arc.c revision 268649
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
25 * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
26 */
27
28/*
29 * DVA-based Adjustable Replacement Cache
30 *
31 * While much of the theory of operation used here is
32 * based on the self-tuning, low overhead replacement cache
33 * presented by Megiddo and Modha at FAST 2003, there are some
34 * significant differences:
35 *
36 * 1. The Megiddo and Modha model assumes any page is evictable.
37 * Pages in its cache cannot be "locked" into memory.  This makes
38 * the eviction algorithm simple: evict the last page in the list.
39 * This also make the performance characteristics easy to reason
40 * about.  Our cache is not so simple.  At any given moment, some
41 * subset of the blocks in the cache are un-evictable because we
42 * have handed out a reference to them.  Blocks are only evictable
43 * when there are no external references active.  This makes
44 * eviction far more problematic:  we choose to evict the evictable
45 * blocks that are the "lowest" in the list.
46 *
47 * There are times when it is not possible to evict the requested
48 * space.  In these circumstances we are unable to adjust the cache
49 * size.  To prevent the cache growing unbounded at these times we
50 * implement a "cache throttle" that slows the flow of new data
51 * into the cache until we can make space available.
52 *
53 * 2. The Megiddo and Modha model assumes a fixed cache size.
54 * Pages are evicted when the cache is full and there is a cache
55 * miss.  Our model has a variable sized cache.  It grows with
56 * high use, but also tries to react to memory pressure from the
57 * operating system: decreasing its size when system memory is
58 * tight.
59 *
60 * 3. The Megiddo and Modha model assumes a fixed page size. All
61 * elements of the cache are therefore exactly the same size.  So
62 * when adjusting the cache size following a cache miss, its simply
63 * a matter of choosing a single page to evict.  In our model, we
64 * have variable sized cache blocks (rangeing from 512 bytes to
65 * 128K bytes).  We therefore choose a set of blocks to evict to make
66 * space for a cache miss that approximates as closely as possible
67 * the space used by the new block.
68 *
69 * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
70 * by N. Megiddo & D. Modha, FAST 2003
71 */
72
73/*
74 * The locking model:
75 *
76 * A new reference to a cache buffer can be obtained in two
77 * ways: 1) via a hash table lookup using the DVA as a key,
78 * or 2) via one of the ARC lists.  The arc_read() interface
79 * uses method 1, while the internal arc algorithms for
80 * adjusting the cache use method 2.  We therefore provide two
81 * types of locks: 1) the hash table lock array, and 2) the
82 * arc list locks.
83 *
84 * Buffers do not have their own mutexs, rather they rely on the
85 * hash table mutexs for the bulk of their protection (i.e. most
86 * fields in the arc_buf_hdr_t are protected by these mutexs).
87 *
88 * buf_hash_find() returns the appropriate mutex (held) when it
89 * locates the requested buffer in the hash table.  It returns
90 * NULL for the mutex if the buffer was not in the table.
91 *
92 * buf_hash_remove() expects the appropriate hash mutex to be
93 * already held before it is invoked.
94 *
95 * Each arc state also has a mutex which is used to protect the
96 * buffer list associated with the state.  When attempting to
97 * obtain a hash table lock while holding an arc list lock you
98 * must use: mutex_tryenter() to avoid deadlock.  Also note that
99 * the active state mutex must be held before the ghost state mutex.
100 *
101 * Arc buffers may have an associated eviction callback function.
102 * This function will be invoked prior to removing the buffer (e.g.
103 * in arc_do_user_evicts()).  Note however that the data associated
104 * with the buffer may be evicted prior to the callback.  The callback
105 * must be made with *no locks held* (to prevent deadlock).  Additionally,
106 * the users of callbacks must ensure that their private data is
107 * protected from simultaneous callbacks from arc_buf_evict()
108 * and arc_do_user_evicts().
109 *
110 * Note that the majority of the performance stats are manipulated
111 * with atomic operations.
112 *
113 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
114 *
115 *	- L2ARC buflist creation
116 *	- L2ARC buflist eviction
117 *	- L2ARC write completion, which walks L2ARC buflists
118 *	- ARC header destruction, as it removes from L2ARC buflists
119 *	- ARC header release, as it removes from L2ARC buflists
120 */
121
122#include <sys/spa.h>
123#include <sys/zio.h>
124#include <sys/zio_compress.h>
125#include <sys/zfs_context.h>
126#include <sys/arc.h>
127#include <sys/refcount.h>
128#include <sys/vdev.h>
129#include <sys/vdev_impl.h>
130#include <sys/dsl_pool.h>
131#ifdef _KERNEL
132#include <sys/dnlc.h>
133#endif
134#include <sys/callb.h>
135#include <sys/kstat.h>
136#include <sys/trim_map.h>
137#include <zfs_fletcher.h>
138#include <sys/sdt.h>
139
140#include <vm/vm_pageout.h>
141
142#ifdef illumos
143#ifndef _KERNEL
144/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
145boolean_t arc_watch = B_FALSE;
146int arc_procfd;
147#endif
148#endif /* illumos */
149
150static kmutex_t		arc_reclaim_thr_lock;
151static kcondvar_t	arc_reclaim_thr_cv;	/* used to signal reclaim thr */
152static uint8_t		arc_thread_exit;
153
154#define	ARC_REDUCE_DNLC_PERCENT	3
155uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
156
157typedef enum arc_reclaim_strategy {
158	ARC_RECLAIM_AGGR,		/* Aggressive reclaim strategy */
159	ARC_RECLAIM_CONS		/* Conservative reclaim strategy */
160} arc_reclaim_strategy_t;
161
162/*
163 * The number of iterations through arc_evict_*() before we
164 * drop & reacquire the lock.
165 */
166int arc_evict_iterations = 100;
167
168/* number of seconds before growing cache again */
169static int		arc_grow_retry = 60;
170
171/* shift of arc_c for calculating both min and max arc_p */
172static int		arc_p_min_shift = 4;
173
174/* log2(fraction of arc to reclaim) */
175static int		arc_shrink_shift = 5;
176
177/*
178 * minimum lifespan of a prefetch block in clock ticks
179 * (initialized in arc_init())
180 */
181static int		arc_min_prefetch_lifespan;
182
183/*
184 * If this percent of memory is free, don't throttle.
185 */
186int arc_lotsfree_percent = 10;
187
188static int arc_dead;
189extern int zfs_prefetch_disable;
190
191/*
192 * The arc has filled available memory and has now warmed up.
193 */
194static boolean_t arc_warm;
195
196/*
197 * These tunables are for performance analysis.
198 */
199uint64_t zfs_arc_max;
200uint64_t zfs_arc_min;
201uint64_t zfs_arc_meta_limit = 0;
202int zfs_arc_grow_retry = 0;
203int zfs_arc_shrink_shift = 0;
204int zfs_arc_p_min_shift = 0;
205int zfs_disable_dup_eviction = 0;
206
207TUNABLE_QUAD("vfs.zfs.arc_max", &zfs_arc_max);
208TUNABLE_QUAD("vfs.zfs.arc_min", &zfs_arc_min);
209TUNABLE_QUAD("vfs.zfs.arc_meta_limit", &zfs_arc_meta_limit);
210SYSCTL_DECL(_vfs_zfs);
211SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_max, CTLFLAG_RDTUN, &zfs_arc_max, 0,
212    "Maximum ARC size");
213SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_min, CTLFLAG_RDTUN, &zfs_arc_min, 0,
214    "Minimum ARC size");
215
216/*
217 * Note that buffers can be in one of 6 states:
218 *	ARC_anon	- anonymous (discussed below)
219 *	ARC_mru		- recently used, currently cached
220 *	ARC_mru_ghost	- recentely used, no longer in cache
221 *	ARC_mfu		- frequently used, currently cached
222 *	ARC_mfu_ghost	- frequently used, no longer in cache
223 *	ARC_l2c_only	- exists in L2ARC but not other states
224 * When there are no active references to the buffer, they are
225 * are linked onto a list in one of these arc states.  These are
226 * the only buffers that can be evicted or deleted.  Within each
227 * state there are multiple lists, one for meta-data and one for
228 * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
229 * etc.) is tracked separately so that it can be managed more
230 * explicitly: favored over data, limited explicitly.
231 *
232 * Anonymous buffers are buffers that are not associated with
233 * a DVA.  These are buffers that hold dirty block copies
234 * before they are written to stable storage.  By definition,
235 * they are "ref'd" and are considered part of arc_mru
236 * that cannot be freed.  Generally, they will aquire a DVA
237 * as they are written and migrate onto the arc_mru list.
238 *
239 * The ARC_l2c_only state is for buffers that are in the second
240 * level ARC but no longer in any of the ARC_m* lists.  The second
241 * level ARC itself may also contain buffers that are in any of
242 * the ARC_m* states - meaning that a buffer can exist in two
243 * places.  The reason for the ARC_l2c_only state is to keep the
244 * buffer header in the hash table, so that reads that hit the
245 * second level ARC benefit from these fast lookups.
246 */
247
248#define	ARCS_LOCK_PAD		CACHE_LINE_SIZE
249struct arcs_lock {
250	kmutex_t	arcs_lock;
251#ifdef _KERNEL
252	unsigned char	pad[(ARCS_LOCK_PAD - sizeof (kmutex_t))];
253#endif
254};
255
256/*
257 * must be power of two for mask use to work
258 *
259 */
260#define ARC_BUFC_NUMDATALISTS		16
261#define ARC_BUFC_NUMMETADATALISTS	16
262#define ARC_BUFC_NUMLISTS	(ARC_BUFC_NUMMETADATALISTS + ARC_BUFC_NUMDATALISTS)
263
264typedef struct arc_state {
265	uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];	/* amount of evictable data */
266	uint64_t arcs_size;	/* total amount of data in this state */
267	list_t	arcs_lists[ARC_BUFC_NUMLISTS]; /* list of evictable buffers */
268	struct arcs_lock arcs_locks[ARC_BUFC_NUMLISTS] __aligned(CACHE_LINE_SIZE);
269} arc_state_t;
270
271#define ARCS_LOCK(s, i)	(&((s)->arcs_locks[(i)].arcs_lock))
272
273/* The 6 states: */
274static arc_state_t ARC_anon;
275static arc_state_t ARC_mru;
276static arc_state_t ARC_mru_ghost;
277static arc_state_t ARC_mfu;
278static arc_state_t ARC_mfu_ghost;
279static arc_state_t ARC_l2c_only;
280
281typedef struct arc_stats {
282	kstat_named_t arcstat_hits;
283	kstat_named_t arcstat_misses;
284	kstat_named_t arcstat_demand_data_hits;
285	kstat_named_t arcstat_demand_data_misses;
286	kstat_named_t arcstat_demand_metadata_hits;
287	kstat_named_t arcstat_demand_metadata_misses;
288	kstat_named_t arcstat_prefetch_data_hits;
289	kstat_named_t arcstat_prefetch_data_misses;
290	kstat_named_t arcstat_prefetch_metadata_hits;
291	kstat_named_t arcstat_prefetch_metadata_misses;
292	kstat_named_t arcstat_mru_hits;
293	kstat_named_t arcstat_mru_ghost_hits;
294	kstat_named_t arcstat_mfu_hits;
295	kstat_named_t arcstat_mfu_ghost_hits;
296	kstat_named_t arcstat_allocated;
297	kstat_named_t arcstat_deleted;
298	kstat_named_t arcstat_stolen;
299	kstat_named_t arcstat_recycle_miss;
300	/*
301	 * Number of buffers that could not be evicted because the hash lock
302	 * was held by another thread.  The lock may not necessarily be held
303	 * by something using the same buffer, since hash locks are shared
304	 * by multiple buffers.
305	 */
306	kstat_named_t arcstat_mutex_miss;
307	/*
308	 * Number of buffers skipped because they have I/O in progress, are
309	 * indrect prefetch buffers that have not lived long enough, or are
310	 * not from the spa we're trying to evict from.
311	 */
312	kstat_named_t arcstat_evict_skip;
313	kstat_named_t arcstat_evict_l2_cached;
314	kstat_named_t arcstat_evict_l2_eligible;
315	kstat_named_t arcstat_evict_l2_ineligible;
316	kstat_named_t arcstat_hash_elements;
317	kstat_named_t arcstat_hash_elements_max;
318	kstat_named_t arcstat_hash_collisions;
319	kstat_named_t arcstat_hash_chains;
320	kstat_named_t arcstat_hash_chain_max;
321	kstat_named_t arcstat_p;
322	kstat_named_t arcstat_c;
323	kstat_named_t arcstat_c_min;
324	kstat_named_t arcstat_c_max;
325	kstat_named_t arcstat_size;
326	kstat_named_t arcstat_hdr_size;
327	kstat_named_t arcstat_data_size;
328	kstat_named_t arcstat_other_size;
329	kstat_named_t arcstat_l2_hits;
330	kstat_named_t arcstat_l2_misses;
331	kstat_named_t arcstat_l2_feeds;
332	kstat_named_t arcstat_l2_rw_clash;
333	kstat_named_t arcstat_l2_read_bytes;
334	kstat_named_t arcstat_l2_write_bytes;
335	kstat_named_t arcstat_l2_writes_sent;
336	kstat_named_t arcstat_l2_writes_done;
337	kstat_named_t arcstat_l2_writes_error;
338	kstat_named_t arcstat_l2_writes_hdr_miss;
339	kstat_named_t arcstat_l2_evict_lock_retry;
340	kstat_named_t arcstat_l2_evict_reading;
341	kstat_named_t arcstat_l2_free_on_write;
342	kstat_named_t arcstat_l2_abort_lowmem;
343	kstat_named_t arcstat_l2_cksum_bad;
344	kstat_named_t arcstat_l2_io_error;
345	kstat_named_t arcstat_l2_size;
346	kstat_named_t arcstat_l2_asize;
347	kstat_named_t arcstat_l2_hdr_size;
348	kstat_named_t arcstat_l2_compress_successes;
349	kstat_named_t arcstat_l2_compress_zeros;
350	kstat_named_t arcstat_l2_compress_failures;
351	kstat_named_t arcstat_l2_write_trylock_fail;
352	kstat_named_t arcstat_l2_write_passed_headroom;
353	kstat_named_t arcstat_l2_write_spa_mismatch;
354	kstat_named_t arcstat_l2_write_in_l2;
355	kstat_named_t arcstat_l2_write_hdr_io_in_progress;
356	kstat_named_t arcstat_l2_write_not_cacheable;
357	kstat_named_t arcstat_l2_write_full;
358	kstat_named_t arcstat_l2_write_buffer_iter;
359	kstat_named_t arcstat_l2_write_pios;
360	kstat_named_t arcstat_l2_write_buffer_bytes_scanned;
361	kstat_named_t arcstat_l2_write_buffer_list_iter;
362	kstat_named_t arcstat_l2_write_buffer_list_null_iter;
363	kstat_named_t arcstat_memory_throttle_count;
364	kstat_named_t arcstat_duplicate_buffers;
365	kstat_named_t arcstat_duplicate_buffers_size;
366	kstat_named_t arcstat_duplicate_reads;
367} arc_stats_t;
368
369static arc_stats_t arc_stats = {
370	{ "hits",			KSTAT_DATA_UINT64 },
371	{ "misses",			KSTAT_DATA_UINT64 },
372	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
373	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
374	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
375	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
376	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
377	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
378	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
379	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
380	{ "mru_hits",			KSTAT_DATA_UINT64 },
381	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
382	{ "mfu_hits",			KSTAT_DATA_UINT64 },
383	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
384	{ "allocated",			KSTAT_DATA_UINT64 },
385	{ "deleted",			KSTAT_DATA_UINT64 },
386	{ "stolen",			KSTAT_DATA_UINT64 },
387	{ "recycle_miss",		KSTAT_DATA_UINT64 },
388	{ "mutex_miss",			KSTAT_DATA_UINT64 },
389	{ "evict_skip",			KSTAT_DATA_UINT64 },
390	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
391	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
392	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
393	{ "hash_elements",		KSTAT_DATA_UINT64 },
394	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
395	{ "hash_collisions",		KSTAT_DATA_UINT64 },
396	{ "hash_chains",		KSTAT_DATA_UINT64 },
397	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
398	{ "p",				KSTAT_DATA_UINT64 },
399	{ "c",				KSTAT_DATA_UINT64 },
400	{ "c_min",			KSTAT_DATA_UINT64 },
401	{ "c_max",			KSTAT_DATA_UINT64 },
402	{ "size",			KSTAT_DATA_UINT64 },
403	{ "hdr_size",			KSTAT_DATA_UINT64 },
404	{ "data_size",			KSTAT_DATA_UINT64 },
405	{ "other_size",			KSTAT_DATA_UINT64 },
406	{ "l2_hits",			KSTAT_DATA_UINT64 },
407	{ "l2_misses",			KSTAT_DATA_UINT64 },
408	{ "l2_feeds",			KSTAT_DATA_UINT64 },
409	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
410	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
411	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
412	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
413	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
414	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
415	{ "l2_writes_hdr_miss",		KSTAT_DATA_UINT64 },
416	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
417	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
418	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
419	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
420	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
421	{ "l2_io_error",		KSTAT_DATA_UINT64 },
422	{ "l2_size",			KSTAT_DATA_UINT64 },
423	{ "l2_asize",			KSTAT_DATA_UINT64 },
424	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
425	{ "l2_compress_successes",	KSTAT_DATA_UINT64 },
426	{ "l2_compress_zeros",		KSTAT_DATA_UINT64 },
427	{ "l2_compress_failures",	KSTAT_DATA_UINT64 },
428	{ "l2_write_trylock_fail",	KSTAT_DATA_UINT64 },
429	{ "l2_write_passed_headroom",	KSTAT_DATA_UINT64 },
430	{ "l2_write_spa_mismatch",	KSTAT_DATA_UINT64 },
431	{ "l2_write_in_l2",		KSTAT_DATA_UINT64 },
432	{ "l2_write_io_in_progress",	KSTAT_DATA_UINT64 },
433	{ "l2_write_not_cacheable",	KSTAT_DATA_UINT64 },
434	{ "l2_write_full",		KSTAT_DATA_UINT64 },
435	{ "l2_write_buffer_iter",	KSTAT_DATA_UINT64 },
436	{ "l2_write_pios",		KSTAT_DATA_UINT64 },
437	{ "l2_write_buffer_bytes_scanned", KSTAT_DATA_UINT64 },
438	{ "l2_write_buffer_list_iter",	KSTAT_DATA_UINT64 },
439	{ "l2_write_buffer_list_null_iter", KSTAT_DATA_UINT64 },
440	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
441	{ "duplicate_buffers",		KSTAT_DATA_UINT64 },
442	{ "duplicate_buffers_size",	KSTAT_DATA_UINT64 },
443	{ "duplicate_reads",		KSTAT_DATA_UINT64 }
444};
445
446#define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
447
448#define	ARCSTAT_INCR(stat, val) \
449	atomic_add_64(&arc_stats.stat.value.ui64, (val))
450
451#define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
452#define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
453
454#define	ARCSTAT_MAX(stat, val) {					\
455	uint64_t m;							\
456	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
457	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
458		continue;						\
459}
460
461#define	ARCSTAT_MAXSTAT(stat) \
462	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
463
464/*
465 * We define a macro to allow ARC hits/misses to be easily broken down by
466 * two separate conditions, giving a total of four different subtypes for
467 * each of hits and misses (so eight statistics total).
468 */
469#define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
470	if (cond1) {							\
471		if (cond2) {						\
472			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
473		} else {						\
474			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
475		}							\
476	} else {							\
477		if (cond2) {						\
478			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
479		} else {						\
480			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
481		}							\
482	}
483
484kstat_t			*arc_ksp;
485static arc_state_t	*arc_anon;
486static arc_state_t	*arc_mru;
487static arc_state_t	*arc_mru_ghost;
488static arc_state_t	*arc_mfu;
489static arc_state_t	*arc_mfu_ghost;
490static arc_state_t	*arc_l2c_only;
491
492/*
493 * There are several ARC variables that are critical to export as kstats --
494 * but we don't want to have to grovel around in the kstat whenever we wish to
495 * manipulate them.  For these variables, we therefore define them to be in
496 * terms of the statistic variable.  This assures that we are not introducing
497 * the possibility of inconsistency by having shadow copies of the variables,
498 * while still allowing the code to be readable.
499 */
500#define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
501#define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
502#define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
503#define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
504#define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
505
506#define	L2ARC_IS_VALID_COMPRESS(_c_) \
507	((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY)
508
509static int		arc_no_grow;	/* Don't try to grow cache size */
510static uint64_t		arc_tempreserve;
511static uint64_t		arc_loaned_bytes;
512static uint64_t		arc_meta_used;
513static uint64_t		arc_meta_limit;
514static uint64_t		arc_meta_max = 0;
515SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_meta_used, CTLFLAG_RD, &arc_meta_used, 0,
516    "ARC metadata used");
517SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_meta_limit, CTLFLAG_RW, &arc_meta_limit, 0,
518    "ARC metadata limit");
519
520typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
521
522typedef struct arc_callback arc_callback_t;
523
524struct arc_callback {
525	void			*acb_private;
526	arc_done_func_t		*acb_done;
527	arc_buf_t		*acb_buf;
528	zio_t			*acb_zio_dummy;
529	arc_callback_t		*acb_next;
530};
531
532typedef struct arc_write_callback arc_write_callback_t;
533
534struct arc_write_callback {
535	void		*awcb_private;
536	arc_done_func_t	*awcb_ready;
537	arc_done_func_t	*awcb_physdone;
538	arc_done_func_t	*awcb_done;
539	arc_buf_t	*awcb_buf;
540};
541
542struct arc_buf_hdr {
543	/* protected by hash lock */
544	dva_t			b_dva;
545	uint64_t		b_birth;
546	uint64_t		b_cksum0;
547
548	kmutex_t		b_freeze_lock;
549	zio_cksum_t		*b_freeze_cksum;
550	void			*b_thawed;
551
552	arc_buf_hdr_t		*b_hash_next;
553	arc_buf_t		*b_buf;
554	uint32_t		b_flags;
555	uint32_t		b_datacnt;
556
557	arc_callback_t		*b_acb;
558	kcondvar_t		b_cv;
559
560	/* immutable */
561	arc_buf_contents_t	b_type;
562	uint64_t		b_size;
563	uint64_t		b_spa;
564
565	/* protected by arc state mutex */
566	arc_state_t		*b_state;
567	list_node_t		b_arc_node;
568
569	/* updated atomically */
570	clock_t			b_arc_access;
571
572	/* self protecting */
573	refcount_t		b_refcnt;
574
575	l2arc_buf_hdr_t		*b_l2hdr;
576	list_node_t		b_l2node;
577};
578
579static arc_buf_t *arc_eviction_list;
580static kmutex_t arc_eviction_mtx;
581static arc_buf_hdr_t arc_eviction_hdr;
582static void arc_get_data_buf(arc_buf_t *buf);
583static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
584static int arc_evict_needed(arc_buf_contents_t type);
585static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes);
586#ifdef illumos
587static void arc_buf_watch(arc_buf_t *buf);
588#endif /* illumos */
589
590static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab);
591
592#define	GHOST_STATE(state)	\
593	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
594	(state) == arc_l2c_only)
595
596/*
597 * Private ARC flags.  These flags are private ARC only flags that will show up
598 * in b_flags in the arc_hdr_buf_t.  Some flags are publicly declared, and can
599 * be passed in as arc_flags in things like arc_read.  However, these flags
600 * should never be passed and should only be set by ARC code.  When adding new
601 * public flags, make sure not to smash the private ones.
