arc.c revision 272875
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
25 * Copyright 2014 Nexenta Systems, Inc.  All rights reserved.
26 */
27
28/*
29 * DVA-based Adjustable Replacement Cache
30 *
31 * While much of the theory of operation used here is
32 * based on the self-tuning, low overhead replacement cache
33 * presented by Megiddo and Modha at FAST 2003, there are some
34 * significant differences:
35 *
36 * 1. The Megiddo and Modha model assumes any page is evictable.
37 * Pages in its cache cannot be "locked" into memory.  This makes
38 * the eviction algorithm simple: evict the last page in the list.
39 * This also make the performance characteristics easy to reason
40 * about.  Our cache is not so simple.  At any given moment, some
41 * subset of the blocks in the cache are un-evictable because we
42 * have handed out a reference to them.  Blocks are only evictable
43 * when there are no external references active.  This makes
44 * eviction far more problematic:  we choose to evict the evictable
45 * blocks that are the "lowest" in the list.
46 *
47 * There are times when it is not possible to evict the requested
48 * space.  In these circumstances we are unable to adjust the cache
49 * size.  To prevent the cache growing unbounded at these times we
50 * implement a "cache throttle" that slows the flow of new data
51 * into the cache until we can make space available.
52 *
53 * 2. The Megiddo and Modha model assumes a fixed cache size.
54 * Pages are evicted when the cache is full and there is a cache
55 * miss.  Our model has a variable sized cache.  It grows with
56 * high use, but also tries to react to memory pressure from the
57 * operating system: decreasing its size when system memory is
58 * tight.
59 *
60 * 3. The Megiddo and Modha model assumes a fixed page size. All
61 * elements of the cache are therefore exactly the same size.  So
62 * when adjusting the cache size following a cache miss, its simply
63 * a matter of choosing a single page to evict.  In our model, we
64 * have variable sized cache blocks (rangeing from 512 bytes to
65 * 128K bytes).  We therefore choose a set of blocks to evict to make
66 * space for a cache miss that approximates as closely as possible
67 * the space used by the new block.
68 *
69 * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
70 * by N. Megiddo & D. Modha, FAST 2003
71 */
72
73/*
74 * The locking model:
75 *
76 * A new reference to a cache buffer can be obtained in two
77 * ways: 1) via a hash table lookup using the DVA as a key,
78 * or 2) via one of the ARC lists.  The arc_read() interface
79 * uses method 1, while the internal arc algorithms for
80 * adjusting the cache use method 2.  We therefore provide two
81 * types of locks: 1) the hash table lock array, and 2) the
82 * arc list locks.
83 *
84 * Buffers do not have their own mutexs, rather they rely on the
85 * hash table mutexs for the bulk of their protection (i.e. most
86 * fields in the arc_buf_hdr_t are protected by these mutexs).
87 *
88 * buf_hash_find() returns the appropriate mutex (held) when it
89 * locates the requested buffer in the hash table.  It returns
90 * NULL for the mutex if the buffer was not in the table.
91 *
92 * buf_hash_remove() expects the appropriate hash mutex to be
93 * already held before it is invoked.
94 *
95 * Each arc state also has a mutex which is used to protect the
96 * buffer list associated with the state.  When attempting to
97 * obtain a hash table lock while holding an arc list lock you
98 * must use: mutex_tryenter() to avoid deadlock.  Also note that
99 * the active state mutex must be held before the ghost state mutex.
100 *
101 * Arc buffers may have an associated eviction callback function.
102 * This function will be invoked prior to removing the buffer (e.g.
103 * in arc_do_user_evicts()).  Note however that the data associated
104 * with the buffer may be evicted prior to the callback.  The callback
105 * must be made with *no locks held* (to prevent deadlock).  Additionally,
106 * the users of callbacks must ensure that their private data is
107 * protected from simultaneous callbacks from arc_clear_callback()
108 * and arc_do_user_evicts().
109 *
110 * Note that the majority of the performance stats are manipulated
111 * with atomic operations.
112 *
113 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
114 *
115 *	- L2ARC buflist creation
116 *	- L2ARC buflist eviction
117 *	- L2ARC write completion, which walks L2ARC buflists
118 *	- ARC header destruction, as it removes from L2ARC buflists
119 *	- ARC header release, as it removes from L2ARC buflists
120 */
121
122#include <sys/spa.h>
123#include <sys/zio.h>
124#include <sys/zio_compress.h>
125#include <sys/zfs_context.h>
126#include <sys/arc.h>
127#include <sys/refcount.h>
128#include <sys/vdev.h>
129#include <sys/vdev_impl.h>
130#include <sys/dsl_pool.h>
131#ifdef _KERNEL
132#include <sys/dnlc.h>
133#endif
134#include <sys/callb.h>
135#include <sys/kstat.h>
136#include <sys/trim_map.h>
137#include <zfs_fletcher.h>
138#include <sys/sdt.h>
139
140#include <vm/vm_pageout.h>
141#include <machine/vmparam.h>
142
143#ifdef illumos
144#ifndef _KERNEL
145/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
146boolean_t arc_watch = B_FALSE;
147int arc_procfd;
148#endif
149#endif /* illumos */
150
151static kmutex_t		arc_reclaim_thr_lock;
152static kcondvar_t	arc_reclaim_thr_cv;	/* used to signal reclaim thr */
153static uint8_t		arc_thread_exit;
154
155#define	ARC_REDUCE_DNLC_PERCENT	3
156uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
157
158typedef enum arc_reclaim_strategy {
159	ARC_RECLAIM_AGGR,		/* Aggressive reclaim strategy */
160	ARC_RECLAIM_CONS		/* Conservative reclaim strategy */
161} arc_reclaim_strategy_t;
162
163/*
164 * The number of iterations through arc_evict_*() before we
165 * drop & reacquire the lock.
166 */
167int arc_evict_iterations = 100;
168
169/* number of seconds before growing cache again */
170static int		arc_grow_retry = 60;
171
172/* shift of arc_c for calculating both min and max arc_p */
173static int		arc_p_min_shift = 4;
174
175/* log2(fraction of arc to reclaim) */
176static int		arc_shrink_shift = 5;
177
178/*
179 * minimum lifespan of a prefetch block in clock ticks
180 * (initialized in arc_init())
181 */
182static int		arc_min_prefetch_lifespan;
183
184/*
185 * If this percent of memory is free, don't throttle.
186 */
187int arc_lotsfree_percent = 10;
188
189static int arc_dead;
190extern int zfs_prefetch_disable;
191
192/*
193 * The arc has filled available memory and has now warmed up.
194 */
195static boolean_t arc_warm;
196
197uint64_t zfs_arc_max;
198uint64_t zfs_arc_min;
199uint64_t zfs_arc_meta_limit = 0;
200int zfs_arc_grow_retry = 0;
201int zfs_arc_shrink_shift = 0;
202int zfs_arc_p_min_shift = 0;
203int zfs_disable_dup_eviction = 0;
204uint64_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
205u_int zfs_arc_free_target = 0;
206
207static int sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS);
208
209#ifdef _KERNEL
210static void
211arc_free_target_init(void *unused __unused)
212{
213
214	zfs_arc_free_target = vm_pageout_wakeup_thresh;
215}
216SYSINIT(arc_free_target_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_ANY,
217    arc_free_target_init, NULL);
218
219TUNABLE_QUAD("vfs.zfs.arc_max", &zfs_arc_max);
220TUNABLE_QUAD("vfs.zfs.arc_min", &zfs_arc_min);
221TUNABLE_QUAD("vfs.zfs.arc_meta_limit", &zfs_arc_meta_limit);
222TUNABLE_QUAD("vfs.zfs.arc_average_blocksize", &zfs_arc_average_blocksize);
223SYSCTL_DECL(_vfs_zfs);
224SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_max, CTLFLAG_RDTUN, &zfs_arc_max, 0,
225    "Maximum ARC size");
226SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_min, CTLFLAG_RDTUN, &zfs_arc_min, 0,
227    "Minimum ARC size");
228SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_average_blocksize, CTLFLAG_RDTUN,
229    &zfs_arc_average_blocksize, 0,
230    "ARC average blocksize");
231/*
232 * We don't have a tunable for arc_free_target due to the dependency on
233 * pagedaemon initialisation.
234 */
235SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_free_target,
236    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(u_int),
237    sysctl_vfs_zfs_arc_free_target, "IU",
238    "Desired number of free pages below which ARC triggers reclaim");
239
240static int
241sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS)
242{
243	u_int val;
244	int err;
245
246	val = zfs_arc_free_target;
247	err = sysctl_handle_int(oidp, &val, 0, req);
248	if (err != 0 || req->newptr == NULL)
249		return (err);
250
251	if (val < minfree)
252		return (EINVAL);
253	if (val > cnt.v_page_count)
254		return (EINVAL);
255
256	zfs_arc_free_target = val;
257
258	return (0);
259}
260#endif
261
262/*
263 * Note that buffers can be in one of 6 states:
264 *	ARC_anon	- anonymous (discussed below)
265 *	ARC_mru		- recently used, currently cached
266 *	ARC_mru_ghost	- recentely used, no longer in cache
267 *	ARC_mfu		- frequently used, currently cached
268 *	ARC_mfu_ghost	- frequently used, no longer in cache
269 *	ARC_l2c_only	- exists in L2ARC but not other states
270 * When there are no active references to the buffer, they are
271 * are linked onto a list in one of these arc states.  These are
272 * the only buffers that can be evicted or deleted.  Within each
273 * state there are multiple lists, one for meta-data and one for
274 * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
275 * etc.) is tracked separately so that it can be managed more
276 * explicitly: favored over data, limited explicitly.
277 *
278 * Anonymous buffers are buffers that are not associated with
279 * a DVA.  These are buffers that hold dirty block copies
280 * before they are written to stable storage.  By definition,
281 * they are "ref'd" and are considered part of arc_mru
282 * that cannot be freed.  Generally, they will aquire a DVA
283 * as they are written and migrate onto the arc_mru list.
284 *
285 * The ARC_l2c_only state is for buffers that are in the second
286 * level ARC but no longer in any of the ARC_m* lists.  The second
287 * level ARC itself may also contain buffers that are in any of
288 * the ARC_m* states - meaning that a buffer can exist in two
289 * places.  The reason for the ARC_l2c_only state is to keep the
290 * buffer header in the hash table, so that reads that hit the
291 * second level ARC benefit from these fast lookups.
292 */
293
294#define	ARCS_LOCK_PAD		CACHE_LINE_SIZE
295struct arcs_lock {
296	kmutex_t	arcs_lock;
297#ifdef _KERNEL
298	unsigned char	pad[(ARCS_LOCK_PAD - sizeof (kmutex_t))];
299#endif
300};
301
302/*
303 * must be power of two for mask use to work
304 *
305 */
306#define ARC_BUFC_NUMDATALISTS		16
307#define ARC_BUFC_NUMMETADATALISTS	16
308#define ARC_BUFC_NUMLISTS	(ARC_BUFC_NUMMETADATALISTS + ARC_BUFC_NUMDATALISTS)
309
310typedef struct arc_state {
311	uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];	/* amount of evictable data */
312	uint64_t arcs_size;	/* total amount of data in this state */
313	list_t	arcs_lists[ARC_BUFC_NUMLISTS]; /* list of evictable buffers */
314	struct arcs_lock arcs_locks[ARC_BUFC_NUMLISTS] __aligned(CACHE_LINE_SIZE);
315} arc_state_t;
316
317#define ARCS_LOCK(s, i)	(&((s)->arcs_locks[(i)].arcs_lock))
318
319/* The 6 states: */
320static arc_state_t ARC_anon;
321static arc_state_t ARC_mru;
322static arc_state_t ARC_mru_ghost;
323static arc_state_t ARC_mfu;
324static arc_state_t ARC_mfu_ghost;
325static arc_state_t ARC_l2c_only;
326
327typedef struct arc_stats {
328	kstat_named_t arcstat_hits;
329	kstat_named_t arcstat_misses;
330	kstat_named_t arcstat_demand_data_hits;
331	kstat_named_t arcstat_demand_data_misses;
332	kstat_named_t arcstat_demand_metadata_hits;
333	kstat_named_t arcstat_demand_metadata_misses;
334	kstat_named_t arcstat_prefetch_data_hits;
335	kstat_named_t arcstat_prefetch_data_misses;
336	kstat_named_t arcstat_prefetch_metadata_hits;
337	kstat_named_t arcstat_prefetch_metadata_misses;
338	kstat_named_t arcstat_mru_hits;
339	kstat_named_t arcstat_mru_ghost_hits;
340	kstat_named_t arcstat_mfu_hits;
341	kstat_named_t arcstat_mfu_ghost_hits;
342	kstat_named_t arcstat_allocated;
343	kstat_named_t arcstat_deleted;
344	kstat_named_t arcstat_stolen;
345	kstat_named_t arcstat_recycle_miss;
346	/*
347	 * Number of buffers that could not be evicted because the hash lock
348	 * was held by another thread.  The lock may not necessarily be held
349	 * by something using the same buffer, since hash locks are shared
350	 * by multiple buffers.
351	 */
352	kstat_named_t arcstat_mutex_miss;
353	/*
354	 * Number of buffers skipped because they have I/O in progress, are
355	 * indrect prefetch buffers that have not lived long enough, or are
356	 * not from the spa we're trying to evict from.
357	 */
358	kstat_named_t arcstat_evict_skip;
359	kstat_named_t arcstat_evict_l2_cached;
360	kstat_named_t arcstat_evict_l2_eligible;
361	kstat_named_t arcstat_evict_l2_ineligible;
362	kstat_named_t arcstat_hash_elements;
363	kstat_named_t arcstat_hash_elements_max;
364	kstat_named_t arcstat_hash_collisions;
365	kstat_named_t arcstat_hash_chains;
366	kstat_named_t arcstat_hash_chain_max;
367	kstat_named_t arcstat_p;
368	kstat_named_t arcstat_c;
369	kstat_named_t arcstat_c_min;
370	kstat_named_t arcstat_c_max;
371	kstat_named_t arcstat_size;
372	kstat_named_t arcstat_hdr_size;
373	kstat_named_t arcstat_data_size;
374	kstat_named_t arcstat_other_size;
375	kstat_named_t arcstat_l2_hits;
376	kstat_named_t arcstat_l2_misses;
377	kstat_named_t arcstat_l2_feeds;
378	kstat_named_t arcstat_l2_rw_clash;
379	kstat_named_t arcstat_l2_read_bytes;
380	kstat_named_t arcstat_l2_write_bytes;
381	kstat_named_t arcstat_l2_writes_sent;
382	kstat_named_t arcstat_l2_writes_done;
383	kstat_named_t arcstat_l2_writes_error;
384	kstat_named_t arcstat_l2_writes_hdr_miss;
385	kstat_named_t arcstat_l2_evict_lock_retry;
386	kstat_named_t arcstat_l2_evict_reading;
387	kstat_named_t arcstat_l2_free_on_write;
388	kstat_named_t arcstat_l2_abort_lowmem;
389	kstat_named_t arcstat_l2_cksum_bad;
390	kstat_named_t arcstat_l2_io_error;
391	kstat_named_t arcstat_l2_size;
392	kstat_named_t arcstat_l2_asize;
393	kstat_named_t arcstat_l2_hdr_size;
394	kstat_named_t arcstat_l2_compress_successes;
395	kstat_named_t arcstat_l2_compress_zeros;
396	kstat_named_t arcstat_l2_compress_failures;
397	kstat_named_t arcstat_l2_write_trylock_fail;
398	kstat_named_t arcstat_l2_write_passed_headroom;
399	kstat_named_t arcstat_l2_write_spa_mismatch;
400	kstat_named_t arcstat_l2_write_in_l2;
401	kstat_named_t arcstat_l2_write_hdr_io_in_progress;
402	kstat_named_t arcstat_l2_write_not_cacheable;
403	kstat_named_t arcstat_l2_write_full;
404	kstat_named_t arcstat_l2_write_buffer_iter;
405	kstat_named_t arcstat_l2_write_pios;
406	kstat_named_t arcstat_l2_write_buffer_bytes_scanned;
407	kstat_named_t arcstat_l2_write_buffer_list_iter;
408	kstat_named_t arcstat_l2_write_buffer_list_null_iter;
409	kstat_named_t arcstat_memory_throttle_count;
410	kstat_named_t arcstat_duplicate_buffers;
411	kstat_named_t arcstat_duplicate_buffers_size;
412	kstat_named_t arcstat_duplicate_reads;
413} arc_stats_t;
414
415static arc_stats_t arc_stats = {
416	{ "hits",			KSTAT_DATA_UINT64 },
417	{ "misses",			KSTAT_DATA_UINT64 },
418	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
419	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
420	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
421	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
422	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
423	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
424	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
425	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
426	{ "mru_hits",			KSTAT_DATA_UINT64 },
427	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
428	{ "mfu_hits",			KSTAT_DATA_UINT64 },
429	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
430	{ "allocated",			KSTAT_DATA_UINT64 },
431	{ "deleted",			KSTAT_DATA_UINT64 },
432	{ "stolen",			KSTAT_DATA_UINT64 },
433	{ "recycle_miss",		KSTAT_DATA_UINT64 },
434	{ "mutex_miss",			KSTAT_DATA_UINT64 },
435	{ "evict_skip",			KSTAT_DATA_UINT64 },
436	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
437	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
438	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
439	{ "hash_elements",		KSTAT_DATA_UINT64 },
440	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
441	{ "hash_collisions",		KSTAT_DATA_UINT64 },
442	{ "hash_chains",		KSTAT_DATA_UINT64 },
443	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
444	{ "p",				KSTAT_DATA_UINT64 },
445	{ "c",				KSTAT_DATA_UINT64 },
446	{ "c_min",			KSTAT_DATA_UINT64 },
447	{ "c_max",			KSTAT_DATA_UINT64 },
448	{ "size",			KSTAT_DATA_UINT64 },
449	{ "hdr_size",			KSTAT_DATA_UINT64 },
450	{ "data_size",			KSTAT_DATA_UINT64 },
451	{ "other_size",			KSTAT_DATA_UINT64 },
452	{ "l2_hits",			KSTAT_DATA_UINT64 },
453	{ "l2_misses",			KSTAT_DATA_UINT64 },
454	{ "l2_feeds",			KSTAT_DATA_UINT64 },
455	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
456	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
457	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
458	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
459	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
460	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
461	{ "l2_writes_hdr_miss",		KSTAT_DATA_UINT64 },
462	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
463	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
464	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
465	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
466	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
467	{ "l2_io_error",		KSTAT_DATA_UINT64 },
468	{ "l2_size",			KSTAT_DATA_UINT64 },
469	{ "l2_asize",			KSTAT_DATA_UINT64 },
470	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
471	{ "l2_compress_successes",	KSTAT_DATA_UINT64 },
472	{ "l2_compress_zeros",		KSTAT_DATA_UINT64 },
473	{ "l2_compress_failures",	KSTAT_DATA_UINT64 },
474	{ "l2_write_trylock_fail",	KSTAT_DATA_UINT64 },
475	{ "l2_write_passed_headroom",	KSTAT_DATA_UINT64 },
476	{ "l2_write_spa_mismatch",	KSTAT_DATA_UINT64 },
477	{ "l2_write_in_l2",		KSTAT_DATA_UINT64 },
478	{ "l2_write_io_in_progress",	KSTAT_DATA_UINT64 },
479	{ "l2_write_not_cacheable",	KSTAT_DATA_UINT64 },
480	{ "l2_write_full",		KSTAT_DATA_UINT64 },
481	{ "l2_write_buffer_iter",	KSTAT_DATA_UINT64 },
482	{ "l2_write_pios",		KSTAT_DATA_UINT64 },
483	{ "l2_write_buffer_bytes_scanned", KSTAT_DATA_UINT64 },
484	{ "l2_write_buffer_list_iter",	KSTAT_DATA_UINT64 },
485	{ "l2_write_buffer_list_null_iter", KSTAT_DATA_UINT64 },
486	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
487	{ "duplicate_buffers",		KSTAT_DATA_UINT64 },
488	{ "duplicate_buffers_size",	KSTAT_DATA_UINT64 },
489	{ "duplicate_reads",		KSTAT_DATA_UINT64 }
490};
491
492#define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
493
494#define	ARCSTAT_INCR(stat, val) \
495	atomic_add_64(&arc_stats.stat.value.ui64, (val))
496
497#define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
498#define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
499
500#define	ARCSTAT_MAX(stat, val) {					\
501	uint64_t m;							\
502	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
503	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
504		continue;						\
505}
506
507#define	ARCSTAT_MAXSTAT(stat) \
508	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
509
510/*
511 * We define a macro to allow ARC hits/misses to be easily broken down by
512 * two separate conditions, giving a total of four different subtypes for
513 * each of hits and misses (so eight statistics total).
514 */
515#define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
516	if (cond1) {							\
517		if (cond2) {						\
518			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
519		} else {						\
520			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
521		}							\
522	} else {							\
523		if (cond2) {						\
524			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
525		} else {						\
526			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
527		}							\
528	}
529
530kstat_t			*arc_ksp;
531static arc_state_t	*arc_anon;
532static arc_state_t	*arc_mru;
533static arc_state_t	*arc_mru_ghost;
534static arc_state_t	*arc_mfu;
535static arc_state_t	*arc_mfu_ghost;
536static arc_state_t	*arc_l2c_only;
537
538/*
539 * There are several ARC variables that are critical to export as kstats --
540 * but we don't want to have to grovel around in the kstat whenever we wish to
541 * manipulate them.  For these variables, we therefore define them to be in
542 * terms of the statistic variable.  This assures that we are not introducing
543 * the possibility of inconsistency by having shadow copies of the variables,
544 * while still allowing the code to be readable.
545 */
546#define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
547#define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
548#define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
549#define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
550#define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
551
552#define	L2ARC_IS_VALID_COMPRESS(_c_) \
553	((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY)
554
555static int		arc_no_grow;	/* Don't try to grow cache size */
556static uint64_t		arc_tempreserve;
557static uint64_t		arc_loaned_bytes;
558static uint64_t		arc_meta_used;
559static uint64_t		arc_meta_limit;
560static uint64_t		arc_meta_max = 0;
561SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_meta_used, CTLFLAG_RD, &arc_meta_used, 0,
562    "ARC metadata used");
563SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_meta_limit, CTLFLAG_RW, &arc_meta_limit, 0,
564    "ARC metadata limit");
565
566typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
567
568typedef struct arc_callback arc_callback_t;
569
570struct arc_callback {
571	void			*acb_private;
572	arc_done_func_t		*acb_done;
573	arc_buf_t		*acb_buf;
574	zio_t			*acb_zio_dummy;
575	arc_callback_t		*acb_next;
576};
577
578typedef struct arc_write_callback arc_write_callback_t;
579
580struct arc_write_callback {
581	void		*awcb_private;
582	arc_done_func_t	*awcb_ready;
583	arc_done_func_t	*awcb_physdone;
584	arc_done_func_t	*awcb_done;
585	arc_buf_t	*awcb_buf;
586};
587
588struct arc_buf_hdr {
589	/* protected by hash lock */
590	dva_t			b_dva;
591	uint64_t		b_birth;
592	uint64_t		b_cksum0;
593
594	kmutex_t		b_freeze_lock;
595	zio_cksum_t		*b_freeze_cksum;
596	void			*b_thawed;
597
598	arc_buf_hdr_t		*b_hash_next;
599	arc_buf_t		*b_buf;
600	uint32_t		b_flags;
601	uint32_t		b_datacnt;
602
603	arc_callback_t		*b_acb;
604	kcondvar_t		b_cv;
605
606	/* immutable */
607	arc_buf_contents_t	b_type;
608	uint64_t		b_size;
609	uint64_t		b_spa;
610
611	/* protected by arc state mutex */
612	arc_state_t		*b_state;
613	list_node_t		b_arc_node;
614
615	/* updated atomically */
616	clock_t			b_arc_access;
617
618	/* self protecting */
619	refcount_t		b_refcnt;
620
621	l2arc_buf_hdr_t		*b_l2hdr;
622	list_node_t		b_l2node;
623};
624
625static arc_buf_t *arc_eviction_list;
626static kmutex_t arc_eviction_mtx;
627static arc_buf_hdr_t arc_eviction_hdr;
628static void arc_get_data_buf(arc_buf_t *buf);
629static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
630static int arc_evict_needed(arc_buf_contents_t type);
631static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes);
632#ifdef illumos
633static void arc_buf_watch(arc_buf_t *buf);
634#endif /* illumos */
635
636static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab);
637
638#define	GHOST_STATE(state)	\
639	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
640	(state) == arc_l2c_only)
641
642/*
643 * Private ARC flags.  These flags are private ARC only flags that will show up
644 * in b_flags in the arc_hdr_buf_t.  Some flags are publicly declared, and can
645 * be passed in as arc_flags in things like arc_read.  However, these flags
646 * should never be passed and should only be set by ARC code.  When adding new
647 * public flags, make sure not to smash the private ones.
