arc.c revision 269732
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
25 * Copyright 2014 Nexenta Systems, Inc.  All rights reserved.
26 */
27
28/*
29 * DVA-based Adjustable Replacement Cache
30 *
31 * While much of the theory of operation used here is
32 * based on the self-tuning, low overhead replacement cache
33 * presented by Megiddo and Modha at FAST 2003, there are some
34 * significant differences:
35 *
36 * 1. The Megiddo and Modha model assumes any page is evictable.
37 * Pages in its cache cannot be "locked" into memory.  This makes
38 * the eviction algorithm simple: evict the last page in the list.
39 * This also make the performance characteristics easy to reason
40 * about.  Our cache is not so simple.  At any given moment, some
41 * subset of the blocks in the cache are un-evictable because we
42 * have handed out a reference to them.  Blocks are only evictable
43 * when there are no external references active.  This makes
44 * eviction far more problematic:  we choose to evict the evictable
45 * blocks that are the "lowest" in the list.
46 *
47 * There are times when it is not possible to evict the requested
48 * space.  In these circumstances we are unable to adjust the cache
49 * size.  To prevent the cache growing unbounded at these times we
50 * implement a "cache throttle" that slows the flow of new data
51 * into the cache until we can make space available.
52 *
53 * 2. The Megiddo and Modha model assumes a fixed cache size.
54 * Pages are evicted when the cache is full and there is a cache
55 * miss.  Our model has a variable sized cache.  It grows with
56 * high use, but also tries to react to memory pressure from the
57 * operating system: decreasing its size when system memory is
58 * tight.
59 *
60 * 3. The Megiddo and Modha model assumes a fixed page size. All
61 * elements of the cache are therefore exactly the same size.  So
62 * when adjusting the cache size following a cache miss, its simply
63 * a matter of choosing a single page to evict.  In our model, we
64 * have variable sized cache blocks (rangeing from 512 bytes to
65 * 128K bytes).  We therefore choose a set of blocks to evict to make
66 * space for a cache miss that approximates as closely as possible
67 * the space used by the new block.
68 *
69 * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
70 * by N. Megiddo & D. Modha, FAST 2003
71 */
72
73/*
74 * The locking model:
75 *
76 * A new reference to a cache buffer can be obtained in two
77 * ways: 1) via a hash table lookup using the DVA as a key,
78 * or 2) via one of the ARC lists.  The arc_read() interface
79 * uses method 1, while the internal arc algorithms for
80 * adjusting the cache use method 2.  We therefore provide two
81 * types of locks: 1) the hash table lock array, and 2) the
82 * arc list locks.
83 *
84 * Buffers do not have their own mutexs, rather they rely on the
85 * hash table mutexs for the bulk of their protection (i.e. most
86 * fields in the arc_buf_hdr_t are protected by these mutexs).
87 *
88 * buf_hash_find() returns the appropriate mutex (held) when it
89 * locates the requested buffer in the hash table.  It returns
90 * NULL for the mutex if the buffer was not in the table.
91 *
92 * buf_hash_remove() expects the appropriate hash mutex to be
93 * already held before it is invoked.
94 *
95 * Each arc state also has a mutex which is used to protect the
96 * buffer list associated with the state.  When attempting to
97 * obtain a hash table lock while holding an arc list lock you
98 * must use: mutex_tryenter() to avoid deadlock.  Also note that
99 * the active state mutex must be held before the ghost state mutex.
100 *
101 * Arc buffers may have an associated eviction callback function.
102 * This function will be invoked prior to removing the buffer (e.g.
103 * in arc_do_user_evicts()).  Note however that the data associated
104 * with the buffer may be evicted prior to the callback.  The callback
105 * must be made with *no locks held* (to prevent deadlock).  Additionally,
106 * the users of callbacks must ensure that their private data is
107 * protected from simultaneous callbacks from arc_clear_callback()
108 * and arc_do_user_evicts().
109 *
110 * Note that the majority of the performance stats are manipulated
111 * with atomic operations.
112 *
113 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
114 *
115 *	- L2ARC buflist creation
116 *	- L2ARC buflist eviction
117 *	- L2ARC write completion, which walks L2ARC buflists
118 *	- ARC header destruction, as it removes from L2ARC buflists
119 *	- ARC header release, as it removes from L2ARC buflists
120 */
121
122#include <sys/spa.h>
123#include <sys/zio.h>
124#include <sys/zio_compress.h>
125#include <sys/zfs_context.h>
126#include <sys/arc.h>
127#include <sys/refcount.h>
128#include <sys/vdev.h>
129#include <sys/vdev_impl.h>
130#include <sys/dsl_pool.h>
131#ifdef _KERNEL
132#include <sys/dnlc.h>
133#endif
134#include <sys/callb.h>
135#include <sys/kstat.h>
136#include <sys/trim_map.h>
137#include <zfs_fletcher.h>
138#include <sys/sdt.h>
139
140#include <vm/vm_pageout.h>
141
142#ifdef illumos
143#ifndef _KERNEL
144/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
145boolean_t arc_watch = B_FALSE;
146int arc_procfd;
147#endif
148#endif /* illumos */
149
150static kmutex_t		arc_reclaim_thr_lock;
151static kcondvar_t	arc_reclaim_thr_cv;	/* used to signal reclaim thr */
152static uint8_t		arc_thread_exit;
153
154#define	ARC_REDUCE_DNLC_PERCENT	3
155uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
156
157typedef enum arc_reclaim_strategy {
158	ARC_RECLAIM_AGGR,		/* Aggressive reclaim strategy */
159	ARC_RECLAIM_CONS		/* Conservative reclaim strategy */
160} arc_reclaim_strategy_t;
161
162/*
163 * The number of iterations through arc_evict_*() before we
164 * drop & reacquire the lock.
165 */
166int arc_evict_iterations = 100;
167
168/* number of seconds before growing cache again */
169static int		arc_grow_retry = 60;
170
171/* shift of arc_c for calculating both min and max arc_p */
172static int		arc_p_min_shift = 4;
173
174/* log2(fraction of arc to reclaim) */
175static int		arc_shrink_shift = 5;
176
177/*
178 * minimum lifespan of a prefetch block in clock ticks
179 * (initialized in arc_init())
180 */
181static int		arc_min_prefetch_lifespan;
182
183/*
184 * If this percent of memory is free, don't throttle.
185 */
186int arc_lotsfree_percent = 10;
187
188static int arc_dead;
189extern int zfs_prefetch_disable;
190
191/*
192 * The arc has filled available memory and has now warmed up.
193 */
194static boolean_t arc_warm;
195
196/*
197 * These tunables are for performance analysis.
198 */
199uint64_t zfs_arc_max;
200uint64_t zfs_arc_min;
201uint64_t zfs_arc_meta_limit = 0;
202int zfs_arc_grow_retry = 0;
203int zfs_arc_shrink_shift = 0;
204int zfs_arc_p_min_shift = 0;
205int zfs_disable_dup_eviction = 0;
206
207TUNABLE_QUAD("vfs.zfs.arc_max", &zfs_arc_max);
208TUNABLE_QUAD("vfs.zfs.arc_min", &zfs_arc_min);
209TUNABLE_QUAD("vfs.zfs.arc_meta_limit", &zfs_arc_meta_limit);
210SYSCTL_DECL(_vfs_zfs);
211SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_max, CTLFLAG_RDTUN, &zfs_arc_max, 0,
212    "Maximum ARC size");
213SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_min, CTLFLAG_RDTUN, &zfs_arc_min, 0,
214    "Minimum ARC size");
215
216/*
217 * Note that buffers can be in one of 6 states:
218 *	ARC_anon	- anonymous (discussed below)
219 *	ARC_mru		- recently used, currently cached
220 *	ARC_mru_ghost	- recentely used, no longer in cache
221 *	ARC_mfu		- frequently used, currently cached
222 *	ARC_mfu_ghost	- frequently used, no longer in cache
223 *	ARC_l2c_only	- exists in L2ARC but not other states
224 * When there are no active references to the buffer, they are
225 * are linked onto a list in one of these arc states.  These are
226 * the only buffers that can be evicted or deleted.  Within each
227 * state there are multiple lists, one for meta-data and one for
228 * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
229 * etc.) is tracked separately so that it can be managed more
230 * explicitly: favored over data, limited explicitly.
231 *
232 * Anonymous buffers are buffers that are not associated with
233 * a DVA.  These are buffers that hold dirty block copies
234 * before they are written to stable storage.  By definition,
235 * they are "ref'd" and are considered part of arc_mru
236 * that cannot be freed.  Generally, they will aquire a DVA
237 * as they are written and migrate onto the arc_mru list.
238 *
239 * The ARC_l2c_only state is for buffers that are in the second
240 * level ARC but no longer in any of the ARC_m* lists.  The second
241 * level ARC itself may also contain buffers that are in any of
242 * the ARC_m* states - meaning that a buffer can exist in two
243 * places.  The reason for the ARC_l2c_only state is to keep the
244 * buffer header in the hash table, so that reads that hit the
245 * second level ARC benefit from these fast lookups.
246 */
247
248#define	ARCS_LOCK_PAD		CACHE_LINE_SIZE
249struct arcs_lock {
250	kmutex_t	arcs_lock;
251#ifdef _KERNEL
252	unsigned char	pad[(ARCS_LOCK_PAD - sizeof (kmutex_t))];
253#endif
254};
255
256/*
257 * must be power of two for mask use to work
258 *
259 */
260#define ARC_BUFC_NUMDATALISTS		16
261#define ARC_BUFC_NUMMETADATALISTS	16
262#define ARC_BUFC_NUMLISTS	(ARC_BUFC_NUMMETADATALISTS + ARC_BUFC_NUMDATALISTS)
263
264typedef struct arc_state {
265	uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];	/* amount of evictable data */
266	uint64_t arcs_size;	/* total amount of data in this state */
267	list_t	arcs_lists[ARC_BUFC_NUMLISTS]; /* list of evictable buffers */
268	struct arcs_lock arcs_locks[ARC_BUFC_NUMLISTS] __aligned(CACHE_LINE_SIZE);
269} arc_state_t;
270
271#define ARCS_LOCK(s, i)	(&((s)->arcs_locks[(i)].arcs_lock))
272
273/* The 6 states: */
274static arc_state_t ARC_anon;
275static arc_state_t ARC_mru;
276static arc_state_t ARC_mru_ghost;
277static arc_state_t ARC_mfu;
278static arc_state_t ARC_mfu_ghost;
279static arc_state_t ARC_l2c_only;
280
281typedef struct arc_stats {
282	kstat_named_t arcstat_hits;
283	kstat_named_t arcstat_misses;
284	kstat_named_t arcstat_demand_data_hits;
285	kstat_named_t arcstat_demand_data_misses;
286	kstat_named_t arcstat_demand_metadata_hits;
287	kstat_named_t arcstat_demand_metadata_misses;
288	kstat_named_t arcstat_prefetch_data_hits;
289	kstat_named_t arcstat_prefetch_data_misses;
290	kstat_named_t arcstat_prefetch_metadata_hits;
291	kstat_named_t arcstat_prefetch_metadata_misses;
292	kstat_named_t arcstat_mru_hits;
293	kstat_named_t arcstat_mru_ghost_hits;
294	kstat_named_t arcstat_mfu_hits;
295	kstat_named_t arcstat_mfu_ghost_hits;
296	kstat_named_t arcstat_allocated;
297	kstat_named_t arcstat_deleted;
298	kstat_named_t arcstat_stolen;
299	kstat_named_t arcstat_recycle_miss;
300	/*
301	 * Number of buffers that could not be evicted because the hash lock
302	 * was held by another thread.  The lock may not necessarily be held
303	 * by something using the same buffer, since hash locks are shared
304	 * by multiple buffers.
305	 */
306	kstat_named_t arcstat_mutex_miss;
307	/*
308	 * Number of buffers skipped because they have I/O in progress, are
309	 * indrect prefetch buffers that have not lived long enough, or are
310	 * not from the spa we're trying to evict from.
311	 */
312	kstat_named_t arcstat_evict_skip;
313	kstat_named_t arcstat_evict_l2_cached;
314	kstat_named_t arcstat_evict_l2_eligible;
315	kstat_named_t arcstat_evict_l2_ineligible;
316	kstat_named_t arcstat_hash_elements;
317	kstat_named_t arcstat_hash_elements_max;
318	kstat_named_t arcstat_hash_collisions;
319	kstat_named_t arcstat_hash_chains;
320	kstat_named_t arcstat_hash_chain_max;
321	kstat_named_t arcstat_p;
322	kstat_named_t arcstat_c;
323	kstat_named_t arcstat_c_min;
324	kstat_named_t arcstat_c_max;
325	kstat_named_t arcstat_size;
326	kstat_named_t arcstat_hdr_size;
327	kstat_named_t arcstat_data_size;
328	kstat_named_t arcstat_other_size;
329	kstat_named_t arcstat_l2_hits;
330	kstat_named_t arcstat_l2_misses;
331	kstat_named_t arcstat_l2_feeds;
332	kstat_named_t arcstat_l2_rw_clash;
333	kstat_named_t arcstat_l2_read_bytes;
334	kstat_named_t arcstat_l2_write_bytes;
335	kstat_named_t arcstat_l2_writes_sent;
336	kstat_named_t arcstat_l2_writes_done;
337	kstat_named_t arcstat_l2_writes_error;
338	kstat_named_t arcstat_l2_writes_hdr_miss;
339	kstat_named_t arcstat_l2_evict_lock_retry;
340	kstat_named_t arcstat_l2_evict_reading;
341	kstat_named_t arcstat_l2_free_on_write;
342	kstat_named_t arcstat_l2_abort_lowmem;
343	kstat_named_t arcstat_l2_cksum_bad;
344	kstat_named_t arcstat_l2_io_error;
345	kstat_named_t arcstat_l2_size;
346	kstat_named_t arcstat_l2_asize;
347	kstat_named_t arcstat_l2_hdr_size;
348	kstat_named_t arcstat_l2_compress_successes;
349	kstat_named_t arcstat_l2_compress_zeros;
350	kstat_named_t arcstat_l2_compress_failures;
351	kstat_named_t arcstat_l2_write_trylock_fail;
352	kstat_named_t arcstat_l2_write_passed_headroom;
353	kstat_named_t arcstat_l2_write_spa_mismatch;
354	kstat_named_t arcstat_l2_write_in_l2;
355	kstat_named_t arcstat_l2_write_hdr_io_in_progress;
356	kstat_named_t arcstat_l2_write_not_cacheable;
357	kstat_named_t arcstat_l2_write_full;
358	kstat_named_t arcstat_l2_write_buffer_iter;
359	kstat_named_t arcstat_l2_write_pios;
360	kstat_named_t arcstat_l2_write_buffer_bytes_scanned;
361	kstat_named_t arcstat_l2_write_buffer_list_iter;
362	kstat_named_t arcstat_l2_write_buffer_list_null_iter;
363	kstat_named_t arcstat_memory_throttle_count;
364	kstat_named_t arcstat_duplicate_buffers;
365	kstat_named_t arcstat_duplicate_buffers_size;
366	kstat_named_t arcstat_duplicate_reads;
367} arc_stats_t;
368
369static arc_stats_t arc_stats = {
370	{ "hits",			KSTAT_DATA_UINT64 },
371	{ "misses",			KSTAT_DATA_UINT64 },
372	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
373	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
374	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
375	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
376	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
377	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
378	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
379	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
380	{ "mru_hits",			KSTAT_DATA_UINT64 },
381	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
382	{ "mfu_hits",			KSTAT_DATA_UINT64 },
383	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
384	{ "allocated",			KSTAT_DATA_UINT64 },
385	{ "deleted",			KSTAT_DATA_UINT64 },
386	{ "stolen",			KSTAT_DATA_UINT64 },
387	{ "recycle_miss",		KSTAT_DATA_UINT64 },
388	{ "mutex_miss",			KSTAT_DATA_UINT64 },
389	{ "evict_skip",			KSTAT_DATA_UINT64 },
390	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
391	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
392	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
393	{ "hash_elements",		KSTAT_DATA_UINT64 },
394	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
395	{ "hash_collisions",		KSTAT_DATA_UINT64 },
396	{ "hash_chains",		KSTAT_DATA_UINT64 },
397	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
398	{ "p",				KSTAT_DATA_UINT64 },
399	{ "c",				KSTAT_DATA_UINT64 },
400	{ "c_min",			KSTAT_DATA_UINT64 },
401	{ "c_max",			KSTAT_DATA_UINT64 },
402	{ "size",			KSTAT_DATA_UINT64 },
403	{ "hdr_size",			KSTAT_DATA_UINT64 },
404	{ "data_size",			KSTAT_DATA_UINT64 },
405	{ "other_size",			KSTAT_DATA_UINT64 },
406	{ "l2_hits",			KSTAT_DATA_UINT64 },
407	{ "l2_misses",			KSTAT_DATA_UINT64 },
408	{ "l2_feeds",			KSTAT_DATA_UINT64 },
409	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
410	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
411	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
412	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
413	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
414	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
415	{ "l2_writes_hdr_miss",		KSTAT_DATA_UINT64 },
416	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
417	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
418	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
419	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
420	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
421	{ "l2_io_error",		KSTAT_DATA_UINT64 },
422	{ "l2_size",			KSTAT_DATA_UINT64 },
423	{ "l2_asize",			KSTAT_DATA_UINT64 },
424	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
425	{ "l2_compress_successes",	KSTAT_DATA_UINT64 },
426	{ "l2_compress_zeros",		KSTAT_DATA_UINT64 },
427	{ "l2_compress_failures",	KSTAT_DATA_UINT64 },
428	{ "l2_write_trylock_fail",	KSTAT_DATA_UINT64 },
429	{ "l2_write_passed_headroom",	KSTAT_DATA_UINT64 },
430	{ "l2_write_spa_mismatch",	KSTAT_DATA_UINT64 },
431	{ "l2_write_in_l2",		KSTAT_DATA_UINT64 },
432	{ "l2_write_io_in_progress",	KSTAT_DATA_UINT64 },
433	{ "l2_write_not_cacheable",	KSTAT_DATA_UINT64 },
434	{ "l2_write_full",		KSTAT_DATA_UINT64 },
435	{ "l2_write_buffer_iter",	KSTAT_DATA_UINT64 },
436	{ "l2_write_pios",		KSTAT_DATA_UINT64 },
437	{ "l2_write_buffer_bytes_scanned", KSTAT_DATA_UINT64 },
438	{ "l2_write_buffer_list_iter",	KSTAT_DATA_UINT64 },
439	{ "l2_write_buffer_list_null_iter", KSTAT_DATA_UINT64 },
440	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
441	{ "duplicate_buffers",		KSTAT_DATA_UINT64 },
442	{ "duplicate_buffers_size",	KSTAT_DATA_UINT64 },
443	{ "duplicate_reads",		KSTAT_DATA_UINT64 }
444};
445
446#define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
447
448#define	ARCSTAT_INCR(stat, val) \
449	atomic_add_64(&arc_stats.stat.value.ui64, (val))
450
451#define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
452#define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
453
454#define	ARCSTAT_MAX(stat, val) {					\
455	uint64_t m;							\
456	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
457	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
458		continue;						\
459}
460
461#define	ARCSTAT_MAXSTAT(stat) \
462	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
463
464/*
465 * We define a macro to allow ARC hits/misses to be easily broken down by
466 * two separate conditions, giving a total of four different subtypes for
467 * each of hits and misses (so eight statistics total).
468 */
469#define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
470	if (cond1) {							\
471		if (cond2) {						\
472			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
473		} else {						\
474			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
475		}							\
476	} else {							\
477		if (cond2) {						\
478			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
479		} else {						\
480			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
481		}							\
482	}
483
484kstat_t			*arc_ksp;
485static arc_state_t	*arc_anon;
486static arc_state_t	*arc_mru;
487static arc_state_t	*arc_mru_ghost;
488static arc_state_t	*arc_mfu;
489static arc_state_t	*arc_mfu_ghost;
490static arc_state_t	*arc_l2c_only;
491
492/*
493 * There are several ARC variables that are critical to export as kstats --
494 * but we don't want to have to grovel around in the kstat whenever we wish to
495 * manipulate them.  For these variables, we therefore define them to be in
496 * terms of the statistic variable.  This assures that we are not introducing
497 * the possibility of inconsistency by having shadow copies of the variables,
498 * while still allowing the code to be readable.
499 */
500#define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
501#define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
502#define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
503#define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
504#define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
505
506#define	L2ARC_IS_VALID_COMPRESS(_c_) \
507	((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY)
508
509static int		arc_no_grow;	/* Don't try to grow cache size */
510static uint64_t		arc_tempreserve;
511static uint64_t		arc_loaned_bytes;
512static uint64_t		arc_meta_used;
513static uint64_t		arc_meta_limit;
514static uint64_t		arc_meta_max = 0;
515SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_meta_used, CTLFLAG_RD, &arc_meta_used, 0,
516    "ARC metadata used");
517SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_meta_limit, CTLFLAG_RW, &arc_meta_limit, 0,
518    "ARC metadata limit");
519
520typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
521
522typedef struct arc_callback arc_callback_t;
523
524struct arc_callback {
525	void			*acb_private;
526	arc_done_func_t		*acb_done;
527	arc_buf_t		*acb_buf;
528	zio_t			*acb_zio_dummy;
529	arc_callback_t		*acb_next;
530};
531
532typedef struct arc_write_callback arc_write_callback_t;
533
534struct arc_write_callback {
535	void		*awcb_private;
536	arc_done_func_t	*awcb_ready;
537	arc_done_func_t	*awcb_physdone;
538	arc_done_func_t	*awcb_done;
539	arc_buf_t	*awcb_buf;
540};
541
542struct arc_buf_hdr {
543	/* protected by hash lock */
544	dva_t			b_dva;
545	uint64_t		b_birth;
546	uint64_t		b_cksum0;
547
548	kmutex_t		b_freeze_lock;
549	zio_cksum_t		*b_freeze_cksum;
550	void			*b_thawed;
551
552	arc_buf_hdr_t		*b_hash_next;
553	arc_buf_t		*b_buf;
554	uint32_t		b_flags;
555	uint32_t		b_datacnt;
556
557	arc_callback_t		*b_acb;
558	kcondvar_t		b_cv;
559
560	/* immutable */
561	arc_buf_contents_t	b_type;
562	uint64_t		b_size;
563	uint64_t		b_spa;
564
565	/* protected by arc state mutex */
566	arc_state_t		*b_state;
567	list_node_t		b_arc_node;
568
569	/* updated atomically */
570	clock_t			b_arc_access;
571
572	/* self protecting */
573	refcount_t		b_refcnt;
574
575	l2arc_buf_hdr_t		*b_l2hdr;
576	list_node_t		b_l2node;
577};
578
579static arc_buf_t *arc_eviction_list;
580static kmutex_t arc_eviction_mtx;
581static arc_buf_hdr_t arc_eviction_hdr;
582static void arc_get_data_buf(arc_buf_t *buf);
583static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
584static int arc_evict_needed(arc_buf_contents_t type);
585static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes);
586#ifdef illumos
587static void arc_buf_watch(arc_buf_t *buf);
588#endif /* illumos */
589
590static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab);
591
592#define	GHOST_STATE(state)	\
593	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
594	(state) == arc_l2c_only)
595
596/*
597 * Private ARC flags.  These flags are private ARC only flags that will show up
598 * in b_flags in the arc_hdr_buf_t.  Some flags are publicly declared, and can
599 * be passed in as arc_flags in things like arc_read.  However, these flags
600 * should never be passed and should only be set by ARC code.  When adding new
601 * public flags, make sure not to smash the private ones.
602 */
603
604#define	ARC_IN_HASH_TABLE	(1 << 9)	/* this buffer is hashed */
605#define	ARC_IO_IN_PROGRESS	(1 << 10)	/* I/O in progress for buf */
606#define	ARC_IO_ERROR		(1 << 11)	/* I/O failed for buf */
607#define	ARC_FREED_IN_READ	(1 << 12)	/* buf freed while in read */
608#define	ARC_BUF_AVAILABLE	(1 << 13)	/* block not in active use */
609#define	ARC_INDIRECT		(1 << 14)	/* this is an indirect block */
610#define	ARC_FREE_IN_PROGRESS	(1 << 15)	/* hdr about to be freed */
611#define	ARC_L2_WRITING		(1 << 16)	/* L2ARC write in progress */
612#define	ARC_L2_EVICTED		(1 << 17)	/* evicted during I/O */
613#define	ARC_L2_WRITE_HEAD	(1 << 18)	/* head of write list */
614
615#define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_IN_HASH_TABLE)
616#define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS)
617#define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_IO_ERROR)
618#define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_PREFETCH)
619#define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FREED_IN_READ)
620#define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_BUF_AVAILABLE)
621#define	HDR_FREE_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
622#define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_L2CACHE)
623#define	HDR_L2_READING(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS &&	\
624				    (hdr)->b_l2hdr != NULL)
625#define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_L2_WRITING)
626#define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_L2_EVICTED)
627#define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_L2_WRITE_HEAD)
628
629/*
630 * Other sizes
631 */
632
633#define	HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
634#define	L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
635
636/*
637 * Hash table routines
638 */
639
640#define	HT_LOCK_PAD	CACHE_LINE_SIZE
641
642struct ht_lock {
643	kmutex_t	ht_lock;
644#ifdef _KERNEL
645	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
646#endif
647};
648
649#define	BUF_LOCKS 256
650typedef struct buf_hash_table {
651	uint64_t ht_mask;
652	arc_buf_hdr_t **ht_table;
653	struct ht_lock ht_locks[BUF_LOCKS] __aligned(CACHE_LINE_SIZE);
654} buf_hash_table_t;
655
656static buf_hash_table_t buf_hash_table;
657
658#define	BUF_HASH_INDEX(spa, dva, birth) \
659	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
660#define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
661#define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
662#define	HDR_LOCK(hdr) \
663	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
664
665uint64_t zfs_crc64_table[256];
666
667/*
668 * Level 2 ARC
669 */
670
671#define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
672#define	L2ARC_HEADROOM		2			/* num of writes */
673/*
674 * If we discover during ARC scan any buffers to be compressed, we boost
675 * our headroom for the next scanning cycle by this percentage multiple.
