrmem < swapfs_minfree + swapfs_reserve + extra)
2622		return (1);
2623
2624	/*
2625	 * Check that we have enough availrmem that memory locking (e.g., via
2626	 * mlock(3C) or memcntl(2)) can still succeed.  (pages_pp_maximum
2627	 * stores the number of pages that cannot be locked; when availrmem
2628	 * drops below pages_pp_maximum, page locking mechanisms such as
2629	 * page_pp_lock() will fail.)
2630	 */
2631	if (availrmem <= pages_pp_maximum)
2632		return (1);
2633
2634#endif	/* sun */
2635#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
2636	/*
2637	 * If we're on an i386 platform, it's possible that we'll exhaust the
2638	 * kernel heap space before we ever run out of available physical
2639	 * memory.  Most checks of the size of the heap_area compare against
2640	 * tune.t_minarmem, which is the minimum available real memory that we
2641	 * can have in the system.  However, this is generally fixed at 25 pages
2642	 * which is so low that it's useless.  In this comparison, we seek to
2643	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
2644	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
2645	 * free)
2646	 */
2647	if (vmem_size(heap_arena, VMEM_FREE) <
2648	    (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2)) {
2649		DTRACE_PROBE2(arc__reclaim_used, uint64_t,
2650		    vmem_size(heap_arena, VMEM_FREE), uint64_t,
2651		    (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2);
2652		return (1);
2653	}
2654#define	zio_arena	NULL
2655#else
2656#define	zio_arena	heap_arena
2657#endif
2658
2659	/*
2660	 * If zio data pages are being allocated out of a separate heap segment,
2661	 * then enforce that the size of available vmem for this arena remains
2662	 * above about 1/16th free.
2663	 *
2664	 * Note: The 1/16th arena free requirement was put in place
2665	 * to aggressively evict memory from the arc in order to avoid
2666	 * memory fragmentation issues.
2667	 */
2668	if (zio_arena != NULL &&
2669	    vmem_size(zio_arena, VMEM_FREE) <
2670	    (vmem_size(zio_arena, VMEM_ALLOC) >> 4))
2671		return (1);
2672
2673	/*
2674	 * Above limits know nothing about real level of KVA fragmentation.
2675	 * Start aggressive reclamation if too little sequential KVA left.
2676	 */
2677	if (vmem_size(heap_arena, VMEM_MAXFREE) < zfs_max_recordsize) {
2678		DTRACE_PROBE2(arc__reclaim_maxfree, uint64_t,
2679		    vmem_size(heap_arena, VMEM_MAXFREE),
2680		    uint64_t, zfs_max_recordsize);
2681		return (1);
2682	}
2683
2684#else	/* _KERNEL */
2685	if (spa_get_random(100) == 0)
2686		return (1);
2687#endif	/* _KERNEL */
2688	DTRACE_PROBE(arc__reclaim_no);
2689
2690	return (0);
2691}
2692
2693extern kmem_cache_t	*zio_buf_cache[];
2694extern kmem_cache_t	*zio_data_buf_cache[];
2695extern kmem_cache_t	*range_seg_cache;
2696
2697static __noinline void
2698arc_kmem_reap_now(arc_reclaim_strategy_t strat)
2699{
2700	size_t			i;
2701	kmem_cache_t		*prev_cache = NULL;
2702	kmem_cache_t		*prev_data_cache = NULL;
2703
2704	DTRACE_PROBE(arc__kmem_reap_start);
2705#ifdef _KERNEL
2706	if (arc_meta_used >= arc_meta_limit) {
2707		/*
2708		 * We are exceeding our meta-data cache limit.
2709		 * Purge some DNLC entries to release holds on meta-data.
2710		 */
2711		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
2712	}
2713#if defined(__i386)
2714	/*
2715	 * Reclaim unused memory from all kmem caches.
2716	 */
2717	kmem_reap();
2718#endif
2719#endif
2720
2721	/*
2722	 * An aggressive reclamation will shrink the cache size as well as
2723	 * reap free buffers from the arc kmem caches.
2724	 */
2725	if (strat == ARC_RECLAIM_AGGR)
2726		arc_shrink();
2727
2728	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
2729		if (zio_buf_cache[i] != prev_cache) {
2730			prev_cache = zio_buf_cache[i];
2731			kmem_cache_reap_now(zio_buf_cache[i]);
2732		}
2733		if (zio_data_buf_cache[i] != prev_data_cache) {
2734			prev_data_cache = zio_data_buf_cache[i];
2735			kmem_cache_reap_now(zio_data_buf_cache[i]);
2736		}
2737	}
2738	kmem_cache_reap_now(buf_cache);
2739	kmem_cache_reap_now(hdr_cache);
2740	kmem_cache_reap_now(range_seg_cache);
2741
2742#ifdef sun
2743	/*
2744	 * Ask the vmem arena to reclaim unused memory from its
2745	 * quantum caches.
2746	 */
2747	if (zio_arena != NULL && strat == ARC_RECLAIM_AGGR)
2748		vmem_qcache_reap(zio_arena);
2749#endif
2750	DTRACE_PROBE(arc__kmem_reap_end);
2751}
2752
2753static void
2754arc_reclaim_thread(void *dummy __unused)
2755{
2756	clock_t			growtime = 0;
2757	arc_reclaim_strategy_t	last_reclaim = ARC_RECLAIM_CONS;
2758	callb_cpr_t		cpr;
2759
2760	CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
2761
2762	mutex_enter(&arc_reclaim_thr_lock);
2763	while (arc_thread_exit == 0) {
2764		if (arc_reclaim_needed()) {
2765
2766			if (arc_no_grow) {
2767				if (last_reclaim == ARC_RECLAIM_CONS) {
2768					DTRACE_PROBE(arc__reclaim_aggr_no_grow);
2769					last_reclaim = ARC_RECLAIM_AGGR;
2770				} else {
2771					last_reclaim = ARC_RECLAIM_CONS;
2772				}
2773			} else {
2774				arc_no_grow = TRUE;
2775				last_reclaim = ARC_RECLAIM_AGGR;
2776				DTRACE_PROBE(arc__reclaim_aggr);
2777				membar_producer();
2778			}
2779
2780			/* reset the growth delay for every reclaim */
2781			growtime = ddi_get_lbolt() + (arc_grow_retry * hz);
2782
2783			if (needfree && last_reclaim == ARC_RECLAIM_CONS) {
2784				/*
2785				 * If needfree is TRUE our vm_lowmem hook
2786				 * was called and in that case we must free some
2787				 * memory, so switch to aggressive mode.
2788				 */
2789				arc_no_grow = TRUE;
2790				last_reclaim = ARC_RECLAIM_AGGR;
2791			}
2792			arc_kmem_reap_now(last_reclaim);
2793			arc_warm = B_TRUE;
2794
2795		} else if (arc_no_grow && ddi_get_lbolt() >= growtime) {
2796			arc_no_grow = FALSE;
2797		}
2798
2799		arc_adjust();
2800
2801		if (arc_eviction_list != NULL)
2802			arc_do_user_evicts();
2803
2804#ifdef _KERNEL
2805		if (needfree) {
2806			needfree = 0;
2807			wakeup(&needfree);
2808		}
2809#endif
2810
2811		/* block until needed, or one second, whichever is shorter */
2812		CALLB_CPR_SAFE_BEGIN(&cpr);
2813		(void) cv_timedwait(&arc_reclaim_thr_cv,
2814		    &arc_reclaim_thr_lock, hz);
2815		CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
2816	}
2817
2818	arc_thread_exit = 0;
2819	cv_broadcast(&arc_reclaim_thr_cv);
2820	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_thr_lock */
2821	thread_exit();
2822}
2823
2824/*
2825 * Adapt arc info given the number of bytes we are trying to add and
2826 * the state that we are comming from.  This function is only called
2827 * when we are adding new content to the cache.
2828 */
2829static void
2830arc_adapt(int bytes, arc_state_t *state)
2831{
2832	int mult;
2833	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
2834
2835	if (state == arc_l2c_only)
2836		return;
2837
2838	ASSERT(bytes > 0);
2839	/*
2840	 * Adapt the target size of the MRU list:
2841	 *	- if we just hit in the MRU ghost list, then increase
2842	 *	  the target size of the MRU list.
2843	 *	- if we just hit in the MFU ghost list, then increase
2844	 *	  the target size of the MFU list by decreasing the
2845	 *	  target size of the MRU list.
2846	 */
2847	if (state == arc_mru_ghost) {
2848		mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
2849		    1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
2850		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
2851
2852		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
2853	} else if (state == arc_mfu_ghost) {
2854		uint64_t delta;
2855
2856		mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
2857		    1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
2858		mult = MIN(mult, 10);
2859
2860		delta = MIN(bytes * mult, arc_p);
2861		arc_p = MAX(arc_p_min, arc_p - delta);
2862	}
2863	ASSERT((int64_t)arc_p >= 0);
2864
2865	if (arc_reclaim_needed()) {
2866		cv_signal(&arc_reclaim_thr_cv);
2867		return;
2868	}
2869
2870	if (arc_no_grow)
2871		return;
2872
2873	if (arc_c >= arc_c_max)
2874		return;
2875
2876	/*
2877	 * If we're within (2 * maxblocksize) bytes of the target
2878	 * cache size, increment the target cache size
2879	 */
2880	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
2881		DTRACE_PROBE1(arc__inc_adapt, int, bytes);
2882		atomic_add_64(&arc_c, (int64_t)bytes);
2883		if (arc_c > arc_c_max)
2884			arc_c = arc_c_max;
2885		else if (state == arc_anon)
2886			atomic_add_64(&arc_p, (int64_t)bytes);
2887		if (arc_p > arc_c)
2888			arc_p = arc_c;
2889	}
2890	ASSERT((int64_t)arc_p >= 0);
2891}
2892
2893/*
2894 * Check if the cache has reached its limits and eviction is required
2895 * prior to insert.
2896 */
2897static int
2898arc_evict_needed(arc_buf_contents_t type)
2899{
2900	if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
2901		return (1);
2902
2903	if (arc_reclaim_needed())
2904		return (1);
2905
2906	return (arc_size > arc_c);
2907}
2908
2909/*
2910 * The buffer, supplied as the first argument, needs a data block.
2911 * So, if we are at cache max, determine which cache should be victimized.
2912 * We have the following cases:
2913 *
2914 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2915 * In this situation if we're out of space, but the resident size of the MFU is
2916 * under the limit, victimize the MFU cache to satisfy this insertion request.
2917 *
2918 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2919 * Here, we've used up all of the available space for the MRU, so we need to
2920 * evict from our own cache instead.  Evict from the set of resident MRU
2921 * entries.
2922 *
2923 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2924 * c minus p represents the MFU space in the cache, since p is the size of the
2925 * cache that is dedicated to the MRU.  In this situation there's still space on
2926 * the MFU side, so the MRU side needs to be victimized.
2927 *
2928 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2929 * MFU's resident set is consuming more space than it has been allotted.  In
2930 * this situation, we must victimize our own cache, the MFU, for this insertion.
2931 */
2932static void
2933arc_get_data_buf(arc_buf_t *buf)
2934{
2935	arc_state_t		*state = buf->b_hdr->b_state;
2936	uint64_t		size = buf->b_hdr->b_size;
2937	arc_buf_contents_t	type = buf->b_hdr->b_type;
2938
2939	arc_adapt(size, state);
2940
2941	/*
2942	 * We have not yet reached cache maximum size,
2943	 * just allocate a new buffer.
2944	 */
2945	if (!arc_evict_needed(type)) {
2946		if (type == ARC_BUFC_METADATA) {
2947			buf->b_data = zio_buf_alloc(size);
2948			arc_space_consume(size, ARC_SPACE_DATA);
2949		} else {
2950			ASSERT(type == ARC_BUFC_DATA);
2951			buf->b_data = zio_data_buf_alloc(size);
2952			ARCSTAT_INCR(arcstat_data_size, size);
2953			atomic_add_64(&arc_size, size);
2954		}
2955		goto out;
2956	}
2957
2958	/*
2959	 * If we are prefetching from the mfu ghost list, this buffer
2960	 * will end up on the mru list; so steal space from there.
2961	 */
2962	if (state == arc_mfu_ghost)
2963		state = buf->b_hdr->b_flags & ARC_FLAG_PREFETCH ?
2964		    arc_mru : arc_mfu;
2965	else if (state == arc_mru_ghost)
2966		state = arc_mru;
2967
2968	if (state == arc_mru || state == arc_anon) {
2969		uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
2970		state = (arc_mfu->arcs_lsize[type] >= size &&
2971		    arc_p > mru_used) ? arc_mfu : arc_mru;
2972	} else {
2973		/* MFU cases */
2974		uint64_t mfu_space = arc_c - arc_p;
2975		state =  (arc_mru->arcs_lsize[type] >= size &&
2976		    mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2977	}
2978	if ((buf->b_data = arc_evict(state, 0, size, TRUE, type)) == NULL) {
2979		if (type == ARC_BUFC_METADATA) {
2980			buf->b_data = zio_buf_alloc(size);
2981			arc_space_consume(size, ARC_SPACE_DATA);
2982		} else {
2983			ASSERT(type == ARC_BUFC_DATA);
2984			buf->b_data = zio_data_buf_alloc(size);
2985			ARCSTAT_INCR(arcstat_data_size, size);
2986			atomic_add_64(&arc_size, size);
2987		}
2988		ARCSTAT_BUMP(arcstat_recycle_miss);
2989	}
2990	ASSERT(buf->b_data != NULL);
2991out:
2992	/*
2993	 * Update the state size.  Note that ghost states have a
2994	 * "ghost size" and so don't need to be updated.
2995	 */
2996	if (!GHOST_STATE(buf->b_hdr->b_state)) {
2997		arc_buf_hdr_t *hdr = buf->b_hdr;
2998
2999		atomic_add_64(&hdr->b_state->arcs_size, size);
3000		if (list_link_active(&hdr->b_arc_node)) {
3001			ASSERT(refcount_is_zero(&hdr->b_refcnt));
3002			atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
3003		}
3004		/*
3005		 * If we are growing the cache, and we are adding anonymous
3006		 * data, and we have outgrown arc_p, update arc_p
3007		 */
3008		if (arc_size < arc_c && hdr->b_state == arc_anon &&
3009		    arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
3010			arc_p = MIN(arc_c, arc_p + size);
3011	}
3012	ARCSTAT_BUMP(arcstat_allocated);
3013}
3014
3015/*
3016 * This routine is called whenever a buffer is accessed.
3017 * NOTE: the hash lock is dropped in this function.