602 */
603
604#define	ARC_IN_HASH_TABLE	(1 << 9)	/* this buffer is hashed */
605#define	ARC_IO_IN_PROGRESS	(1 << 10)	/* I/O in progress for buf */
606#define	ARC_IO_ERROR		(1 << 11)	/* I/O failed for buf */
607#define	ARC_FREED_IN_READ	(1 << 12)	/* buf freed while in read */
608#define	ARC_BUF_AVAILABLE	(1 << 13)	/* block not in active use */
609#define	ARC_INDIRECT		(1 << 14)	/* this is an indirect block */
610#define	ARC_FREE_IN_PROGRESS	(1 << 15)	/* hdr about to be freed */
611#define	ARC_L2_WRITING		(1 << 16)	/* L2ARC write in progress */
612#define	ARC_L2_EVICTED		(1 << 17)	/* evicted during I/O */
613#define	ARC_L2_WRITE_HEAD	(1 << 18)	/* head of write list */
614
615#define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_IN_HASH_TABLE)
616#define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS)
617#define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_IO_ERROR)
618#define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_PREFETCH)
619#define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FREED_IN_READ)
620#define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_BUF_AVAILABLE)
621#define	HDR_FREE_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
622#define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_L2CACHE)
623#define	HDR_L2_READING(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS &&	\
624				    (hdr)->b_l2hdr != NULL)
625#define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_L2_WRITING)
626#define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_L2_EVICTED)
627#define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_L2_WRITE_HEAD)
628
629/*
630 * Other sizes
631 */
632
633#define	HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
634#define	L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
635
636/*
637 * Hash table routines
638 */
639
640#define	HT_LOCK_PAD	CACHE_LINE_SIZE
641
642struct ht_lock {
643	kmutex_t	ht_lock;
644#ifdef _KERNEL
645	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
646#endif
647};
648
649#define	BUF_LOCKS 256
650typedef struct buf_hash_table {
651	uint64_t ht_mask;
652	arc_buf_hdr_t **ht_table;
653	struct ht_lock ht_locks[BUF_LOCKS] __aligned(CACHE_LINE_SIZE);
654} buf_hash_table_t;
655
656static buf_hash_table_t buf_hash_table;
657
658#define	BUF_HASH_INDEX(spa, dva, birth) \
659	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
660#define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
661#define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
662#define	HDR_LOCK(hdr) \
663	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
664
665uint64_t zfs_crc64_table[256];
666
667/*
668 * Level 2 ARC
669 */
670
671#define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
672#define	L2ARC_HEADROOM		2			/* num of writes */
673/*
674 * If we discover during ARC scan any buffers to be compressed, we boost
675 * our headroom for the next scanning cycle by this percentage multiple.
676 */
677#define	L2ARC_HEADROOM_BOOST	200
678#define	L2ARC_FEED_SECS		1		/* caching interval secs */
679#define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
680
681#define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
682#define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
683
684/* L2ARC Performance Tunables */
685uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
686uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
687uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
688uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
689uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
690uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
691boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
692boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
693boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
694
695SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_max, CTLFLAG_RW,
696    &l2arc_write_max, 0, "max write size");
697SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_boost, CTLFLAG_RW,
698    &l2arc_write_boost, 0, "extra write during warmup");
699SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_headroom, CTLFLAG_RW,
700    &l2arc_headroom, 0, "number of dev writes");
701SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_secs, CTLFLAG_RW,
702    &l2arc_feed_secs, 0, "interval seconds");
703SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_min_ms, CTLFLAG_RW,
704    &l2arc_feed_min_ms, 0, "min interval milliseconds");
705
706SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_noprefetch, CTLFLAG_RW,
707    &l2arc_noprefetch, 0, "don't cache prefetch bufs");
708SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_feed_again, CTLFLAG_RW,
709    &l2arc_feed_again, 0, "turbo warmup");
710SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_norw, CTLFLAG_RW,
711    &l2arc_norw, 0, "no reads during writes");
712
713SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_size, CTLFLAG_RD,
714    &ARC_anon.arcs_size, 0, "size of anonymous state");
715SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_metadata_lsize, CTLFLAG_RD,
716    &ARC_anon.arcs_lsize[ARC_BUFC_METADATA], 0, "size of anonymous state");
717SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_data_lsize, CTLFLAG_RD,
718    &ARC_anon.arcs_lsize[ARC_BUFC_DATA], 0, "size of anonymous state");
719
720SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_size, CTLFLAG_RD,
721    &ARC_mru.arcs_size, 0, "size of mru state");
722SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_metadata_lsize, CTLFLAG_RD,
723    &ARC_mru.arcs_lsize[ARC_BUFC_METADATA], 0, "size of metadata in mru state");
724SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_data_lsize, CTLFLAG_RD,
725    &ARC_mru.arcs_lsize[ARC_BUFC_DATA], 0, "size of data in mru state");
726
727SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_size, CTLFLAG_RD,
728    &ARC_mru_ghost.arcs_size, 0, "size of mru ghost state");
729SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_metadata_lsize, CTLFLAG_RD,
730    &ARC_mru_ghost.arcs_lsize[ARC_BUFC_METADATA], 0,
731    "size of metadata in mru ghost state");
732SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_data_lsize, CTLFLAG_RD,
733    &ARC_mru_ghost.arcs_lsize[ARC_BUFC_DATA], 0,
734    "size of data in mru ghost state");
735
736SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_size, CTLFLAG_RD,
737    &ARC_mfu.arcs_size, 0, "size of mfu state");
738SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_metadata_lsize, CTLFLAG_RD,
739    &ARC_mfu.arcs_lsize[ARC_BUFC_METADATA], 0, "size of metadata in mfu state");
740SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_data_lsize, CTLFLAG_RD,
741    &ARC_mfu.arcs_lsize[ARC_BUFC_DATA], 0, "size of data in mfu state");
742
743SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_size, CTLFLAG_RD,
744    &ARC_mfu_ghost.arcs_size, 0, "size of mfu ghost state");
745SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_metadata_lsize, CTLFLAG_RD,
746    &ARC_mfu_ghost.arcs_lsize[ARC_BUFC_METADATA], 0,
747    "size of metadata in mfu ghost state");
748SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_data_lsize, CTLFLAG_RD,
749    &ARC_mfu_ghost.arcs_lsize[ARC_BUFC_DATA], 0,
750    "size of data in mfu ghost state");
751
752SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2c_only_size, CTLFLAG_RD,
753    &ARC_l2c_only.arcs_size, 0, "size of mru state");
754
755/*
756 * L2ARC Internals
757 */
758typedef struct l2arc_dev {
759	vdev_t			*l2ad_vdev;	/* vdev */
760	spa_t			*l2ad_spa;	/* spa */
761	uint64_t		l2ad_hand;	/* next write location */
762	uint64_t		l2ad_start;	/* first addr on device */
763	uint64_t		l2ad_end;	/* last addr on device */
764	uint64_t		l2ad_evict;	/* last addr eviction reached */
765	boolean_t		l2ad_first;	/* first sweep through */
766	boolean_t		l2ad_writing;	/* currently writing */
767	list_t			*l2ad_buflist;	/* buffer list */
768	list_node_t		l2ad_node;	/* device list node */
769} l2arc_dev_t;
770
771static list_t L2ARC_dev_list;			/* device list */
772static list_t *l2arc_dev_list;			/* device list pointer */
773static kmutex_t l2arc_dev_mtx;			/* device list mutex */
774static l2arc_dev_t *l2arc_dev_last;		/* last device used */
775static kmutex_t l2arc_buflist_mtx;		/* mutex for all buflists */
776static list_t L2ARC_free_on_write;		/* free after write buf list */
777static list_t *l2arc_free_on_write;		/* free after write list ptr */
778static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
779static uint64_t l2arc_ndev;			/* number of devices */
780
781typedef struct l2arc_read_callback {
782	arc_buf_t		*l2rcb_buf;		/* read buffer */
783	spa_t			*l2rcb_spa;		/* spa */
784	blkptr_t		l2rcb_bp;		/* original blkptr */
785	zbookmark_t		l2rcb_zb;		/* original bookmark */
786	int			l2rcb_flags;		/* original flags */
787	enum zio_compress	l2rcb_compress;		/* applied compress */
788} l2arc_read_callback_t;
789
790typedef struct l2arc_write_callback {
791	l2arc_dev_t	*l2wcb_dev;		/* device info */
792	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
793} l2arc_write_callback_t;
794
795struct l2arc_buf_hdr {
796	/* protected by arc_buf_hdr  mutex */
797	l2arc_dev_t		*b_dev;		/* L2ARC device */
798	uint64_t		b_daddr;	/* disk address, offset byte */
799	/* compression applied to buffer data */
800	enum zio_compress	b_compress;
801	/* real alloc'd buffer size depending on b_compress applied */
802	int			b_asize;
803	/* temporary buffer holder for in-flight compressed data */
804	void			*b_tmp_cdata;
805};
806
807typedef struct l2arc_data_free {
808	/* protected by l2arc_free_on_write_mtx */
809	void		*l2df_data;
810	size_t		l2df_size;
811	void		(*l2df_func)(void *, size_t);
812	list_node_t	l2df_list_node;
813} l2arc_data_free_t;
814
815static kmutex_t l2arc_feed_thr_lock;
816static kcondvar_t l2arc_feed_thr_cv;
817static uint8_t l2arc_thread_exit;
818
819static void l2arc_read_done(zio_t *zio);
820static void l2arc_hdr_stat_add(void);
821static void l2arc_hdr_stat_remove(void);
822
823static boolean_t l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr);
824static void l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr,
825    enum zio_compress c);
826static void l2arc_release_cdata_buf(arc_buf_hdr_t *ab);
827
828static uint64_t
829buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
830{
831	uint8_t *vdva = (uint8_t *)dva;
832	uint64_t crc = -1ULL;
833	int i;
834
835	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
836
837	for (i = 0; i < sizeof (dva_t); i++)
838		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
839
840	crc ^= (spa>>8) ^ birth;
841
842	return (crc);
843}
844
845#define	BUF_EMPTY(buf)						\
846	((buf)->b_dva.dva_word[0] == 0 &&			\
847	(buf)->b_dva.dva_word[1] == 0 &&			\
848	(buf)->b_cksum0 == 0)
849
850#define	BUF_EQUAL(spa, dva, birth, buf)				\
851	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
852	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
853	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
854
855static void
856buf_discard_identity(arc_buf_hdr_t *hdr)
857{
858	hdr->b_dva.dva_word[0] = 0;
859	hdr->b_dva.dva_word[1] = 0;
860	hdr->b_birth = 0;
861	hdr->b_cksum0 = 0;
862}
863
864static arc_buf_hdr_t *
865buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
866{
867	const dva_t *dva = BP_IDENTITY(bp);
868	uint64_t birth = BP_PHYSICAL_BIRTH(bp);
869	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
870	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
871	arc_buf_hdr_t *buf;
872
873	mutex_enter(hash_lock);
874	for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
875	    buf = buf->b_hash_next) {
876		if (BUF_EQUAL(spa, dva, birth, buf)) {
877			*lockp = hash_lock;
878			return (buf);
879		}
880	}
881	mutex_exit(hash_lock);
882	*lockp = NULL;
883	return (NULL);
884}
885
886/*
887 * Insert an entry into the hash table.  If there is already an element
888 * equal to elem in the hash table, then the already existing element
889 * will be returned and the new element will not be inserted.
890 * Otherwise returns NULL.
891 */
892static arc_buf_hdr_t *
893buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
894{
895	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
896	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
897	arc_buf_hdr_t *fbuf;
898	uint32_t i;
899
900	ASSERT(!DVA_IS_EMPTY(&buf->b_dva));
901	ASSERT(buf->b_birth != 0);
902	ASSERT(!HDR_IN_HASH_TABLE(buf));
903	*lockp = hash_lock;
904	mutex_enter(hash_lock);
905	for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
906	    fbuf = fbuf->b_hash_next, i++) {
907		if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
908			return (fbuf);
909	}
910
911	buf->b_hash_next = buf_hash_table.ht_table[idx];
912	buf_hash_table.ht_table[idx] = buf;
913	buf->b_flags |= ARC_IN_HASH_TABLE;
914
915	/* collect some hash table performance data */
916	if (i > 0) {
917		ARCSTAT_BUMP(arcstat_hash_collisions);
918		if (i == 1)
919			ARCSTAT_BUMP(arcstat_hash_chains);
920
921		ARCSTAT_MAX(arcstat_hash_chain_max, i);
922	}
923
924	ARCSTAT_BUMP(arcstat_hash_elements);
925	ARCSTAT_MAXSTAT(arcstat_hash_elements);
926
927	return (NULL);
928}
929
930static void
931buf_hash_remove(arc_buf_hdr_t *buf)
932{
933	arc_buf_hdr_t *fbuf, **bufp;
934	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
935
936	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
937	ASSERT(HDR_IN_HASH_TABLE(buf));
938
939	bufp = &buf_hash_table.ht_table[idx];
940	while ((fbuf = *bufp) != buf) {
941		ASSERT(fbuf != NULL);
942		bufp = &fbuf->b_hash_next;
943	}
944	*bufp = buf->b_hash_next;
945	buf->b_hash_next = NULL;
946	buf->b_flags &= ~ARC_IN_HASH_TABLE;
947
948	/* collect some hash table performance data */
949	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
950
951	if (buf_hash_table.ht_table[idx] &&
952	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
953		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
954}
955
956/*
957 * Global data structures and functions for the buf kmem cache.
958 */
959static kmem_cache_t *hdr_cache;
960static kmem_cache_t *buf_cache;
961
962static void
963buf_fini(void)
964{
965	int i;
966
967	kmem_free(buf_hash_table.ht_table,
968	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
969	for (i = 0; i < BUF_LOCKS; i++)
970		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
971	kmem_cache_destroy(hdr_cache);
972	kmem_cache_destroy(buf_cache);
973}
974
975/*
976 * Constructor callback - called when the cache is empty
977 * and a new buf is requested.
978 */
979/* ARGSUSED */
980static int
981hdr_cons(void *vbuf, void *unused, int kmflag)
982{
983	arc_buf_hdr_t *buf = vbuf;
984
985	bzero(buf, sizeof (arc_buf_hdr_t));
986	refcount_create(&buf->b_refcnt);
987	cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
988	mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
989	arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
990
991	return (0);
992}
993
994/* ARGSUSED */
995static int
996buf_cons(void *vbuf, void *unused, int kmflag)
997{
998	arc_buf_t *buf = vbuf;
999
1000	bzero(buf, sizeof (arc_buf_t));
1001	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1002	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1003
1004	return (0);
1005}
1006
1007/*
1008 * Destructor callback - called when a cached buf is
1009 * no longer required.
1010 */
1011/* ARGSUSED */
1012static void
1013hdr_dest(void *vbuf, void *unused)
1014{
1015	arc_buf_hdr_t *buf = vbuf;
1016
1017	ASSERT(BUF_EMPTY(buf));
1018	refcount_destroy(&buf->b_refcnt);
1019	cv_destroy(&buf->b_cv);
1020	mutex_destroy(&buf->b_freeze_lock);
1021	arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
1022}
1023
1024/* ARGSUSED */
1025static void
1026buf_dest(void *vbuf, void *unused)
1027{
1028	arc_buf_t *buf = vbuf;
1029
1030	mutex_destroy(&buf->b_evict_lock);
1031	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1032}
1033
1034/*
1035 * Reclaim callback -- invoked when memory is low.
1036 */
1037/* ARGSUSED */
1038static void
1039hdr_recl(void *unused)
1040{
1041	dprintf("hdr_recl called\n");
1042	/*
1043	 * umem calls the reclaim func when we destroy the buf cache,
1044	 * which is after we do arc_fini().
1045	 */
1046	if (!arc_dead)
1047		cv_signal(&arc_reclaim_thr_cv);
1048}
1049
1050static void
1051buf_init(void)
1052{
1053	uint64_t *ct;
1054	uint64_t hsize = 1ULL << 12;
1055	int i, j;
1056
1057	/*
1058	 * The hash table is big enough to fill all of physical memory
1059	 * with an average 64K block size.  The table will take up
1060	 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
1061	 */
1062	while (hsize * 65536 < (uint64_t)physmem * PAGESIZE)
1063		hsize <<= 1;
1064retry:
1065	buf_hash_table.ht_mask = hsize - 1;
1066	buf_hash_table.ht_table =
1067	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1068	if (buf_hash_table.ht_table == NULL) {
1069		ASSERT(hsize > (1ULL << 8));
1070		hsize >>= 1;
1071		goto retry;
1072	}
1073
1074	hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
1075	    0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
1076	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1077	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1078
1079	for (i = 0; i < 256; i++)
1080		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1081			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1082
1083	for (i = 0; i < BUF_LOCKS; i++) {
1084		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1085		    NULL, MUTEX_DEFAULT, NULL);
1086	}
1087}
1088
1089#define	ARC_MINTIME	(hz>>4) /* 62 ms */
1090
1091static void
1092arc_cksum_verify(arc_buf_t *buf)
1093{
1094	zio_cksum_t zc;
1095
1096	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1097		return;
1098
1099	mutex_enter(&buf->b_hdr->b_freeze_lock);
1100	if (buf->b_hdr->b_freeze_cksum == NULL ||
1101	    (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
1102		mutex_exit(&buf->b_hdr->b_freeze_lock);
1103		return;
1104	}
1105	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1106	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
1107		panic("buffer modified while frozen!");
1108	mutex_exit(&buf->b_hdr->b_freeze_lock);
1109}
1110
1111static int
1112arc_cksum_equal(arc_buf_t *buf)
1113{
1114	zio_cksum_t zc;
1115	int equal;
1116
1117	mutex_enter(&buf->b_hdr->b_freeze_lock);
1118	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1119	equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
1120	mutex_exit(&buf->b_hdr->b_freeze_lock);
1121
1122	return (equal);
1123}
1124
1125static void
1126arc_cksum_compute(arc_buf_t *buf, boolean_t force)
1127{
1128	if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1129		return;
1130
1131	mutex_enter(&buf->b_hdr->b_freeze_lock);
1132	if (buf->b_hdr->b_freeze_cksum != NULL) {
1133		mutex_exit(&buf->b_hdr->b_freeze_lock);
1134		return;
1135	}
1136	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
1137	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1138	    buf->b_hdr->b_freeze_cksum);
1139	mutex_exit(&buf->b_hdr->b_freeze_lock);
1140#ifdef illumos
1141	arc_buf_watch(buf);
1142#endif /* illumos */
1143}
1144
1145#ifdef illumos
1146#ifndef _KERNEL
1147typedef struct procctl {
1148	long cmd;
1149	prwatch_t prwatch;
1150} procctl_t;
1151#endif
1152
1153/* ARGSUSED */
1154static void
1155arc_buf_unwatch(arc_buf_t *buf)
1156{
1157#ifndef _KERNEL
1158	if (arc_watch) {
1159		int result;
1160		procctl_t ctl;
1161		ctl.cmd = PCWATCH;
1162		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1163		ctl.prwatch.pr_size = 0;
1164		ctl.prwatch.pr_wflags = 0;
1165		result = write(arc_procfd, &ctl, sizeof (ctl));
1166		ASSERT3U(result, ==, sizeof (ctl));
1167	}
1168#endif
1169}
1170
1171/* ARGSUSED */
1172static void
1173arc_buf_watch(arc_buf_t *buf)
1174{
1175#ifndef _KERNEL
1176	if (arc_watch) {
1177		int result;
1178		procctl_t ctl;
1179		ctl.cmd = PCWATCH;
1180		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1181		ctl.prwatch.pr_size = buf->b_hdr->b_size;
1182		ctl.prwatch.pr_wflags = WA_WRITE;
1183		result = write(arc_procfd, &ctl, sizeof (ctl));
1184		ASSERT3U(result, ==, sizeof (ctl));
1185	}
1186#endif
1187}
1188#endif /* illumos */
1189
1190void
1191arc_buf_thaw(arc_buf_t *buf)
1192{
1193	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1194		if (buf->b_hdr->b_state != arc_anon)
1195			panic("modifying non-anon buffer!");
1196		if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
1197			panic("modifying buffer while i/o in progress!");
1198		arc_cksum_verify(buf);
1199	}
1200
1201	mutex_enter(&buf->b_hdr->b_freeze_lock);
1202	if (buf->b_hdr->b_freeze_cksum != NULL) {
1203		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1204		buf->b_hdr->b_freeze_cksum = NULL;
1205	}
1206
1207	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1208		if (buf->b_hdr->b_thawed)
1209			kmem_free(buf->b_hdr->b_thawed, 1);
1210		buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP);
1211	}
1212
1213	mutex_exit(&buf->b_hdr->b_freeze_lock);
1214
1215#ifdef illumos
1216	arc_buf_unwatch(buf);
1217#endif /* illumos */
1218}
1219
1220void
1221arc_buf_freeze(arc_buf_t *buf)
1222{
1223	kmutex_t *hash_lock;
1224
1225	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1226		return;
1227
1228	hash_lock = HDR_LOCK(buf->b_hdr);
1229	mutex_enter(hash_lock);
1230
1231	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1232	    buf->b_hdr->b_state == arc_anon);
1233	arc_cksum_compute(buf, B_FALSE);
1234	mutex_exit(hash_lock);
1235
1236}
1237
1238static void
1239get_buf_info(arc_buf_hdr_t *ab, arc_state_t *state, list_t **list, kmutex_t **lock)
1240{
1241	uint64_t buf_hashid = buf_hash(ab->b_spa, &ab->b_dva, ab->b_birth);
1242
1243	if (ab->b_type == ARC_BUFC_METADATA)
1244		buf_hashid &= (ARC_BUFC_NUMMETADATALISTS - 1);
1245	else {
1246		buf_hashid &= (ARC_BUFC_NUMDATALISTS - 1);
1247		buf_hashid += ARC_BUFC_NUMMETADATALISTS;
1248	}
1249
1250	*list = &state->arcs_lists[buf_hashid];
1251	*lock = ARCS_LOCK(state, buf_hashid);
1252}
1253
1254
1255static void
1256add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1257{
1258	ASSERT(MUTEX_HELD(hash_lock));
1259
1260	if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
1261	    (ab->b_state != arc_anon)) {
1262		uint64_t delta = ab->b_size * ab->b_datacnt;
1263		uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
1264		list_t *list;
1265		kmutex_t *lock;
1266
1267		get_buf_info(ab, ab->b_state, &list, &lock);
1268		ASSERT(!MUTEX_HELD(lock));
1269		mutex_enter(lock);
1270		ASSERT(list_link_active(&ab->b_arc_node));
1271		list_remove(list, ab);
1272		if (GHOST_STATE(ab->b_state)) {
1273			ASSERT0(ab->b_datacnt);
1274			ASSERT3P(ab->b_buf, ==, NULL);
1275			delta = ab->b_size;
1276		}
1277		ASSERT(delta > 0);
1278		ASSERT3U(*size, >=, delta);
1279		atomic_add_64(size, -delta);
1280		mutex_exit(lock);
1281		/* remove the prefetch flag if we get a reference */
1282		if (ab->b_flags & ARC_PREFETCH)
1283			ab->b_flags &= ~ARC_PREFETCH;
1284	}
1285}
1286
1287static int
1288remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1289{
1290	int cnt;
1291	arc_state_t *state = ab->b_state;
1292
1293	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1294	ASSERT(!GHOST_STATE(state));
1295
1296	if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
1297	    (state != arc_anon)) {
1298		uint64_t *size = &state->arcs_lsize[ab->b_type];
1299		list_t *list;
1300		kmutex_t *lock;
1301
1302		get_buf_info(ab, state, &list, &lock);
1303		ASSERT(!MUTEX_HELD(lock));
1304		mutex_enter(lock);
1305		ASSERT(!list_link_active(&ab->b_arc_node));
1306		list_insert_head(list, ab);
1307		ASSERT(ab->b_datacnt > 0);
1308		atomic_add_64(size, ab->b_size * ab->b_datacnt);
1309		mutex_exit(lock);
1310	}
1311	return (cnt);
1312}
1313
1314/*
1315 * Move the supplied buffer to the indicated state.  The mutex
1316 * for the buffer must be held by the caller.