676 */
677#define	L2ARC_HEADROOM_BOOST	200
678#define	L2ARC_FEED_SECS		1		/* caching interval secs */
679#define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
680
681#define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
682#define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
683
684/* L2ARC Performance Tunables */
685uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
686uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
687uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
688uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
689uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
690uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
691boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
692boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
693boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
694
695SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_max, CTLFLAG_RW,
696    &l2arc_write_max, 0, "max write size");
697SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_boost, CTLFLAG_RW,
698    &l2arc_write_boost, 0, "extra write during warmup");
699SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_headroom, CTLFLAG_RW,
700    &l2arc_headroom, 0, "number of dev writes");
701SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_secs, CTLFLAG_RW,
702    &l2arc_feed_secs, 0, "interval seconds");
703SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_min_ms, CTLFLAG_RW,
704    &l2arc_feed_min_ms, 0, "min interval milliseconds");
705
706SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_noprefetch, CTLFLAG_RW,
707    &l2arc_noprefetch, 0, "don't cache prefetch bufs");
708SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_feed_again, CTLFLAG_RW,
709    &l2arc_feed_again, 0, "turbo warmup");
710SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_norw, CTLFLAG_RW,
711    &l2arc_norw, 0, "no reads during writes");
712
713SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_size, CTLFLAG_RD,
714    &ARC_anon.arcs_size, 0, "size of anonymous state");
715SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_metadata_lsize, CTLFLAG_RD,
716    &ARC_anon.arcs_lsize[ARC_BUFC_METADATA], 0, "size of anonymous state");
717SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_data_lsize, CTLFLAG_RD,
718    &ARC_anon.arcs_lsize[ARC_BUFC_DATA], 0, "size of anonymous state");
719
720SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_size, CTLFLAG_RD,
721    &ARC_mru.arcs_size, 0, "size of mru state");
722SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_metadata_lsize, CTLFLAG_RD,
723    &ARC_mru.arcs_lsize[ARC_BUFC_METADATA], 0, "size of metadata in mru state");
724SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_data_lsize, CTLFLAG_RD,
725    &ARC_mru.arcs_lsize[ARC_BUFC_DATA], 0, "size of data in mru state");
726
727SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_size, CTLFLAG_RD,
728    &ARC_mru_ghost.arcs_size, 0, "size of mru ghost state");
729SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_metadata_lsize, CTLFLAG_RD,
730    &ARC_mru_ghost.arcs_lsize[ARC_BUFC_METADATA], 0,
731    "size of metadata in mru ghost state");
732SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_data_lsize, CTLFLAG_RD,
733    &ARC_mru_ghost.arcs_lsize[ARC_BUFC_DATA], 0,
734    "size of data in mru ghost state");
735
736SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_size, CTLFLAG_RD,
737    &ARC_mfu.arcs_size, 0, "size of mfu state");
738SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_metadata_lsize, CTLFLAG_RD,
739    &ARC_mfu.arcs_lsize[ARC_BUFC_METADATA], 0, "size of metadata in mfu state");
740SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_data_lsize, CTLFLAG_RD,
741    &ARC_mfu.arcs_lsize[ARC_BUFC_DATA], 0, "size of data in mfu state");
742
743SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_size, CTLFLAG_RD,
744    &ARC_mfu_ghost.arcs_size, 0, "size of mfu ghost state");
745SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_metadata_lsize, CTLFLAG_RD,
746    &ARC_mfu_ghost.arcs_lsize[ARC_BUFC_METADATA], 0,
747    "size of metadata in mfu ghost state");
748SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_data_lsize, CTLFLAG_RD,
749    &ARC_mfu_ghost.arcs_lsize[ARC_BUFC_DATA], 0,
750    "size of data in mfu ghost state");
751
752SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2c_only_size, CTLFLAG_RD,
753    &ARC_l2c_only.arcs_size, 0, "size of mru state");
754
755/*
756 * L2ARC Internals
757 */
758typedef struct l2arc_dev {
759	vdev_t			*l2ad_vdev;	/* vdev */
760	spa_t			*l2ad_spa;	/* spa */
761	uint64_t		l2ad_hand;	/* next write location */
762	uint64_t		l2ad_start;	/* first addr on device */
763	uint64_t		l2ad_end;	/* last addr on device */
764	uint64_t		l2ad_evict;	/* last addr eviction reached */
765	boolean_t		l2ad_first;	/* first sweep through */
766	boolean_t		l2ad_writing;	/* currently writing */
767	list_t			*l2ad_buflist;	/* buffer list */
768	list_node_t		l2ad_node;	/* device list node */
769} l2arc_dev_t;
770
771static list_t L2ARC_dev_list;			/* device list */
772static list_t *l2arc_dev_list;			/* device list pointer */
773static kmutex_t l2arc_dev_mtx;			/* device list mutex */
774static l2arc_dev_t *l2arc_dev_last;		/* last device used */
775static kmutex_t l2arc_buflist_mtx;		/* mutex for all buflists */
776static list_t L2ARC_free_on_write;		/* free after write buf list */
777static list_t *l2arc_free_on_write;		/* free after write list ptr */
778static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
779static uint64_t l2arc_ndev;			/* number of devices */
780
781typedef struct l2arc_read_callback {
782	arc_buf_t		*l2rcb_buf;		/* read buffer */
783	spa_t			*l2rcb_spa;		/* spa */
784	blkptr_t		l2rcb_bp;		/* original blkptr */
785	zbookmark_phys_t	l2rcb_zb;		/* original bookmark */
786	int			l2rcb_flags;		/* original flags */
787	enum zio_compress	l2rcb_compress;		/* applied compress */
788} l2arc_read_callback_t;
789
790typedef struct l2arc_write_callback {
791	l2arc_dev_t	*l2wcb_dev;		/* device info */
792	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
793} l2arc_write_callback_t;
794
795struct l2arc_buf_hdr {
796	/* protected by arc_buf_hdr  mutex */
797	l2arc_dev_t		*b_dev;		/* L2ARC device */
798	uint64_t		b_daddr;	/* disk address, offset byte */
799	/* compression applied to buffer data */
800	enum zio_compress	b_compress;
801	/* real alloc'd buffer size depending on b_compress applied */
802	int			b_asize;
803	/* temporary buffer holder for in-flight compressed data */
804	void			*b_tmp_cdata;
805};
806
807typedef struct l2arc_data_free {
808	/* protected by l2arc_free_on_write_mtx */
809	void		*l2df_data;
810	size_t		l2df_size;
811	void		(*l2df_func)(void *, size_t);
812	list_node_t	l2df_list_node;
813} l2arc_data_free_t;
814
815static kmutex_t l2arc_feed_thr_lock;
816static kcondvar_t l2arc_feed_thr_cv;
817static uint8_t l2arc_thread_exit;
818
819static void l2arc_read_done(zio_t *zio);
820static void l2arc_hdr_stat_add(void);
821static void l2arc_hdr_stat_remove(void);
822
823static boolean_t l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr);
824static void l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr,
825    enum zio_compress c);
826static void l2arc_release_cdata_buf(arc_buf_hdr_t *ab);
827
828static uint64_t
829buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
830{
831	uint8_t *vdva = (uint8_t *)dva;
832	uint64_t crc = -1ULL;
833	int i;
834
835	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
836
837	for (i = 0; i < sizeof (dva_t); i++)
838		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
839
840	crc ^= (spa>>8) ^ birth;
841
842	return (crc);
843}
844
845#define	BUF_EMPTY(buf)						\
846	((buf)->b_dva.dva_word[0] == 0 &&			\
847	(buf)->b_dva.dva_word[1] == 0 &&			\
848	(buf)->b_cksum0 == 0)
849
850#define	BUF_EQUAL(spa, dva, birth, buf)				\
851	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
852	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
853	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
854
855static void
856buf_discard_identity(arc_buf_hdr_t *hdr)
857{
858	hdr->b_dva.dva_word[0] = 0;
859	hdr->b_dva.dva_word[1] = 0;
860	hdr->b_birth = 0;
861	hdr->b_cksum0 = 0;
862}
863
864static arc_buf_hdr_t *
865buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
866{
867	const dva_t *dva = BP_IDENTITY(bp);
868	uint64_t birth = BP_PHYSICAL_BIRTH(bp);
869	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
870	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
871	arc_buf_hdr_t *buf;
872
873	mutex_enter(hash_lock);
874	for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
875	    buf = buf->b_hash_next) {
876		if (BUF_EQUAL(spa, dva, birth, buf)) {
877			*lockp = hash_lock;
878			return (buf);
879		}
880	}
881	mutex_exit(hash_lock);
882	*lockp = NULL;
883	return (NULL);
884}
885
886/*
887 * Insert an entry into the hash table.  If there is already an element
888 * equal to elem in the hash table, then the already existing element
889 * will be returned and the new element will not be inserted.
890 * Otherwise returns NULL.
891 */
892static arc_buf_hdr_t *
893buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
894{
895	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
896	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
897	arc_buf_hdr_t *fbuf;
898	uint32_t i;
899
900	ASSERT(!DVA_IS_EMPTY(&buf->b_dva));
901	ASSERT(buf->b_birth != 0);
902	ASSERT(!HDR_IN_HASH_TABLE(buf));
903	*lockp = hash_lock;
904	mutex_enter(hash_lock);
905	for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
906	    fbuf = fbuf->b_hash_next, i++) {
907		if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
908			return (fbuf);
909	}
910
911	buf->b_hash_next = buf_hash_table.ht_table[idx];
912	buf_hash_table.ht_table[idx] = buf;
913	buf->b_flags |= ARC_IN_HASH_TABLE;
914
915	/* collect some hash table performance data */
916	if (i > 0) {
917		ARCSTAT_BUMP(arcstat_hash_collisions);
918		if (i == 1)
919			ARCSTAT_BUMP(arcstat_hash_chains);
920
921		ARCSTAT_MAX(arcstat_hash_chain_max, i);
922	}
923
924	ARCSTAT_BUMP(arcstat_hash_elements);
925	ARCSTAT_MAXSTAT(arcstat_hash_elements);
926
927	return (NULL);
928}
929
930static void
931buf_hash_remove(arc_buf_hdr_t *buf)
932{
933	arc_buf_hdr_t *fbuf, **bufp;
934	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
935
936	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
937	ASSERT(HDR_IN_HASH_TABLE(buf));
938
939	bufp = &buf_hash_table.ht_table[idx];
940	while ((fbuf = *bufp) != buf) {
941		ASSERT(fbuf != NULL);
942		bufp = &fbuf->b_hash_next;
943	}
944	*bufp = buf->b_hash_next;
945	buf->b_hash_next = NULL;
946	buf->b_flags &= ~ARC_IN_HASH_TABLE;
947
948	/* collect some hash table performance data */
949	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
950
951	if (buf_hash_table.ht_table[idx] &&
952	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
953		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
954}
955
956/*
957 * Global data structures and functions for the buf kmem cache.
958 */
959static kmem_cache_t *hdr_cache;
960static kmem_cache_t *buf_cache;
961
962static void
963buf_fini(void)
964{
965	int i;
966
967	kmem_free(buf_hash_table.ht_table,
968	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
969	for (i = 0; i < BUF_LOCKS; i++)
970		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
971	kmem_cache_destroy(hdr_cache);
972	kmem_cache_destroy(buf_cache);
973}
974
975/*
976 * Constructor callback - called when the cache is empty
977 * and a new buf is requested.
978 */
979/* ARGSUSED */
980static int
981hdr_cons(void *vbuf, void *unused, int kmflag)
982{
983	arc_buf_hdr_t *buf = vbuf;
984
985	bzero(buf, sizeof (arc_buf_hdr_t));
986	refcount_create(&buf->b_refcnt);
987	cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
988	mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
989	arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
990
991	return (0);
992}
993
994/* ARGSUSED */
995static int
996buf_cons(void *vbuf, void *unused, int kmflag)
997{
998	arc_buf_t *buf = vbuf;
999
1000	bzero(buf, sizeof (arc_buf_t));
1001	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1002	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1003
1004	return (0);
1005}
1006
1007/*
1008 * Destructor callback - called when a cached buf is
1009 * no longer required.
1010 */
1011/* ARGSUSED */
1012static void
1013hdr_dest(void *vbuf, void *unused)
1014{
1015	arc_buf_hdr_t *buf = vbuf;
1016
1017	ASSERT(BUF_EMPTY(buf));
1018	refcount_destroy(&buf->b_refcnt);
1019	cv_destroy(&buf->b_cv);
1020	mutex_destroy(&buf->b_freeze_lock);
1021	arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
1022}
1023
1024/* ARGSUSED */
1025static void
1026buf_dest(void *vbuf, void *unused)
1027{
1028	arc_buf_t *buf = vbuf;
1029
1030	mutex_destroy(&buf->b_evict_lock);
1031	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1032}
1033
1034/*
1035 * Reclaim callback -- invoked when memory is low.
1036 */
1037/* ARGSUSED */
1038static void
1039hdr_recl(void *unused)
1040{
1041	dprintf("hdr_recl called\n");
1042	/*
1043	 * umem calls the reclaim func when we destroy the buf cache,
1044	 * which is after we do arc_fini().
1045	 */
1046	if (!arc_dead)
1047		cv_signal(&arc_reclaim_thr_cv);
1048}
1049
1050static void
1051buf_init(void)
1052{
1053	uint64_t *ct;
1054	uint64_t hsize = 1ULL << 12;
1055	int i, j;
1056
1057	/*
1058	 * The hash table is big enough to fill all of physical memory
1059	 * with an average 64K block size.  The table will take up
1060	 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
1061	 */
1062	while (hsize * 65536 < (uint64_t)physmem * PAGESIZE)
1063		hsize <<= 1;
1064retry:
1065	buf_hash_table.ht_mask = hsize - 1;
1066	buf_hash_table.ht_table =
1067	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1068	if (buf_hash_table.ht_table == NULL) {
1069		ASSERT(hsize > (1ULL << 8));
1070		hsize >>= 1;
1071		goto retry;
1072	}
1073
1074	hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
1075	    0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
1076	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1077	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1078
1079	for (i = 0; i < 256; i++)
1080		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1081			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1082
1083	for (i = 0; i < BUF_LOCKS; i++) {
1084		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1085		    NULL, MUTEX_DEFAULT, NULL);
1086	}
1087}
1088
1089#define	ARC_MINTIME	(hz>>4) /* 62 ms */
1090
1091static void
1092arc_cksum_verify(arc_buf_t *buf)
1093{
1094	zio_cksum_t zc;
1095
1096	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1097		return;
1098
1099	mutex_enter(&buf->b_hdr->b_freeze_lock);
1100	if (buf->b_hdr->b_freeze_cksum == NULL ||
1101	    (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
1102		mutex_exit(&buf->b_hdr->b_freeze_lock);
1103		return;
1104	}
1105	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1106	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
1107		panic("buffer modified while frozen!");
1108	mutex_exit(&buf->b_hdr->b_freeze_lock);
1109}
1110
1111static int
1112arc_cksum_equal(arc_buf_t *buf)
1113{
1114	zio_cksum_t zc;
1115	int equal;
1116
1117	mutex_enter(&buf->b_hdr->b_freeze_lock);
1118	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1119	equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
1120	mutex_exit(&buf->b_hdr->b_freeze_lock);
1121
1122	return (equal);
1123}
1124
1125static void
1126arc_cksum_compute(arc_buf_t *buf, boolean_t force)
1127{
1128	if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1129		return;
1130
1131	mutex_enter(&buf->b_hdr->b_freeze_lock);
1132	if (buf->b_hdr->b_freeze_cksum != NULL) {
1133		mutex_exit(&buf->b_hdr->b_freeze_lock);
1134		return;
1135	}
1136	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
1137	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1138	    buf->b_hdr->b_freeze_cksum);
1139	mutex_exit(&buf->b_hdr->b_freeze_lock);
1140#ifdef illumos
1141	arc_buf_watch(buf);
1142#endif /* illumos */
1143}
1144
1145#ifdef illumos
1146#ifndef _KERNEL
1147typedef struct procctl {
1148	long cmd;
1149	prwatch_t prwatch;
1150} procctl_t;
1151#endif
1152
1153/* ARGSUSED */
1154static void
1155arc_buf_unwatch(arc_buf_t *buf)
1156{
1157#ifndef _KERNEL
1158	if (arc_watch) {
1159		int result;
1160		procctl_t ctl;
1161		ctl.cmd = PCWATCH;
1162		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1163		ctl.prwatch.pr_size = 0;
1164		ctl.prwatch.pr_wflags = 0;
1165		result = write(arc_procfd, &ctl, sizeof (ctl));
1166		ASSERT3U(result, ==, sizeof (ctl));
1167	}
1168#endif
1169}
1170
1171/* ARGSUSED */
1172static void
1173arc_buf_watch(arc_buf_t *buf)
1174{
1175#ifndef _KERNEL
1176	if (arc_watch) {
1177		int result;
1178		procctl_t ctl;
1179		ctl.cmd = PCWATCH;
1180		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1181		ctl.prwatch.pr_size = buf->b_hdr->b_size;
1182		ctl.prwatch.pr_wflags = WA_WRITE;
1183		result = write(arc_procfd, &ctl, sizeof (ctl));
1184		ASSERT3U(result, ==, sizeof (ctl));
1185	}
1186#endif
1187}
1188#endif /* illumos */
1189
1190void
1191arc_buf_thaw(arc_buf_t *buf)
1192{
1193	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1194		if (buf->b_hdr->b_state != arc_anon)
1195			panic("modifying non-anon buffer!");
1196		if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
1197			panic("modifying buffer while i/o in progress!");
1198		arc_cksum_verify(buf);
1199	}
1200
1201	mutex_enter(&buf->b_hdr->b_freeze_lock);
1202	if (buf->b_hdr->b_freeze_cksum != NULL) {
1203		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1204		buf->b_hdr->b_freeze_cksum = NULL;
1205	}
1206
1207	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1208		if (buf->b_hdr->b_thawed)
1209			kmem_free(buf->b_hdr->b_thawed, 1);
1210		buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP);
1211	}
1212
1213	mutex_exit(&buf->b_hdr->b_freeze_lock);
1214
1215#ifdef illumos
1216	arc_buf_unwatch(buf);
1217#endif /* illumos */
1218}
1219
1220void
1221arc_buf_freeze(arc_buf_t *buf)
1222{
1223	kmutex_t *hash_lock;
1224
1225	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1226		return;
1227
1228	hash_lock = HDR_LOCK(buf->b_hdr);
1229	mutex_enter(hash_lock);
1230
1231	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1232	    buf->b_hdr->b_state == arc_anon);
1233	arc_cksum_compute(buf, B_FALSE);
1234	mutex_exit(hash_lock);
1235
1236}
1237
1238static void
1239get_buf_info(arc_buf_hdr_t *ab, arc_state_t *state, list_t **list, kmutex_t **lock)
1240{
1241	uint64_t buf_hashid = buf_hash(ab->b_spa, &ab->b_dva, ab->b_birth);
1242
1243	if (ab->b_type == ARC_BUFC_METADATA)
1244		buf_hashid &= (ARC_BUFC_NUMMETADATALISTS - 1);
1245	else {
1246		buf_hashid &= (ARC_BUFC_NUMDATALISTS - 1);
1247		buf_hashid += ARC_BUFC_NUMMETADATALISTS;
1248	}
1249
1250	*list = &state->arcs_lists[buf_hashid];
1251	*lock = ARCS_LOCK(state, buf_hashid);
1252}
1253
1254
1255static void
1256add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1257{
1258	ASSERT(MUTEX_HELD(hash_lock));
1259
1260	if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
1261	    (ab->b_state != arc_anon)) {
1262		uint64_t delta = ab->b_size * ab->b_datacnt;
1263		uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
1264		list_t *list;
1265		kmutex_t *lock;
1266
1267		get_buf_info(ab, ab->b_state, &list, &lock);
1268		ASSERT(!MUTEX_HELD(lock));
1269		mutex_enter(lock);
1270		ASSERT(list_link_active(&ab->b_arc_node));
1271		list_remove(list, ab);
1272		if (GHOST_STATE(ab->b_state)) {
1273			ASSERT0(ab->b_datacnt);
1274			ASSERT3P(ab->b_buf, ==, NULL);
1275			delta = ab->b_size;
1276		}
1277		ASSERT(delta > 0);
1278		ASSERT3U(*size, >=, delta);
1279		atomic_add_64(size, -delta);
1280		mutex_exit(lock);
1281		/* remove the prefetch flag if we get a reference */
1282		if (ab->b_flags & ARC_PREFETCH)
1283			ab->b_flags &= ~ARC_PREFETCH;
1284	}
1285}
1286
1287static int
1288remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1289{
1290	int cnt;
1291	arc_state_t *state = ab->b_state;
1292
1293	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1294	ASSERT(!GHOST_STATE(state));
1295
1296	if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
1297	    (state != arc_anon)) {
1298		uint64_t *size = &state->arcs_lsize[ab->b_type];
1299		list_t *list;
1300		kmutex_t *lock;
1301
1302		get_buf_info(ab, state, &list, &lock);
1303		ASSERT(!MUTEX_HELD(lock));
1304		mutex_enter(lock);
1305		ASSERT(!list_link_active(&ab->b_arc_node));
1306		list_insert_head(list, ab);
1307		ASSERT(ab->b_datacnt > 0);
1308		atomic_add_64(size, ab->b_size * ab->b_datacnt);
1309		mutex_exit(lock);
1310	}
1311	return (cnt);
1312}
1313
1314/*
1315 * Move the supplied buffer to the indicated state.  The mutex
1316 * for the buffer must be held by the caller.
1317 */
1318static void
1319arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
1320{
1321	arc_state_t *old_state = ab->b_state;
1322	int64_t refcnt = refcount_count(&ab->b_refcnt);
1323	uint64_t from_delta, to_delta;
1324	list_t *list;
1325	kmutex_t *lock;
1326
1327	ASSERT(MUTEX_HELD(hash_lock));
1328	ASSERT3P(new_state, !=, old_state);
1329	ASSERT(refcnt == 0 || ab->b_datacnt > 0);
1330	ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
1331	ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon);
1332
1333	from_delta = to_delta = ab->b_datacnt * ab->b_size;
1334
1335	/*
1336	 * If this buffer is evictable, transfer it from the
1337	 * old state list to the new state list.
1338	 */
1339	if (refcnt == 0) {
1340		if (old_state != arc_anon) {
1341			int use_mutex;
1342			uint64_t *size = &old_state->arcs_lsize[ab->b_type];
1343
1344			get_buf_info(ab, old_state, &list, &lock);
1345			use_mutex = !MUTEX_HELD(lock);
1346			if (use_mutex)
1347				mutex_enter(lock);
1348
1349			ASSERT(list_link_active(&ab->b_arc_node));
1350			list_remove(list, ab);
1351
1352			/*
1353			 * If prefetching out of the ghost cache,
1354			 * we will have a non-zero datacnt.