3018 */
3019static void
3020arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3021{
3022	clock_t now;
3023
3024	ASSERT(MUTEX_HELD(hash_lock));
3025
3026	if (hdr->b_state == arc_anon) {
3027		/*
3028		 * This buffer is not in the cache, and does not
3029		 * appear in our "ghost" list.  Add the new buffer
3030		 * to the MRU state.
3031		 */
3032
3033		ASSERT(hdr->b_arc_access == 0);
3034		hdr->b_arc_access = ddi_get_lbolt();
3035		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
3036		arc_change_state(arc_mru, hdr, hash_lock);
3037
3038	} else if (hdr->b_state == arc_mru) {
3039		now = ddi_get_lbolt();
3040
3041		/*
3042		 * If this buffer is here because of a prefetch, then either:
3043		 * - clear the flag if this is a "referencing" read
3044		 *   (any subsequent access will bump this into the MFU state).
3045		 * or
3046		 * - move the buffer to the head of the list if this is
3047		 *   another prefetch (to make it less likely to be evicted).
3048		 */
3049		if ((hdr->b_flags & ARC_FLAG_PREFETCH) != 0) {
3050			if (refcount_count(&hdr->b_refcnt) == 0) {
3051				ASSERT(list_link_active(&hdr->b_arc_node));
3052			} else {
3053				hdr->b_flags &= ~ARC_FLAG_PREFETCH;
3054				ARCSTAT_BUMP(arcstat_mru_hits);
3055			}
3056			hdr->b_arc_access = now;
3057			return;
3058		}
3059
3060		/*
3061		 * This buffer has been "accessed" only once so far,
3062		 * but it is still in the cache. Move it to the MFU
3063		 * state.
3064		 */
3065		if (now > hdr->b_arc_access + ARC_MINTIME) {
3066			/*
3067			 * More than 125ms have passed since we
3068			 * instantiated this buffer.  Move it to the
3069			 * most frequently used state.
3070			 */
3071			hdr->b_arc_access = now;
3072			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3073			arc_change_state(arc_mfu, hdr, hash_lock);
3074		}
3075		ARCSTAT_BUMP(arcstat_mru_hits);
3076	} else if (hdr->b_state == arc_mru_ghost) {
3077		arc_state_t	*new_state;
3078		/*
3079		 * This buffer has been "accessed" recently, but
3080		 * was evicted from the cache.  Move it to the
3081		 * MFU state.
3082		 */
3083
3084		if (hdr->b_flags & ARC_FLAG_PREFETCH) {
3085			new_state = arc_mru;
3086			if (refcount_count(&hdr->b_refcnt) > 0)
3087				hdr->b_flags &= ~ARC_FLAG_PREFETCH;
3088			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
3089		} else {
3090			new_state = arc_mfu;
3091			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3092		}
3093
3094		hdr->b_arc_access = ddi_get_lbolt();
3095		arc_change_state(new_state, hdr, hash_lock);
3096
3097		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
3098	} else if (hdr->b_state == arc_mfu) {
3099		/*
3100		 * This buffer has been accessed more than once and is
3101		 * still in the cache.  Keep it in the MFU state.
3102		 *
3103		 * NOTE: an add_reference() that occurred when we did
3104		 * the arc_read() will have kicked this off the list.
3105		 * If it was a prefetch, we will explicitly move it to
3106		 * the head of the list now.
3107		 */
3108		if ((hdr->b_flags & ARC_FLAG_PREFETCH) != 0) {
3109			ASSERT(refcount_count(&hdr->b_refcnt) == 0);
3110			ASSERT(list_link_active(&hdr->b_arc_node));
3111		}
3112		ARCSTAT_BUMP(arcstat_mfu_hits);
3113		hdr->b_arc_access = ddi_get_lbolt();
3114	} else if (hdr->b_state == arc_mfu_ghost) {
3115		arc_state_t	*new_state = arc_mfu;
3116		/*
3117		 * This buffer has been accessed more than once but has
3118		 * been evicted from the cache.  Move it back to the
3119		 * MFU state.
3120		 */
3121
3122		if (hdr->b_flags & ARC_FLAG_PREFETCH) {
3123			/*
3124			 * This is a prefetch access...
3125			 * move this block back to the MRU state.
3126			 */
3127			ASSERT0(refcount_count(&hdr->b_refcnt));
3128			new_state = arc_mru;
3129		}
3130
3131		hdr->b_arc_access = ddi_get_lbolt();
3132		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3133		arc_change_state(new_state, hdr, hash_lock);
3134
3135		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
3136	} else if (hdr->b_state == arc_l2c_only) {
3137		/*
3138		 * This buffer is on the 2nd Level ARC.
3139		 */
3140
3141		hdr->b_arc_access = ddi_get_lbolt();
3142		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3143		arc_change_state(arc_mfu, hdr, hash_lock);
3144	} else {
3145		ASSERT(!"invalid arc state");
3146	}
3147}
3148
3149/* a generic arc_done_func_t which you can use */
3150/* ARGSUSED */
3151void
3152arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
3153{
3154	if (zio == NULL || zio->io_error == 0)
3155		bcopy(buf->b_data, arg, buf->b_hdr->b_size);
3156	VERIFY(arc_buf_remove_ref(buf, arg));
3157}
3158
3159/* a generic arc_done_func_t */
3160void
3161arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
3162{
3163	arc_buf_t **bufp = arg;
3164	if (zio && zio->io_error) {
3165		VERIFY(arc_buf_remove_ref(buf, arg));
3166		*bufp = NULL;
3167	} else {
3168		*bufp = buf;
3169		ASSERT(buf->b_data);
3170	}
3171}
3172
3173static void
3174arc_read_done(zio_t *zio)
3175{
3176	arc_buf_hdr_t	*hdr;
3177	arc_buf_t	*buf;
3178	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
3179	kmutex_t	*hash_lock = NULL;
3180	arc_callback_t	*callback_list, *acb;
3181	int		freeable = FALSE;
3182
3183	buf = zio->io_private;
3184	hdr = buf->b_hdr;
3185
3186	/*
3187	 * The hdr was inserted into hash-table and removed from lists
3188	 * prior to starting I/O.  We should find this header, since
3189	 * it's in the hash table, and it should be legit since it's
3190	 * not possible to evict it during the I/O.  The only possible
3191	 * reason for it not to be found is if we were freed during the
3192	 * read.
3193	 */
3194	if (HDR_IN_HASH_TABLE(hdr)) {
3195		ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
3196		ASSERT3U(hdr->b_dva.dva_word[0], ==,
3197		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
3198		ASSERT3U(hdr->b_dva.dva_word[1], ==,
3199		    BP_IDENTITY(zio->io_bp)->dva_word[1]);
3200
3201		arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
3202		    &hash_lock);
3203
3204		ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) &&
3205		    hash_lock == NULL) ||
3206		    (found == hdr &&
3207		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
3208		    (found == hdr && HDR_L2_READING(hdr)));
3209	}
3210
3211	hdr->b_flags &= ~ARC_FLAG_L2_EVICTED;
3212	if (l2arc_noprefetch && (hdr->b_flags & ARC_FLAG_PREFETCH))
3213		hdr->b_flags &= ~ARC_FLAG_L2CACHE;
3214
3215	/* byteswap if necessary */
3216	callback_list = hdr->b_acb;
3217	ASSERT(callback_list != NULL);
3218	if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
3219		dmu_object_byteswap_t bswap =
3220		    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
3221		arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
3222		    byteswap_uint64_array :
3223		    dmu_ot_byteswap[bswap].ob_func;
3224		func(buf->b_data, hdr->b_size);
3225	}
3226
3227	arc_cksum_compute(buf, B_FALSE);
3228#ifdef illumos
3229	arc_buf_watch(buf);
3230#endif /* illumos */
3231
3232	if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) {
3233		/*
3234		 * Only call arc_access on anonymous buffers.  This is because
3235		 * if we've issued an I/O for an evicted buffer, we've already
3236		 * called arc_access (to prevent any simultaneous readers from
3237		 * getting confused).
3238		 */
3239		arc_access(hdr, hash_lock);
3240	}
3241
3242	/* create copies of the data buffer for the callers */
3243	abuf = buf;
3244	for (acb = callback_list; acb; acb = acb->acb_next) {
3245		if (acb->acb_done) {
3246			if (abuf == NULL) {
3247				ARCSTAT_BUMP(arcstat_duplicate_reads);
3248				abuf = arc_buf_clone(buf);
3249			}
3250			acb->acb_buf = abuf;
3251			abuf = NULL;
3252		}
3253	}
3254	hdr->b_acb = NULL;
3255	hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
3256	ASSERT(!HDR_BUF_AVAILABLE(hdr));
3257	if (abuf == buf) {
3258		ASSERT(buf->b_efunc == NULL);
3259		ASSERT(hdr->b_datacnt == 1);
3260		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
3261	}
3262
3263	ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
3264
3265	if (zio->io_error != 0) {
3266		hdr->b_flags |= ARC_FLAG_IO_ERROR;
3267		if (hdr->b_state != arc_anon)
3268			arc_change_state(arc_anon, hdr, hash_lock);
3269		if (HDR_IN_HASH_TABLE(hdr))
3270			buf_hash_remove(hdr);
3271		freeable = refcount_is_zero(&hdr->b_refcnt);
3272	}
3273
3274	/*
3275	 * Broadcast before we drop the hash_lock to avoid the possibility
3276	 * that the hdr (and hence the cv) might be freed before we get to
3277	 * the cv_broadcast().
3278	 */
3279	cv_broadcast(&hdr->b_cv);
3280
3281	if (hash_lock) {
3282		mutex_exit(hash_lock);
3283	} else {
3284		/*
3285		 * This block was freed while we waited for the read to
3286		 * complete.  It has been removed from the hash table and
3287		 * moved to the anonymous state (so that it won't show up
3288		 * in the cache).
3289		 */
3290		ASSERT3P(hdr->b_state, ==, arc_anon);
3291		freeable = refcount_is_zero(&hdr->b_refcnt);
3292	}
3293
3294	/* execute each callback and free its structure */
3295	while ((acb = callback_list) != NULL) {
3296		if (acb->acb_done)
3297			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
3298
3299		if (acb->acb_zio_dummy != NULL) {
3300			acb->acb_zio_dummy->io_error = zio->io_error;
3301			zio_nowait(acb->acb_zio_dummy);
3302		}
3303
3304		callback_list = acb->acb_next;
3305		kmem_free(acb, sizeof (arc_callback_t));
3306	}
3307
3308	if (freeable)
3309		arc_hdr_destroy(hdr);
3310}
3311
3312/*
3313 * "Read" the block block at the specified DVA (in bp) via the
3314 * cache.  If the block is found in the cache, invoke the provided
3315 * callback immediately and return.  Note that the `zio' parameter
3316 * in the callback will be NULL in this case, since no IO was
3317 * required.  If the block is not in the cache pass the read request
3318 * on to the spa with a substitute callback function, so that the
3319 * requested block will be added to the cache.
3320 *
3321 * If a read request arrives for a block that has a read in-progress,
3322 * either wait for the in-progress read to complete (and return the
3323 * results); or, if this is a read with a "done" func, add a record
3324 * to the read to invoke the "done" func when the read completes,
3325 * and return; or just return.
3326 *
3327 * arc_read_done() will invoke all the requested "done" functions
3328 * for readers of this block.
3329 */
3330int
3331arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
3332    void *private, zio_priority_t priority, int zio_flags,
3333    arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
3334{
3335	arc_buf_hdr_t *hdr = NULL;
3336	arc_buf_t *buf = NULL;
3337	kmutex_t *hash_lock = NULL;
3338	zio_t *rzio;
3339	uint64_t guid = spa_load_guid(spa);
3340
3341	ASSERT(!BP_IS_EMBEDDED(bp) ||
3342	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
3343
3344top:
3345	if (!BP_IS_EMBEDDED(bp)) {
3346		/*
3347		 * Embedded BP's have no DVA and require no I/O to "read".
3348		 * Create an anonymous arc buf to back it.
3349		 */
3350		hdr = buf_hash_find(guid, bp, &hash_lock);
3351	}
3352
3353	if (hdr != NULL && hdr->b_datacnt > 0) {
3354
3355		*arc_flags |= ARC_FLAG_CACHED;
3356
3357		if (HDR_IO_IN_PROGRESS(hdr)) {
3358
3359			if (*arc_flags & ARC_FLAG_WAIT) {
3360				cv_wait(&hdr->b_cv, hash_lock);
3361				mutex_exit(hash_lock);
3362				goto top;
3363			}
3364			ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
3365
3366			if (done) {
3367				arc_callback_t	*acb = NULL;
3368
3369				acb = kmem_zalloc(sizeof (arc_callback_t),
3370				    KM_SLEEP);
3371				acb->acb_done = done;
3372				acb->acb_private = private;
3373				if (pio != NULL)
3374					acb->acb_zio_dummy = zio_null(pio,
3375					    spa, NULL, NULL, NULL, zio_flags);
3376
3377				ASSERT(acb->acb_done != NULL);
3378				acb->acb_next = hdr->b_acb;
3379				hdr->b_acb = acb;
3380				add_reference(hdr, hash_lock, private);
3381				mutex_exit(hash_lock);
3382				return (0);
3383			}
3384			mutex_exit(hash_lock);
3385			return (0);
3386		}
3387
3388		ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
3389
3390		if (done) {
3391			add_reference(hdr, hash_lock, private);
3392			/*
3393			 * If this block is already in use, create a new
3394			 * copy of the data so that we will be guaranteed
3395			 * that arc_release() will always succeed.