1317 */
1318static void
1319arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
1320{
1321	arc_state_t *old_state = ab->b_state;
1322	int64_t refcnt = refcount_count(&ab->b_refcnt);
1323	uint64_t from_delta, to_delta;
1324	list_t *list;
1325	kmutex_t *lock;
1326
1327	ASSERT(MUTEX_HELD(hash_lock));
1328	ASSERT3P(new_state, !=, old_state);
1329	ASSERT(refcnt == 0 || ab->b_datacnt > 0);
1330	ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
1331	ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon);
1332
1333	from_delta = to_delta = ab->b_datacnt * ab->b_size;
1334
1335	/*
1336	 * If this buffer is evictable, transfer it from the
1337	 * old state list to the new state list.
1338	 */
1339	if (refcnt == 0) {
1340		if (old_state != arc_anon) {
1341			int use_mutex;
1342			uint64_t *size = &old_state->arcs_lsize[ab->b_type];
1343
1344			get_buf_info(ab, old_state, &list, &lock);
1345			use_mutex = !MUTEX_HELD(lock);
1346			if (use_mutex)
1347				mutex_enter(lock);
1348
1349			ASSERT(list_link_active(&ab->b_arc_node));
1350			list_remove(list, ab);
1351
1352			/*
1353			 * If prefetching out of the ghost cache,
1354			 * we will have a non-zero datacnt.
1355			 */
1356			if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1357				/* ghost elements have a ghost size */
1358				ASSERT(ab->b_buf == NULL);
1359				from_delta = ab->b_size;
1360			}
1361			ASSERT3U(*size, >=, from_delta);
1362			atomic_add_64(size, -from_delta);
1363
1364			if (use_mutex)
1365				mutex_exit(lock);
1366		}
1367		if (new_state != arc_anon) {
1368			int use_mutex;
1369			uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1370
1371			get_buf_info(ab, new_state, &list, &lock);
1372			use_mutex = !MUTEX_HELD(lock);
1373			if (use_mutex)
1374				mutex_enter(lock);
1375
1376			list_insert_head(list, ab);
1377
1378			/* ghost elements have a ghost size */
1379			if (GHOST_STATE(new_state)) {
1380				ASSERT(ab->b_datacnt == 0);
1381				ASSERT(ab->b_buf == NULL);
1382				to_delta = ab->b_size;
1383			}
1384			atomic_add_64(size, to_delta);
1385
1386			if (use_mutex)
1387				mutex_exit(lock);
1388		}
1389	}
1390
1391	ASSERT(!BUF_EMPTY(ab));
1392	if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab))
1393		buf_hash_remove(ab);
1394
1395	/* adjust state sizes */
1396	if (to_delta)
1397		atomic_add_64(&new_state->arcs_size, to_delta);
1398	if (from_delta) {
1399		ASSERT3U(old_state->arcs_size, >=, from_delta);
1400		atomic_add_64(&old_state->arcs_size, -from_delta);
1401	}
1402	ab->b_state = new_state;
1403
1404	/* adjust l2arc hdr stats */
1405	if (new_state == arc_l2c_only)
1406		l2arc_hdr_stat_add();
1407	else if (old_state == arc_l2c_only)
1408		l2arc_hdr_stat_remove();
1409}
1410
1411void
1412arc_space_consume(uint64_t space, arc_space_type_t type)
1413{
1414	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1415
1416	switch (type) {
1417	case ARC_SPACE_DATA:
1418		ARCSTAT_INCR(arcstat_data_size, space);
1419		break;
1420	case ARC_SPACE_OTHER:
1421		ARCSTAT_INCR(arcstat_other_size, space);
1422		break;
1423	case ARC_SPACE_HDRS:
1424		ARCSTAT_INCR(arcstat_hdr_size, space);
1425		break;
1426	case ARC_SPACE_L2HDRS:
1427		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1428		break;
1429	}
1430
1431	atomic_add_64(&arc_meta_used, space);
1432	atomic_add_64(&arc_size, space);
1433}
1434
1435void
1436arc_space_return(uint64_t space, arc_space_type_t type)
1437{
1438	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1439
1440	switch (type) {
1441	case ARC_SPACE_DATA:
1442		ARCSTAT_INCR(arcstat_data_size, -space);
1443		break;
1444	case ARC_SPACE_OTHER:
1445		ARCSTAT_INCR(arcstat_other_size, -space);
1446		break;
1447	case ARC_SPACE_HDRS:
1448		ARCSTAT_INCR(arcstat_hdr_size, -space);
1449		break;
1450	case ARC_SPACE_L2HDRS:
1451		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1452		break;
1453	}
1454
1455	ASSERT(arc_meta_used >= space);
1456	if (arc_meta_max < arc_meta_used)
1457		arc_meta_max = arc_meta_used;
1458	atomic_add_64(&arc_meta_used, -space);
1459	ASSERT(arc_size >= space);
1460	atomic_add_64(&arc_size, -space);
1461}
1462
1463void *
1464arc_data_buf_alloc(uint64_t size)
1465{
1466	if (arc_evict_needed(ARC_BUFC_DATA))
1467		cv_signal(&arc_reclaim_thr_cv);
1468	atomic_add_64(&arc_size, size);
1469	return (zio_data_buf_alloc(size));
1470}
1471
1472void
1473arc_data_buf_free(void *buf, uint64_t size)
1474{
1475	zio_data_buf_free(buf, size);
1476	ASSERT(arc_size >= size);
1477	atomic_add_64(&arc_size, -size);
1478}
1479
1480arc_buf_t *
1481arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1482{
1483	arc_buf_hdr_t *hdr;
1484	arc_buf_t *buf;
1485
1486	ASSERT3U(size, >, 0);
1487	hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1488	ASSERT(BUF_EMPTY(hdr));
1489	hdr->b_size = size;
1490	hdr->b_type = type;
1491	hdr->b_spa = spa_load_guid(spa);
1492	hdr->b_state = arc_anon;
1493	hdr->b_arc_access = 0;
1494	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1495	buf->b_hdr = hdr;
1496	buf->b_data = NULL;
1497	buf->b_efunc = NULL;
1498	buf->b_private = NULL;
1499	buf->b_next = NULL;
1500	hdr->b_buf = buf;
1501	arc_get_data_buf(buf);
1502	hdr->b_datacnt = 1;
1503	hdr->b_flags = 0;
1504	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1505	(void) refcount_add(&hdr->b_refcnt, tag);
1506
1507	return (buf);
1508}
1509
1510static char *arc_onloan_tag = "onloan";
1511
1512/*
1513 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1514 * flight data by arc_tempreserve_space() until they are "returned". Loaned
1515 * buffers must be returned to the arc before they can be used by the DMU or
1516 * freed.
1517 */
1518arc_buf_t *
1519arc_loan_buf(spa_t *spa, int size)
1520{
1521	arc_buf_t *buf;
1522
1523	buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1524
1525	atomic_add_64(&arc_loaned_bytes, size);
1526	return (buf);
1527}
1528
1529/*
1530 * Return a loaned arc buffer to the arc.
1531 */
1532void
1533arc_return_buf(arc_buf_t *buf, void *tag)
1534{
1535	arc_buf_hdr_t *hdr = buf->b_hdr;
1536
1537	ASSERT(buf->b_data != NULL);
1538	(void) refcount_add(&hdr->b_refcnt, tag);
1539	(void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag);
1540
1541	atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1542}
1543
1544/* Detach an arc_buf from a dbuf (tag) */
1545void
1546arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1547{
1548	arc_buf_hdr_t *hdr;
1549
1550	ASSERT(buf->b_data != NULL);
1551	hdr = buf->b_hdr;
1552	(void) refcount_add(&hdr->b_refcnt, arc_onloan_tag);
1553	(void) refcount_remove(&hdr->b_refcnt, tag);
1554	buf->b_efunc = NULL;
1555	buf->b_private = NULL;
1556
1557	atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1558}
1559
1560static arc_buf_t *
1561arc_buf_clone(arc_buf_t *from)
1562{
1563	arc_buf_t *buf;
1564	arc_buf_hdr_t *hdr = from->b_hdr;
1565	uint64_t size = hdr->b_size;
1566
1567	ASSERT(hdr->b_state != arc_anon);
1568
1569	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1570	buf->b_hdr = hdr;
1571	buf->b_data = NULL;
1572	buf->b_efunc = NULL;
1573	buf->b_private = NULL;
1574	buf->b_next = hdr->b_buf;
1575	hdr->b_buf = buf;
1576	arc_get_data_buf(buf);
1577	bcopy(from->b_data, buf->b_data, size);
1578
1579	/*
1580	 * This buffer already exists in the arc so create a duplicate
1581	 * copy for the caller.  If the buffer is associated with user data
1582	 * then track the size and number of duplicates.  These stats will be
1583	 * updated as duplicate buffers are created and destroyed.
1584	 */
1585	if (hdr->b_type == ARC_BUFC_DATA) {
1586		ARCSTAT_BUMP(arcstat_duplicate_buffers);
1587		ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
1588	}
1589	hdr->b_datacnt += 1;
1590	return (buf);
1591}
1592
1593void
1594arc_buf_add_ref(arc_buf_t *buf, void* tag)
1595{
1596	arc_buf_hdr_t *hdr;
1597	kmutex_t *hash_lock;
1598
1599	/*
1600	 * Check to see if this buffer is evicted.  Callers
1601	 * must verify b_data != NULL to know if the add_ref
1602	 * was successful.
1603	 */
1604	mutex_enter(&buf->b_evict_lock);
1605	if (buf->b_data == NULL) {
1606		mutex_exit(&buf->b_evict_lock);
1607		return;
1608	}
1609	hash_lock = HDR_LOCK(buf->b_hdr);
1610	mutex_enter(hash_lock);
1611	hdr = buf->b_hdr;
1612	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1613	mutex_exit(&buf->b_evict_lock);
1614
1615	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1616	add_reference(hdr, hash_lock, tag);
1617	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
1618	arc_access(hdr, hash_lock);
1619	mutex_exit(hash_lock);
1620	ARCSTAT_BUMP(arcstat_hits);
1621	ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1622	    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1623	    data, metadata, hits);
1624}
1625
1626/*
1627 * Free the arc data buffer.  If it is an l2arc write in progress,
1628 * the buffer is placed on l2arc_free_on_write to be freed later.
1629 */
1630static void
1631arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
1632{
1633	arc_buf_hdr_t *hdr = buf->b_hdr;
1634
1635	if (HDR_L2_WRITING(hdr)) {
1636		l2arc_data_free_t *df;
1637		df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
1638		df->l2df_data = buf->b_data;
1639		df->l2df_size = hdr->b_size;
1640		df->l2df_func = free_func;
1641		mutex_enter(&l2arc_free_on_write_mtx);
1642		list_insert_head(l2arc_free_on_write, df);
1643		mutex_exit(&l2arc_free_on_write_mtx);
1644		ARCSTAT_BUMP(arcstat_l2_free_on_write);
1645	} else {
1646		free_func(buf->b_data, hdr->b_size);
1647	}
1648}
1649
1650static void
1651arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
1652{
1653	arc_buf_t **bufp;
1654
1655	/* free up data associated with the buf */
1656	if (buf->b_data) {
1657		arc_state_t *state = buf->b_hdr->b_state;
1658		uint64_t size = buf->b_hdr->b_size;
1659		arc_buf_contents_t type = buf->b_hdr->b_type;
1660
1661		arc_cksum_verify(buf);
1662#ifdef illumos
1663		arc_buf_unwatch(buf);
1664#endif /* illumos */
1665
1666		if (!recycle) {
1667			if (type == ARC_BUFC_METADATA) {
1668				arc_buf_data_free(buf, zio_buf_free);
1669				arc_space_return(size, ARC_SPACE_DATA);
1670			} else {
1671				ASSERT(type == ARC_BUFC_DATA);
1672				arc_buf_data_free(buf, zio_data_buf_free);
1673				ARCSTAT_INCR(arcstat_data_size, -size);
1674				atomic_add_64(&arc_size, -size);
1675			}
1676		}
1677		if (list_link_active(&buf->b_hdr->b_arc_node)) {
1678			uint64_t *cnt = &state->arcs_lsize[type];
1679
1680			ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1681			ASSERT(state != arc_anon);
1682
1683			ASSERT3U(*cnt, >=, size);
1684			atomic_add_64(cnt, -size);
1685		}
1686		ASSERT3U(state->arcs_size, >=, size);
1687		atomic_add_64(&state->arcs_size, -size);
1688		buf->b_data = NULL;
1689
1690		/*
1691		 * If we're destroying a duplicate buffer make sure
1692		 * that the appropriate statistics are updated.
1693		 */
1694		if (buf->b_hdr->b_datacnt > 1 &&
1695		    buf->b_hdr->b_type == ARC_BUFC_DATA) {
1696			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
1697			ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
1698		}
1699		ASSERT(buf->b_hdr->b_datacnt > 0);
1700		buf->b_hdr->b_datacnt -= 1;
1701	}
1702
1703	/* only remove the buf if requested */
1704	if (!all)
1705		return;
1706
1707	/* remove the buf from the hdr list */
1708	for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1709		continue;
1710	*bufp = buf->b_next;
1711	buf->b_next = NULL;
1712
1713	ASSERT(buf->b_efunc == NULL);
1714
1715	/* clean up the buf */
1716	buf->b_hdr = NULL;
1717	kmem_cache_free(buf_cache, buf);
1718}
1719
1720static void
1721arc_hdr_destroy(arc_buf_hdr_t *hdr)
1722{
1723	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1724	ASSERT3P(hdr->b_state, ==, arc_anon);
1725	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1726	l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr;
1727
1728	if (l2hdr != NULL) {
1729		boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx);
1730		/*
1731		 * To prevent arc_free() and l2arc_evict() from
1732		 * attempting to free the same buffer at the same time,
1733		 * a FREE_IN_PROGRESS flag is given to arc_free() to
1734		 * give it priority.  l2arc_evict() can't destroy this
1735		 * header while we are waiting on l2arc_buflist_mtx.
1736		 *
1737		 * The hdr may be removed from l2ad_buflist before we
1738		 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
1739		 */
1740		if (!buflist_held) {
1741			mutex_enter(&l2arc_buflist_mtx);
1742			l2hdr = hdr->b_l2hdr;
1743		}
1744
1745		if (l2hdr != NULL) {
1746			trim_map_free(l2hdr->b_dev->l2ad_vdev, l2hdr->b_daddr,
1747			    hdr->b_size, 0);
1748			list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
1749			ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1750			ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
1751			kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
1752			if (hdr->b_state == arc_l2c_only)
1753				l2arc_hdr_stat_remove();
1754			hdr->b_l2hdr = NULL;
1755		}
1756
1757		if (!buflist_held)
1758			mutex_exit(&l2arc_buflist_mtx);
1759	}
1760
1761	if (!BUF_EMPTY(hdr)) {
1762		ASSERT(!HDR_IN_HASH_TABLE(hdr));
1763		buf_discard_identity(hdr);
1764	}
1765	while (hdr->b_buf) {
1766		arc_buf_t *buf = hdr->b_buf;
1767
1768		if (buf->b_efunc) {
1769			mutex_enter(&arc_eviction_mtx);
1770			mutex_enter(&buf->b_evict_lock);
1771			ASSERT(buf->b_hdr != NULL);
1772			arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1773			hdr->b_buf = buf->b_next;
1774			buf->b_hdr = &arc_eviction_hdr;
1775			buf->b_next = arc_eviction_list;
1776			arc_eviction_list = buf;
1777			mutex_exit(&buf->b_evict_lock);
1778			mutex_exit(&arc_eviction_mtx);
1779		} else {
1780			arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1781		}
1782	}
1783	if (hdr->b_freeze_cksum != NULL) {
1784		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1785		hdr->b_freeze_cksum = NULL;
1786	}
1787	if (hdr->b_thawed) {
1788		kmem_free(hdr->b_thawed, 1);
1789		hdr->b_thawed = NULL;
1790	}
1791
1792	ASSERT(!list_link_active(&hdr->b_arc_node));
1793	ASSERT3P(hdr->b_hash_next, ==, NULL);
1794	ASSERT3P(hdr->b_acb, ==, NULL);
1795	kmem_cache_free(hdr_cache, hdr);
1796}
1797
1798void
1799arc_buf_free(arc_buf_t *buf, void *tag)
1800{
1801	arc_buf_hdr_t *hdr = buf->b_hdr;
1802	int hashed = hdr->b_state != arc_anon;
1803
1804	ASSERT(buf->b_efunc == NULL);
1805	ASSERT(buf->b_data != NULL);
1806
1807	if (hashed) {
1808		kmutex_t *hash_lock = HDR_LOCK(hdr);
1809
1810		mutex_enter(hash_lock);
1811		hdr = buf->b_hdr;
1812		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1813
1814		(void) remove_reference(hdr, hash_lock, tag);
1815		if (hdr->b_datacnt > 1) {
1816			arc_buf_destroy(buf, FALSE, TRUE);
1817		} else {
1818			ASSERT(buf == hdr->b_buf);
1819			ASSERT(buf->b_efunc == NULL);
1820			hdr->b_flags |= ARC_BUF_AVAILABLE;
1821		}
1822		mutex_exit(hash_lock);
1823	} else if (HDR_IO_IN_PROGRESS(hdr)) {
1824		int destroy_hdr;
1825		/*
1826		 * We are in the middle of an async write.  Don't destroy
1827		 * this buffer unless the write completes before we finish
1828		 * decrementing the reference count.
1829		 */
1830		mutex_enter(&arc_eviction_mtx);
1831		(void) remove_reference(hdr, NULL, tag);
1832		ASSERT(refcount_is_zero(&hdr->b_refcnt));
1833		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1834		mutex_exit(&arc_eviction_mtx);
1835		if (destroy_hdr)
1836			arc_hdr_destroy(hdr);
1837	} else {
1838		if (remove_reference(hdr, NULL, tag) > 0)
1839			arc_buf_destroy(buf, FALSE, TRUE);
1840		else
1841			arc_hdr_destroy(hdr);
1842	}
1843}
1844
1845boolean_t
1846arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1847{
1848	arc_buf_hdr_t *hdr = buf->b_hdr;
1849	kmutex_t *hash_lock = HDR_LOCK(hdr);
1850	boolean_t no_callback = (buf->b_efunc == NULL);
1851
1852	if (hdr->b_state == arc_anon) {
1853		ASSERT(hdr->b_datacnt == 1);
1854		arc_buf_free(buf, tag);
1855		return (no_callback);
1856	}
1857
1858	mutex_enter(hash_lock);
1859	hdr = buf->b_hdr;
1860	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1861	ASSERT(hdr->b_state != arc_anon);
1862	ASSERT(buf->b_data != NULL);
1863
1864	(void) remove_reference(hdr, hash_lock, tag);
1865	if (hdr->b_datacnt > 1) {
1866		if (no_callback)
1867			arc_buf_destroy(buf, FALSE, TRUE);
1868	} else if (no_callback) {
1869		ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1870		ASSERT(buf->b_efunc == NULL);
1871		hdr->b_flags |= ARC_BUF_AVAILABLE;
1872	}
1873	ASSERT(no_callback || hdr->b_datacnt > 1 ||
1874	    refcount_is_zero(&hdr->b_refcnt));
1875	mutex_exit(hash_lock);
1876	return (no_callback);
1877}
1878
1879int
1880arc_buf_size(arc_buf_t *buf)
1881{
1882	return (buf->b_hdr->b_size);
1883}
1884
1885/*
1886 * Called from the DMU to determine if the current buffer should be
1887 * evicted. In order to ensure proper locking, the eviction must be initiated
1888 * from the DMU. Return true if the buffer is associated with user data and
1889 * duplicate buffers still exist.