1355			 */
1356			if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1357				/* ghost elements have a ghost size */
1358				ASSERT(ab->b_buf == NULL);
1359				from_delta = ab->b_size;
1360			}
1361			ASSERT3U(*size, >=, from_delta);
1362			atomic_add_64(size, -from_delta);
1363
1364			if (use_mutex)
1365				mutex_exit(lock);
1366		}
1367		if (new_state != arc_anon) {
1368			int use_mutex;
1369			uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1370
1371			get_buf_info(ab, new_state, &list, &lock);
1372			use_mutex = !MUTEX_HELD(lock);
1373			if (use_mutex)
1374				mutex_enter(lock);
1375
1376			list_insert_head(list, ab);
1377
1378			/* ghost elements have a ghost size */
1379			if (GHOST_STATE(new_state)) {
1380				ASSERT(ab->b_datacnt == 0);
1381				ASSERT(ab->b_buf == NULL);
1382				to_delta = ab->b_size;
1383			}
1384			atomic_add_64(size, to_delta);
1385
1386			if (use_mutex)
1387				mutex_exit(lock);
1388		}
1389	}
1390
1391	ASSERT(!BUF_EMPTY(ab));
1392	if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab))
1393		buf_hash_remove(ab);
1394
1395	/* adjust state sizes */
1396	if (to_delta)
1397		atomic_add_64(&new_state->arcs_size, to_delta);
1398	if (from_delta) {
1399		ASSERT3U(old_state->arcs_size, >=, from_delta);
1400		atomic_add_64(&old_state->arcs_size, -from_delta);
1401	}
1402	ab->b_state = new_state;
1403
1404	/* adjust l2arc hdr stats */
1405	if (new_state == arc_l2c_only)
1406		l2arc_hdr_stat_add();
1407	else if (old_state == arc_l2c_only)
1408		l2arc_hdr_stat_remove();
1409}
1410
1411void
1412arc_space_consume(uint64_t space, arc_space_type_t type)
1413{
1414	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1415
1416	switch (type) {
1417	case ARC_SPACE_DATA:
1418		ARCSTAT_INCR(arcstat_data_size, space);
1419		break;
1420	case ARC_SPACE_OTHER:
1421		ARCSTAT_INCR(arcstat_other_size, space);
1422		break;
1423	case ARC_SPACE_HDRS:
1424		ARCSTAT_INCR(arcstat_hdr_size, space);
1425		break;
1426	case ARC_SPACE_L2HDRS:
1427		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1428		break;
1429	}
1430
1431	atomic_add_64(&arc_meta_used, space);
1432	atomic_add_64(&arc_size, space);
1433}
1434
1435void
1436arc_space_return(uint64_t space, arc_space_type_t type)
1437{
1438	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1439
1440	switch (type) {
1441	case ARC_SPACE_DATA:
1442		ARCSTAT_INCR(arcstat_data_size, -space);
1443		break;
1444	case ARC_SPACE_OTHER:
1445		ARCSTAT_INCR(arcstat_other_size, -space);
1446		break;
1447	case ARC_SPACE_HDRS:
1448		ARCSTAT_INCR(arcstat_hdr_size, -space);
1449		break;
1450	case ARC_SPACE_L2HDRS:
1451		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1452		break;
1453	}
1454
1455	ASSERT(arc_meta_used >= space);
1456	if (arc_meta_max < arc_meta_used)
1457		arc_meta_max = arc_meta_used;
1458	atomic_add_64(&arc_meta_used, -space);
1459	ASSERT(arc_size >= space);
1460	atomic_add_64(&arc_size, -space);
1461}
1462
1463void *
1464arc_data_buf_alloc(uint64_t size)
1465{
1466	if (arc_evict_needed(ARC_BUFC_DATA))
1467		cv_signal(&arc_reclaim_thr_cv);
1468	atomic_add_64(&arc_size, size);
1469	return (zio_data_buf_alloc(size));
1470}
1471
1472void
1473arc_data_buf_free(void *buf, uint64_t size)
1474{
1475	zio_data_buf_free(buf, size);
1476	ASSERT(arc_size >= size);
1477	atomic_add_64(&arc_size, -size);
1478}
1479
1480arc_buf_t *
1481arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1482{
1483	arc_buf_hdr_t *hdr;
1484	arc_buf_t *buf;
1485
1486	ASSERT3U(size, >, 0);
1487	hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1488	ASSERT(BUF_EMPTY(hdr));
1489	hdr->b_size = size;
1490	hdr->b_type = type;
1491	hdr->b_spa = spa_load_guid(spa);
1492	hdr->b_state = arc_anon;
1493	hdr->b_arc_access = 0;
1494	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1495	buf->b_hdr = hdr;
1496	buf->b_data = NULL;
1497	buf->b_efunc = NULL;
1498	buf->b_private = NULL;
1499	buf->b_next = NULL;
1500	hdr->b_buf = buf;
1501	arc_get_data_buf(buf);
1502	hdr->b_datacnt = 1;
1503	hdr->b_flags = 0;
1504	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1505	(void) refcount_add(&hdr->b_refcnt, tag);
1506
1507	return (buf);
1508}
1509
1510static char *arc_onloan_tag = "onloan";
1511
1512/*
1513 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1514 * flight data by arc_tempreserve_space() until they are "returned". Loaned
1515 * buffers must be returned to the arc before they can be used by the DMU or
1516 * freed.
1517 */
1518arc_buf_t *
1519arc_loan_buf(spa_t *spa, int size)
1520{
1521	arc_buf_t *buf;
1522
1523	buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1524
1525	atomic_add_64(&arc_loaned_bytes, size);
1526	return (buf);
1527}
1528
1529/*
1530 * Return a loaned arc buffer to the arc.
1531 */
1532void
1533arc_return_buf(arc_buf_t *buf, void *tag)
1534{
1535	arc_buf_hdr_t *hdr = buf->b_hdr;
1536
1537	ASSERT(buf->b_data != NULL);
1538	(void) refcount_add(&hdr->b_refcnt, tag);
1539	(void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag);
1540
1541	atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1542}
1543
1544/* Detach an arc_buf from a dbuf (tag) */
1545void
1546arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1547{
1548	arc_buf_hdr_t *hdr;
1549
1550	ASSERT(buf->b_data != NULL);
1551	hdr = buf->b_hdr;
1552	(void) refcount_add(&hdr->b_refcnt, arc_onloan_tag);
1553	(void) refcount_remove(&hdr->b_refcnt, tag);
1554	buf->b_efunc = NULL;
1555	buf->b_private = NULL;
1556
1557	atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1558}
1559
1560static arc_buf_t *
1561arc_buf_clone(arc_buf_t *from)
1562{
1563	arc_buf_t *buf;
1564	arc_buf_hdr_t *hdr = from->b_hdr;
1565	uint64_t size = hdr->b_size;
1566
1567	ASSERT(hdr->b_state != arc_anon);
1568
1569	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1570	buf->b_hdr = hdr;
1571	buf->b_data = NULL;
1572	buf->b_efunc = NULL;
1573	buf->b_private = NULL;
1574	buf->b_next = hdr->b_buf;
1575	hdr->b_buf = buf;
1576	arc_get_data_buf(buf);
1577	bcopy(from->b_data, buf->b_data, size);
1578
1579	/*
1580	 * This buffer already exists in the arc so create a duplicate
1581	 * copy for the caller.  If the buffer is associated with user data
1582	 * then track the size and number of duplicates.  These stats will be
1583	 * updated as duplicate buffers are created and destroyed.
1584	 */
1585	if (hdr->b_type == ARC_BUFC_DATA) {
1586		ARCSTAT_BUMP(arcstat_duplicate_buffers);
1587		ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
1588	}
1589	hdr->b_datacnt += 1;
1590	return (buf);
1591}
1592
1593void
1594arc_buf_add_ref(arc_buf_t *buf, void* tag)
1595{
1596	arc_buf_hdr_t *hdr;
1597	kmutex_t *hash_lock;
1598
1599	/*
1600	 * Check to see if this buffer is evicted.  Callers
1601	 * must verify b_data != NULL to know if the add_ref
1602	 * was successful.
1603	 */
1604	mutex_enter(&buf->b_evict_lock);
1605	if (buf->b_data == NULL) {
1606		mutex_exit(&buf->b_evict_lock);
1607		return;
1608	}
1609	hash_lock = HDR_LOCK(buf->b_hdr);
1610	mutex_enter(hash_lock);
1611	hdr = buf->b_hdr;
1612	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1613	mutex_exit(&buf->b_evict_lock);
1614
1615	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1616	add_reference(hdr, hash_lock, tag);
1617	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
1618	arc_access(hdr, hash_lock);
1619	mutex_exit(hash_lock);
1620	ARCSTAT_BUMP(arcstat_hits);
1621	ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1622	    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1623	    data, metadata, hits);
1624}
1625
1626/*
1627 * Free the arc data buffer.  If it is an l2arc write in progress,
1628 * the buffer is placed on l2arc_free_on_write to be freed later.
1629 */
1630static void
1631arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
1632{
1633	arc_buf_hdr_t *hdr = buf->b_hdr;
1634
1635	if (HDR_L2_WRITING(hdr)) {
1636		l2arc_data_free_t *df;
1637		df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
1638		df->l2df_data = buf->b_data;
1639		df->l2df_size = hdr->b_size;
1640		df->l2df_func = free_func;
1641		mutex_enter(&l2arc_free_on_write_mtx);
1642		list_insert_head(l2arc_free_on_write, df);
1643		mutex_exit(&l2arc_free_on_write_mtx);
1644		ARCSTAT_BUMP(arcstat_l2_free_on_write);
1645	} else {
1646		free_func(buf->b_data, hdr->b_size);
1647	}
1648}
1649
1650/*
1651 * Free up buf->b_data and if 'remove' is set, then pull the
1652 * arc_buf_t off of the the arc_buf_hdr_t's list and free it.
1653 */
1654static void
1655arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t remove)
1656{
1657	arc_buf_t **bufp;
1658
1659	/* free up data associated with the buf */
1660	if (buf->b_data) {
1661		arc_state_t *state = buf->b_hdr->b_state;
1662		uint64_t size = buf->b_hdr->b_size;
1663		arc_buf_contents_t type = buf->b_hdr->b_type;
1664
1665		arc_cksum_verify(buf);
1666#ifdef illumos
1667		arc_buf_unwatch(buf);
1668#endif /* illumos */
1669
1670		if (!recycle) {
1671			if (type == ARC_BUFC_METADATA) {
1672				arc_buf_data_free(buf, zio_buf_free);
1673				arc_space_return(size, ARC_SPACE_DATA);
1674			} else {
1675				ASSERT(type == ARC_BUFC_DATA);
1676				arc_buf_data_free(buf, zio_data_buf_free);
1677				ARCSTAT_INCR(arcstat_data_size, -size);
1678				atomic_add_64(&arc_size, -size);
1679			}
1680		}
1681		if (list_link_active(&buf->b_hdr->b_arc_node)) {
1682			uint64_t *cnt = &state->arcs_lsize[type];
1683
1684			ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1685			ASSERT(state != arc_anon);
1686
1687			ASSERT3U(*cnt, >=, size);
1688			atomic_add_64(cnt, -size);
1689		}
1690		ASSERT3U(state->arcs_size, >=, size);
1691		atomic_add_64(&state->arcs_size, -size);
1692		buf->b_data = NULL;
1693
1694		/*
1695		 * If we're destroying a duplicate buffer make sure
1696		 * that the appropriate statistics are updated.
1697		 */
1698		if (buf->b_hdr->b_datacnt > 1 &&
1699		    buf->b_hdr->b_type == ARC_BUFC_DATA) {
1700			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
1701			ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
1702		}
1703		ASSERT(buf->b_hdr->b_datacnt > 0);
1704		buf->b_hdr->b_datacnt -= 1;
1705	}
1706
1707	/* only remove the buf if requested */
1708	if (!remove)
1709		return;
1710
1711	/* remove the buf from the hdr list */
1712	for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1713		continue;
1714	*bufp = buf->b_next;
1715	buf->b_next = NULL;
1716
1717	ASSERT(buf->b_efunc == NULL);
1718
1719	/* clean up the buf */
1720	buf->b_hdr = NULL;
1721	kmem_cache_free(buf_cache, buf);
1722}
1723
1724static void
1725arc_hdr_destroy(arc_buf_hdr_t *hdr)
1726{
1727	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1728	ASSERT3P(hdr->b_state, ==, arc_anon);
1729	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1730	l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr;
1731
1732	if (l2hdr != NULL) {
1733		boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx);
1734		/*
1735		 * To prevent arc_free() and l2arc_evict() from
1736		 * attempting to free the same buffer at the same time,
1737		 * a FREE_IN_PROGRESS flag is given to arc_free() to
1738		 * give it priority.  l2arc_evict() can't destroy this
1739		 * header while we are waiting on l2arc_buflist_mtx.
1740		 *
1741		 * The hdr may be removed from l2ad_buflist before we
1742		 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
1743		 */
1744		if (!buflist_held) {
1745			mutex_enter(&l2arc_buflist_mtx);
1746			l2hdr = hdr->b_l2hdr;
1747		}
1748
1749		if (l2hdr != NULL) {
1750			trim_map_free(l2hdr->b_dev->l2ad_vdev, l2hdr->b_daddr,
1751			    hdr->b_size, 0);
1752			list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
1753			ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1754			ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
1755			vdev_space_update(l2hdr->b_dev->l2ad_vdev,
1756			    -l2hdr->b_asize, 0, 0);
1757			kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
1758			if (hdr->b_state == arc_l2c_only)
1759				l2arc_hdr_stat_remove();
1760			hdr->b_l2hdr = NULL;
1761		}
1762
1763		if (!buflist_held)
1764			mutex_exit(&l2arc_buflist_mtx);
1765	}
1766
1767	if (!BUF_EMPTY(hdr)) {
1768		ASSERT(!HDR_IN_HASH_TABLE(hdr));
1769		buf_discard_identity(hdr);
1770	}
1771	while (hdr->b_buf) {
1772		arc_buf_t *buf = hdr->b_buf;
1773
1774		if (buf->b_efunc) {
1775			mutex_enter(&arc_eviction_mtx);
1776			mutex_enter(&buf->b_evict_lock);
1777			ASSERT(buf->b_hdr != NULL);
1778			arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1779			hdr->b_buf = buf->b_next;
1780			buf->b_hdr = &arc_eviction_hdr;
1781			buf->b_next = arc_eviction_list;
1782			arc_eviction_list = buf;
1783			mutex_exit(&buf->b_evict_lock);
1784			mutex_exit(&arc_eviction_mtx);
1785		} else {
1786			arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1787		}
1788	}
1789	if (hdr->b_freeze_cksum != NULL) {
1790		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1791		hdr->b_freeze_cksum = NULL;
1792	}
1793	if (hdr->b_thawed) {
1794		kmem_free(hdr->b_thawed, 1);
1795		hdr->b_thawed = NULL;
1796	}
1797
1798	ASSERT(!list_link_active(&hdr->b_arc_node));
1799	ASSERT3P(hdr->b_hash_next, ==, NULL);
1800	ASSERT3P(hdr->b_acb, ==, NULL);
1801	kmem_cache_free(hdr_cache, hdr);
1802}
1803
1804void
1805arc_buf_free(arc_buf_t *buf, void *tag)
1806{
1807	arc_buf_hdr_t *hdr = buf->b_hdr;
1808	int hashed = hdr->b_state != arc_anon;
1809
1810	ASSERT(buf->b_efunc == NULL);
1811	ASSERT(buf->b_data != NULL);
1812
1813	if (hashed) {
1814		kmutex_t *hash_lock = HDR_LOCK(hdr);
1815
1816		mutex_enter(hash_lock);
1817		hdr = buf->b_hdr;
1818		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1819
1820		(void) remove_reference(hdr, hash_lock, tag);
1821		if (hdr->b_datacnt > 1) {
1822			arc_buf_destroy(buf, FALSE, TRUE);
1823		} else {
1824			ASSERT(buf == hdr->b_buf);
1825			ASSERT(buf->b_efunc == NULL);
1826			hdr->b_flags |= ARC_BUF_AVAILABLE;
1827		}
1828		mutex_exit(hash_lock);
1829	} else if (HDR_IO_IN_PROGRESS(hdr)) {
1830		int destroy_hdr;
1831		/*
1832		 * We are in the middle of an async write.  Don't destroy
1833		 * this buffer unless the write completes before we finish
1834		 * decrementing the reference count.
1835		 */
1836		mutex_enter(&arc_eviction_mtx);
1837		(void) remove_reference(hdr, NULL, tag);
1838		ASSERT(refcount_is_zero(&hdr->b_refcnt));
1839		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1840		mutex_exit(&arc_eviction_mtx);
1841		if (destroy_hdr)
1842			arc_hdr_destroy(hdr);
1843	} else {
1844		if (remove_reference(hdr, NULL, tag) > 0)
1845			arc_buf_destroy(buf, FALSE, TRUE);
1846		else
1847			arc_hdr_destroy(hdr);
1848	}
1849}
1850
1851boolean_t
1852arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1853{
1854	arc_buf_hdr_t *hdr = buf->b_hdr;
1855	kmutex_t *hash_lock = HDR_LOCK(hdr);
1856	boolean_t no_callback = (buf->b_efunc == NULL);
1857
1858	if (hdr->b_state == arc_anon) {
1859		ASSERT(hdr->b_datacnt == 1);
1860		arc_buf_free(buf, tag);
1861		return (no_callback);
1862	}
1863
1864	mutex_enter(hash_lock);
1865	hdr = buf->b_hdr;
1866	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1867	ASSERT(hdr->b_state != arc_anon);
1868	ASSERT(buf->b_data != NULL);
1869
1870	(void) remove_reference(hdr, hash_lock, tag);
1871	if (hdr->b_datacnt > 1) {
1872		if (no_callback)
1873			arc_buf_destroy(buf, FALSE, TRUE);
1874	} else if (no_callback) {
1875		ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1876		ASSERT(buf->b_efunc == NULL);
1877		hdr->b_flags |= ARC_BUF_AVAILABLE;
1878	}
1879	ASSERT(no_callback || hdr->b_datacnt > 1 ||
1880	    refcount_is_zero(&hdr->b_refcnt));
1881	mutex_exit(hash_lock);
1882	return (no_callback);
1883}
1884
1885int
1886arc_buf_size(arc_buf_t *buf)
1887{
1888	return (buf->b_hdr->b_size);
1889}
1890
1891/*
1892 * Called from the DMU to determine if the current buffer should be
1893 * evicted. In order to ensure proper locking, the eviction must be initiated
1894 * from the DMU. Return true if the buffer is associated with user data and
1895 * duplicate buffers still exist.
1896 */
1897boolean_t
1898arc_buf_eviction_needed(arc_buf_t *buf)
1899{
1900	arc_buf_hdr_t *hdr;
1901	boolean_t evict_needed = B_FALSE;
1902
1903	if (zfs_disable_dup_eviction)
1904		return (B_FALSE);
1905
1906	mutex_enter(&buf->b_evict_lock);
1907	hdr = buf->b_hdr;
1908	if (hdr == NULL) {
1909		/*
1910		 * We are in arc_do_user_evicts(); let that function
1911		 * perform the eviction.
1912		 */
1913		ASSERT(buf->b_data == NULL);
1914		mutex_exit(&buf->b_evict_lock);
1915		return (B_FALSE);
1916	} else if (buf->b_data == NULL) {
1917		/*
1918		 * We have already been added to the arc eviction list;
1919		 * recommend eviction.
1920		 */
1921		ASSERT3P(hdr, ==, &arc_eviction_hdr);
1922		mutex_exit(&buf->b_evict_lock);
1923		return (B_TRUE);
1924	}
1925
1926	if (hdr->b_datacnt > 1 && hdr->b_type == ARC_BUFC_DATA)
1927		evict_needed = B_TRUE;
1928
1929	mutex_exit(&buf->b_evict_lock);
1930	return (evict_needed);
1931}
1932
1933/*
1934 * Evict buffers from list until we've removed the specified number of
1935 * bytes.  Move the removed buffers to the appropriate evict state.
1936 * If the recycle flag is set, then attempt to "recycle" a buffer:
1937 * - look for a buffer to evict that is `bytes' long.
1938 * - return the data block from this buffer rather than freeing it.
1939 * This flag is used by callers that are trying to make space for a
1940 * new buffer in a full arc cache.
1941 *
1942 * This function makes a "best effort".  It skips over any buffers
1943 * it can't get a hash_lock on, and so may not catch all candidates.
1944 * It may also return without evicting as much space as requested.
1945 */
1946static void *
1947arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
1948    arc_buf_contents_t type)
1949{
1950	arc_state_t *evicted_state;
1951	uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1952	int64_t bytes_remaining;
1953	arc_buf_hdr_t *ab, *ab_prev = NULL;
1954	list_t *evicted_list, *list, *evicted_list_start, *list_start;
1955	kmutex_t *lock, *evicted_lock;
1956	kmutex_t *hash_lock;
1957	boolean_t have_lock;
1958	void *stolen = NULL;
1959	arc_buf_hdr_t marker = { 0 };
1960	int count = 0;
1961	static int evict_metadata_offset, evict_data_offset;
1962	int i, idx, offset, list_count, lists;
1963
1964	ASSERT(state == arc_mru || state == arc_mfu);
1965
1966	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1967
1968	if (type == ARC_BUFC_METADATA) {
1969		offset = 0;
1970		list_count = ARC_BUFC_NUMMETADATALISTS;
1971		list_start = &state->arcs_lists[0];
1972		evicted_list_start = &evicted_state->arcs_lists[0];
1973		idx = evict_metadata_offset;
1974	} else {
1975		offset = ARC_BUFC_NUMMETADATALISTS;
1976		list_start = &state->arcs_lists[offset];
1977		evicted_list_start = &evicted_state->arcs_lists[offset];
1978		list_count = ARC_BUFC_NUMDATALISTS;
1979		idx = evict_data_offset;
1980	}
1981	bytes_remaining = evicted_state->arcs_lsize[type];
1982	lists = 0;
1983
1984evict_start:
1985	list = &list_start[idx];
1986	evicted_list = &evicted_list_start[idx];
1987	lock = ARCS_LOCK(state, (offset + idx));
1988	evicted_lock = ARCS_LOCK(evicted_state, (offset + idx));
1989
1990	mutex_enter(lock);
1991	mutex_enter(evicted_lock);
1992
1993	for (ab = list_tail(list); ab; ab = ab_prev) {
1994		ab_prev = list_prev(list, ab);
1995		bytes_remaining -= (ab->b_size * ab->b_datacnt);
1996		/* prefetch buffers have a minimum lifespan */
1997		if (HDR_IO_IN_PROGRESS(ab) ||
1998		    (spa && ab->b_spa != spa) ||
1999		    (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
2000		    ddi_get_lbolt() - ab->b_arc_access <
2001		    arc_min_prefetch_lifespan)) {
2002			skipped++;
2003			continue;
2004		}
2005		/* "lookahead" for better eviction candidate */
2006		if (recycle && ab->b_size != bytes &&
2007		    ab_prev && ab_prev->b_size == bytes)
2008			continue;
2009
2010		/* ignore markers */
2011		if (ab->b_spa == 0)
2012			continue;
2013
2014		/*
2015		 * It may take a long time to evict all the bufs requested.
2016		 * To avoid blocking all arc activity, periodically drop
2017		 * the arcs_mtx and give other threads a chance to run
2018		 * before reacquiring the lock.
2019		 *
2020		 * If we are looking for a buffer to recycle, we are in
2021		 * the hot code path, so don't sleep.