3396			 */
3397			buf = hdr->b_buf;
3398			ASSERT(buf);
3399			ASSERT(buf->b_data);
3400			if (HDR_BUF_AVAILABLE(hdr)) {
3401				ASSERT(buf->b_efunc == NULL);
3402				hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
3403			} else {
3404				buf = arc_buf_clone(buf);
3405			}
3406
3407		} else if (*arc_flags & ARC_FLAG_PREFETCH &&
3408		    refcount_count(&hdr->b_refcnt) == 0) {
3409			hdr->b_flags |= ARC_FLAG_PREFETCH;
3410		}
3411		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
3412		arc_access(hdr, hash_lock);
3413		if (*arc_flags & ARC_FLAG_L2CACHE)
3414			hdr->b_flags |= ARC_FLAG_L2CACHE;
3415		if (*arc_flags & ARC_FLAG_L2COMPRESS)
3416			hdr->b_flags |= ARC_FLAG_L2COMPRESS;
3417		mutex_exit(hash_lock);
3418		ARCSTAT_BUMP(arcstat_hits);
3419		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_FLAG_PREFETCH),
3420		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
3421		    data, metadata, hits);
3422
3423		if (done)
3424			done(NULL, buf, private);
3425	} else {
3426		uint64_t size = BP_GET_LSIZE(bp);
3427		arc_callback_t *acb;
3428		vdev_t *vd = NULL;
3429		uint64_t addr = 0;
3430		boolean_t devw = B_FALSE;
3431		enum zio_compress b_compress = ZIO_COMPRESS_OFF;
3432		uint64_t b_asize = 0;
3433
3434		if (hdr == NULL) {
3435			/* this block is not in the cache */
3436			arc_buf_hdr_t *exists = NULL;
3437			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
3438			buf = arc_buf_alloc(spa, size, private, type);
3439			hdr = buf->b_hdr;
3440			if (!BP_IS_EMBEDDED(bp)) {
3441				hdr->b_dva = *BP_IDENTITY(bp);
3442				hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
3443				hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
3444				exists = buf_hash_insert(hdr, &hash_lock);
3445			}
3446			if (exists != NULL) {
3447				/* somebody beat us to the hash insert */
3448				mutex_exit(hash_lock);
3449				buf_discard_identity(hdr);
3450				(void) arc_buf_remove_ref(buf, private);
3451				goto top; /* restart the IO request */
3452			}
3453
3454			/* if this is a prefetch, we don't have a reference */
3455			if (*arc_flags & ARC_FLAG_PREFETCH) {
3456				(void) remove_reference(hdr, hash_lock,
3457				    private);
3458				hdr->b_flags |= ARC_FLAG_PREFETCH;
3459			}
3460			if (*arc_flags & ARC_FLAG_L2CACHE)
3461				hdr->b_flags |= ARC_FLAG_L2CACHE;
3462			if (*arc_flags & ARC_FLAG_L2COMPRESS)
3463				hdr->b_flags |= ARC_FLAG_L2COMPRESS;
3464			if (BP_GET_LEVEL(bp) > 0)
3465				hdr->b_flags |= ARC_FLAG_INDIRECT;
3466		} else {
3467			/* this block is in the ghost cache */
3468			ASSERT(GHOST_STATE(hdr->b_state));
3469			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3470			ASSERT0(refcount_count(&hdr->b_refcnt));
3471			ASSERT(hdr->b_buf == NULL);
3472
3473			/* if this is a prefetch, we don't have a reference */
3474			if (*arc_flags & ARC_FLAG_PREFETCH)
3475				hdr->b_flags |= ARC_FLAG_PREFETCH;
3476			else
3477				add_reference(hdr, hash_lock, private);
3478			if (*arc_flags & ARC_FLAG_L2CACHE)
3479				hdr->b_flags |= ARC_FLAG_L2CACHE;
3480			if (*arc_flags & ARC_FLAG_L2COMPRESS)
3481				hdr->b_flags |= ARC_FLAG_L2COMPRESS;
3482			buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
3483			buf->b_hdr = hdr;
3484			buf->b_data = NULL;
3485			buf->b_efunc = NULL;
3486			buf->b_private = NULL;
3487			buf->b_next = NULL;
3488			hdr->b_buf = buf;
3489			ASSERT(hdr->b_datacnt == 0);
3490			hdr->b_datacnt = 1;
3491			arc_get_data_buf(buf);
3492			arc_access(hdr, hash_lock);
3493		}
3494
3495		ASSERT(!GHOST_STATE(hdr->b_state));
3496
3497		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
3498		acb->acb_done = done;
3499		acb->acb_private = private;
3500
3501		ASSERT(hdr->b_acb == NULL);
3502		hdr->b_acb = acb;
3503		hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
3504
3505		if (hdr->b_l2hdr != NULL &&
3506		    (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
3507			devw = hdr->b_l2hdr->b_dev->l2ad_writing;
3508			addr = hdr->b_l2hdr->b_daddr;
3509			b_compress = hdr->b_l2hdr->b_compress;
3510			b_asize = hdr->b_l2hdr->b_asize;
3511			/*
3512			 * Lock out device removal.
3513			 */
3514			if (vdev_is_dead(vd) ||
3515			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
3516				vd = NULL;
3517		}
3518
3519		if (hash_lock != NULL)
3520			mutex_exit(hash_lock);
3521
3522		/*
3523		 * At this point, we have a level 1 cache miss.  Try again in
3524		 * L2ARC if possible.
3525		 */
3526		ASSERT3U(hdr->b_size, ==, size);
3527		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
3528		    uint64_t, size, zbookmark_phys_t *, zb);
3529		ARCSTAT_BUMP(arcstat_misses);
3530		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_FLAG_PREFETCH),
3531		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
3532		    data, metadata, misses);
3533#ifdef _KERNEL
3534		curthread->td_ru.ru_inblock++;
3535#endif
3536
3537		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
3538			/*
3539			 * Read from the L2ARC if the following are true:
3540			 * 1. The L2ARC vdev was previously cached.
3541			 * 2. This buffer still has L2ARC metadata.
3542			 * 3. This buffer isn't currently writing to the L2ARC.
3543			 * 4. The L2ARC entry wasn't evicted, which may
3544			 *    also have invalidated the vdev.
3545			 * 5. This isn't prefetch and l2arc_noprefetch is set.
3546			 */
3547			if (hdr->b_l2hdr != NULL &&
3548			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
3549			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
3550				l2arc_read_callback_t *cb;
3551
3552				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
3553				ARCSTAT_BUMP(arcstat_l2_hits);
3554
3555				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
3556				    KM_SLEEP);
3557				cb->l2rcb_buf = buf;
3558				cb->l2rcb_spa = spa;
3559				cb->l2rcb_bp = *bp;
3560				cb->l2rcb_zb = *zb;
3561				cb->l2rcb_flags = zio_flags;
3562				cb->l2rcb_compress = b_compress;
3563
3564				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
3565				    addr + size < vd->vdev_psize -
3566				    VDEV_LABEL_END_SIZE);
3567
3568				/*
3569				 * l2arc read.  The SCL_L2ARC lock will be
3570				 * released by l2arc_read_done().
3571				 * Issue a null zio if the underlying buffer
3572				 * was squashed to zero size by compression.
3573				 */
3574				if (b_compress == ZIO_COMPRESS_EMPTY) {
3575					rzio = zio_null(pio, spa, vd,
3576					    l2arc_read_done, cb,
3577					    zio_flags | ZIO_FLAG_DONT_CACHE |
3578					    ZIO_FLAG_CANFAIL |
3579					    ZIO_FLAG_DONT_PROPAGATE |
3580					    ZIO_FLAG_DONT_RETRY);
3581				} else {
3582					rzio = zio_read_phys(pio, vd, addr,
3583					    b_asize, buf->b_data,
3584					    ZIO_CHECKSUM_OFF,
3585					    l2arc_read_done, cb, priority,
3586					    zio_flags | ZIO_FLAG_DONT_CACHE |
3587					    ZIO_FLAG_CANFAIL |
3588					    ZIO_FLAG_DONT_PROPAGATE |
3589					    ZIO_FLAG_DONT_RETRY, B_FALSE);
3590				}
3591				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
3592				    zio_t *, rzio);
3593				ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize);
3594
3595				if (*arc_flags & ARC_FLAG_NOWAIT) {
3596					zio_nowait(rzio);
3597					return (0);
3598				}
3599
3600				ASSERT(*arc_flags & ARC_FLAG_WAIT);
3601				if (zio_wait(rzio) == 0)
3602					return (0);
3603
3604				/* l2arc read error; goto zio_read() */
3605			} else {
3606				DTRACE_PROBE1(l2arc__miss,
3607				    arc_buf_hdr_t *, hdr);
3608				ARCSTAT_BUMP(arcstat_l2_misses);
3609				if (HDR_L2_WRITING(hdr))
3610					ARCSTAT_BUMP(arcstat_l2_rw_clash);
3611				spa_config_exit(spa, SCL_L2ARC, vd);
3612			}
3613		} else {
3614			if (vd != NULL)
3615				spa_config_exit(spa, SCL_L2ARC, vd);
3616			if (l2arc_ndev != 0) {
3617				DTRACE_PROBE1(l2arc__miss,
3618				    arc_buf_hdr_t *, hdr);
3619				ARCSTAT_BUMP(arcstat_l2_misses);
3620			}
3621		}
3622
3623		rzio = zio_read(pio, spa, bp, buf->b_data, size,
3624		    arc_read_done, buf, priority, zio_flags, zb);
3625
3626		if (*arc_flags & ARC_FLAG_WAIT)
3627			return (zio_wait(rzio));
3628
3629		ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
3630		zio_nowait(rzio);
3631	}
3632	return (0);
3633}
3634
3635void
3636arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
3637{
3638	ASSERT(buf->b_hdr != NULL);
3639	ASSERT(buf->b_hdr->b_state != arc_anon);
3640	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
3641	ASSERT(buf->b_efunc == NULL);
3642	ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
3643
3644	buf->b_efunc = func;
3645	buf->b_private = private;
3646}
3647
3648/*
3649 * Notify the arc that a block was freed, and thus will never be used again.
3650 */
3651void
3652arc_freed(spa_t *spa, const blkptr_t *bp)
3653{
3654	arc_buf_hdr_t *hdr;
3655	kmutex_t *hash_lock;
3656	uint64_t guid = spa_load_guid(spa);
3657
3658	ASSERT(!BP_IS_EMBEDDED(bp));
3659
3660	hdr = buf_hash_find(guid, bp, &hash_lock);
3661	if (hdr == NULL)
3662		return;
3663	if (HDR_BUF_AVAILABLE(hdr)) {
3664		arc_buf_t *buf = hdr->b_buf;
3665		add_reference(hdr, hash_lock, FTAG);
3666		hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
3667		mutex_exit(hash_lock);
3668
3669		arc_release(buf, FTAG);
3670		(void) arc_buf_remove_ref(buf, FTAG);
3671	} else {
3672		mutex_exit(hash_lock);
3673	}
3674
3675}
3676
3677/*
3678 * Clear the user eviction callback set by arc_set_callback(), first calling
3679 * it if it exists.  Because the presence of a callback keeps an arc_buf cached
3680 * clearing the callback may result in the arc_buf being destroyed.  However,
3681 * it will not result in the *last* arc_buf being destroyed, hence the data
3682 * will remain cached in the ARC. We make a copy of the arc buffer here so
3683 * that we can process the callback without holding any locks.
3684 *
3685 * It's possible that the callback is already in the process of being cleared
3686 * by another thread.  In this case we can not clear the callback.
3687 *
3688 * Returns B_TRUE if the callback was successfully called and cleared.
3689 */
3690boolean_t
3691arc_clear_callback(arc_buf_t *buf)
3692{
3693	arc_buf_hdr_t *hdr;
3694	kmutex_t *hash_lock;
3695	arc_evict_func_t *efunc = buf->b_efunc;
3696	void *private = buf->b_private;
3697	list_t *list, *evicted_list;
3698	kmutex_t *lock, *evicted_lock;
3699
3700	mutex_enter(&buf->b_evict_lock);
3701	hdr = buf->b_hdr;
3702	if (hdr == NULL) {
3703		/*
3704		 * We are in arc_do_user_evicts().
3705		 */
3706		ASSERT(buf->b_data == NULL);
3707		mutex_exit(&buf->b_evict_lock);
3708		return (B_FALSE);
3709	} else if (buf->b_data == NULL) {
3710		/*
3711		 * We are on the eviction list; process this buffer now
3712		 * but let arc_do_user_evicts() do the reaping.
3713		 */
3714		buf->b_efunc = NULL;
3715		mutex_exit(&buf->b_evict_lock);
3716		VERIFY0(efunc(private));
3717		return (B_TRUE);
3718	}
3719	hash_lock = HDR_LOCK(hdr);
3720	mutex_enter(hash_lock);
3721	hdr = buf->b_hdr;
3722	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3723
3724	ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
3725	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
3726
3727	buf->b_efunc = NULL;
3728	buf->b_private = NULL;
3729
3730	if (hdr->b_datacnt > 1) {
3731		mutex_exit(&buf->b_evict_lock);
3732		arc_buf_destroy(buf, FALSE, TRUE);
3733	} else {
3734		ASSERT(buf == hdr->b_buf);
3735		hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
3736		mutex_exit(&buf->b_evict_lock);
3737	}
3738
3739	mutex_exit(hash_lock);
3740	VERIFY0(efunc(private));
3741	return (B_TRUE);
3742}
3743
3744/*
3745 * Release this buffer from the cache, making it an anonymous buffer.  This
3746 * must be done after a read and prior to modifying the buffer contents.
3747 * If the buffer has more than one reference, we must make
3748 * a new hdr for the buffer.
3749 */
3750void
3751arc_release(arc_buf_t *buf, void *tag)
3752{
3753	arc_buf_hdr_t *hdr;
3754	kmutex_t *hash_lock = NULL;
3755	l2arc_buf_hdr_t *l2hdr;
3756	uint64_t buf_size;
3757
3758	/*
3759	 * It would be nice to assert that if it's DMU metadata (level >
3760	 * 0 || it's the dnode file), then it must be syncing context.
3761	 * But we don't know that information at this level.
3762	 */
3763
3764	mutex_enter(&buf->b_evict_lock);
3765	hdr = buf->b_hdr;
3766
3767	/* this buffer is not on any list */
3768	ASSERT(refcount_count(&hdr->b_refcnt) > 0);
3769
3770	if (hdr->b_state == arc_anon) {
3771		/* this buffer is already released */
3772		ASSERT(buf->b_efunc == NULL);
3773	} else {
3774		hash_lock = HDR_LOCK(hdr);
3775		mutex_enter(hash_lock);
3776		hdr = buf->b_hdr;
3777		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3778	}
3779
3780	l2hdr = hdr->b_l2hdr;
3781	if (l2hdr) {
3782		mutex_enter(&l2arc_buflist_mtx);
3783		arc_buf_l2_cdata_free(hdr);
3784		hdr->b_l2hdr = NULL;
3785		list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
3786	}
3787	buf_size = hdr->b_size;
3788
3789	/*
3790	 * Do we have more than one buf?
3791	 */
3792	if (hdr->b_datacnt > 1) {
3793		arc_buf_hdr_t *nhdr;
3794		arc_buf_t **bufp;
3795		uint64_t blksz = hdr->b_size;
3796		uint64_t spa = hdr->b_spa;
3797		arc_buf_contents_t type = hdr->b_type;
3798		uint32_t flags = hdr->b_flags;
3799
3800		ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
3801		/*
3802		 * Pull the data off of this hdr and attach it to
3803		 * a new anonymous hdr.