1890 */
1891boolean_t
1892arc_buf_eviction_needed(arc_buf_t *buf)
1893{
1894	arc_buf_hdr_t *hdr;
1895	boolean_t evict_needed = B_FALSE;
1896
1897	if (zfs_disable_dup_eviction)
1898		return (B_FALSE);
1899
1900	mutex_enter(&buf->b_evict_lock);
1901	hdr = buf->b_hdr;
1902	if (hdr == NULL) {
1903		/*
1904		 * We are in arc_do_user_evicts(); let that function
1905		 * perform the eviction.
1906		 */
1907		ASSERT(buf->b_data == NULL);
1908		mutex_exit(&buf->b_evict_lock);
1909		return (B_FALSE);
1910	} else if (buf->b_data == NULL) {
1911		/*
1912		 * We have already been added to the arc eviction list;
1913		 * recommend eviction.
1914		 */
1915		ASSERT3P(hdr, ==, &arc_eviction_hdr);
1916		mutex_exit(&buf->b_evict_lock);
1917		return (B_TRUE);
1918	}
1919
1920	if (hdr->b_datacnt > 1 && hdr->b_type == ARC_BUFC_DATA)
1921		evict_needed = B_TRUE;
1922
1923	mutex_exit(&buf->b_evict_lock);
1924	return (evict_needed);
1925}
1926
1927/*
1928 * Evict buffers from list until we've removed the specified number of
1929 * bytes.  Move the removed buffers to the appropriate evict state.
1930 * If the recycle flag is set, then attempt to "recycle" a buffer:
1931 * - look for a buffer to evict that is `bytes' long.
1932 * - return the data block from this buffer rather than freeing it.
1933 * This flag is used by callers that are trying to make space for a
1934 * new buffer in a full arc cache.
1935 *
1936 * This function makes a "best effort".  It skips over any buffers
1937 * it can't get a hash_lock on, and so may not catch all candidates.
1938 * It may also return without evicting as much space as requested.
1939 */
1940static void *
1941arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
1942    arc_buf_contents_t type)
1943{
1944	arc_state_t *evicted_state;
1945	uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1946	int64_t bytes_remaining;
1947	arc_buf_hdr_t *ab, *ab_prev = NULL;
1948	list_t *evicted_list, *list, *evicted_list_start, *list_start;
1949	kmutex_t *lock, *evicted_lock;
1950	kmutex_t *hash_lock;
1951	boolean_t have_lock;
1952	void *stolen = NULL;
1953	arc_buf_hdr_t marker = { 0 };
1954	int count = 0;
1955	static int evict_metadata_offset, evict_data_offset;
1956	int i, idx, offset, list_count, lists;
1957
1958	ASSERT(state == arc_mru || state == arc_mfu);
1959
1960	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1961
1962	if (type == ARC_BUFC_METADATA) {
1963		offset = 0;
1964		list_count = ARC_BUFC_NUMMETADATALISTS;
1965		list_start = &state->arcs_lists[0];
1966		evicted_list_start = &evicted_state->arcs_lists[0];
1967		idx = evict_metadata_offset;
1968	} else {
1969		offset = ARC_BUFC_NUMMETADATALISTS;
1970		list_start = &state->arcs_lists[offset];
1971		evicted_list_start = &evicted_state->arcs_lists[offset];
1972		list_count = ARC_BUFC_NUMDATALISTS;
1973		idx = evict_data_offset;
1974	}
1975	bytes_remaining = evicted_state->arcs_lsize[type];
1976	lists = 0;
1977
1978evict_start:
1979	list = &list_start[idx];
1980	evicted_list = &evicted_list_start[idx];
1981	lock = ARCS_LOCK(state, (offset + idx));
1982	evicted_lock = ARCS_LOCK(evicted_state, (offset + idx));
1983
1984	mutex_enter(lock);
1985	mutex_enter(evicted_lock);
1986
1987	for (ab = list_tail(list); ab; ab = ab_prev) {
1988		ab_prev = list_prev(list, ab);
1989		bytes_remaining -= (ab->b_size * ab->b_datacnt);
1990		/* prefetch buffers have a minimum lifespan */
1991		if (HDR_IO_IN_PROGRESS(ab) ||
1992		    (spa && ab->b_spa != spa) ||
1993		    (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
1994		    ddi_get_lbolt() - ab->b_arc_access <
1995		    arc_min_prefetch_lifespan)) {
1996			skipped++;
1997			continue;
1998		}
1999		/* "lookahead" for better eviction candidate */
2000		if (recycle && ab->b_size != bytes &&
2001		    ab_prev && ab_prev->b_size == bytes)
2002			continue;
2003
2004		/* ignore markers */
2005		if (ab->b_spa == 0)
2006			continue;
2007
2008		/*
2009		 * It may take a long time to evict all the bufs requested.
2010		 * To avoid blocking all arc activity, periodically drop
2011		 * the arcs_mtx and give other threads a chance to run
2012		 * before reacquiring the lock.
2013		 *
2014		 * If we are looking for a buffer to recycle, we are in
2015		 * the hot code path, so don't sleep.
2016		 */
2017		if (!recycle && count++ > arc_evict_iterations) {
2018			list_insert_after(list, ab, &marker);
2019			mutex_exit(evicted_lock);
2020			mutex_exit(lock);
2021			kpreempt(KPREEMPT_SYNC);
2022			mutex_enter(lock);
2023			mutex_enter(evicted_lock);
2024			ab_prev = list_prev(list, &marker);
2025			list_remove(list, &marker);
2026			count = 0;
2027			continue;
2028		}
2029
2030		hash_lock = HDR_LOCK(ab);
2031		have_lock = MUTEX_HELD(hash_lock);
2032		if (have_lock || mutex_tryenter(hash_lock)) {
2033			ASSERT0(refcount_count(&ab->b_refcnt));
2034			ASSERT(ab->b_datacnt > 0);
2035			while (ab->b_buf) {
2036				arc_buf_t *buf = ab->b_buf;
2037				if (!mutex_tryenter(&buf->b_evict_lock)) {
2038					missed += 1;
2039					break;
2040				}
2041				if (buf->b_data) {
2042					bytes_evicted += ab->b_size;
2043					if (recycle && ab->b_type == type &&
2044					    ab->b_size == bytes &&
2045					    !HDR_L2_WRITING(ab)) {
2046						stolen = buf->b_data;
2047						recycle = FALSE;
2048					}
2049				}
2050				if (buf->b_efunc) {
2051					mutex_enter(&arc_eviction_mtx);
2052					arc_buf_destroy(buf,
2053					    buf->b_data == stolen, FALSE);
2054					ab->b_buf = buf->b_next;
2055					buf->b_hdr = &arc_eviction_hdr;
2056					buf->b_next = arc_eviction_list;
2057					arc_eviction_list = buf;
2058					mutex_exit(&arc_eviction_mtx);
2059					mutex_exit(&buf->b_evict_lock);
2060				} else {
2061					mutex_exit(&buf->b_evict_lock);
2062					arc_buf_destroy(buf,
2063					    buf->b_data == stolen, TRUE);
2064				}
2065			}
2066
2067			if (ab->b_l2hdr) {
2068				ARCSTAT_INCR(arcstat_evict_l2_cached,
2069				    ab->b_size);
2070			} else {
2071				if (l2arc_write_eligible(ab->b_spa, ab)) {
2072					ARCSTAT_INCR(arcstat_evict_l2_eligible,
2073					    ab->b_size);
2074				} else {
2075					ARCSTAT_INCR(
2076					    arcstat_evict_l2_ineligible,
2077					    ab->b_size);
2078				}
2079			}
2080
2081			if (ab->b_datacnt == 0) {
2082				arc_change_state(evicted_state, ab, hash_lock);
2083				ASSERT(HDR_IN_HASH_TABLE(ab));
2084				ab->b_flags |= ARC_IN_HASH_TABLE;
2085				ab->b_flags &= ~ARC_BUF_AVAILABLE;
2086				DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
2087			}
2088			if (!have_lock)
2089				mutex_exit(hash_lock);
2090			if (bytes >= 0 && bytes_evicted >= bytes)
2091				break;
2092			if (bytes_remaining > 0) {
2093				mutex_exit(evicted_lock);
2094				mutex_exit(lock);
2095				idx  = ((idx + 1) & (list_count - 1));
2096				lists++;
2097				goto evict_start;
2098			}
2099		} else {
2100			missed += 1;
2101		}
2102	}
2103
2104	mutex_exit(evicted_lock);
2105	mutex_exit(lock);
2106
2107	idx  = ((idx + 1) & (list_count - 1));
2108	lists++;
2109
2110	if (bytes_evicted < bytes) {
2111		if (lists < list_count)
2112			goto evict_start;
2113		else
2114			dprintf("only evicted %lld bytes from %x",
2115			    (longlong_t)bytes_evicted, state);
2116	}
2117	if (type == ARC_BUFC_METADATA)
2118		evict_metadata_offset = idx;
2119	else
2120		evict_data_offset = idx;
2121
2122	if (skipped)
2123		ARCSTAT_INCR(arcstat_evict_skip, skipped);
2124
2125	if (missed)
2126		ARCSTAT_INCR(arcstat_mutex_miss, missed);
2127
2128	/*
2129	 * Note: we have just evicted some data into the ghost state,
2130	 * potentially putting the ghost size over the desired size.  Rather
2131	 * that evicting from the ghost list in this hot code path, leave
2132	 * this chore to the arc_reclaim_thread().
2133	 */
2134
2135	if (stolen)
2136		ARCSTAT_BUMP(arcstat_stolen);
2137	return (stolen);
2138}
2139
2140/*
2141 * Remove buffers from list until we've removed the specified number of
2142 * bytes.  Destroy the buffers that are removed.
2143 */
2144static void
2145arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes)
2146{
2147	arc_buf_hdr_t *ab, *ab_prev;
2148	arc_buf_hdr_t marker = { 0 };
2149	list_t *list, *list_start;
2150	kmutex_t *hash_lock, *lock;
2151	uint64_t bytes_deleted = 0;
2152	uint64_t bufs_skipped = 0;
2153	int count = 0;
2154	static int evict_offset;
2155	int list_count, idx = evict_offset;
2156	int offset, lists = 0;
2157
2158	ASSERT(GHOST_STATE(state));
2159
2160	/*
2161	 * data lists come after metadata lists
2162	 */
2163	list_start = &state->arcs_lists[ARC_BUFC_NUMMETADATALISTS];
2164	list_count = ARC_BUFC_NUMDATALISTS;
2165	offset = ARC_BUFC_NUMMETADATALISTS;
2166
2167evict_start:
2168	list = &list_start[idx];
2169	lock = ARCS_LOCK(state, idx + offset);
2170
2171	mutex_enter(lock);
2172	for (ab = list_tail(list); ab; ab = ab_prev) {
2173		ab_prev = list_prev(list, ab);
2174		if (ab->b_type > ARC_BUFC_NUMTYPES)
2175			panic("invalid ab=%p", (void *)ab);
2176		if (spa && ab->b_spa != spa)
2177			continue;
2178
2179		/* ignore markers */
2180		if (ab->b_spa == 0)
2181			continue;
2182
2183		hash_lock = HDR_LOCK(ab);
2184		/* caller may be trying to modify this buffer, skip it */
2185		if (MUTEX_HELD(hash_lock))
2186			continue;
2187
2188		/*
2189		 * It may take a long time to evict all the bufs requested.
2190		 * To avoid blocking all arc activity, periodically drop
2191		 * the arcs_mtx and give other threads a chance to run
2192		 * before reacquiring the lock.
2193		 */
2194		if (count++ > arc_evict_iterations) {
2195			list_insert_after(list, ab, &marker);
2196			mutex_exit(lock);
2197			kpreempt(KPREEMPT_SYNC);
2198			mutex_enter(lock);
2199			ab_prev = list_prev(list, &marker);
2200			list_remove(list, &marker);
2201			count = 0;
2202			continue;
2203		}
2204		if (mutex_tryenter(hash_lock)) {
2205			ASSERT(!HDR_IO_IN_PROGRESS(ab));
2206			ASSERT(ab->b_buf == NULL);
2207			ARCSTAT_BUMP(arcstat_deleted);
2208			bytes_deleted += ab->b_size;
2209
2210			if (ab->b_l2hdr != NULL) {
2211				/*
2212				 * This buffer is cached on the 2nd Level ARC;
2213				 * don't destroy the header.
2214				 */
2215				arc_change_state(arc_l2c_only, ab, hash_lock);
2216				mutex_exit(hash_lock);
2217			} else {
2218				arc_change_state(arc_anon, ab, hash_lock);
2219				mutex_exit(hash_lock);
2220				arc_hdr_destroy(ab);
2221			}
2222
2223			DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
2224			if (bytes >= 0 && bytes_deleted >= bytes)
2225				break;
2226		} else if (bytes < 0) {
2227			/*
2228			 * Insert a list marker and then wait for the
2229			 * hash lock to become available. Once its
2230			 * available, restart from where we left off.
2231			 */
2232			list_insert_after(list, ab, &marker);
2233			mutex_exit(lock);
2234			mutex_enter(hash_lock);
2235			mutex_exit(hash_lock);
2236			mutex_enter(lock);
2237			ab_prev = list_prev(list, &marker);
2238			list_remove(list, &marker);
2239		} else {
2240			bufs_skipped += 1;
2241		}
2242
2243	}
2244	mutex_exit(lock);
2245	idx  = ((idx + 1) & (ARC_BUFC_NUMDATALISTS - 1));
2246	lists++;
2247
2248	if (lists < list_count)
2249		goto evict_start;
2250
2251	evict_offset = idx;
2252	if ((uintptr_t)list > (uintptr_t)&state->arcs_lists[ARC_BUFC_NUMMETADATALISTS] &&
2253	    (bytes < 0 || bytes_deleted < bytes)) {
2254		list_start = &state->arcs_lists[0];
2255		list_count = ARC_BUFC_NUMMETADATALISTS;
2256		offset = lists = 0;
2257		goto evict_start;
2258	}
2259
2260	if (bufs_skipped) {
2261		ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
2262		ASSERT(bytes >= 0);
2263	}
2264
2265	if (bytes_deleted < bytes)
2266		dprintf("only deleted %lld bytes from %p",
2267		    (longlong_t)bytes_deleted, state);
2268}
2269
2270static void
2271arc_adjust(void)
2272{
2273	int64_t adjustment, delta;
2274
2275	/*
2276	 * Adjust MRU size
2277	 */
2278
2279	adjustment = MIN((int64_t)(arc_size - arc_c),
2280	    (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used -
2281	    arc_p));
2282
2283	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
2284		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment);
2285		(void) arc_evict(arc_mru, 0, delta, FALSE, ARC_BUFC_DATA);
2286		adjustment -= delta;
2287	}
2288
2289	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2290		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
2291		(void) arc_evict(arc_mru, 0, delta, FALSE,
2292		    ARC_BUFC_METADATA);
2293	}
2294
2295	/*
2296	 * Adjust MFU size
2297	 */
2298
2299	adjustment = arc_size - arc_c;
2300
2301	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
2302		delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]);
2303		(void) arc_evict(arc_mfu, 0, delta, FALSE, ARC_BUFC_DATA);
2304		adjustment -= delta;
2305	}
2306
2307	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2308		int64_t delta = MIN(adjustment,
2309		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA]);
2310		(void) arc_evict(arc_mfu, 0, delta, FALSE,
2311		    ARC_BUFC_METADATA);
2312	}
2313
2314	/*
2315	 * Adjust ghost lists
2316	 */
2317
2318	adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
2319
2320	if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
2321		delta = MIN(arc_mru_ghost->arcs_size, adjustment);
2322		arc_evict_ghost(arc_mru_ghost, 0, delta);
2323	}
2324
2325	adjustment =
2326	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
2327
2328	if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
2329		delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
2330		arc_evict_ghost(arc_mfu_ghost, 0, delta);
2331	}
2332}
2333
2334static void
2335arc_do_user_evicts(void)
2336{
2337	static arc_buf_t *tmp_arc_eviction_list;
2338
2339	/*
2340	 * Move list over to avoid LOR
2341	 */
2342restart:
2343	mutex_enter(&arc_eviction_mtx);
2344	tmp_arc_eviction_list = arc_eviction_list;
2345	arc_eviction_list = NULL;
2346	mutex_exit(&arc_eviction_mtx);
2347
2348	while (tmp_arc_eviction_list != NULL) {
2349		arc_buf_t *buf = tmp_arc_eviction_list;
2350		tmp_arc_eviction_list = buf->b_next;
2351		mutex_enter(&buf->b_evict_lock);
2352		buf->b_hdr = NULL;
2353		mutex_exit(&buf->b_evict_lock);
2354
2355		if (buf->b_efunc != NULL)
2356			VERIFY(buf->b_efunc(buf) == 0);
2357
2358		buf->b_efunc = NULL;
2359		buf->b_private = NULL;
2360		kmem_cache_free(buf_cache, buf);
2361	}
2362
2363	if (arc_eviction_list != NULL)
2364		goto restart;
2365}
2366
2367/*
2368 * Flush all *evictable* data from the cache for the given spa.
2369 * NOTE: this will not touch "active" (i.e. referenced) data.
2370 */
2371void
2372arc_flush(spa_t *spa)
2373{
2374	uint64_t guid = 0;
2375
2376	if (spa)
2377		guid = spa_load_guid(spa);
2378
2379	while (arc_mru->arcs_lsize[ARC_BUFC_DATA]) {
2380		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
2381		if (spa)
2382			break;
2383	}
2384	while (arc_mru->arcs_lsize[ARC_BUFC_METADATA]) {
2385		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
2386		if (spa)
2387			break;
2388	}
2389	while (arc_mfu->arcs_lsize[ARC_BUFC_DATA]) {
2390		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
2391		if (spa)
2392			break;
2393	}
2394	while (arc_mfu->arcs_lsize[ARC_BUFC_METADATA]) {
2395		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
2396		if (spa)
2397			break;
2398	}
2399
2400	arc_evict_ghost(arc_mru_ghost, guid, -1);
2401	arc_evict_ghost(arc_mfu_ghost, guid, -1);
2402
2403	mutex_enter(&arc_reclaim_thr_lock);
2404	arc_do_user_evicts();
2405	mutex_exit(&arc_reclaim_thr_lock);
2406	ASSERT(spa || arc_eviction_list == NULL);
2407}
2408
2409void
2410arc_shrink(void)
2411{
2412	if (arc_c > arc_c_min) {
2413		uint64_t to_free;
2414
2415#ifdef _KERNEL
2416		to_free = arc_c >> arc_shrink_shift;
2417#else
2418		to_free = arc_c >> arc_shrink_shift;
2419#endif
2420		if (arc_c > arc_c_min + to_free)
2421			atomic_add_64(&arc_c, -to_free);
2422		else
2423			arc_c = arc_c_min;
2424
2425		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
2426		if (arc_c > arc_size)
2427			arc_c = MAX(arc_size, arc_c_min);
2428		if (arc_p > arc_c)
2429			arc_p = (arc_c >> 1);
2430		ASSERT(arc_c >= arc_c_min);
2431		ASSERT((int64_t)arc_p >= 0);
2432	}
2433
2434	if (arc_size > arc_c)
2435		arc_adjust();
2436}
2437
2438static int needfree = 0;
2439
2440static int
2441arc_reclaim_needed(void)
2442{
2443
2444#ifdef _KERNEL
2445
2446	if (needfree)
2447		return (1);
2448
2449	/*
2450	 * Cooperate with pagedaemon when it's time for it to scan
2451	 * and reclaim some pages.
2452	 */
2453	if (vm_paging_needed())
2454		return (1);
2455
2456#ifdef sun
2457	/*
2458	 * take 'desfree' extra pages, so we reclaim sooner, rather than later
2459	 */
2460	extra = desfree;
2461
2462	/*
2463	 * check that we're out of range of the pageout scanner.  It starts to
2464	 * schedule paging if freemem is less than lotsfree and needfree.
2465	 * lotsfree is the high-water mark for pageout, and needfree is the
2466	 * number of needed free pages.  We add extra pages here to make sure
2467	 * the scanner doesn't start up while we're freeing memory.
2468	 */
2469	if (freemem < lotsfree + needfree + extra)
2470		return (1);
2471
2472	/*
2473	 * check to make sure that swapfs has enough space so that anon
2474	 * reservations can still succeed. anon_resvmem() checks that the
2475	 * availrmem is greater than swapfs_minfree, and the number of reserved
2476	 * swap pages.  We also add a bit of extra here just to prevent
2477	 * circumstances from getting really dire.
2478	 */
2479	if (availrmem < swapfs_minfree + swapfs_reserve + extra)
2480		return (1);
2481
2482#if defined(__i386)
2483	/*
2484	 * If we're on an i386 platform, it's possible that we'll exhaust the
2485	 * kernel heap space before we ever run out of available physical
2486	 * memory.  Most checks of the size of the heap_area compare against
2487	 * tune.t_minarmem, which is the minimum available real memory that we
2488	 * can have in the system.  However, this is generally fixed at 25 pages
2489	 * which is so low that it's useless.  In this comparison, we seek to
2490	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
2491	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
2492	 * free)
2493	 */
2494	if (btop(vmem_size(heap_arena, VMEM_FREE)) <
2495	    (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2))
2496		return (1);
2497#endif
2498#else	/* !sun */
2499	if (kmem_used() > (kmem_size() * 3) / 4)
2500		return (1);
2501#endif	/* sun */
2502
2503#else
2504	if (spa_get_random(100) == 0)
2505		return (1);
2506#endif
2507	return (0);
2508}
2509
2510extern kmem_cache_t	*zio_buf_cache[];
2511extern kmem_cache_t	*zio_data_buf_cache[];
2512
2513static void
2514arc_kmem_reap_now(arc_reclaim_strategy_t strat)
2515{
2516	size_t			i;
2517	kmem_cache_t		*prev_cache = NULL;
2518	kmem_cache_t		*prev_data_cache = NULL;
2519
2520#ifdef _KERNEL
2521	if (arc_meta_used >= arc_meta_limit) {
2522		/*
2523		 * We are exceeding our meta-data cache limit.