2022		 */
2023		if (!recycle && count++ > arc_evict_iterations) {
2024			list_insert_after(list, ab, &marker);
2025			mutex_exit(evicted_lock);
2026			mutex_exit(lock);
2027			kpreempt(KPREEMPT_SYNC);
2028			mutex_enter(lock);
2029			mutex_enter(evicted_lock);
2030			ab_prev = list_prev(list, &marker);
2031			list_remove(list, &marker);
2032			count = 0;
2033			continue;
2034		}
2035
2036		hash_lock = HDR_LOCK(ab);
2037		have_lock = MUTEX_HELD(hash_lock);
2038		if (have_lock || mutex_tryenter(hash_lock)) {
2039			ASSERT0(refcount_count(&ab->b_refcnt));
2040			ASSERT(ab->b_datacnt > 0);
2041			while (ab->b_buf) {
2042				arc_buf_t *buf = ab->b_buf;
2043				if (!mutex_tryenter(&buf->b_evict_lock)) {
2044					missed += 1;
2045					break;
2046				}
2047				if (buf->b_data) {
2048					bytes_evicted += ab->b_size;
2049					if (recycle && ab->b_type == type &&
2050					    ab->b_size == bytes &&
2051					    !HDR_L2_WRITING(ab)) {
2052						stolen = buf->b_data;
2053						recycle = FALSE;
2054					}
2055				}
2056				if (buf->b_efunc) {
2057					mutex_enter(&arc_eviction_mtx);
2058					arc_buf_destroy(buf,
2059					    buf->b_data == stolen, FALSE);
2060					ab->b_buf = buf->b_next;
2061					buf->b_hdr = &arc_eviction_hdr;
2062					buf->b_next = arc_eviction_list;
2063					arc_eviction_list = buf;
2064					mutex_exit(&arc_eviction_mtx);
2065					mutex_exit(&buf->b_evict_lock);
2066				} else {
2067					mutex_exit(&buf->b_evict_lock);
2068					arc_buf_destroy(buf,
2069					    buf->b_data == stolen, TRUE);
2070				}
2071			}
2072
2073			if (ab->b_l2hdr) {
2074				ARCSTAT_INCR(arcstat_evict_l2_cached,
2075				    ab->b_size);
2076			} else {
2077				if (l2arc_write_eligible(ab->b_spa, ab)) {
2078					ARCSTAT_INCR(arcstat_evict_l2_eligible,
2079					    ab->b_size);
2080				} else {
2081					ARCSTAT_INCR(
2082					    arcstat_evict_l2_ineligible,
2083					    ab->b_size);
2084				}
2085			}
2086
2087			if (ab->b_datacnt == 0) {
2088				arc_change_state(evicted_state, ab, hash_lock);
2089				ASSERT(HDR_IN_HASH_TABLE(ab));
2090				ab->b_flags |= ARC_IN_HASH_TABLE;
2091				ab->b_flags &= ~ARC_BUF_AVAILABLE;
2092				DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
2093			}
2094			if (!have_lock)
2095				mutex_exit(hash_lock);
2096			if (bytes >= 0 && bytes_evicted >= bytes)
2097				break;
2098			if (bytes_remaining > 0) {
2099				mutex_exit(evicted_lock);
2100				mutex_exit(lock);
2101				idx  = ((idx + 1) & (list_count - 1));
2102				lists++;
2103				goto evict_start;
2104			}
2105		} else {
2106			missed += 1;
2107		}
2108	}
2109
2110	mutex_exit(evicted_lock);
2111	mutex_exit(lock);
2112
2113	idx  = ((idx + 1) & (list_count - 1));
2114	lists++;
2115
2116	if (bytes_evicted < bytes) {
2117		if (lists < list_count)
2118			goto evict_start;
2119		else
2120			dprintf("only evicted %lld bytes from %x",
2121			    (longlong_t)bytes_evicted, state);
2122	}
2123	if (type == ARC_BUFC_METADATA)
2124		evict_metadata_offset = idx;
2125	else
2126		evict_data_offset = idx;
2127
2128	if (skipped)
2129		ARCSTAT_INCR(arcstat_evict_skip, skipped);
2130
2131	if (missed)
2132		ARCSTAT_INCR(arcstat_mutex_miss, missed);
2133
2134	/*
2135	 * Note: we have just evicted some data into the ghost state,
2136	 * potentially putting the ghost size over the desired size.  Rather
2137	 * that evicting from the ghost list in this hot code path, leave
2138	 * this chore to the arc_reclaim_thread().
2139	 */
2140
2141	if (stolen)
2142		ARCSTAT_BUMP(arcstat_stolen);
2143	return (stolen);
2144}
2145
2146/*
2147 * Remove buffers from list until we've removed the specified number of
2148 * bytes.  Destroy the buffers that are removed.
2149 */
2150static void
2151arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes)
2152{
2153	arc_buf_hdr_t *ab, *ab_prev;
2154	arc_buf_hdr_t marker = { 0 };
2155	list_t *list, *list_start;
2156	kmutex_t *hash_lock, *lock;
2157	uint64_t bytes_deleted = 0;
2158	uint64_t bufs_skipped = 0;
2159	int count = 0;
2160	static int evict_offset;
2161	int list_count, idx = evict_offset;
2162	int offset, lists = 0;
2163
2164	ASSERT(GHOST_STATE(state));
2165
2166	/*
2167	 * data lists come after metadata lists
2168	 */
2169	list_start = &state->arcs_lists[ARC_BUFC_NUMMETADATALISTS];
2170	list_count = ARC_BUFC_NUMDATALISTS;
2171	offset = ARC_BUFC_NUMMETADATALISTS;
2172
2173evict_start:
2174	list = &list_start[idx];
2175	lock = ARCS_LOCK(state, idx + offset);
2176
2177	mutex_enter(lock);
2178	for (ab = list_tail(list); ab; ab = ab_prev) {
2179		ab_prev = list_prev(list, ab);
2180		if (ab->b_type > ARC_BUFC_NUMTYPES)
2181			panic("invalid ab=%p", (void *)ab);
2182		if (spa && ab->b_spa != spa)
2183			continue;
2184
2185		/* ignore markers */
2186		if (ab->b_spa == 0)
2187			continue;
2188
2189		hash_lock = HDR_LOCK(ab);
2190		/* caller may be trying to modify this buffer, skip it */
2191		if (MUTEX_HELD(hash_lock))
2192			continue;
2193
2194		/*
2195		 * It may take a long time to evict all the bufs requested.
2196		 * To avoid blocking all arc activity, periodically drop
2197		 * the arcs_mtx and give other threads a chance to run
2198		 * before reacquiring the lock.
2199		 */
2200		if (count++ > arc_evict_iterations) {
2201			list_insert_after(list, ab, &marker);
2202			mutex_exit(lock);
2203			kpreempt(KPREEMPT_SYNC);
2204			mutex_enter(lock);
2205			ab_prev = list_prev(list, &marker);
2206			list_remove(list, &marker);
2207			count = 0;
2208			continue;
2209		}
2210		if (mutex_tryenter(hash_lock)) {
2211			ASSERT(!HDR_IO_IN_PROGRESS(ab));
2212			ASSERT(ab->b_buf == NULL);
2213			ARCSTAT_BUMP(arcstat_deleted);
2214			bytes_deleted += ab->b_size;
2215
2216			if (ab->b_l2hdr != NULL) {
2217				/*
2218				 * This buffer is cached on the 2nd Level ARC;
2219				 * don't destroy the header.
2220				 */
2221				arc_change_state(arc_l2c_only, ab, hash_lock);
2222				mutex_exit(hash_lock);
2223			} else {
2224				arc_change_state(arc_anon, ab, hash_lock);
2225				mutex_exit(hash_lock);
2226				arc_hdr_destroy(ab);
2227			}
2228
2229			DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
2230			if (bytes >= 0 && bytes_deleted >= bytes)
2231				break;
2232		} else if (bytes < 0) {
2233			/*
2234			 * Insert a list marker and then wait for the
2235			 * hash lock to become available. Once its
2236			 * available, restart from where we left off.
2237			 */
2238			list_insert_after(list, ab, &marker);
2239			mutex_exit(lock);
2240			mutex_enter(hash_lock);
2241			mutex_exit(hash_lock);
2242			mutex_enter(lock);
2243			ab_prev = list_prev(list, &marker);
2244			list_remove(list, &marker);
2245		} else {
2246			bufs_skipped += 1;
2247		}
2248
2249	}
2250	mutex_exit(lock);
2251	idx  = ((idx + 1) & (ARC_BUFC_NUMDATALISTS - 1));
2252	lists++;
2253
2254	if (lists < list_count)
2255		goto evict_start;
2256
2257	evict_offset = idx;
2258	if ((uintptr_t)list > (uintptr_t)&state->arcs_lists[ARC_BUFC_NUMMETADATALISTS] &&
2259	    (bytes < 0 || bytes_deleted < bytes)) {
2260		list_start = &state->arcs_lists[0];
2261		list_count = ARC_BUFC_NUMMETADATALISTS;
2262		offset = lists = 0;
2263		goto evict_start;
2264	}
2265
2266	if (bufs_skipped) {
2267		ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
2268		ASSERT(bytes >= 0);
2269	}
2270
2271	if (bytes_deleted < bytes)
2272		dprintf("only deleted %lld bytes from %p",
2273		    (longlong_t)bytes_deleted, state);
2274}
2275
2276static void
2277arc_adjust(void)
2278{
2279	int64_t adjustment, delta;
2280
2281	/*
2282	 * Adjust MRU size
2283	 */
2284
2285	adjustment = MIN((int64_t)(arc_size - arc_c),
2286	    (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used -
2287	    arc_p));
2288
2289	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
2290		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment);
2291		(void) arc_evict(arc_mru, 0, delta, FALSE, ARC_BUFC_DATA);
2292		adjustment -= delta;
2293	}
2294
2295	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2296		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
2297		(void) arc_evict(arc_mru, 0, delta, FALSE,
2298		    ARC_BUFC_METADATA);
2299	}
2300
2301	/*
2302	 * Adjust MFU size
2303	 */
2304
2305	adjustment = arc_size - arc_c;
2306
2307	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
2308		delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]);
2309		(void) arc_evict(arc_mfu, 0, delta, FALSE, ARC_BUFC_DATA);
2310		adjustment -= delta;
2311	}
2312
2313	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2314		int64_t delta = MIN(adjustment,
2315		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA]);
2316		(void) arc_evict(arc_mfu, 0, delta, FALSE,
2317		    ARC_BUFC_METADATA);
2318	}
2319
2320	/*
2321	 * Adjust ghost lists
2322	 */
2323
2324	adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
2325
2326	if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
2327		delta = MIN(arc_mru_ghost->arcs_size, adjustment);
2328		arc_evict_ghost(arc_mru_ghost, 0, delta);
2329	}
2330
2331	adjustment =
2332	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
2333
2334	if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
2335		delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
2336		arc_evict_ghost(arc_mfu_ghost, 0, delta);
2337	}
2338}
2339
2340static void
2341arc_do_user_evicts(void)
2342{
2343	static arc_buf_t *tmp_arc_eviction_list;
2344
2345	/*
2346	 * Move list over to avoid LOR
2347	 */
2348restart:
2349	mutex_enter(&arc_eviction_mtx);
2350	tmp_arc_eviction_list = arc_eviction_list;
2351	arc_eviction_list = NULL;
2352	mutex_exit(&arc_eviction_mtx);
2353
2354	while (tmp_arc_eviction_list != NULL) {
2355		arc_buf_t *buf = tmp_arc_eviction_list;
2356		tmp_arc_eviction_list = buf->b_next;
2357		mutex_enter(&buf->b_evict_lock);
2358		buf->b_hdr = NULL;
2359		mutex_exit(&buf->b_evict_lock);
2360
2361		if (buf->b_efunc != NULL)
2362			VERIFY0(buf->b_efunc(buf->b_private));
2363
2364		buf->b_efunc = NULL;
2365		buf->b_private = NULL;
2366		kmem_cache_free(buf_cache, buf);
2367	}
2368
2369	if (arc_eviction_list != NULL)
2370		goto restart;
2371}
2372
2373/*
2374 * Flush all *evictable* data from the cache for the given spa.
2375 * NOTE: this will not touch "active" (i.e. referenced) data.
2376 */
2377void
2378arc_flush(spa_t *spa)
2379{
2380	uint64_t guid = 0;
2381
2382	if (spa)
2383		guid = spa_load_guid(spa);
2384
2385	while (arc_mru->arcs_lsize[ARC_BUFC_DATA]) {
2386		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
2387		if (spa)
2388			break;
2389	}
2390	while (arc_mru->arcs_lsize[ARC_BUFC_METADATA]) {
2391		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
2392		if (spa)
2393			break;
2394	}
2395	while (arc_mfu->arcs_lsize[ARC_BUFC_DATA]) {
2396		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
2397		if (spa)
2398			break;
2399	}
2400	while (arc_mfu->arcs_lsize[ARC_BUFC_METADATA]) {
2401		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
2402		if (spa)
2403			break;
2404	}
2405
2406	arc_evict_ghost(arc_mru_ghost, guid, -1);
2407	arc_evict_ghost(arc_mfu_ghost, guid, -1);
2408
2409	mutex_enter(&arc_reclaim_thr_lock);
2410	arc_do_user_evicts();
2411	mutex_exit(&arc_reclaim_thr_lock);
2412	ASSERT(spa || arc_eviction_list == NULL);
2413}
2414
2415void
2416arc_shrink(void)
2417{
2418	if (arc_c > arc_c_min) {
2419		uint64_t to_free;
2420
2421#ifdef _KERNEL
2422		to_free = arc_c >> arc_shrink_shift;
2423#else
2424		to_free = arc_c >> arc_shrink_shift;
2425#endif
2426		if (arc_c > arc_c_min + to_free)
2427			atomic_add_64(&arc_c, -to_free);
2428		else
2429			arc_c = arc_c_min;
2430
2431		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
2432		if (arc_c > arc_size)
2433			arc_c = MAX(arc_size, arc_c_min);
2434		if (arc_p > arc_c)
2435			arc_p = (arc_c >> 1);
2436		ASSERT(arc_c >= arc_c_min);
2437		ASSERT((int64_t)arc_p >= 0);
2438	}
2439
2440	if (arc_size > arc_c)
2441		arc_adjust();
2442}
2443
2444static int needfree = 0;
2445
2446static int
2447arc_reclaim_needed(void)
2448{
2449
2450#ifdef _KERNEL
2451
2452	if (needfree)
2453		return (1);
2454
2455	/*
2456	 * Cooperate with pagedaemon when it's time for it to scan
2457	 * and reclaim some pages.
2458	 */
2459	if (vm_paging_needed())
2460		return (1);
2461
2462#ifdef sun
2463	/*
2464	 * take 'desfree' extra pages, so we reclaim sooner, rather than later
2465	 */
2466	extra = desfree;
2467
2468	/*
2469	 * check that we're out of range of the pageout scanner.  It starts to
2470	 * schedule paging if freemem is less than lotsfree and needfree.
2471	 * lotsfree is the high-water mark for pageout, and needfree is the
2472	 * number of needed free pages.  We add extra pages here to make sure
2473	 * the scanner doesn't start up while we're freeing memory.
2474	 */
2475	if (freemem < lotsfree + needfree + extra)
2476		return (1);
2477
2478	/*
2479	 * check to make sure that swapfs has enough space so that anon
2480	 * reservations can still succeed. anon_resvmem() checks that the
2481	 * availrmem is greater than swapfs_minfree, and the number of reserved
2482	 * swap pages.  We also add a bit of extra here just to prevent
2483	 * circumstances from getting really dire.
2484	 */
2485	if (availrmem < swapfs_minfree + swapfs_reserve + extra)
2486		return (1);
2487
2488#if defined(__i386)
2489	/*
2490	 * If we're on an i386 platform, it's possible that we'll exhaust the
2491	 * kernel heap space before we ever run out of available physical
2492	 * memory.  Most checks of the size of the heap_area compare against
2493	 * tune.t_minarmem, which is the minimum available real memory that we
2494	 * can have in the system.  However, this is generally fixed at 25 pages
2495	 * which is so low that it's useless.  In this comparison, we seek to
2496	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
2497	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
2498	 * free)
2499	 */
2500	if (btop(vmem_size(heap_arena, VMEM_FREE)) <
2501	    (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2))
2502		return (1);
2503#endif
2504#else	/* !sun */
2505	if (kmem_used() > (kmem_size() * 3) / 4)
2506		return (1);
2507#endif	/* sun */
2508
2509#else
2510	if (spa_get_random(100) == 0)
2511		return (1);
2512#endif
2513	return (0);
2514}
2515
2516extern kmem_cache_t	*zio_buf_cache[];
2517extern kmem_cache_t	*zio_data_buf_cache[];
2518
2519static void
2520arc_kmem_reap_now(arc_reclaim_strategy_t strat)
2521{
2522	size_t			i;
2523	kmem_cache_t		*prev_cache = NULL;
2524	kmem_cache_t		*prev_data_cache = NULL;
2525
2526#ifdef _KERNEL
2527	if (arc_meta_used >= arc_meta_limit) {
2528		/*
2529		 * We are exceeding our meta-data cache limit.
2530		 * Purge some DNLC entries to release holds on meta-data.
2531		 */
2532		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
2533	}
2534#if defined(__i386)
2535	/*
2536	 * Reclaim unused memory from all kmem caches.
2537	 */
2538	kmem_reap();
2539#endif
2540#endif
2541
2542	/*
2543	 * An aggressive reclamation will shrink the cache size as well as
2544	 * reap free buffers from the arc kmem caches.
2545	 */
2546	if (strat == ARC_RECLAIM_AGGR)
2547		arc_shrink();
2548
2549	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
2550		if (zio_buf_cache[i] != prev_cache) {
2551			prev_cache = zio_buf_cache[i];
2552			kmem_cache_reap_now(zio_buf_cache[i]);
2553		}
2554		if (zio_data_buf_cache[i] != prev_data_cache) {
2555			prev_data_cache = zio_data_buf_cache[i];
2556			kmem_cache_reap_now(zio_data_buf_cache[i]);
2557		}
2558	}
2559	kmem_cache_reap_now(buf_cache);
2560	kmem_cache_reap_now(hdr_cache);
2561}
2562
2563static void
2564arc_reclaim_thread(void *dummy __unused)
2565{
2566	clock_t			growtime = 0;
2567	arc_reclaim_strategy_t	last_reclaim = ARC_RECLAIM_CONS;
2568	callb_cpr_t		cpr;
2569
2570	CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
2571
2572	mutex_enter(&arc_reclaim_thr_lock);
2573	while (arc_thread_exit == 0) {
2574		if (arc_reclaim_needed()) {
2575
2576			if (arc_no_grow) {
2577				if (last_reclaim == ARC_RECLAIM_CONS) {
2578					last_reclaim = ARC_RECLAIM_AGGR;
2579				} else {
2580					last_reclaim = ARC_RECLAIM_CONS;
2581				}
2582			} else {
2583				arc_no_grow = TRUE;
2584				last_reclaim = ARC_RECLAIM_AGGR;
2585				membar_producer();
2586			}
2587
2588			/* reset the growth delay for every reclaim */
2589			growtime = ddi_get_lbolt() + (arc_grow_retry * hz);
2590
2591			if (needfree && last_reclaim == ARC_RECLAIM_CONS) {
2592				/*
2593				 * If needfree is TRUE our vm_lowmem hook
2594				 * was called and in that case we must free some
2595				 * memory, so switch to aggressive mode.
2596				 */
2597				arc_no_grow = TRUE;
2598				last_reclaim = ARC_RECLAIM_AGGR;
2599			}
2600			arc_kmem_reap_now(last_reclaim);
2601			arc_warm = B_TRUE;
2602
2603		} else if (arc_no_grow && ddi_get_lbolt() >= growtime) {
2604			arc_no_grow = FALSE;
2605		}
2606
2607		arc_adjust();
2608
2609		if (arc_eviction_list != NULL)
2610			arc_do_user_evicts();
2611
2612#ifdef _KERNEL
2613		if (needfree) {
2614			needfree = 0;
2615			wakeup(&needfree);
2616		}
2617#endif
2618
2619		/* block until needed, or one second, whichever is shorter */
2620		CALLB_CPR_SAFE_BEGIN(&cpr);
2621		(void) cv_timedwait(&arc_reclaim_thr_cv,
2622		    &arc_reclaim_thr_lock, hz);
2623		CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
2624	}
2625
2626	arc_thread_exit = 0;
2627	cv_broadcast(&arc_reclaim_thr_cv);
2628	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_thr_lock */
2629	thread_exit();
2630}
2631
2632/*
2633 * Adapt arc info given the number of bytes we are trying to add and
2634 * the state that we are comming from.  This function is only called
2635 * when we are adding new content to the cache.
2636 */
2637static void
2638arc_adapt(int bytes, arc_state_t *state)
2639{
2640	int mult;
2641	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
2642
2643	if (state == arc_l2c_only)
2644		return;
2645
2646	ASSERT(bytes > 0);
2647	/*
2648	 * Adapt the target size of the MRU list:
2649	 *	- if we just hit in the MRU ghost list, then increase
2650	 *	  the target size of the MRU list.
2651	 *	- if we just hit in the MFU ghost list, then increase
2652	 *	  the target size of the MFU list by decreasing the
2653	 *	  target size of the MRU list.
2654	 */
2655	if (state == arc_mru_ghost) {
2656		mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
2657		    1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
2658		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
2659
2660		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
2661	} else if (state == arc_mfu_ghost) {
2662		uint64_t delta;
2663
2664		mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
2665		    1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
2666		mult = MIN(mult, 10);
2667
2668		delta = MIN(bytes * mult, arc_p);
2669		arc_p = MAX(arc_p_min, arc_p - delta);
2670	}
2671	ASSERT((int64_t)arc_p >= 0);
2672
2673	if (arc_reclaim_needed()) {
2674		cv_signal(&arc_reclaim_thr_cv);
2675		return;
2676	}
2677
2678	if (arc_no_grow)
2679		return;
2680
2681	if (arc_c >= arc_c_max)
2682		return;
2683
2684	/*
2685	 * If we're within (2 * maxblocksize) bytes of the target
2686	 * cache size, increment the target cache size
2687	 */
2688	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
2689		atomic_add_64(&arc_c, (int64_t)bytes);
2690		if (arc_c > arc_c_max)
2691			arc_c = arc_c_max;
2692		else if (state == arc_anon)
2693			atomic_add_64(&arc_p, (int64_t)bytes);
2694		if (arc_p > arc_c)
2695			arc_p = arc_c;
2696	}
2697	ASSERT((int64_t)arc_p >= 0);
2698}
2699
2700/*
2701 * Check if the cache has reached its limits and eviction is required
2702 * prior to insert.
2703 */
2704static int
2705arc_evict_needed(arc_buf_contents_t type)
2706{
2707	if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
2708		return (1);
2709
2710#ifdef sun
2711#ifdef _KERNEL
2712	/*
2713	 * If zio data pages are being allocated out of a separate heap segment,
2714	 * then enforce that the size of available vmem for this area remains
2715	 * above about 1/32nd free.
2716	 */
2717	if (type == ARC_BUFC_DATA && zio_arena != NULL &&
2718	    vmem_size(zio_arena, VMEM_FREE) <
2719	    (vmem_size(zio_arena, VMEM_ALLOC) >> 5))
2720		return (1);
2721#endif
2722#endif	/* sun */
2723
2724	if (arc_reclaim_needed())
2725		return (1);
2726
2727	return (arc_size > arc_c);
2728}
2729
2730/*
2731 * The buffer, supplied as the first argument, needs a data block.
2732 * So, if we are at cache max, determine which cache should be victimized.
2733 * We have the following cases:
2734 *
2735 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2736 * In this situation if we're out of space, but the resident size of the MFU is
2737 * under the limit, victimize the MFU cache to satisfy this insertion request.
2738 *
2739 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2740 * Here, we've used up all of the available space for the MRU, so we need to
2741 * evict from our own cache instead.  Evict from the set of resident MRU
2742 * entries.
2743 *
2744 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2745 * c minus p represents the MFU space in the cache, since p is the size of the
2746 * cache that is dedicated to the MRU.  In this situation there's still space on
2747 * the MFU side, so the MRU side needs to be victimized.
2748 *
2749 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2750 * MFU's resident set is consuming more space than it has been allotted.  In
2751 * this situation, we must victimize our own cache, the MFU, for this insertion.
2752 */
2753static void
2754arc_get_data_buf(arc_buf_t *buf)
2755{
2756	arc_state_t		*state = buf->b_hdr->b_state;
2757	uint64_t		size = buf->b_hdr->b_size;
2758	arc_buf_contents_t	type = buf->b_hdr->b_type;
2759
2760	arc_adapt(size, state);
2761
2762	/*
2763	 * We have not yet reached cache maximum size,
2764	 * just allocate a new buffer.
2765	 */
2766	if (!arc_evict_needed(type)) {
2767		if (type == ARC_BUFC_METADATA) {
2768			buf->b_data = zio_buf_alloc(size);
2769			arc_space_consume(size, ARC_SPACE_DATA);
2770		} else {
2771			ASSERT(type == ARC_BUFC_DATA);
2772			buf->b_data = zio_data_buf_alloc(size);
2773			ARCSTAT_INCR(arcstat_data_size, size);
2774			atomic_add_64(&arc_size, size);
2775		}
2776		goto out;
2777	}
2778
2779	/*
2780	 * If we are prefetching from the mfu ghost list, this buffer
2781	 * will end up on the mru list; so steal space from there.
2782	 */
2783	if (state == arc_mfu_ghost)
2784		state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2785	else if (state == arc_mru_ghost)
2786		state = arc_mru;
2787
2788	if (state == arc_mru || state == arc_anon) {
2789		uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
2790		state = (arc_mfu->arcs_lsize[type] >= size &&
2791		    arc_p > mru_used) ? arc_mfu : arc_mru;
2792	} else {
2793		/* MFU cases */
2794		uint64_t mfu_space = arc_c - arc_p;
2795		state =  (arc_mru->arcs_lsize[type] >= size &&
2796		    mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2797	}
2798	if ((buf->b_data = arc_evict(state, 0, size, TRUE, type)) == NULL) {
2799		if (type == ARC_BUFC_METADATA) {
2800			buf->b_data = zio_buf_alloc(size);
2801			arc_space_consume(size, ARC_SPACE_DATA);
2802		} else {
2803			ASSERT(type == ARC_BUFC_DATA);
2804			buf->b_data = zio_data_buf_alloc(size);
2805			ARCSTAT_INCR(arcstat_data_size, size);
2806			atomic_add_64(&arc_size, size);
2807		}
2808		ARCSTAT_BUMP(arcstat_recycle_miss);
2809	}
2810	ASSERT(buf->b_data != NULL);
2811out:
2812	/*
2813	 * Update the state size.  Note that ghost states have a
2814	 * "ghost size" and so don't need to be updated.