3804		 */
3805		(void) remove_reference(hdr, hash_lock, tag);
3806		bufp = &hdr->b_buf;
3807		while (*bufp != buf)
3808			bufp = &(*bufp)->b_next;
3809		*bufp = buf->b_next;
3810		buf->b_next = NULL;
3811
3812		ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
3813		atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
3814		if (refcount_is_zero(&hdr->b_refcnt)) {
3815			uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
3816			ASSERT3U(*size, >=, hdr->b_size);
3817			atomic_add_64(size, -hdr->b_size);
3818		}
3819
3820		/*
3821		 * We're releasing a duplicate user data buffer, update
3822		 * our statistics accordingly.
3823		 */
3824		if (hdr->b_type == ARC_BUFC_DATA) {
3825			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
3826			ARCSTAT_INCR(arcstat_duplicate_buffers_size,
3827			    -hdr->b_size);
3828		}
3829		hdr->b_datacnt -= 1;
3830		arc_cksum_verify(buf);
3831#ifdef illumos
3832		arc_buf_unwatch(buf);
3833#endif /* illumos */
3834
3835		mutex_exit(hash_lock);
3836
3837		nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3838		nhdr->b_size = blksz;
3839		nhdr->b_spa = spa;
3840		nhdr->b_type = type;
3841		nhdr->b_buf = buf;
3842		nhdr->b_state = arc_anon;
3843		nhdr->b_arc_access = 0;
3844		nhdr->b_flags = flags & ARC_FLAG_L2_WRITING;
3845		nhdr->b_l2hdr = NULL;
3846		nhdr->b_datacnt = 1;
3847		nhdr->b_freeze_cksum = NULL;
3848		(void) refcount_add(&nhdr->b_refcnt, tag);
3849		buf->b_hdr = nhdr;
3850		mutex_exit(&buf->b_evict_lock);
3851		atomic_add_64(&arc_anon->arcs_size, blksz);
3852	} else {
3853		mutex_exit(&buf->b_evict_lock);
3854		ASSERT(refcount_count(&hdr->b_refcnt) == 1);
3855		ASSERT(!list_link_active(&hdr->b_arc_node));
3856		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3857		if (hdr->b_state != arc_anon)
3858			arc_change_state(arc_anon, hdr, hash_lock);
3859		hdr->b_arc_access = 0;
3860		if (hash_lock)
3861			mutex_exit(hash_lock);
3862
3863		buf_discard_identity(hdr);
3864		arc_buf_thaw(buf);
3865	}
3866	buf->b_efunc = NULL;
3867	buf->b_private = NULL;
3868
3869	if (l2hdr) {
3870		ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
3871		vdev_space_update(l2hdr->b_dev->l2ad_vdev,
3872		    -l2hdr->b_asize, 0, 0);
3873		trim_map_free(l2hdr->b_dev->l2ad_vdev, l2hdr->b_daddr,
3874		    l2hdr->b_asize, 0);
3875		kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
3876		ARCSTAT_INCR(arcstat_l2_size, -buf_size);
3877		mutex_exit(&l2arc_buflist_mtx);
3878	}
3879}
3880
3881int
3882arc_released(arc_buf_t *buf)
3883{
3884	int released;
3885
3886	mutex_enter(&buf->b_evict_lock);
3887	released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
3888	mutex_exit(&buf->b_evict_lock);
3889	return (released);
3890}
3891
3892#ifdef ZFS_DEBUG
3893int
3894arc_referenced(arc_buf_t *buf)
3895{
3896	int referenced;
3897
3898	mutex_enter(&buf->b_evict_lock);
3899	referenced = (refcount_count(&buf->b_hdr->b_refcnt));
3900	mutex_exit(&buf->b_evict_lock);
3901	return (referenced);
3902}
3903#endif
3904
3905static void
3906arc_write_ready(zio_t *zio)
3907{
3908	arc_write_callback_t *callback = zio->io_private;
3909	arc_buf_t *buf = callback->awcb_buf;
3910	arc_buf_hdr_t *hdr = buf->b_hdr;
3911
3912	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
3913	callback->awcb_ready(zio, buf, callback->awcb_private);
3914
3915	/*
3916	 * If the IO is already in progress, then this is a re-write
3917	 * attempt, so we need to thaw and re-compute the cksum.
3918	 * It is the responsibility of the callback to handle the
3919	 * accounting for any re-write attempt.
3920	 */
3921	if (HDR_IO_IN_PROGRESS(hdr)) {
3922		mutex_enter(&hdr->b_freeze_lock);
3923		if (hdr->b_freeze_cksum != NULL) {
3924			kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
3925			hdr->b_freeze_cksum = NULL;
3926		}
3927		mutex_exit(&hdr->b_freeze_lock);
3928	}
3929	arc_cksum_compute(buf, B_FALSE);
3930	hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
3931}
3932
3933/*
3934 * The SPA calls this callback for each physical write that happens on behalf
3935 * of a logical write.  See the comment in dbuf_write_physdone() for details.
3936 */
3937static void
3938arc_write_physdone(zio_t *zio)
3939{
3940	arc_write_callback_t *cb = zio->io_private;
3941	if (cb->awcb_physdone != NULL)
3942		cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
3943}
3944
3945static void
3946arc_write_done(zio_t *zio)
3947{
3948	arc_write_callback_t *callback = zio->io_private;
3949	arc_buf_t *buf = callback->awcb_buf;
3950	arc_buf_hdr_t *hdr = buf->b_hdr;
3951
3952	ASSERT(hdr->b_acb == NULL);
3953
3954	if (zio->io_error == 0) {
3955		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
3956			buf_discard_identity(hdr);
3957		} else {
3958			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3959			hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
3960			hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3961		}
3962	} else {
3963		ASSERT(BUF_EMPTY(hdr));
3964	}
3965
3966	/*
3967	 * If the block to be written was all-zero or compressed enough to be
3968	 * embedded in the BP, no write was performed so there will be no
3969	 * dva/birth/checksum.  The buffer must therefore remain anonymous
3970	 * (and uncached).
3971	 */
3972	if (!BUF_EMPTY(hdr)) {
3973		arc_buf_hdr_t *exists;
3974		kmutex_t *hash_lock;
3975
3976		ASSERT(zio->io_error == 0);
3977
3978		arc_cksum_verify(buf);
3979
3980		exists = buf_hash_insert(hdr, &hash_lock);
3981		if (exists) {
3982			/*
3983			 * This can only happen if we overwrite for
3984			 * sync-to-convergence, because we remove
3985			 * buffers from the hash table when we arc_free().
3986			 */
3987			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
3988				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3989					panic("bad overwrite, hdr=%p exists=%p",
3990					    (void *)hdr, (void *)exists);
3991				ASSERT(refcount_is_zero(&exists->b_refcnt));
3992				arc_change_state(arc_anon, exists, hash_lock);
3993				mutex_exit(hash_lock);
3994				arc_hdr_destroy(exists);
3995				exists = buf_hash_insert(hdr, &hash_lock);
3996				ASSERT3P(exists, ==, NULL);
3997			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
3998				/* nopwrite */
3999				ASSERT(zio->io_prop.zp_nopwrite);
4000				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
4001					panic("bad nopwrite, hdr=%p exists=%p",
4002					    (void *)hdr, (void *)exists);
4003			} else {
4004				/* Dedup */
4005				ASSERT(hdr->b_datacnt == 1);
4006				ASSERT(hdr->b_state == arc_anon);
4007				ASSERT(BP_GET_DEDUP(zio->io_bp));
4008				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
4009			}
4010		}
4011		hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
4012		/* if it's not anon, we are doing a scrub */
4013		if (!exists && hdr->b_state == arc_anon)
4014			arc_access(hdr, hash_lock);
4015		mutex_exit(hash_lock);
4016	} else {
4017		hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
4018	}
4019
4020	ASSERT(!refcount_is_zero(&hdr->b_refcnt));
4021	callback->awcb_done(zio, buf, callback->awcb_private);
4022
4023	kmem_free(callback, sizeof (arc_write_callback_t));
4024}
4025
4026zio_t *
4027arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
4028    blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
4029    const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone,
4030    arc_done_func_t *done, void *private, zio_priority_t priority,
4031    int zio_flags, const zbookmark_phys_t *zb)
4032{
4033	arc_buf_hdr_t *hdr = buf->b_hdr;
4034	arc_write_callback_t *callback;
4035	zio_t *zio;
4036
4037	ASSERT(ready != NULL);
4038	ASSERT(done != NULL);
4039	ASSERT(!HDR_IO_ERROR(hdr));
4040	ASSERT((hdr->b_flags & ARC_FLAG_IO_IN_PROGRESS) == 0);
4041	ASSERT(hdr->b_acb == NULL);
4042	if (l2arc)
4043		hdr->b_flags |= ARC_FLAG_L2CACHE;
4044	if (l2arc_compress)
4045		hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4046	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
4047	callback->awcb_ready = ready;
4048	callback->awcb_physdone = physdone;
4049	callback->awcb_done = done;
4050	callback->awcb_private = private;
4051	callback->awcb_buf = buf;
4052
4053	zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
4054	    arc_write_ready, arc_write_physdone, arc_write_done, callback,
4055	    priority, zio_flags, zb);
4056
4057	return (zio);
4058}
4059
4060static int
4061arc_memory_throttle(uint64_t reserve, uint64_t txg)
4062{
4063#ifdef _KERNEL
4064	uint64_t available_memory = ptob(freemem);
4065	static uint64_t page_load = 0;
4066	static uint64_t last_txg = 0;
4067
4068#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
4069	available_memory =
4070	    MIN(available_memory, ptob(vmem_size(heap_arena, VMEM_FREE)));
4071#endif
4072
4073	if (freemem > (uint64_t)physmem * arc_lotsfree_percent / 100)
4074		return (0);
4075
4076	if (txg > last_txg) {
4077		last_txg = txg;
4078		page_load = 0;
4079	}
4080	/*
4081	 * If we are in pageout, we know that memory is already tight,
4082	 * the arc is already going to be evicting, so we just want to
4083	 * continue to let page writes occur as quickly as possible.
4084	 */
4085	if (curproc == pageproc) {
4086		if (page_load > MAX(ptob(minfree), available_memory) / 4)
4087			return (SET_ERROR(ERESTART));
4088		/* Note: reserve is inflated, so we deflate */
4089		page_load += reserve / 8;
4090		return (0);
4091	} else if (page_load > 0 && arc_reclaim_needed()) {
4092		/* memory is low, delay before restarting */
4093		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
4094		return (SET_ERROR(EAGAIN));
4095	}
4096	page_load = 0;
4097#endif
4098	return (0);
4099}
4100
4101void
4102arc_tempreserve_clear(uint64_t reserve)
4103{
4104	atomic_add_64(&arc_tempreserve, -reserve);
4105	ASSERT((int64_t)arc_tempreserve >= 0);
4106}
4107
4108int
4109arc_tempreserve_space(uint64_t reserve, uint64_t txg)
4110{
4111	int error;
4112	uint64_t anon_size;
4113
4114	if (reserve > arc_c/4 && !arc_no_grow) {
4115		arc_c = MIN(arc_c_max, reserve * 4);
4116		DTRACE_PROBE1(arc__set_reserve, uint64_t, arc_c);
4117	}
4118	if (reserve > arc_c)
4119		return (SET_ERROR(ENOMEM));
4120
4121	/*
4122	 * Don't count loaned bufs as in flight dirty data to prevent long
4123	 * network delays from blocking transactions that are ready to be
4124	 * assigned to a txg.
4125	 */
4126	anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
4127
4128	/*
4129	 * Writes will, almost always, require additional memory allocations
4130	 * in order to compress/encrypt/etc the data.  We therefore need to
4131	 * make sure that there is sufficient available memory for this.
4132	 */
4133	error = arc_memory_throttle(reserve, txg);
4134	if (error != 0)
4135		return (error);
4136
4137	/*
4138	 * Throttle writes when the amount of dirty data in the cache
4139	 * gets too large.  We try to keep the cache less than half full
4140	 * of dirty blocks so that our sync times don't grow too large.
4141	 * Note: if two requests come in concurrently, we might let them
4142	 * both succeed, when one of them should fail.  Not a huge deal.
4143	 */
4144
4145	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
4146	    anon_size > arc_c / 4) {
4147		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
4148		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
4149		    arc_tempreserve>>10,
4150		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
4151		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
4152		    reserve>>10, arc_c>>10);
4153		return (SET_ERROR(ERESTART));
4154	}
4155	atomic_add_64(&arc_tempreserve, reserve);
4156	return (0);
4157}
4158
4159static kmutex_t arc_lowmem_lock;
4160#ifdef _KERNEL
4161static eventhandler_tag arc_event_lowmem = NULL;
4162
4163static void
4164arc_lowmem(void *arg __unused, int howto __unused)
4165{
4166
4167	/* Serialize access via arc_lowmem_lock. */
4168	mutex_enter(&arc_lowmem_lock);
4169	mutex_enter(&arc_reclaim_thr_lock);
4170	needfree = 1;
4171	DTRACE_PROBE(arc__needfree);
4172	cv_signal(&arc_reclaim_thr_cv);
4173
4174	/*
4175	 * It is unsafe to block here in arbitrary threads, because we can come
4176	 * here from ARC itself and may hold ARC locks and thus risk a deadlock
4177	 * with ARC reclaim thread.
4178	 */
4179	if (curproc == pageproc) {
4180		while (needfree)
4181			msleep(&needfree, &arc_reclaim_thr_lock, 0, "zfs:lowmem", 0);
4182	}
4183	mutex_exit(&arc_reclaim_thr_lock);
4184	mutex_exit(&arc_lowmem_lock);
4185}
4186#endif
4187
4188void
4189arc_init(void)
4190{
4191	int i, prefetch_tunable_set = 0;
4192
4193	mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
4194	cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
4195	mutex_init(&arc_lowmem_lock, NULL, MUTEX_DEFAULT, NULL);
4196
4197	/* Convert seconds to clock ticks */
4198	arc_min_prefetch_lifespan = 1 * hz;
4199
4200	/* Start out with 1/8 of all memory */
4201	arc_c = kmem_size() / 8;
4202
4203#ifdef sun
4204#ifdef _KERNEL
4205	/*
4206	 * On architectures where the physical memory can be larger
4207	 * than the addressable space (intel in 32-bit mode), we may
4208	 * need to limit the cache to 1/8 of VM size.