2524		 * Purge some DNLC entries to release holds on meta-data.
2525		 */
2526		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
2527	}
2528#if defined(__i386)
2529	/*
2530	 * Reclaim unused memory from all kmem caches.
2531	 */
2532	kmem_reap();
2533#endif
2534#endif
2535
2536	/*
2537	 * An aggressive reclamation will shrink the cache size as well as
2538	 * reap free buffers from the arc kmem caches.
2539	 */
2540	if (strat == ARC_RECLAIM_AGGR)
2541		arc_shrink();
2542
2543	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
2544		if (zio_buf_cache[i] != prev_cache) {
2545			prev_cache = zio_buf_cache[i];
2546			kmem_cache_reap_now(zio_buf_cache[i]);
2547		}
2548		if (zio_data_buf_cache[i] != prev_data_cache) {
2549			prev_data_cache = zio_data_buf_cache[i];
2550			kmem_cache_reap_now(zio_data_buf_cache[i]);
2551		}
2552	}
2553	kmem_cache_reap_now(buf_cache);
2554	kmem_cache_reap_now(hdr_cache);
2555}
2556
2557static void
2558arc_reclaim_thread(void *dummy __unused)
2559{
2560	clock_t			growtime = 0;
2561	arc_reclaim_strategy_t	last_reclaim = ARC_RECLAIM_CONS;
2562	callb_cpr_t		cpr;
2563
2564	CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
2565
2566	mutex_enter(&arc_reclaim_thr_lock);
2567	while (arc_thread_exit == 0) {
2568		if (arc_reclaim_needed()) {
2569
2570			if (arc_no_grow) {
2571				if (last_reclaim == ARC_RECLAIM_CONS) {
2572					last_reclaim = ARC_RECLAIM_AGGR;
2573				} else {
2574					last_reclaim = ARC_RECLAIM_CONS;
2575				}
2576			} else {
2577				arc_no_grow = TRUE;
2578				last_reclaim = ARC_RECLAIM_AGGR;
2579				membar_producer();
2580			}
2581
2582			/* reset the growth delay for every reclaim */
2583			growtime = ddi_get_lbolt() + (arc_grow_retry * hz);
2584
2585			if (needfree && last_reclaim == ARC_RECLAIM_CONS) {
2586				/*
2587				 * If needfree is TRUE our vm_lowmem hook
2588				 * was called and in that case we must free some
2589				 * memory, so switch to aggressive mode.
2590				 */
2591				arc_no_grow = TRUE;
2592				last_reclaim = ARC_RECLAIM_AGGR;
2593			}
2594			arc_kmem_reap_now(last_reclaim);
2595			arc_warm = B_TRUE;
2596
2597		} else if (arc_no_grow && ddi_get_lbolt() >= growtime) {
2598			arc_no_grow = FALSE;
2599		}
2600
2601		arc_adjust();
2602
2603		if (arc_eviction_list != NULL)
2604			arc_do_user_evicts();
2605
2606#ifdef _KERNEL
2607		if (needfree) {
2608			needfree = 0;
2609			wakeup(&needfree);
2610		}
2611#endif
2612
2613		/* block until needed, or one second, whichever is shorter */
2614		CALLB_CPR_SAFE_BEGIN(&cpr);
2615		(void) cv_timedwait(&arc_reclaim_thr_cv,
2616		    &arc_reclaim_thr_lock, hz);
2617		CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
2618	}
2619
2620	arc_thread_exit = 0;
2621	cv_broadcast(&arc_reclaim_thr_cv);
2622	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_thr_lock */
2623	thread_exit();
2624}
2625
2626/*
2627 * Adapt arc info given the number of bytes we are trying to add and
2628 * the state that we are comming from.  This function is only called
2629 * when we are adding new content to the cache.
2630 */
2631static void
2632arc_adapt(int bytes, arc_state_t *state)
2633{
2634	int mult;
2635	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
2636
2637	if (state == arc_l2c_only)
2638		return;
2639
2640	ASSERT(bytes > 0);
2641	/*
2642	 * Adapt the target size of the MRU list:
2643	 *	- if we just hit in the MRU ghost list, then increase
2644	 *	  the target size of the MRU list.
2645	 *	- if we just hit in the MFU ghost list, then increase
2646	 *	  the target size of the MFU list by decreasing the
2647	 *	  target size of the MRU list.
2648	 */
2649	if (state == arc_mru_ghost) {
2650		mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
2651		    1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
2652		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
2653
2654		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
2655	} else if (state == arc_mfu_ghost) {
2656		uint64_t delta;
2657
2658		mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
2659		    1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
2660		mult = MIN(mult, 10);
2661
2662		delta = MIN(bytes * mult, arc_p);
2663		arc_p = MAX(arc_p_min, arc_p - delta);
2664	}
2665	ASSERT((int64_t)arc_p >= 0);
2666
2667	if (arc_reclaim_needed()) {
2668		cv_signal(&arc_reclaim_thr_cv);
2669		return;
2670	}
2671
2672	if (arc_no_grow)
2673		return;
2674
2675	if (arc_c >= arc_c_max)
2676		return;
2677
2678	/*
2679	 * If we're within (2 * maxblocksize) bytes of the target
2680	 * cache size, increment the target cache size
2681	 */
2682	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
2683		atomic_add_64(&arc_c, (int64_t)bytes);
2684		if (arc_c > arc_c_max)
2685			arc_c = arc_c_max;
2686		else if (state == arc_anon)
2687			atomic_add_64(&arc_p, (int64_t)bytes);
2688		if (arc_p > arc_c)
2689			arc_p = arc_c;
2690	}
2691	ASSERT((int64_t)arc_p >= 0);
2692}
2693
2694/*
2695 * Check if the cache has reached its limits and eviction is required
2696 * prior to insert.
2697 */
2698static int
2699arc_evict_needed(arc_buf_contents_t type)
2700{
2701	if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
2702		return (1);
2703
2704#ifdef sun
2705#ifdef _KERNEL
2706	/*
2707	 * If zio data pages are being allocated out of a separate heap segment,
2708	 * then enforce that the size of available vmem for this area remains
2709	 * above about 1/32nd free.
2710	 */
2711	if (type == ARC_BUFC_DATA && zio_arena != NULL &&
2712	    vmem_size(zio_arena, VMEM_FREE) <
2713	    (vmem_size(zio_arena, VMEM_ALLOC) >> 5))
2714		return (1);
2715#endif
2716#endif	/* sun */
2717
2718	if (arc_reclaim_needed())
2719		return (1);
2720
2721	return (arc_size > arc_c);
2722}
2723
2724/*
2725 * The buffer, supplied as the first argument, needs a data block.
2726 * So, if we are at cache max, determine which cache should be victimized.
2727 * We have the following cases:
2728 *
2729 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2730 * In this situation if we're out of space, but the resident size of the MFU is
2731 * under the limit, victimize the MFU cache to satisfy this insertion request.
2732 *
2733 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2734 * Here, we've used up all of the available space for the MRU, so we need to
2735 * evict from our own cache instead.  Evict from the set of resident MRU
2736 * entries.
2737 *
2738 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2739 * c minus p represents the MFU space in the cache, since p is the size of the
2740 * cache that is dedicated to the MRU.  In this situation there's still space on
2741 * the MFU side, so the MRU side needs to be victimized.
2742 *
2743 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2744 * MFU's resident set is consuming more space than it has been allotted.  In
2745 * this situation, we must victimize our own cache, the MFU, for this insertion.
2746 */
2747static void
2748arc_get_data_buf(arc_buf_t *buf)
2749{
2750	arc_state_t		*state = buf->b_hdr->b_state;
2751	uint64_t		size = buf->b_hdr->b_size;
2752	arc_buf_contents_t	type = buf->b_hdr->b_type;
2753
2754	arc_adapt(size, state);
2755
2756	/*
2757	 * We have not yet reached cache maximum size,
2758	 * just allocate a new buffer.
2759	 */
2760	if (!arc_evict_needed(type)) {
2761		if (type == ARC_BUFC_METADATA) {
2762			buf->b_data = zio_buf_alloc(size);
2763			arc_space_consume(size, ARC_SPACE_DATA);
2764		} else {
2765			ASSERT(type == ARC_BUFC_DATA);
2766			buf->b_data = zio_data_buf_alloc(size);
2767			ARCSTAT_INCR(arcstat_data_size, size);
2768			atomic_add_64(&arc_size, size);
2769		}
2770		goto out;
2771	}
2772
2773	/*
2774	 * If we are prefetching from the mfu ghost list, this buffer
2775	 * will end up on the mru list; so steal space from there.
2776	 */
2777	if (state == arc_mfu_ghost)
2778		state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2779	else if (state == arc_mru_ghost)
2780		state = arc_mru;
2781
2782	if (state == arc_mru || state == arc_anon) {
2783		uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
2784		state = (arc_mfu->arcs_lsize[type] >= size &&
2785		    arc_p > mru_used) ? arc_mfu : arc_mru;
2786	} else {
2787		/* MFU cases */
2788		uint64_t mfu_space = arc_c - arc_p;
2789		state =  (arc_mru->arcs_lsize[type] >= size &&
2790		    mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2791	}
2792	if ((buf->b_data = arc_evict(state, 0, size, TRUE, type)) == NULL) {
2793		if (type == ARC_BUFC_METADATA) {
2794			buf->b_data = zio_buf_alloc(size);
2795			arc_space_consume(size, ARC_SPACE_DATA);
2796		} else {
2797			ASSERT(type == ARC_BUFC_DATA);
2798			buf->b_data = zio_data_buf_alloc(size);
2799			ARCSTAT_INCR(arcstat_data_size, size);
2800			atomic_add_64(&arc_size, size);
2801		}
2802		ARCSTAT_BUMP(arcstat_recycle_miss);
2803	}
2804	ASSERT(buf->b_data != NULL);
2805out:
2806	/*
2807	 * Update the state size.  Note that ghost states have a
2808	 * "ghost size" and so don't need to be updated.
2809	 */
2810	if (!GHOST_STATE(buf->b_hdr->b_state)) {
2811		arc_buf_hdr_t *hdr = buf->b_hdr;
2812
2813		atomic_add_64(&hdr->b_state->arcs_size, size);
2814		if (list_link_active(&hdr->b_arc_node)) {
2815			ASSERT(refcount_is_zero(&hdr->b_refcnt));
2816			atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2817		}
2818		/*
2819		 * If we are growing the cache, and we are adding anonymous
2820		 * data, and we have outgrown arc_p, update arc_p
2821		 */
2822		if (arc_size < arc_c && hdr->b_state == arc_anon &&
2823		    arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2824			arc_p = MIN(arc_c, arc_p + size);
2825	}
2826	ARCSTAT_BUMP(arcstat_allocated);
2827}
2828
2829/*
2830 * This routine is called whenever a buffer is accessed.
2831 * NOTE: the hash lock is dropped in this function.
2832 */
2833static void
2834arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2835{
2836	clock_t now;
2837
2838	ASSERT(MUTEX_HELD(hash_lock));
2839
2840	if (buf->b_state == arc_anon) {
2841		/*
2842		 * This buffer is not in the cache, and does not
2843		 * appear in our "ghost" list.  Add the new buffer
2844		 * to the MRU state.
2845		 */
2846
2847		ASSERT(buf->b_arc_access == 0);
2848		buf->b_arc_access = ddi_get_lbolt();
2849		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2850		arc_change_state(arc_mru, buf, hash_lock);
2851
2852	} else if (buf->b_state == arc_mru) {
2853		now = ddi_get_lbolt();
2854
2855		/*
2856		 * If this buffer is here because of a prefetch, then either:
2857		 * - clear the flag if this is a "referencing" read
2858		 *   (any subsequent access will bump this into the MFU state).
2859		 * or
2860		 * - move the buffer to the head of the list if this is
2861		 *   another prefetch (to make it less likely to be evicted).
2862		 */
2863		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2864			if (refcount_count(&buf->b_refcnt) == 0) {
2865				ASSERT(list_link_active(&buf->b_arc_node));
2866			} else {
2867				buf->b_flags &= ~ARC_PREFETCH;
2868				ARCSTAT_BUMP(arcstat_mru_hits);
2869			}
2870			buf->b_arc_access = now;
2871			return;
2872		}
2873
2874		/*
2875		 * This buffer has been "accessed" only once so far,
2876		 * but it is still in the cache. Move it to the MFU
2877		 * state.
2878		 */
2879		if (now > buf->b_arc_access + ARC_MINTIME) {
2880			/*
2881			 * More than 125ms have passed since we
2882			 * instantiated this buffer.  Move it to the
2883			 * most frequently used state.
2884			 */
2885			buf->b_arc_access = now;
2886			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2887			arc_change_state(arc_mfu, buf, hash_lock);
2888		}
2889		ARCSTAT_BUMP(arcstat_mru_hits);
2890	} else if (buf->b_state == arc_mru_ghost) {
2891		arc_state_t	*new_state;
2892		/*
2893		 * This buffer has been "accessed" recently, but
2894		 * was evicted from the cache.  Move it to the
2895		 * MFU state.
2896		 */
2897
2898		if (buf->b_flags & ARC_PREFETCH) {
2899			new_state = arc_mru;
2900			if (refcount_count(&buf->b_refcnt) > 0)
2901				buf->b_flags &= ~ARC_PREFETCH;
2902			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2903		} else {
2904			new_state = arc_mfu;
2905			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2906		}
2907
2908		buf->b_arc_access = ddi_get_lbolt();
2909		arc_change_state(new_state, buf, hash_lock);
2910
2911		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2912	} else if (buf->b_state == arc_mfu) {
2913		/*
2914		 * This buffer has been accessed more than once and is
2915		 * still in the cache.  Keep it in the MFU state.
2916		 *
2917		 * NOTE: an add_reference() that occurred when we did
2918		 * the arc_read() will have kicked this off the list.
2919		 * If it was a prefetch, we will explicitly move it to
2920		 * the head of the list now.
2921		 */
2922		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2923			ASSERT(refcount_count(&buf->b_refcnt) == 0);
2924			ASSERT(list_link_active(&buf->b_arc_node));
2925		}
2926		ARCSTAT_BUMP(arcstat_mfu_hits);
2927		buf->b_arc_access = ddi_get_lbolt();
2928	} else if (buf->b_state == arc_mfu_ghost) {
2929		arc_state_t	*new_state = arc_mfu;
2930		/*
2931		 * This buffer has been accessed more than once but has
2932		 * been evicted from the cache.  Move it back to the
2933		 * MFU state.
2934		 */
2935
2936		if (buf->b_flags & ARC_PREFETCH) {
2937			/*
2938			 * This is a prefetch access...
2939			 * move this block back to the MRU state.
2940			 */
2941			ASSERT0(refcount_count(&buf->b_refcnt));
2942			new_state = arc_mru;
2943		}
2944
2945		buf->b_arc_access = ddi_get_lbolt();
2946		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2947		arc_change_state(new_state, buf, hash_lock);
2948
2949		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2950	} else if (buf->b_state == arc_l2c_only) {
2951		/*
2952		 * This buffer is on the 2nd Level ARC.
2953		 */
2954
2955		buf->b_arc_access = ddi_get_lbolt();
2956		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2957		arc_change_state(arc_mfu, buf, hash_lock);
2958	} else {
2959		ASSERT(!"invalid arc state");
2960	}
2961}
2962
2963/* a generic arc_done_func_t which you can use */
2964/* ARGSUSED */
2965void
2966arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2967{
2968	if (zio == NULL || zio->io_error == 0)
2969		bcopy(buf->b_data, arg, buf->b_hdr->b_size);
2970	VERIFY(arc_buf_remove_ref(buf, arg));
2971}
2972
2973/* a generic arc_done_func_t */
2974void
2975arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2976{
2977	arc_buf_t **bufp = arg;
2978	if (zio && zio->io_error) {
2979		VERIFY(arc_buf_remove_ref(buf, arg));
2980		*bufp = NULL;
2981	} else {
2982		*bufp = buf;
2983		ASSERT(buf->b_data);
2984	}
2985}
2986
2987static void
2988arc_read_done(zio_t *zio)
2989{
2990	arc_buf_hdr_t	*hdr;
2991	arc_buf_t	*buf;
2992	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
2993	kmutex_t	*hash_lock = NULL;
2994	arc_callback_t	*callback_list, *acb;
2995	int		freeable = FALSE;
2996
2997	buf = zio->io_private;
2998	hdr = buf->b_hdr;
2999
3000	/*
3001	 * The hdr was inserted into hash-table and removed from lists
3002	 * prior to starting I/O.  We should find this header, since
3003	 * it's in the hash table, and it should be legit since it's
3004	 * not possible to evict it during the I/O.  The only possible
3005	 * reason for it not to be found is if we were freed during the
3006	 * read.
3007	 */
3008	if (HDR_IN_HASH_TABLE(hdr)) {
3009		ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
3010		ASSERT3U(hdr->b_dva.dva_word[0], ==,
3011		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
3012		ASSERT3U(hdr->b_dva.dva_word[1], ==,
3013		    BP_IDENTITY(zio->io_bp)->dva_word[1]);
3014
3015		arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
3016		    &hash_lock);
3017
3018		ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) &&
3019		    hash_lock == NULL) ||
3020		    (found == hdr &&
3021		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
3022		    (found == hdr && HDR_L2_READING(hdr)));
3023	}
3024
3025	hdr->b_flags &= ~ARC_L2_EVICTED;
3026	if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
3027		hdr->b_flags &= ~ARC_L2CACHE;
3028
3029	/* byteswap if necessary */
3030	callback_list = hdr->b_acb;
3031	ASSERT(callback_list != NULL);
3032	if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
3033		dmu_object_byteswap_t bswap =
3034		    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
3035		arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
3036		    byteswap_uint64_array :
3037		    dmu_ot_byteswap[bswap].ob_func;
3038		func(buf->b_data, hdr->b_size);
3039	}
3040
3041	arc_cksum_compute(buf, B_FALSE);
3042#ifdef illumos
3043	arc_buf_watch(buf);
3044#endif /* illumos */
3045
3046	if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) {
3047		/*
3048		 * Only call arc_access on anonymous buffers.  This is because
3049		 * if we've issued an I/O for an evicted buffer, we've already
3050		 * called arc_access (to prevent any simultaneous readers from
3051		 * getting confused).
3052		 */
3053		arc_access(hdr, hash_lock);
3054	}
3055
3056	/* create copies of the data buffer for the callers */
3057	abuf = buf;
3058	for (acb = callback_list; acb; acb = acb->acb_next) {
3059		if (acb->acb_done) {
3060			if (abuf == NULL) {
3061				ARCSTAT_BUMP(arcstat_duplicate_reads);
3062				abuf = arc_buf_clone(buf);
3063			}
3064			acb->acb_buf = abuf;
3065			abuf = NULL;
3066		}
3067	}
3068	hdr->b_acb = NULL;
3069	hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3070	ASSERT(!HDR_BUF_AVAILABLE(hdr));
3071	if (abuf == buf) {
3072		ASSERT(buf->b_efunc == NULL);
3073		ASSERT(hdr->b_datacnt == 1);
3074		hdr->b_flags |= ARC_BUF_AVAILABLE;
3075	}
3076
3077	ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
3078
3079	if (zio->io_error != 0) {
3080		hdr->b_flags |= ARC_IO_ERROR;
3081		if (hdr->b_state != arc_anon)
3082			arc_change_state(arc_anon, hdr, hash_lock);
3083		if (HDR_IN_HASH_TABLE(hdr))
3084			buf_hash_remove(hdr);
3085		freeable = refcount_is_zero(&hdr->b_refcnt);
3086	}
3087
3088	/*
3089	 * Broadcast before we drop the hash_lock to avoid the possibility
3090	 * that the hdr (and hence the cv) might be freed before we get to
3091	 * the cv_broadcast().
3092	 */
3093	cv_broadcast(&hdr->b_cv);
3094
3095	if (hash_lock) {
3096		mutex_exit(hash_lock);
3097	} else {
3098		/*
3099		 * This block was freed while we waited for the read to
3100		 * complete.  It has been removed from the hash table and
3101		 * moved to the anonymous state (so that it won't show up
3102		 * in the cache).
3103		 */
3104		ASSERT3P(hdr->b_state, ==, arc_anon);
3105		freeable = refcount_is_zero(&hdr->b_refcnt);
3106	}
3107
3108	/* execute each callback and free its structure */
3109	while ((acb = callback_list) != NULL) {
3110		if (acb->acb_done)
3111			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
3112
3113		if (acb->acb_zio_dummy != NULL) {
3114			acb->acb_zio_dummy->io_error = zio->io_error;
3115			zio_nowait(acb->acb_zio_dummy);
3116		}
3117
3118		callback_list = acb->acb_next;
3119		kmem_free(acb, sizeof (arc_callback_t));
3120	}
3121
3122	if (freeable)
3123		arc_hdr_destroy(hdr);
3124}
3125
3126/*
3127 * "Read" the block block at the specified DVA (in bp) via the
3128 * cache.  If the block is found in the cache, invoke the provided
3129 * callback immediately and return.  Note that the `zio' parameter
3130 * in the callback will be NULL in this case, since no IO was
3131 * required.  If the block is not in the cache pass the read request
3132 * on to the spa with a substitute callback function, so that the
3133 * requested block will be added to the cache.
3134 *
3135 * If a read request arrives for a block that has a read in-progress,
3136 * either wait for the in-progress read to complete (and return the
3137 * results); or, if this is a read with a "done" func, add a record
3138 * to the read to invoke the "done" func when the read completes,
3139 * and return; or just return.
3140 *
3141 * arc_read_done() will invoke all the requested "done" functions
3142 * for readers of this block.
3143 */
3144int
3145arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
3146    void *private, zio_priority_t priority, int zio_flags, uint32_t *arc_flags,
3147    const zbookmark_t *zb)
3148{
3149	arc_buf_hdr_t *hdr = NULL;
3150	arc_buf_t *buf = NULL;
3151	kmutex_t *hash_lock = NULL;
3152	zio_t *rzio;
3153	uint64_t guid = spa_load_guid(spa);
3154
3155	ASSERT(!BP_IS_EMBEDDED(bp) ||
3156	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
3157
3158top:
3159	if (!BP_IS_EMBEDDED(bp)) {
3160		/*
3161		 * Embedded BP's have no DVA and require no I/O to "read".