2815	 */
2816	if (!GHOST_STATE(buf->b_hdr->b_state)) {
2817		arc_buf_hdr_t *hdr = buf->b_hdr;
2818
2819		atomic_add_64(&hdr->b_state->arcs_size, size);
2820		if (list_link_active(&hdr->b_arc_node)) {
2821			ASSERT(refcount_is_zero(&hdr->b_refcnt));
2822			atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2823		}
2824		/*
2825		 * If we are growing the cache, and we are adding anonymous
2826		 * data, and we have outgrown arc_p, update arc_p
2827		 */
2828		if (arc_size < arc_c && hdr->b_state == arc_anon &&
2829		    arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2830			arc_p = MIN(arc_c, arc_p + size);
2831	}
2832	ARCSTAT_BUMP(arcstat_allocated);
2833}
2834
2835/*
2836 * This routine is called whenever a buffer is accessed.
2837 * NOTE: the hash lock is dropped in this function.
2838 */
2839static void
2840arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2841{
2842	clock_t now;
2843
2844	ASSERT(MUTEX_HELD(hash_lock));
2845
2846	if (buf->b_state == arc_anon) {
2847		/*
2848		 * This buffer is not in the cache, and does not
2849		 * appear in our "ghost" list.  Add the new buffer
2850		 * to the MRU state.
2851		 */
2852
2853		ASSERT(buf->b_arc_access == 0);
2854		buf->b_arc_access = ddi_get_lbolt();
2855		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2856		arc_change_state(arc_mru, buf, hash_lock);
2857
2858	} else if (buf->b_state == arc_mru) {
2859		now = ddi_get_lbolt();
2860
2861		/*
2862		 * If this buffer is here because of a prefetch, then either:
2863		 * - clear the flag if this is a "referencing" read
2864		 *   (any subsequent access will bump this into the MFU state).
2865		 * or
2866		 * - move the buffer to the head of the list if this is
2867		 *   another prefetch (to make it less likely to be evicted).
2868		 */
2869		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2870			if (refcount_count(&buf->b_refcnt) == 0) {
2871				ASSERT(list_link_active(&buf->b_arc_node));
2872			} else {
2873				buf->b_flags &= ~ARC_PREFETCH;
2874				ARCSTAT_BUMP(arcstat_mru_hits);
2875			}
2876			buf->b_arc_access = now;
2877			return;
2878		}
2879
2880		/*
2881		 * This buffer has been "accessed" only once so far,
2882		 * but it is still in the cache. Move it to the MFU
2883		 * state.
2884		 */
2885		if (now > buf->b_arc_access + ARC_MINTIME) {
2886			/*
2887			 * More than 125ms have passed since we
2888			 * instantiated this buffer.  Move it to the
2889			 * most frequently used state.
2890			 */
2891			buf->b_arc_access = now;
2892			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2893			arc_change_state(arc_mfu, buf, hash_lock);
2894		}
2895		ARCSTAT_BUMP(arcstat_mru_hits);
2896	} else if (buf->b_state == arc_mru_ghost) {
2897		arc_state_t	*new_state;
2898		/*
2899		 * This buffer has been "accessed" recently, but
2900		 * was evicted from the cache.  Move it to the
2901		 * MFU state.
2902		 */
2903
2904		if (buf->b_flags & ARC_PREFETCH) {
2905			new_state = arc_mru;
2906			if (refcount_count(&buf->b_refcnt) > 0)
2907				buf->b_flags &= ~ARC_PREFETCH;
2908			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2909		} else {
2910			new_state = arc_mfu;
2911			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2912		}
2913
2914		buf->b_arc_access = ddi_get_lbolt();
2915		arc_change_state(new_state, buf, hash_lock);
2916
2917		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2918	} else if (buf->b_state == arc_mfu) {
2919		/*
2920		 * This buffer has been accessed more than once and is
2921		 * still in the cache.  Keep it in the MFU state.
2922		 *
2923		 * NOTE: an add_reference() that occurred when we did
2924		 * the arc_read() will have kicked this off the list.
2925		 * If it was a prefetch, we will explicitly move it to
2926		 * the head of the list now.
2927		 */
2928		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2929			ASSERT(refcount_count(&buf->b_refcnt) == 0);
2930			ASSERT(list_link_active(&buf->b_arc_node));
2931		}
2932		ARCSTAT_BUMP(arcstat_mfu_hits);
2933		buf->b_arc_access = ddi_get_lbolt();
2934	} else if (buf->b_state == arc_mfu_ghost) {
2935		arc_state_t	*new_state = arc_mfu;
2936		/*
2937		 * This buffer has been accessed more than once but has
2938		 * been evicted from the cache.  Move it back to the
2939		 * MFU state.
2940		 */
2941
2942		if (buf->b_flags & ARC_PREFETCH) {
2943			/*
2944			 * This is a prefetch access...
2945			 * move this block back to the MRU state.
2946			 */
2947			ASSERT0(refcount_count(&buf->b_refcnt));
2948			new_state = arc_mru;
2949		}
2950
2951		buf->b_arc_access = ddi_get_lbolt();
2952		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2953		arc_change_state(new_state, buf, hash_lock);
2954
2955		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2956	} else if (buf->b_state == arc_l2c_only) {
2957		/*
2958		 * This buffer is on the 2nd Level ARC.
2959		 */
2960
2961		buf->b_arc_access = ddi_get_lbolt();
2962		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2963		arc_change_state(arc_mfu, buf, hash_lock);
2964	} else {
2965		ASSERT(!"invalid arc state");
2966	}
2967}
2968
2969/* a generic arc_done_func_t which you can use */
2970/* ARGSUSED */
2971void
2972arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2973{
2974	if (zio == NULL || zio->io_error == 0)
2975		bcopy(buf->b_data, arg, buf->b_hdr->b_size);
2976	VERIFY(arc_buf_remove_ref(buf, arg));
2977}
2978
2979/* a generic arc_done_func_t */
2980void
2981arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2982{
2983	arc_buf_t **bufp = arg;
2984	if (zio && zio->io_error) {
2985		VERIFY(arc_buf_remove_ref(buf, arg));
2986		*bufp = NULL;
2987	} else {
2988		*bufp = buf;
2989		ASSERT(buf->b_data);
2990	}
2991}
2992
2993static void
2994arc_read_done(zio_t *zio)
2995{
2996	arc_buf_hdr_t	*hdr;
2997	arc_buf_t	*buf;
2998	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
2999	kmutex_t	*hash_lock = NULL;
3000	arc_callback_t	*callback_list, *acb;
3001	int		freeable = FALSE;
3002
3003	buf = zio->io_private;
3004	hdr = buf->b_hdr;
3005
3006	/*
3007	 * The hdr was inserted into hash-table and removed from lists
3008	 * prior to starting I/O.  We should find this header, since
3009	 * it's in the hash table, and it should be legit since it's
3010	 * not possible to evict it during the I/O.  The only possible
3011	 * reason for it not to be found is if we were freed during the
3012	 * read.
3013	 */
3014	if (HDR_IN_HASH_TABLE(hdr)) {
3015		ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
3016		ASSERT3U(hdr->b_dva.dva_word[0], ==,
3017		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
3018		ASSERT3U(hdr->b_dva.dva_word[1], ==,
3019		    BP_IDENTITY(zio->io_bp)->dva_word[1]);
3020
3021		arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
3022		    &hash_lock);
3023
3024		ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) &&
3025		    hash_lock == NULL) ||
3026		    (found == hdr &&
3027		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
3028		    (found == hdr && HDR_L2_READING(hdr)));
3029	}
3030
3031	hdr->b_flags &= ~ARC_L2_EVICTED;
3032	if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
3033		hdr->b_flags &= ~ARC_L2CACHE;
3034
3035	/* byteswap if necessary */
3036	callback_list = hdr->b_acb;
3037	ASSERT(callback_list != NULL);
3038	if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
3039		dmu_object_byteswap_t bswap =
3040		    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
3041		arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
3042		    byteswap_uint64_array :
3043		    dmu_ot_byteswap[bswap].ob_func;
3044		func(buf->b_data, hdr->b_size);
3045	}
3046
3047	arc_cksum_compute(buf, B_FALSE);
3048#ifdef illumos
3049	arc_buf_watch(buf);
3050#endif /* illumos */
3051
3052	if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) {
3053		/*
3054		 * Only call arc_access on anonymous buffers.  This is because
3055		 * if we've issued an I/O for an evicted buffer, we've already
3056		 * called arc_access (to prevent any simultaneous readers from
3057		 * getting confused).
3058		 */
3059		arc_access(hdr, hash_lock);
3060	}
3061
3062	/* create copies of the data buffer for the callers */
3063	abuf = buf;
3064	for (acb = callback_list; acb; acb = acb->acb_next) {
3065		if (acb->acb_done) {
3066			if (abuf == NULL) {
3067				ARCSTAT_BUMP(arcstat_duplicate_reads);
3068				abuf = arc_buf_clone(buf);
3069			}
3070			acb->acb_buf = abuf;
3071			abuf = NULL;
3072		}
3073	}
3074	hdr->b_acb = NULL;
3075	hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3076	ASSERT(!HDR_BUF_AVAILABLE(hdr));
3077	if (abuf == buf) {
3078		ASSERT(buf->b_efunc == NULL);
3079		ASSERT(hdr->b_datacnt == 1);
3080		hdr->b_flags |= ARC_BUF_AVAILABLE;
3081	}
3082
3083	ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
3084
3085	if (zio->io_error != 0) {
3086		hdr->b_flags |= ARC_IO_ERROR;
3087		if (hdr->b_state != arc_anon)
3088			arc_change_state(arc_anon, hdr, hash_lock);
3089		if (HDR_IN_HASH_TABLE(hdr))
3090			buf_hash_remove(hdr);
3091		freeable = refcount_is_zero(&hdr->b_refcnt);
3092	}
3093
3094	/*
3095	 * Broadcast before we drop the hash_lock to avoid the possibility
3096	 * that the hdr (and hence the cv) might be freed before we get to
3097	 * the cv_broadcast().
3098	 */
3099	cv_broadcast(&hdr->b_cv);
3100
3101	if (hash_lock) {
3102		mutex_exit(hash_lock);
3103	} else {
3104		/*
3105		 * This block was freed while we waited for the read to
3106		 * complete.  It has been removed from the hash table and
3107		 * moved to the anonymous state (so that it won't show up
3108		 * in the cache).
3109		 */
3110		ASSERT3P(hdr->b_state, ==, arc_anon);
3111		freeable = refcount_is_zero(&hdr->b_refcnt);
3112	}
3113
3114	/* execute each callback and free its structure */
3115	while ((acb = callback_list) != NULL) {
3116		if (acb->acb_done)
3117			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
3118
3119		if (acb->acb_zio_dummy != NULL) {
3120			acb->acb_zio_dummy->io_error = zio->io_error;
3121			zio_nowait(acb->acb_zio_dummy);
3122		}
3123
3124		callback_list = acb->acb_next;
3125		kmem_free(acb, sizeof (arc_callback_t));
3126	}
3127
3128	if (freeable)
3129		arc_hdr_destroy(hdr);
3130}
3131
3132/*
3133 * "Read" the block block at the specified DVA (in bp) via the
3134 * cache.  If the block is found in the cache, invoke the provided
3135 * callback immediately and return.  Note that the `zio' parameter
3136 * in the callback will be NULL in this case, since no IO was
3137 * required.  If the block is not in the cache pass the read request
3138 * on to the spa with a substitute callback function, so that the
3139 * requested block will be added to the cache.
3140 *
3141 * If a read request arrives for a block that has a read in-progress,
3142 * either wait for the in-progress read to complete (and return the
3143 * results); or, if this is a read with a "done" func, add a record
3144 * to the read to invoke the "done" func when the read completes,
3145 * and return; or just return.
3146 *
3147 * arc_read_done() will invoke all the requested "done" functions
3148 * for readers of this block.
3149 */
3150int
3151arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
3152    void *private, zio_priority_t priority, int zio_flags, uint32_t *arc_flags,
3153    const zbookmark_phys_t *zb)
3154{
3155	arc_buf_hdr_t *hdr = NULL;
3156	arc_buf_t *buf = NULL;
3157	kmutex_t *hash_lock = NULL;
3158	zio_t *rzio;
3159	uint64_t guid = spa_load_guid(spa);
3160
3161	ASSERT(!BP_IS_EMBEDDED(bp) ||
3162	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
3163
3164top:
3165	if (!BP_IS_EMBEDDED(bp)) {
3166		/*
3167		 * Embedded BP's have no DVA and require no I/O to "read".
3168		 * Create an anonymous arc buf to back it.
3169		 */
3170		hdr = buf_hash_find(guid, bp, &hash_lock);
3171	}
3172
3173	if (hdr != NULL && hdr->b_datacnt > 0) {
3174
3175		*arc_flags |= ARC_CACHED;
3176
3177		if (HDR_IO_IN_PROGRESS(hdr)) {
3178
3179			if (*arc_flags & ARC_WAIT) {
3180				cv_wait(&hdr->b_cv, hash_lock);
3181				mutex_exit(hash_lock);
3182				goto top;
3183			}
3184			ASSERT(*arc_flags & ARC_NOWAIT);
3185
3186			if (done) {
3187				arc_callback_t	*acb = NULL;
3188
3189				acb = kmem_zalloc(sizeof (arc_callback_t),
3190				    KM_SLEEP);
3191				acb->acb_done = done;
3192				acb->acb_private = private;
3193				if (pio != NULL)
3194					acb->acb_zio_dummy = zio_null(pio,
3195					    spa, NULL, NULL, NULL, zio_flags);
3196
3197				ASSERT(acb->acb_done != NULL);
3198				acb->acb_next = hdr->b_acb;
3199				hdr->b_acb = acb;
3200				add_reference(hdr, hash_lock, private);
3201				mutex_exit(hash_lock);
3202				return (0);
3203			}
3204			mutex_exit(hash_lock);
3205			return (0);
3206		}
3207
3208		ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
3209
3210		if (done) {
3211			add_reference(hdr, hash_lock, private);
3212			/*
3213			 * If this block is already in use, create a new
3214			 * copy of the data so that we will be guaranteed
3215			 * that arc_release() will always succeed.
3216			 */
3217			buf = hdr->b_buf;
3218			ASSERT(buf);
3219			ASSERT(buf->b_data);
3220			if (HDR_BUF_AVAILABLE(hdr)) {
3221				ASSERT(buf->b_efunc == NULL);
3222				hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3223			} else {
3224				buf = arc_buf_clone(buf);
3225			}
3226
3227		} else if (*arc_flags & ARC_PREFETCH &&
3228		    refcount_count(&hdr->b_refcnt) == 0) {
3229			hdr->b_flags |= ARC_PREFETCH;
3230		}
3231		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
3232		arc_access(hdr, hash_lock);
3233		if (*arc_flags & ARC_L2CACHE)
3234			hdr->b_flags |= ARC_L2CACHE;
3235		if (*arc_flags & ARC_L2COMPRESS)
3236			hdr->b_flags |= ARC_L2COMPRESS;
3237		mutex_exit(hash_lock);
3238		ARCSTAT_BUMP(arcstat_hits);
3239		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
3240		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
3241		    data, metadata, hits);
3242
3243		if (done)
3244			done(NULL, buf, private);
3245	} else {
3246		uint64_t size = BP_GET_LSIZE(bp);
3247		arc_callback_t *acb;
3248		vdev_t *vd = NULL;
3249		uint64_t addr = 0;
3250		boolean_t devw = B_FALSE;
3251		enum zio_compress b_compress = ZIO_COMPRESS_OFF;
3252		uint64_t b_asize = 0;
3253
3254		if (hdr == NULL) {
3255			/* this block is not in the cache */
3256			arc_buf_hdr_t *exists = NULL;
3257			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
3258			buf = arc_buf_alloc(spa, size, private, type);
3259			hdr = buf->b_hdr;
3260			if (!BP_IS_EMBEDDED(bp)) {
3261				hdr->b_dva = *BP_IDENTITY(bp);
3262				hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
3263				hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
3264				exists = buf_hash_insert(hdr, &hash_lock);
3265			}
3266			if (exists != NULL) {
3267				/* somebody beat us to the hash insert */
3268				mutex_exit(hash_lock);
3269				buf_discard_identity(hdr);
3270				(void) arc_buf_remove_ref(buf, private);
3271				goto top; /* restart the IO request */
3272			}
3273			/* if this is a prefetch, we don't have a reference */
3274			if (*arc_flags & ARC_PREFETCH) {
3275				(void) remove_reference(hdr, hash_lock,
3276				    private);
3277				hdr->b_flags |= ARC_PREFETCH;
3278			}
3279			if (*arc_flags & ARC_L2CACHE)
3280				hdr->b_flags |= ARC_L2CACHE;
3281			if (*arc_flags & ARC_L2COMPRESS)
3282				hdr->b_flags |= ARC_L2COMPRESS;
3283			if (BP_GET_LEVEL(bp) > 0)
3284				hdr->b_flags |= ARC_INDIRECT;
3285		} else {
3286			/* this block is in the ghost cache */
3287			ASSERT(GHOST_STATE(hdr->b_state));
3288			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3289			ASSERT0(refcount_count(&hdr->b_refcnt));
3290			ASSERT(hdr->b_buf == NULL);
3291
3292			/* if this is a prefetch, we don't have a reference */
3293			if (*arc_flags & ARC_PREFETCH)
3294				hdr->b_flags |= ARC_PREFETCH;
3295			else
3296				add_reference(hdr, hash_lock, private);
3297			if (*arc_flags & ARC_L2CACHE)
3298				hdr->b_flags |= ARC_L2CACHE;
3299			if (*arc_flags & ARC_L2COMPRESS)
3300				hdr->b_flags |= ARC_L2COMPRESS;
3301			buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
3302			buf->b_hdr = hdr;
3303			buf->b_data = NULL;
3304			buf->b_efunc = NULL;
3305			buf->b_private = NULL;
3306			buf->b_next = NULL;
3307			hdr->b_buf = buf;
3308			ASSERT(hdr->b_datacnt == 0);
3309			hdr->b_datacnt = 1;
3310			arc_get_data_buf(buf);
3311			arc_access(hdr, hash_lock);
3312		}
3313
3314		ASSERT(!GHOST_STATE(hdr->b_state));
3315
3316		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
3317		acb->acb_done = done;
3318		acb->acb_private = private;
3319
3320		ASSERT(hdr->b_acb == NULL);
3321		hdr->b_acb = acb;
3322		hdr->b_flags |= ARC_IO_IN_PROGRESS;
3323
3324		if (hdr->b_l2hdr != NULL &&
3325		    (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
3326			devw = hdr->b_l2hdr->b_dev->l2ad_writing;
3327			addr = hdr->b_l2hdr->b_daddr;
3328			b_compress = hdr->b_l2hdr->b_compress;
3329			b_asize = hdr->b_l2hdr->b_asize;
3330			/*
3331			 * Lock out device removal.
3332			 */
3333			if (vdev_is_dead(vd) ||
3334			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
3335				vd = NULL;
3336		}
3337
3338		if (hash_lock != NULL)
3339			mutex_exit(hash_lock);
3340
3341		/*
3342		 * At this point, we have a level 1 cache miss.  Try again in
3343		 * L2ARC if possible.
3344		 */
3345		ASSERT3U(hdr->b_size, ==, size);
3346		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
3347		    uint64_t, size, zbookmark_phys_t *, zb);
3348		ARCSTAT_BUMP(arcstat_misses);
3349		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
3350		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
3351		    data, metadata, misses);
3352#ifdef _KERNEL
3353		curthread->td_ru.ru_inblock++;
3354#endif
3355
3356		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
3357			/*
3358			 * Read from the L2ARC if the following are true:
3359			 * 1. The L2ARC vdev was previously cached.
3360			 * 2. This buffer still has L2ARC metadata.
3361			 * 3. This buffer isn't currently writing to the L2ARC.
3362			 * 4. The L2ARC entry wasn't evicted, which may
3363			 *    also have invalidated the vdev.
3364			 * 5. This isn't prefetch and l2arc_noprefetch is set.
3365			 */
3366			if (hdr->b_l2hdr != NULL &&
3367			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
3368			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
3369				l2arc_read_callback_t *cb;
3370
3371				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
3372				ARCSTAT_BUMP(arcstat_l2_hits);
3373
3374				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
3375				    KM_SLEEP);
3376				cb->l2rcb_buf = buf;
3377				cb->l2rcb_spa = spa;
3378				cb->l2rcb_bp = *bp;
3379				cb->l2rcb_zb = *zb;
3380				cb->l2rcb_flags = zio_flags;
3381				cb->l2rcb_compress = b_compress;
3382
3383				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
3384				    addr + size < vd->vdev_psize -
3385				    VDEV_LABEL_END_SIZE);
3386
3387				/*
3388				 * l2arc read.  The SCL_L2ARC lock will be
3389				 * released by l2arc_read_done().
3390				 * Issue a null zio if the underlying buffer
3391				 * was squashed to zero size by compression.
3392				 */
3393				if (b_compress == ZIO_COMPRESS_EMPTY) {
3394					rzio = zio_null(pio, spa, vd,
3395					    l2arc_read_done, cb,
3396					    zio_flags | ZIO_FLAG_DONT_CACHE |
3397					    ZIO_FLAG_CANFAIL |
3398					    ZIO_FLAG_DONT_PROPAGATE |
3399					    ZIO_FLAG_DONT_RETRY);
3400				} else {
3401					rzio = zio_read_phys(pio, vd, addr,
3402					    b_asize, buf->b_data,
3403					    ZIO_CHECKSUM_OFF,
3404					    l2arc_read_done, cb, priority,
3405					    zio_flags | ZIO_FLAG_DONT_CACHE |
3406					    ZIO_FLAG_CANFAIL |
3407					    ZIO_FLAG_DONT_PROPAGATE |
3408					    ZIO_FLAG_DONT_RETRY, B_FALSE);
3409				}
3410				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
3411				    zio_t *, rzio);
3412				ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize);
3413
3414				if (*arc_flags & ARC_NOWAIT) {
3415					zio_nowait(rzio);
3416					return (0);
3417				}
3418
3419				ASSERT(*arc_flags & ARC_WAIT);
3420				if (zio_wait(rzio) == 0)
3421					return (0);
3422
3423				/* l2arc read error; goto zio_read() */
3424			} else {
3425				DTRACE_PROBE1(l2arc__miss,
3426				    arc_buf_hdr_t *, hdr);
3427				ARCSTAT_BUMP(arcstat_l2_misses);
3428				if (HDR_L2_WRITING(hdr))
3429					ARCSTAT_BUMP(arcstat_l2_rw_clash);
3430				spa_config_exit(spa, SCL_L2ARC, vd);
3431			}
3432		} else {
3433			if (vd != NULL)
3434				spa_config_exit(spa, SCL_L2ARC, vd);
3435			if (l2arc_ndev != 0) {
3436				DTRACE_PROBE1(l2arc__miss,
3437				    arc_buf_hdr_t *, hdr);
3438				ARCSTAT_BUMP(arcstat_l2_misses);
3439			}
3440		}
3441
3442		rzio = zio_read(pio, spa, bp, buf->b_data, size,
3443		    arc_read_done, buf, priority, zio_flags, zb);
3444
3445		if (*arc_flags & ARC_WAIT)
3446			return (zio_wait(rzio));
3447
3448		ASSERT(*arc_flags & ARC_NOWAIT);
3449		zio_nowait(rzio);
3450	}
3451	return (0);
3452}
3453
3454void
3455arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
3456{
3457	ASSERT(buf->b_hdr != NULL);
3458	ASSERT(buf->b_hdr->b_state != arc_anon);
3459	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
3460	ASSERT(buf->b_efunc == NULL);
3461	ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
3462
3463	buf->b_efunc = func;
3464	buf->b_private = private;
3465}
3466
3467/*
3468 * Notify the arc that a block was freed, and thus will never be used again.
3469 */
3470void
3471arc_freed(spa_t *spa, const blkptr_t *bp)
3472{
3473	arc_buf_hdr_t *hdr;
3474	kmutex_t *hash_lock;
3475	uint64_t guid = spa_load_guid(spa);
3476
3477	ASSERT(!BP_IS_EMBEDDED(bp));
3478
3479	hdr = buf_hash_find(guid, bp, &hash_lock);
3480	if (hdr == NULL)
3481		return;
3482	if (HDR_BUF_AVAILABLE(hdr)) {
3483		arc_buf_t *buf = hdr->b_buf;
3484		add_reference(hdr, hash_lock, FTAG);
3485		hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3486		mutex_exit(hash_lock);
3487
3488		arc_release(buf, FTAG);
3489		(void) arc_buf_remove_ref(buf, FTAG);
3490	} else {
3491		mutex_exit(hash_lock);
3492	}
3493
3494}
3495
3496/*
3497 * Clear the user eviction callback set by arc_set_callback(), first calling
3498 * it if it exists.  Because the presence of a callback keeps an arc_buf cached
3499 * clearing the callback may result in the arc_buf being destroyed.  However,
3500 * it will not result in the *last* arc_buf being destroyed, hence the data
3501 * will remain cached in the ARC. We make a copy of the arc buffer here so
3502 * that we can process the callback without holding any locks.