4209	 */
4210	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
4211#endif
4212#endif	/* sun */
4213	/* set min cache to 1/32 of all memory, or 16MB, whichever is more */
4214	arc_c_min = MAX(arc_c / 4, 16 << 20);
4215	/* set max to 1/2 of all memory, or all but 1GB, whichever is more */
4216	if (arc_c * 8 >= 1 << 30)
4217		arc_c_max = (arc_c * 8) - (1 << 30);
4218	else
4219		arc_c_max = arc_c_min;
4220	arc_c_max = MAX(arc_c * 5, arc_c_max);
4221
4222#ifdef _KERNEL
4223	/*
4224	 * Allow the tunables to override our calculations if they are
4225	 * reasonable (ie. over 16MB)
4226	 */
4227	if (zfs_arc_max > 16 << 20 && zfs_arc_max < kmem_size())
4228		arc_c_max = zfs_arc_max;
4229	if (zfs_arc_min > 16 << 20 && zfs_arc_min <= arc_c_max)
4230		arc_c_min = zfs_arc_min;
4231#endif
4232
4233	arc_c = arc_c_max;
4234	arc_p = (arc_c >> 1);
4235
4236	/* limit meta-data to 1/4 of the arc capacity */
4237	arc_meta_limit = arc_c_max / 4;
4238
4239	/* Allow the tunable to override if it is reasonable */
4240	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
4241		arc_meta_limit = zfs_arc_meta_limit;
4242
4243	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
4244		arc_c_min = arc_meta_limit / 2;
4245
4246	if (zfs_arc_meta_min > 0) {
4247		arc_meta_min = zfs_arc_meta_min;
4248	} else {
4249		arc_meta_min = arc_c_min / 2;
4250	}
4251
4252	if (zfs_arc_grow_retry > 0)
4253		arc_grow_retry = zfs_arc_grow_retry;
4254
4255	if (zfs_arc_shrink_shift > 0)
4256		arc_shrink_shift = zfs_arc_shrink_shift;
4257
4258	if (zfs_arc_p_min_shift > 0)
4259		arc_p_min_shift = zfs_arc_p_min_shift;
4260
4261	/* if kmem_flags are set, lets try to use less memory */
4262	if (kmem_debugging())
4263		arc_c = arc_c / 2;
4264	if (arc_c < arc_c_min)
4265		arc_c = arc_c_min;
4266
4267	zfs_arc_min = arc_c_min;
4268	zfs_arc_max = arc_c_max;
4269
4270	arc_anon = &ARC_anon;
4271	arc_mru = &ARC_mru;
4272	arc_mru_ghost = &ARC_mru_ghost;
4273	arc_mfu = &ARC_mfu;
4274	arc_mfu_ghost = &ARC_mfu_ghost;
4275	arc_l2c_only = &ARC_l2c_only;
4276	arc_size = 0;
4277
4278	for (i = 0; i < ARC_BUFC_NUMLISTS; i++) {
4279		mutex_init(&arc_anon->arcs_locks[i].arcs_lock,
4280		    NULL, MUTEX_DEFAULT, NULL);
4281		mutex_init(&arc_mru->arcs_locks[i].arcs_lock,
4282		    NULL, MUTEX_DEFAULT, NULL);
4283		mutex_init(&arc_mru_ghost->arcs_locks[i].arcs_lock,
4284		    NULL, MUTEX_DEFAULT, NULL);
4285		mutex_init(&arc_mfu->arcs_locks[i].arcs_lock,
4286		    NULL, MUTEX_DEFAULT, NULL);
4287		mutex_init(&arc_mfu_ghost->arcs_locks[i].arcs_lock,
4288		    NULL, MUTEX_DEFAULT, NULL);
4289		mutex_init(&arc_l2c_only->arcs_locks[i].arcs_lock,
4290		    NULL, MUTEX_DEFAULT, NULL);
4291
4292		list_create(&arc_mru->arcs_lists[i],
4293		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4294		list_create(&arc_mru_ghost->arcs_lists[i],
4295		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4296		list_create(&arc_mfu->arcs_lists[i],
4297		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4298		list_create(&arc_mfu_ghost->arcs_lists[i],
4299		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4300		list_create(&arc_mfu_ghost->arcs_lists[i],
4301		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4302		list_create(&arc_l2c_only->arcs_lists[i],
4303		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4304	}
4305
4306	buf_init();
4307
4308	arc_thread_exit = 0;
4309	arc_eviction_list = NULL;
4310	mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
4311	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
4312
4313	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
4314	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
4315
4316	if (arc_ksp != NULL) {
4317		arc_ksp->ks_data = &arc_stats;
4318		kstat_install(arc_ksp);
4319	}
4320
4321	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
4322	    TS_RUN, minclsyspri);
4323
4324#ifdef _KERNEL
4325	arc_event_lowmem = EVENTHANDLER_REGISTER(vm_lowmem, arc_lowmem, NULL,
4326	    EVENTHANDLER_PRI_FIRST);
4327#endif
4328
4329	arc_dead = FALSE;
4330	arc_warm = B_FALSE;
4331
4332	/*
4333	 * Calculate maximum amount of dirty data per pool.
4334	 *
4335	 * If it has been set by /etc/system, take that.
4336	 * Otherwise, use a percentage of physical memory defined by
4337	 * zfs_dirty_data_max_percent (default 10%) with a cap at
4338	 * zfs_dirty_data_max_max (default 4GB).
4339	 */
4340	if (zfs_dirty_data_max == 0) {
4341		zfs_dirty_data_max = ptob(physmem) *
4342		    zfs_dirty_data_max_percent / 100;
4343		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
4344		    zfs_dirty_data_max_max);
4345	}
4346
4347#ifdef _KERNEL
4348	if (TUNABLE_INT_FETCH("vfs.zfs.prefetch_disable", &zfs_prefetch_disable))
4349		prefetch_tunable_set = 1;
4350
4351#ifdef __i386__
4352	if (prefetch_tunable_set == 0) {
4353		printf("ZFS NOTICE: Prefetch is disabled by default on i386 "
4354		    "-- to enable,\n");
4355		printf("            add \"vfs.zfs.prefetch_disable=0\" "
4356		    "to /boot/loader.conf.\n");
4357		zfs_prefetch_disable = 1;
4358	}
4359#else
4360	if ((((uint64_t)physmem * PAGESIZE) < (1ULL << 32)) &&
4361	    prefetch_tunable_set == 0) {
4362		printf("ZFS NOTICE: Prefetch is disabled by default if less "
4363		    "than 4GB of RAM is present;\n"
4364		    "            to enable, add \"vfs.zfs.prefetch_disable=0\" "
4365		    "to /boot/loader.conf.\n");
4366		zfs_prefetch_disable = 1;
4367	}
4368#endif
4369	/* Warn about ZFS memory and address space requirements. */
4370	if (((uint64_t)physmem * PAGESIZE) < (256 + 128 + 64) * (1 << 20)) {
4371		printf("ZFS WARNING: Recommended minimum RAM size is 512MB; "
4372		    "expect unstable behavior.\n");
4373	}
4374	if (kmem_size() < 512 * (1 << 20)) {
4375		printf("ZFS WARNING: Recommended minimum kmem_size is 512MB; "
4376		    "expect unstable behavior.\n");
4377		printf("             Consider tuning vm.kmem_size and "
4378		    "vm.kmem_size_max\n");
4379		printf("             in /boot/loader.conf.\n");
4380	}
4381#endif
4382}
4383
4384void
4385arc_fini(void)
4386{
4387	int i;
4388
4389	mutex_enter(&arc_reclaim_thr_lock);
4390	arc_thread_exit = 1;
4391	cv_signal(&arc_reclaim_thr_cv);
4392	while (arc_thread_exit != 0)
4393		cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
4394	mutex_exit(&arc_reclaim_thr_lock);
4395
4396	arc_flush(NULL);
4397
4398	arc_dead = TRUE;
4399
4400	if (arc_ksp != NULL) {
4401		kstat_delete(arc_ksp);
4402		arc_ksp = NULL;
4403	}
4404
4405	mutex_destroy(&arc_eviction_mtx);
4406	mutex_destroy(&arc_reclaim_thr_lock);
4407	cv_destroy(&arc_reclaim_thr_cv);
4408
4409	for (i = 0; i < ARC_BUFC_NUMLISTS; i++) {
4410		list_destroy(&arc_mru->arcs_lists[i]);
4411		list_destroy(&arc_mru_ghost->arcs_lists[i]);
4412		list_destroy(&arc_mfu->arcs_lists[i]);
4413		list_destroy(&arc_mfu_ghost->arcs_lists[i]);
4414		list_destroy(&arc_l2c_only->arcs_lists[i]);
4415
4416		mutex_destroy(&arc_anon->arcs_locks[i].arcs_lock);
4417		mutex_destroy(&arc_mru->arcs_locks[i].arcs_lock);
4418		mutex_destroy(&arc_mru_ghost->arcs_locks[i].arcs_lock);
4419		mutex_destroy(&arc_mfu->arcs_locks[i].arcs_lock);
4420		mutex_destroy(&arc_mfu_ghost->arcs_locks[i].arcs_lock);
4421		mutex_destroy(&arc_l2c_only->arcs_locks[i].arcs_lock);
4422	}
4423
4424	buf_fini();
4425
4426	ASSERT(arc_loaned_bytes == 0);
4427
4428	mutex_destroy(&arc_lowmem_lock);
4429#ifdef _KERNEL
4430	if (arc_event_lowmem != NULL)
4431		EVENTHANDLER_DEREGISTER(vm_lowmem, arc_event_lowmem);
4432#endif
4433}
4434
4435/*
4436 * Level 2 ARC
4437 *
4438 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
4439 * It uses dedicated storage devices to hold cached data, which are populated
4440 * using large infrequent writes.  The main role of this cache is to boost
4441 * the performance of random read workloads.  The intended L2ARC devices
4442 * include short-stroked disks, solid state disks, and other media with
4443 * substantially faster read latency than disk.
4444 *
4445 *                 +-----------------------+
4446 *                 |         ARC           |
4447 *                 +-----------------------+
4448 *                    |         ^     ^
4449 *                    |         |     |
4450 *      l2arc_feed_thread()    arc_read()
4451 *                    |         |     |
4452 *                    |  l2arc read   |
4453 *                    V         |     |
4454 *               +---------------+    |
4455 *               |     L2ARC     |    |
4456 *               +---------------+    |
4457 *                   |    ^           |
4458 *          l2arc_write() |           |
4459 *                   |    |           |
4460 *                   V    |           |
4461 *                 +-------+      +-------+
4462 *                 | vdev  |      | vdev  |
4463 *                 | cache |      | cache |
4464 *                 +-------+      +-------+
4465 *                 +=========+     .-----.
4466 *                 :  L2ARC  :    |-_____-|
4467 *                 : devices :    | Disks |
4468 *                 +=========+    `-_____-'
4469 *
4470 * Read requests are satisfied from the following sources, in order:
4471 *
4472 *	1) ARC
4473 *	2) vdev cache of L2ARC devices
4474 *	3) L2ARC devices
4475 *	4) vdev cache of disks
4476 *	5) disks
4477 *
4478 * Some L2ARC device types exhibit extremely slow write performance.
4479 * To accommodate for this there are some significant differences between
4480 * the L2ARC and traditional cache design:
4481 *
4482 * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
4483 * the ARC behave as usual, freeing buffers and placing headers on ghost
4484 * lists.  The ARC does not send buffers to the L2ARC during eviction as
4485 * this would add inflated write latencies for all ARC memory pressure.
4486 *
4487 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
4488 * It does this by periodically scanning buffers from the eviction-end of
4489 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
4490 * not already there. It scans until a headroom of buffers is satisfied,
4491 * which itself is a buffer for ARC eviction. If a compressible buffer is
4492 * found during scanning and selected for writing to an L2ARC device, we
4493 * temporarily boost scanning headroom during the next scan cycle to make
4494 * sure we adapt to compression effects (which might significantly reduce
4495 * the data volume we write to L2ARC). The thread that does this is
4496 * l2arc_feed_thread(), illustrated below; example sizes are included to
4497 * provide a better sense of ratio than this diagram:
4498 *
4499 *	       head -->                        tail
4500 *	        +---------------------+----------+
4501 *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
4502 *	        +---------------------+----------+   |   o L2ARC eligible
4503 *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
4504 *	        +---------------------+----------+   |
4505 *	             15.9 Gbytes      ^ 32 Mbytes    |
4506 *	                           headroom          |
4507 *	                                      l2arc_feed_thread()
4508 *	                                             |
4509 *	                 l2arc write hand <--[oooo]--'
4510 *	                         |           8 Mbyte
4511 *	                         |          write max
4512 *	                         V
4513 *		  +==============================+
4514 *	L2ARC dev |####|#|###|###|    |####| ... |
4515 *	          +==============================+
4516 *	                     32 Gbytes
4517 *
4518 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
4519 * evicted, then the L2ARC has cached a buffer much sooner than it probably
4520 * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
4521 * safe to say that this is an uncommon case, since buffers at the end of
4522 * the ARC lists have moved there due to inactivity.
4523 *
4524 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
4525 * then the L2ARC simply misses copying some buffers.  This serves as a
4526 * pressure valve to prevent heavy read workloads from both stalling the ARC
4527 * with waits and clogging the L2ARC with writes.  This also helps prevent
4528 * the potential for the L2ARC to churn if it attempts to cache content too
4529 * quickly, such as during backups of the entire pool.
4530 *
4531 * 5. After system boot and before the ARC has filled main memory, there are
4532 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
4533 * lists can remain mostly static.  Instead of searching from tail of these
4534 * lists as pictured, the l2arc_feed_thread() will search from the list heads
4535 * for eligible buffers, greatly increasing its chance of finding them.
4536 *
4537 * The L2ARC device write speed is also boosted during this time so that
4538 * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
4539 * there are no L2ARC reads, and no fear of degrading read performance
4540 * through increased writes.
4541 *
4542 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
4543 * the vdev queue can aggregate them into larger and fewer writes.  Each
4544 * device is written to in a rotor fashion, sweeping writes through
4545 * available space then repeating.
4546 *
4547 * 7. The L2ARC does not store dirty content.  It never needs to flush
4548 * write buffers back to disk based storage.
4549 *
4550 * 8. If an ARC buffer is written (and dirtied) which also exists in the
4551 * L2ARC, the now stale L2ARC buffer is immediately dropped.
4552 *
4553 * The performance of the L2ARC can be tweaked by a number of tunables, which
4554 * may be necessary for different workloads:
4555 *
4556 *	l2arc_write_max		max write bytes per interval
4557 *	l2arc_write_boost	extra write bytes during device warmup
4558 *	l2arc_noprefetch	skip caching prefetched buffers
4559 *	l2arc_headroom		number of max device writes to precache
4560 *	l2arc_headroom_boost	when we find compressed buffers during ARC
4561 *				scanning, we multiply headroom by this
4562 *				percentage factor for the next scan cycle,
4563 *				since more compressed buffers are likely to
4564 *				be present
4565 *	l2arc_feed_secs		seconds between L2ARC writing
4566 *
4567 * Tunables may be removed or added as future performance improvements are
4568 * integrated, and also may become zpool properties.