3162		 * Create an anonymous arc buf to back it.
3163		 */
3164		hdr = buf_hash_find(guid, bp, &hash_lock);
3165	}
3166
3167	if (hdr != NULL && hdr->b_datacnt > 0) {
3168
3169		*arc_flags |= ARC_CACHED;
3170
3171		if (HDR_IO_IN_PROGRESS(hdr)) {
3172
3173			if (*arc_flags & ARC_WAIT) {
3174				cv_wait(&hdr->b_cv, hash_lock);
3175				mutex_exit(hash_lock);
3176				goto top;
3177			}
3178			ASSERT(*arc_flags & ARC_NOWAIT);
3179
3180			if (done) {
3181				arc_callback_t	*acb = NULL;
3182
3183				acb = kmem_zalloc(sizeof (arc_callback_t),
3184				    KM_SLEEP);
3185				acb->acb_done = done;
3186				acb->acb_private = private;
3187				if (pio != NULL)
3188					acb->acb_zio_dummy = zio_null(pio,
3189					    spa, NULL, NULL, NULL, zio_flags);
3190
3191				ASSERT(acb->acb_done != NULL);
3192				acb->acb_next = hdr->b_acb;
3193				hdr->b_acb = acb;
3194				add_reference(hdr, hash_lock, private);
3195				mutex_exit(hash_lock);
3196				return (0);
3197			}
3198			mutex_exit(hash_lock);
3199			return (0);
3200		}
3201
3202		ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
3203
3204		if (done) {
3205			add_reference(hdr, hash_lock, private);
3206			/*
3207			 * If this block is already in use, create a new
3208			 * copy of the data so that we will be guaranteed
3209			 * that arc_release() will always succeed.
3210			 */
3211			buf = hdr->b_buf;
3212			ASSERT(buf);
3213			ASSERT(buf->b_data);
3214			if (HDR_BUF_AVAILABLE(hdr)) {
3215				ASSERT(buf->b_efunc == NULL);
3216				hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3217			} else {
3218				buf = arc_buf_clone(buf);
3219			}
3220
3221		} else if (*arc_flags & ARC_PREFETCH &&
3222		    refcount_count(&hdr->b_refcnt) == 0) {
3223			hdr->b_flags |= ARC_PREFETCH;
3224		}
3225		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
3226		arc_access(hdr, hash_lock);
3227		if (*arc_flags & ARC_L2CACHE)
3228			hdr->b_flags |= ARC_L2CACHE;
3229		if (*arc_flags & ARC_L2COMPRESS)
3230			hdr->b_flags |= ARC_L2COMPRESS;
3231		mutex_exit(hash_lock);
3232		ARCSTAT_BUMP(arcstat_hits);
3233		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
3234		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
3235		    data, metadata, hits);
3236
3237		if (done)
3238			done(NULL, buf, private);
3239	} else {
3240		uint64_t size = BP_GET_LSIZE(bp);
3241		arc_callback_t *acb;
3242		vdev_t *vd = NULL;
3243		uint64_t addr = 0;
3244		boolean_t devw = B_FALSE;
3245		enum zio_compress b_compress = ZIO_COMPRESS_OFF;
3246		uint64_t b_asize = 0;
3247
3248		if (hdr == NULL) {
3249			/* this block is not in the cache */
3250			arc_buf_hdr_t *exists = NULL;
3251			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
3252			buf = arc_buf_alloc(spa, size, private, type);
3253			hdr = buf->b_hdr;
3254			if (!BP_IS_EMBEDDED(bp)) {
3255				hdr->b_dva = *BP_IDENTITY(bp);
3256				hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
3257				hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
3258				exists = buf_hash_insert(hdr, &hash_lock);
3259			}
3260			if (exists != NULL) {
3261				/* somebody beat us to the hash insert */
3262				mutex_exit(hash_lock);
3263				buf_discard_identity(hdr);
3264				(void) arc_buf_remove_ref(buf, private);
3265				goto top; /* restart the IO request */
3266			}
3267			/* if this is a prefetch, we don't have a reference */
3268			if (*arc_flags & ARC_PREFETCH) {
3269				(void) remove_reference(hdr, hash_lock,
3270				    private);
3271				hdr->b_flags |= ARC_PREFETCH;
3272			}
3273			if (*arc_flags & ARC_L2CACHE)
3274				hdr->b_flags |= ARC_L2CACHE;
3275			if (*arc_flags & ARC_L2COMPRESS)
3276				hdr->b_flags |= ARC_L2COMPRESS;
3277			if (BP_GET_LEVEL(bp) > 0)
3278				hdr->b_flags |= ARC_INDIRECT;
3279		} else {
3280			/* this block is in the ghost cache */
3281			ASSERT(GHOST_STATE(hdr->b_state));
3282			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3283			ASSERT0(refcount_count(&hdr->b_refcnt));
3284			ASSERT(hdr->b_buf == NULL);
3285
3286			/* if this is a prefetch, we don't have a reference */
3287			if (*arc_flags & ARC_PREFETCH)
3288				hdr->b_flags |= ARC_PREFETCH;
3289			else
3290				add_reference(hdr, hash_lock, private);
3291			if (*arc_flags & ARC_L2CACHE)
3292				hdr->b_flags |= ARC_L2CACHE;
3293			if (*arc_flags & ARC_L2COMPRESS)
3294				hdr->b_flags |= ARC_L2COMPRESS;
3295			buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
3296			buf->b_hdr = hdr;
3297			buf->b_data = NULL;
3298			buf->b_efunc = NULL;
3299			buf->b_private = NULL;
3300			buf->b_next = NULL;
3301			hdr->b_buf = buf;
3302			ASSERT(hdr->b_datacnt == 0);
3303			hdr->b_datacnt = 1;
3304			arc_get_data_buf(buf);
3305			arc_access(hdr, hash_lock);
3306		}
3307
3308		ASSERT(!GHOST_STATE(hdr->b_state));
3309
3310		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
3311		acb->acb_done = done;
3312		acb->acb_private = private;
3313
3314		ASSERT(hdr->b_acb == NULL);
3315		hdr->b_acb = acb;
3316		hdr->b_flags |= ARC_IO_IN_PROGRESS;
3317
3318		if (hdr->b_l2hdr != NULL &&
3319		    (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
3320			devw = hdr->b_l2hdr->b_dev->l2ad_writing;
3321			addr = hdr->b_l2hdr->b_daddr;
3322			b_compress = hdr->b_l2hdr->b_compress;
3323			b_asize = hdr->b_l2hdr->b_asize;
3324			/*
3325			 * Lock out device removal.
3326			 */
3327			if (vdev_is_dead(vd) ||
3328			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
3329				vd = NULL;
3330		}
3331
3332		if (hash_lock != NULL)
3333			mutex_exit(hash_lock);
3334
3335		/*
3336		 * At this point, we have a level 1 cache miss.  Try again in
3337		 * L2ARC if possible.
3338		 */
3339		ASSERT3U(hdr->b_size, ==, size);
3340		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
3341		    uint64_t, size, zbookmark_t *, zb);
3342		ARCSTAT_BUMP(arcstat_misses);
3343		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
3344		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
3345		    data, metadata, misses);
3346#ifdef _KERNEL
3347		curthread->td_ru.ru_inblock++;
3348#endif
3349
3350		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
3351			/*
3352			 * Read from the L2ARC if the following are true:
3353			 * 1. The L2ARC vdev was previously cached.
3354			 * 2. This buffer still has L2ARC metadata.
3355			 * 3. This buffer isn't currently writing to the L2ARC.
3356			 * 4. The L2ARC entry wasn't evicted, which may
3357			 *    also have invalidated the vdev.
3358			 * 5. This isn't prefetch and l2arc_noprefetch is set.
3359			 */
3360			if (hdr->b_l2hdr != NULL &&
3361			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
3362			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
3363				l2arc_read_callback_t *cb;
3364
3365				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
3366				ARCSTAT_BUMP(arcstat_l2_hits);
3367
3368				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
3369				    KM_SLEEP);
3370				cb->l2rcb_buf = buf;
3371				cb->l2rcb_spa = spa;
3372				cb->l2rcb_bp = *bp;
3373				cb->l2rcb_zb = *zb;
3374				cb->l2rcb_flags = zio_flags;
3375				cb->l2rcb_compress = b_compress;
3376
3377				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
3378				    addr + size < vd->vdev_psize -
3379				    VDEV_LABEL_END_SIZE);
3380
3381				/*
3382				 * l2arc read.  The SCL_L2ARC lock will be
3383				 * released by l2arc_read_done().
3384				 * Issue a null zio if the underlying buffer
3385				 * was squashed to zero size by compression.
3386				 */
3387				if (b_compress == ZIO_COMPRESS_EMPTY) {
3388					rzio = zio_null(pio, spa, vd,
3389					    l2arc_read_done, cb,
3390					    zio_flags | ZIO_FLAG_DONT_CACHE |
3391					    ZIO_FLAG_CANFAIL |
3392					    ZIO_FLAG_DONT_PROPAGATE |
3393					    ZIO_FLAG_DONT_RETRY);
3394				} else {
3395					rzio = zio_read_phys(pio, vd, addr,
3396					    b_asize, buf->b_data,
3397					    ZIO_CHECKSUM_OFF,
3398					    l2arc_read_done, cb, priority,
3399					    zio_flags | ZIO_FLAG_DONT_CACHE |
3400					    ZIO_FLAG_CANFAIL |
3401					    ZIO_FLAG_DONT_PROPAGATE |
3402					    ZIO_FLAG_DONT_RETRY, B_FALSE);
3403				}
3404				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
3405				    zio_t *, rzio);
3406				ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize);
3407
3408				if (*arc_flags & ARC_NOWAIT) {
3409					zio_nowait(rzio);
3410					return (0);
3411				}
3412
3413				ASSERT(*arc_flags & ARC_WAIT);
3414				if (zio_wait(rzio) == 0)
3415					return (0);
3416
3417				/* l2arc read error; goto zio_read() */
3418			} else {
3419				DTRACE_PROBE1(l2arc__miss,
3420				    arc_buf_hdr_t *, hdr);
3421				ARCSTAT_BUMP(arcstat_l2_misses);
3422				if (HDR_L2_WRITING(hdr))
3423					ARCSTAT_BUMP(arcstat_l2_rw_clash);
3424				spa_config_exit(spa, SCL_L2ARC, vd);
3425			}
3426		} else {
3427			if (vd != NULL)
3428				spa_config_exit(spa, SCL_L2ARC, vd);
3429			if (l2arc_ndev != 0) {
3430				DTRACE_PROBE1(l2arc__miss,
3431				    arc_buf_hdr_t *, hdr);
3432				ARCSTAT_BUMP(arcstat_l2_misses);
3433			}
3434		}
3435
3436		rzio = zio_read(pio, spa, bp, buf->b_data, size,
3437		    arc_read_done, buf, priority, zio_flags, zb);
3438
3439		if (*arc_flags & ARC_WAIT)
3440			return (zio_wait(rzio));
3441
3442		ASSERT(*arc_flags & ARC_NOWAIT);
3443		zio_nowait(rzio);
3444	}
3445	return (0);
3446}
3447
3448void
3449arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
3450{
3451	ASSERT(buf->b_hdr != NULL);
3452	ASSERT(buf->b_hdr->b_state != arc_anon);
3453	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
3454	ASSERT(buf->b_efunc == NULL);
3455	ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
3456
3457	buf->b_efunc = func;
3458	buf->b_private = private;
3459}
3460
3461/*
3462 * Notify the arc that a block was freed, and thus will never be used again.
3463 */
3464void
3465arc_freed(spa_t *spa, const blkptr_t *bp)
3466{
3467	arc_buf_hdr_t *hdr;
3468	kmutex_t *hash_lock;
3469	uint64_t guid = spa_load_guid(spa);
3470
3471	ASSERT(!BP_IS_EMBEDDED(bp));
3472
3473	hdr = buf_hash_find(guid, bp, &hash_lock);
3474	if (hdr == NULL)
3475		return;
3476	if (HDR_BUF_AVAILABLE(hdr)) {
3477		arc_buf_t *buf = hdr->b_buf;
3478		add_reference(hdr, hash_lock, FTAG);
3479		hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3480		mutex_exit(hash_lock);
3481
3482		arc_release(buf, FTAG);
3483		(void) arc_buf_remove_ref(buf, FTAG);
3484	} else {
3485		mutex_exit(hash_lock);
3486	}
3487
3488}
3489
3490/*
3491 * This is used by the DMU to let the ARC know that a buffer is
3492 * being evicted, so the ARC should clean up.  If this arc buf
3493 * is not yet in the evicted state, it will be put there.
3494 */
3495int
3496arc_buf_evict(arc_buf_t *buf)
3497{
3498	arc_buf_hdr_t *hdr;
3499	kmutex_t *hash_lock;
3500	arc_buf_t **bufp;
3501	list_t *list, *evicted_list;
3502	kmutex_t *lock, *evicted_lock;
3503
3504	mutex_enter(&buf->b_evict_lock);
3505	hdr = buf->b_hdr;
3506	if (hdr == NULL) {
3507		/*
3508		 * We are in arc_do_user_evicts().
3509		 */
3510		ASSERT(buf->b_data == NULL);
3511		mutex_exit(&buf->b_evict_lock);
3512		return (0);
3513	} else if (buf->b_data == NULL) {
3514		arc_buf_t copy = *buf; /* structure assignment */
3515		/*
3516		 * We are on the eviction list; process this buffer now
3517		 * but let arc_do_user_evicts() do the reaping.
3518		 */
3519		buf->b_efunc = NULL;
3520		mutex_exit(&buf->b_evict_lock);
3521		VERIFY(copy.b_efunc(&copy) == 0);
3522		return (1);
3523	}
3524	hash_lock = HDR_LOCK(hdr);
3525	mutex_enter(hash_lock);
3526	hdr = buf->b_hdr;
3527	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3528
3529	ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
3530	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
3531
3532	/*
3533	 * Pull this buffer off of the hdr
3534	 */
3535	bufp = &hdr->b_buf;
3536	while (*bufp != buf)
3537		bufp = &(*bufp)->b_next;
3538	*bufp = buf->b_next;
3539
3540	ASSERT(buf->b_data != NULL);
3541	arc_buf_destroy(buf, FALSE, FALSE);
3542
3543	if (hdr->b_datacnt == 0) {
3544		arc_state_t *old_state = hdr->b_state;
3545		arc_state_t *evicted_state;
3546
3547		ASSERT(hdr->b_buf == NULL);
3548		ASSERT(refcount_is_zero(&hdr->b_refcnt));
3549
3550		evicted_state =
3551		    (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3552
3553		get_buf_info(hdr, old_state, &list, &lock);
3554		get_buf_info(hdr, evicted_state, &evicted_list, &evicted_lock);
3555		mutex_enter(lock);
3556		mutex_enter(evicted_lock);
3557
3558		arc_change_state(evicted_state, hdr, hash_lock);
3559		ASSERT(HDR_IN_HASH_TABLE(hdr));
3560		hdr->b_flags |= ARC_IN_HASH_TABLE;
3561		hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3562
3563		mutex_exit(evicted_lock);
3564		mutex_exit(lock);
3565	}
3566	mutex_exit(hash_lock);
3567	mutex_exit(&buf->b_evict_lock);
3568
3569	VERIFY(buf->b_efunc(buf) == 0);
3570	buf->b_efunc = NULL;
3571	buf->b_private = NULL;
3572	buf->b_hdr = NULL;
3573	buf->b_next = NULL;
3574	kmem_cache_free(buf_cache, buf);
3575	return (1);
3576}
3577
3578/*
3579 * Release this buffer from the cache, making it an anonymous buffer.  This
3580 * must be done after a read and prior to modifying the buffer contents.
3581 * If the buffer has more than one reference, we must make
3582 * a new hdr for the buffer.
3583 */
3584void
3585arc_release(arc_buf_t *buf, void *tag)
3586{
3587	arc_buf_hdr_t *hdr;
3588	kmutex_t *hash_lock = NULL;
3589	l2arc_buf_hdr_t *l2hdr;
3590	uint64_t buf_size;
3591
3592	/*
3593	 * It would be nice to assert that if it's DMU metadata (level >
3594	 * 0 || it's the dnode file), then it must be syncing context.
3595	 * But we don't know that information at this level.
3596	 */
3597
3598	mutex_enter(&buf->b_evict_lock);
3599	hdr = buf->b_hdr;
3600
3601	/* this buffer is not on any list */
3602	ASSERT(refcount_count(&hdr->b_refcnt) > 0);
3603
3604	if (hdr->b_state == arc_anon) {
3605		/* this buffer is already released */
3606		ASSERT(buf->b_efunc == NULL);
3607	} else {
3608		hash_lock = HDR_LOCK(hdr);
3609		mutex_enter(hash_lock);
3610		hdr = buf->b_hdr;
3611		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3612	}
3613
3614	l2hdr = hdr->b_l2hdr;
3615	if (l2hdr) {
3616		mutex_enter(&l2arc_buflist_mtx);
3617		hdr->b_l2hdr = NULL;
3618		list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
3619	}
3620	buf_size = hdr->b_size;
3621
3622	/*
3623	 * Do we have more than one buf?
3624	 */
3625	if (hdr->b_datacnt > 1) {
3626		arc_buf_hdr_t *nhdr;
3627		arc_buf_t **bufp;
3628		uint64_t blksz = hdr->b_size;
3629		uint64_t spa = hdr->b_spa;
3630		arc_buf_contents_t type = hdr->b_type;
3631		uint32_t flags = hdr->b_flags;
3632
3633		ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
3634		/*
3635		 * Pull the data off of this hdr and attach it to
3636		 * a new anonymous hdr.
3637		 */
3638		(void) remove_reference(hdr, hash_lock, tag);
3639		bufp = &hdr->b_buf;
3640		while (*bufp != buf)
3641			bufp = &(*bufp)->b_next;
3642		*bufp = buf->b_next;
3643		buf->b_next = NULL;
3644
3645		ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
3646		atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
3647		if (refcount_is_zero(&hdr->b_refcnt)) {
3648			uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
3649			ASSERT3U(*size, >=, hdr->b_size);
3650			atomic_add_64(size, -hdr->b_size);
3651		}
3652
3653		/*
3654		 * We're releasing a duplicate user data buffer, update
3655		 * our statistics accordingly.
3656		 */
3657		if (hdr->b_type == ARC_BUFC_DATA) {
3658			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
3659			ARCSTAT_INCR(arcstat_duplicate_buffers_size,
3660			    -hdr->b_size);
3661		}
3662		hdr->b_datacnt -= 1;
3663		arc_cksum_verify(buf);
3664#ifdef illumos
3665		arc_buf_unwatch(buf);
3666#endif /* illumos */
3667
3668		mutex_exit(hash_lock);
3669
3670		nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3671		nhdr->b_size = blksz;
3672		nhdr->b_spa = spa;
3673		nhdr->b_type = type;
3674		nhdr->b_buf = buf;
3675		nhdr->b_state = arc_anon;
3676		nhdr->b_arc_access = 0;
3677		nhdr->b_flags = flags & ARC_L2_WRITING;
3678		nhdr->b_l2hdr = NULL;
3679		nhdr->b_datacnt = 1;
3680		nhdr->b_freeze_cksum = NULL;
3681		(void) refcount_add(&nhdr->b_refcnt, tag);
3682		buf->b_hdr = nhdr;
3683		mutex_exit(&buf->b_evict_lock);
3684		atomic_add_64(&arc_anon->arcs_size, blksz);
3685	} else {
3686		mutex_exit(&buf->b_evict_lock);
3687		ASSERT(refcount_count(&hdr->b_refcnt) == 1);
3688		ASSERT(!list_link_active(&hdr->b_arc_node));
3689		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3690		if (hdr->b_state != arc_anon)
3691			arc_change_state(arc_anon, hdr, hash_lock);
3692		hdr->b_arc_access = 0;
3693		if (hash_lock)
3694			mutex_exit(hash_lock);
3695
3696		buf_discard_identity(hdr);
3697		arc_buf_thaw(buf);
3698	}
3699	buf->b_efunc = NULL;
3700	buf->b_private = NULL;
3701
3702	if (l2hdr) {
3703		ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
3704		trim_map_free(l2hdr->b_dev->l2ad_vdev, l2hdr->b_daddr,
3705		    hdr->b_size, 0);
3706		kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
3707		ARCSTAT_INCR(arcstat_l2_size, -buf_size);
3708		mutex_exit(&l2arc_buflist_mtx);
3709	}
3710}
3711
3712int
3713arc_released(arc_buf_t *buf)
3714{
3715	int released;
3716
3717	mutex_enter(&buf->b_evict_lock);
3718	released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
3719	mutex_exit(&buf->b_evict_lock);
3720	return (released);
3721}
3722
3723int
3724arc_has_callback(arc_buf_t *buf)
3725{
3726	int callback;
3727
3728	mutex_enter(&buf->b_evict_lock);
3729	callback = (buf->b_efunc != NULL);
3730	mutex_exit(&buf->b_evict_lock);
3731	return (callback);
3732}
3733
3734#ifdef ZFS_DEBUG
3735int
3736arc_referenced(arc_buf_t *buf)
3737{
3738	int referenced;
3739
3740	mutex_enter(&buf->b_evict_lock);
3741	referenced = (refcount_count(&buf->b_hdr->b_refcnt));
3742	mutex_exit(&buf->b_evict_lock);
3743	return (referenced);
3744}
3745#endif
3746
3747static void
3748arc_write_ready(zio_t *zio)
3749{
3750	arc_write_callback_t *callback = zio->io_private;
3751	arc_buf_t *buf = callback->awcb_buf;
3752	arc_buf_hdr_t *hdr = buf->b_hdr;
3753
3754	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
3755	callback->awcb_ready(zio, buf, callback->awcb_private);
3756
3757	/*
3758	 * If the IO is already in progress, then this is a re-write
3759	 * attempt, so we need to thaw and re-compute the cksum.
3760	 * It is the responsibility of the callback to handle the
3761	 * accounting for any re-write attempt.