648 */
649
650#define	ARC_IN_HASH_TABLE	(1 << 9)	/* this buffer is hashed */
651#define	ARC_IO_IN_PROGRESS	(1 << 10)	/* I/O in progress for buf */
652#define	ARC_IO_ERROR		(1 << 11)	/* I/O failed for buf */
653#define	ARC_FREED_IN_READ	(1 << 12)	/* buf freed while in read */
654#define	ARC_BUF_AVAILABLE	(1 << 13)	/* block not in active use */
655#define	ARC_INDIRECT		(1 << 14)	/* this is an indirect block */
656#define	ARC_FREE_IN_PROGRESS	(1 << 15)	/* hdr about to be freed */
657#define	ARC_L2_WRITING		(1 << 16)	/* L2ARC write in progress */
658#define	ARC_L2_EVICTED		(1 << 17)	/* evicted during I/O */
659#define	ARC_L2_WRITE_HEAD	(1 << 18)	/* head of write list */
660
661#define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_IN_HASH_TABLE)
662#define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS)
663#define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_IO_ERROR)
664#define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_PREFETCH)
665#define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FREED_IN_READ)
666#define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_BUF_AVAILABLE)
667#define	HDR_FREE_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
668#define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_L2CACHE)
669#define	HDR_L2_READING(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS &&	\
670				    (hdr)->b_l2hdr != NULL)
671#define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_L2_WRITING)
672#define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_L2_EVICTED)
673#define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_L2_WRITE_HEAD)
674
675/*
676 * Other sizes
677 */
678
679#define	HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
680#define	L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
681
682/*
683 * Hash table routines
684 */
685
686#define	HT_LOCK_PAD	CACHE_LINE_SIZE
687
688struct ht_lock {
689	kmutex_t	ht_lock;
690#ifdef _KERNEL
691	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
692#endif
693};
694
695#define	BUF_LOCKS 256
696typedef struct buf_hash_table {
697	uint64_t ht_mask;
698	arc_buf_hdr_t **ht_table;
699	struct ht_lock ht_locks[BUF_LOCKS] __aligned(CACHE_LINE_SIZE);
700} buf_hash_table_t;
701
702static buf_hash_table_t buf_hash_table;
703
704#define	BUF_HASH_INDEX(spa, dva, birth) \
705	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
706#define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
707#define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
708#define	HDR_LOCK(hdr) \
709	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
710
711uint64_t zfs_crc64_table[256];
712
713/*
714 * Level 2 ARC
715 */
716
717#define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
718#define	L2ARC_HEADROOM		2			/* num of writes */
719/*
720 * If we discover during ARC scan any buffers to be compressed, we boost
721 * our headroom for the next scanning cycle by this percentage multiple.
722 */
723#define	L2ARC_HEADROOM_BOOST	200
724#define	L2ARC_FEED_SECS		1		/* caching interval secs */
725#define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
726
727#define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
728#define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
729
730/* L2ARC Performance Tunables */
731uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
732uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
733uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
734uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
735uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
736uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
737boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
738boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
739boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
740
741SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_max, CTLFLAG_RW,
742    &l2arc_write_max, 0, "max write size");
743SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_boost, CTLFLAG_RW,
744    &l2arc_write_boost, 0, "extra write during warmup");
745SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_headroom, CTLFLAG_RW,
746    &l2arc_headroom, 0, "number of dev writes");
747SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_secs, CTLFLAG_RW,
748    &l2arc_feed_secs, 0, "interval seconds");
749SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_min_ms, CTLFLAG_RW,
750    &l2arc_feed_min_ms, 0, "min interval milliseconds");
751
752SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_noprefetch, CTLFLAG_RW,
753    &l2arc_noprefetch, 0, "don't cache prefetch bufs");
754SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_feed_again, CTLFLAG_RW,
755    &l2arc_feed_again, 0, "turbo warmup");
756SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_norw, CTLFLAG_RW,
757    &l2arc_norw, 0, "no reads during writes");
758
759SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_size, CTLFLAG_RD,
760    &ARC_anon.arcs_size, 0, "size of anonymous state");
761SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_metadata_lsize, CTLFLAG_RD,
762    &ARC_anon.arcs_lsize[ARC_BUFC_METADATA], 0, "size of anonymous state");
763SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_data_lsize, CTLFLAG_RD,
764    &ARC_anon.arcs_lsize[ARC_BUFC_DATA], 0, "size of anonymous state");
765
766SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_size, CTLFLAG_RD,
767    &ARC_mru.arcs_size, 0, "size of mru state");
768SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_metadata_lsize, CTLFLAG_RD,
769    &ARC_mru.arcs_lsize[ARC_BUFC_METADATA], 0, "size of metadata in mru state");
770SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_data_lsize, CTLFLAG_RD,
771    &ARC_mru.arcs_lsize[ARC_BUFC_DATA], 0, "size of data in mru state");
772
773SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_size, CTLFLAG_RD,
774    &ARC_mru_ghost.arcs_size, 0, "size of mru ghost state");
775SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_metadata_lsize, CTLFLAG_RD,
776    &ARC_mru_ghost.arcs_lsize[ARC_BUFC_METADATA], 0,
777    "size of metadata in mru ghost state");
778SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_data_lsize, CTLFLAG_RD,
779    &ARC_mru_ghost.arcs_lsize[ARC_BUFC_DATA], 0,
780    "size of data in mru ghost state");
781
782SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_size, CTLFLAG_RD,
783    &ARC_mfu.arcs_size, 0, "size of mfu state");
784SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_metadata_lsize, CTLFLAG_RD,
785    &ARC_mfu.arcs_lsize[ARC_BUFC_METADATA], 0, "size of metadata in mfu state");
786SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_data_lsize, CTLFLAG_RD,
787    &ARC_mfu.arcs_lsize[ARC_BUFC_DATA], 0, "size of data in mfu state");
788
789SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_size, CTLFLAG_RD,
790    &ARC_mfu_ghost.arcs_size, 0, "size of mfu ghost state");
791SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_metadata_lsize, CTLFLAG_RD,
792    &ARC_mfu_ghost.arcs_lsize[ARC_BUFC_METADATA], 0,
793    "size of metadata in mfu ghost state");
794SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_data_lsize, CTLFLAG_RD,
795    &ARC_mfu_ghost.arcs_lsize[ARC_BUFC_DATA], 0,
796    "size of data in mfu ghost state");
797
798SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2c_only_size, CTLFLAG_RD,
799    &ARC_l2c_only.arcs_size, 0, "size of mru state");
800
801/*
802 * L2ARC Internals
803 */
804typedef struct l2arc_dev {
805	vdev_t			*l2ad_vdev;	/* vdev */
806	spa_t			*l2ad_spa;	/* spa */
807	uint64_t		l2ad_hand;	/* next write location */
808	uint64_t		l2ad_start;	/* first addr on device */
809	uint64_t		l2ad_end;	/* last addr on device */
810	uint64_t		l2ad_evict;	/* last addr eviction reached */
811	boolean_t		l2ad_first;	/* first sweep through */
812	boolean_t		l2ad_writing;	/* currently writing */
813	list_t			*l2ad_buflist;	/* buffer list */
814	list_node_t		l2ad_node;	/* device list node */
815} l2arc_dev_t;
816
817static list_t L2ARC_dev_list;			/* device list */
818static list_t *l2arc_dev_list;			/* device list pointer */
819static kmutex_t l2arc_dev_mtx;			/* device list mutex */
820static l2arc_dev_t *l2arc_dev_last;		/* last device used */
821static kmutex_t l2arc_buflist_mtx;		/* mutex for all buflists */
822static list_t L2ARC_free_on_write;		/* free after write buf list */
823static list_t *l2arc_free_on_write;		/* free after write list ptr */
824static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
825static uint64_t l2arc_ndev;			/* number of devices */
826
827typedef struct l2arc_read_callback {
828	arc_buf_t		*l2rcb_buf;		/* read buffer */
829	spa_t			*l2rcb_spa;		/* spa */
830	blkptr_t		l2rcb_bp;		/* original blkptr */
831	zbookmark_phys_t	l2rcb_zb;		/* original bookmark */
832	int			l2rcb_flags;		/* original flags */
833	enum zio_compress	l2rcb_compress;		/* applied compress */
834} l2arc_read_callback_t;
835
836typedef struct l2arc_write_callback {
837	l2arc_dev_t	*l2wcb_dev;		/* device info */
838	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
839} l2arc_write_callback_t;
840
841struct l2arc_buf_hdr {
842	/* protected by arc_buf_hdr  mutex */
843	l2arc_dev_t		*b_dev;		/* L2ARC device */
844	uint64_t		b_daddr;	/* disk address, offset byte */
845	/* compression applied to buffer data */
846	enum zio_compress	b_compress;
847	/* real alloc'd buffer size depending on b_compress applied */
848	int			b_asize;
849	/* temporary buffer holder for in-flight compressed data */
850	void			*b_tmp_cdata;
851};
852
853typedef struct l2arc_data_free {
854	/* protected by l2arc_free_on_write_mtx */
855	void		*l2df_data;
856	size_t		l2df_size;
857	void		(*l2df_func)(void *, size_t);
858	list_node_t	l2df_list_node;
859} l2arc_data_free_t;
860
861static kmutex_t l2arc_feed_thr_lock;
862static kcondvar_t l2arc_feed_thr_cv;
863static uint8_t l2arc_thread_exit;
864
865static void l2arc_read_done(zio_t *zio);
866static void l2arc_hdr_stat_add(void);
867static void l2arc_hdr_stat_remove(void);
868
869static boolean_t l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr);
870static void l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr,
871    enum zio_compress c);
872static void l2arc_release_cdata_buf(arc_buf_hdr_t *ab);
873
874static uint64_t
875buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
876{
877	uint8_t *vdva = (uint8_t *)dva;
878	uint64_t crc = -1ULL;
879	int i;
880
881	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
882
883	for (i = 0; i < sizeof (dva_t); i++)
884		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
885
886	crc ^= (spa>>8) ^ birth;
887
888	return (crc);
889}
890
891#define	BUF_EMPTY(buf)						\
892	((buf)->b_dva.dva_word[0] == 0 &&			\
893	(buf)->b_dva.dva_word[1] == 0 &&			\
894	(buf)->b_cksum0 == 0)
895
896#define	BUF_EQUAL(spa, dva, birth, buf)				\
897	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
898	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
899	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
900
901static void
902buf_discard_identity(arc_buf_hdr_t *hdr)
903{
904	hdr->b_dva.dva_word[0] = 0;
905	hdr->b_dva.dva_word[1] = 0;
906	hdr->b_birth = 0;
907	hdr->b_cksum0 = 0;
908}
909
910static arc_buf_hdr_t *
911buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
912{
913	const dva_t *dva = BP_IDENTITY(bp);
914	uint64_t birth = BP_PHYSICAL_BIRTH(bp);
915	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
916	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
917	arc_buf_hdr_t *buf;
918
919	mutex_enter(hash_lock);
920	for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
921	    buf = buf->b_hash_next) {
922		if (BUF_EQUAL(spa, dva, birth, buf)) {
923			*lockp = hash_lock;
924			return (buf);
925		}
926	}
927	mutex_exit(hash_lock);
928	*lockp = NULL;
929	return (NULL);
930}
931
932/*
933 * Insert an entry into the hash table.  If there is already an element
934 * equal to elem in the hash table, then the already existing element
935 * will be returned and the new element will not be inserted.
936 * Otherwise returns NULL.
937 */
938static arc_buf_hdr_t *
939buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
940{
941	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
942	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
943	arc_buf_hdr_t *fbuf;
944	uint32_t i;
945
946	ASSERT(!DVA_IS_EMPTY(&buf->b_dva));
947	ASSERT(buf->b_birth != 0);
948	ASSERT(!HDR_IN_HASH_TABLE(buf));
949	*lockp = hash_lock;
950	mutex_enter(hash_lock);
951	for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
952	    fbuf = fbuf->b_hash_next, i++) {
953		if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
954			return (fbuf);
955	}
956
957	buf->b_hash_next = buf_hash_table.ht_table[idx];
958	buf_hash_table.ht_table[idx] = buf;
959	buf->b_flags |= ARC_IN_HASH_TABLE;
960
961	/* collect some hash table performance data */
962	if (i > 0) {
963		ARCSTAT_BUMP(arcstat_hash_collisions);
964		if (i == 1)
965			ARCSTAT_BUMP(arcstat_hash_chains);
966
967		ARCSTAT_MAX(arcstat_hash_chain_max, i);
968	}
969
970	ARCSTAT_BUMP(arcstat_hash_elements);
971	ARCSTAT_MAXSTAT(arcstat_hash_elements);
972
973	return (NULL);
974}
975
976static void
977buf_hash_remove(arc_buf_hdr_t *buf)
978{
979	arc_buf_hdr_t *fbuf, **bufp;
980	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
981
982	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
983	ASSERT(HDR_IN_HASH_TABLE(buf));
984
985	bufp = &buf_hash_table.ht_table[idx];
986	while ((fbuf = *bufp) != buf) {
987		ASSERT(fbuf != NULL);
988		bufp = &fbuf->b_hash_next;
989	}
990	*bufp = buf->b_hash_next;
991	buf->b_hash_next = NULL;
992	buf->b_flags &= ~ARC_IN_HASH_TABLE;
993
994	/* collect some hash table performance data */
995	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
996
997	if (buf_hash_table.ht_table[idx] &&
998	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
999		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1000}
1001
1002/*
1003 * Global data structures and functions for the buf kmem cache.
1004 */
1005static kmem_cache_t *hdr_cache;
1006static kmem_cache_t *buf_cache;
1007
1008static void
1009buf_fini(void)
1010{
1011	int i;
1012
1013	kmem_free(buf_hash_table.ht_table,
1014	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1015	for (i = 0; i < BUF_LOCKS; i++)
1016		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1017	kmem_cache_destroy(hdr_cache);
1018	kmem_cache_destroy(buf_cache);
1019}
1020
1021/*
1022 * Constructor callback - called when the cache is empty
1023 * and a new buf is requested.
1024 */
1025/* ARGSUSED */
1026static int
1027hdr_cons(void *vbuf, void *unused, int kmflag)
1028{
1029	arc_buf_hdr_t *buf = vbuf;
1030
1031	bzero(buf, sizeof (arc_buf_hdr_t));
1032	refcount_create(&buf->b_refcnt);
1033	cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
1034	mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1035	arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
1036
1037	return (0);
1038}
1039
1040/* ARGSUSED */
1041static int
1042buf_cons(void *vbuf, void *unused, int kmflag)
1043{
1044	arc_buf_t *buf = vbuf;
1045
1046	bzero(buf, sizeof (arc_buf_t));
1047	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1048	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1049
1050	return (0);
1051}
1052
1053/*
1054 * Destructor callback - called when a cached buf is
1055 * no longer required.
1056 */
1057/* ARGSUSED */
1058static void
1059hdr_dest(void *vbuf, void *unused)
1060{
1061	arc_buf_hdr_t *buf = vbuf;
1062
1063	ASSERT(BUF_EMPTY(buf));
1064	refcount_destroy(&buf->b_refcnt);
1065	cv_destroy(&buf->b_cv);
1066	mutex_destroy(&buf->b_freeze_lock);
1067	arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
1068}
1069
1070/* ARGSUSED */
1071static void
1072buf_dest(void *vbuf, void *unused)
1073{
1074	arc_buf_t *buf = vbuf;
1075
1076	mutex_destroy(&buf->b_evict_lock);
1077	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1078}
1079
1080/*
1081 * Reclaim callback -- invoked when memory is low.
1082 */
1083/* ARGSUSED */
1084static void
1085hdr_recl(void *unused)
1086{
1087	dprintf("hdr_recl called\n");
1088	/*
1089	 * umem calls the reclaim func when we destroy the buf cache,
1090	 * which is after we do arc_fini().
1091	 */
1092	if (!arc_dead)
1093		cv_signal(&arc_reclaim_thr_cv);
1094}
1095
1096static void
1097buf_init(void)
1098{
1099	uint64_t *ct;
1100	uint64_t hsize = 1ULL << 12;
1101	int i, j;
1102
1103	/*
1104	 * The hash table is big enough to fill all of physical memory
1105	 * with an average block size of zfs_arc_average_blocksize (default 8K).
1106	 * By default, the table will take up
1107	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1108	 */
1109	while (hsize * zfs_arc_average_blocksize < (uint64_t)physmem * PAGESIZE)
1110		hsize <<= 1;
1111retry:
1112	buf_hash_table.ht_mask = hsize - 1;
1113	buf_hash_table.ht_table =
1114	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1115	if (buf_hash_table.ht_table == NULL) {
1116		ASSERT(hsize > (1ULL << 8));
1117		hsize >>= 1;
1118		goto retry;
1119	}
1120
1121	hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
1122	    0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
1123	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1124	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1125
1126	for (i = 0; i < 256; i++)
1127		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1128			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1129
1130	for (i = 0; i < BUF_LOCKS; i++) {
1131		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1132		    NULL, MUTEX_DEFAULT, NULL);
1133	}
1134}
1135
1136#define	ARC_MINTIME	(hz>>4) /* 62 ms */
1137
1138static void
1139arc_cksum_verify(arc_buf_t *buf)
1140{
1141	zio_cksum_t zc;
1142
1143	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1144		return;
1145
1146	mutex_enter(&buf->b_hdr->b_freeze_lock);
1147	if (buf->b_hdr->b_freeze_cksum == NULL ||
1148	    (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
1149		mutex_exit(&buf->b_hdr->b_freeze_lock);
1150		return;
1151	}
1152	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1153	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
1154		panic("buffer modified while frozen!");
1155	mutex_exit(&buf->b_hdr->b_freeze_lock);
1156}
1157
1158static int
1159arc_cksum_equal(arc_buf_t *buf)
1160{
1161	zio_cksum_t zc;
1162	int equal;
1163
1164	mutex_enter(&buf->b_hdr->b_freeze_lock);
1165	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1166	equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
1167	mutex_exit(&buf->b_hdr->b_freeze_lock);
1168
1169	return (equal);
1170}
1171
1172static void
1173arc_cksum_compute(arc_buf_t *buf, boolean_t force)
1174{
1175	if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1176		return;
1177
1178	mutex_enter(&buf->b_hdr->b_freeze_lock);
1179	if (buf->b_hdr->b_freeze_cksum != NULL) {
1180		mutex_exit(&buf->b_hdr->b_freeze_lock);
1181		return;
1182	}
1183	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
1184	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1185	    buf->b_hdr->b_freeze_cksum);
1186	mutex_exit(&buf->b_hdr->b_freeze_lock);
1187#ifdef illumos
1188	arc_buf_watch(buf);
1189#endif /* illumos */
1190}
1191
1192#ifdef illumos
1193#ifndef _KERNEL
1194typedef struct procctl {
1195	long cmd;
1196	prwatch_t prwatch;
1197} procctl_t;
1198#endif
1199
1200/* ARGSUSED */
1201static void
1202arc_buf_unwatch(arc_buf_t *buf)
1203{
1204#ifndef _KERNEL
1205	if (arc_watch) {
1206		int result;
1207		procctl_t ctl;
1208		ctl.cmd = PCWATCH;
1209		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1210		ctl.prwatch.pr_size = 0;
1211		ctl.prwatch.pr_wflags = 0;
1212		result = write(arc_procfd, &ctl, sizeof (ctl));
1213		ASSERT3U(result, ==, sizeof (ctl));
1214	}
1215#endif
1216}
1217
1218/* ARGSUSED */
1219static void
1220arc_buf_watch(arc_buf_t *buf)
1221{
1222#ifndef _KERNEL
1223	if (arc_watch) {
1224		int result;
1225		procctl_t ctl;
1226		ctl.cmd = PCWATCH;
1227		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1228		ctl.prwatch.pr_size = buf->b_hdr->b_size;
1229		ctl.prwatch.pr_wflags = WA_WRITE;
1230		result = write(arc_procfd, &ctl, sizeof (ctl));
1231		ASSERT3U(result, ==, sizeof (ctl));
1232	}
1233#endif
1234}
1235#endif /* illumos */
1236
1237void
1238arc_buf_thaw(arc_buf_t *buf)
1239{
1240	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1241		if (buf->b_hdr->b_state != arc_anon)
1242			panic("modifying non-anon buffer!");
1243		if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
1244			panic("modifying buffer while i/o in progress!");
1245		arc_cksum_verify(buf);
1246	}
1247
1248	mutex_enter(&buf->b_hdr->b_freeze_lock);
1249	if (buf->b_hdr->b_freeze_cksum != NULL) {
1250		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1251		buf->b_hdr->b_freeze_cksum = NULL;
1252	}
1253
1254	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1255		if (buf->b_hdr->b_thawed)
1256			kmem_free(buf->b_hdr->b_thawed, 1);
1257		buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP);
1258	}
1259
1260	mutex_exit(&buf->b_hdr->b_freeze_lock);
1261
1262#ifdef illumos
1263	arc_buf_unwatch(buf);
1264#endif /* illumos */
1265}
1266
1267void
1268arc_buf_freeze(arc_buf_t *buf)
1269{
1270	kmutex_t *hash_lock;
1271
1272	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1273		return;
1274
1275	hash_lock = HDR_LOCK(buf->b_hdr);
1276	mutex_enter(hash_lock);
1277
1278	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1279	    buf->b_hdr->b_state == arc_anon);
1280	arc_cksum_compute(buf, B_FALSE);
1281	mutex_exit(hash_lock);
1282
1283}
1284
1285static void
1286get_buf_info(arc_buf_hdr_t *ab, arc_state_t *state, list_t **list, kmutex_t **lock)
1287{
1288	uint64_t buf_hashid = buf_hash(ab->b_spa, &ab->b_dva, ab->b_birth);
1289
1290	if (ab->b_type == ARC_BUFC_METADATA)
1291		buf_hashid &= (ARC_BUFC_NUMMETADATALISTS - 1);
1292	else {
1293		buf_hashid &= (ARC_BUFC_NUMDATALISTS - 1);
1294		buf_hashid += ARC_BUFC_NUMMETADATALISTS;
1295	}
1296
1297	*list = &state->arcs_lists[buf_hashid];
1298	*lock = ARCS_LOCK(state, buf_hashid);
1299}
1300
1301
1302static void
1303add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1304{
1305	ASSERT(MUTEX_HELD(hash_lock));
1306
1307	if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
1308	    (ab->b_state != arc_anon)) {
1309		uint64_t delta = ab->b_size * ab->b_datacnt;
1310		uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
1311		list_t *list;
1312		kmutex_t *lock;
1313
1314		get_buf_info(ab, ab->b_state, &list, &lock);
1315		ASSERT(!MUTEX_HELD(lock));
1316		mutex_enter(lock);
1317		ASSERT(list_link_active(&ab->b_arc_node));
1318		list_remove(list, ab);
1319		if (GHOST_STATE(ab->b_state)) {
1320			ASSERT0(ab->b_datacnt);
1321			ASSERT3P(ab->b_buf, ==, NULL);
1322			delta = ab->b_size;
1323		}
1324		ASSERT(delta > 0);
1325		ASSERT3U(*size, >=, delta);
1326		atomic_add_64(size, -delta);
1327		mutex_exit(lock);
1328		/* remove the prefetch flag if we get a reference */
1329		if (ab->b_flags & ARC_PREFETCH)
1330			ab->b_flags &= ~ARC_PREFETCH;
1331	}
1332}
1333
1334static int
1335remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1336{
1337	int cnt;
1338	arc_state_t *state = ab->b_state;
1339
1340	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1341	ASSERT(!GHOST_STATE(state));
1342
1343	if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
1344	    (state != arc_anon)) {
1345		uint64_t *size = &state->arcs_lsize[ab->b_type];
1346		list_t *list;
1347		kmutex_t *lock;
1348
1349		get_buf_info(ab, state, &list, &lock);
1350		ASSERT(!MUTEX_HELD(lock));
1351		mutex_enter(lock);
1352		ASSERT(!list_link_active(&ab->b_arc_node));
1353		list_insert_head(list, ab);
1354		ASSERT(ab->b_datacnt > 0);
1355		atomic_add_64(size, ab->b_size * ab->b_datacnt);
1356		mutex_exit(lock);
1357	}
1358	return (cnt);
1359}
1360
1361/*
1362 * Move the supplied buffer to the indicated state.  The mutex
1363 * for the buffer must be held by the caller.
1364 */
1365static void
1366arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
1367{
1368	arc_state_t *old_state = ab->b_state;
1369	int64_t refcnt = refcount_count(&ab->b_refcnt);
1370	uint64_t from_delta, to_delta;
1371	list_t *list;
1372	kmutex_t *lock;
1373
1374	ASSERT(MUTEX_HELD(hash_lock));
1375	ASSERT3P(new_state, !=, old_state);
1376	ASSERT(refcnt == 0 || ab->b_datacnt > 0);
1377	ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
1378	ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon);
1379
1380	from_delta = to_delta = ab->b_datacnt * ab->b_size;
1381
1382	/*
1383	 * If this buffer is evictable, transfer it from the
1384	 * old state list to the new state list.
1385	 */
1386	if (refcnt == 0) {
1387		if (old_state != arc_anon) {
1388			int use_mutex;
1389			uint64_t *size = &old_state->arcs_lsize[ab->b_type];
1390
1391			get_buf_info(ab, old_state, &list, &lock);
1392			use_mutex = !MUTEX_HELD(lock);
1393			if (use_mutex)
1394				mutex_enter(lock);
1395
1396			ASSERT(list_link_active(&ab->b_arc_node));
1397			list_remove(list, ab);
1398
1399			/*
1400			 * If prefetching out of the ghost cache,
1401			 * we will have a non-zero datacnt.