4569 *
4570 * There are three key functions that control how the L2ARC warms up:
4571 *
4572 *	l2arc_write_eligible()	check if a buffer is eligible to cache
4573 *	l2arc_write_size()	calculate how much to write
4574 *	l2arc_write_interval()	calculate sleep delay between writes
4575 *
4576 * These three functions determine what to write, how much, and how quickly
4577 * to send writes.
4578 */
4579
4580static boolean_t
4581l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
4582{
4583	/*
4584	 * A buffer is *not* eligible for the L2ARC if it:
4585	 * 1. belongs to a different spa.
4586	 * 2. is already cached on the L2ARC.
4587	 * 3. has an I/O in progress (it may be an incomplete read).
4588	 * 4. is flagged not eligible (zfs property).
4589	 */
4590	if (hdr->b_spa != spa_guid) {
4591		ARCSTAT_BUMP(arcstat_l2_write_spa_mismatch);
4592		return (B_FALSE);
4593	}
4594	if (hdr->b_l2hdr != NULL) {
4595		ARCSTAT_BUMP(arcstat_l2_write_in_l2);
4596		return (B_FALSE);
4597	}
4598	if (HDR_IO_IN_PROGRESS(hdr)) {
4599		ARCSTAT_BUMP(arcstat_l2_write_hdr_io_in_progress);
4600		return (B_FALSE);
4601	}
4602	if (!HDR_L2CACHE(hdr)) {
4603		ARCSTAT_BUMP(arcstat_l2_write_not_cacheable);
4604		return (B_FALSE);
4605	}
4606
4607	return (B_TRUE);
4608}
4609
4610static uint64_t
4611l2arc_write_size(void)
4612{
4613	uint64_t size;
4614
4615	/*
4616	 * Make sure our globals have meaningful values in case the user
4617	 * altered them.
4618	 */
4619	size = l2arc_write_max;
4620	if (size == 0) {
4621		cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
4622		    "be greater than zero, resetting it to the default (%d)",
4623		    L2ARC_WRITE_SIZE);
4624		size = l2arc_write_max = L2ARC_WRITE_SIZE;
4625	}
4626
4627	if (arc_warm == B_FALSE)
4628		size += l2arc_write_boost;
4629
4630	return (size);
4631
4632}
4633
4634static clock_t
4635l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
4636{
4637	clock_t interval, next, now;
4638
4639	/*
4640	 * If the ARC lists are busy, increase our write rate; if the
4641	 * lists are stale, idle back.  This is achieved by checking
4642	 * how much we previously wrote - if it was more than half of
4643	 * what we wanted, schedule the next write much sooner.
4644	 */
4645	if (l2arc_feed_again && wrote > (wanted / 2))
4646		interval = (hz * l2arc_feed_min_ms) / 1000;
4647	else
4648		interval = hz * l2arc_feed_secs;
4649
4650	now = ddi_get_lbolt();
4651	next = MAX(now, MIN(now + interval, began + interval));
4652
4653	return (next);
4654}
4655
4656static void
4657l2arc_hdr_stat_add(void)
4658{
4659	ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE);
4660	ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
4661}
4662
4663static void
4664l2arc_hdr_stat_remove(void)
4665{
4666	ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE));
4667	ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
4668}
4669
4670/*
4671 * Cycle through L2ARC devices.  This is how L2ARC load balances.
4672 * If a device is returned, this also returns holding the spa config lock.
4673 */
4674static l2arc_dev_t *
4675l2arc_dev_get_next(void)
4676{
4677	l2arc_dev_t *first, *next = NULL;
4678
4679	/*
4680	 * Lock out the removal of spas (spa_namespace_lock), then removal
4681	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
4682	 * both locks will be dropped and a spa config lock held instead.
4683	 */
4684	mutex_enter(&spa_namespace_lock);
4685	mutex_enter(&l2arc_dev_mtx);
4686
4687	/* if there are no vdevs, there is nothing to do */
4688	if (l2arc_ndev == 0)
4689		goto out;
4690
4691	first = NULL;
4692	next = l2arc_dev_last;
4693	do {
4694		/* loop around the list looking for a non-faulted vdev */
4695		if (next == NULL) {
4696			next = list_head(l2arc_dev_list);
4697		} else {
4698			next = list_next(l2arc_dev_list, next);
4699			if (next == NULL)
4700				next = list_head(l2arc_dev_list);
4701		}
4702
4703		/* if we have come back to the start, bail out */
4704		if (first == NULL)
4705			first = next;
4706		else if (next == first)
4707			break;
4708
4709	} while (vdev_is_dead(next->l2ad_vdev));
4710
4711	/* if we were unable to find any usable vdevs, return NULL */
4712	if (vdev_is_dead(next->l2ad_vdev))
4713		next = NULL;
4714
4715	l2arc_dev_last = next;
4716
4717out:
4718	mutex_exit(&l2arc_dev_mtx);
4719
4720	/*
4721	 * Grab the config lock to prevent the 'next' device from being
4722	 * removed while we are writing to it.
4723	 */
4724	if (next != NULL)
4725		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
4726	mutex_exit(&spa_namespace_lock);
4727
4728	return (next);
4729}
4730
4731/*
4732 * Free buffers that were tagged for destruction.
4733 */
4734static void
4735l2arc_do_free_on_write()
4736{
4737	list_t *buflist;
4738	l2arc_data_free_t *df, *df_prev;
4739
4740	mutex_enter(&l2arc_free_on_write_mtx);
4741	buflist = l2arc_free_on_write;
4742
4743	for (df = list_tail(buflist); df; df = df_prev) {
4744		df_prev = list_prev(buflist, df);
4745		ASSERT(df->l2df_data != NULL);
4746		ASSERT(df->l2df_func != NULL);
4747		df->l2df_func(df->l2df_data, df->l2df_size);
4748		list_remove(buflist, df);
4749		kmem_free(df, sizeof (l2arc_data_free_t));
4750	}
4751
4752	mutex_exit(&l2arc_free_on_write_mtx);
4753}
4754
4755/*
4756 * A write to a cache device has completed.  Update all headers to allow
4757 * reads from these buffers to begin.
4758 */
4759static void
4760l2arc_write_done(zio_t *zio)
4761{
4762	l2arc_write_callback_t *cb;
4763	l2arc_dev_t *dev;
4764	list_t *buflist;
4765	arc_buf_hdr_t *head, *hdr, *hdr_prev;
4766	l2arc_buf_hdr_t *abl2;
4767	kmutex_t *hash_lock;
4768	int64_t bytes_dropped = 0;
4769
4770	cb = zio->io_private;
4771	ASSERT(cb != NULL);
4772	dev = cb->l2wcb_dev;
4773	ASSERT(dev != NULL);
4774	head = cb->l2wcb_head;
4775	ASSERT(head != NULL);
4776	buflist = dev->l2ad_buflist;
4777	ASSERT(buflist != NULL);
4778	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
4779	    l2arc_write_callback_t *, cb);
4780
4781	if (zio->io_error != 0)
4782		ARCSTAT_BUMP(arcstat_l2_writes_error);
4783
4784	mutex_enter(&l2arc_buflist_mtx);
4785
4786	/*
4787	 * All writes completed, or an error was hit.
4788	 */
4789	for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
4790		hdr_prev = list_prev(buflist, hdr);
4791		abl2 = hdr->b_l2hdr;
4792
4793		/*
4794		 * Release the temporary compressed buffer as soon as possible.
4795		 */
4796		if (abl2->b_compress != ZIO_COMPRESS_OFF)
4797			l2arc_release_cdata_buf(hdr);
4798
4799		hash_lock = HDR_LOCK(hdr);
4800		if (!mutex_tryenter(hash_lock)) {
4801			/*
4802			 * This buffer misses out.  It may be in a stage
4803			 * of eviction.  Its ARC_L2_WRITING flag will be
4804			 * left set, denying reads to this buffer.
4805			 */
4806			ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
4807			continue;
4808		}
4809
4810		if (zio->io_error != 0) {
4811			/*
4812			 * Error - drop L2ARC entry.
4813			 */
4814			list_remove(buflist, hdr);
4815			ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize);
4816			bytes_dropped += abl2->b_asize;
4817			hdr->b_l2hdr = NULL;
4818			trim_map_free(abl2->b_dev->l2ad_vdev, abl2->b_daddr,
4819			    abl2->b_asize, 0);
4820			kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4821			ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
4822		}
4823
4824		/*
4825		 * Allow ARC to begin reads to this L2ARC entry.
4826		 */
4827		hdr->b_flags &= ~ARC_FLAG_L2_WRITING;
4828
4829		mutex_exit(hash_lock);
4830	}
4831
4832	atomic_inc_64(&l2arc_writes_done);
4833	list_remove(buflist, head);
4834	kmem_cache_free(hdr_cache, head);
4835	mutex_exit(&l2arc_buflist_mtx);
4836
4837	vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
4838
4839	l2arc_do_free_on_write();
4840
4841	kmem_free(cb, sizeof (l2arc_write_callback_t));
4842}
4843
4844/*
4845 * A read to a cache device completed.  Validate buffer contents before
4846 * handing over to the regular ARC routines.
4847 */
4848static void
4849l2arc_read_done(zio_t *zio)
4850{
4851	l2arc_read_callback_t *cb;
4852	arc_buf_hdr_t *hdr;
4853	arc_buf_t *buf;
4854	kmutex_t *hash_lock;
4855	int equal;
4856
4857	ASSERT(zio->io_vd != NULL);
4858	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
4859
4860	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
4861
4862	cb = zio->io_private;
4863	ASSERT(cb != NULL);
4864	buf = cb->l2rcb_buf;
4865	ASSERT(buf != NULL);
4866
4867	hash_lock = HDR_LOCK(buf->b_hdr);
4868	mutex_enter(hash_lock);
4869	hdr = buf->b_hdr;
4870	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4871
4872	/*
4873	 * If the buffer was compressed, decompress it first.
4874	 */
4875	if (cb->l2rcb_compress != ZIO_COMPRESS_OFF)
4876		l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress);
4877	ASSERT(zio->io_data != NULL);
4878
4879	/*
4880	 * Check this survived the L2ARC journey.
4881	 */
4882	equal = arc_cksum_equal(buf);
4883	if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
4884		mutex_exit(hash_lock);
4885		zio->io_private = buf;
4886		zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
4887		zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
4888		arc_read_done(zio);
4889	} else {
4890		mutex_exit(hash_lock);
4891		/*
4892		 * Buffer didn't survive caching.  Increment stats and
4893		 * reissue to the original storage device.
4894		 */
4895		if (zio->io_error != 0) {
4896			ARCSTAT_BUMP(arcstat_l2_io_error);
4897		} else {
4898			zio->io_error = SET_ERROR(EIO);
4899		}
4900		if (!equal)
4901			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
4902
4903		/*
4904		 * If there's no waiter, issue an async i/o to the primary
4905		 * storage now.  If there *is* a waiter, the caller must
4906		 * issue the i/o in a context where it's OK to block.
4907		 */
4908		if (zio->io_waiter == NULL) {
4909			zio_t *pio = zio_unique_parent(zio);
4910
4911			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
4912
4913			zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
4914			    buf->b_data, zio->io_size, arc_read_done, buf,
4915			    zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
4916		}
4917	}
4918
4919	kmem_free(cb, sizeof (l2arc_read_callback_t));
4920}
4921
4922/*
4923 * This is the list priority from which the L2ARC will search for pages to
4924 * cache.  This is used within loops (0..3) to cycle through lists in the
4925 * desired order.  This order can have a significant effect on cache
4926 * performance.
4927 *
4928 * Currently the metadata lists are hit first, MFU then MRU, followed by
4929 * the data lists.  This function returns a locked list, and also returns
4930 * the lock pointer.
4931 */
4932static list_t *
4933l2arc_list_locked(int list_num, kmutex_t **lock)
4934{
4935	list_t *list = NULL;
4936	int idx;
4937
4938	ASSERT(list_num >= 0 && list_num < 2 * ARC_BUFC_NUMLISTS);
4939
4940	if (list_num < ARC_BUFC_NUMMETADATALISTS) {
4941		idx = list_num;
4942		list = &arc_mfu->arcs_lists[idx];
4943		*lock = ARCS_LOCK(arc_mfu, idx);
4944	} else if (list_num < ARC_BUFC_NUMMETADATALISTS * 2) {
4945		idx = list_num - ARC_BUFC_NUMMETADATALISTS;
4946		list = &arc_mru->arcs_lists[idx];
4947		*lock = ARCS_LOCK(arc_mru, idx);
4948	} else if (list_num < (ARC_BUFC_NUMMETADATALISTS * 2 +
4949		ARC_BUFC_NUMDATALISTS)) {
4950		idx = list_num - ARC_BUFC_NUMMETADATALISTS;
4951		list = &arc_mfu->arcs_lists[idx];
4952		*lock = ARCS_LOCK(arc_mfu, idx);
4953	} else {
4954		idx = list_num - ARC_BUFC_NUMLISTS;
4955		list = &arc_mru->arcs_lists[idx];
4956		*lock = ARCS_LOCK(arc_mru, idx);
4957	}
4958
4959	ASSERT(!(MUTEX_HELD(*lock)));
4960	mutex_enter(*lock);
4961	return (list);
4962}
4963
4964/*
4965 * Evict buffers from the device write hand to the distance specified in
4966 * bytes.  This distance may span populated buffers, it may span nothing.
4967 * This is clearing a region on the L2ARC device ready for writing.
4968 * If the 'all' boolean is set, every buffer is evicted.
4969 */
4970static void
4971l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
4972{
4973	list_t *buflist;
4974	l2arc_buf_hdr_t *abl2;
4975	arc_buf_hdr_t *hdr, *hdr_prev;
4976	kmutex_t *hash_lock;
4977	uint64_t taddr;
4978	int64_t bytes_evicted = 0;
4979
4980	buflist = dev->l2ad_buflist;
4981
4982	if (buflist == NULL)
4983		return;
4984
4985	if (!all && dev->l2ad_first) {
4986		/*
4987		 * This is the first sweep through the device.  There is
4988		 * nothing to evict.
4989		 */
4990		return;
4991	}
4992
4993	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
4994		/*
4995		 * When nearing the end of the device, evict to the end
4996		 * before the device write hand jumps to the start.