3762	 */
3763	if (HDR_IO_IN_PROGRESS(hdr)) {
3764		mutex_enter(&hdr->b_freeze_lock);
3765		if (hdr->b_freeze_cksum != NULL) {
3766			kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
3767			hdr->b_freeze_cksum = NULL;
3768		}
3769		mutex_exit(&hdr->b_freeze_lock);
3770	}
3771	arc_cksum_compute(buf, B_FALSE);
3772	hdr->b_flags |= ARC_IO_IN_PROGRESS;
3773}
3774
3775/*
3776 * The SPA calls this callback for each physical write that happens on behalf
3777 * of a logical write.  See the comment in dbuf_write_physdone() for details.
3778 */
3779static void
3780arc_write_physdone(zio_t *zio)
3781{
3782	arc_write_callback_t *cb = zio->io_private;
3783	if (cb->awcb_physdone != NULL)
3784		cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
3785}
3786
3787static void
3788arc_write_done(zio_t *zio)
3789{
3790	arc_write_callback_t *callback = zio->io_private;
3791	arc_buf_t *buf = callback->awcb_buf;
3792	arc_buf_hdr_t *hdr = buf->b_hdr;
3793
3794	ASSERT(hdr->b_acb == NULL);
3795
3796	if (zio->io_error == 0) {
3797		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
3798			buf_discard_identity(hdr);
3799		} else {
3800			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3801			hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
3802			hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3803		}
3804	} else {
3805		ASSERT(BUF_EMPTY(hdr));
3806	}
3807
3808	/*
3809	 * If the block to be written was all-zero or compressed enough to be
3810	 * embedded in the BP, no write was performed so there will be no
3811	 * dva/birth/checksum.  The buffer must therefore remain anonymous
3812	 * (and uncached).
3813	 */
3814	if (!BUF_EMPTY(hdr)) {
3815		arc_buf_hdr_t *exists;
3816		kmutex_t *hash_lock;
3817
3818		ASSERT(zio->io_error == 0);
3819
3820		arc_cksum_verify(buf);
3821
3822		exists = buf_hash_insert(hdr, &hash_lock);
3823		if (exists) {
3824			/*
3825			 * This can only happen if we overwrite for
3826			 * sync-to-convergence, because we remove
3827			 * buffers from the hash table when we arc_free().
3828			 */
3829			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
3830				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3831					panic("bad overwrite, hdr=%p exists=%p",
3832					    (void *)hdr, (void *)exists);
3833				ASSERT(refcount_is_zero(&exists->b_refcnt));
3834				arc_change_state(arc_anon, exists, hash_lock);
3835				mutex_exit(hash_lock);
3836				arc_hdr_destroy(exists);
3837				exists = buf_hash_insert(hdr, &hash_lock);
3838				ASSERT3P(exists, ==, NULL);
3839			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
3840				/* nopwrite */
3841				ASSERT(zio->io_prop.zp_nopwrite);
3842				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3843					panic("bad nopwrite, hdr=%p exists=%p",
3844					    (void *)hdr, (void *)exists);
3845			} else {
3846				/* Dedup */
3847				ASSERT(hdr->b_datacnt == 1);
3848				ASSERT(hdr->b_state == arc_anon);
3849				ASSERT(BP_GET_DEDUP(zio->io_bp));
3850				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
3851			}
3852		}
3853		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3854		/* if it's not anon, we are doing a scrub */
3855		if (!exists && hdr->b_state == arc_anon)
3856			arc_access(hdr, hash_lock);
3857		mutex_exit(hash_lock);
3858	} else {
3859		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3860	}
3861
3862	ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3863	callback->awcb_done(zio, buf, callback->awcb_private);
3864
3865	kmem_free(callback, sizeof (arc_write_callback_t));
3866}
3867
3868zio_t *
3869arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
3870    blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
3871    const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone,
3872    arc_done_func_t *done, void *private, zio_priority_t priority,
3873    int zio_flags, const zbookmark_t *zb)
3874{
3875	arc_buf_hdr_t *hdr = buf->b_hdr;
3876	arc_write_callback_t *callback;
3877	zio_t *zio;
3878
3879	ASSERT(ready != NULL);
3880	ASSERT(done != NULL);
3881	ASSERT(!HDR_IO_ERROR(hdr));
3882	ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
3883	ASSERT(hdr->b_acb == NULL);
3884	if (l2arc)
3885		hdr->b_flags |= ARC_L2CACHE;
3886	if (l2arc_compress)
3887		hdr->b_flags |= ARC_L2COMPRESS;
3888	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
3889	callback->awcb_ready = ready;
3890	callback->awcb_physdone = physdone;
3891	callback->awcb_done = done;
3892	callback->awcb_private = private;
3893	callback->awcb_buf = buf;
3894
3895	zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
3896	    arc_write_ready, arc_write_physdone, arc_write_done, callback,
3897	    priority, zio_flags, zb);
3898
3899	return (zio);
3900}
3901
3902static int
3903arc_memory_throttle(uint64_t reserve, uint64_t txg)
3904{
3905#ifdef _KERNEL
3906	uint64_t available_memory =
3907	    ptoa((uintmax_t)cnt.v_free_count + cnt.v_cache_count);
3908	static uint64_t page_load = 0;
3909	static uint64_t last_txg = 0;
3910
3911#ifdef sun
3912#if defined(__i386)
3913	available_memory =
3914	    MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
3915#endif
3916#endif	/* sun */
3917
3918	if (cnt.v_free_count + cnt.v_cache_count >
3919	    (uint64_t)physmem * arc_lotsfree_percent / 100)
3920		return (0);
3921
3922	if (txg > last_txg) {
3923		last_txg = txg;
3924		page_load = 0;
3925	}
3926	/*
3927	 * If we are in pageout, we know that memory is already tight,
3928	 * the arc is already going to be evicting, so we just want to
3929	 * continue to let page writes occur as quickly as possible.
3930	 */
3931	if (curproc == pageproc) {
3932		if (page_load > available_memory / 4)
3933			return (SET_ERROR(ERESTART));
3934		/* Note: reserve is inflated, so we deflate */
3935		page_load += reserve / 8;
3936		return (0);
3937	} else if (page_load > 0 && arc_reclaim_needed()) {
3938		/* memory is low, delay before restarting */
3939		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3940		return (SET_ERROR(EAGAIN));
3941	}
3942	page_load = 0;
3943#endif
3944	return (0);
3945}
3946
3947void
3948arc_tempreserve_clear(uint64_t reserve)
3949{
3950	atomic_add_64(&arc_tempreserve, -reserve);
3951	ASSERT((int64_t)arc_tempreserve >= 0);
3952}
3953
3954int
3955arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3956{
3957	int error;
3958	uint64_t anon_size;
3959
3960	if (reserve > arc_c/4 && !arc_no_grow)
3961		arc_c = MIN(arc_c_max, reserve * 4);
3962	if (reserve > arc_c)
3963		return (SET_ERROR(ENOMEM));
3964
3965	/*
3966	 * Don't count loaned bufs as in flight dirty data to prevent long
3967	 * network delays from blocking transactions that are ready to be
3968	 * assigned to a txg.
3969	 */
3970	anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
3971
3972	/*
3973	 * Writes will, almost always, require additional memory allocations
3974	 * in order to compress/encrypt/etc the data.  We therefore need to
3975	 * make sure that there is sufficient available memory for this.
3976	 */
3977	error = arc_memory_throttle(reserve, txg);
3978	if (error != 0)
3979		return (error);
3980
3981	/*
3982	 * Throttle writes when the amount of dirty data in the cache
3983	 * gets too large.  We try to keep the cache less than half full
3984	 * of dirty blocks so that our sync times don't grow too large.
3985	 * Note: if two requests come in concurrently, we might let them
3986	 * both succeed, when one of them should fail.  Not a huge deal.
3987	 */
3988
3989	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
3990	    anon_size > arc_c / 4) {
3991		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3992		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3993		    arc_tempreserve>>10,
3994		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3995		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3996		    reserve>>10, arc_c>>10);
3997		return (SET_ERROR(ERESTART));
3998	}
3999	atomic_add_64(&arc_tempreserve, reserve);
4000	return (0);
4001}
4002
4003static kmutex_t arc_lowmem_lock;
4004#ifdef _KERNEL
4005static eventhandler_tag arc_event_lowmem = NULL;
4006
4007static void
4008arc_lowmem(void *arg __unused, int howto __unused)
4009{
4010
4011	/* Serialize access via arc_lowmem_lock. */
4012	mutex_enter(&arc_lowmem_lock);
4013	mutex_enter(&arc_reclaim_thr_lock);
4014	needfree = 1;
4015	cv_signal(&arc_reclaim_thr_cv);
4016
4017	/*
4018	 * It is unsafe to block here in arbitrary threads, because we can come
4019	 * here from ARC itself and may hold ARC locks and thus risk a deadlock
4020	 * with ARC reclaim thread.
4021	 */
4022	if (curproc == pageproc) {
4023		while (needfree)
4024			msleep(&needfree, &arc_reclaim_thr_lock, 0, "zfs:lowmem", 0);
4025	}
4026	mutex_exit(&arc_reclaim_thr_lock);
4027	mutex_exit(&arc_lowmem_lock);
4028}
4029#endif
4030
4031void
4032arc_init(void)
4033{
4034	int i, prefetch_tunable_set = 0;
4035
4036	mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
4037	cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
4038	mutex_init(&arc_lowmem_lock, NULL, MUTEX_DEFAULT, NULL);
4039
4040	/* Convert seconds to clock ticks */
4041	arc_min_prefetch_lifespan = 1 * hz;
4042
4043	/* Start out with 1/8 of all memory */
4044	arc_c = kmem_size() / 8;
4045
4046#ifdef sun
4047#ifdef _KERNEL
4048	/*
4049	 * On architectures where the physical memory can be larger
4050	 * than the addressable space (intel in 32-bit mode), we may
4051	 * need to limit the cache to 1/8 of VM size.
4052	 */
4053	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
4054#endif
4055#endif	/* sun */
4056	/* set min cache to 1/32 of all memory, or 16MB, whichever is more */
4057	arc_c_min = MAX(arc_c / 4, 64<<18);
4058	/* set max to 1/2 of all memory, or all but 1GB, whichever is more */
4059	if (arc_c * 8 >= 1<<30)
4060		arc_c_max = (arc_c * 8) - (1<<30);
4061	else
4062		arc_c_max = arc_c_min;
4063	arc_c_max = MAX(arc_c * 5, arc_c_max);
4064
4065#ifdef _KERNEL
4066	/*
4067	 * Allow the tunables to override our calculations if they are
4068	 * reasonable (ie. over 16MB)
4069	 */
4070	if (zfs_arc_max > 64<<18 && zfs_arc_max < kmem_size())
4071		arc_c_max = zfs_arc_max;
4072	if (zfs_arc_min > 64<<18 && zfs_arc_min <= arc_c_max)
4073		arc_c_min = zfs_arc_min;
4074#endif
4075
4076	arc_c = arc_c_max;
4077	arc_p = (arc_c >> 1);
4078
4079	/* limit meta-data to 1/4 of the arc capacity */
4080	arc_meta_limit = arc_c_max / 4;
4081
4082	/* Allow the tunable to override if it is reasonable */
4083	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
4084		arc_meta_limit = zfs_arc_meta_limit;
4085
4086	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
4087		arc_c_min = arc_meta_limit / 2;
4088
4089	if (zfs_arc_grow_retry > 0)
4090		arc_grow_retry = zfs_arc_grow_retry;
4091
4092	if (zfs_arc_shrink_shift > 0)
4093		arc_shrink_shift = zfs_arc_shrink_shift;
4094
4095	if (zfs_arc_p_min_shift > 0)
4096		arc_p_min_shift = zfs_arc_p_min_shift;
4097
4098	/* if kmem_flags are set, lets try to use less memory */
4099	if (kmem_debugging())
4100		arc_c = arc_c / 2;
4101	if (arc_c < arc_c_min)
4102		arc_c = arc_c_min;
4103
4104	zfs_arc_min = arc_c_min;
4105	zfs_arc_max = arc_c_max;
4106
4107	arc_anon = &ARC_anon;
4108	arc_mru = &ARC_mru;
4109	arc_mru_ghost = &ARC_mru_ghost;
4110	arc_mfu = &ARC_mfu;
4111	arc_mfu_ghost = &ARC_mfu_ghost;
4112	arc_l2c_only = &ARC_l2c_only;
4113	arc_size = 0;
4114
4115	for (i = 0; i < ARC_BUFC_NUMLISTS; i++) {
4116		mutex_init(&arc_anon->arcs_locks[i].arcs_lock,
4117		    NULL, MUTEX_DEFAULT, NULL);
4118		mutex_init(&arc_mru->arcs_locks[i].arcs_lock,
4119		    NULL, MUTEX_DEFAULT, NULL);
4120		mutex_init(&arc_mru_ghost->arcs_locks[i].arcs_lock,
4121		    NULL, MUTEX_DEFAULT, NULL);
4122		mutex_init(&arc_mfu->arcs_locks[i].arcs_lock,
4123		    NULL, MUTEX_DEFAULT, NULL);
4124		mutex_init(&arc_mfu_ghost->arcs_locks[i].arcs_lock,
4125		    NULL, MUTEX_DEFAULT, NULL);
4126		mutex_init(&arc_l2c_only->arcs_locks[i].arcs_lock,
4127		    NULL, MUTEX_DEFAULT, NULL);
4128
4129		list_create(&arc_mru->arcs_lists[i],
4130		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4131		list_create(&arc_mru_ghost->arcs_lists[i],
4132		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4133		list_create(&arc_mfu->arcs_lists[i],
4134		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4135		list_create(&arc_mfu_ghost->arcs_lists[i],
4136		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4137		list_create(&arc_mfu_ghost->arcs_lists[i],
4138		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4139		list_create(&arc_l2c_only->arcs_lists[i],
4140		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4141	}
4142
4143	buf_init();
4144
4145	arc_thread_exit = 0;
4146	arc_eviction_list = NULL;
4147	mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
4148	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
4149
4150	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
4151	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
4152
4153	if (arc_ksp != NULL) {
4154		arc_ksp->ks_data = &arc_stats;
4155		kstat_install(arc_ksp);
4156	}
4157
4158	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
4159	    TS_RUN, minclsyspri);
4160
4161#ifdef _KERNEL
4162	arc_event_lowmem = EVENTHANDLER_REGISTER(vm_lowmem, arc_lowmem, NULL,
4163	    EVENTHANDLER_PRI_FIRST);
4164#endif
4165
4166	arc_dead = FALSE;
4167	arc_warm = B_FALSE;
4168
4169	/*
4170	 * Calculate maximum amount of dirty data per pool.
4171	 *
4172	 * If it has been set by /etc/system, take that.
4173	 * Otherwise, use a percentage of physical memory defined by
4174	 * zfs_dirty_data_max_percent (default 10%) with a cap at
4175	 * zfs_dirty_data_max_max (default 4GB).
4176	 */
4177	if (zfs_dirty_data_max == 0) {
4178		zfs_dirty_data_max = ptob(physmem) *
4179		    zfs_dirty_data_max_percent / 100;
4180		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
4181		    zfs_dirty_data_max_max);
4182	}
4183
4184#ifdef _KERNEL
4185	if (TUNABLE_INT_FETCH("vfs.zfs.prefetch_disable", &zfs_prefetch_disable))
4186		prefetch_tunable_set = 1;
4187
4188#ifdef __i386__
4189	if (prefetch_tunable_set == 0) {
4190		printf("ZFS NOTICE: Prefetch is disabled by default on i386 "
4191		    "-- to enable,\n");
4192		printf("            add \"vfs.zfs.prefetch_disable=0\" "
4193		    "to /boot/loader.conf.\n");
4194		zfs_prefetch_disable = 1;
4195	}
4196#else
4197	if ((((uint64_t)physmem * PAGESIZE) < (1ULL << 32)) &&
4198	    prefetch_tunable_set == 0) {
4199		printf("ZFS NOTICE: Prefetch is disabled by default if less "
4200		    "than 4GB of RAM is present;\n"
4201		    "            to enable, add \"vfs.zfs.prefetch_disable=0\" "
4202		    "to /boot/loader.conf.\n");
4203		zfs_prefetch_disable = 1;
4204	}
4205#endif
4206	/* Warn about ZFS memory and address space requirements. */
4207	if (((uint64_t)physmem * PAGESIZE) < (256 + 128 + 64) * (1 << 20)) {
4208		printf("ZFS WARNING: Recommended minimum RAM size is 512MB; "
4209		    "expect unstable behavior.\n");
4210	}
4211	if (kmem_size() < 512 * (1 << 20)) {
4212		printf("ZFS WARNING: Recommended minimum kmem_size is 512MB; "
4213		    "expect unstable behavior.\n");
4214		printf("             Consider tuning vm.kmem_size and "
4215		    "vm.kmem_size_max\n");
4216		printf("             in /boot/loader.conf.\n");
4217	}
4218#endif
4219}
4220
4221void
4222arc_fini(void)
4223{
4224	int i;
4225
4226	mutex_enter(&arc_reclaim_thr_lock);
4227	arc_thread_exit = 1;
4228	cv_signal(&arc_reclaim_thr_cv);
4229	while (arc_thread_exit != 0)
4230		cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
4231	mutex_exit(&arc_reclaim_thr_lock);
4232
4233	arc_flush(NULL);
4234
4235	arc_dead = TRUE;
4236
4237	if (arc_ksp != NULL) {
4238		kstat_delete(arc_ksp);
4239		arc_ksp = NULL;
4240	}
4241
4242	mutex_destroy(&arc_eviction_mtx);
4243	mutex_destroy(&arc_reclaim_thr_lock);
4244	cv_destroy(&arc_reclaim_thr_cv);
4245
4246	for (i = 0; i < ARC_BUFC_NUMLISTS; i++) {
4247		list_destroy(&arc_mru->arcs_lists[i]);
4248		list_destroy(&arc_mru_ghost->arcs_lists[i]);
4249		list_destroy(&arc_mfu->arcs_lists[i]);
4250		list_destroy(&arc_mfu_ghost->arcs_lists[i]);
4251		list_destroy(&arc_l2c_only->arcs_lists[i]);
4252
4253		mutex_destroy(&arc_anon->arcs_locks[i].arcs_lock);
4254		mutex_destroy(&arc_mru->arcs_locks[i].arcs_lock);
4255		mutex_destroy(&arc_mru_ghost->arcs_locks[i].arcs_lock);
4256		mutex_destroy(&arc_mfu->arcs_locks[i].arcs_lock);
4257		mutex_destroy(&arc_mfu_ghost->arcs_locks[i].arcs_lock);
4258		mutex_destroy(&arc_l2c_only->arcs_locks[i].arcs_lock);
4259	}
4260
4261	buf_fini();
4262
4263	ASSERT(arc_loaned_bytes == 0);
4264
4265	mutex_destroy(&arc_lowmem_lock);
4266#ifdef _KERNEL
4267	if (arc_event_lowmem != NULL)
4268		EVENTHANDLER_DEREGISTER(vm_lowmem, arc_event_lowmem);
4269#endif
4270}
4271
4272/*
4273 * Level 2 ARC
4274 *
4275 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
4276 * It uses dedicated storage devices to hold cached data, which are populated
4277 * using large infrequent writes.  The main role of this cache is to boost
4278 * the performance of random read workloads.  The intended L2ARC devices
4279 * include short-stroked disks, solid state disks, and other media with
4280 * substantially faster read latency than disk.
4281 *
4282 *                 +-----------------------+
4283 *                 |         ARC           |
4284 *                 +-----------------------+
4285 *                    |         ^     ^
4286 *                    |         |     |
4287 *      l2arc_feed_thread()    arc_read()
4288 *                    |         |     |
4289 *                    |  l2arc read   |
4290 *                    V         |     |
4291 *               +---------------+    |
4292 *               |     L2ARC     |    |
4293 *               +---------------+    |
4294 *                   |    ^           |
4295 *          l2arc_write() |           |
4296 *                   |    |           |
4297 *                   V    |           |
4298 *                 +-------+      +-------+
4299 *                 | vdev  |      | vdev  |
4300 *                 | cache |      | cache |
4301 *                 +-------+      +-------+
4302 *                 +=========+     .-----.
4303 *                 :  L2ARC  :    |-_____-|
4304 *                 : devices :    | Disks |
4305 *                 +=========+    `-_____-'
4306 *
4307 * Read requests are satisfied from the following sources, in order:
4308 *
4309 *	1) ARC
4310 *	2) vdev cache of L2ARC devices
4311 *	3) L2ARC devices
4312 *	4) vdev cache of disks
4313 *	5) disks
4314 *
4315 * Some L2ARC device types exhibit extremely slow write performance.
4316 * To accommodate for this there are some significant differences between
4317 * the L2ARC and traditional cache design:
4318 *
4319 * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
4320 * the ARC behave as usual, freeing buffers and placing headers on ghost
4321 * lists.  The ARC does not send buffers to the L2ARC during eviction as
4322 * this would add inflated write latencies for all ARC memory pressure.
4323 *
4324 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
4325 * It does this by periodically scanning buffers from the eviction-end of
4326 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
4327 * not already there. It scans until a headroom of buffers is satisfied,
4328 * which itself is a buffer for ARC eviction. If a compressible buffer is
4329 * found during scanning and selected for writing to an L2ARC device, we
4330 * temporarily boost scanning headroom during the next scan cycle to make
4331 * sure we adapt to compression effects (which might significantly reduce
4332 * the data volume we write to L2ARC). The thread that does this is
4333 * l2arc_feed_thread(), illustrated below; example sizes are included to
4334 * provide a better sense of ratio than this diagram:
4335 *
4336 *	       head -->                        tail
4337 *	        +---------------------+----------+
4338 *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
4339 *	        +---------------------+----------+   |   o L2ARC eligible
4340 *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
4341 *	        +---------------------+----------+   |
4342 *	             15.9 Gbytes      ^ 32 Mbytes    |
4343 *	                           headroom          |
4344 *	                                      l2arc_feed_thread()
4345 *	                                             |
4346 *	                 l2arc write hand <--[oooo]--'
4347 *	                         |           8 Mbyte
4348 *	                         |          write max
4349 *	                         V
4350 *		  +==============================+
4351 *	L2ARC dev |####|#|###|###|    |####| ... |
4352 *	          +==============================+
4353 *	                     32 Gbytes
4354 *
4355 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
4356 * evicted, then the L2ARC has cached a buffer much sooner than it probably
4357 * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
4358 * safe to say that this is an uncommon case, since buffers at the end of
4359 * the ARC lists have moved there due to inactivity.