1402			 */
1403			if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1404				/* ghost elements have a ghost size */
1405				ASSERT(ab->b_buf == NULL);
1406				from_delta = ab->b_size;
1407			}
1408			ASSERT3U(*size, >=, from_delta);
1409			atomic_add_64(size, -from_delta);
1410
1411			if (use_mutex)
1412				mutex_exit(lock);
1413		}
1414		if (new_state != arc_anon) {
1415			int use_mutex;
1416			uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1417
1418			get_buf_info(ab, new_state, &list, &lock);
1419			use_mutex = !MUTEX_HELD(lock);
1420			if (use_mutex)
1421				mutex_enter(lock);
1422
1423			list_insert_head(list, ab);
1424
1425			/* ghost elements have a ghost size */
1426			if (GHOST_STATE(new_state)) {
1427				ASSERT(ab->b_datacnt == 0);
1428				ASSERT(ab->b_buf == NULL);
1429				to_delta = ab->b_size;
1430			}
1431			atomic_add_64(size, to_delta);
1432
1433			if (use_mutex)
1434				mutex_exit(lock);
1435		}
1436	}
1437
1438	ASSERT(!BUF_EMPTY(ab));
1439	if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab))
1440		buf_hash_remove(ab);
1441
1442	/* adjust state sizes */
1443	if (to_delta)
1444		atomic_add_64(&new_state->arcs_size, to_delta);
1445	if (from_delta) {
1446		ASSERT3U(old_state->arcs_size, >=, from_delta);
1447		atomic_add_64(&old_state->arcs_size, -from_delta);
1448	}
1449	ab->b_state = new_state;
1450
1451	/* adjust l2arc hdr stats */
1452	if (new_state == arc_l2c_only)
1453		l2arc_hdr_stat_add();
1454	else if (old_state == arc_l2c_only)
1455		l2arc_hdr_stat_remove();
1456}
1457
1458void
1459arc_space_consume(uint64_t space, arc_space_type_t type)
1460{
1461	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1462
1463	switch (type) {
1464	case ARC_SPACE_DATA:
1465		ARCSTAT_INCR(arcstat_data_size, space);
1466		break;
1467	case ARC_SPACE_OTHER:
1468		ARCSTAT_INCR(arcstat_other_size, space);
1469		break;
1470	case ARC_SPACE_HDRS:
1471		ARCSTAT_INCR(arcstat_hdr_size, space);
1472		break;
1473	case ARC_SPACE_L2HDRS:
1474		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1475		break;
1476	}
1477
1478	atomic_add_64(&arc_meta_used, space);
1479	atomic_add_64(&arc_size, space);
1480}
1481
1482void
1483arc_space_return(uint64_t space, arc_space_type_t type)
1484{
1485	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1486
1487	switch (type) {
1488	case ARC_SPACE_DATA:
1489		ARCSTAT_INCR(arcstat_data_size, -space);
1490		break;
1491	case ARC_SPACE_OTHER:
1492		ARCSTAT_INCR(arcstat_other_size, -space);
1493		break;
1494	case ARC_SPACE_HDRS:
1495		ARCSTAT_INCR(arcstat_hdr_size, -space);
1496		break;
1497	case ARC_SPACE_L2HDRS:
1498		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1499		break;
1500	}
1501
1502	ASSERT(arc_meta_used >= space);
1503	if (arc_meta_max < arc_meta_used)
1504		arc_meta_max = arc_meta_used;
1505	atomic_add_64(&arc_meta_used, -space);
1506	ASSERT(arc_size >= space);
1507	atomic_add_64(&arc_size, -space);
1508}
1509
1510void *
1511arc_data_buf_alloc(uint64_t size)
1512{
1513	if (arc_evict_needed(ARC_BUFC_DATA))
1514		cv_signal(&arc_reclaim_thr_cv);
1515	atomic_add_64(&arc_size, size);
1516	return (zio_data_buf_alloc(size));
1517}
1518
1519void
1520arc_data_buf_free(void *buf, uint64_t size)
1521{
1522	zio_data_buf_free(buf, size);
1523	ASSERT(arc_size >= size);
1524	atomic_add_64(&arc_size, -size);
1525}
1526
1527arc_buf_t *
1528arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1529{
1530	arc_buf_hdr_t *hdr;
1531	arc_buf_t *buf;
1532
1533	ASSERT3U(size, >, 0);
1534	hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1535	ASSERT(BUF_EMPTY(hdr));
1536	hdr->b_size = size;
1537	hdr->b_type = type;
1538	hdr->b_spa = spa_load_guid(spa);
1539	hdr->b_state = arc_anon;
1540	hdr->b_arc_access = 0;
1541	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1542	buf->b_hdr = hdr;
1543	buf->b_data = NULL;
1544	buf->b_efunc = NULL;
1545	buf->b_private = NULL;
1546	buf->b_next = NULL;
1547	hdr->b_buf = buf;
1548	arc_get_data_buf(buf);
1549	hdr->b_datacnt = 1;
1550	hdr->b_flags = 0;
1551	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1552	(void) refcount_add(&hdr->b_refcnt, tag);
1553
1554	return (buf);
1555}
1556
1557static char *arc_onloan_tag = "onloan";
1558
1559/*
1560 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1561 * flight data by arc_tempreserve_space() until they are "returned". Loaned
1562 * buffers must be returned to the arc before they can be used by the DMU or
1563 * freed.
1564 */
1565arc_buf_t *
1566arc_loan_buf(spa_t *spa, int size)
1567{
1568	arc_buf_t *buf;
1569
1570	buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1571
1572	atomic_add_64(&arc_loaned_bytes, size);
1573	return (buf);
1574}
1575
1576/*
1577 * Return a loaned arc buffer to the arc.
1578 */
1579void
1580arc_return_buf(arc_buf_t *buf, void *tag)
1581{
1582	arc_buf_hdr_t *hdr = buf->b_hdr;
1583
1584	ASSERT(buf->b_data != NULL);
1585	(void) refcount_add(&hdr->b_refcnt, tag);
1586	(void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag);
1587
1588	atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1589}
1590
1591/* Detach an arc_buf from a dbuf (tag) */
1592void
1593arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1594{
1595	arc_buf_hdr_t *hdr;
1596
1597	ASSERT(buf->b_data != NULL);
1598	hdr = buf->b_hdr;
1599	(void) refcount_add(&hdr->b_refcnt, arc_onloan_tag);
1600	(void) refcount_remove(&hdr->b_refcnt, tag);
1601	buf->b_efunc = NULL;
1602	buf->b_private = NULL;
1603
1604	atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1605}
1606
1607static arc_buf_t *
1608arc_buf_clone(arc_buf_t *from)
1609{
1610	arc_buf_t *buf;
1611	arc_buf_hdr_t *hdr = from->b_hdr;
1612	uint64_t size = hdr->b_size;
1613
1614	ASSERT(hdr->b_state != arc_anon);
1615
1616	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1617	buf->b_hdr = hdr;
1618	buf->b_data = NULL;
1619	buf->b_efunc = NULL;
1620	buf->b_private = NULL;
1621	buf->b_next = hdr->b_buf;
1622	hdr->b_buf = buf;
1623	arc_get_data_buf(buf);
1624	bcopy(from->b_data, buf->b_data, size);
1625
1626	/*
1627	 * This buffer already exists in the arc so create a duplicate
1628	 * copy for the caller.  If the buffer is associated with user data
1629	 * then track the size and number of duplicates.  These stats will be
1630	 * updated as duplicate buffers are created and destroyed.
1631	 */
1632	if (hdr->b_type == ARC_BUFC_DATA) {
1633		ARCSTAT_BUMP(arcstat_duplicate_buffers);
1634		ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
1635	}
1636	hdr->b_datacnt += 1;
1637	return (buf);
1638}
1639
1640void
1641arc_buf_add_ref(arc_buf_t *buf, void* tag)
1642{
1643	arc_buf_hdr_t *hdr;
1644	kmutex_t *hash_lock;
1645
1646	/*
1647	 * Check to see if this buffer is evicted.  Callers
1648	 * must verify b_data != NULL to know if the add_ref
1649	 * was successful.
1650	 */
1651	mutex_enter(&buf->b_evict_lock);
1652	if (buf->b_data == NULL) {
1653		mutex_exit(&buf->b_evict_lock);
1654		return;
1655	}
1656	hash_lock = HDR_LOCK(buf->b_hdr);
1657	mutex_enter(hash_lock);
1658	hdr = buf->b_hdr;
1659	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1660	mutex_exit(&buf->b_evict_lock);
1661
1662	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1663	add_reference(hdr, hash_lock, tag);
1664	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
1665	arc_access(hdr, hash_lock);
1666	mutex_exit(hash_lock);
1667	ARCSTAT_BUMP(arcstat_hits);
1668	ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1669	    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1670	    data, metadata, hits);
1671}
1672
1673/*
1674 * Free the arc data buffer.  If it is an l2arc write in progress,
1675 * the buffer is placed on l2arc_free_on_write to be freed later.
1676 */
1677static void
1678arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
1679{
1680	arc_buf_hdr_t *hdr = buf->b_hdr;
1681
1682	if (HDR_L2_WRITING(hdr)) {
1683		l2arc_data_free_t *df;
1684		df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
1685		df->l2df_data = buf->b_data;
1686		df->l2df_size = hdr->b_size;
1687		df->l2df_func = free_func;
1688		mutex_enter(&l2arc_free_on_write_mtx);
1689		list_insert_head(l2arc_free_on_write, df);
1690		mutex_exit(&l2arc_free_on_write_mtx);
1691		ARCSTAT_BUMP(arcstat_l2_free_on_write);
1692	} else {
1693		free_func(buf->b_data, hdr->b_size);
1694	}
1695}
1696
1697/*
1698 * Free up buf->b_data and if 'remove' is set, then pull the
1699 * arc_buf_t off of the the arc_buf_hdr_t's list and free it.
1700 */
1701static void
1702arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t remove)
1703{
1704	arc_buf_t **bufp;
1705
1706	/* free up data associated with the buf */
1707	if (buf->b_data) {
1708		arc_state_t *state = buf->b_hdr->b_state;
1709		uint64_t size = buf->b_hdr->b_size;
1710		arc_buf_contents_t type = buf->b_hdr->b_type;
1711
1712		arc_cksum_verify(buf);
1713#ifdef illumos
1714		arc_buf_unwatch(buf);
1715#endif /* illumos */
1716
1717		if (!recycle) {
1718			if (type == ARC_BUFC_METADATA) {
1719				arc_buf_data_free(buf, zio_buf_free);
1720				arc_space_return(size, ARC_SPACE_DATA);
1721			} else {
1722				ASSERT(type == ARC_BUFC_DATA);
1723				arc_buf_data_free(buf, zio_data_buf_free);
1724				ARCSTAT_INCR(arcstat_data_size, -size);
1725				atomic_add_64(&arc_size, -size);
1726			}
1727		}
1728		if (list_link_active(&buf->b_hdr->b_arc_node)) {
1729			uint64_t *cnt = &state->arcs_lsize[type];
1730
1731			ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1732			ASSERT(state != arc_anon);
1733
1734			ASSERT3U(*cnt, >=, size);
1735			atomic_add_64(cnt, -size);
1736		}
1737		ASSERT3U(state->arcs_size, >=, size);
1738		atomic_add_64(&state->arcs_size, -size);
1739		buf->b_data = NULL;
1740
1741		/*
1742		 * If we're destroying a duplicate buffer make sure
1743		 * that the appropriate statistics are updated.
1744		 */
1745		if (buf->b_hdr->b_datacnt > 1 &&
1746		    buf->b_hdr->b_type == ARC_BUFC_DATA) {
1747			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
1748			ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
1749		}
1750		ASSERT(buf->b_hdr->b_datacnt > 0);
1751		buf->b_hdr->b_datacnt -= 1;
1752	}
1753
1754	/* only remove the buf if requested */
1755	if (!remove)
1756		return;
1757
1758	/* remove the buf from the hdr list */
1759	for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1760		continue;
1761	*bufp = buf->b_next;
1762	buf->b_next = NULL;
1763
1764	ASSERT(buf->b_efunc == NULL);
1765
1766	/* clean up the buf */
1767	buf->b_hdr = NULL;
1768	kmem_cache_free(buf_cache, buf);
1769}
1770
1771static void
1772arc_hdr_destroy(arc_buf_hdr_t *hdr)
1773{
1774	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1775	ASSERT3P(hdr->b_state, ==, arc_anon);
1776	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1777	l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr;
1778
1779	if (l2hdr != NULL) {
1780		boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx);
1781		/*
1782		 * To prevent arc_free() and l2arc_evict() from
1783		 * attempting to free the same buffer at the same time,
1784		 * a FREE_IN_PROGRESS flag is given to arc_free() to
1785		 * give it priority.  l2arc_evict() can't destroy this
1786		 * header while we are waiting on l2arc_buflist_mtx.
1787		 *
1788		 * The hdr may be removed from l2ad_buflist before we
1789		 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
1790		 */
1791		if (!buflist_held) {
1792			mutex_enter(&l2arc_buflist_mtx);
1793			l2hdr = hdr->b_l2hdr;
1794		}
1795
1796		if (l2hdr != NULL) {
1797			trim_map_free(l2hdr->b_dev->l2ad_vdev, l2hdr->b_daddr,
1798			    hdr->b_size, 0);
1799			list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
1800			ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1801			ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
1802			vdev_space_update(l2hdr->b_dev->l2ad_vdev,
1803			    -l2hdr->b_asize, 0, 0);
1804			kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
1805			if (hdr->b_state == arc_l2c_only)
1806				l2arc_hdr_stat_remove();
1807			hdr->b_l2hdr = NULL;
1808		}
1809
1810		if (!buflist_held)
1811			mutex_exit(&l2arc_buflist_mtx);
1812	}
1813
1814	if (!BUF_EMPTY(hdr)) {
1815		ASSERT(!HDR_IN_HASH_TABLE(hdr));
1816		buf_discard_identity(hdr);
1817	}
1818	while (hdr->b_buf) {
1819		arc_buf_t *buf = hdr->b_buf;
1820
1821		if (buf->b_efunc) {
1822			mutex_enter(&arc_eviction_mtx);
1823			mutex_enter(&buf->b_evict_lock);
1824			ASSERT(buf->b_hdr != NULL);
1825			arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1826			hdr->b_buf = buf->b_next;
1827			buf->b_hdr = &arc_eviction_hdr;
1828			buf->b_next = arc_eviction_list;
1829			arc_eviction_list = buf;
1830			mutex_exit(&buf->b_evict_lock);
1831			mutex_exit(&arc_eviction_mtx);
1832		} else {
1833			arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1834		}
1835	}
1836	if (hdr->b_freeze_cksum != NULL) {
1837		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1838		hdr->b_freeze_cksum = NULL;
1839	}
1840	if (hdr->b_thawed) {
1841		kmem_free(hdr->b_thawed, 1);
1842		hdr->b_thawed = NULL;
1843	}
1844
1845	ASSERT(!list_link_active(&hdr->b_arc_node));
1846	ASSERT3P(hdr->b_hash_next, ==, NULL);
1847	ASSERT3P(hdr->b_acb, ==, NULL);
1848	kmem_cache_free(hdr_cache, hdr);
1849}
1850
1851void
1852arc_buf_free(arc_buf_t *buf, void *tag)
1853{
1854	arc_buf_hdr_t *hdr = buf->b_hdr;
1855	int hashed = hdr->b_state != arc_anon;
1856
1857	ASSERT(buf->b_efunc == NULL);
1858	ASSERT(buf->b_data != NULL);
1859
1860	if (hashed) {
1861		kmutex_t *hash_lock = HDR_LOCK(hdr);
1862
1863		mutex_enter(hash_lock);
1864		hdr = buf->b_hdr;
1865		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1866
1867		(void) remove_reference(hdr, hash_lock, tag);
1868		if (hdr->b_datacnt > 1) {
1869			arc_buf_destroy(buf, FALSE, TRUE);
1870		} else {
1871			ASSERT(buf == hdr->b_buf);
1872			ASSERT(buf->b_efunc == NULL);
1873			hdr->b_flags |= ARC_BUF_AVAILABLE;
1874		}
1875		mutex_exit(hash_lock);
1876	} else if (HDR_IO_IN_PROGRESS(hdr)) {
1877		int destroy_hdr;
1878		/*
1879		 * We are in the middle of an async write.  Don't destroy
1880		 * this buffer unless the write completes before we finish
1881		 * decrementing the reference count.
1882		 */
1883		mutex_enter(&arc_eviction_mtx);
1884		(void) remove_reference(hdr, NULL, tag);
1885		ASSERT(refcount_is_zero(&hdr->b_refcnt));
1886		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1887		mutex_exit(&arc_eviction_mtx);
1888		if (destroy_hdr)
1889			arc_hdr_destroy(hdr);
1890	} else {
1891		if (remove_reference(hdr, NULL, tag) > 0)
1892			arc_buf_destroy(buf, FALSE, TRUE);
1893		else
1894			arc_hdr_destroy(hdr);
1895	}
1896}
1897
1898boolean_t
1899arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1900{
1901	arc_buf_hdr_t *hdr = buf->b_hdr;
1902	kmutex_t *hash_lock = HDR_LOCK(hdr);
1903	boolean_t no_callback = (buf->b_efunc == NULL);
1904
1905	if (hdr->b_state == arc_anon) {
1906		ASSERT(hdr->b_datacnt == 1);
1907		arc_buf_free(buf, tag);
1908		return (no_callback);
1909	}
1910
1911	mutex_enter(hash_lock);
1912	hdr = buf->b_hdr;
1913	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1914	ASSERT(hdr->b_state != arc_anon);
1915	ASSERT(buf->b_data != NULL);
1916
1917	(void) remove_reference(hdr, hash_lock, tag);
1918	if (hdr->b_datacnt > 1) {
1919		if (no_callback)
1920			arc_buf_destroy(buf, FALSE, TRUE);
1921	} else if (no_callback) {
1922		ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1923		ASSERT(buf->b_efunc == NULL);
1924		hdr->b_flags |= ARC_BUF_AVAILABLE;
1925	}
1926	ASSERT(no_callback || hdr->b_datacnt > 1 ||
1927	    refcount_is_zero(&hdr->b_refcnt));
1928	mutex_exit(hash_lock);
1929	return (no_callback);
1930}
1931
1932int
1933arc_buf_size(arc_buf_t *buf)
1934{
1935	return (buf->b_hdr->b_size);
1936}
1937
1938/*
1939 * Called from the DMU to determine if the current buffer should be
1940 * evicted. In order to ensure proper locking, the eviction must be initiated
1941 * from the DMU. Return true if the buffer is associated with user data and
1942 * duplicate buffers still exist.
1943 */
1944boolean_t
1945arc_buf_eviction_needed(arc_buf_t *buf)
1946{
1947	arc_buf_hdr_t *hdr;
1948	boolean_t evict_needed = B_FALSE;
1949
1950	if (zfs_disable_dup_eviction)
1951		return (B_FALSE);
1952
1953	mutex_enter(&buf->b_evict_lock);
1954	hdr = buf->b_hdr;
1955	if (hdr == NULL) {
1956		/*
1957		 * We are in arc_do_user_evicts(); let that function
1958		 * perform the eviction.
1959		 */
1960		ASSERT(buf->b_data == NULL);
1961		mutex_exit(&buf->b_evict_lock);
1962		return (B_FALSE);
1963	} else if (buf->b_data == NULL) {
1964		/*
1965		 * We have already been added to the arc eviction list;
1966		 * recommend eviction.
1967		 */
1968		ASSERT3P(hdr, ==, &arc_eviction_hdr);
1969		mutex_exit(&buf->b_evict_lock);
1970		return (B_TRUE);
1971	}
1972
1973	if (hdr->b_datacnt > 1 && hdr->b_type == ARC_BUFC_DATA)
1974		evict_needed = B_TRUE;
1975
1976	mutex_exit(&buf->b_evict_lock);
1977	return (evict_needed);
1978}
1979
1980/*
1981 * Evict buffers from list until we've removed the specified number of
1982 * bytes.  Move the removed buffers to the appropriate evict state.
1983 * If the recycle flag is set, then attempt to "recycle" a buffer:
1984 * - look for a buffer to evict that is `bytes' long.
1985 * - return the data block from this buffer rather than freeing it.
1986 * This flag is used by callers that are trying to make space for a
1987 * new buffer in a full arc cache.
1988 *
1989 * This function makes a "best effort".  It skips over any buffers
1990 * it can't get a hash_lock on, and so may not catch all candidates.
1991 * It may also return without evicting as much space as requested.
1992 */
1993static void *
1994arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
1995    arc_buf_contents_t type)
1996{
1997	arc_state_t *evicted_state;
1998	uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1999	int64_t bytes_remaining;
2000	arc_buf_hdr_t *ab, *ab_prev = NULL;
2001	list_t *evicted_list, *list, *evicted_list_start, *list_start;
2002	kmutex_t *lock, *evicted_lock;
2003	kmutex_t *hash_lock;
2004	boolean_t have_lock;
2005	void *stolen = NULL;
2006	arc_buf_hdr_t marker = { 0 };
2007	int count = 0;
2008	static int evict_metadata_offset, evict_data_offset;
2009	int i, idx, offset, list_count, lists;
2010
2011	ASSERT(state == arc_mru || state == arc_mfu);
2012
2013	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
2014
2015	if (type == ARC_BUFC_METADATA) {
2016		offset = 0;
2017		list_count = ARC_BUFC_NUMMETADATALISTS;
2018		list_start = &state->arcs_lists[0];
2019		evicted_list_start = &evicted_state->arcs_lists[0];
2020		idx = evict_metadata_offset;
2021	} else {
2022		offset = ARC_BUFC_NUMMETADATALISTS;
2023		list_start = &state->arcs_lists[offset];
2024		evicted_list_start = &evicted_state->arcs_lists[offset];
2025		list_count = ARC_BUFC_NUMDATALISTS;
2026		idx = evict_data_offset;
2027	}
2028	bytes_remaining = evicted_state->arcs_lsize[type];
2029	lists = 0;
2030
2031evict_start:
2032	list = &list_start[idx];
2033	evicted_list = &evicted_list_start[idx];
2034	lock = ARCS_LOCK(state, (offset + idx));
2035	evicted_lock = ARCS_LOCK(evicted_state, (offset + idx));
2036
2037	mutex_enter(lock);
2038	mutex_enter(evicted_lock);
2039
2040	for (ab = list_tail(list); ab; ab = ab_prev) {
2041		ab_prev = list_prev(list, ab);
2042		bytes_remaining -= (ab->b_size * ab->b_datacnt);
2043		/* prefetch buffers have a minimum lifespan */
2044		if (HDR_IO_IN_PROGRESS(ab) ||
2045		    (spa && ab->b_spa != spa) ||
2046		    (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
2047		    ddi_get_lbolt() - ab->b_arc_access <
2048		    arc_min_prefetch_lifespan)) {
2049			skipped++;
2050			continue;
2051		}
2052		/* "lookahead" for better eviction candidate */
2053		if (recycle && ab->b_size != bytes &&
2054		    ab_prev && ab_prev->b_size == bytes)
2055			continue;
2056
2057		/* ignore markers */
2058		if (ab->b_spa == 0)
2059			continue;
2060
2061		/*
2062		 * It may take a long time to evict all the bufs requested.
2063		 * To avoid blocking all arc activity, periodically drop
2064		 * the arcs_mtx and give other threads a chance to run
2065		 * before reacquiring the lock.
2066		 *
2067		 * If we are looking for a buffer to recycle, we are in
2068		 * the hot code path, so don't sleep.