3503 *
3504 * It's possible that the callback is already in the process of being cleared
3505 * by another thread.  In this case we can not clear the callback.
3506 *
3507 * Returns B_TRUE if the callback was successfully called and cleared.
3508 */
3509boolean_t
3510arc_clear_callback(arc_buf_t *buf)
3511{
3512	arc_buf_hdr_t *hdr;
3513	kmutex_t *hash_lock;
3514	arc_evict_func_t *efunc = buf->b_efunc;
3515	void *private = buf->b_private;
3516	list_t *list, *evicted_list;
3517	kmutex_t *lock, *evicted_lock;
3518
3519	mutex_enter(&buf->b_evict_lock);
3520	hdr = buf->b_hdr;
3521	if (hdr == NULL) {
3522		/*
3523		 * We are in arc_do_user_evicts().
3524		 */
3525		ASSERT(buf->b_data == NULL);
3526		mutex_exit(&buf->b_evict_lock);
3527		return (B_FALSE);
3528	} else if (buf->b_data == NULL) {
3529		/*
3530		 * We are on the eviction list; process this buffer now
3531		 * but let arc_do_user_evicts() do the reaping.
3532		 */
3533		buf->b_efunc = NULL;
3534		mutex_exit(&buf->b_evict_lock);
3535		VERIFY0(efunc(private));
3536		return (B_TRUE);
3537	}
3538	hash_lock = HDR_LOCK(hdr);
3539	mutex_enter(hash_lock);
3540	hdr = buf->b_hdr;
3541	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3542
3543	ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
3544	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
3545
3546	buf->b_efunc = NULL;
3547	buf->b_private = NULL;
3548
3549	if (hdr->b_datacnt > 1) {
3550		mutex_exit(&buf->b_evict_lock);
3551		arc_buf_destroy(buf, FALSE, TRUE);
3552	} else {
3553		ASSERT(buf == hdr->b_buf);
3554		hdr->b_flags |= ARC_BUF_AVAILABLE;
3555		mutex_exit(&buf->b_evict_lock);
3556	}
3557
3558	mutex_exit(hash_lock);
3559	VERIFY0(efunc(private));
3560	return (B_TRUE);
3561}
3562
3563/*
3564 * Release this buffer from the cache, making it an anonymous buffer.  This
3565 * must be done after a read and prior to modifying the buffer contents.
3566 * If the buffer has more than one reference, we must make
3567 * a new hdr for the buffer.
3568 */
3569void
3570arc_release(arc_buf_t *buf, void *tag)
3571{
3572	arc_buf_hdr_t *hdr;
3573	kmutex_t *hash_lock = NULL;
3574	l2arc_buf_hdr_t *l2hdr;
3575	uint64_t buf_size;
3576
3577	/*
3578	 * It would be nice to assert that if it's DMU metadata (level >
3579	 * 0 || it's the dnode file), then it must be syncing context.
3580	 * But we don't know that information at this level.
3581	 */
3582
3583	mutex_enter(&buf->b_evict_lock);
3584	hdr = buf->b_hdr;
3585
3586	/* this buffer is not on any list */
3587	ASSERT(refcount_count(&hdr->b_refcnt) > 0);
3588
3589	if (hdr->b_state == arc_anon) {
3590		/* this buffer is already released */
3591		ASSERT(buf->b_efunc == NULL);
3592	} else {
3593		hash_lock = HDR_LOCK(hdr);
3594		mutex_enter(hash_lock);
3595		hdr = buf->b_hdr;
3596		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3597	}
3598
3599	l2hdr = hdr->b_l2hdr;
3600	if (l2hdr) {
3601		mutex_enter(&l2arc_buflist_mtx);
3602		hdr->b_l2hdr = NULL;
3603		list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
3604	}
3605	buf_size = hdr->b_size;
3606
3607	/*
3608	 * Do we have more than one buf?
3609	 */
3610	if (hdr->b_datacnt > 1) {
3611		arc_buf_hdr_t *nhdr;
3612		arc_buf_t **bufp;
3613		uint64_t blksz = hdr->b_size;
3614		uint64_t spa = hdr->b_spa;
3615		arc_buf_contents_t type = hdr->b_type;
3616		uint32_t flags = hdr->b_flags;
3617
3618		ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
3619		/*
3620		 * Pull the data off of this hdr and attach it to
3621		 * a new anonymous hdr.
3622		 */
3623		(void) remove_reference(hdr, hash_lock, tag);
3624		bufp = &hdr->b_buf;
3625		while (*bufp != buf)
3626			bufp = &(*bufp)->b_next;
3627		*bufp = buf->b_next;
3628		buf->b_next = NULL;
3629
3630		ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
3631		atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
3632		if (refcount_is_zero(&hdr->b_refcnt)) {
3633			uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
3634			ASSERT3U(*size, >=, hdr->b_size);
3635			atomic_add_64(size, -hdr->b_size);
3636		}
3637
3638		/*
3639		 * We're releasing a duplicate user data buffer, update
3640		 * our statistics accordingly.
3641		 */
3642		if (hdr->b_type == ARC_BUFC_DATA) {
3643			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
3644			ARCSTAT_INCR(arcstat_duplicate_buffers_size,
3645			    -hdr->b_size);
3646		}
3647		hdr->b_datacnt -= 1;
3648		arc_cksum_verify(buf);
3649#ifdef illumos
3650		arc_buf_unwatch(buf);
3651#endif /* illumos */
3652
3653		mutex_exit(hash_lock);
3654
3655		nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3656		nhdr->b_size = blksz;
3657		nhdr->b_spa = spa;
3658		nhdr->b_type = type;
3659		nhdr->b_buf = buf;
3660		nhdr->b_state = arc_anon;
3661		nhdr->b_arc_access = 0;
3662		nhdr->b_flags = flags & ARC_L2_WRITING;
3663		nhdr->b_l2hdr = NULL;
3664		nhdr->b_datacnt = 1;
3665		nhdr->b_freeze_cksum = NULL;
3666		(void) refcount_add(&nhdr->b_refcnt, tag);
3667		buf->b_hdr = nhdr;
3668		mutex_exit(&buf->b_evict_lock);
3669		atomic_add_64(&arc_anon->arcs_size, blksz);
3670	} else {
3671		mutex_exit(&buf->b_evict_lock);
3672		ASSERT(refcount_count(&hdr->b_refcnt) == 1);
3673		ASSERT(!list_link_active(&hdr->b_arc_node));
3674		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3675		if (hdr->b_state != arc_anon)
3676			arc_change_state(arc_anon, hdr, hash_lock);
3677		hdr->b_arc_access = 0;
3678		if (hash_lock)
3679			mutex_exit(hash_lock);
3680
3681		buf_discard_identity(hdr);
3682		arc_buf_thaw(buf);
3683	}
3684	buf->b_efunc = NULL;
3685	buf->b_private = NULL;
3686
3687	if (l2hdr) {
3688		ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
3689		vdev_space_update(l2hdr->b_dev->l2ad_vdev,
3690		    -l2hdr->b_asize, 0, 0);
3691		trim_map_free(l2hdr->b_dev->l2ad_vdev, l2hdr->b_daddr,
3692		    hdr->b_size, 0);
3693		kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
3694		ARCSTAT_INCR(arcstat_l2_size, -buf_size);
3695		mutex_exit(&l2arc_buflist_mtx);
3696	}
3697}
3698
3699int
3700arc_released(arc_buf_t *buf)
3701{
3702	int released;
3703
3704	mutex_enter(&buf->b_evict_lock);
3705	released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
3706	mutex_exit(&buf->b_evict_lock);
3707	return (released);
3708}
3709
3710#ifdef ZFS_DEBUG
3711int
3712arc_referenced(arc_buf_t *buf)
3713{
3714	int referenced;
3715
3716	mutex_enter(&buf->b_evict_lock);
3717	referenced = (refcount_count(&buf->b_hdr->b_refcnt));
3718	mutex_exit(&buf->b_evict_lock);
3719	return (referenced);
3720}
3721#endif
3722
3723static void
3724arc_write_ready(zio_t *zio)
3725{
3726	arc_write_callback_t *callback = zio->io_private;
3727	arc_buf_t *buf = callback->awcb_buf;
3728	arc_buf_hdr_t *hdr = buf->b_hdr;
3729
3730	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
3731	callback->awcb_ready(zio, buf, callback->awcb_private);
3732
3733	/*
3734	 * If the IO is already in progress, then this is a re-write
3735	 * attempt, so we need to thaw and re-compute the cksum.
3736	 * It is the responsibility of the callback to handle the
3737	 * accounting for any re-write attempt.
3738	 */
3739	if (HDR_IO_IN_PROGRESS(hdr)) {
3740		mutex_enter(&hdr->b_freeze_lock);
3741		if (hdr->b_freeze_cksum != NULL) {
3742			kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
3743			hdr->b_freeze_cksum = NULL;
3744		}
3745		mutex_exit(&hdr->b_freeze_lock);
3746	}
3747	arc_cksum_compute(buf, B_FALSE);
3748	hdr->b_flags |= ARC_IO_IN_PROGRESS;
3749}
3750
3751/*
3752 * The SPA calls this callback for each physical write that happens on behalf
3753 * of a logical write.  See the comment in dbuf_write_physdone() for details.
3754 */
3755static void
3756arc_write_physdone(zio_t *zio)
3757{
3758	arc_write_callback_t *cb = zio->io_private;
3759	if (cb->awcb_physdone != NULL)
3760		cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
3761}
3762
3763static void
3764arc_write_done(zio_t *zio)
3765{
3766	arc_write_callback_t *callback = zio->io_private;
3767	arc_buf_t *buf = callback->awcb_buf;
3768	arc_buf_hdr_t *hdr = buf->b_hdr;
3769
3770	ASSERT(hdr->b_acb == NULL);
3771
3772	if (zio->io_error == 0) {
3773		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
3774			buf_discard_identity(hdr);
3775		} else {
3776			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3777			hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
3778			hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3779		}
3780	} else {
3781		ASSERT(BUF_EMPTY(hdr));
3782	}
3783
3784	/*
3785	 * If the block to be written was all-zero or compressed enough to be
3786	 * embedded in the BP, no write was performed so there will be no
3787	 * dva/birth/checksum.  The buffer must therefore remain anonymous
3788	 * (and uncached).
3789	 */
3790	if (!BUF_EMPTY(hdr)) {
3791		arc_buf_hdr_t *exists;
3792		kmutex_t *hash_lock;
3793
3794		ASSERT(zio->io_error == 0);
3795
3796		arc_cksum_verify(buf);
3797
3798		exists = buf_hash_insert(hdr, &hash_lock);
3799		if (exists) {
3800			/*
3801			 * This can only happen if we overwrite for
3802			 * sync-to-convergence, because we remove
3803			 * buffers from the hash table when we arc_free().
3804			 */
3805			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
3806				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3807					panic("bad overwrite, hdr=%p exists=%p",
3808					    (void *)hdr, (void *)exists);
3809				ASSERT(refcount_is_zero(&exists->b_refcnt));
3810				arc_change_state(arc_anon, exists, hash_lock);
3811				mutex_exit(hash_lock);
3812				arc_hdr_destroy(exists);
3813				exists = buf_hash_insert(hdr, &hash_lock);
3814				ASSERT3P(exists, ==, NULL);
3815			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
3816				/* nopwrite */
3817				ASSERT(zio->io_prop.zp_nopwrite);
3818				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3819					panic("bad nopwrite, hdr=%p exists=%p",
3820					    (void *)hdr, (void *)exists);
3821			} else {
3822				/* Dedup */
3823				ASSERT(hdr->b_datacnt == 1);
3824				ASSERT(hdr->b_state == arc_anon);
3825				ASSERT(BP_GET_DEDUP(zio->io_bp));
3826				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
3827			}
3828		}
3829		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3830		/* if it's not anon, we are doing a scrub */
3831		if (!exists && hdr->b_state == arc_anon)
3832			arc_access(hdr, hash_lock);
3833		mutex_exit(hash_lock);
3834	} else {
3835		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3836	}
3837
3838	ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3839	callback->awcb_done(zio, buf, callback->awcb_private);
3840
3841	kmem_free(callback, sizeof (arc_write_callback_t));
3842}
3843
3844zio_t *
3845arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
3846    blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
3847    const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone,
3848    arc_done_func_t *done, void *private, zio_priority_t priority,
3849    int zio_flags, const zbookmark_phys_t *zb)
3850{
3851	arc_buf_hdr_t *hdr = buf->b_hdr;
3852	arc_write_callback_t *callback;
3853	zio_t *zio;
3854
3855	ASSERT(ready != NULL);
3856	ASSERT(done != NULL);
3857	ASSERT(!HDR_IO_ERROR(hdr));
3858	ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
3859	ASSERT(hdr->b_acb == NULL);
3860	if (l2arc)
3861		hdr->b_flags |= ARC_L2CACHE;
3862	if (l2arc_compress)
3863		hdr->b_flags |= ARC_L2COMPRESS;
3864	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
3865	callback->awcb_ready = ready;
3866	callback->awcb_physdone = physdone;
3867	callback->awcb_done = done;
3868	callback->awcb_private = private;
3869	callback->awcb_buf = buf;
3870
3871	zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
3872	    arc_write_ready, arc_write_physdone, arc_write_done, callback,
3873	    priority, zio_flags, zb);
3874
3875	return (zio);
3876}
3877
3878static int
3879arc_memory_throttle(uint64_t reserve, uint64_t txg)
3880{
3881#ifdef _KERNEL
3882	uint64_t available_memory =
3883	    ptoa((uintmax_t)cnt.v_free_count + cnt.v_cache_count);
3884	static uint64_t page_load = 0;
3885	static uint64_t last_txg = 0;
3886
3887#ifdef sun
3888#if defined(__i386)
3889	available_memory =
3890	    MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
3891#endif
3892#endif	/* sun */
3893
3894	if (cnt.v_free_count + cnt.v_cache_count >
3895	    (uint64_t)physmem * arc_lotsfree_percent / 100)
3896		return (0);
3897
3898	if (txg > last_txg) {
3899		last_txg = txg;
3900		page_load = 0;
3901	}
3902	/*
3903	 * If we are in pageout, we know that memory is already tight,
3904	 * the arc is already going to be evicting, so we just want to
3905	 * continue to let page writes occur as quickly as possible.
3906	 */
3907	if (curproc == pageproc) {
3908		if (page_load > available_memory / 4)
3909			return (SET_ERROR(ERESTART));
3910		/* Note: reserve is inflated, so we deflate */
3911		page_load += reserve / 8;
3912		return (0);
3913	} else if (page_load > 0 && arc_reclaim_needed()) {
3914		/* memory is low, delay before restarting */
3915		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3916		return (SET_ERROR(EAGAIN));
3917	}
3918	page_load = 0;
3919#endif
3920	return (0);
3921}
3922
3923void
3924arc_tempreserve_clear(uint64_t reserve)
3925{
3926	atomic_add_64(&arc_tempreserve, -reserve);
3927	ASSERT((int64_t)arc_tempreserve >= 0);
3928}
3929
3930int
3931arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3932{
3933	int error;
3934	uint64_t anon_size;
3935
3936	if (reserve > arc_c/4 && !arc_no_grow)
3937		arc_c = MIN(arc_c_max, reserve * 4);
3938	if (reserve > arc_c)
3939		return (SET_ERROR(ENOMEM));
3940
3941	/*
3942	 * Don't count loaned bufs as in flight dirty data to prevent long
3943	 * network delays from blocking transactions that are ready to be
3944	 * assigned to a txg.
3945	 */
3946	anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
3947
3948	/*
3949	 * Writes will, almost always, require additional memory allocations
3950	 * in order to compress/encrypt/etc the data.  We therefore need to
3951	 * make sure that there is sufficient available memory for this.
3952	 */
3953	error = arc_memory_throttle(reserve, txg);
3954	if (error != 0)
3955		return (error);
3956
3957	/*
3958	 * Throttle writes when the amount of dirty data in the cache
3959	 * gets too large.  We try to keep the cache less than half full
3960	 * of dirty blocks so that our sync times don't grow too large.
3961	 * Note: if two requests come in concurrently, we might let them
3962	 * both succeed, when one of them should fail.  Not a huge deal.
3963	 */
3964
3965	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
3966	    anon_size > arc_c / 4) {
3967		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3968		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3969		    arc_tempreserve>>10,
3970		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3971		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3972		    reserve>>10, arc_c>>10);
3973		return (SET_ERROR(ERESTART));
3974	}
3975	atomic_add_64(&arc_tempreserve, reserve);
3976	return (0);
3977}
3978
3979static kmutex_t arc_lowmem_lock;
3980#ifdef _KERNEL
3981static eventhandler_tag arc_event_lowmem = NULL;
3982
3983static void
3984arc_lowmem(void *arg __unused, int howto __unused)
3985{
3986
3987	/* Serialize access via arc_lowmem_lock. */
3988	mutex_enter(&arc_lowmem_lock);
3989	mutex_enter(&arc_reclaim_thr_lock);
3990	needfree = 1;
3991	cv_signal(&arc_reclaim_thr_cv);
3992
3993	/*
3994	 * It is unsafe to block here in arbitrary threads, because we can come
3995	 * here from ARC itself and may hold ARC locks and thus risk a deadlock
3996	 * with ARC reclaim thread.
3997	 */
3998	if (curproc == pageproc) {
3999		while (needfree)
4000			msleep(&needfree, &arc_reclaim_thr_lock, 0, "zfs:lowmem", 0);
4001	}
4002	mutex_exit(&arc_reclaim_thr_lock);
4003	mutex_exit(&arc_lowmem_lock);
4004}
4005#endif
4006
4007void
4008arc_init(void)
4009{
4010	int i, prefetch_tunable_set = 0;
4011
4012	mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
4013	cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
4014	mutex_init(&arc_lowmem_lock, NULL, MUTEX_DEFAULT, NULL);
4015
4016	/* Convert seconds to clock ticks */
4017	arc_min_prefetch_lifespan = 1 * hz;
4018
4019	/* Start out with 1/8 of all memory */
4020	arc_c = kmem_size() / 8;
4021
4022#ifdef sun
4023#ifdef _KERNEL
4024	/*
4025	 * On architectures where the physical memory can be larger
4026	 * than the addressable space (intel in 32-bit mode), we may
4027	 * need to limit the cache to 1/8 of VM size.
4028	 */
4029	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
4030#endif
4031#endif	/* sun */
4032	/* set min cache to 1/32 of all memory, or 16MB, whichever is more */
4033	arc_c_min = MAX(arc_c / 4, 64<<18);
4034	/* set max to 1/2 of all memory, or all but 1GB, whichever is more */
4035	if (arc_c * 8 >= 1<<30)
4036		arc_c_max = (arc_c * 8) - (1<<30);
4037	else
4038		arc_c_max = arc_c_min;
4039	arc_c_max = MAX(arc_c * 5, arc_c_max);
4040
4041#ifdef _KERNEL
4042	/*
4043	 * Allow the tunables to override our calculations if they are
4044	 * reasonable (ie. over 16MB)
4045	 */
4046	if (zfs_arc_max > 64<<18 && zfs_arc_max < kmem_size())
4047		arc_c_max = zfs_arc_max;
4048	if (zfs_arc_min > 64<<18 && zfs_arc_min <= arc_c_max)
4049		arc_c_min = zfs_arc_min;
4050#endif
4051
4052	arc_c = arc_c_max;
4053	arc_p = (arc_c >> 1);
4054
4055	/* limit meta-data to 1/4 of the arc capacity */
4056	arc_meta_limit = arc_c_max / 4;
4057
4058	/* Allow the tunable to override if it is reasonable */
4059	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
4060		arc_meta_limit = zfs_arc_meta_limit;
4061
4062	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
4063		arc_c_min = arc_meta_limit / 2;
4064
4065	if (zfs_arc_grow_retry > 0)
4066		arc_grow_retry = zfs_arc_grow_retry;
4067
4068	if (zfs_arc_shrink_shift > 0)
4069		arc_shrink_shift = zfs_arc_shrink_shift;
4070
4071	if (zfs_arc_p_min_shift > 0)
4072		arc_p_min_shift = zfs_arc_p_min_shift;
4073
4074	/* if kmem_flags are set, lets try to use less memory */
4075	if (kmem_debugging())
4076		arc_c = arc_c / 2;
4077	if (arc_c < arc_c_min)
4078		arc_c = arc_c_min;
4079
4080	zfs_arc_min = arc_c_min;
4081	zfs_arc_max = arc_c_max;
4082
4083	arc_anon = &ARC_anon;
4084	arc_mru = &ARC_mru;
4085	arc_mru_ghost = &ARC_mru_ghost;
4086	arc_mfu = &ARC_mfu;
4087	arc_mfu_ghost = &ARC_mfu_ghost;
4088	arc_l2c_only = &ARC_l2c_only;
4089	arc_size = 0;
4090
4091	for (i = 0; i < ARC_BUFC_NUMLISTS; i++) {
4092		mutex_init(&arc_anon->arcs_locks[i].arcs_lock,
4093		    NULL, MUTEX_DEFAULT, NULL);
4094		mutex_init(&arc_mru->arcs_locks[i].arcs_lock,
4095		    NULL, MUTEX_DEFAULT, NULL);
4096		mutex_init(&arc_mru_ghost->arcs_locks[i].arcs_lock,
4097		    NULL, MUTEX_DEFAULT, NULL);
4098		mutex_init(&arc_mfu->arcs_locks[i].arcs_lock,
4099		    NULL, MUTEX_DEFAULT, NULL);
4100		mutex_init(&arc_mfu_ghost->arcs_locks[i].arcs_lock,
4101		    NULL, MUTEX_DEFAULT, NULL);
4102		mutex_init(&arc_l2c_only->arcs_locks[i].arcs_lock,
4103		    NULL, MUTEX_DEFAULT, NULL);
4104
4105		list_create(&arc_mru->arcs_lists[i],
4106		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4107		list_create(&arc_mru_ghost->arcs_lists[i],
4108		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4109		list_create(&arc_mfu->arcs_lists[i],
4110		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4111		list_create(&arc_mfu_ghost->arcs_lists[i],
4112		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4113		list_create(&arc_mfu_ghost->arcs_lists[i],
4114		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4115		list_create(&arc_l2c_only->arcs_lists[i],
4116		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4117	}
4118
4119	buf_init();
4120
4121	arc_thread_exit = 0;
4122	arc_eviction_list = NULL;
4123	mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
4124	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
4125
4126	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
4127	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
4128
4129	if (arc_ksp != NULL) {
4130		arc_ksp->ks_data = &arc_stats;
4131		kstat_install(arc_ksp);
4132	}
4133
4134	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
4135	    TS_RUN, minclsyspri);
4136
4137#ifdef _KERNEL
4138	arc_event_lowmem = EVENTHANDLER_REGISTER(vm_lowmem, arc_lowmem, NULL,
4139	    EVENTHANDLER_PRI_FIRST);
4140#endif
4141
4142	arc_dead = FALSE;
4143	arc_warm = B_FALSE;
4144
4145	/*
4146	 * Calculate maximum amount of dirty data per pool.
4147	 *
4148	 * If it has been set by /etc/system, take that.
4149	 * Otherwise, use a percentage of physical memory defined by
4150	 * zfs_dirty_data_max_percent (default 10%) with a cap at
4151	 * zfs_dirty_data_max_max (default 4GB).