4997		 */
4998		taddr = dev->l2ad_end;
4999	} else {
5000		taddr = dev->l2ad_hand + distance;
5001	}
5002	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
5003	    uint64_t, taddr, boolean_t, all);
5004
5005top:
5006	mutex_enter(&l2arc_buflist_mtx);
5007	for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
5008		hdr_prev = list_prev(buflist, hdr);
5009
5010		hash_lock = HDR_LOCK(hdr);
5011		if (!mutex_tryenter(hash_lock)) {
5012			/*
5013			 * Missed the hash lock.  Retry.
5014			 */
5015			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
5016			mutex_exit(&l2arc_buflist_mtx);
5017			mutex_enter(hash_lock);
5018			mutex_exit(hash_lock);
5019			goto top;
5020		}
5021
5022		if (HDR_L2_WRITE_HEAD(hdr)) {
5023			/*
5024			 * We hit a write head node.  Leave it for
5025			 * l2arc_write_done().
5026			 */
5027			list_remove(buflist, hdr);
5028			mutex_exit(hash_lock);
5029			continue;
5030		}
5031
5032		if (!all && hdr->b_l2hdr != NULL &&
5033		    (hdr->b_l2hdr->b_daddr > taddr ||
5034		    hdr->b_l2hdr->b_daddr < dev->l2ad_hand)) {
5035			/*
5036			 * We've evicted to the target address,
5037			 * or the end of the device.
5038			 */
5039			mutex_exit(hash_lock);
5040			break;
5041		}
5042
5043		if (HDR_FREE_IN_PROGRESS(hdr)) {
5044			/*
5045			 * Already on the path to destruction.
5046			 */
5047			mutex_exit(hash_lock);
5048			continue;
5049		}
5050
5051		if (hdr->b_state == arc_l2c_only) {
5052			ASSERT(!HDR_L2_READING(hdr));
5053			/*
5054			 * This doesn't exist in the ARC.  Destroy.
5055			 * arc_hdr_destroy() will call list_remove()
5056			 * and decrement arcstat_l2_size.
5057			 */
5058			arc_change_state(arc_anon, hdr, hash_lock);
5059			arc_hdr_destroy(hdr);
5060		} else {
5061			/*
5062			 * Invalidate issued or about to be issued
5063			 * reads, since we may be about to write
5064			 * over this location.
5065			 */
5066			if (HDR_L2_READING(hdr)) {
5067				ARCSTAT_BUMP(arcstat_l2_evict_reading);
5068				hdr->b_flags |= ARC_FLAG_L2_EVICTED;
5069			}
5070
5071			/*
5072			 * Tell ARC this no longer exists in L2ARC.
5073			 */
5074			if (hdr->b_l2hdr != NULL) {
5075				abl2 = hdr->b_l2hdr;
5076				ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize);
5077				bytes_evicted += abl2->b_asize;
5078				hdr->b_l2hdr = NULL;
5079				/*
5080				 * We are destroying l2hdr, so ensure that
5081				 * its compressed buffer, if any, is not leaked.
5082				 */
5083				ASSERT(abl2->b_tmp_cdata == NULL);
5084				kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
5085				ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
5086			}
5087			list_remove(buflist, hdr);
5088
5089			/*
5090			 * This may have been leftover after a
5091			 * failed write.
5092			 */
5093			hdr->b_flags &= ~ARC_FLAG_L2_WRITING;
5094		}
5095		mutex_exit(hash_lock);
5096	}
5097	mutex_exit(&l2arc_buflist_mtx);
5098
5099	vdev_space_update(dev->l2ad_vdev, -bytes_evicted, 0, 0);
5100	dev->l2ad_evict = taddr;
5101}
5102
5103/*
5104 * Find and write ARC buffers to the L2ARC device.
5105 *
5106 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
5107 * for reading until they have completed writing.
5108 * The headroom_boost is an in-out parameter used to maintain headroom boost
5109 * state between calls to this function.
5110 *
5111 * Returns the number of bytes actually written (which may be smaller than
5112 * the delta by which the device hand has changed due to alignment).
5113 */
5114static uint64_t
5115l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz,
5116    boolean_t *headroom_boost)
5117{
5118	arc_buf_hdr_t *hdr, *hdr_prev, *head;
5119	list_t *list;
5120	uint64_t write_asize, write_sz, headroom, buf_compress_minsz;
5121	void *buf_data;
5122	kmutex_t *list_lock;
5123	boolean_t full;
5124	l2arc_write_callback_t *cb;
5125	zio_t *pio, *wzio;
5126	uint64_t guid = spa_load_guid(spa);
5127	const boolean_t do_headroom_boost = *headroom_boost;
5128	int try;
5129
5130	ASSERT(dev->l2ad_vdev != NULL);
5131
5132	/* Lower the flag now, we might want to raise it again later. */
5133	*headroom_boost = B_FALSE;
5134
5135	pio = NULL;
5136	write_sz = write_asize = 0;
5137	full = B_FALSE;
5138	head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
5139	head->b_flags |= ARC_FLAG_L2_WRITE_HEAD;
5140
5141	ARCSTAT_BUMP(arcstat_l2_write_buffer_iter);
5142	/*
5143	 * We will want to try to compress buffers that are at least 2x the
5144	 * device sector size.
5145	 */
5146	buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift;
5147
5148	/*
5149	 * Copy buffers for L2ARC writing.
5150	 */
5151	mutex_enter(&l2arc_buflist_mtx);
5152	for (try = 0; try < 2 * ARC_BUFC_NUMLISTS; try++) {
5153		uint64_t passed_sz = 0;
5154
5155		list = l2arc_list_locked(try, &list_lock);
5156		ARCSTAT_BUMP(arcstat_l2_write_buffer_list_iter);
5157
5158		/*
5159		 * L2ARC fast warmup.
5160		 *
5161		 * Until the ARC is warm and starts to evict, read from the
5162		 * head of the ARC lists rather than the tail.
5163		 */
5164		if (arc_warm == B_FALSE)
5165			hdr = list_head(list);
5166		else
5167			hdr = list_tail(list);
5168		if (hdr == NULL)
5169			ARCSTAT_BUMP(arcstat_l2_write_buffer_list_null_iter);
5170
5171		headroom = target_sz * l2arc_headroom * 2 / ARC_BUFC_NUMLISTS;
5172		if (do_headroom_boost)
5173			headroom = (headroom * l2arc_headroom_boost) / 100;
5174
5175		for (; hdr; hdr = hdr_prev) {
5176			l2arc_buf_hdr_t *l2hdr;
5177			kmutex_t *hash_lock;
5178			uint64_t buf_sz;
5179			uint64_t buf_a_sz;
5180
5181			if (arc_warm == B_FALSE)
5182				hdr_prev = list_next(list, hdr);
5183			else
5184				hdr_prev = list_prev(list, hdr);
5185			ARCSTAT_INCR(arcstat_l2_write_buffer_bytes_scanned, hdr->b_size);
5186
5187			hash_lock = HDR_LOCK(hdr);
5188			if (!mutex_tryenter(hash_lock)) {
5189				ARCSTAT_BUMP(arcstat_l2_write_trylock_fail);
5190				/*
5191				 * Skip this buffer rather than waiting.
5192				 */
5193				continue;
5194			}
5195
5196			passed_sz += hdr->b_size;
5197			if (passed_sz > headroom) {
5198				/*
5199				 * Searched too far.
5200				 */
5201				mutex_exit(hash_lock);
5202				ARCSTAT_BUMP(arcstat_l2_write_passed_headroom);
5203				break;
5204			}
5205
5206			if (!l2arc_write_eligible(guid, hdr)) {
5207				mutex_exit(hash_lock);
5208				continue;
5209			}
5210
5211			/*
5212			 * Assume that the buffer is not going to be compressed
5213			 * and could take more space on disk because of a larger
5214			 * disk block size.
5215			 */
5216			buf_sz = hdr->b_size;
5217			buf_a_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
5218
5219			if ((write_asize + buf_a_sz) > target_sz) {
5220				full = B_TRUE;
5221				mutex_exit(hash_lock);
5222				ARCSTAT_BUMP(arcstat_l2_write_full);
5223				break;
5224			}
5225
5226			if (pio == NULL) {
5227				/*
5228				 * Insert a dummy header on the buflist so
5229				 * l2arc_write_done() can find where the
5230				 * write buffers begin without searching.
5231				 */
5232				list_insert_head(dev->l2ad_buflist, head);
5233
5234				cb = kmem_alloc(
5235				    sizeof (l2arc_write_callback_t), KM_SLEEP);
5236				cb->l2wcb_dev = dev;
5237				cb->l2wcb_head = head;
5238				pio = zio_root(spa, l2arc_write_done, cb,
5239				    ZIO_FLAG_CANFAIL);
5240				ARCSTAT_BUMP(arcstat_l2_write_pios);
5241			}
5242
5243			/*
5244			 * Create and add a new L2ARC header.
5245			 */
5246			l2hdr = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP);
5247			l2hdr->b_dev = dev;
5248			hdr->b_flags |= ARC_FLAG_L2_WRITING;
5249
5250			/*
5251			 * Temporarily stash the data buffer in b_tmp_cdata.
5252			 * The subsequent write step will pick it up from
5253			 * there. This is because can't access hdr->b_buf
5254			 * without holding the hash_lock, which we in turn
5255			 * can't access without holding the ARC list locks
5256			 * (which we want to avoid during compression/writing).
5257			 */
5258			l2hdr->b_compress = ZIO_COMPRESS_OFF;
5259			l2hdr->b_asize = hdr->b_size;
5260			l2hdr->b_tmp_cdata = hdr->b_buf->b_data;
5261
5262			hdr->b_l2hdr = l2hdr;
5263
5264			list_insert_head(dev->l2ad_buflist, hdr);
5265
5266			/*
5267			 * Compute and store the buffer cksum before
5268			 * writing.  On debug the cksum is verified first.
5269			 */
5270			arc_cksum_verify(hdr->b_buf);
5271			arc_cksum_compute(hdr->b_buf, B_TRUE);
5272
5273			mutex_exit(hash_lock);
5274
5275			write_sz += buf_sz;
5276			write_asize += buf_a_sz;
5277		}
5278
5279		mutex_exit(list_lock);
5280
5281		if (full == B_TRUE)
5282			break;
5283	}
5284
5285	/* No buffers selected for writing? */
5286	if (pio == NULL) {
5287		ASSERT0(write_sz);
5288		mutex_exit(&l2arc_buflist_mtx);
5289		kmem_cache_free(hdr_cache, head);
5290		return (0);
5291	}
5292
5293	/*
5294	 * Note that elsewhere in this file arcstat_l2_asize
5295	 * and the used space on l2ad_vdev are updated using b_asize,
5296	 * which is not necessarily rounded up to the device block size.
5297	 * Too keep accounting consistent we do the same here as well:
5298	 * stats_size accumulates the sum of b_asize of the written buffers,
5299	 * while write_asize accumulates the sum of b_asize rounded up
5300	 * to the device block size.
5301	 * The latter sum is used only to validate the corectness of the code.
5302	 */
5303	uint64_t stats_size = 0;
5304	write_asize = 0;
5305
5306	/*
5307	 * Now start writing the buffers. We're starting at the write head
5308	 * and work backwards, retracing the course of the buffer selector
5309	 * loop above.
5310	 */
5311	for (hdr = list_prev(dev->l2ad_buflist, head); hdr;
5312	    hdr = list_prev(dev->l2ad_buflist, hdr)) {
5313		l2arc_buf_hdr_t *l2hdr;
5314		uint64_t buf_sz;
5315
5316		/*
5317		 * We shouldn't need to lock the buffer here, since we flagged
5318		 * it as ARC_FLAG_L2_WRITING in the previous step, but we must
5319		 * take care to only access its L2 cache parameters. In
5320		 * particular, hdr->b_buf may be invalid by now due to
5321		 * ARC eviction.
5322		 */
5323		l2hdr = hdr->b_l2hdr;
5324		l2hdr->b_daddr = dev->l2ad_hand;
5325
5326		if ((hdr->b_flags & ARC_FLAG_L2COMPRESS) &&
5327		    l2hdr->b_asize >= buf_compress_minsz) {
5328			if (l2arc_compress_buf(l2hdr)) {
5329				/*
5330				 * If compression succeeded, enable headroom
5331				 * boost on the next scan cycle.
5332				 */
5333				*headroom_boost = B_TRUE;
5334			}
5335		}
5336
5337		/*
5338		 * Pick up the buffer data we had previously stashed away
5339		 * (and now potentially also compressed).
5340		 */
5341		buf_data = l2hdr->b_tmp_cdata;
5342		buf_sz = l2hdr->b_asize;
5343
5344		/*
5345		 * If the data has not been compressed, then clear b_tmp_cdata
5346		 * to make sure that it points only to a temporary compression
5347		 * buffer.
5348		 */
5349		if (!L2ARC_IS_VALID_COMPRESS(l2hdr->b_compress))
5350			l2hdr->b_tmp_cdata = NULL;
5351
5352		/* Compression may have squashed the buffer to zero length. */
5353		if (buf_sz != 0) {
5354			uint64_t buf_a_sz;
5355
5356			wzio = zio_write_phys(pio, dev->l2ad_vdev,
5357			    dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
5358			    NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
5359			    ZIO_FLAG_CANFAIL, B_FALSE);
5360
5361			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
5362			    zio_t *, wzio);
5363			(void) zio_nowait(wzio);
5364
5365			stats_size += buf_sz;
5366			/*
5367			 * Keep the clock hand suitably device-aligned.
5368			 */
5369			buf_a_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
5370			write_asize += buf_a_sz;
5371			dev->l2ad_hand += buf_a_sz;
5372		}
5373	}
5374
5375	mutex_exit(&l2arc_buflist_mtx);
5376
5377	ASSERT3U(write_asize, <=, target_sz);
5378	ARCSTAT_BUMP(arcstat_l2_writes_sent);
5379	ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
5380	ARCSTAT_INCR(arcstat_l2_size, write_sz);
5381	ARCSTAT_INCR(arcstat_l2_asize, stats_size);
5382	vdev_space_update(dev->l2ad_vdev, stats_size, 0, 0);
5383
5384	/*
5385	 * Bump device hand to the device start if it is approaching the end.
5386	 * l2arc_evict() will already have evicted ahead for this case.
5387	 */
5388	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
5389		dev->l2ad_hand = dev->l2ad_start;
5390		dev->l2ad_evict = dev->l2ad_start;
5391		dev->l2ad_first = B_FALSE;
5392	}
5393
5394	dev->l2ad_writing = B_TRUE;
5395	(void) zio_wait(pio);
5396	dev->l2ad_writing = B_FALSE;
5397
5398	return (write_asize);
5399}
5400
5401/*
5402 * Compresses an L2ARC buffer.