2069		 */
2070		if (!recycle && count++ > arc_evict_iterations) {
2071			list_insert_after(list, ab, &marker);
2072			mutex_exit(evicted_lock);
2073			mutex_exit(lock);
2074			kpreempt(KPREEMPT_SYNC);
2075			mutex_enter(lock);
2076			mutex_enter(evicted_lock);
2077			ab_prev = list_prev(list, &marker);
2078			list_remove(list, &marker);
2079			count = 0;
2080			continue;
2081		}
2082
2083		hash_lock = HDR_LOCK(ab);
2084		have_lock = MUTEX_HELD(hash_lock);
2085		if (have_lock || mutex_tryenter(hash_lock)) {
2086			ASSERT0(refcount_count(&ab->b_refcnt));
2087			ASSERT(ab->b_datacnt > 0);
2088			while (ab->b_buf) {
2089				arc_buf_t *buf = ab->b_buf;
2090				if (!mutex_tryenter(&buf->b_evict_lock)) {
2091					missed += 1;
2092					break;
2093				}
2094				if (buf->b_data) {
2095					bytes_evicted += ab->b_size;
2096					if (recycle && ab->b_type == type &&
2097					    ab->b_size == bytes &&
2098					    !HDR_L2_WRITING(ab)) {
2099						stolen = buf->b_data;
2100						recycle = FALSE;
2101					}
2102				}
2103				if (buf->b_efunc) {
2104					mutex_enter(&arc_eviction_mtx);
2105					arc_buf_destroy(buf,
2106					    buf->b_data == stolen, FALSE);
2107					ab->b_buf = buf->b_next;
2108					buf->b_hdr = &arc_eviction_hdr;
2109					buf->b_next = arc_eviction_list;
2110					arc_eviction_list = buf;
2111					mutex_exit(&arc_eviction_mtx);
2112					mutex_exit(&buf->b_evict_lock);
2113				} else {
2114					mutex_exit(&buf->b_evict_lock);
2115					arc_buf_destroy(buf,
2116					    buf->b_data == stolen, TRUE);
2117				}
2118			}
2119
2120			if (ab->b_l2hdr) {
2121				ARCSTAT_INCR(arcstat_evict_l2_cached,
2122				    ab->b_size);
2123			} else {
2124				if (l2arc_write_eligible(ab->b_spa, ab)) {
2125					ARCSTAT_INCR(arcstat_evict_l2_eligible,
2126					    ab->b_size);
2127				} else {
2128					ARCSTAT_INCR(
2129					    arcstat_evict_l2_ineligible,
2130					    ab->b_size);
2131				}
2132			}
2133
2134			if (ab->b_datacnt == 0) {
2135				arc_change_state(evicted_state, ab, hash_lock);
2136				ASSERT(HDR_IN_HASH_TABLE(ab));
2137				ab->b_flags |= ARC_IN_HASH_TABLE;
2138				ab->b_flags &= ~ARC_BUF_AVAILABLE;
2139				DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
2140			}
2141			if (!have_lock)
2142				mutex_exit(hash_lock);
2143			if (bytes >= 0 && bytes_evicted >= bytes)
2144				break;
2145			if (bytes_remaining > 0) {
2146				mutex_exit(evicted_lock);
2147				mutex_exit(lock);
2148				idx  = ((idx + 1) & (list_count - 1));
2149				lists++;
2150				goto evict_start;
2151			}
2152		} else {
2153			missed += 1;
2154		}
2155	}
2156
2157	mutex_exit(evicted_lock);
2158	mutex_exit(lock);
2159
2160	idx  = ((idx + 1) & (list_count - 1));
2161	lists++;
2162
2163	if (bytes_evicted < bytes) {
2164		if (lists < list_count)
2165			goto evict_start;
2166		else
2167			dprintf("only evicted %lld bytes from %x",
2168			    (longlong_t)bytes_evicted, state);
2169	}
2170	if (type == ARC_BUFC_METADATA)
2171		evict_metadata_offset = idx;
2172	else
2173		evict_data_offset = idx;
2174
2175	if (skipped)
2176		ARCSTAT_INCR(arcstat_evict_skip, skipped);
2177
2178	if (missed)
2179		ARCSTAT_INCR(arcstat_mutex_miss, missed);
2180
2181	/*
2182	 * Note: we have just evicted some data into the ghost state,
2183	 * potentially putting the ghost size over the desired size.  Rather
2184	 * that evicting from the ghost list in this hot code path, leave
2185	 * this chore to the arc_reclaim_thread().
2186	 */
2187
2188	if (stolen)
2189		ARCSTAT_BUMP(arcstat_stolen);
2190	return (stolen);
2191}
2192
2193/*
2194 * Remove buffers from list until we've removed the specified number of
2195 * bytes.  Destroy the buffers that are removed.
2196 */
2197static void
2198arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes)
2199{
2200	arc_buf_hdr_t *ab, *ab_prev;
2201	arc_buf_hdr_t marker = { 0 };
2202	list_t *list, *list_start;
2203	kmutex_t *hash_lock, *lock;
2204	uint64_t bytes_deleted = 0;
2205	uint64_t bufs_skipped = 0;
2206	int count = 0;
2207	static int evict_offset;
2208	int list_count, idx = evict_offset;
2209	int offset, lists = 0;
2210
2211	ASSERT(GHOST_STATE(state));
2212
2213	/*
2214	 * data lists come after metadata lists
2215	 */
2216	list_start = &state->arcs_lists[ARC_BUFC_NUMMETADATALISTS];
2217	list_count = ARC_BUFC_NUMDATALISTS;
2218	offset = ARC_BUFC_NUMMETADATALISTS;
2219
2220evict_start:
2221	list = &list_start[idx];
2222	lock = ARCS_LOCK(state, idx + offset);
2223
2224	mutex_enter(lock);
2225	for (ab = list_tail(list); ab; ab = ab_prev) {
2226		ab_prev = list_prev(list, ab);
2227		if (ab->b_type > ARC_BUFC_NUMTYPES)
2228			panic("invalid ab=%p", (void *)ab);
2229		if (spa && ab->b_spa != spa)
2230			continue;
2231
2232		/* ignore markers */
2233		if (ab->b_spa == 0)
2234			continue;
2235
2236		hash_lock = HDR_LOCK(ab);
2237		/* caller may be trying to modify this buffer, skip it */
2238		if (MUTEX_HELD(hash_lock))
2239			continue;
2240
2241		/*
2242		 * It may take a long time to evict all the bufs requested.
2243		 * To avoid blocking all arc activity, periodically drop
2244		 * the arcs_mtx and give other threads a chance to run
2245		 * before reacquiring the lock.
2246		 */
2247		if (count++ > arc_evict_iterations) {
2248			list_insert_after(list, ab, &marker);
2249			mutex_exit(lock);
2250			kpreempt(KPREEMPT_SYNC);
2251			mutex_enter(lock);
2252			ab_prev = list_prev(list, &marker);
2253			list_remove(list, &marker);
2254			count = 0;
2255			continue;
2256		}
2257		if (mutex_tryenter(hash_lock)) {
2258			ASSERT(!HDR_IO_IN_PROGRESS(ab));
2259			ASSERT(ab->b_buf == NULL);
2260			ARCSTAT_BUMP(arcstat_deleted);
2261			bytes_deleted += ab->b_size;
2262
2263			if (ab->b_l2hdr != NULL) {
2264				/*
2265				 * This buffer is cached on the 2nd Level ARC;
2266				 * don't destroy the header.
2267				 */
2268				arc_change_state(arc_l2c_only, ab, hash_lock);
2269				mutex_exit(hash_lock);
2270			} else {
2271				arc_change_state(arc_anon, ab, hash_lock);
2272				mutex_exit(hash_lock);
2273				arc_hdr_destroy(ab);
2274			}
2275
2276			DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
2277			if (bytes >= 0 && bytes_deleted >= bytes)
2278				break;
2279		} else if (bytes < 0) {
2280			/*
2281			 * Insert a list marker and then wait for the
2282			 * hash lock to become available. Once its
2283			 * available, restart from where we left off.
2284			 */
2285			list_insert_after(list, ab, &marker);
2286			mutex_exit(lock);
2287			mutex_enter(hash_lock);
2288			mutex_exit(hash_lock);
2289			mutex_enter(lock);
2290			ab_prev = list_prev(list, &marker);
2291			list_remove(list, &marker);
2292		} else {
2293			bufs_skipped += 1;
2294		}
2295
2296	}
2297	mutex_exit(lock);
2298	idx  = ((idx + 1) & (ARC_BUFC_NUMDATALISTS - 1));
2299	lists++;
2300
2301	if (lists < list_count)
2302		goto evict_start;
2303
2304	evict_offset = idx;
2305	if ((uintptr_t)list > (uintptr_t)&state->arcs_lists[ARC_BUFC_NUMMETADATALISTS] &&
2306	    (bytes < 0 || bytes_deleted < bytes)) {
2307		list_start = &state->arcs_lists[0];
2308		list_count = ARC_BUFC_NUMMETADATALISTS;
2309		offset = lists = 0;
2310		goto evict_start;
2311	}
2312
2313	if (bufs_skipped) {
2314		ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
2315		ASSERT(bytes >= 0);
2316	}
2317
2318	if (bytes_deleted < bytes)
2319		dprintf("only deleted %lld bytes from %p",
2320		    (longlong_t)bytes_deleted, state);
2321}
2322
2323static void
2324arc_adjust(void)
2325{
2326	int64_t adjustment, delta;
2327
2328	/*
2329	 * Adjust MRU size
2330	 */
2331
2332	adjustment = MIN((int64_t)(arc_size - arc_c),
2333	    (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used -
2334	    arc_p));
2335
2336	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
2337		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment);
2338		(void) arc_evict(arc_mru, 0, delta, FALSE, ARC_BUFC_DATA);
2339		adjustment -= delta;
2340	}
2341
2342	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2343		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
2344		(void) arc_evict(arc_mru, 0, delta, FALSE,
2345		    ARC_BUFC_METADATA);
2346	}
2347
2348	/*
2349	 * Adjust MFU size
2350	 */
2351
2352	adjustment = arc_size - arc_c;
2353
2354	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
2355		delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]);
2356		(void) arc_evict(arc_mfu, 0, delta, FALSE, ARC_BUFC_DATA);
2357		adjustment -= delta;
2358	}
2359
2360	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2361		int64_t delta = MIN(adjustment,
2362		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA]);
2363		(void) arc_evict(arc_mfu, 0, delta, FALSE,
2364		    ARC_BUFC_METADATA);
2365	}
2366
2367	/*
2368	 * Adjust ghost lists
2369	 */
2370
2371	adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
2372
2373	if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
2374		delta = MIN(arc_mru_ghost->arcs_size, adjustment);
2375		arc_evict_ghost(arc_mru_ghost, 0, delta);
2376	}
2377
2378	adjustment =
2379	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
2380
2381	if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
2382		delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
2383		arc_evict_ghost(arc_mfu_ghost, 0, delta);
2384	}
2385}
2386
2387static void
2388arc_do_user_evicts(void)
2389{
2390	static arc_buf_t *tmp_arc_eviction_list;
2391
2392	/*
2393	 * Move list over to avoid LOR
2394	 */
2395restart:
2396	mutex_enter(&arc_eviction_mtx);
2397	tmp_arc_eviction_list = arc_eviction_list;
2398	arc_eviction_list = NULL;
2399	mutex_exit(&arc_eviction_mtx);
2400
2401	while (tmp_arc_eviction_list != NULL) {
2402		arc_buf_t *buf = tmp_arc_eviction_list;
2403		tmp_arc_eviction_list = buf->b_next;
2404		mutex_enter(&buf->b_evict_lock);
2405		buf->b_hdr = NULL;
2406		mutex_exit(&buf->b_evict_lock);
2407
2408		if (buf->b_efunc != NULL)
2409			VERIFY0(buf->b_efunc(buf->b_private));
2410
2411		buf->b_efunc = NULL;
2412		buf->b_private = NULL;
2413		kmem_cache_free(buf_cache, buf);
2414	}
2415
2416	if (arc_eviction_list != NULL)
2417		goto restart;
2418}
2419
2420/*
2421 * Flush all *evictable* data from the cache for the given spa.
2422 * NOTE: this will not touch "active" (i.e. referenced) data.
2423 */
2424void
2425arc_flush(spa_t *spa)
2426{
2427	uint64_t guid = 0;
2428
2429	if (spa)
2430		guid = spa_load_guid(spa);
2431
2432	while (arc_mru->arcs_lsize[ARC_BUFC_DATA]) {
2433		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
2434		if (spa)
2435			break;
2436	}
2437	while (arc_mru->arcs_lsize[ARC_BUFC_METADATA]) {
2438		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
2439		if (spa)
2440			break;
2441	}
2442	while (arc_mfu->arcs_lsize[ARC_BUFC_DATA]) {
2443		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
2444		if (spa)
2445			break;
2446	}
2447	while (arc_mfu->arcs_lsize[ARC_BUFC_METADATA]) {
2448		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
2449		if (spa)
2450			break;
2451	}
2452
2453	arc_evict_ghost(arc_mru_ghost, guid, -1);
2454	arc_evict_ghost(arc_mfu_ghost, guid, -1);
2455
2456	mutex_enter(&arc_reclaim_thr_lock);
2457	arc_do_user_evicts();
2458	mutex_exit(&arc_reclaim_thr_lock);
2459	ASSERT(spa || arc_eviction_list == NULL);
2460}
2461
2462void
2463arc_shrink(void)
2464{
2465
2466	if (arc_c > arc_c_min) {
2467		uint64_t to_free;
2468
2469		DTRACE_PROBE4(arc__shrink, uint64_t, arc_c, uint64_t,
2470			arc_c_min, uint64_t, arc_p, uint64_t, to_free);
2471#ifdef _KERNEL
2472		to_free = arc_c >> arc_shrink_shift;
2473#else
2474		to_free = arc_c >> arc_shrink_shift;
2475#endif
2476		if (arc_c > arc_c_min + to_free)
2477			atomic_add_64(&arc_c, -to_free);
2478		else
2479			arc_c = arc_c_min;
2480
2481		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
2482		if (arc_c > arc_size)
2483			arc_c = MAX(arc_size, arc_c_min);
2484		if (arc_p > arc_c)
2485			arc_p = (arc_c >> 1);
2486
2487		DTRACE_PROBE2(arc__shrunk, uint64_t, arc_c, uint64_t,
2488			arc_p);
2489
2490		ASSERT(arc_c >= arc_c_min);
2491		ASSERT((int64_t)arc_p >= 0);
2492	}
2493
2494	if (arc_size > arc_c) {
2495		DTRACE_PROBE2(arc__shrink_adjust, uint64_t, arc_size,
2496			uint64_t, arc_c);
2497		arc_adjust();
2498	}
2499}
2500
2501static int needfree = 0;
2502
2503static int
2504arc_reclaim_needed(void)
2505{
2506
2507#ifdef _KERNEL
2508
2509	if (needfree) {
2510		DTRACE_PROBE(arc__reclaim_needfree);
2511		return (1);
2512	}
2513
2514	/*
2515	 * Cooperate with pagedaemon when it's time for it to scan
2516	 * and reclaim some pages.
2517	 */
2518	if (freemem < zfs_arc_free_target) {
2519		DTRACE_PROBE2(arc__reclaim_freemem, uint64_t,
2520		    freemem, uint64_t, zfs_arc_free_target);
2521		return (1);
2522	}
2523
2524#ifdef sun
2525	/*
2526	 * take 'desfree' extra pages, so we reclaim sooner, rather than later
2527	 */
2528	extra = desfree;
2529
2530	/*
2531	 * check that we're out of range of the pageout scanner.  It starts to
2532	 * schedule paging if freemem is less than lotsfree and needfree.
2533	 * lotsfree is the high-water mark for pageout, and needfree is the
2534	 * number of needed free pages.  We add extra pages here to make sure
2535	 * the scanner doesn't start up while we're freeing memory.
2536	 */
2537	if (freemem < lotsfree + needfree + extra)
2538		return (1);
2539
2540	/*
2541	 * check to make sure that swapfs has enough space so that anon
2542	 * reservations can still succeed. anon_resvmem() checks that the
2543	 * availrmem is greater than swapfs_minfree, and the number of reserved
2544	 * swap pages.  We also add a bit of extra here just to prevent
2545	 * circumstances from getting really dire.
2546	 */
2547	if (availrmem < swapfs_minfree + swapfs_reserve + extra)
2548		return (1);
2549
2550	/*
2551	 * Check that we have enough availrmem that memory locking (e.g., via
2552	 * mlock(3C) or memcntl(2)) can still succeed.  (pages_pp_maximum
2553	 * stores the number of pages that cannot be locked; when availrmem
2554	 * drops below pages_pp_maximum, page locking mechanisms such as
2555	 * page_pp_lock() will fail.)
2556	 */
2557	if (availrmem <= pages_pp_maximum)
2558		return (1);
2559
2560#endif	/* sun */
2561#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
2562	/*
2563	 * If we're on an i386 platform, it's possible that we'll exhaust the
2564	 * kernel heap space before we ever run out of available physical
2565	 * memory.  Most checks of the size of the heap_area compare against
2566	 * tune.t_minarmem, which is the minimum available real memory that we
2567	 * can have in the system.  However, this is generally fixed at 25 pages
2568	 * which is so low that it's useless.  In this comparison, we seek to
2569	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
2570	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
2571	 * free)
2572	 */
2573	if (vmem_size(heap_arena, VMEM_FREE) <
2574	    (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2)) {
2575		DTRACE_PROBE2(arc__reclaim_used, uint64_t,
2576		    vmem_size(heap_arena, VMEM_FREE), uint64_t,
2577		    (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2);
2578		return (1);
2579	}
2580#endif
2581#ifdef sun
2582	/*
2583	 * If zio data pages are being allocated out of a separate heap segment,
2584	 * then enforce that the size of available vmem for this arena remains
2585	 * above about 1/16th free.
2586	 *
2587	 * Note: The 1/16th arena free requirement was put in place
2588	 * to aggressively evict memory from the arc in order to avoid
2589	 * memory fragmentation issues.
2590	 */
2591	if (zio_arena != NULL &&
2592	    vmem_size(zio_arena, VMEM_FREE) <
2593	    (vmem_size(zio_arena, VMEM_ALLOC) >> 4))
2594		return (1);
2595#endif	/* sun */
2596#else	/* _KERNEL */
2597	if (spa_get_random(100) == 0)
2598		return (1);
2599#endif	/* _KERNEL */
2600	DTRACE_PROBE(arc__reclaim_no);
2601
2602	return (0);
2603}
2604
2605extern kmem_cache_t	*zio_buf_cache[];
2606extern kmem_cache_t	*zio_data_buf_cache[];
2607
2608static void __noinline
2609arc_kmem_reap_now(arc_reclaim_strategy_t strat)
2610{
2611	size_t			i;
2612	kmem_cache_t		*prev_cache = NULL;
2613	kmem_cache_t		*prev_data_cache = NULL;
2614
2615	DTRACE_PROBE(arc__kmem_reap_start);
2616#ifdef _KERNEL
2617	if (arc_meta_used >= arc_meta_limit) {
2618		/*
2619		 * We are exceeding our meta-data cache limit.
2620		 * Purge some DNLC entries to release holds on meta-data.
2621		 */
2622		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
2623	}
2624#if defined(__i386)
2625	/*
2626	 * Reclaim unused memory from all kmem caches.
2627	 */
2628	kmem_reap();
2629#endif
2630#endif
2631
2632	/*
2633	 * An aggressive reclamation will shrink the cache size as well as
2634	 * reap free buffers from the arc kmem caches.
2635	 */
2636	if (strat == ARC_RECLAIM_AGGR)
2637		arc_shrink();
2638
2639	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
2640		if (zio_buf_cache[i] != prev_cache) {
2641			prev_cache = zio_buf_cache[i];
2642			kmem_cache_reap_now(zio_buf_cache[i]);
2643		}
2644		if (zio_data_buf_cache[i] != prev_data_cache) {
2645			prev_data_cache = zio_data_buf_cache[i];
2646			kmem_cache_reap_now(zio_data_buf_cache[i]);
2647		}
2648	}
2649	kmem_cache_reap_now(buf_cache);
2650	kmem_cache_reap_now(hdr_cache);
2651
2652#ifdef sun
2653	/*
2654	 * Ask the vmem arena to reclaim unused memory from its
2655	 * quantum caches.
2656	 */
2657	if (zio_arena != NULL && strat == ARC_RECLAIM_AGGR)
2658		vmem_qcache_reap(zio_arena);
2659#endif
2660	DTRACE_PROBE(arc__kmem_reap_end);
2661}
2662
2663static void
2664arc_reclaim_thread(void *dummy __unused)
2665{
2666	clock_t			growtime = 0;
2667	arc_reclaim_strategy_t	last_reclaim = ARC_RECLAIM_CONS;
2668	callb_cpr_t		cpr;
2669
2670	CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
2671
2672	mutex_enter(&arc_reclaim_thr_lock);
2673	while (arc_thread_exit == 0) {
2674		if (arc_reclaim_needed()) {
2675
2676			if (arc_no_grow) {
2677				if (last_reclaim == ARC_RECLAIM_CONS) {
2678					DTRACE_PROBE(arc__reclaim_aggr_no_grow);
2679					last_reclaim = ARC_RECLAIM_AGGR;
2680				} else {
2681					last_reclaim = ARC_RECLAIM_CONS;
2682				}
2683			} else {
2684				arc_no_grow = TRUE;
2685				last_reclaim = ARC_RECLAIM_AGGR;
2686				DTRACE_PROBE(arc__reclaim_aggr);
2687				membar_producer();
2688			}
2689
2690			/* reset the growth delay for every reclaim */
2691			growtime = ddi_get_lbolt() + (arc_grow_retry * hz);
2692
2693			if (needfree && last_reclaim == ARC_RECLAIM_CONS) {
2694				/*
2695				 * If needfree is TRUE our vm_lowmem hook
2696				 * was called and in that case we must free some
2697				 * memory, so switch to aggressive mode.
2698				 */
2699				arc_no_grow = TRUE;
2700				last_reclaim = ARC_RECLAIM_AGGR;
2701			}
2702			arc_kmem_reap_now(last_reclaim);
2703			arc_warm = B_TRUE;
2704
2705		} else if (arc_no_grow && ddi_get_lbolt() >= growtime) {
2706			arc_no_grow = FALSE;
2707		}
2708
2709		arc_adjust();
2710
2711		if (arc_eviction_list != NULL)
2712			arc_do_user_evicts();
2713
2714#ifdef _KERNEL
2715		if (needfree) {
2716			needfree = 0;
2717			wakeup(&needfree);
2718		}
2719#endif
2720
2721		/* block until needed, or one second, whichever is shorter */
2722		CALLB_CPR_SAFE_BEGIN(&cpr);
2723		(void) cv_timedwait(&arc_reclaim_thr_cv,
2724		    &arc_reclaim_thr_lock, hz);
2725		CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
2726	}
2727
2728	arc_thread_exit = 0;
2729	cv_broadcast(&arc_reclaim_thr_cv);
2730	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_thr_lock */
2731	thread_exit();
2732}
2733
2734/*
2735 * Adapt arc info given the number of bytes we are trying to add and
2736 * the state that we are comming from.  This function is only called
2737 * when we are adding new content to the cache.
2738 */
2739static void
2740arc_adapt(int bytes, arc_state_t *state)
2741{
2742	int mult;
2743	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
2744
2745	if (state == arc_l2c_only)
2746		return;
2747
2748	ASSERT(bytes > 0);
2749	/*
2750	 * Adapt the target size of the MRU list:
2751	 *	- if we just hit in the MRU ghost list, then increase
2752	 *	  the target size of the MRU list.
2753	 *	- if we just hit in the MFU ghost list, then increase
2754	 *	  the target size of the MFU list by decreasing the
2755	 *	  target size of the MRU list.
2756	 */
2757	if (state == arc_mru_ghost) {
2758		mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
2759		    1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
2760		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
2761
2762		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
2763	} else if (state == arc_mfu_ghost) {
2764		uint64_t delta;
2765
2766		mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
2767		    1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
2768		mult = MIN(mult, 10);
2769
2770		delta = MIN(bytes * mult, arc_p);
2771		arc_p = MAX(arc_p_min, arc_p - delta);
2772	}
2773	ASSERT((int64_t)arc_p >= 0);
2774
2775	if (arc_reclaim_needed()) {
2776		cv_signal(&arc_reclaim_thr_cv);
2777		return;
2778	}
2779
2780	if (arc_no_grow)
2781		return;
2782
2783	if (arc_c >= arc_c_max)
2784		return;
2785
2786	/*
2787	 * If we're within (2 * maxblocksize) bytes of the target
2788	 * cache size, increment the target cache size
2789	 */
2790	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
2791		DTRACE_PROBE1(arc__inc_adapt, int, bytes);
2792		atomic_add_64(&arc_c, (int64_t)bytes);
2793		if (arc_c > arc_c_max)
2794			arc_c = arc_c_max;
2795		else if (state == arc_anon)
2796			atomic_add_64(&arc_p, (int64_t)bytes);
2797		if (arc_p > arc_c)
2798			arc_p = arc_c;
2799	}
2800	ASSERT((int64_t)arc_p >= 0);
2801}
2802
2803/*
2804 * Check if the cache has reached its limits and eviction is required
2805 * prior to insert.
2806 */
2807static int
2808arc_evict_needed(arc_buf_contents_t type)
2809{
2810	if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
2811		return (1);
2812
2813	if (arc_reclaim_needed())
2814		return (1);
2815
2816	return (arc_size > arc_c);
2817}
2818
2819/*
2820 * The buffer, supplied as the first argument, needs a data block.
2821 * So, if we are at cache max, determine which cache should be victimized.
2822 * We have the following cases:
2823 *
2824 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2825 * In this situation if we're out of space, but the resident size of the MFU is
2826 * under the limit, victimize the MFU cache to satisfy this insertion request.
2827 *
2828 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2829 * Here, we've used up all of the available space for the MRU, so we need to
2830 * evict from our own cache instead.  Evict from the set of resident MRU
2831 * entries.
2832 *
2833 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2834 * c minus p represents the MFU space in the cache, since p is the size of the
2835 * cache that is dedicated to the MRU.  In this situation there's still space on
2836 * the MFU side, so the MRU side needs to be victimized.
2837 *
2838 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2839 * MFU's resident set is consuming more space than it has been allotted.  In
2840 * this situation, we must victimize our own cache, the MFU, for this insertion.
2841 */
2842static void
2843arc_get_data_buf(arc_buf_t *buf)
2844{
2845	arc_state_t		*state = buf->b_hdr->b_state;
2846	uint64_t		size = buf->b_hdr->b_size;
2847	arc_buf_contents_t	type = buf->b_hdr->b_type;
2848
2849	arc_adapt(size, state);
2850
2851	/*
2852	 * We have not yet reached cache maximum size,
2853	 * just allocate a new buffer.
2854	 */
2855	if (!arc_evict_needed(type)) {
2856		if (type == ARC_BUFC_METADATA) {
2857			buf->b_data = zio_buf_alloc(size);
2858			arc_space_consume(size, ARC_SPACE_DATA);
2859		} else {
2860			ASSERT(type == ARC_BUFC_DATA);
2861			buf->b_data = zio_data_buf_alloc(size);
2862			ARCSTAT_INCR(arcstat_data_size, size);
2863			atomic_add_64(&arc_size, size);
2864		}
2865		goto out;
2866	}
2867
2868	/*
2869	 * If we are prefetching from the mfu ghost list, this buffer
2870	 * will end up on the mru list; so steal space from there.