4152	 */
4153	if (zfs_dirty_data_max == 0) {
4154		zfs_dirty_data_max = ptob(physmem) *
4155		    zfs_dirty_data_max_percent / 100;
4156		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
4157		    zfs_dirty_data_max_max);
4158	}
4159
4160#ifdef _KERNEL
4161	if (TUNABLE_INT_FETCH("vfs.zfs.prefetch_disable", &zfs_prefetch_disable))
4162		prefetch_tunable_set = 1;
4163
4164#ifdef __i386__
4165	if (prefetch_tunable_set == 0) {
4166		printf("ZFS NOTICE: Prefetch is disabled by default on i386 "
4167		    "-- to enable,\n");
4168		printf("            add \"vfs.zfs.prefetch_disable=0\" "
4169		    "to /boot/loader.conf.\n");
4170		zfs_prefetch_disable = 1;
4171	}
4172#else
4173	if ((((uint64_t)physmem * PAGESIZE) < (1ULL << 32)) &&
4174	    prefetch_tunable_set == 0) {
4175		printf("ZFS NOTICE: Prefetch is disabled by default if less "
4176		    "than 4GB of RAM is present;\n"
4177		    "            to enable, add \"vfs.zfs.prefetch_disable=0\" "
4178		    "to /boot/loader.conf.\n");
4179		zfs_prefetch_disable = 1;
4180	}
4181#endif
4182	/* Warn about ZFS memory and address space requirements. */
4183	if (((uint64_t)physmem * PAGESIZE) < (256 + 128 + 64) * (1 << 20)) {
4184		printf("ZFS WARNING: Recommended minimum RAM size is 512MB; "
4185		    "expect unstable behavior.\n");
4186	}
4187	if (kmem_size() < 512 * (1 << 20)) {
4188		printf("ZFS WARNING: Recommended minimum kmem_size is 512MB; "
4189		    "expect unstable behavior.\n");
4190		printf("             Consider tuning vm.kmem_size and "
4191		    "vm.kmem_size_max\n");
4192		printf("             in /boot/loader.conf.\n");
4193	}
4194#endif
4195}
4196
4197void
4198arc_fini(void)
4199{
4200	int i;
4201
4202	mutex_enter(&arc_reclaim_thr_lock);
4203	arc_thread_exit = 1;
4204	cv_signal(&arc_reclaim_thr_cv);
4205	while (arc_thread_exit != 0)
4206		cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
4207	mutex_exit(&arc_reclaim_thr_lock);
4208
4209	arc_flush(NULL);
4210
4211	arc_dead = TRUE;
4212
4213	if (arc_ksp != NULL) {
4214		kstat_delete(arc_ksp);
4215		arc_ksp = NULL;
4216	}
4217
4218	mutex_destroy(&arc_eviction_mtx);
4219	mutex_destroy(&arc_reclaim_thr_lock);
4220	cv_destroy(&arc_reclaim_thr_cv);
4221
4222	for (i = 0; i < ARC_BUFC_NUMLISTS; i++) {
4223		list_destroy(&arc_mru->arcs_lists[i]);
4224		list_destroy(&arc_mru_ghost->arcs_lists[i]);
4225		list_destroy(&arc_mfu->arcs_lists[i]);
4226		list_destroy(&arc_mfu_ghost->arcs_lists[i]);
4227		list_destroy(&arc_l2c_only->arcs_lists[i]);
4228
4229		mutex_destroy(&arc_anon->arcs_locks[i].arcs_lock);
4230		mutex_destroy(&arc_mru->arcs_locks[i].arcs_lock);
4231		mutex_destroy(&arc_mru_ghost->arcs_locks[i].arcs_lock);
4232		mutex_destroy(&arc_mfu->arcs_locks[i].arcs_lock);
4233		mutex_destroy(&arc_mfu_ghost->arcs_locks[i].arcs_lock);
4234		mutex_destroy(&arc_l2c_only->arcs_locks[i].arcs_lock);
4235	}
4236
4237	buf_fini();
4238
4239	ASSERT(arc_loaned_bytes == 0);
4240
4241	mutex_destroy(&arc_lowmem_lock);
4242#ifdef _KERNEL
4243	if (arc_event_lowmem != NULL)
4244		EVENTHANDLER_DEREGISTER(vm_lowmem, arc_event_lowmem);
4245#endif
4246}
4247
4248/*
4249 * Level 2 ARC
4250 *
4251 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
4252 * It uses dedicated storage devices to hold cached data, which are populated
4253 * using large infrequent writes.  The main role of this cache is to boost
4254 * the performance of random read workloads.  The intended L2ARC devices
4255 * include short-stroked disks, solid state disks, and other media with
4256 * substantially faster read latency than disk.
4257 *
4258 *                 +-----------------------+
4259 *                 |         ARC           |
4260 *                 +-----------------------+
4261 *                    |         ^     ^
4262 *                    |         |     |
4263 *      l2arc_feed_thread()    arc_read()
4264 *                    |         |     |
4265 *                    |  l2arc read   |
4266 *                    V         |     |
4267 *               +---------------+    |
4268 *               |     L2ARC     |    |
4269 *               +---------------+    |
4270 *                   |    ^           |
4271 *          l2arc_write() |           |
4272 *                   |    |           |
4273 *                   V    |           |
4274 *                 +-------+      +-------+
4275 *                 | vdev  |      | vdev  |
4276 *                 | cache |      | cache |
4277 *                 +-------+      +-------+
4278 *                 +=========+     .-----.
4279 *                 :  L2ARC  :    |-_____-|
4280 *                 : devices :    | Disks |
4281 *                 +=========+    `-_____-'
4282 *
4283 * Read requests are satisfied from the following sources, in order:
4284 *
4285 *	1) ARC
4286 *	2) vdev cache of L2ARC devices
4287 *	3) L2ARC devices
4288 *	4) vdev cache of disks
4289 *	5) disks
4290 *
4291 * Some L2ARC device types exhibit extremely slow write performance.
4292 * To accommodate for this there are some significant differences between
4293 * the L2ARC and traditional cache design:
4294 *
4295 * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
4296 * the ARC behave as usual, freeing buffers and placing headers on ghost
4297 * lists.  The ARC does not send buffers to the L2ARC during eviction as
4298 * this would add inflated write latencies for all ARC memory pressure.
4299 *
4300 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
4301 * It does this by periodically scanning buffers from the eviction-end of
4302 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
4303 * not already there. It scans until a headroom of buffers is satisfied,
4304 * which itself is a buffer for ARC eviction. If a compressible buffer is
4305 * found during scanning and selected for writing to an L2ARC device, we
4306 * temporarily boost scanning headroom during the next scan cycle to make
4307 * sure we adapt to compression effects (which might significantly reduce
4308 * the data volume we write to L2ARC). The thread that does this is
4309 * l2arc_feed_thread(), illustrated below; example sizes are included to
4310 * provide a better sense of ratio than this diagram:
4311 *
4312 *	       head -->                        tail
4313 *	        +---------------------+----------+
4314 *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
4315 *	        +---------------------+----------+   |   o L2ARC eligible
4316 *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
4317 *	        +---------------------+----------+   |
4318 *	             15.9 Gbytes      ^ 32 Mbytes    |
4319 *	                           headroom          |
4320 *	                                      l2arc_feed_thread()
4321 *	                                             |
4322 *	                 l2arc write hand <--[oooo]--'
4323 *	                         |           8 Mbyte
4324 *	                         |          write max
4325 *	                         V
4326 *		  +==============================+
4327 *	L2ARC dev |####|#|###|###|    |####| ... |
4328 *	          +==============================+
4329 *	                     32 Gbytes
4330 *
4331 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
4332 * evicted, then the L2ARC has cached a buffer much sooner than it probably
4333 * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
4334 * safe to say that this is an uncommon case, since buffers at the end of
4335 * the ARC lists have moved there due to inactivity.
4336 *
4337 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
4338 * then the L2ARC simply misses copying some buffers.  This serves as a
4339 * pressure valve to prevent heavy read workloads from both stalling the ARC
4340 * with waits and clogging the L2ARC with writes.  This also helps prevent
4341 * the potential for the L2ARC to churn if it attempts to cache content too
4342 * quickly, such as during backups of the entire pool.
4343 *
4344 * 5. After system boot and before the ARC has filled main memory, there are
4345 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
4346 * lists can remain mostly static.  Instead of searching from tail of these
4347 * lists as pictured, the l2arc_feed_thread() will search from the list heads
4348 * for eligible buffers, greatly increasing its chance of finding them.
4349 *
4350 * The L2ARC device write speed is also boosted during this time so that
4351 * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
4352 * there are no L2ARC reads, and no fear of degrading read performance
4353 * through increased writes.
4354 *
4355 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
4356 * the vdev queue can aggregate them into larger and fewer writes.  Each
4357 * device is written to in a rotor fashion, sweeping writes through
4358 * available space then repeating.
4359 *
4360 * 7. The L2ARC does not store dirty content.  It never needs to flush
4361 * write buffers back to disk based storage.
4362 *
4363 * 8. If an ARC buffer is written (and dirtied) which also exists in the
4364 * L2ARC, the now stale L2ARC buffer is immediately dropped.
4365 *
4366 * The performance of the L2ARC can be tweaked by a number of tunables, which
4367 * may be necessary for different workloads:
4368 *
4369 *	l2arc_write_max		max write bytes per interval
4370 *	l2arc_write_boost	extra write bytes during device warmup
4371 *	l2arc_noprefetch	skip caching prefetched buffers
4372 *	l2arc_headroom		number of max device writes to precache
4373 *	l2arc_headroom_boost	when we find compressed buffers during ARC
4374 *				scanning, we multiply headroom by this
4375 *				percentage factor for the next scan cycle,
4376 *				since more compressed buffers are likely to
4377 *				be present
4378 *	l2arc_feed_secs		seconds between L2ARC writing
4379 *
4380 * Tunables may be removed or added as future performance improvements are
4381 * integrated, and also may become zpool properties.
4382 *
4383 * There are three key functions that control how the L2ARC warms up:
4384 *
4385 *	l2arc_write_eligible()	check if a buffer is eligible to cache
4386 *	l2arc_write_size()	calculate how much to write
4387 *	l2arc_write_interval()	calculate sleep delay between writes
4388 *
4389 * These three functions determine what to write, how much, and how quickly
4390 * to send writes.
4391 */
4392
4393static boolean_t
4394l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab)
4395{
4396	/*
4397	 * A buffer is *not* eligible for the L2ARC if it:
4398	 * 1. belongs to a different spa.
4399	 * 2. is already cached on the L2ARC.
4400	 * 3. has an I/O in progress (it may be an incomplete read).
4401	 * 4. is flagged not eligible (zfs property).
4402	 */
4403	if (ab->b_spa != spa_guid) {
4404		ARCSTAT_BUMP(arcstat_l2_write_spa_mismatch);
4405		return (B_FALSE);
4406	}
4407	if (ab->b_l2hdr != NULL) {
4408		ARCSTAT_BUMP(arcstat_l2_write_in_l2);
4409		return (B_FALSE);
4410	}
4411	if (HDR_IO_IN_PROGRESS(ab)) {
4412		ARCSTAT_BUMP(arcstat_l2_write_hdr_io_in_progress);
4413		return (B_FALSE);
4414	}
4415	if (!HDR_L2CACHE(ab)) {
4416		ARCSTAT_BUMP(arcstat_l2_write_not_cacheable);
4417		return (B_FALSE);
4418	}
4419
4420	return (B_TRUE);
4421}
4422
4423static uint64_t
4424l2arc_write_size(void)
4425{
4426	uint64_t size;
4427
4428	/*
4429	 * Make sure our globals have meaningful values in case the user
4430	 * altered them.
4431	 */
4432	size = l2arc_write_max;
4433	if (size == 0) {
4434		cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
4435		    "be greater than zero, resetting it to the default (%d)",
4436		    L2ARC_WRITE_SIZE);
4437		size = l2arc_write_max = L2ARC_WRITE_SIZE;
4438	}
4439
4440	if (arc_warm == B_FALSE)
4441		size += l2arc_write_boost;
4442
4443	return (size);
4444
4445}
4446
4447static clock_t
4448l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
4449{
4450	clock_t interval, next, now;
4451
4452	/*
4453	 * If the ARC lists are busy, increase our write rate; if the
4454	 * lists are stale, idle back.  This is achieved by checking
4455	 * how much we previously wrote - if it was more than half of
4456	 * what we wanted, schedule the next write much sooner.
4457	 */
4458	if (l2arc_feed_again && wrote > (wanted / 2))
4459		interval = (hz * l2arc_feed_min_ms) / 1000;
4460	else
4461		interval = hz * l2arc_feed_secs;
4462
4463	now = ddi_get_lbolt();
4464	next = MAX(now, MIN(now + interval, began + interval));
4465
4466	return (next);
4467}
4468
4469static void
4470l2arc_hdr_stat_add(void)
4471{
4472	ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE);
4473	ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
4474}
4475
4476static void
4477l2arc_hdr_stat_remove(void)
4478{
4479	ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE));
4480	ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
4481}
4482
4483/*
4484 * Cycle through L2ARC devices.  This is how L2ARC load balances.
4485 * If a device is returned, this also returns holding the spa config lock.
4486 */
4487static l2arc_dev_t *
4488l2arc_dev_get_next(void)
4489{
4490	l2arc_dev_t *first, *next = NULL;
4491
4492	/*
4493	 * Lock out the removal of spas (spa_namespace_lock), then removal
4494	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
4495	 * both locks will be dropped and a spa config lock held instead.
4496	 */
4497	mutex_enter(&spa_namespace_lock);
4498	mutex_enter(&l2arc_dev_mtx);
4499
4500	/* if there are no vdevs, there is nothing to do */
4501	if (l2arc_ndev == 0)
4502		goto out;
4503
4504	first = NULL;
4505	next = l2arc_dev_last;
4506	do {
4507		/* loop around the list looking for a non-faulted vdev */
4508		if (next == NULL) {
4509			next = list_head(l2arc_dev_list);
4510		} else {
4511			next = list_next(l2arc_dev_list, next);
4512			if (next == NULL)
4513				next = list_head(l2arc_dev_list);
4514		}
4515
4516		/* if we have come back to the start, bail out */
4517		if (first == NULL)
4518			first = next;
4519		else if (next == first)
4520			break;
4521
4522	} while (vdev_is_dead(next->l2ad_vdev));
4523
4524	/* if we were unable to find any usable vdevs, return NULL */
4525	if (vdev_is_dead(next->l2ad_vdev))
4526		next = NULL;
4527
4528	l2arc_dev_last = next;
4529
4530out:
4531	mutex_exit(&l2arc_dev_mtx);
4532
4533	/*
4534	 * Grab the config lock to prevent the 'next' device from being
4535	 * removed while we are writing to it.
4536	 */
4537	if (next != NULL)
4538		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
4539	mutex_exit(&spa_namespace_lock);
4540
4541	return (next);
4542}
4543
4544/*
4545 * Free buffers that were tagged for destruction.
4546 */
4547static void
4548l2arc_do_free_on_write()
4549{
4550	list_t *buflist;
4551	l2arc_data_free_t *df, *df_prev;
4552
4553	mutex_enter(&l2arc_free_on_write_mtx);
4554	buflist = l2arc_free_on_write;
4555
4556	for (df = list_tail(buflist); df; df = df_prev) {
4557		df_prev = list_prev(buflist, df);
4558		ASSERT(df->l2df_data != NULL);
4559		ASSERT(df->l2df_func != NULL);
4560		df->l2df_func(df->l2df_data, df->l2df_size);
4561		list_remove(buflist, df);
4562		kmem_free(df, sizeof (l2arc_data_free_t));
4563	}
4564
4565	mutex_exit(&l2arc_free_on_write_mtx);
4566}
4567
4568/*
4569 * A write to a cache device has completed.  Update all headers to allow
4570 * reads from these buffers to begin.
4571 */
4572static void
4573l2arc_write_done(zio_t *zio)
4574{
4575	l2arc_write_callback_t *cb;
4576	l2arc_dev_t *dev;
4577	list_t *buflist;
4578	arc_buf_hdr_t *head, *ab, *ab_prev;
4579	l2arc_buf_hdr_t *abl2;
4580	kmutex_t *hash_lock;
4581	int64_t bytes_dropped = 0;
4582
4583	cb = zio->io_private;
4584	ASSERT(cb != NULL);
4585	dev = cb->l2wcb_dev;
4586	ASSERT(dev != NULL);
4587	head = cb->l2wcb_head;
4588	ASSERT(head != NULL);
4589	buflist = dev->l2ad_buflist;
4590	ASSERT(buflist != NULL);
4591	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
4592	    l2arc_write_callback_t *, cb);
4593
4594	if (zio->io_error != 0)
4595		ARCSTAT_BUMP(arcstat_l2_writes_error);
4596
4597	mutex_enter(&l2arc_buflist_mtx);
4598
4599	/*
4600	 * All writes completed, or an error was hit.
4601	 */
4602	for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
4603		ab_prev = list_prev(buflist, ab);
4604		abl2 = ab->b_l2hdr;
4605
4606		/*
4607		 * Release the temporary compressed buffer as soon as possible.
4608		 */
4609		if (abl2->b_compress != ZIO_COMPRESS_OFF)
4610			l2arc_release_cdata_buf(ab);
4611
4612		hash_lock = HDR_LOCK(ab);
4613		if (!mutex_tryenter(hash_lock)) {
4614			/*
4615			 * This buffer misses out.  It may be in a stage
4616			 * of eviction.  Its ARC_L2_WRITING flag will be
4617			 * left set, denying reads to this buffer.
4618			 */
4619			ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
4620			continue;
4621		}
4622
4623		if (zio->io_error != 0) {
4624			/*
4625			 * Error - drop L2ARC entry.
4626			 */
4627			list_remove(buflist, ab);
4628			ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize);
4629			bytes_dropped += abl2->b_asize;
4630			ab->b_l2hdr = NULL;
4631			trim_map_free(abl2->b_dev->l2ad_vdev, abl2->b_daddr,
4632			    ab->b_size, 0);
4633			kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4634			ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4635		}
4636
4637		/*
4638		 * Allow ARC to begin reads to this L2ARC entry.
4639		 */
4640		ab->b_flags &= ~ARC_L2_WRITING;
4641
4642		mutex_exit(hash_lock);
4643	}
4644
4645	atomic_inc_64(&l2arc_writes_done);
4646	list_remove(buflist, head);
4647	kmem_cache_free(hdr_cache, head);
4648	mutex_exit(&l2arc_buflist_mtx);
4649
4650	vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
4651
4652	l2arc_do_free_on_write();
4653
4654	kmem_free(cb, sizeof (l2arc_write_callback_t));
4655}
4656
4657/*
4658 * A read to a cache device completed.  Validate buffer contents before
4659 * handing over to the regular ARC routines.
4660 */
4661static void
4662l2arc_read_done(zio_t *zio)
4663{
4664	l2arc_read_callback_t *cb;
4665	arc_buf_hdr_t *hdr;
4666	arc_buf_t *buf;
4667	kmutex_t *hash_lock;
4668	int equal;
4669
4670	ASSERT(zio->io_vd != NULL);
4671	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
4672
4673	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
4674
4675	cb = zio->io_private;
4676	ASSERT(cb != NULL);
4677	buf = cb->l2rcb_buf;
4678	ASSERT(buf != NULL);
4679
4680	hash_lock = HDR_LOCK(buf->b_hdr);
4681	mutex_enter(hash_lock);
4682	hdr = buf->b_hdr;
4683	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4684
4685	/*
4686	 * If the buffer was compressed, decompress it first.
4687	 */
4688	if (cb->l2rcb_compress != ZIO_COMPRESS_OFF)
4689		l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress);
4690	ASSERT(zio->io_data != NULL);
4691
4692	/*
4693	 * Check this survived the L2ARC journey.
4694	 */
4695	equal = arc_cksum_equal(buf);
4696	if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
4697		mutex_exit(hash_lock);
4698		zio->io_private = buf;
4699		zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
4700		zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
4701		arc_read_done(zio);
4702	} else {
4703		mutex_exit(hash_lock);
4704		/*
4705		 * Buffer didn't survive caching.  Increment stats and
4706		 * reissue to the original storage device.
4707		 */
4708		if (zio->io_error != 0) {
4709			ARCSTAT_BUMP(arcstat_l2_io_error);
4710		} else {
4711			zio->io_error = SET_ERROR(EIO);
4712		}
4713		if (!equal)
4714			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
4715
4716		/*
4717		 * If there's no waiter, issue an async i/o to the primary
4718		 * storage now.  If there *is* a waiter, the caller must
4719		 * issue the i/o in a context where it's OK to block.
4720		 */
4721		if (zio->io_waiter == NULL) {
4722			zio_t *pio = zio_unique_parent(zio);
4723
4724			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
4725
4726			zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
4727			    buf->b_data, zio->io_size, arc_read_done, buf,
4728			    zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
4729		}
4730	}
4731
4732	kmem_free(cb, sizeof (l2arc_read_callback_t));
4733}
4734
4735/*
4736 * This is the list priority from which the L2ARC will search for pages to
4737 * cache.  This is used within loops (0..3) to cycle through lists in the
4738 * desired order.  This order can have a significant effect on cache
4739 * performance.
4740 *
4741 * Currently the metadata lists are hit first, MFU then MRU, followed by
4742 * the data lists.  This function returns a locked list, and also returns
4743 * the lock pointer.
4744 */
4745static list_t *
4746l2arc_list_locked(int list_num, kmutex_t **lock)
4747{
4748	list_t *list = NULL;
4749	int idx;
4750
4751	ASSERT(list_num >= 0 && list_num < 2 * ARC_BUFC_NUMLISTS);
4752
4753	if (list_num < ARC_BUFC_NUMMETADATALISTS) {
4754		idx = list_num;
4755		list = &arc_mfu->arcs_lists[idx];
4756		*lock = ARCS_LOCK(arc_mfu, idx);
4757	} else if (list_num < ARC_BUFC_NUMMETADATALISTS * 2) {
4758		idx = list_num - ARC_BUFC_NUMMETADATALISTS;
4759		list = &arc_mru->arcs_lists[idx];
4760		*lock = ARCS_LOCK(arc_mru, idx);
4761	} else if (list_num < (ARC_BUFC_NUMMETADATALISTS * 2 +
4762		ARC_BUFC_NUMDATALISTS)) {
4763		idx = list_num - ARC_BUFC_NUMMETADATALISTS;
4764		list = &arc_mfu->arcs_lists[idx];
4765		*lock = ARCS_LOCK(arc_mfu, idx);
4766	} else {
4767		idx = list_num - ARC_BUFC_NUMLISTS;
4768		list = &arc_mru->arcs_lists[idx];
4769		*lock = ARCS_LOCK(arc_mru, idx);
4770	}
4771
4772	ASSERT(!(MUTEX_HELD(*lock)));
4773	mutex_enter(*lock);
4774	return (list);
4775}
4776
4777/*
4778 * Evict buffers from the device write hand to the distance specified in
4779 * bytes.  This distance may span populated buffers, it may span nothing.
4780 * This is clearing a region on the L2ARC device ready for writing.
4781 * If the 'all' boolean is set, every buffer is evicted.
4782 */
4783static void
4784l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
4785{
4786	list_t *buflist;
4787	l2arc_buf_hdr_t *abl2;
4788	arc_buf_hdr_t *ab, *ab_prev;
4789	kmutex_t *hash_lock;
4790	uint64_t taddr;
4791	int64_t bytes_evicted = 0;
4792
4793	buflist = dev->l2ad_buflist;
4794
4795	if (buflist == NULL)
4796		return;
4797
4798	if (!all && dev->l2ad_first) {
4799		/*
4800		 * This is the first sweep through the device.  There is
4801		 * nothing to evict.
4802		 */
4803		return;
4804	}
4805
4806	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
4807		/*
4808		 * When nearing the end of the device, evict to the end
4809		 * before the device write hand jumps to the start.
4810		 */
4811		taddr = dev->l2ad_end;
4812	} else {
4813		taddr = dev->l2ad_hand + distance;
4814	}
4815	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
4816	    uint64_t, taddr, boolean_t, all);
4817
4818top:
4819	mutex_enter(&l2arc_buflist_mtx);
4820	for (ab = list_tail(buflist); ab; ab = ab_prev) {
4821		ab_prev = list_prev(buflist, ab);
4822
4823		hash_lock = HDR_LOCK(ab);
4824		if (!mutex_tryenter(hash_lock)) {
4825			/*
4826			 * Missed the hash lock.  Retry.
4827			 */
4828			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
4829			mutex_exit(&l2arc_buflist_mtx);
4830			mutex_enter(hash_lock);
4831			mutex_exit(hash_lock);
4832			goto top;
4833		}
4834
4835		if (HDR_L2_WRITE_HEAD(ab)) {
4836			/*
4837			 * We hit a write head node.  Leave it for
4838			 * l2arc_write_done().
4839			 */
4840			list_remove(buflist, ab);
4841			mutex_exit(hash_lock);
4842			continue;
4843		}
4844
4845		if (!all && ab->b_l2hdr != NULL &&
4846		    (ab->b_l2hdr->b_daddr > taddr ||
4847		    ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
4848			/*
4849			 * We've evicted to the target address,
4850			 * or the end of the device.
4851			 */
4852			mutex_exit(hash_lock);
4853			break;
4854		}
4855
4856		if (HDR_FREE_IN_PROGRESS(ab)) {
4857			/*
4858			 * Already on the path to destruction.
4859			 */
4860			mutex_exit(hash_lock);
4861			continue;
4862		}
4863
4864		if (ab->b_state == arc_l2c_only) {
4865			ASSERT(!HDR_L2_READING(ab));
4866			/*
4867			 * This doesn't exist in the ARC.  Destroy.
4868			 * arc_hdr_destroy() will call list_remove()
4869			 * and decrement arcstat_l2_size.
4870			 */
4871			arc_change_state(arc_anon, ab, hash_lock);
4872			arc_hdr_destroy(ab);
4873		} else {
4874			/*
4875			 * Invalidate issued or about to be issued
4876			 * reads, since we may be about to write
4877			 * over this location.
4878			 */
4879			if (HDR_L2_READING(ab)) {
4880				ARCSTAT_BUMP(arcstat_l2_evict_reading);
4881				ab->b_flags |= ARC_L2_EVICTED;
4882			}
4883
4884			/*
4885			 * Tell ARC this no longer exists in L2ARC.