5403 * The data to be compressed must be prefilled in l2hdr->b_tmp_cdata and its
5404 * size in l2hdr->b_asize. This routine tries to compress the data and
5405 * depending on the compression result there are three possible outcomes:
5406 * *) The buffer was incompressible. The original l2hdr contents were left
5407 *    untouched and are ready for writing to an L2 device.
5408 * *) The buffer was all-zeros, so there is no need to write it to an L2
5409 *    device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is
5410 *    set to zero and b_compress is set to ZIO_COMPRESS_EMPTY.
5411 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary
5412 *    data buffer which holds the compressed data to be written, and b_asize
5413 *    tells us how much data there is. b_compress is set to the appropriate
5414 *    compression algorithm. Once writing is done, invoke
5415 *    l2arc_release_cdata_buf on this l2hdr to free this temporary buffer.
5416 *
5417 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the
5418 * buffer was incompressible).
5419 */
5420static boolean_t
5421l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr)
5422{
5423	void *cdata;
5424	size_t csize, len, rounded;
5425
5426	ASSERT(l2hdr->b_compress == ZIO_COMPRESS_OFF);
5427	ASSERT(l2hdr->b_tmp_cdata != NULL);
5428
5429	len = l2hdr->b_asize;
5430	cdata = zio_data_buf_alloc(len);
5431	csize = zio_compress_data(ZIO_COMPRESS_LZ4, l2hdr->b_tmp_cdata,
5432	    cdata, l2hdr->b_asize);
5433
5434	if (csize == 0) {
5435		/* zero block, indicate that there's nothing to write */
5436		zio_data_buf_free(cdata, len);
5437		l2hdr->b_compress = ZIO_COMPRESS_EMPTY;
5438		l2hdr->b_asize = 0;
5439		l2hdr->b_tmp_cdata = NULL;
5440		ARCSTAT_BUMP(arcstat_l2_compress_zeros);
5441		return (B_TRUE);
5442	}
5443
5444	rounded = P2ROUNDUP(csize,
5445	    (size_t)1 << l2hdr->b_dev->l2ad_vdev->vdev_ashift);
5446	if (rounded < len) {
5447		/*
5448		 * Compression succeeded, we'll keep the cdata around for
5449		 * writing and release it afterwards.
5450		 */
5451		if (rounded > csize) {
5452			bzero((char *)cdata + csize, rounded - csize);
5453			csize = rounded;
5454		}
5455		l2hdr->b_compress = ZIO_COMPRESS_LZ4;
5456		l2hdr->b_asize = csize;
5457		l2hdr->b_tmp_cdata = cdata;
5458		ARCSTAT_BUMP(arcstat_l2_compress_successes);
5459		return (B_TRUE);
5460	} else {
5461		/*
5462		 * Compression failed, release the compressed buffer.
5463		 * l2hdr will be left unmodified.
5464		 */
5465		zio_data_buf_free(cdata, len);
5466		ARCSTAT_BUMP(arcstat_l2_compress_failures);
5467		return (B_FALSE);
5468	}
5469}
5470
5471/*
5472 * Decompresses a zio read back from an l2arc device. On success, the
5473 * underlying zio's io_data buffer is overwritten by the uncompressed
5474 * version. On decompression error (corrupt compressed stream), the
5475 * zio->io_error value is set to signal an I/O error.
5476 *
5477 * Please note that the compressed data stream is not checksummed, so
5478 * if the underlying device is experiencing data corruption, we may feed
5479 * corrupt data to the decompressor, so the decompressor needs to be
5480 * able to handle this situation (LZ4 does).
5481 */
5482static void
5483l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c)
5484{
5485	ASSERT(L2ARC_IS_VALID_COMPRESS(c));
5486
5487	if (zio->io_error != 0) {
5488		/*
5489		 * An io error has occured, just restore the original io
5490		 * size in preparation for a main pool read.
5491		 */
5492		zio->io_orig_size = zio->io_size = hdr->b_size;
5493		return;
5494	}
5495
5496	if (c == ZIO_COMPRESS_EMPTY) {
5497		/*
5498		 * An empty buffer results in a null zio, which means we
5499		 * need to fill its io_data after we're done restoring the
5500		 * buffer's contents.
5501		 */
5502		ASSERT(hdr->b_buf != NULL);
5503		bzero(hdr->b_buf->b_data, hdr->b_size);
5504		zio->io_data = zio->io_orig_data = hdr->b_buf->b_data;
5505	} else {
5506		ASSERT(zio->io_data != NULL);
5507		/*
5508		 * We copy the compressed data from the start of the arc buffer
5509		 * (the zio_read will have pulled in only what we need, the
5510		 * rest is garbage which we will overwrite at decompression)
5511		 * and then decompress back to the ARC data buffer. This way we
5512		 * can minimize copying by simply decompressing back over the
5513		 * original compressed data (rather than decompressing to an
5514		 * aux buffer and then copying back the uncompressed buffer,
5515		 * which is likely to be much larger).
5516		 */
5517		uint64_t csize;
5518		void *cdata;
5519
5520		csize = zio->io_size;
5521		cdata = zio_data_buf_alloc(csize);
5522		bcopy(zio->io_data, cdata, csize);
5523		if (zio_decompress_data(c, cdata, zio->io_data, csize,
5524		    hdr->b_size) != 0)
5525			zio->io_error = EIO;
5526		zio_data_buf_free(cdata, csize);
5527	}
5528
5529	/* Restore the expected uncompressed IO size. */
5530	zio->io_orig_size = zio->io_size = hdr->b_size;
5531}
5532
5533/*
5534 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure.
5535 * This buffer serves as a temporary holder of compressed data while
5536 * the buffer entry is being written to an l2arc device. Once that is
5537 * done, we can dispose of it.
5538 */
5539static void
5540l2arc_release_cdata_buf(arc_buf_hdr_t *hdr)
5541{
5542	l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr;
5543
5544	ASSERT(L2ARC_IS_VALID_COMPRESS(l2hdr->b_compress));
5545	if (l2hdr->b_compress != ZIO_COMPRESS_EMPTY) {
5546		/*
5547		 * If the data was compressed, then we've allocated a
5548		 * temporary buffer for it, so now we need to release it.
5549		 */
5550		ASSERT(l2hdr->b_tmp_cdata != NULL);
5551		zio_data_buf_free(l2hdr->b_tmp_cdata, hdr->b_size);
5552		l2hdr->b_tmp_cdata = NULL;
5553	} else {
5554		ASSERT(l2hdr->b_tmp_cdata == NULL);
5555	}
5556}
5557
5558/*
5559 * This thread feeds the L2ARC at regular intervals.  This is the beating
5560 * heart of the L2ARC.
5561 */
5562static void
5563l2arc_feed_thread(void *dummy __unused)
5564{
5565	callb_cpr_t cpr;
5566	l2arc_dev_t *dev;
5567	spa_t *spa;
5568	uint64_t size, wrote;
5569	clock_t begin, next = ddi_get_lbolt();
5570	boolean_t headroom_boost = B_FALSE;
5571
5572	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
5573
5574	mutex_enter(&l2arc_feed_thr_lock);
5575
5576	while (l2arc_thread_exit == 0) {
5577		CALLB_CPR_SAFE_BEGIN(&cpr);
5578		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
5579		    next - ddi_get_lbolt());
5580		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
5581		next = ddi_get_lbolt() + hz;
5582
5583		/*
5584		 * Quick check for L2ARC devices.
5585		 */
5586		mutex_enter(&l2arc_dev_mtx);
5587		if (l2arc_ndev == 0) {
5588			mutex_exit(&l2arc_dev_mtx);
5589			continue;
5590		}
5591		mutex_exit(&l2arc_dev_mtx);
5592		begin = ddi_get_lbolt();
5593
5594		/*
5595		 * This selects the next l2arc device to write to, and in
5596		 * doing so the next spa to feed from: dev->l2ad_spa.   This
5597		 * will return NULL if there are now no l2arc devices or if
5598		 * they are all faulted.
5599		 *
5600		 * If a device is returned, its spa's config lock is also
5601		 * held to prevent device removal.  l2arc_dev_get_next()
5602		 * will grab and release l2arc_dev_mtx.
5603		 */
5604		if ((dev = l2arc_dev_get_next()) == NULL)
5605			continue;
5606
5607		spa = dev->l2ad_spa;
5608		ASSERT(spa != NULL);
5609
5610		/*
5611		 * If the pool is read-only then force the feed thread to
5612		 * sleep a little longer.
5613		 */
5614		if (!spa_writeable(spa)) {
5615			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
5616			spa_config_exit(spa, SCL_L2ARC, dev);
5617			continue;
5618		}
5619
5620		/*
5621		 * Avoid contributing to memory pressure.
5622		 */
5623		if (arc_reclaim_needed()) {
5624			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
5625			spa_config_exit(spa, SCL_L2ARC, dev);
5626			continue;
5627		}
5628
5629		ARCSTAT_BUMP(arcstat_l2_feeds);
5630
5631		size = l2arc_write_size();
5632
5633		/*
5634		 * Evict L2ARC buffers that will be overwritten.
5635		 */
5636		l2arc_evict(dev, size, B_FALSE);
5637
5638		/*
5639		 * Write ARC buffers.
5640		 */
5641		wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost);
5642
5643		/*
5644		 * Calculate interval between writes.
5645		 */
5646		next = l2arc_write_interval(begin, size, wrote);
5647		spa_config_exit(spa, SCL_L2ARC, dev);
5648	}
5649
5650	l2arc_thread_exit = 0;
5651	cv_broadcast(&l2arc_feed_thr_cv);
5652	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
5653	thread_exit();
5654}
5655
5656boolean_t
5657l2arc_vdev_present(vdev_t *vd)
5658{
5659	l2arc_dev_t *dev;
5660
5661	mutex_enter(&l2arc_dev_mtx);
5662	for (dev = list_head(l2arc_dev_list); dev != NULL;
5663	    dev = list_next(l2arc_dev_list, dev)) {
5664		if (dev->l2ad_vdev == vd)
5665			break;
5666	}
5667	mutex_exit(&l2arc_dev_mtx);
5668
5669	return (dev != NULL);
5670}
5671
5672/*
5673 * Add a vdev for use by the L2ARC.  By this point the spa has already
5674 * validated the vdev and opened it.
5675 */
5676void
5677l2arc_add_vdev(spa_t *spa, vdev_t *vd)
5678{
5679	l2arc_dev_t *adddev;
5680
5681	ASSERT(!l2arc_vdev_present(vd));
5682
5683	vdev_ashift_optimize(vd);
5684
5685	/*
5686	 * Create a new l2arc device entry.
5687	 */
5688	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
5689	adddev->l2ad_spa = spa;
5690	adddev->l2ad_vdev = vd;
5691	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
5692	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
5693	adddev->l2ad_hand = adddev->l2ad_start;
5694	adddev->l2ad_evict = adddev->l2ad_start;
5695	adddev->l2ad_first = B_TRUE;
5696	adddev->l2ad_writing = B_FALSE;
5697
5698	/*
5699	 * This is a list of all ARC buffers that are still valid on the
5700	 * device.
5701	 */
5702	adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
5703	list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
5704	    offsetof(arc_buf_hdr_t, b_l2node));
5705
5706	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
5707
5708	/*
5709	 * Add device to global list
5710	 */
5711	mutex_enter(&l2arc_dev_mtx);
5712	list_insert_head(l2arc_dev_list, adddev);
5713	atomic_inc_64(&l2arc_ndev);
5714	mutex_exit(&l2arc_dev_mtx);
5715}
5716
5717/*
5718 * Remove a vdev from the L2ARC.
5719 */
5720void
5721l2arc_remove_vdev(vdev_t *vd)
5722{
5723	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
5724
5725	/*
5726	 * Find the device by vdev
5727	 */
5728	mutex_enter(&l2arc_dev_mtx);
5729	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
5730		nextdev = list_next(l2arc_dev_list, dev);
5731		if (vd == dev->l2ad_vdev) {
5732			remdev = dev;
5733			break;
5734		}
5735	}
5736	ASSERT(remdev != NULL);
5737
5738	/*
5739	 * Remove device from global list
5740	 */
5741	list_remove(l2arc_dev_list, remdev);
5742	l2arc_dev_last = NULL;		/* may have been invalidated */
5743	atomic_dec_64(&l2arc_ndev);
5744	mutex_exit(&l2arc_dev_mtx);
5745
5746	/*
5747	 * Clear all buflists and ARC references.  L2ARC device flush.
5748	 */
5749	l2arc_evict(remdev, 0, B_TRUE);
5750	list_destroy(remdev->l2ad_buflist);
5751	kmem_free(remdev->l2ad_buflist, sizeof (list_t));
5752	kmem_free(remdev, sizeof (l2arc_dev_t));
5753}
5754
5755void
5756l2arc_init(void)
5757{
5758	l2arc_thread_exit = 0;
5759	l2arc_ndev = 0;
5760	l2arc_writes_sent = 0;
5761	l2arc_writes_done = 0;
5762
5763	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
5764	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
5765	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
5766	mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
5767	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
5768
5769	l2arc_dev_list = &L2ARC_dev_list;
5770	l2arc_free_on_write = &L2ARC_free_on_write;
5771	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
5772	    offsetof(l2arc_dev_t, l2ad_node));
5773	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
5774	    offsetof(l2arc_data_free_t, l2df_list_node));
5775}
5776
5777void
5778l2arc_fini(void)
5779{
5780	/*
5781	 * This is called from dmu_fini(), which is called from spa_fini();
5782	 * Because of this, we can assume that all l2arc devices have
5783	 * already been removed when the pools themselves were removed.
5784	 */
5785
5786	l2arc_do_free_on_write();
5787
5788	mutex_destroy(&l2arc_feed_thr_lock);
5789	cv_destroy(&l2arc_feed_thr_cv);
5790	mutex_destroy(&l2arc_dev_mtx);
5791	mutex_destroy(&l2arc_buflist_mtx);
5792	mutex_destroy(&l2arc_free_on_write_mtx);
5793
5794	list_destroy(l2arc_dev_list);
5795	list_destroy(l2arc_free_on_write);
5796}
5797
5798void
5799l2arc_start(void)
5800{
5801	if (!(spa_mode_global & FWRITE))
5802		return;
5803
5804	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
5805	    TS_RUN, minclsyspri);
5806}
5807
5808void
5809l2arc_stop(void)
5810{
5811	if (!(spa_mode_global & FWRITE))
5812		return;
5813
5814	mutex_enter(&l2arc_feed_thr_lock);
5815	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
5816	l2arc_thread_exit = 1;
5817	while (l2arc_thread_exit != 0)
5818		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
5819	mutex_exit(&l2arc_feed_thr_lock);
5820}
5821