2871	 */
2872	if (state == arc_mfu_ghost)
2873		state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2874	else if (state == arc_mru_ghost)
2875		state = arc_mru;
2876
2877	if (state == arc_mru || state == arc_anon) {
2878		uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
2879		state = (arc_mfu->arcs_lsize[type] >= size &&
2880		    arc_p > mru_used) ? arc_mfu : arc_mru;
2881	} else {
2882		/* MFU cases */
2883		uint64_t mfu_space = arc_c - arc_p;
2884		state =  (arc_mru->arcs_lsize[type] >= size &&
2885		    mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2886	}
2887	if ((buf->b_data = arc_evict(state, 0, size, TRUE, type)) == NULL) {
2888		if (type == ARC_BUFC_METADATA) {
2889			buf->b_data = zio_buf_alloc(size);
2890			arc_space_consume(size, ARC_SPACE_DATA);
2891		} else {
2892			ASSERT(type == ARC_BUFC_DATA);
2893			buf->b_data = zio_data_buf_alloc(size);
2894			ARCSTAT_INCR(arcstat_data_size, size);
2895			atomic_add_64(&arc_size, size);
2896		}
2897		ARCSTAT_BUMP(arcstat_recycle_miss);
2898	}
2899	ASSERT(buf->b_data != NULL);
2900out:
2901	/*
2902	 * Update the state size.  Note that ghost states have a
2903	 * "ghost size" and so don't need to be updated.
2904	 */
2905	if (!GHOST_STATE(buf->b_hdr->b_state)) {
2906		arc_buf_hdr_t *hdr = buf->b_hdr;
2907
2908		atomic_add_64(&hdr->b_state->arcs_size, size);
2909		if (list_link_active(&hdr->b_arc_node)) {
2910			ASSERT(refcount_is_zero(&hdr->b_refcnt));
2911			atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2912		}
2913		/*
2914		 * If we are growing the cache, and we are adding anonymous
2915		 * data, and we have outgrown arc_p, update arc_p
2916		 */
2917		if (arc_size < arc_c && hdr->b_state == arc_anon &&
2918		    arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2919			arc_p = MIN(arc_c, arc_p + size);
2920	}
2921	ARCSTAT_BUMP(arcstat_allocated);
2922}
2923
2924/*
2925 * This routine is called whenever a buffer is accessed.
2926 * NOTE: the hash lock is dropped in this function.
2927 */
2928static void
2929arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2930{
2931	clock_t now;
2932
2933	ASSERT(MUTEX_HELD(hash_lock));
2934
2935	if (buf->b_state == arc_anon) {
2936		/*
2937		 * This buffer is not in the cache, and does not
2938		 * appear in our "ghost" list.  Add the new buffer
2939		 * to the MRU state.
2940		 */
2941
2942		ASSERT(buf->b_arc_access == 0);
2943		buf->b_arc_access = ddi_get_lbolt();
2944		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2945		arc_change_state(arc_mru, buf, hash_lock);
2946
2947	} else if (buf->b_state == arc_mru) {
2948		now = ddi_get_lbolt();
2949
2950		/*
2951		 * If this buffer is here because of a prefetch, then either:
2952		 * - clear the flag if this is a "referencing" read
2953		 *   (any subsequent access will bump this into the MFU state).
2954		 * or
2955		 * - move the buffer to the head of the list if this is
2956		 *   another prefetch (to make it less likely to be evicted).
2957		 */
2958		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2959			if (refcount_count(&buf->b_refcnt) == 0) {
2960				ASSERT(list_link_active(&buf->b_arc_node));
2961			} else {
2962				buf->b_flags &= ~ARC_PREFETCH;
2963				ARCSTAT_BUMP(arcstat_mru_hits);
2964			}
2965			buf->b_arc_access = now;
2966			return;
2967		}
2968
2969		/*
2970		 * This buffer has been "accessed" only once so far,
2971		 * but it is still in the cache. Move it to the MFU
2972		 * state.
2973		 */
2974		if (now > buf->b_arc_access + ARC_MINTIME) {
2975			/*
2976			 * More than 125ms have passed since we
2977			 * instantiated this buffer.  Move it to the
2978			 * most frequently used state.
2979			 */
2980			buf->b_arc_access = now;
2981			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2982			arc_change_state(arc_mfu, buf, hash_lock);
2983		}
2984		ARCSTAT_BUMP(arcstat_mru_hits);
2985	} else if (buf->b_state == arc_mru_ghost) {
2986		arc_state_t	*new_state;
2987		/*
2988		 * This buffer has been "accessed" recently, but
2989		 * was evicted from the cache.  Move it to the
2990		 * MFU state.
2991		 */
2992
2993		if (buf->b_flags & ARC_PREFETCH) {
2994			new_state = arc_mru;
2995			if (refcount_count(&buf->b_refcnt) > 0)
2996				buf->b_flags &= ~ARC_PREFETCH;
2997			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2998		} else {
2999			new_state = arc_mfu;
3000			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
3001		}
3002
3003		buf->b_arc_access = ddi_get_lbolt();
3004		arc_change_state(new_state, buf, hash_lock);
3005
3006		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
3007	} else if (buf->b_state == arc_mfu) {
3008		/*
3009		 * This buffer has been accessed more than once and is
3010		 * still in the cache.  Keep it in the MFU state.
3011		 *
3012		 * NOTE: an add_reference() that occurred when we did
3013		 * the arc_read() will have kicked this off the list.
3014		 * If it was a prefetch, we will explicitly move it to
3015		 * the head of the list now.
3016		 */
3017		if ((buf->b_flags & ARC_PREFETCH) != 0) {
3018			ASSERT(refcount_count(&buf->b_refcnt) == 0);
3019			ASSERT(list_link_active(&buf->b_arc_node));
3020		}
3021		ARCSTAT_BUMP(arcstat_mfu_hits);
3022		buf->b_arc_access = ddi_get_lbolt();
3023	} else if (buf->b_state == arc_mfu_ghost) {
3024		arc_state_t	*new_state = arc_mfu;
3025		/*
3026		 * This buffer has been accessed more than once but has
3027		 * been evicted from the cache.  Move it back to the
3028		 * MFU state.
3029		 */
3030
3031		if (buf->b_flags & ARC_PREFETCH) {
3032			/*
3033			 * This is a prefetch access...
3034			 * move this block back to the MRU state.
3035			 */
3036			ASSERT0(refcount_count(&buf->b_refcnt));
3037			new_state = arc_mru;
3038		}
3039
3040		buf->b_arc_access = ddi_get_lbolt();
3041		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
3042		arc_change_state(new_state, buf, hash_lock);
3043
3044		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
3045	} else if (buf->b_state == arc_l2c_only) {
3046		/*
3047		 * This buffer is on the 2nd Level ARC.
3048		 */
3049
3050		buf->b_arc_access = ddi_get_lbolt();
3051		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
3052		arc_change_state(arc_mfu, buf, hash_lock);
3053	} else {
3054		ASSERT(!"invalid arc state");
3055	}
3056}
3057
3058/* a generic arc_done_func_t which you can use */
3059/* ARGSUSED */
3060void
3061arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
3062{
3063	if (zio == NULL || zio->io_error == 0)
3064		bcopy(buf->b_data, arg, buf->b_hdr->b_size);
3065	VERIFY(arc_buf_remove_ref(buf, arg));
3066}
3067
3068/* a generic arc_done_func_t */
3069void
3070arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
3071{
3072	arc_buf_t **bufp = arg;
3073	if (zio && zio->io_error) {
3074		VERIFY(arc_buf_remove_ref(buf, arg));
3075		*bufp = NULL;
3076	} else {
3077		*bufp = buf;
3078		ASSERT(buf->b_data);
3079	}
3080}
3081
3082static void
3083arc_read_done(zio_t *zio)
3084{
3085	arc_buf_hdr_t	*hdr;
3086	arc_buf_t	*buf;
3087	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
3088	kmutex_t	*hash_lock = NULL;
3089	arc_callback_t	*callback_list, *acb;
3090	int		freeable = FALSE;
3091
3092	buf = zio->io_private;
3093	hdr = buf->b_hdr;
3094
3095	/*
3096	 * The hdr was inserted into hash-table and removed from lists
3097	 * prior to starting I/O.  We should find this header, since
3098	 * it's in the hash table, and it should be legit since it's
3099	 * not possible to evict it during the I/O.  The only possible
3100	 * reason for it not to be found is if we were freed during the
3101	 * read.
3102	 */
3103	if (HDR_IN_HASH_TABLE(hdr)) {
3104		ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
3105		ASSERT3U(hdr->b_dva.dva_word[0], ==,
3106		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
3107		ASSERT3U(hdr->b_dva.dva_word[1], ==,
3108		    BP_IDENTITY(zio->io_bp)->dva_word[1]);
3109
3110		arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
3111		    &hash_lock);
3112
3113		ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) &&
3114		    hash_lock == NULL) ||
3115		    (found == hdr &&
3116		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
3117		    (found == hdr && HDR_L2_READING(hdr)));
3118	}
3119
3120	hdr->b_flags &= ~ARC_L2_EVICTED;
3121	if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
3122		hdr->b_flags &= ~ARC_L2CACHE;
3123
3124	/* byteswap if necessary */
3125	callback_list = hdr->b_acb;
3126	ASSERT(callback_list != NULL);
3127	if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
3128		dmu_object_byteswap_t bswap =
3129		    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
3130		arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
3131		    byteswap_uint64_array :
3132		    dmu_ot_byteswap[bswap].ob_func;
3133		func(buf->b_data, hdr->b_size);
3134	}
3135
3136	arc_cksum_compute(buf, B_FALSE);
3137#ifdef illumos
3138	arc_buf_watch(buf);
3139#endif /* illumos */
3140
3141	if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) {
3142		/*
3143		 * Only call arc_access on anonymous buffers.  This is because
3144		 * if we've issued an I/O for an evicted buffer, we've already
3145		 * called arc_access (to prevent any simultaneous readers from
3146		 * getting confused).
3147		 */
3148		arc_access(hdr, hash_lock);
3149	}
3150
3151	/* create copies of the data buffer for the callers */
3152	abuf = buf;
3153	for (acb = callback_list; acb; acb = acb->acb_next) {
3154		if (acb->acb_done) {
3155			if (abuf == NULL) {
3156				ARCSTAT_BUMP(arcstat_duplicate_reads);
3157				abuf = arc_buf_clone(buf);
3158			}
3159			acb->acb_buf = abuf;
3160			abuf = NULL;
3161		}
3162	}
3163	hdr->b_acb = NULL;
3164	hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3165	ASSERT(!HDR_BUF_AVAILABLE(hdr));
3166	if (abuf == buf) {
3167		ASSERT(buf->b_efunc == NULL);
3168		ASSERT(hdr->b_datacnt == 1);
3169		hdr->b_flags |= ARC_BUF_AVAILABLE;
3170	}
3171
3172	ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
3173
3174	if (zio->io_error != 0) {
3175		hdr->b_flags |= ARC_IO_ERROR;
3176		if (hdr->b_state != arc_anon)
3177			arc_change_state(arc_anon, hdr, hash_lock);
3178		if (HDR_IN_HASH_TABLE(hdr))
3179			buf_hash_remove(hdr);
3180		freeable = refcount_is_zero(&hdr->b_refcnt);
3181	}
3182
3183	/*
3184	 * Broadcast before we drop the hash_lock to avoid the possibility
3185	 * that the hdr (and hence the cv) might be freed before we get to
3186	 * the cv_broadcast().
3187	 */
3188	cv_broadcast(&hdr->b_cv);
3189
3190	if (hash_lock) {
3191		mutex_exit(hash_lock);
3192	} else {
3193		/*
3194		 * This block was freed while we waited for the read to
3195		 * complete.  It has been removed from the hash table and
3196		 * moved to the anonymous state (so that it won't show up
3197		 * in the cache).
3198		 */
3199		ASSERT3P(hdr->b_state, ==, arc_anon);
3200		freeable = refcount_is_zero(&hdr->b_refcnt);
3201	}
3202
3203	/* execute each callback and free its structure */
3204	while ((acb = callback_list) != NULL) {
3205		if (acb->acb_done)
3206			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
3207
3208		if (acb->acb_zio_dummy != NULL) {
3209			acb->acb_zio_dummy->io_error = zio->io_error;
3210			zio_nowait(acb->acb_zio_dummy);
3211		}
3212
3213		callback_list = acb->acb_next;
3214		kmem_free(acb, sizeof (arc_callback_t));
3215	}
3216
3217	if (freeable)
3218		arc_hdr_destroy(hdr);
3219}
3220
3221/*
3222 * "Read" the block block at the specified DVA (in bp) via the
3223 * cache.  If the block is found in the cache, invoke the provided
3224 * callback immediately and return.  Note that the `zio' parameter
3225 * in the callback will be NULL in this case, since no IO was
3226 * required.  If the block is not in the cache pass the read request
3227 * on to the spa with a substitute callback function, so that the
3228 * requested block will be added to the cache.
3229 *
3230 * If a read request arrives for a block that has a read in-progress,
3231 * either wait for the in-progress read to complete (and return the
3232 * results); or, if this is a read with a "done" func, add a record
3233 * to the read to invoke the "done" func when the read completes,
3234 * and return; or just return.
3235 *
3236 * arc_read_done() will invoke all the requested "done" functions
3237 * for readers of this block.
3238 */
3239int
3240arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
3241    void *private, zio_priority_t priority, int zio_flags, uint32_t *arc_flags,
3242    const zbookmark_phys_t *zb)
3243{
3244	arc_buf_hdr_t *hdr = NULL;
3245	arc_buf_t *buf = NULL;
3246	kmutex_t *hash_lock = NULL;
3247	zio_t *rzio;
3248	uint64_t guid = spa_load_guid(spa);
3249
3250	ASSERT(!BP_IS_EMBEDDED(bp) ||
3251	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
3252
3253top:
3254	if (!BP_IS_EMBEDDED(bp)) {
3255		/*
3256		 * Embedded BP's have no DVA and require no I/O to "read".
3257		 * Create an anonymous arc buf to back it.
3258		 */
3259		hdr = buf_hash_find(guid, bp, &hash_lock);
3260	}
3261
3262	if (hdr != NULL && hdr->b_datacnt > 0) {
3263
3264		*arc_flags |= ARC_CACHED;
3265
3266		if (HDR_IO_IN_PROGRESS(hdr)) {
3267
3268			if (*arc_flags & ARC_WAIT) {
3269				cv_wait(&hdr->b_cv, hash_lock);
3270				mutex_exit(hash_lock);
3271				goto top;
3272			}
3273			ASSERT(*arc_flags & ARC_NOWAIT);
3274
3275			if (done) {
3276				arc_callback_t	*acb = NULL;
3277
3278				acb = kmem_zalloc(sizeof (arc_callback_t),
3279				    KM_SLEEP);
3280				acb->acb_done = done;
3281				acb->acb_private = private;
3282				if (pio != NULL)
3283					acb->acb_zio_dummy = zio_null(pio,
3284					    spa, NULL, NULL, NULL, zio_flags);
3285
3286				ASSERT(acb->acb_done != NULL);
3287				acb->acb_next = hdr->b_acb;
3288				hdr->b_acb = acb;
3289				add_reference(hdr, hash_lock, private);
3290				mutex_exit(hash_lock);
3291				return (0);
3292			}
3293			mutex_exit(hash_lock);
3294			return (0);
3295		}
3296
3297		ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
3298
3299		if (done) {
3300			add_reference(hdr, hash_lock, private);
3301			/*
3302			 * If this block is already in use, create a new
3303			 * copy of the data so that we will be guaranteed
3304			 * that arc_release() will always succeed.
3305			 */
3306			buf = hdr->b_buf;
3307			ASSERT(buf);
3308			ASSERT(buf->b_data);
3309			if (HDR_BUF_AVAILABLE(hdr)) {
3310				ASSERT(buf->b_efunc == NULL);
3311				hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3312			} else {
3313				buf = arc_buf_clone(buf);
3314			}
3315
3316		} else if (*arc_flags & ARC_PREFETCH &&
3317		    refcount_count(&hdr->b_refcnt) == 0) {
3318			hdr->b_flags |= ARC_PREFETCH;
3319		}
3320		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
3321		arc_access(hdr, hash_lock);
3322		if (*arc_flags & ARC_L2CACHE)
3323			hdr->b_flags |= ARC_L2CACHE;
3324		if (*arc_flags & ARC_L2COMPRESS)
3325			hdr->b_flags |= ARC_L2COMPRESS;
3326		mutex_exit(hash_lock);
3327		ARCSTAT_BUMP(arcstat_hits);
3328		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
3329		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
3330		    data, metadata, hits);
3331
3332		if (done)
3333			done(NULL, buf, private);
3334	} else {
3335		uint64_t size = BP_GET_LSIZE(bp);
3336		arc_callback_t *acb;
3337		vdev_t *vd = NULL;
3338		uint64_t addr = 0;
3339		boolean_t devw = B_FALSE;
3340		enum zio_compress b_compress = ZIO_COMPRESS_OFF;
3341		uint64_t b_asize = 0;
3342
3343		if (hdr == NULL) {
3344			/* this block is not in the cache */
3345			arc_buf_hdr_t *exists = NULL;
3346			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
3347			buf = arc_buf_alloc(spa, size, private, type);
3348			hdr = buf->b_hdr;
3349			if (!BP_IS_EMBEDDED(bp)) {
3350				hdr->b_dva = *BP_IDENTITY(bp);
3351				hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
3352				hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
3353				exists = buf_hash_insert(hdr, &hash_lock);
3354			}
3355			if (exists != NULL) {
3356				/* somebody beat us to the hash insert */
3357				mutex_exit(hash_lock);
3358				buf_discard_identity(hdr);
3359				(void) arc_buf_remove_ref(buf, private);
3360				goto top; /* restart the IO request */
3361			}
3362			/* if this is a prefetch, we don't have a reference */
3363			if (*arc_flags & ARC_PREFETCH) {
3364				(void) remove_reference(hdr, hash_lock,
3365				    private);
3366				hdr->b_flags |= ARC_PREFETCH;
3367			}
3368			if (*arc_flags & ARC_L2CACHE)
3369				hdr->b_flags |= ARC_L2CACHE;
3370			if (*arc_flags & ARC_L2COMPRESS)
3371				hdr->b_flags |= ARC_L2COMPRESS;
3372			if (BP_GET_LEVEL(bp) > 0)
3373				hdr->b_flags |= ARC_INDIRECT;
3374		} else {
3375			/* this block is in the ghost cache */
3376			ASSERT(GHOST_STATE(hdr->b_state));
3377			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3378			ASSERT0(refcount_count(&hdr->b_refcnt));
3379			ASSERT(hdr->b_buf == NULL);
3380
3381			/* if this is a prefetch, we don't have a reference */
3382			if (*arc_flags & ARC_PREFETCH)
3383				hdr->b_flags |= ARC_PREFETCH;
3384			else
3385				add_reference(hdr, hash_lock, private);
3386			if (*arc_flags & ARC_L2CACHE)
3387				hdr->b_flags |= ARC_L2CACHE;
3388			if (*arc_flags & ARC_L2COMPRESS)
3389				hdr->b_flags |= ARC_L2COMPRESS;
3390			buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
3391			buf->b_hdr = hdr;
3392			buf->b_data = NULL;
3393			buf->b_efunc = NULL;
3394			buf->b_private = NULL;
3395			buf->b_next = NULL;
3396			hdr->b_buf = buf;
3397			ASSERT(hdr->b_datacnt == 0);
3398			hdr->b_datacnt = 1;
3399			arc_get_data_buf(buf);
3400			arc_access(hdr, hash_lock);
3401		}
3402
3403		ASSERT(!GHOST_STATE(hdr->b_state));
3404
3405		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
3406		acb->acb_done = done;
3407		acb->acb_private = private;
3408
3409		ASSERT(hdr->b_acb == NULL);
3410		hdr->b_acb = acb;
3411		hdr->b_flags |= ARC_IO_IN_PROGRESS;
3412
3413		if (hdr->b_l2hdr != NULL &&
3414		    (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
3415			devw = hdr->b_l2hdr->b_dev->l2ad_writing;
3416			addr = hdr->b_l2hdr->b_daddr;
3417			b_compress = hdr->b_l2hdr->b_compress;
3418			b_asize = hdr->b_l2hdr->b_asize;
3419			/*
3420			 * Lock out device removal.
3421			 */
3422			if (vdev_is_dead(vd) ||
3423			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
3424				vd = NULL;
3425		}
3426
3427		if (hash_lock != NULL)
3428			mutex_exit(hash_lock);
3429
3430		/*
3431		 * At this point, we have a level 1 cache miss.  Try again in
3432		 * L2ARC if possible.
3433		 */
3434		ASSERT3U(hdr->b_size, ==, size);
3435		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
3436		    uint64_t, size, zbookmark_phys_t *, zb);
3437		ARCSTAT_BUMP(arcstat_misses);
3438		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
3439		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
3440		    data, metadata, misses);
3441#ifdef _KERNEL
3442		curthread->td_ru.ru_inblock++;
3443#endif
3444
3445		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
3446			/*
3447			 * Read from the L2ARC if the following are true:
3448			 * 1. The L2ARC vdev was previously cached.
3449			 * 2. This buffer still has L2ARC metadata.
3450			 * 3. This buffer isn't currently writing to the L2ARC.
3451			 * 4. The L2ARC entry wasn't evicted, which may
3452			 *    also have invalidated the vdev.
3453			 * 5. This isn't prefetch and l2arc_noprefetch is set.
3454			 */
3455			if (hdr->b_l2hdr != NULL &&
3456			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
3457			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
3458				l2arc_read_callback_t *cb;
3459
3460				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
3461				ARCSTAT_BUMP(arcstat_l2_hits);
3462
3463				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
3464				    KM_SLEEP);
3465				cb->l2rcb_buf = buf;
3466				cb->l2rcb_spa = spa;
3467				cb->l2rcb_bp = *bp;
3468				cb->l2rcb_zb = *zb;
3469				cb->l2rcb_flags = zio_flags;
3470				cb->l2rcb_compress = b_compress;
3471
3472				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
3473				    addr + size < vd->vdev_psize -
3474				    VDEV_LABEL_END_SIZE);
3475
3476				/*
3477				 * l2arc read.  The SCL_L2ARC lock will be
3478				 * released by l2arc_read_done().
3479				 * Issue a null zio if the underlying buffer
3480				 * was squashed to zero size by compression.
3481				 */
3482				if (b_compress == ZIO_COMPRESS_EMPTY) {
3483					rzio = zio_null(pio, spa, vd,
3484					    l2arc_read_done, cb,
3485					    zio_flags | ZIO_FLAG_DONT_CACHE |
3486					    ZIO_FLAG_CANFAIL |
3487					    ZIO_FLAG_DONT_PROPAGATE |
3488					    ZIO_FLAG_DONT_RETRY);
3489				} else {
3490					rzio = zio_read_phys(pio, vd, addr,
3491					    b_asize, buf->b_data,
3492					    ZIO_CHECKSUM_OFF,
3493					    l2arc_read_done, cb, priority,
3494					    zio_flags | ZIO_FLAG_DONT_CACHE |
3495					    ZIO_FLAG_CANFAIL |
3496					    ZIO_FLAG_DONT_PROPAGATE |
3497					    ZIO_FLAG_DONT_RETRY, B_FALSE);
3498				}
3499				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
3500				    zio_t *, rzio);
3501				ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize);
3502
3503				if (*arc_flags & ARC_NOWAIT) {
3504					zio_nowait(rzio);
3505					return (0);
3506				}
3507
3508				ASSERT(*arc_flags & ARC_WAIT);
3509				if (zio_wait(rzio) == 0)
3510					return (0);
3511
3512				/* l2arc read error; goto zio_read() */
3513			} else {
3514				DTRACE_PROBE1(l2arc__miss,
3515				    arc_buf_hdr_t *, hdr);
3516				ARCSTAT_BUMP(arcstat_l2_misses);
3517				if (HDR_L2_WRITING(hdr))
3518					ARCSTAT_BUMP(arcstat_l2_rw_clash);
3519				spa_config_exit(spa, SCL_L2ARC, vd);
3520			}
3521		} else {
3522			if (vd != NULL)
3523				spa_config_exit(spa, SCL_L2ARC, vd);
3524			if (l2arc_ndev != 0) {
3525				DTRACE_PROBE1(l2arc__miss,
3526				    arc_buf_hdr_t *, hdr);
3527				ARCSTAT_BUMP(arcstat_l2_misses);
3528			}
3529		}
3530
3531		rzio = zio_read(pio, spa, bp, buf->b_data, size,
3532		    arc_read_done, buf, priority, zio_flags, zb);
3533
3534		if (*arc_flags & ARC_WAIT)
3535			return (zio_wait(rzio));
3536
3537		ASSERT(*arc_flags & ARC_NOWAIT);
3538		zio_nowait(rzio);
3539	}
3540	return (0);
3541}
3542
3543void
3544arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
3545{
3546	ASSERT(buf->b_hdr != NULL);
3547	ASSERT(buf->b_hdr->b_state != arc_anon);
3548	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
3549	ASSERT(buf->b_efunc == NULL);
3550	ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
3551
3552	buf->b_efunc = func;
3553	buf->b_private = private;
3554}
3555
3556/*
3557 * Notify the arc that a block was freed, and thus will never be used again.