4886			 */
4887			if (ab->b_l2hdr != NULL) {
4888				abl2 = ab->b_l2hdr;
4889				ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize);
4890				bytes_evicted += abl2->b_asize;
4891				ab->b_l2hdr = NULL;
4892				kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4893				ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4894			}
4895			list_remove(buflist, ab);
4896
4897			/*
4898			 * This may have been leftover after a
4899			 * failed write.
4900			 */
4901			ab->b_flags &= ~ARC_L2_WRITING;
4902		}
4903		mutex_exit(hash_lock);
4904	}
4905	mutex_exit(&l2arc_buflist_mtx);
4906
4907	vdev_space_update(dev->l2ad_vdev, -bytes_evicted, 0, 0);
4908	dev->l2ad_evict = taddr;
4909}
4910
4911/*
4912 * Find and write ARC buffers to the L2ARC device.
4913 *
4914 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
4915 * for reading until they have completed writing.
4916 * The headroom_boost is an in-out parameter used to maintain headroom boost
4917 * state between calls to this function.
4918 *
4919 * Returns the number of bytes actually written (which may be smaller than
4920 * the delta by which the device hand has changed due to alignment).
4921 */
4922static uint64_t
4923l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz,
4924    boolean_t *headroom_boost)
4925{
4926	arc_buf_hdr_t *ab, *ab_prev, *head;
4927	list_t *list;
4928	uint64_t write_asize, write_psize, write_sz, headroom,
4929	    buf_compress_minsz;
4930	void *buf_data;
4931	kmutex_t *list_lock;
4932	boolean_t full;
4933	l2arc_write_callback_t *cb;
4934	zio_t *pio, *wzio;
4935	uint64_t guid = spa_load_guid(spa);
4936	const boolean_t do_headroom_boost = *headroom_boost;
4937	int try;
4938
4939	ASSERT(dev->l2ad_vdev != NULL);
4940
4941	/* Lower the flag now, we might want to raise it again later. */
4942	*headroom_boost = B_FALSE;
4943
4944	pio = NULL;
4945	write_sz = write_asize = write_psize = 0;
4946	full = B_FALSE;
4947	head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
4948	head->b_flags |= ARC_L2_WRITE_HEAD;
4949
4950	ARCSTAT_BUMP(arcstat_l2_write_buffer_iter);
4951	/*
4952	 * We will want to try to compress buffers that are at least 2x the
4953	 * device sector size.
4954	 */
4955	buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift;
4956
4957	/*
4958	 * Copy buffers for L2ARC writing.
4959	 */
4960	mutex_enter(&l2arc_buflist_mtx);
4961	for (try = 0; try < 2 * ARC_BUFC_NUMLISTS; try++) {
4962		uint64_t passed_sz = 0;
4963
4964		list = l2arc_list_locked(try, &list_lock);
4965		ARCSTAT_BUMP(arcstat_l2_write_buffer_list_iter);
4966
4967		/*
4968		 * L2ARC fast warmup.
4969		 *
4970		 * Until the ARC is warm and starts to evict, read from the
4971		 * head of the ARC lists rather than the tail.
4972		 */
4973		if (arc_warm == B_FALSE)
4974			ab = list_head(list);
4975		else
4976			ab = list_tail(list);
4977		if (ab == NULL)
4978			ARCSTAT_BUMP(arcstat_l2_write_buffer_list_null_iter);
4979
4980		headroom = target_sz * l2arc_headroom;
4981		if (do_headroom_boost)
4982			headroom = (headroom * l2arc_headroom_boost) / 100;
4983
4984		for (; ab; ab = ab_prev) {
4985			l2arc_buf_hdr_t *l2hdr;
4986			kmutex_t *hash_lock;
4987			uint64_t buf_sz;
4988
4989			if (arc_warm == B_FALSE)
4990				ab_prev = list_next(list, ab);
4991			else
4992				ab_prev = list_prev(list, ab);
4993			ARCSTAT_INCR(arcstat_l2_write_buffer_bytes_scanned, ab->b_size);
4994
4995			hash_lock = HDR_LOCK(ab);
4996			if (!mutex_tryenter(hash_lock)) {
4997				ARCSTAT_BUMP(arcstat_l2_write_trylock_fail);
4998				/*
4999				 * Skip this buffer rather than waiting.
5000				 */
5001				continue;
5002			}
5003
5004			passed_sz += ab->b_size;
5005			if (passed_sz > headroom) {
5006				/*
5007				 * Searched too far.
5008				 */
5009				mutex_exit(hash_lock);
5010				ARCSTAT_BUMP(arcstat_l2_write_passed_headroom);
5011				break;
5012			}
5013
5014			if (!l2arc_write_eligible(guid, ab)) {
5015				mutex_exit(hash_lock);
5016				continue;
5017			}
5018
5019			if ((write_sz + ab->b_size) > target_sz) {
5020				full = B_TRUE;
5021				mutex_exit(hash_lock);
5022				ARCSTAT_BUMP(arcstat_l2_write_full);
5023				break;
5024			}
5025
5026			if (pio == NULL) {
5027				/*
5028				 * Insert a dummy header on the buflist so
5029				 * l2arc_write_done() can find where the
5030				 * write buffers begin without searching.
5031				 */
5032				list_insert_head(dev->l2ad_buflist, head);
5033
5034				cb = kmem_alloc(
5035				    sizeof (l2arc_write_callback_t), KM_SLEEP);
5036				cb->l2wcb_dev = dev;
5037				cb->l2wcb_head = head;
5038				pio = zio_root(spa, l2arc_write_done, cb,
5039				    ZIO_FLAG_CANFAIL);
5040				ARCSTAT_BUMP(arcstat_l2_write_pios);
5041			}
5042
5043			/*
5044			 * Create and add a new L2ARC header.
5045			 */
5046			l2hdr = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP);
5047			l2hdr->b_dev = dev;
5048			ab->b_flags |= ARC_L2_WRITING;
5049
5050			/*
5051			 * Temporarily stash the data buffer in b_tmp_cdata.
5052			 * The subsequent write step will pick it up from
5053			 * there. This is because can't access ab->b_buf
5054			 * without holding the hash_lock, which we in turn
5055			 * can't access without holding the ARC list locks
5056			 * (which we want to avoid during compression/writing).
5057			 */
5058			l2hdr->b_compress = ZIO_COMPRESS_OFF;
5059			l2hdr->b_asize = ab->b_size;
5060			l2hdr->b_tmp_cdata = ab->b_buf->b_data;
5061
5062			buf_sz = ab->b_size;
5063			ab->b_l2hdr = l2hdr;
5064
5065			list_insert_head(dev->l2ad_buflist, ab);
5066
5067			/*
5068			 * Compute and store the buffer cksum before
5069			 * writing.  On debug the cksum is verified first.
5070			 */
5071			arc_cksum_verify(ab->b_buf);
5072			arc_cksum_compute(ab->b_buf, B_TRUE);
5073
5074			mutex_exit(hash_lock);
5075
5076			write_sz += buf_sz;
5077		}
5078
5079		mutex_exit(list_lock);
5080
5081		if (full == B_TRUE)
5082			break;
5083	}
5084
5085	/* No buffers selected for writing? */
5086	if (pio == NULL) {
5087		ASSERT0(write_sz);
5088		mutex_exit(&l2arc_buflist_mtx);
5089		kmem_cache_free(hdr_cache, head);
5090		return (0);
5091	}
5092
5093	/*
5094	 * Now start writing the buffers. We're starting at the write head
5095	 * and work backwards, retracing the course of the buffer selector
5096	 * loop above.
5097	 */
5098	for (ab = list_prev(dev->l2ad_buflist, head); ab;
5099	    ab = list_prev(dev->l2ad_buflist, ab)) {
5100		l2arc_buf_hdr_t *l2hdr;
5101		uint64_t buf_sz;
5102
5103		/*
5104		 * We shouldn't need to lock the buffer here, since we flagged
5105		 * it as ARC_L2_WRITING in the previous step, but we must take
5106		 * care to only access its L2 cache parameters. In particular,
5107		 * ab->b_buf may be invalid by now due to ARC eviction.
5108		 */
5109		l2hdr = ab->b_l2hdr;
5110		l2hdr->b_daddr = dev->l2ad_hand;
5111
5112		if ((ab->b_flags & ARC_L2COMPRESS) &&
5113		    l2hdr->b_asize >= buf_compress_minsz) {
5114			if (l2arc_compress_buf(l2hdr)) {
5115				/*
5116				 * If compression succeeded, enable headroom
5117				 * boost on the next scan cycle.
5118				 */
5119				*headroom_boost = B_TRUE;
5120			}
5121		}
5122
5123		/*
5124		 * Pick up the buffer data we had previously stashed away
5125		 * (and now potentially also compressed).
5126		 */
5127		buf_data = l2hdr->b_tmp_cdata;
5128		buf_sz = l2hdr->b_asize;
5129
5130		/* Compression may have squashed the buffer to zero length. */
5131		if (buf_sz != 0) {
5132			uint64_t buf_p_sz;
5133
5134			wzio = zio_write_phys(pio, dev->l2ad_vdev,
5135			    dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
5136			    NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
5137			    ZIO_FLAG_CANFAIL, B_FALSE);
5138
5139			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
5140			    zio_t *, wzio);
5141			(void) zio_nowait(wzio);
5142
5143			write_asize += buf_sz;
5144			/*
5145			 * Keep the clock hand suitably device-aligned.
5146			 */
5147			buf_p_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
5148			write_psize += buf_p_sz;
5149			dev->l2ad_hand += buf_p_sz;
5150		}
5151	}
5152
5153	mutex_exit(&l2arc_buflist_mtx);
5154
5155	ASSERT3U(write_asize, <=, target_sz);
5156	ARCSTAT_BUMP(arcstat_l2_writes_sent);
5157	ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
5158	ARCSTAT_INCR(arcstat_l2_size, write_sz);
5159	ARCSTAT_INCR(arcstat_l2_asize, write_asize);
5160	vdev_space_update(dev->l2ad_vdev, write_asize, 0, 0);
5161
5162	/*
5163	 * Bump device hand to the device start if it is approaching the end.
5164	 * l2arc_evict() will already have evicted ahead for this case.
5165	 */
5166	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
5167		dev->l2ad_hand = dev->l2ad_start;
5168		dev->l2ad_evict = dev->l2ad_start;
5169		dev->l2ad_first = B_FALSE;
5170	}
5171
5172	dev->l2ad_writing = B_TRUE;
5173	(void) zio_wait(pio);
5174	dev->l2ad_writing = B_FALSE;
5175
5176	return (write_asize);
5177}
5178
5179/*
5180 * Compresses an L2ARC buffer.
5181 * The data to be compressed must be prefilled in l2hdr->b_tmp_cdata and its
5182 * size in l2hdr->b_asize. This routine tries to compress the data and
5183 * depending on the compression result there are three possible outcomes:
5184 * *) The buffer was incompressible. The original l2hdr contents were left
5185 *    untouched and are ready for writing to an L2 device.
5186 * *) The buffer was all-zeros, so there is no need to write it to an L2
5187 *    device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is
5188 *    set to zero and b_compress is set to ZIO_COMPRESS_EMPTY.
5189 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary
5190 *    data buffer which holds the compressed data to be written, and b_asize
5191 *    tells us how much data there is. b_compress is set to the appropriate
5192 *    compression algorithm. Once writing is done, invoke
5193 *    l2arc_release_cdata_buf on this l2hdr to free this temporary buffer.
5194 *
5195 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the
5196 * buffer was incompressible).
5197 */
5198static boolean_t
5199l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr)
5200{
5201	void *cdata;
5202	size_t csize, len, rounded;
5203
5204	ASSERT(l2hdr->b_compress == ZIO_COMPRESS_OFF);
5205	ASSERT(l2hdr->b_tmp_cdata != NULL);
5206
5207	len = l2hdr->b_asize;
5208	cdata = zio_data_buf_alloc(len);
5209	csize = zio_compress_data(ZIO_COMPRESS_LZ4, l2hdr->b_tmp_cdata,
5210	    cdata, l2hdr->b_asize);
5211
5212	rounded = P2ROUNDUP(csize, (size_t)SPA_MINBLOCKSIZE);
5213	if (rounded > csize) {
5214		bzero((char *)cdata + csize, rounded - csize);
5215		csize = rounded;
5216	}
5217
5218	if (csize == 0) {
5219		/* zero block, indicate that there's nothing to write */
5220		zio_data_buf_free(cdata, len);
5221		l2hdr->b_compress = ZIO_COMPRESS_EMPTY;
5222		l2hdr->b_asize = 0;
5223		l2hdr->b_tmp_cdata = NULL;
5224		ARCSTAT_BUMP(arcstat_l2_compress_zeros);
5225		return (B_TRUE);
5226	} else if (csize > 0 && csize < len) {
5227		/*
5228		 * Compression succeeded, we'll keep the cdata around for
5229		 * writing and release it afterwards.
5230		 */
5231		l2hdr->b_compress = ZIO_COMPRESS_LZ4;
5232		l2hdr->b_asize = csize;
5233		l2hdr->b_tmp_cdata = cdata;
5234		ARCSTAT_BUMP(arcstat_l2_compress_successes);
5235		return (B_TRUE);
5236	} else {
5237		/*
5238		 * Compression failed, release the compressed buffer.
5239		 * l2hdr will be left unmodified.
5240		 */
5241		zio_data_buf_free(cdata, len);
5242		ARCSTAT_BUMP(arcstat_l2_compress_failures);
5243		return (B_FALSE);
5244	}
5245}
5246
5247/*
5248 * Decompresses a zio read back from an l2arc device. On success, the
5249 * underlying zio's io_data buffer is overwritten by the uncompressed
5250 * version. On decompression error (corrupt compressed stream), the
5251 * zio->io_error value is set to signal an I/O error.
5252 *
5253 * Please note that the compressed data stream is not checksummed, so
5254 * if the underlying device is experiencing data corruption, we may feed
5255 * corrupt data to the decompressor, so the decompressor needs to be
5256 * able to handle this situation (LZ4 does).
5257 */
5258static void
5259l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c)
5260{
5261	ASSERT(L2ARC_IS_VALID_COMPRESS(c));
5262
5263	if (zio->io_error != 0) {
5264		/*
5265		 * An io error has occured, just restore the original io
5266		 * size in preparation for a main pool read.
5267		 */
5268		zio->io_orig_size = zio->io_size = hdr->b_size;
5269		return;
5270	}
5271
5272	if (c == ZIO_COMPRESS_EMPTY) {
5273		/*
5274		 * An empty buffer results in a null zio, which means we
5275		 * need to fill its io_data after we're done restoring the
5276		 * buffer's contents.
5277		 */
5278		ASSERT(hdr->b_buf != NULL);
5279		bzero(hdr->b_buf->b_data, hdr->b_size);
5280		zio->io_data = zio->io_orig_data = hdr->b_buf->b_data;
5281	} else {
5282		ASSERT(zio->io_data != NULL);
5283		/*
5284		 * We copy the compressed data from the start of the arc buffer
5285		 * (the zio_read will have pulled in only what we need, the
5286		 * rest is garbage which we will overwrite at decompression)
5287		 * and then decompress back to the ARC data buffer. This way we
5288		 * can minimize copying by simply decompressing back over the
5289		 * original compressed data (rather than decompressing to an
5290		 * aux buffer and then copying back the uncompressed buffer,
5291		 * which is likely to be much larger).
5292		 */
5293		uint64_t csize;
5294		void *cdata;
5295
5296		csize = zio->io_size;
5297		cdata = zio_data_buf_alloc(csize);
5298		bcopy(zio->io_data, cdata, csize);
5299		if (zio_decompress_data(c, cdata, zio->io_data, csize,
5300		    hdr->b_size) != 0)
5301			zio->io_error = EIO;
5302		zio_data_buf_free(cdata, csize);
5303	}
5304
5305	/* Restore the expected uncompressed IO size. */
5306	zio->io_orig_size = zio->io_size = hdr->b_size;
5307}
5308
5309/*
5310 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure.
5311 * This buffer serves as a temporary holder of compressed data while
5312 * the buffer entry is being written to an l2arc device. Once that is
5313 * done, we can dispose of it.
5314 */
5315static void
5316l2arc_release_cdata_buf(arc_buf_hdr_t *ab)
5317{
5318	l2arc_buf_hdr_t *l2hdr = ab->b_l2hdr;
5319
5320	if (l2hdr->b_compress == ZIO_COMPRESS_LZ4) {
5321		/*
5322		 * If the data was compressed, then we've allocated a
5323		 * temporary buffer for it, so now we need to release it.
5324		 */
5325		ASSERT(l2hdr->b_tmp_cdata != NULL);
5326		zio_data_buf_free(l2hdr->b_tmp_cdata, ab->b_size);
5327	}
5328	l2hdr->b_tmp_cdata = NULL;
5329}
5330
5331/*
5332 * This thread feeds the L2ARC at regular intervals.  This is the beating
5333 * heart of the L2ARC.
5334 */
5335static void
5336l2arc_feed_thread(void *dummy __unused)
5337{
5338	callb_cpr_t cpr;
5339	l2arc_dev_t *dev;
5340	spa_t *spa;
5341	uint64_t size, wrote;
5342	clock_t begin, next = ddi_get_lbolt();
5343	boolean_t headroom_boost = B_FALSE;
5344
5345	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
5346
5347	mutex_enter(&l2arc_feed_thr_lock);
5348
5349	while (l2arc_thread_exit == 0) {
5350		CALLB_CPR_SAFE_BEGIN(&cpr);
5351		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
5352		    next - ddi_get_lbolt());
5353		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
5354		next = ddi_get_lbolt() + hz;
5355
5356		/*
5357		 * Quick check for L2ARC devices.
5358		 */
5359		mutex_enter(&l2arc_dev_mtx);
5360		if (l2arc_ndev == 0) {
5361			mutex_exit(&l2arc_dev_mtx);
5362			continue;
5363		}
5364		mutex_exit(&l2arc_dev_mtx);
5365		begin = ddi_get_lbolt();
5366
5367		/*
5368		 * This selects the next l2arc device to write to, and in
5369		 * doing so the next spa to feed from: dev->l2ad_spa.   This
5370		 * will return NULL if there are now no l2arc devices or if
5371		 * they are all faulted.
5372		 *
5373		 * If a device is returned, its spa's config lock is also
5374		 * held to prevent device removal.  l2arc_dev_get_next()
5375		 * will grab and release l2arc_dev_mtx.
5376		 */
5377		if ((dev = l2arc_dev_get_next()) == NULL)
5378			continue;
5379
5380		spa = dev->l2ad_spa;
5381		ASSERT(spa != NULL);
5382
5383		/*
5384		 * If the pool is read-only then force the feed thread to
5385		 * sleep a little longer.
5386		 */
5387		if (!spa_writeable(spa)) {
5388			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
5389			spa_config_exit(spa, SCL_L2ARC, dev);
5390			continue;
5391		}
5392
5393		/*
5394		 * Avoid contributing to memory pressure.
5395		 */
5396		if (arc_reclaim_needed()) {
5397			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
5398			spa_config_exit(spa, SCL_L2ARC, dev);
5399			continue;
5400		}
5401
5402		ARCSTAT_BUMP(arcstat_l2_feeds);
5403
5404		size = l2arc_write_size();
5405
5406		/*
5407		 * Evict L2ARC buffers that will be overwritten.
5408		 */
5409		l2arc_evict(dev, size, B_FALSE);
5410
5411		/*
5412		 * Write ARC buffers.
5413		 */
5414		wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost);
5415
5416		/*
5417		 * Calculate interval between writes.
5418		 */
5419		next = l2arc_write_interval(begin, size, wrote);
5420		spa_config_exit(spa, SCL_L2ARC, dev);
5421	}
5422
5423	l2arc_thread_exit = 0;
5424	cv_broadcast(&l2arc_feed_thr_cv);
5425	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
5426	thread_exit();
5427}
5428
5429boolean_t
5430l2arc_vdev_present(vdev_t *vd)
5431{
5432	l2arc_dev_t *dev;
5433
5434	mutex_enter(&l2arc_dev_mtx);
5435	for (dev = list_head(l2arc_dev_list); dev != NULL;
5436	    dev = list_next(l2arc_dev_list, dev)) {
5437		if (dev->l2ad_vdev == vd)
5438			break;
5439	}
5440	mutex_exit(&l2arc_dev_mtx);
5441
5442	return (dev != NULL);
5443}
5444
5445/*
5446 * Add a vdev for use by the L2ARC.  By this point the spa has already
5447 * validated the vdev and opened it.
5448 */
5449void
5450l2arc_add_vdev(spa_t *spa, vdev_t *vd)
5451{
5452	l2arc_dev_t *adddev;
5453
5454	ASSERT(!l2arc_vdev_present(vd));
5455
5456	vdev_ashift_optimize(vd);
5457
5458	/*
5459	 * Create a new l2arc device entry.
5460	 */
5461	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
5462	adddev->l2ad_spa = spa;
5463	adddev->l2ad_vdev = vd;
5464	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
5465	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
5466	adddev->l2ad_hand = adddev->l2ad_start;
5467	adddev->l2ad_evict = adddev->l2ad_start;
5468	adddev->l2ad_first = B_TRUE;
5469	adddev->l2ad_writing = B_FALSE;
5470
5471	/*
5472	 * This is a list of all ARC buffers that are still valid on the
5473	 * device.
5474	 */
5475	adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
5476	list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
5477	    offsetof(arc_buf_hdr_t, b_l2node));
5478
5479	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
5480
5481	/*
5482	 * Add device to global list
5483	 */
5484	mutex_enter(&l2arc_dev_mtx);
5485	list_insert_head(l2arc_dev_list, adddev);
5486	atomic_inc_64(&l2arc_ndev);
5487	mutex_exit(&l2arc_dev_mtx);
5488}
5489
5490/*
5491 * Remove a vdev from the L2ARC.
5492 */
5493void
5494l2arc_remove_vdev(vdev_t *vd)
5495{
5496	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
5497
5498	/*
5499	 * Find the device by vdev
5500	 */
5501	mutex_enter(&l2arc_dev_mtx);
5502	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
5503		nextdev = list_next(l2arc_dev_list, dev);
5504		if (vd == dev->l2ad_vdev) {
5505			remdev = dev;
5506			break;
5507		}
5508	}
5509	ASSERT(remdev != NULL);
5510
5511	/*
5512	 * Remove device from global list
5513	 */
5514	list_remove(l2arc_dev_list, remdev);
5515	l2arc_dev_last = NULL;		/* may have been invalidated */
5516	atomic_dec_64(&l2arc_ndev);
5517	mutex_exit(&l2arc_dev_mtx);
5518
5519	/*
5520	 * Clear all buflists and ARC references.  L2ARC device flush.
5521	 */
5522	l2arc_evict(remdev, 0, B_TRUE);
5523	list_destroy(remdev->l2ad_buflist);
5524	kmem_free(remdev->l2ad_buflist, sizeof (list_t));
5525	kmem_free(remdev, sizeof (l2arc_dev_t));
5526}
5527
5528void
5529l2arc_init(void)
5530{
5531	l2arc_thread_exit = 0;
5532	l2arc_ndev = 0;
5533	l2arc_writes_sent = 0;
5534	l2arc_writes_done = 0;
5535
5536	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
5537	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
5538	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
5539	mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
5540	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
5541
5542	l2arc_dev_list = &L2ARC_dev_list;
5543	l2arc_free_on_write = &L2ARC_free_on_write;
5544	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
5545	    offsetof(l2arc_dev_t, l2ad_node));
5546	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
5547	    offsetof(l2arc_data_free_t, l2df_list_node));
5548}
5549
5550void
5551l2arc_fini(void)
5552{
5553	/*
5554	 * This is called from dmu_fini(), which is called from spa_fini();
5555	 * Because of this, we can assume that all l2arc devices have
5556	 * already been removed when the pools themselves were removed.
5557	 */
5558
5559	l2arc_do_free_on_write();
5560
5561	mutex_destroy(&l2arc_feed_thr_lock);
5562	cv_destroy(&l2arc_feed_thr_cv);
5563	mutex_destroy(&l2arc_dev_mtx);
5564	mutex_destroy(&l2arc_buflist_mtx);
5565	mutex_destroy(&l2arc_free_on_write_mtx);
5566
5567	list_destroy(l2arc_dev_list);
5568	list_destroy(l2arc_free_on_write);
5569}
5570
5571void
5572l2arc_start(void)
5573{
5574	if (!(spa_mode_global & FWRITE))
5575		return;
5576
5577	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
5578	    TS_RUN, minclsyspri);
5579}
5580
5581void
5582l2arc_stop(void)
5583{
5584	if (!(spa_mode_global & FWRITE))
5585		return;
5586
5587	mutex_enter(&l2arc_feed_thr_lock);
5588	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
5589	l2arc_thread_exit = 1;
5590	while (l2arc_thread_exit != 0)
5591		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
5592	mutex_exit(&l2arc_feed_thr_lock);
5593}
5594