3558 */
3559void
3560arc_freed(spa_t *spa, const blkptr_t *bp)
3561{
3562	arc_buf_hdr_t *hdr;
3563	kmutex_t *hash_lock;
3564	uint64_t guid = spa_load_guid(spa);
3565
3566	ASSERT(!BP_IS_EMBEDDED(bp));
3567
3568	hdr = buf_hash_find(guid, bp, &hash_lock);
3569	if (hdr == NULL)
3570		return;
3571	if (HDR_BUF_AVAILABLE(hdr)) {
3572		arc_buf_t *buf = hdr->b_buf;
3573		add_reference(hdr, hash_lock, FTAG);
3574		hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3575		mutex_exit(hash_lock);
3576
3577		arc_release(buf, FTAG);
3578		(void) arc_buf_remove_ref(buf, FTAG);
3579	} else {
3580		mutex_exit(hash_lock);
3581	}
3582
3583}
3584
3585/*
3586 * Clear the user eviction callback set by arc_set_callback(), first calling
3587 * it if it exists.  Because the presence of a callback keeps an arc_buf cached
3588 * clearing the callback may result in the arc_buf being destroyed.  However,
3589 * it will not result in the *last* arc_buf being destroyed, hence the data
3590 * will remain cached in the ARC. We make a copy of the arc buffer here so
3591 * that we can process the callback without holding any locks.
3592 *
3593 * It's possible that the callback is already in the process of being cleared
3594 * by another thread.  In this case we can not clear the callback.
3595 *
3596 * Returns B_TRUE if the callback was successfully called and cleared.
3597 */
3598boolean_t
3599arc_clear_callback(arc_buf_t *buf)
3600{
3601	arc_buf_hdr_t *hdr;
3602	kmutex_t *hash_lock;
3603	arc_evict_func_t *efunc = buf->b_efunc;
3604	void *private = buf->b_private;
3605	list_t *list, *evicted_list;
3606	kmutex_t *lock, *evicted_lock;
3607
3608	mutex_enter(&buf->b_evict_lock);
3609	hdr = buf->b_hdr;
3610	if (hdr == NULL) {
3611		/*
3612		 * We are in arc_do_user_evicts().
3613		 */
3614		ASSERT(buf->b_data == NULL);
3615		mutex_exit(&buf->b_evict_lock);
3616		return (B_FALSE);
3617	} else if (buf->b_data == NULL) {
3618		/*
3619		 * We are on the eviction list; process this buffer now
3620		 * but let arc_do_user_evicts() do the reaping.
3621		 */
3622		buf->b_efunc = NULL;
3623		mutex_exit(&buf->b_evict_lock);
3624		VERIFY0(efunc(private));
3625		return (B_TRUE);
3626	}
3627	hash_lock = HDR_LOCK(hdr);
3628	mutex_enter(hash_lock);
3629	hdr = buf->b_hdr;
3630	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3631
3632	ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
3633	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
3634
3635	buf->b_efunc = NULL;
3636	buf->b_private = NULL;
3637
3638	if (hdr->b_datacnt > 1) {
3639		mutex_exit(&buf->b_evict_lock);
3640		arc_buf_destroy(buf, FALSE, TRUE);
3641	} else {
3642		ASSERT(buf == hdr->b_buf);
3643		hdr->b_flags |= ARC_BUF_AVAILABLE;
3644		mutex_exit(&buf->b_evict_lock);
3645	}
3646
3647	mutex_exit(hash_lock);
3648	VERIFY0(efunc(private));
3649	return (B_TRUE);
3650}
3651
3652/*
3653 * Release this buffer from the cache, making it an anonymous buffer.  This
3654 * must be done after a read and prior to modifying the buffer contents.
3655 * If the buffer has more than one reference, we must make
3656 * a new hdr for the buffer.
3657 */
3658void
3659arc_release(arc_buf_t *buf, void *tag)
3660{
3661	arc_buf_hdr_t *hdr;
3662	kmutex_t *hash_lock = NULL;
3663	l2arc_buf_hdr_t *l2hdr;
3664	uint64_t buf_size;
3665
3666	/*
3667	 * It would be nice to assert that if it's DMU metadata (level >
3668	 * 0 || it's the dnode file), then it must be syncing context.
3669	 * But we don't know that information at this level.
3670	 */
3671
3672	mutex_enter(&buf->b_evict_lock);
3673	hdr = buf->b_hdr;
3674
3675	/* this buffer is not on any list */
3676	ASSERT(refcount_count(&hdr->b_refcnt) > 0);
3677
3678	if (hdr->b_state == arc_anon) {
3679		/* this buffer is already released */
3680		ASSERT(buf->b_efunc == NULL);
3681	} else {
3682		hash_lock = HDR_LOCK(hdr);
3683		mutex_enter(hash_lock);
3684		hdr = buf->b_hdr;
3685		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3686	}
3687
3688	l2hdr = hdr->b_l2hdr;
3689	if (l2hdr) {
3690		mutex_enter(&l2arc_buflist_mtx);
3691		hdr->b_l2hdr = NULL;
3692		list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
3693	}
3694	buf_size = hdr->b_size;
3695
3696	/*
3697	 * Do we have more than one buf?
3698	 */
3699	if (hdr->b_datacnt > 1) {
3700		arc_buf_hdr_t *nhdr;
3701		arc_buf_t **bufp;
3702		uint64_t blksz = hdr->b_size;
3703		uint64_t spa = hdr->b_spa;
3704		arc_buf_contents_t type = hdr->b_type;
3705		uint32_t flags = hdr->b_flags;
3706
3707		ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
3708		/*
3709		 * Pull the data off of this hdr and attach it to
3710		 * a new anonymous hdr.
3711		 */
3712		(void) remove_reference(hdr, hash_lock, tag);
3713		bufp = &hdr->b_buf;
3714		while (*bufp != buf)
3715			bufp = &(*bufp)->b_next;
3716		*bufp = buf->b_next;
3717		buf->b_next = NULL;
3718
3719		ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
3720		atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
3721		if (refcount_is_zero(&hdr->b_refcnt)) {
3722			uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
3723			ASSERT3U(*size, >=, hdr->b_size);
3724			atomic_add_64(size, -hdr->b_size);
3725		}
3726
3727		/*
3728		 * We're releasing a duplicate user data buffer, update
3729		 * our statistics accordingly.
3730		 */
3731		if (hdr->b_type == ARC_BUFC_DATA) {
3732			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
3733			ARCSTAT_INCR(arcstat_duplicate_buffers_size,
3734			    -hdr->b_size);
3735		}
3736		hdr->b_datacnt -= 1;
3737		arc_cksum_verify(buf);
3738#ifdef illumos
3739		arc_buf_unwatch(buf);
3740#endif /* illumos */
3741
3742		mutex_exit(hash_lock);
3743
3744		nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3745		nhdr->b_size = blksz;
3746		nhdr->b_spa = spa;
3747		nhdr->b_type = type;
3748		nhdr->b_buf = buf;
3749		nhdr->b_state = arc_anon;
3750		nhdr->b_arc_access = 0;
3751		nhdr->b_flags = flags & ARC_L2_WRITING;
3752		nhdr->b_l2hdr = NULL;
3753		nhdr->b_datacnt = 1;
3754		nhdr->b_freeze_cksum = NULL;
3755		(void) refcount_add(&nhdr->b_refcnt, tag);
3756		buf->b_hdr = nhdr;
3757		mutex_exit(&buf->b_evict_lock);
3758		atomic_add_64(&arc_anon->arcs_size, blksz);
3759	} else {
3760		mutex_exit(&buf->b_evict_lock);
3761		ASSERT(refcount_count(&hdr->b_refcnt) == 1);
3762		ASSERT(!list_link_active(&hdr->b_arc_node));
3763		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3764		if (hdr->b_state != arc_anon)
3765			arc_change_state(arc_anon, hdr, hash_lock);
3766		hdr->b_arc_access = 0;
3767		if (hash_lock)
3768			mutex_exit(hash_lock);
3769
3770		buf_discard_identity(hdr);
3771		arc_buf_thaw(buf);
3772	}
3773	buf->b_efunc = NULL;
3774	buf->b_private = NULL;
3775
3776	if (l2hdr) {
3777		ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
3778		vdev_space_update(l2hdr->b_dev->l2ad_vdev,
3779		    -l2hdr->b_asize, 0, 0);
3780		trim_map_free(l2hdr->b_dev->l2ad_vdev, l2hdr->b_daddr,
3781		    hdr->b_size, 0);
3782		kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
3783		ARCSTAT_INCR(arcstat_l2_size, -buf_size);
3784		mutex_exit(&l2arc_buflist_mtx);
3785	}
3786}
3787
3788int
3789arc_released(arc_buf_t *buf)
3790{
3791	int released;
3792
3793	mutex_enter(&buf->b_evict_lock);
3794	released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
3795	mutex_exit(&buf->b_evict_lock);
3796	return (released);
3797}
3798
3799#ifdef ZFS_DEBUG
3800int
3801arc_referenced(arc_buf_t *buf)
3802{
3803	int referenced;
3804
3805	mutex_enter(&buf->b_evict_lock);
3806	referenced = (refcount_count(&buf->b_hdr->b_refcnt));
3807	mutex_exit(&buf->b_evict_lock);
3808	return (referenced);
3809}
3810#endif
3811
3812static void
3813arc_write_ready(zio_t *zio)
3814{
3815	arc_write_callback_t *callback = zio->io_private;
3816	arc_buf_t *buf = callback->awcb_buf;
3817	arc_buf_hdr_t *hdr = buf->b_hdr;
3818
3819	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
3820	callback->awcb_ready(zio, buf, callback->awcb_private);
3821
3822	/*
3823	 * If the IO is already in progress, then this is a re-write
3824	 * attempt, so we need to thaw and re-compute the cksum.
3825	 * It is the responsibility of the callback to handle the
3826	 * accounting for any re-write attempt.
3827	 */
3828	if (HDR_IO_IN_PROGRESS(hdr)) {
3829		mutex_enter(&hdr->b_freeze_lock);
3830		if (hdr->b_freeze_cksum != NULL) {
3831			kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
3832			hdr->b_freeze_cksum = NULL;
3833		}
3834		mutex_exit(&hdr->b_freeze_lock);
3835	}
3836	arc_cksum_compute(buf, B_FALSE);
3837	hdr->b_flags |= ARC_IO_IN_PROGRESS;
3838}
3839
3840/*
3841 * The SPA calls this callback for each physical write that happens on behalf
3842 * of a logical write.  See the comment in dbuf_write_physdone() for details.
3843 */
3844static void
3845arc_write_physdone(zio_t *zio)
3846{
3847	arc_write_callback_t *cb = zio->io_private;
3848	if (cb->awcb_physdone != NULL)
3849		cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
3850}
3851
3852static void
3853arc_write_done(zio_t *zio)
3854{
3855	arc_write_callback_t *callback = zio->io_private;
3856	arc_buf_t *buf = callback->awcb_buf;
3857	arc_buf_hdr_t *hdr = buf->b_hdr;
3858
3859	ASSERT(hdr->b_acb == NULL);
3860
3861	if (zio->io_error == 0) {
3862		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
3863			buf_discard_identity(hdr);
3864		} else {
3865			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3866			hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
3867			hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3868		}
3869	} else {
3870		ASSERT(BUF_EMPTY(hdr));
3871	}
3872
3873	/*
3874	 * If the block to be written was all-zero or compressed enough to be
3875	 * embedded in the BP, no write was performed so there will be no
3876	 * dva/birth/checksum.  The buffer must therefore remain anonymous
3877	 * (and uncached).
3878	 */
3879	if (!BUF_EMPTY(hdr)) {
3880		arc_buf_hdr_t *exists;
3881		kmutex_t *hash_lock;
3882
3883		ASSERT(zio->io_error == 0);
3884
3885		arc_cksum_verify(buf);
3886
3887		exists = buf_hash_insert(hdr, &hash_lock);
3888		if (exists) {
3889			/*
3890			 * This can only happen if we overwrite for
3891			 * sync-to-convergence, because we remove
3892			 * buffers from the hash table when we arc_free().
3893			 */
3894			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
3895				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3896					panic("bad overwrite, hdr=%p exists=%p",
3897					    (void *)hdr, (void *)exists);
3898				ASSERT(refcount_is_zero(&exists->b_refcnt));
3899				arc_change_state(arc_anon, exists, hash_lock);
3900				mutex_exit(hash_lock);
3901				arc_hdr_destroy(exists);
3902				exists = buf_hash_insert(hdr, &hash_lock);
3903				ASSERT3P(exists, ==, NULL);
3904			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
3905				/* nopwrite */
3906				ASSERT(zio->io_prop.zp_nopwrite);
3907				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3908					panic("bad nopwrite, hdr=%p exists=%p",
3909					    (void *)hdr, (void *)exists);
3910			} else {
3911				/* Dedup */
3912				ASSERT(hdr->b_datacnt == 1);
3913				ASSERT(hdr->b_state == arc_anon);
3914				ASSERT(BP_GET_DEDUP(zio->io_bp));
3915				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
3916			}
3917		}
3918		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3919		/* if it's not anon, we are doing a scrub */
3920		if (!exists && hdr->b_state == arc_anon)
3921			arc_access(hdr, hash_lock);
3922		mutex_exit(hash_lock);
3923	} else {
3924		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3925	}
3926
3927	ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3928	callback->awcb_done(zio, buf, callback->awcb_private);
3929
3930	kmem_free(callback, sizeof (arc_write_callback_t));
3931}
3932
3933zio_t *
3934arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
3935    blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
3936    const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone,
3937    arc_done_func_t *done, void *private, zio_priority_t priority,
3938    int zio_flags, const zbookmark_phys_t *zb)
3939{
3940	arc_buf_hdr_t *hdr = buf->b_hdr;
3941	arc_write_callback_t *callback;
3942	zio_t *zio;
3943
3944	ASSERT(ready != NULL);
3945	ASSERT(done != NULL);
3946	ASSERT(!HDR_IO_ERROR(hdr));
3947	ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
3948	ASSERT(hdr->b_acb == NULL);
3949	if (l2arc)
3950		hdr->b_flags |= ARC_L2CACHE;
3951	if (l2arc_compress)
3952		hdr->b_flags |= ARC_L2COMPRESS;
3953	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
3954	callback->awcb_ready = ready;
3955	callback->awcb_physdone = physdone;
3956	callback->awcb_done = done;
3957	callback->awcb_private = private;
3958	callback->awcb_buf = buf;
3959
3960	zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
3961	    arc_write_ready, arc_write_physdone, arc_write_done, callback,
3962	    priority, zio_flags, zb);
3963
3964	return (zio);
3965}
3966
3967static int
3968arc_memory_throttle(uint64_t reserve, uint64_t txg)
3969{
3970#ifdef _KERNEL
3971	uint64_t available_memory = ptob(freemem);
3972	static uint64_t page_load = 0;
3973	static uint64_t last_txg = 0;
3974
3975#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
3976	available_memory =
3977	    MIN(available_memory, ptob(vmem_size(heap_arena, VMEM_FREE)));
3978#endif
3979
3980	if (freemem > (uint64_t)physmem * arc_lotsfree_percent / 100)
3981		return (0);
3982
3983	if (txg > last_txg) {
3984		last_txg = txg;
3985		page_load = 0;
3986	}
3987	/*
3988	 * If we are in pageout, we know that memory is already tight,
3989	 * the arc is already going to be evicting, so we just want to
3990	 * continue to let page writes occur as quickly as possible.
3991	 */
3992	if (curproc == pageproc) {
3993		if (page_load > MAX(ptob(minfree), available_memory) / 4)
3994			return (SET_ERROR(ERESTART));
3995		/* Note: reserve is inflated, so we deflate */
3996		page_load += reserve / 8;
3997		return (0);
3998	} else if (page_load > 0 && arc_reclaim_needed()) {
3999		/* memory is low, delay before restarting */
4000		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
4001		return (SET_ERROR(EAGAIN));
4002	}
4003	page_load = 0;
4004#endif
4005	return (0);
4006}
4007
4008void
4009arc_tempreserve_clear(uint64_t reserve)
4010{
4011	atomic_add_64(&arc_tempreserve, -reserve);
4012	ASSERT((int64_t)arc_tempreserve >= 0);
4013}
4014
4015int
4016arc_tempreserve_space(uint64_t reserve, uint64_t txg)
4017{
4018	int error;
4019	uint64_t anon_size;
4020
4021	if (reserve > arc_c/4 && !arc_no_grow) {
4022		arc_c = MIN(arc_c_max, reserve * 4);
4023		DTRACE_PROBE1(arc__set_reserve, uint64_t, arc_c);
4024	}
4025	if (reserve > arc_c)
4026		return (SET_ERROR(ENOMEM));
4027
4028	/*
4029	 * Don't count loaned bufs as in flight dirty data to prevent long
4030	 * network delays from blocking transactions that are ready to be
4031	 * assigned to a txg.
4032	 */
4033	anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
4034
4035	/*
4036	 * Writes will, almost always, require additional memory allocations
4037	 * in order to compress/encrypt/etc the data.  We therefore need to
4038	 * make sure that there is sufficient available memory for this.
4039	 */
4040	error = arc_memory_throttle(reserve, txg);
4041	if (error != 0)
4042		return (error);
4043
4044	/*
4045	 * Throttle writes when the amount of dirty data in the cache
4046	 * gets too large.  We try to keep the cache less than half full
4047	 * of dirty blocks so that our sync times don't grow too large.
4048	 * Note: if two requests come in concurrently, we might let them
4049	 * both succeed, when one of them should fail.  Not a huge deal.
4050	 */
4051
4052	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
4053	    anon_size > arc_c / 4) {
4054		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
4055		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
4056		    arc_tempreserve>>10,
4057		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
4058		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
4059		    reserve>>10, arc_c>>10);
4060		return (SET_ERROR(ERESTART));
4061	}
4062	atomic_add_64(&arc_tempreserve, reserve);
4063	return (0);
4064}
4065
4066static kmutex_t arc_lowmem_lock;
4067#ifdef _KERNEL
4068static eventhandler_tag arc_event_lowmem = NULL;
4069
4070static void
4071arc_lowmem(void *arg __unused, int howto __unused)
4072{
4073
4074	/* Serialize access via arc_lowmem_lock. */
4075	mutex_enter(&arc_lowmem_lock);
4076	mutex_enter(&arc_reclaim_thr_lock);
4077	needfree = 1;
4078	DTRACE_PROBE(arc__needfree);
4079	cv_signal(&arc_reclaim_thr_cv);
4080
4081	/*
4082	 * It is unsafe to block here in arbitrary threads, because we can come
4083	 * here from ARC itself and may hold ARC locks and thus risk a deadlock
4084	 * with ARC reclaim thread.
4085	 */
4086	if (curproc == pageproc) {
4087		while (needfree)
4088			msleep(&needfree, &arc_reclaim_thr_lock, 0, "zfs:lowmem", 0);
4089	}
4090	mutex_exit(&arc_reclaim_thr_lock);
4091	mutex_exit(&arc_lowmem_lock);
4092}
4093#endif
4094
4095void
4096arc_init(void)
4097{
4098	int i, prefetch_tunable_set = 0;
4099
4100	mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
4101	cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
4102	mutex_init(&arc_lowmem_lock, NULL, MUTEX_DEFAULT, NULL);
4103
4104	/* Convert seconds to clock ticks */
4105	arc_min_prefetch_lifespan = 1 * hz;
4106
4107	/* Start out with 1/8 of all memory */
4108	arc_c = kmem_size() / 8;
4109
4110#ifdef sun
4111#ifdef _KERNEL
4112	/*
4113	 * On architectures where the physical memory can be larger
4114	 * than the addressable space (intel in 32-bit mode), we may
4115	 * need to limit the cache to 1/8 of VM size.
4116	 */
4117	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
4118#endif
4119#endif	/* sun */
4120	/* set min cache to 1/32 of all memory, or 16MB, whichever is more */
4121	arc_c_min = MAX(arc_c / 4, 64<<18);
4122	/* set max to 1/2 of all memory, or all but 1GB, whichever is more */
4123	if (arc_c * 8 >= 1<<30)
4124		arc_c_max = (arc_c * 8) - (1<<30);
4125	else
4126		arc_c_max = arc_c_min;
4127	arc_c_max = MAX(arc_c * 5, arc_c_max);
4128
4129#ifdef _KERNEL
4130	/*
4131	 * Allow the tunables to override our calculations if they are
4132	 * reasonable (ie. over 16MB)
4133	 */
4134	if (zfs_arc_max > 64<<18 && zfs_arc_max < kmem_size())
4135		arc_c_max = zfs_arc_max;
4136	if (zfs_arc_min > 64<<18 && zfs_arc_min <= arc_c_max)
4137		arc_c_min = zfs_arc_min;
4138#endif
4139
4140	arc_c = arc_c_max;
4141	arc_p = (arc_c >> 1);
4142
4143	/* limit meta-data to 1/4 of the arc capacity */
4144	arc_meta_limit = arc_c_max / 4;
4145
4146	/* Allow the tunable to override if it is reasonable */
4147	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
4148		arc_meta_limit = zfs_arc_meta_limit;
4149
4150	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
4151		arc_c_min = arc_meta_limit / 2;
4152
4153	if (zfs_arc_grow_retry > 0)
4154		arc_grow_retry = zfs_arc_grow_retry;
4155
4156	if (zfs_arc_shrink_shift > 0)
4157		arc_shrink_shift = zfs_arc_shrink_shift;
4158
4159	if (zfs_arc_p_min_shift > 0)
4160		arc_p_min_shift = zfs_arc_p_min_shift;
4161
4162	/* if kmem_flags are set, lets try to use less memory */
4163	if (kmem_debugging())
4164		arc_c = arc_c / 2;
4165	if (arc_c < arc_c_min)
4166		arc_c = arc_c_min;
4167
4168	zfs_arc_min = arc_c_min;
4169	zfs_arc_max = arc_c_max;
4170
4171	arc_anon = &ARC_anon;
4172	arc_mru = &ARC_mru;
4173	arc_mru_ghost = &ARC_mru_ghost;
4174	arc_mfu = &ARC_mfu;
4175	arc_mfu_ghost = &ARC_mfu_ghost;
4176	arc_l2c_only = &ARC_l2c_only;
4177	arc_size = 0;
4178
4179	for (i = 0; i < ARC_BUFC_NUMLISTS; i++) {
4180		mutex_init(&arc_anon->arcs_locks[i].arcs_lock,
4181		    NULL, MUTEX_DEFAULT, NULL);
4182		mutex_init(&arc_mru->arcs_locks[i].arcs_lock,
4183		    NULL, MUTEX_DEFAULT, NULL);
4184		mutex_init(&arc_mru_ghost->arcs_locks[i].arcs_lock,
4185		    NULL, MUTEX_DEFAULT, NULL);
4186		mutex_init(&arc_mfu->arcs_locks[i].arcs_lock,
4187		    NULL, MUTEX_DEFAULT, NULL);
4188		mutex_init(&arc_mfu_ghost->arcs_locks[i].arcs_lock,
4189		    NULL, MUTEX_DEFAULT, NULL);
4190		mutex_init(&arc_l2c_only->arcs_locks[i].arcs_lock,
4191		    NULL, MUTEX_DEFAULT, NULL);
4192
4193		list_create(&arc_mru->arcs_lists[i],
4194		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4195		list_create(&arc_mru_ghost->arcs_lists[i],
4196		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4197		list_create(&arc_mfu->arcs_lists[i],
4198		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4199		list_create(&arc_mfu_ghost->arcs_lists[i],
4200		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4201		list_create(&arc_mfu_ghost->arcs_lists[i],
4202		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4203		list_create(&arc_l2c_only->arcs_lists[i],
4204		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4205	}
4206
4207	buf_init();
4208
4209	arc_thread_exit = 0;
4210	arc_eviction_list = NULL;
4211	mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
4212	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
4213
4214	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
4215	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
4216
4217	if (arc_ksp != NULL) {
4218		arc_ksp->ks_data = &arc_stats;
4219		kstat_install(arc_ksp);
4220	}
4221
4222	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
4223	    TS_RUN, minclsyspri);
4224
4225#ifdef _KERNEL
4226	arc_event_lowmem = EVENTHANDLER_REGISTER(vm_lowmem, arc_lowmem, NULL,
4227	    EVENTHANDLER_PRI_FIRST);
4228#endif
4229
4230	arc_dead = FALSE;
4231	arc_warm = B_FALSE;
4232
4233	/*
4234	 * Calculate maximum amount of dirty data per pool.
4235	 *
4236	 * If it has been set by /etc/system, take that.
4237	 * Otherwise, use a percentage of physical memory defined by
4238	 * zfs_dirty_data_max_percent (default 10%) with a cap at
4239	 * zfs_dirty_data_max_max (default 4GB).
4240	 */
4241	if (zfs_dirty_data_max == 0) {
4242		zfs_dirty_data_max = ptob(physmem) *
4243		    zfs_dirty_data_max_percent / 100;
4244		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
4245		    zfs_dirty_data_max_max);
4246	}
4247
4248#ifdef _KERNEL
4249	if (TUNABLE_INT_FETCH("vfs.zfs.prefetch_disable", &zfs_prefetch_disable))
4250		prefetch_tunable_set = 1;
4251
4252#ifdef __i386__
4253	if (prefetch_tunable_set == 0) {
4254		printf("ZFS NOTICE: Prefetch is disabled by default on i386 "
4255		    "-- to enable,\n");
4256		printf("            add \"vfs.zfs.prefetch_disable=0\" "
4257		    "to /boot/loader.conf.\n");
4258		zfs_prefetch_disable = 1;
4259	}
4260#else
4261	if ((((uint64_t)physmem * PAGESIZE) < (1ULL << 32)) &&
4262	    prefetch_tunable_set == 0) {
4263		printf("ZFS NOTICE: Prefetch is disabled by default if less "
4264		    "than 4GB of RAM is present;\n"
4265		    "            to enable, add \"vfs.zfs.prefetch_disable=0\" "
4266		    "to /boot/loader.conf.\n");
4267		zfs_prefetch_disable = 1;
4268	}
4269#endif
4270	/* Warn about ZFS memory and address space requirements. */
4271	if (((uint64_t)physmem * PAGESIZE) < (256 + 128 + 64) * (1 << 20)) {
4272		printf("ZFS WARNING: Recommended minimum RAM size is 512MB; "
4273		    "expect unstable behavior.\n");
4274	}
4275	if (kmem_size() < 512 * (1 << 20)) {
4276		printf("ZFS WARNING: Recommended minimum kmem_size is 512MB; "
4277		    "expect unstable behavior.\n");
4278		printf("             Consider tuning vm.kmem_size and "
4279		    "vm.kmem_size_max\n");
4280		printf("             in /boot/loader.conf.\n");
4281	}
4282#endif
4283}
4284
4285void
4286arc_fini(void)
4287{
4288	int i;
4289
4290	mutex_enter(&arc_reclaim_thr_lock);
4291	arc_thread_exit = 1;
4292	cv_signal(&arc_reclaim_thr_cv);
4293	while (arc_thread_exit != 0)
4294		cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
4295	mutex_exit(&arc_reclaim_thr_lock);
4296
4297	arc_flush(NULL);
4298
4299	arc_dead = TRUE;
4300
4301	if (arc_ksp != NULL) {
4302		kstat_delete(arc_ksp);
4303		arc_ksp = NULL;
4304	}
4305
4306	mutex_destroy(&arc_eviction_mtx);
4307	mutex_destroy(&arc_reclaim_thr_lock);
4308	cv_destroy(&arc_reclaim_thr_cv);
4309
4310	for (i = 0; i < ARC_BUFC_NUMLISTS; i++) {
4311		list_destroy(&arc_mru->arcs_lists[i]);
4312		list_destroy(&arc_mru_ghost->arcs_lists[i]);
4313		list_destroy(&arc_mfu->arcs_lists[i]);
4314		list_destroy(&arc_mfu_ghost->arcs_lists[i]);
4315		list_destroy(&arc_l2c_only->arcs_lists[i]);
4316
4317		mutex_destroy(&arc_anon->arcs_locks[i].arcs_lock);
4318		mutex_destroy(&arc_mru->arcs_locks[i].arcs_lock);
4319		mutex_destroy(&arc_mru_ghost->arcs_locks[i].arcs_lock);
4320		mutex_destroy(&arc_mfu->arcs_locks[i].arcs_lock);
4321		mutex_destroy(&arc_mfu_ghost->arcs_locks[i].arcs_lock);
4322		mutex_destroy(&arc_l2c_only->arcs_locks[i].arcs_lock);
4323	}
4324
4325	buf_fini();
4326
4327	ASSERT(arc_loaned_bytes == 0);
4328
4329	mutex_destroy(&arc_lowmem_lock);
4330#ifdef _KERNEL
4331	if (arc_event_lowmem != NULL)
4332		EVENTHANDLER_DEREGISTER(vm_lowmem, arc_event_lowmem);
4333#endif
4334}
4335
4336/*
4337 * Level 2 ARC
4338 *
4339 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
4340 * It uses dedicated storage devices to hold cached data, which are populated
4341 * using large infrequent writes.  The main role of this cache is to boost
4342 * the performance of random read workloads.  The intended L2ARC devices
4343 * include short-stroked disks, solid state disks, and other media with
4344 * substantially faster read latency than disk.
4345 *
4346 *                 +-----------------------+
4347 *                 |         ARC           |
4348 *                 +-----------------------+
4349 *                    |         ^     ^
4350 *                    |         |     |
4351 *      l2arc_feed_thread()    arc_read()
4352 *                    |         |     |
4353 *                    |  l2arc read   |
4354 *                    V         |     |
4355 *               +---------------+    |
4356 *               |     L2ARC     |    |
4357 *               +---------------+    |
4358 *                   |    ^           |
4359 *          l2arc_write() |           |
4360 *                   |    |           |
4361 *                   V    |           |
4362 *                 +-------+      +-------+
4363 *                 | vdev  |      | vdev  |
4364 *                 | cache |      | cache |
4365 *                 +-------+      +-------+
4366 *                 +=========+     .-----.
4367 *                 :  L2ARC  :    |-_____-|
4368 *                 : devices :    | Disks |
4369 *                 +=========+    `-_____-'
4370 *
4371 * Read requests are satisfied from the following sources, in order:
4372 *
4373 *	1) ARC
4374 *	2) vdev cache of L2ARC devices
4375 *	3) L2ARC devices
4376 *	4) vdev cache of disks
4377 *	5) disks
4378 *
4379 * Some L2ARC device types exhibit extremely slow write performance.
4380 * To accommodate for this there are some significant differences between
4381 * the L2ARC and traditional cache design:
4382 *
4383 * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
4384 * the ARC behave as usual, freeing buffers and placing headers on ghost
4385 * lists.  The ARC does not send buffers to the L2ARC during eviction as
4386 * this would add inflated write latencies for all ARC memory pressure.
4387 *
4388 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
4389 * It does this by periodically scanning buffers from the eviction-end of
4390 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
4391 * not already there. It scans until a headroom of buffers is satisfied,
4392 * which itself is a buffer for ARC eviction. If a compressible buffer is
4393 * found during scanning and selected for writing to an L2ARC device, we
4394 * temporarily boost scanning headroom during the next scan cycle to make
4395 * sure we adapt to compression effects (which might significantly reduce
4396 * the data volume we write to L2ARC). The thread that does this is
4397 * l2arc_feed_thread(), illustrated below; example sizes are included to
4398 * provide a better sense of ratio than this diagram:
4399 *
4400 *	       head -->                        tail
4401 *	        +---------------------+----------+
4402 *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
4403 *	        +---------------------+----------+   |   o L2ARC eligible
4404 *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
4405 *	        +---------------------+----------+   |
4406 *	             15.9 Gbytes      ^ 32 Mbytes    |
4407 *	                           headroom          |
4408 *	                                      l2arc_feed_thread()
4409 *	                                             |
4410 *	                 l2arc write hand <--[oooo]--'
4411 *	                         |           8 Mbyte
4412 *	                         |          write max
4413 *	                         V
4414 *		  +==============================+
4415 *	L2ARC dev |####|#|###|###|    |####| ... |
4416 *	          +==============================+
4417 *	                     32 Gbytes
4418 *
4419 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
4420 * evicted, then the L2ARC has cached a buffer much sooner than it probably
4421 * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
4422 * safe to say that this is an uncommon case, since buffers at the end of
4423 * the ARC lists have moved there due to inactivity.
4424 *
4425 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
4426 * then the L2ARC simply misses copying some buffers.  This serves as a
4427 * pressure valve to prevent heavy read workloads from both stalling the ARC
4428 * with waits and clogging the L2ARC with writes.  This also helps prevent
4429 * the potential for the L2ARC to churn if it attempts to cache content too
4430 * quickly, such as during backups of the entire pool.
4431 *
4432 * 5. After system boot and before the ARC has filled main memory, there are
4433 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
4434 * lists can remain mostly static.  Instead of searching from tail of these
4435 * lists as pictured, the l2arc_feed_thread() will search from the list heads
4436 * for eligible buffers, greatly increasing its chance of finding them.
4437 *
4438 * The L2ARC device write speed is also boosted during this time so that
4439 * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
4440 * there are no L2ARC reads, and no fear of degrading read performance
4441 * through increased writes.
4442 *
4443 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
4444 * the vdev queue can aggregate them into larger and fewer writes.  Each
4445 * device is written to in a rotor fashion, sweeping writes through
4446 * available space then repeating.
4447 *
4448 * 7. The L2ARC does not store dirty content.  It never needs to flush
4449 * write buffers back to disk based storage.
4450 *
4451 * 8. If an ARC buffer is written (and dirtied) which also exists in the
4452 * L2ARC, the now stale L2ARC buffer is immediately dropped.
4453 *
4454 * The performance of the L2ARC can be tweaked by a number of tunables, which
4455 * may be necessary for different workloads:
4456 *
4457 *	l2arc_write_max		max write bytes per interval
4458 *	l2arc_write_boost	extra write bytes during device warmup
4459 *	l2arc_noprefetch	skip caching prefetched buffers
4460 *	l2arc_headroom		number of max device writes to precache
4461 *	l2arc_headroom_boost	when we find compressed buffers during ARC
4462 *				scanning, we multiply headroom by this
4463 *				percentage factor for the next scan cycle,
4464 *				since more compressed buffers are likely to
4465 *				be present
4466 *	l2arc_feed_secs		seconds between L2ARC writing
4467 *
4468 * Tunables may be removed or added as future performance improvements are
4469 * integrated, and also may become zpool properties.
4470 *
4471 * There are three key functions that control how the L2ARC warms up:
4472 *
4473 *	l2arc_write_eligible()	check if a buffer is eligible to cache
4474 *	l2arc_write_size()	calculate how much to write
4475 *	l2arc_write_interval()	calculate sleep delay between writes
4476 *
4477 * These three functions determine what to write, how much, and how quickly
4478 * to send writes.
4479 */
4480
4481static boolean_t
4482l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab)
4483{
4484	/*
4485	 * A buffer is *not* eligible for the L2ARC if it:
4486	 * 1. belongs to a different spa.
4487	 * 2. is already cached on the L2ARC.
4488	 * 3. has an I/O in progress (it may be an incomplete read).
4489	 * 4. is flagged not eligible (zfs property).
4490	 */
4491	if (ab->b_spa != spa_guid) {
4492		ARCSTAT_BUMP(arcstat_l2_write_spa_mismatch);
4493		return (B_FALSE);
4494	}
4495	if (ab->b_l2hdr != NULL) {
4496		ARCSTAT_BUMP(arcstat_l2_write_in_l2);
4497		return (B_FALSE);
4498	}
4499	if (HDR_IO_IN_PROGRESS(ab)) {
4500		ARCSTAT_BUMP(arcstat_l2_write_hdr_io_in_progress);
4501		return (B_FALSE);
4502	}
4503	if (!HDR_L2CACHE(ab)) {
4504		ARCSTAT_BUMP(arcstat_l2_write_not_cacheable);
4505		return (B_FALSE);
4506	}
4507
4508	return (B_TRUE);
4509}
4510
4511static uint64_t
4512l2arc_write_size(void)
4513{
4514	uint64_t size;
4515
4516	/*
4517	 * Make sure our globals have meaningful values in case the user
4518	 * altered them.
4519	 */
4520	size = l2arc_write_max;
4521	if (size == 0) {
4522		cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
4523		    "be greater than zero, resetting it to the default (%d)",
4524		    L2ARC_WRITE_SIZE);
4525		size = l2arc_write_max = L2ARC_WRITE_SIZE;
4526	}
4527
4528	if (arc_warm == B_FALSE)
4529		size += l2arc_write_boost;
4530
4531	return (size);
4532
4533}
4534
4535static clock_t
4536l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
4537{
4538	clock_t interval, next, now;
4539
4540	/*
4541	 * If the ARC lists are busy, increase our write rate; if the
4542	 * lists are stale, idle back.  This is achieved by checking
4543	 * how much we previously wrote - if it was more than half of
4544	 * what we wanted, schedule the next write much sooner.
4545	 */
4546	if (l2arc_feed_again && wrote > (wanted / 2))
4547		interval = (hz * l2arc_feed_min_ms) / 1000;
4548	else
4549		interval = hz * l2arc_feed_secs;
4550
4551	now = ddi_get_lbolt();
4552	next = MAX(now, MIN(now + interval, began + interval));
4553
4554	return (next);
4555}
4556
4557static void
4558l2arc_hdr_stat_add(void)
4559{
4560	ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE);
4561	ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
4562}
4563
4564static void
4565l2arc_hdr_stat_remove(void)
4566{
4567	ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE));
4568	ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
4569}
4570
4571/*
4572 * Cycle through L2ARC devices.  This is how L2ARC load balances.
4573 * If a device is returned, this also returns holding the spa config lock.
4574 */
4575static l2arc_dev_t *
4576l2arc_dev_get_next(void)
4577{
4578	l2arc_dev_t *first, *next = NULL;
4579
4580	/*
4581	 * Lock out the removal of spas (spa_namespace_lock), then removal
4582	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
4583	 * both locks will be dropped and a spa config lock held instead.
4584	 */
4585	mutex_enter(&spa_namespace_lock);
4586	mutex_enter(&l2arc_dev_mtx);
4587
4588	/* if there are no vdevs, there is nothing to do */
4589	if (l2arc_ndev == 0)
4590		goto out;
4591
4592	first = NULL;
4593	next = l2arc_dev_last;
4594	do {
4595		/* loop around the list looking for a non-faulted vdev */
4596		if (next == NULL) {
4597			next = list_head(l2arc_dev_list);
4598		} else {
4599			next = list_next(l2arc_dev_list, next);
4600			if (next == NULL)
4601				next = list_head(l2arc_dev_list);
4602		}
4603
4604		/* if we have come back to the start, bail out */
4605		if (first == NULL)
4606			first = next;
4607		else if (next == first)
4608			break;
4609
4610	} while (vdev_is_dead(next->l2ad_vdev));
4611
4612	/* if we were unable to find any usable vdevs, return NULL */
4613	if (vdev_is_dead(next->l2ad_vdev))
4614		next = NULL;
4615
4616	l2arc_dev_last = next;
4617
4618out:
4619	mutex_exit(&l2arc_dev_mtx);
4620
4621	/*
4622	 * Grab the config lock to prevent the 'next' device from being
4623	 * removed while we are writing to it.
4624	 */
4625	if (next != NULL)
4626		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
4627	mutex_exit(&spa_namespace_lock);
4628
4629	return (next);
4630}
4631
4632/*
4633 * Free buffers that were tagged for destruction.
4634 */
4635static void
4636l2arc_do_free_on_write()
4637{
4638	list_t *buflist;
4639	l2arc_data_free_t *df, *df_prev;
4640
4641	mutex_enter(&l2arc_free_on_write_mtx);
4642	buflist = l2arc_free_on_write;
4643
4644	for (df = list_tail(buflist); df; df = df_prev) {
4645		df_prev = list_prev(buflist, df);
4646		ASSERT(df->l2df_data != NULL);
4647		ASSERT(df->l2df_func != NULL);
4648		df->l2df_func(df->l2df_data, df->l2df_size);
4649		list_remove(buflist, df);
4650		kmem_free(df, sizeof (l2arc_data_free_t));
4651	}
4652
4653	mutex_exit(&l2arc_free_on_write_mtx);
4654}
4655
4656/*
4657 * A write to a cache device has completed.  Update all headers to allow
4658 * reads from these buffers to begin.
4659 */
4660static void
4661l2arc_write_done(zio_t *zio)
4662{
4663	l2arc_write_callback_t *cb;
4664	l2arc_dev_t *dev;
4665	list_t *buflist;
4666	arc_buf_hdr_t *head, *ab, *ab_prev;
4667	l2arc_buf_hdr_t *abl2;
4668	kmutex_t *hash_lock;
4669	int64_t bytes_dropped = 0;
4670
4671	cb = zio->io_private;
4672	ASSERT(cb != NULL);
4673	dev = cb->l2wcb_dev;
4674	ASSERT(dev != NULL);
4675	head = cb->l2wcb_head;
4676	ASSERT(head != NULL);
4677	buflist = dev->l2ad_buflist;
4678	ASSERT(buflist != NULL);
4679	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
4680	    l2arc_write_callback_t *, cb);
4681
4682	if (zio->io_error != 0)
4683		ARCSTAT_BUMP(arcstat_l2_writes_error);
4684
4685	mutex_enter(&l2arc_buflist_mtx);
4686
4687	/*
4688	 * All writes completed, or an error was hit.
4689	 */
4690	for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
4691		ab_prev = list_prev(buflist, ab);
4692		abl2 = ab->b_l2hdr;
4693
4694		/*
4695		 * Release the temporary compressed buffer as soon as possible.
4696		 */
4697		if (abl2->b_compress != ZIO_COMPRESS_OFF)
4698			l2arc_release_cdata_buf(ab);
4699
4700		hash_lock = HDR_LOCK(ab);
4701		if (!mutex_tryenter(hash_lock)) {
4702			/*
4703			 * This buffer misses out.  It may be in a stage
4704			 * of eviction.  Its ARC_L2_WRITING flag will be
4705			 * left set, denying reads to this buffer.
4706			 */
4707			ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
4708			continue;
4709		}
4710
4711		if (zio->io_error != 0) {
4712			/*
4713			 * Error - drop L2ARC entry.
4714			 */
4715			list_remove(buflist, ab);
4716			ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize);
4717			bytes_dropped += abl2->b_asize;
4718			ab->b_l2hdr = NULL;
4719			trim_map_free(abl2->b_dev->l2ad_vdev, abl2->b_daddr,
4720			    ab->b_size, 0);
4721			kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4722			ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4723		}
4724
4725		/*
4726		 * Allow ARC to begin reads to this L2ARC entry.
4727		 */
4728		ab->b_flags &= ~ARC_L2_WRITING;
4729
4730		mutex_exit(hash_lock);
4731	}
4732
4733	atomic_inc_64(&l2arc_writes_done);
4734	list_remove(buflist, head);
4735	kmem_cache_free(hdr_cache, head);
4736	mutex_exit(&l2arc_buflist_mtx);
4737
4738	vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
4739
4740	l2arc_do_free_on_write();
4741
4742	kmem_free(cb, sizeof (l2arc_write_callback_t));
4743}
4744
4745/*
4746 * A read to a cache device completed.  Validate buffer contents before
4747 * handing over to the regular ARC routines.
4748 */
4749static void
4750l2arc_read_done(zio_t *zio)
4751{
4752	l2arc_read_callback_t *cb;
4753	arc_buf_hdr_t *hdr;
4754	arc_buf_t *buf;
4755	kmutex_t *hash_lock;
4756	int equal;
4757
4758	ASSERT(zio->io_vd != NULL);
4759	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
4760
4761	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
4762
4763	cb = zio->io_private;
4764	ASSERT(cb != NULL);
4765	buf = cb->l2rcb_buf;
4766	ASSERT(buf != NULL);
4767
4768	hash_lock = HDR_LOCK(buf->b_hdr);
4769	mutex_enter(hash_lock);
4770	hdr = buf->b_hdr;
4771	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4772
4773	/*
4774	 * If the buffer was compressed, decompress it first.
4775	 */
4776	if (cb->l2rcb_compress != ZIO_COMPRESS_OFF)
4777		l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress);
4778	ASSERT(zio->io_data != NULL);
4779
4780	/*
4781	 * Check this survived the L2ARC journey.
4782	 */
4783	equal = arc_cksum_equal(buf);
4784	if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
4785		mutex_exit(hash_lock);
4786		zio->io_private = buf;
4787		zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
4788		zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
4789		arc_read_done(zio);
4790	} else {
4791		mutex_exit(hash_lock);
4792		/*
4793		 * Buffer didn't survive caching.  Increment stats and
4794		 * reissue to the original storage device.
4795		 */
4796		if (zio->io_error != 0) {
4797			ARCSTAT_BUMP(arcstat_l2_io_error);
4798		} else {
4799			zio->io_error = SET_ERROR(EIO);
4800		}
4801		if (!equal)
4802			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
4803
4804		/*
4805		 * If there's no waiter, issue an async i/o to the primary
4806		 * storage now.  If there *is* a waiter, the caller must
4807		 * issue the i/o in a context where it's OK to block.
4808		 */
4809		if (zio->io_waiter == NULL) {
4810			zio_t *pio = zio_unique_parent(zio);
4811
4812			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
4813
4814			zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
4815			    buf->b_data, zio->io_size, arc_read_done, buf,
4816			    zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
4817		}
4818	}
4819
4820	kmem_free(cb, sizeof (l2arc_read_callback_t));
4821}
4822
4823/*
4824 * This is the list priority from which the L2ARC will search for pages to
4825 * cache.  This is used within loops (0..3) to cycle through lists in the
4826 * desired order.  This order can have a significant effect on cache
4827 * performance.
4828 *
4829 * Currently the metadata lists are hit first, MFU then MRU, followed by
4830 * the data lists.  This function returns a locked list, and also returns
4831 * the lock pointer.
4832 */
4833static list_t *
4834l2arc_list_locked(int list_num, kmutex_t **lock)
4835{
4836	list_t *list = NULL;
4837	int idx;
4838
4839	ASSERT(list_num >= 0 && list_num < 2 * ARC_BUFC_NUMLISTS);
4840
4841	if (list_num < ARC_BUFC_NUMMETADATALISTS) {
4842		idx = list_num;
4843		list = &arc_mfu->arcs_lists[idx];
4844		*lock = ARCS_LOCK(arc_mfu, idx);
4845	} else if (list_num < ARC_BUFC_NUMMETADATALISTS * 2) {
4846		idx = list_num - ARC_BUFC_NUMMETADATALISTS;
4847		list = &arc_mru->arcs_lists[idx];
4848		*lock = ARCS_LOCK(arc_mru, idx);
4849	} else if (list_num < (ARC_BUFC_NUMMETADATALISTS * 2 +
4850		ARC_BUFC_NUMDATALISTS)) {
4851		idx = list_num - ARC_BUFC_NUMMETADATALISTS;
4852		list = &arc_mfu->arcs_lists[idx];
4853		*lock = ARCS_LOCK(arc_mfu, idx);
4854	} else {
4855		idx = list_num - ARC_BUFC_NUMLISTS;
4856		list = &arc_mru->arcs_lists[idx];
4857		*lock = ARCS_LOCK(arc_mru, idx);
4858	}
4859
4860	ASSERT(!(MUTEX_HELD(*lock)));
4861	mutex_enter(*lock);
4862	return (list);
4863}
4864
4865/*
4866 * Evict buffers from the device write hand to the distance specified in
4867 * bytes.  This distance may span populated buffers, it may span nothing.
4868 * This is clearing a region on the L2ARC device ready for writing.
4869 * If the 'all' boolean is set, every buffer is evicted.
4870 */
4871static void
4872l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
4873{
4874	list_t *buflist;
4875	l2arc_buf_hdr_t *abl2;
4876	arc_buf_hdr_t *ab, *ab_prev;
4877	kmutex_t *hash_lock;
4878	uint64_t taddr;
4879	int64_t bytes_evicted = 0;
4880
4881	buflist = dev->l2ad_buflist;
4882
4883	if (buflist == NULL)
4884		return;
4885
4886	if (!all && dev->l2ad_first) {
4887		/*
4888		 * This is the first sweep through the device.  There is
4889		 * nothing to evict.
4890		 */
4891		return;
4892	}
4893
4894	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
4895		/*
4896		 * When nearing the end of the device, evict to the end
4897		 * before the device write hand jumps to the start.
4898		 */
4899		taddr = dev->l2ad_end;
4900	} else {
4901		taddr = dev->l2ad_hand + distance;
4902	}
4903	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
4904	    uint64_t, taddr, boolean_t, all);
4905
4906top:
4907	mutex_enter(&l2arc_buflist_mtx);
4908	for (ab = list_tail(buflist); ab; ab = ab_prev) {
4909		ab_prev = list_prev(buflist, ab);
4910
4911		hash_lock = HDR_LOCK(ab);
4912		if (!mutex_tryenter(hash_lock)) {
4913			/*
4914			 * Missed the hash lock.  Retry.
4915			 */
4916			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
4917			mutex_exit(&l2arc_buflist_mtx);
4918			mutex_enter(hash_lock);
4919			mutex_exit(hash_lock);
4920			goto top;
4921		}
4922
4923		if (HDR_L2_WRITE_HEAD(ab)) {
4924			/*
4925			 * We hit a write head node.  Leave it for
4926			 * l2arc_write_done().
4927			 */
4928			list_remove(buflist, ab);
4929			mutex_exit(hash_lock);
4930			continue;
4931		}
4932
4933		if (!all && ab->b_l2hdr != NULL &&
4934		    (ab->b_l2hdr->b_daddr > taddr ||
4935		    ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
4936			/*
4937			 * We've evicted to the target address,
4938			 * or the end of the device.
4939			 */
4940			mutex_exit(hash_lock);
4941			break;
4942		}
4943
4944		if (HDR_FREE_IN_PROGRESS(ab)) {
4945			/*
4946			 * Already on the path to destruction.
4947			 */
4948			mutex_exit(hash_lock);
4949			continue;
4950		}
4951
4952		if (ab->b_state == arc_l2c_only) {
4953			ASSERT(!HDR_L2_READING(ab));
4954			/*
4955			 * This doesn't exist in the ARC.  Destroy.
4956			 * arc_hdr_destroy() will call list_remove()
4957			 * and decrement arcstat_l2_size.
4958			 */
4959			arc_change_state(arc_anon, ab, hash_lock);
4960			arc_hdr_destroy(ab);
4961		} else {
4962			/*
4963			 * Invalidate issued or about to be issued
4964			 * reads, since we may be about to write
4965			 * over this location.
4966			 */
4967			if (HDR_L2_READING(ab)) {
4968				ARCSTAT_BUMP(arcstat_l2_evict_reading);
4969				ab->b_flags |= ARC_L2_EVICTED;
4970			}
4971
4972			/*
4973			 * Tell ARC this no longer exists in L2ARC.
4974			 */
4975			if (ab->b_l2hdr != NULL) {
4976				abl2 = ab->b_l2hdr;
4977				ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize);
4978				bytes_evicted += abl2->b_asize;
4979				ab->b_l2hdr = NULL;
4980				kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4981				ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4982			}
4983			list_remove(buflist, ab);
4984
4985			/*
4986			 * This may have been leftover after a
4987			 * failed write.
4988			 */
4989			ab->b_flags &= ~ARC_L2_WRITING;
4990		}
4991		mutex_exit(hash_lock);
4992	}
4993	mutex_exit(&l2arc_buflist_mtx);
4994
4995	vdev_space_update(dev->l2ad_vdev, -bytes_evicted, 0, 0);
4996	dev->l2ad_evict = taddr;
4997}
4998
4999/*
5000 * Find and write ARC buffers to the L2ARC device.
5001 *
5002 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
5003 * for reading until they have completed writing.
5004 * The headroom_boost is an in-out parameter used to maintain headroom boost
5005 * state between calls to this function.
5006 *
5007 * Returns the number of bytes actually written (which may be smaller than
5008 * the delta by which the device hand has changed due to alignment).
5009 */
5010static uint64_t
5011l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz,
5012    boolean_t *headroom_boost)
5013{
5014	arc_buf_hdr_t *ab, *ab_prev, *head;
5015	list_t *list;
5016	uint64_t write_asize, write_psize, write_sz, headroom,
5017	    buf_compress_minsz;
5018	void *buf_data;
5019	kmutex_t *list_lock;
5020	boolean_t full;
5021	l2arc_write_callback_t *cb;
5022	zio_t *pio, *wzio;
5023	uint64_t guid = spa_load_guid(spa);
5024	const boolean_t do_headroom_boost = *headroom_boost;
5025	int try;
5026
5027	ASSERT(dev->l2ad_vdev != NULL);
5028
5029	/* Lower the flag now, we might want to raise it again later. */
5030	*headroom_boost = B_FALSE;
5031
5032	pio = NULL;
5033	write_sz = write_asize = write_psize = 0;
5034	full = B_FALSE;
5035	head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
5036	head->b_flags |= ARC_L2_WRITE_HEAD;
5037
5038	ARCSTAT_BUMP(arcstat_l2_write_buffer_iter);
5039	/*
5040	 * We will want to try to compress buffers that are at least 2x the
5041	 * device sector size.
5042	 */
5043	buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift;
5044
5045	/*
5046	 * Copy buffers for L2ARC writing.
5047	 */
5048	mutex_enter(&l2arc_buflist_mtx);
5049	for (try = 0; try < 2 * ARC_BUFC_NUMLISTS; try++) {
5050		uint64_t passed_sz = 0;
5051
5052		list = l2arc_list_locked(try, &list_lock);
5053		ARCSTAT_BUMP(arcstat_l2_write_buffer_list_iter);
5054
5055		/*
5056		 * L2ARC fast warmup.
5057		 *
5058		 * Until the ARC is warm and starts to evict, read from the
5059		 * head of the ARC lists rather than the tail.
5060		 */
5061		if (arc_warm == B_FALSE)
5062			ab = list_head(list);
5063		else
5064			ab = list_tail(list);
5065		if (ab == NULL)
5066			ARCSTAT_BUMP(arcstat_l2_write_buffer_list_null_iter);
5067
5068		headroom = target_sz * l2arc_headroom;
5069		if (do_headroom_boost)
5070			headroom = (headroom * l2arc_headroom_boost) / 100;
5071
5072		for (; ab; ab = ab_prev) {
5073			l2arc_buf_hdr_t *l2hdr;
5074			kmutex_t *hash_lock;
5075			uint64_t buf_sz;
5076
5077			if (arc_warm == B_FALSE)
5078				ab_prev = list_next(list, ab);
5079			else
5080				ab_prev = list_prev(list, ab);
5081			ARCSTAT_INCR(arcstat_l2_write_buffer_bytes_scanned, ab->b_size);
5082
5083			hash_lock = HDR_LOCK(ab);
5084			if (!mutex_tryenter(hash_lock)) {
5085				ARCSTAT_BUMP(arcstat_l2_write_trylock_fail);
5086				/*
5087				 * Skip this buffer rather than waiting.
5088				 */
5089				continue;
5090			}
5091
5092			passed_sz += ab->b_size;
5093			if (passed_sz > headroom) {
5094				/*
5095				 * Searched too far.
5096				 */
5097				mutex_exit(hash_lock);
5098				ARCSTAT_BUMP(arcstat_l2_write_passed_headroom);
5099				break;
5100			}
5101
5102			if (!l2arc_write_eligible(guid, ab)) {
5103				mutex_exit(hash_lock);
5104				continue;
5105			}
5106
5107			if ((write_sz + ab->b_size) > target_sz) {
5108				full = B_TRUE;
5109				mutex_exit(hash_lock);
5110				ARCSTAT_BUMP(arcstat_l2_write_full);
5111				break;
5112			}
5113
5114			if (pio == NULL) {
5115				/*
5116				 * Insert a dummy header on the buflist so
5117				 * l2arc_write_done() can find where the
5118				 * write buffers begin without searching.
5119				 */
5120				list_insert_head(dev->l2ad_buflist, head);
5121
5122				cb = kmem_alloc(
5123				    sizeof (l2arc_write_callback_t), KM_SLEEP);
5124				cb->l2wcb_dev = dev;
5125				cb->l2wcb_head = head;
5126				pio = zio_root(spa, l2arc_write_done, cb,
5127				    ZIO_FLAG_CANFAIL);
5128				ARCSTAT_BUMP(arcstat_l2_write_pios);
5129			}
5130
5131			/*
5132			 * Create and add a new L2ARC header.
5133			 */
5134			l2hdr = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP);
5135			l2hdr->b_dev = dev;
5136			ab->b_flags |= ARC_L2_WRITING;
5137
5138			/*
5139			 * Temporarily stash the data buffer in b_tmp_cdata.
5140			 * The subsequent write step will pick it up from
5141			 * there. This is because can't access ab->b_buf
5142			 * without holding the hash_lock, which we in turn
5143			 * can't access without holding the ARC list locks
5144			 * (which we want to avoid during compression/writing).
5145			 */
5146			l2hdr->b_compress = ZIO_COMPRESS_OFF;
5147			l2hdr->b_asize = ab->b_size;
5148			l2hdr->b_tmp_cdata = ab->b_buf->b_data;
5149
5150			buf_sz = ab->b_size;
5151			ab->b_l2hdr = l2hdr;
5152
5153			list_insert_head(dev->l2ad_buflist, ab);
5154
5155			/*
5156			 * Compute and store the buffer cksum before
5157			 * writing.  On debug the cksum is verified first.
5158			 */
5159			arc_cksum_verify(ab->b_buf);
5160			arc_cksum_compute(ab->b_buf, B_TRUE);
5161
5162			mutex_exit(hash_lock);
5163
5164			write_sz += buf_sz;
5165		}
5166
5167		mutex_exit(list_lock);
5168
5169		if (full == B_TRUE)
5170			break;
5171	}
5172
5173	/* No buffers selected for writing? */
5174	if (pio == NULL) {
5175		ASSERT0(write_sz);
5176		mutex_exit(&l2arc_buflist_mtx);
5177		kmem_cache_free(hdr_cache, head);
5178		return (0);
5179	}
5180
5181	/*
5182	 * Now start writing the buffers. We're starting at the write head
5183	 * and work backwards, retracing the course of the buffer selector
5184	 * loop above.
5185	 */
5186	for (ab = list_prev(dev->l2ad_buflist, head); ab;
5187	    ab = list_prev(dev->l2ad_buflist, ab)) {
5188		l2arc_buf_hdr_t *l2hdr;
5189		uint64_t buf_sz;
5190
5191		/*
5192		 * We shouldn't need to lock the buffer here, since we flagged
5193		 * it as ARC_L2_WRITING in the previous step, but we must take
5194		 * care to only access its L2 cache parameters. In particular,
5195		 * ab->b_buf may be invalid by now due to ARC eviction.
5196		 */
5197		l2hdr = ab->b_l2hdr;
5198		l2hdr->b_daddr = dev->l2ad_hand;
5199
5200		if ((ab->b_flags & ARC_L2COMPRESS) &&
5201		    l2hdr->b_asize >= buf_compress_minsz) {
5202			if (l2arc_compress_buf(l2hdr)) {
5203				/*
5204				 * If compression succeeded, enable headroom
5205				 * boost on the next scan cycle.
5206				 */
5207				*headroom_boost = B_TRUE;
5208			}
5209		}
5210
5211		/*
5212		 * Pick up the buffer data we had previously stashed away
5213		 * (and now potentially also compressed).
5214		 */
5215		buf_data = l2hdr->b_tmp_cdata;
5216		buf_sz = l2hdr->b_asize;
5217
5218		/* Compression may have squashed the buffer to zero length. */
5219		if (buf_sz != 0) {
5220			uint64_t buf_p_sz;
5221
5222			wzio = zio_write_phys(pio, dev->l2ad_vdev,
5223			    dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
5224			    NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
5225			    ZIO_FLAG_CANFAIL, B_FALSE);
5226
5227			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
5228			    zio_t *, wzio);
5229			(void) zio_nowait(wzio);
5230
5231			write_asize += buf_sz;
5232			/*
5233			 * Keep the clock hand suitably device-aligned.
5234			 */
5235			buf_p_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
5236			write_psize += buf_p_sz;
5237			dev->l2ad_hand += buf_p_sz;
5238		}
5239	}
5240
5241	mutex_exit(&l2arc_buflist_mtx);
5242
5243	ASSERT3U(write_asize, <=, target_sz);
5244	ARCSTAT_BUMP(arcstat_l2_writes_sent);
5245	ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
5246	ARCSTAT_INCR(arcstat_l2_size, write_sz);
5247	ARCSTAT_INCR(arcstat_l2_asize, write_asize);
5248	vdev_space_update(dev->l2ad_vdev, write_asize, 0, 0);
5249
5250	/*
5251	 * Bump device hand to the device start if it is approaching the end.
5252	 * l2arc_evict() will already have evicted ahead for this case.
5253	 */
5254	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
5255		dev->l2ad_hand = dev->l2ad_start;
5256		dev->l2ad_evict = dev->l2ad_start;
5257		dev->l2ad_first = B_FALSE;
5258	}
5259
5260	dev->l2ad_writing = B_TRUE;
5261	(void) zio_wait(pio);
5262	dev->l2ad_writing = B_FALSE;
5263
5264	return (write_asize);
5265}
5266
5267/*
5268 * Compresses an L2ARC buffer.
5269 * The data to be compressed must be prefilled in l2hdr->b_tmp_cdata and its
5270 * size in l2hdr->b_asize. This routine tries to compress the data and
5271 * depending on the compression result there are three possible outcomes:
5272 * *) The buffer was incompressible. The original l2hdr contents were left
5273 *    untouched and are ready for writing to an L2 device.
5274 * *) The buffer was all-zeros, so there is no need to write it to an L2
5275 *    device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is
5276 *    set to zero and b_compress is set to ZIO_COMPRESS_EMPTY.
5277 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary
5278 *    data buffer which holds the compressed data to be written, and b_asize
5279 *    tells us how much data there is. b_compress is set to the appropriate
5280 *    compression algorithm. Once writing is done, invoke
5281 *    l2arc_release_cdata_buf on this l2hdr to free this temporary buffer.
5282 *
5283 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the
5284 * buffer was incompressible).
5285 */
5286static boolean_t
5287l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr)
5288{
5289	void *cdata;
5290	size_t csize, len, rounded;
5291
5292	ASSERT(l2hdr->b_compress == ZIO_COMPRESS_OFF);
5293	ASSERT(l2hdr->b_tmp_cdata != NULL);
5294
5295	len = l2hdr->b_asize;
5296	cdata = zio_data_buf_alloc(len);
5297	csize = zio_compress_data(ZIO_COMPRESS_LZ4, l2hdr->b_tmp_cdata,
5298	    cdata, l2hdr->b_asize);
5299
5300	rounded = P2ROUNDUP(csize, (size_t)SPA_MINBLOCKSIZE);
5301	if (rounded > csize) {
5302		bzero((char *)cdata + csize, rounded - csize);
5303		csize = rounded;
5304	}
5305
5306	if (csize == 0) {
5307		/* zero block, indicate that there's nothing to write */
5308		zio_data_buf_free(cdata, len);
5309		l2hdr->b_compress = ZIO_COMPRESS_EMPTY;
5310		l2hdr->b_asize = 0;
5311		l2hdr->b_tmp_cdata = NULL;
5312		ARCSTAT_BUMP(arcstat_l2_compress_zeros);
5313		return (B_TRUE);
5314	} else if (csize > 0 && csize < len) {
5315		/*
5316		 * Compression succeeded, we'll keep the cdata around for
5317		 * writing and release it afterwards.
5318		 */
5319		l2hdr->b_compress = ZIO_COMPRESS_LZ4;
5320		l2hdr->b_asize = csize;
5321		l2hdr->b_tmp_cdata = cdata;
5322		ARCSTAT_BUMP(arcstat_l2_compress_successes);
5323		return (B_TRUE);
5324	} else {
5325		/*
5326		 * Compression failed, release the compressed buffer.
5327		 * l2hdr will be left unmodified.
5328		 */
5329		zio_data_buf_free(cdata, len);
5330		ARCSTAT_BUMP(arcstat_l2_compress_failures);
5331		return (B_FALSE);
5332	}
5333}
5334
5335/*
5336 * Decompresses a zio read back from an l2arc device. On success, the
5337 * underlying zio's io_data buffer is overwritten by the uncompressed
5338 * version. On decompression error (corrupt compressed stream), the
5339 * zio->io_error value is set to signal an I/O error.
5340 *
5341 * Please note that the compressed data stream is not checksummed, so
5342 * if the underlying device is experiencing data corruption, we may feed
5343 * corrupt data to the decompressor, so the decompressor needs to be
5344 * able to handle this situation (LZ4 does).
5345 */
5346static void
5347l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c)
5348{
5349	ASSERT(L2ARC_IS_VALID_COMPRESS(c));
5350
5351	if (zio->io_error != 0) {
5352		/*
5353		 * An io error has occured, just restore the original io
5354		 * size in preparation for a main pool read.
5355		 */
5356		zio->io_orig_size = zio->io_size = hdr->b_size;
5357		return;
5358	}
5359
5360	if (c == ZIO_COMPRESS_EMPTY) {
5361		/*
5362		 * An empty buffer results in a null zio, which means we
5363		 * need to fill its io_data after we're done restoring the
5364		 * buffer's contents.
5365		 */
5366		ASSERT(hdr->b_buf != NULL);
5367		bzero(hdr->b_buf->b_data, hdr->b_size);
5368		zio->io_data = zio->io_orig_data = hdr->b_buf->b_data;
5369	} else {
5370		ASSERT(zio->io_data != NULL);
5371		/*
5372		 * We copy the compressed data from the start of the arc buffer
5373		 * (the zio_read will have pulled in only what we need, the
5374		 * rest is garbage which we will overwrite at decompression)
5375		 * and then decompress back to the ARC data buffer. This way we
5376		 * can minimize copying by simply decompressing back over the
5377		 * original compressed data (rather than decompressing to an
5378		 * aux buffer and then copying back the uncompressed buffer,
5379		 * which is likely to be much larger).
5380		 */
5381		uint64_t csize;
5382		void *cdata;
5383
5384		csize = zio->io_size;
5385		cdata = zio_data_buf_alloc(csize);
5386		bcopy(zio->io_data, cdata, csize);
5387		if (zio_decompress_data(c, cdata, zio->io_data, csize,
5388		    hdr->b_size) != 0)
5389			zio->io_error = EIO;
5390		zio_data_buf_free(cdata, csize);
5391	}
5392
5393	/* Restore the expected uncompressed IO size. */
5394	zio->io_orig_size = zio->io_size = hdr->b_size;
5395}
5396
5397/*
5398 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure.
5399 * This buffer serves as a temporary holder of compressed data while
5400 * the buffer entry is being written to an l2arc device. Once that is
5401 * done, we can dispose of it.
5402 */
5403static void
5404l2arc_release_cdata_buf(arc_buf_hdr_t *ab)
5405{
5406	l2arc_buf_hdr_t *l2hdr = ab->b_l2hdr;
5407
5408	if (l2hdr->b_compress == ZIO_COMPRESS_LZ4) {
5409		/*
5410		 * If the data was compressed, then we've allocated a
5411		 * temporary buffer for it, so now we need to release it.
5412		 */
5413		ASSERT(l2hdr->b_tmp_cdata != NULL);
5414		zio_data_buf_free(l2hdr->b_tmp_cdata, ab->b_size);
5415	}
5416	l2hdr->b_tmp_cdata = NULL;
5417}
5418
5419/*
5420 * This thread feeds the L2ARC at regular intervals.  This is the beating
5421 * heart of the L2ARC.
5422 */
5423static void
5424l2arc_feed_thread(void *dummy __unused)
5425{
5426	callb_cpr_t cpr;
5427	l2arc_dev_t *dev;
5428	spa_t *spa;
5429	uint64_t size, wrote;
5430	clock_t begin, next = ddi_get_lbolt();
5431	boolean_t headroom_boost = B_FALSE;
5432
5433	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
5434
5435	mutex_enter(&l2arc_feed_thr_lock);
5436
5437	while (l2arc_thread_exit == 0) {
5438		CALLB_CPR_SAFE_BEGIN(&cpr);
5439		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
5440		    next - ddi_get_lbolt());
5441		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
5442		next = ddi_get_lbolt() + hz;
5443
5444		/*
5445		 * Quick check for L2ARC devices.
5446		 */
5447		mutex_enter(&l2arc_dev_mtx);
5448		if (l2arc_ndev == 0) {
5449			mutex_exit(&l2arc_dev_mtx);
5450			continue;
5451		}
5452		mutex_exit(&l2arc_dev_mtx);
5453		begin = ddi_get_lbolt();
5454
5455		/*
5456		 * This selects the next l2arc device to write to, and in
5457		 * doing so the next spa to feed from: dev->l2ad_spa.   This
5458		 * will return NULL if there are now no l2arc devices or if
5459		 * they are all faulted.
5460		 *
5461		 * If a device is returned, its spa's config lock is also
5462		 * held to prevent device removal.  l2arc_dev_get_next()
5463		 * will grab and release l2arc_dev_mtx.
5464		 */
5465		if ((dev = l2arc_dev_get_next()) == NULL)
5466			continue;
5467
5468		spa = dev->l2ad_spa;
5469		ASSERT(spa != NULL);
5470
5471		/*
5472		 * If the pool is read-only then force the feed thread to
5473		 * sleep a little longer.
5474		 */
5475		if (!spa_writeable(spa)) {
5476			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
5477			spa_config_exit(spa, SCL_L2ARC, dev);
5478			continue;
5479		}
5480
5481		/*
5482		 * Avoid contributing to memory pressure.
5483		 */
5484		if (arc_reclaim_needed()) {
5485			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
5486			spa_config_exit(spa, SCL_L2ARC, dev);
5487			continue;
5488		}
5489
5490		ARCSTAT_BUMP(arcstat_l2_feeds);
5491
5492		size = l2arc_write_size();
5493
5494		/*
5495		 * Evict L2ARC buffers that will be overwritten.
5496		 */
5497		l2arc_evict(dev, size, B_FALSE);
5498
5499		/*
5500		 * Write ARC buffers.
5501		 */
5502		wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost);
5503
5504		/*
5505		 * Calculate interval between writes.
5506		 */
5507		next = l2arc_write_interval(begin, size, wrote);
5508		spa_config_exit(spa, SCL_L2ARC, dev);
5509	}
5510
5511	l2arc_thread_exit = 0;
5512	cv_broadcast(&l2arc_feed_thr_cv);
5513	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
5514	thread_exit();
5515}
5516
5517boolean_t
5518l2arc_vdev_present(vdev_t *vd)
5519{
5520	l2arc_dev_t *dev;
5521
5522	mutex_enter(&l2arc_dev_mtx);
5523	for (dev = list_head(l2arc_dev_list); dev != NULL;
5524	    dev = list_next(l2arc_dev_list, dev)) {
5525		if (dev->l2ad_vdev == vd)
5526			break;
5527	}
5528	mutex_exit(&l2arc_dev_mtx);
5529
5530	return (dev != NULL);
5531}
5532
5533/*
5534 * Add a vdev for use by the L2ARC.  By this point the spa has already
5535 * validated the vdev and opened it.
5536 */
5537void
5538l2arc_add_vdev(spa_t *spa, vdev_t *vd)
5539{
5540	l2arc_dev_t *adddev;
5541
5542	ASSERT(!l2arc_vdev_present(vd));
5543
5544	vdev_ashift_optimize(vd);
5545
5546	/*
5547	 * Create a new l2arc device entry.
5548	 */
5549	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
5550	adddev->l2ad_spa = spa;
5551	adddev->l2ad_vdev = vd;
5552	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
5553	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
5554	adddev->l2ad_hand = adddev->l2ad_start;
5555	adddev->l2ad_evict = adddev->l2ad_start;
5556	adddev->l2ad_first = B_TRUE;
5557	adddev->l2ad_writing = B_FALSE;
5558
5559	/*
5560	 * This is a list of all ARC buffers that are still valid on the
5561	 * device.
5562	 */
5563	adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
5564	list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
5565	    offsetof(arc_buf_hdr_t, b_l2node));
5566
5567	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
5568
5569	/*
5570	 * Add device to global list
5571	 */
5572	mutex_enter(&l2arc_dev_mtx);
5573	list_insert_head(l2arc_dev_list, adddev);
5574	atomic_inc_64(&l2arc_ndev);
5575	mutex_exit(&l2arc_dev_mtx);
5576}
5577
5578/*
5579 * Remove a vdev from the L2ARC.
5580 */
5581void
5582l2arc_remove_vdev(vdev_t *vd)
5583{
5584	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
5585
5586	/*
5587	 * Find the device by vdev
5588	 */
5589	mutex_enter(&l2arc_dev_mtx);
5590	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
5591		nextdev = list_next(l2arc_dev_list, dev);
5592		if (vd == dev->l2ad_vdev) {
5593			remdev = dev;
5594			break;
5595		}
5596	}
5597	ASSERT(remdev != NULL);
5598
5599	/*
5600	 * Remove device from global list
5601	 */
5602	list_remove(l2arc_dev_list, remdev);
5603	l2arc_dev_last = NULL;		/* may have been invalidated */
5604	atomic_dec_64(&l2arc_ndev);
5605	mutex_exit(&l2arc_dev_mtx);
5606
5607	/*
5608	 * Clear all buflists and ARC references.  L2ARC device flush.
5609	 */
5610	l2arc_evict(remdev, 0, B_TRUE);
5611	list_destroy(remdev->l2ad_buflist);
5612	kmem_free(remdev->l2ad_buflist, sizeof (list_t));
5613	kmem_free(remdev, sizeof (l2arc_dev_t));
5614}
5615
5616void
5617l2arc_init(void)
5618{
5619	l2arc_thread_exit = 0;
5620	l2arc_ndev = 0;
5621	l2arc_writes_sent = 0;
5622	l2arc_writes_done = 0;
5623
5624	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
5625	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
5626	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
5627	mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
5628	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
5629
5630	l2arc_dev_list = &L2ARC_dev_list;
5631	l2arc_free_on_write = &L2ARC_free_on_write;
5632	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
5633	    offsetof(l2arc_dev_t, l2ad_node));
5634	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
5635	    offsetof(l2arc_data_free_t, l2df_list_node));
5636}
5637
5638void
5639l2arc_fini(void)
5640{
5641	/*
5642	 * This is called from dmu_fini(), which is called from spa_fini();
5643	 * Because of this, we can assume that all l2arc devices have
5644	 * already been removed when the pools themselves were removed.
5645	 */
5646
5647	l2arc_do_free_on_write();
5648
5649	mutex_destroy(&l2arc_feed_thr_lock);
5650	cv_destroy(&l2arc_feed_thr_cv);
5651	mutex_destroy(&l2arc_dev_mtx);
5652	mutex_destroy(&l2arc_buflist_mtx);
5653	mutex_destroy(&l2arc_free_on_write_mtx);
5654
5655	list_destroy(l2arc_dev_list);
5656	list_destroy(l2arc_free_on_write);
5657}
5658
5659void
5660l2arc_start(void)
5661{
5662	if (!(spa_mode_global & FWRITE))
5663		return;
5664
5665	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
5666	    TS_RUN, minclsyspri);
5667}
5668
5669void
5670l2arc_stop(void)
5671{
5672	if (!(spa_mode_global & FWRITE))
5673		return;
5674
5675	mutex_enter(&l2arc_feed_thr_lock);
5676	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
5677	l2arc_thread_exit = 1;
5678	while (l2arc_thread_exit != 0)
5679		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
5680	mutex_exit(&l2arc_feed_thr_lock);
5681}
5682