4360 *
4361 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
4362 * then the L2ARC simply misses copying some buffers.  This serves as a
4363 * pressure valve to prevent heavy read workloads from both stalling the ARC
4364 * with waits and clogging the L2ARC with writes.  This also helps prevent
4365 * the potential for the L2ARC to churn if it attempts to cache content too
4366 * quickly, such as during backups of the entire pool.
4367 *
4368 * 5. After system boot and before the ARC has filled main memory, there are
4369 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
4370 * lists can remain mostly static.  Instead of searching from tail of these
4371 * lists as pictured, the l2arc_feed_thread() will search from the list heads
4372 * for eligible buffers, greatly increasing its chance of finding them.
4373 *
4374 * The L2ARC device write speed is also boosted during this time so that
4375 * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
4376 * there are no L2ARC reads, and no fear of degrading read performance
4377 * through increased writes.
4378 *
4379 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
4380 * the vdev queue can aggregate them into larger and fewer writes.  Each
4381 * device is written to in a rotor fashion, sweeping writes through
4382 * available space then repeating.
4383 *
4384 * 7. The L2ARC does not store dirty content.  It never needs to flush
4385 * write buffers back to disk based storage.
4386 *
4387 * 8. If an ARC buffer is written (and dirtied) which also exists in the
4388 * L2ARC, the now stale L2ARC buffer is immediately dropped.
4389 *
4390 * The performance of the L2ARC can be tweaked by a number of tunables, which
4391 * may be necessary for different workloads:
4392 *
4393 *	l2arc_write_max		max write bytes per interval
4394 *	l2arc_write_boost	extra write bytes during device warmup
4395 *	l2arc_noprefetch	skip caching prefetched buffers
4396 *	l2arc_headroom		number of max device writes to precache
4397 *	l2arc_headroom_boost	when we find compressed buffers during ARC
4398 *				scanning, we multiply headroom by this
4399 *				percentage factor for the next scan cycle,
4400 *				since more compressed buffers are likely to
4401 *				be present
4402 *	l2arc_feed_secs		seconds between L2ARC writing
4403 *
4404 * Tunables may be removed or added as future performance improvements are
4405 * integrated, and also may become zpool properties.
4406 *
4407 * There are three key functions that control how the L2ARC warms up:
4408 *
4409 *	l2arc_write_eligible()	check if a buffer is eligible to cache
4410 *	l2arc_write_size()	calculate how much to write
4411 *	l2arc_write_interval()	calculate sleep delay between writes
4412 *
4413 * These three functions determine what to write, how much, and how quickly
4414 * to send writes.
4415 */
4416
4417static boolean_t
4418l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab)
4419{
4420	/*
4421	 * A buffer is *not* eligible for the L2ARC if it:
4422	 * 1. belongs to a different spa.
4423	 * 2. is already cached on the L2ARC.
4424	 * 3. has an I/O in progress (it may be an incomplete read).
4425	 * 4. is flagged not eligible (zfs property).
4426	 */
4427	if (ab->b_spa != spa_guid) {
4428		ARCSTAT_BUMP(arcstat_l2_write_spa_mismatch);
4429		return (B_FALSE);
4430	}
4431	if (ab->b_l2hdr != NULL) {
4432		ARCSTAT_BUMP(arcstat_l2_write_in_l2);
4433		return (B_FALSE);
4434	}
4435	if (HDR_IO_IN_PROGRESS(ab)) {
4436		ARCSTAT_BUMP(arcstat_l2_write_hdr_io_in_progress);
4437		return (B_FALSE);
4438	}
4439	if (!HDR_L2CACHE(ab)) {
4440		ARCSTAT_BUMP(arcstat_l2_write_not_cacheable);
4441		return (B_FALSE);
4442	}
4443
4444	return (B_TRUE);
4445}
4446
4447static uint64_t
4448l2arc_write_size(void)
4449{
4450	uint64_t size;
4451
4452	/*
4453	 * Make sure our globals have meaningful values in case the user
4454	 * altered them.
4455	 */
4456	size = l2arc_write_max;
4457	if (size == 0) {
4458		cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
4459		    "be greater than zero, resetting it to the default (%d)",
4460		    L2ARC_WRITE_SIZE);
4461		size = l2arc_write_max = L2ARC_WRITE_SIZE;
4462	}
4463
4464	if (arc_warm == B_FALSE)
4465		size += l2arc_write_boost;
4466
4467	return (size);
4468
4469}
4470
4471static clock_t
4472l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
4473{
4474	clock_t interval, next, now;
4475
4476	/*
4477	 * If the ARC lists are busy, increase our write rate; if the
4478	 * lists are stale, idle back.  This is achieved by checking
4479	 * how much we previously wrote - if it was more than half of
4480	 * what we wanted, schedule the next write much sooner.
4481	 */
4482	if (l2arc_feed_again && wrote > (wanted / 2))
4483		interval = (hz * l2arc_feed_min_ms) / 1000;
4484	else
4485		interval = hz * l2arc_feed_secs;
4486
4487	now = ddi_get_lbolt();
4488	next = MAX(now, MIN(now + interval, began + interval));
4489
4490	return (next);
4491}
4492
4493static void
4494l2arc_hdr_stat_add(void)
4495{
4496	ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE);
4497	ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
4498}
4499
4500static void
4501l2arc_hdr_stat_remove(void)
4502{
4503	ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE));
4504	ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
4505}
4506
4507/*
4508 * Cycle through L2ARC devices.  This is how L2ARC load balances.
4509 * If a device is returned, this also returns holding the spa config lock.
4510 */
4511static l2arc_dev_t *
4512l2arc_dev_get_next(void)
4513{
4514	l2arc_dev_t *first, *next = NULL;
4515
4516	/*
4517	 * Lock out the removal of spas (spa_namespace_lock), then removal
4518	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
4519	 * both locks will be dropped and a spa config lock held instead.
4520	 */
4521	mutex_enter(&spa_namespace_lock);
4522	mutex_enter(&l2arc_dev_mtx);
4523
4524	/* if there are no vdevs, there is nothing to do */
4525	if (l2arc_ndev == 0)
4526		goto out;
4527
4528	first = NULL;
4529	next = l2arc_dev_last;
4530	do {
4531		/* loop around the list looking for a non-faulted vdev */
4532		if (next == NULL) {
4533			next = list_head(l2arc_dev_list);
4534		} else {
4535			next = list_next(l2arc_dev_list, next);
4536			if (next == NULL)
4537				next = list_head(l2arc_dev_list);
4538		}
4539
4540		/* if we have come back to the start, bail out */
4541		if (first == NULL)
4542			first = next;
4543		else if (next == first)
4544			break;
4545
4546	} while (vdev_is_dead(next->l2ad_vdev));
4547
4548	/* if we were unable to find any usable vdevs, return NULL */
4549	if (vdev_is_dead(next->l2ad_vdev))
4550		next = NULL;
4551
4552	l2arc_dev_last = next;
4553
4554out:
4555	mutex_exit(&l2arc_dev_mtx);
4556
4557	/*
4558	 * Grab the config lock to prevent the 'next' device from being
4559	 * removed while we are writing to it.
4560	 */
4561	if (next != NULL)
4562		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
4563	mutex_exit(&spa_namespace_lock);
4564
4565	return (next);
4566}
4567
4568/*
4569 * Free buffers that were tagged for destruction.
4570 */
4571static void
4572l2arc_do_free_on_write()
4573{
4574	list_t *buflist;
4575	l2arc_data_free_t *df, *df_prev;
4576
4577	mutex_enter(&l2arc_free_on_write_mtx);
4578	buflist = l2arc_free_on_write;
4579
4580	for (df = list_tail(buflist); df; df = df_prev) {
4581		df_prev = list_prev(buflist, df);
4582		ASSERT(df->l2df_data != NULL);
4583		ASSERT(df->l2df_func != NULL);
4584		df->l2df_func(df->l2df_data, df->l2df_size);
4585		list_remove(buflist, df);
4586		kmem_free(df, sizeof (l2arc_data_free_t));
4587	}
4588
4589	mutex_exit(&l2arc_free_on_write_mtx);
4590}
4591
4592/*
4593 * A write to a cache device has completed.  Update all headers to allow
4594 * reads from these buffers to begin.
4595 */
4596static void
4597l2arc_write_done(zio_t *zio)
4598{
4599	l2arc_write_callback_t *cb;
4600	l2arc_dev_t *dev;
4601	list_t *buflist;
4602	arc_buf_hdr_t *head, *ab, *ab_prev;
4603	l2arc_buf_hdr_t *abl2;
4604	kmutex_t *hash_lock;
4605
4606	cb = zio->io_private;
4607	ASSERT(cb != NULL);
4608	dev = cb->l2wcb_dev;
4609	ASSERT(dev != NULL);
4610	head = cb->l2wcb_head;
4611	ASSERT(head != NULL);
4612	buflist = dev->l2ad_buflist;
4613	ASSERT(buflist != NULL);
4614	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
4615	    l2arc_write_callback_t *, cb);
4616
4617	if (zio->io_error != 0)
4618		ARCSTAT_BUMP(arcstat_l2_writes_error);
4619
4620	mutex_enter(&l2arc_buflist_mtx);
4621
4622	/*
4623	 * All writes completed, or an error was hit.
4624	 */
4625	for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
4626		ab_prev = list_prev(buflist, ab);
4627		abl2 = ab->b_l2hdr;
4628
4629		/*
4630		 * Release the temporary compressed buffer as soon as possible.
4631		 */
4632		if (abl2->b_compress != ZIO_COMPRESS_OFF)
4633			l2arc_release_cdata_buf(ab);
4634
4635		hash_lock = HDR_LOCK(ab);
4636		if (!mutex_tryenter(hash_lock)) {
4637			/*
4638			 * This buffer misses out.  It may be in a stage
4639			 * of eviction.  Its ARC_L2_WRITING flag will be
4640			 * left set, denying reads to this buffer.
4641			 */
4642			ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
4643			continue;
4644		}
4645
4646		if (zio->io_error != 0) {
4647			/*
4648			 * Error - drop L2ARC entry.
4649			 */
4650			list_remove(buflist, ab);
4651			ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize);
4652			ab->b_l2hdr = NULL;
4653			trim_map_free(abl2->b_dev->l2ad_vdev, abl2->b_daddr,
4654			    ab->b_size, 0);
4655			kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4656			ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4657		}
4658
4659		/*
4660		 * Allow ARC to begin reads to this L2ARC entry.
4661		 */
4662		ab->b_flags &= ~ARC_L2_WRITING;
4663
4664		mutex_exit(hash_lock);
4665	}
4666
4667	atomic_inc_64(&l2arc_writes_done);
4668	list_remove(buflist, head);
4669	kmem_cache_free(hdr_cache, head);
4670	mutex_exit(&l2arc_buflist_mtx);
4671
4672	l2arc_do_free_on_write();
4673
4674	kmem_free(cb, sizeof (l2arc_write_callback_t));
4675}
4676
4677/*
4678 * A read to a cache device completed.  Validate buffer contents before
4679 * handing over to the regular ARC routines.
4680 */
4681static void
4682l2arc_read_done(zio_t *zio)
4683{
4684	l2arc_read_callback_t *cb;
4685	arc_buf_hdr_t *hdr;
4686	arc_buf_t *buf;
4687	kmutex_t *hash_lock;
4688	int equal;
4689
4690	ASSERT(zio->io_vd != NULL);
4691	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
4692
4693	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
4694
4695	cb = zio->io_private;
4696	ASSERT(cb != NULL);
4697	buf = cb->l2rcb_buf;
4698	ASSERT(buf != NULL);
4699
4700	hash_lock = HDR_LOCK(buf->b_hdr);
4701	mutex_enter(hash_lock);
4702	hdr = buf->b_hdr;
4703	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4704
4705	/*
4706	 * If the buffer was compressed, decompress it first.
4707	 */
4708	if (cb->l2rcb_compress != ZIO_COMPRESS_OFF)
4709		l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress);
4710	ASSERT(zio->io_data != NULL);
4711
4712	/*
4713	 * Check this survived the L2ARC journey.
4714	 */
4715	equal = arc_cksum_equal(buf);
4716	if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
4717		mutex_exit(hash_lock);
4718		zio->io_private = buf;
4719		zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
4720		zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
4721		arc_read_done(zio);
4722	} else {
4723		mutex_exit(hash_lock);
4724		/*
4725		 * Buffer didn't survive caching.  Increment stats and
4726		 * reissue to the original storage device.
4727		 */
4728		if (zio->io_error != 0) {
4729			ARCSTAT_BUMP(arcstat_l2_io_error);
4730		} else {
4731			zio->io_error = SET_ERROR(EIO);
4732		}
4733		if (!equal)
4734			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
4735
4736		/*
4737		 * If there's no waiter, issue an async i/o to the primary
4738		 * storage now.  If there *is* a waiter, the caller must
4739		 * issue the i/o in a context where it's OK to block.
4740		 */
4741		if (zio->io_waiter == NULL) {
4742			zio_t *pio = zio_unique_parent(zio);
4743
4744			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
4745
4746			zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
4747			    buf->b_data, zio->io_size, arc_read_done, buf,
4748			    zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
4749		}
4750	}
4751
4752	kmem_free(cb, sizeof (l2arc_read_callback_t));
4753}
4754
4755/*
4756 * This is the list priority from which the L2ARC will search for pages to
4757 * cache.  This is used within loops (0..3) to cycle through lists in the
4758 * desired order.  This order can have a significant effect on cache
4759 * performance.
4760 *
4761 * Currently the metadata lists are hit first, MFU then MRU, followed by
4762 * the data lists.  This function returns a locked list, and also returns
4763 * the lock pointer.
4764 */
4765static list_t *
4766l2arc_list_locked(int list_num, kmutex_t **lock)
4767{
4768	list_t *list = NULL;
4769	int idx;
4770
4771	ASSERT(list_num >= 0 && list_num < 2 * ARC_BUFC_NUMLISTS);
4772
4773	if (list_num < ARC_BUFC_NUMMETADATALISTS) {
4774		idx = list_num;
4775		list = &arc_mfu->arcs_lists[idx];
4776		*lock = ARCS_LOCK(arc_mfu, idx);
4777	} else if (list_num < ARC_BUFC_NUMMETADATALISTS * 2) {
4778		idx = list_num - ARC_BUFC_NUMMETADATALISTS;
4779		list = &arc_mru->arcs_lists[idx];
4780		*lock = ARCS_LOCK(arc_mru, idx);
4781	} else if (list_num < (ARC_BUFC_NUMMETADATALISTS * 2 +
4782		ARC_BUFC_NUMDATALISTS)) {
4783		idx = list_num - ARC_BUFC_NUMMETADATALISTS;
4784		list = &arc_mfu->arcs_lists[idx];
4785		*lock = ARCS_LOCK(arc_mfu, idx);
4786	} else {
4787		idx = list_num - ARC_BUFC_NUMLISTS;
4788		list = &arc_mru->arcs_lists[idx];
4789		*lock = ARCS_LOCK(arc_mru, idx);
4790	}
4791
4792	ASSERT(!(MUTEX_HELD(*lock)));
4793	mutex_enter(*lock);
4794	return (list);
4795}
4796
4797/*
4798 * Evict buffers from the device write hand to the distance specified in
4799 * bytes.  This distance may span populated buffers, it may span nothing.
4800 * This is clearing a region on the L2ARC device ready for writing.
4801 * If the 'all' boolean is set, every buffer is evicted.
4802 */
4803static void
4804l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
4805{
4806	list_t *buflist;
4807	l2arc_buf_hdr_t *abl2;
4808	arc_buf_hdr_t *ab, *ab_prev;
4809	kmutex_t *hash_lock;
4810	uint64_t taddr;
4811
4812	buflist = dev->l2ad_buflist;
4813
4814	if (buflist == NULL)
4815		return;
4816
4817	if (!all && dev->l2ad_first) {
4818		/*
4819		 * This is the first sweep through the device.  There is
4820		 * nothing to evict.
4821		 */
4822		return;
4823	}
4824
4825	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
4826		/*
4827		 * When nearing the end of the device, evict to the end
4828		 * before the device write hand jumps to the start.
4829		 */
4830		taddr = dev->l2ad_end;
4831	} else {
4832		taddr = dev->l2ad_hand + distance;
4833	}
4834	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
4835	    uint64_t, taddr, boolean_t, all);
4836
4837top:
4838	mutex_enter(&l2arc_buflist_mtx);
4839	for (ab = list_tail(buflist); ab; ab = ab_prev) {
4840		ab_prev = list_prev(buflist, ab);
4841
4842		hash_lock = HDR_LOCK(ab);
4843		if (!mutex_tryenter(hash_lock)) {
4844			/*
4845			 * Missed the hash lock.  Retry.
4846			 */
4847			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
4848			mutex_exit(&l2arc_buflist_mtx);
4849			mutex_enter(hash_lock);
4850			mutex_exit(hash_lock);
4851			goto top;
4852		}
4853
4854		if (HDR_L2_WRITE_HEAD(ab)) {
4855			/*
4856			 * We hit a write head node.  Leave it for
4857			 * l2arc_write_done().
4858			 */
4859			list_remove(buflist, ab);
4860			mutex_exit(hash_lock);
4861			continue;
4862		}
4863
4864		if (!all && ab->b_l2hdr != NULL &&
4865		    (ab->b_l2hdr->b_daddr > taddr ||
4866		    ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
4867			/*
4868			 * We've evicted to the target address,
4869			 * or the end of the device.
4870			 */
4871			mutex_exit(hash_lock);
4872			break;
4873		}
4874
4875		if (HDR_FREE_IN_PROGRESS(ab)) {
4876			/*
4877			 * Already on the path to destruction.
4878			 */
4879			mutex_exit(hash_lock);
4880			continue;
4881		}
4882
4883		if (ab->b_state == arc_l2c_only) {
4884			ASSERT(!HDR_L2_READING(ab));
4885			/*
4886			 * This doesn't exist in the ARC.  Destroy.
4887			 * arc_hdr_destroy() will call list_remove()
4888			 * and decrement arcstat_l2_size.
4889			 */
4890			arc_change_state(arc_anon, ab, hash_lock);
4891			arc_hdr_destroy(ab);
4892		} else {
4893			/*
4894			 * Invalidate issued or about to be issued
4895			 * reads, since we may be about to write
4896			 * over this location.
4897			 */
4898			if (HDR_L2_READING(ab)) {
4899				ARCSTAT_BUMP(arcstat_l2_evict_reading);
4900				ab->b_flags |= ARC_L2_EVICTED;
4901			}
4902
4903			/*
4904			 * Tell ARC this no longer exists in L2ARC.
4905			 */
4906			if (ab->b_l2hdr != NULL) {
4907				abl2 = ab->b_l2hdr;
4908				ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize);
4909				ab->b_l2hdr = NULL;
4910				kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4911				ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4912			}
4913			list_remove(buflist, ab);
4914
4915			/*
4916			 * This may have been leftover after a
4917			 * failed write.
4918			 */
4919			ab->b_flags &= ~ARC_L2_WRITING;
4920		}
4921		mutex_exit(hash_lock);
4922	}
4923	mutex_exit(&l2arc_buflist_mtx);
4924
4925	vdev_space_update(dev->l2ad_vdev, -(taddr - dev->l2ad_evict), 0, 0);
4926	dev->l2ad_evict = taddr;
4927}
4928
4929/*
4930 * Find and write ARC buffers to the L2ARC device.
4931 *
4932 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
4933 * for reading until they have completed writing.
4934 * The headroom_boost is an in-out parameter used to maintain headroom boost
4935 * state between calls to this function.
4936 *
4937 * Returns the number of bytes actually written (which may be smaller than
4938 * the delta by which the device hand has changed due to alignment).
4939 */
4940static uint64_t
4941l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz,
4942    boolean_t *headroom_boost)
4943{
4944	arc_buf_hdr_t *ab, *ab_prev, *head;
4945	list_t *list;
4946	uint64_t write_asize, write_psize, write_sz, headroom,
4947	    buf_compress_minsz;
4948	void *buf_data;
4949	kmutex_t *list_lock;
4950	boolean_t full;
4951	l2arc_write_callback_t *cb;
4952	zio_t *pio, *wzio;
4953	uint64_t guid = spa_load_guid(spa);
4954	const boolean_t do_headroom_boost = *headroom_boost;
4955	int try;
4956
4957	ASSERT(dev->l2ad_vdev != NULL);
4958
4959	/* Lower the flag now, we might want to raise it again later. */
4960	*headroom_boost = B_FALSE;
4961
4962	pio = NULL;
4963	write_sz = write_asize = write_psize = 0;
4964	full = B_FALSE;
4965	head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
4966	head->b_flags |= ARC_L2_WRITE_HEAD;
4967
4968	ARCSTAT_BUMP(arcstat_l2_write_buffer_iter);
4969	/*
4970	 * We will want to try to compress buffers that are at least 2x the
4971	 * device sector size.
4972	 */
4973	buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift;
4974
4975	/*
4976	 * Copy buffers for L2ARC writing.
4977	 */
4978	mutex_enter(&l2arc_buflist_mtx);
4979	for (try = 0; try < 2 * ARC_BUFC_NUMLISTS; try++) {
4980		uint64_t passed_sz = 0;
4981
4982		list = l2arc_list_locked(try, &list_lock);
4983		ARCSTAT_BUMP(arcstat_l2_write_buffer_list_iter);
4984
4985		/*
4986		 * L2ARC fast warmup.
4987		 *
4988		 * Until the ARC is warm and starts to evict, read from the
4989		 * head of the ARC lists rather than the tail.
4990		 */
4991		if (arc_warm == B_FALSE)
4992			ab = list_head(list);
4993		else
4994			ab = list_tail(list);
4995		if (ab == NULL)
4996			ARCSTAT_BUMP(arcstat_l2_write_buffer_list_null_iter);
4997
4998		headroom = target_sz * l2arc_headroom;
4999		if (do_headroom_boost)
5000			headroom = (headroom * l2arc_headroom_boost) / 100;
5001
5002		for (; ab; ab = ab_prev) {
5003			l2arc_buf_hdr_t *l2hdr;
5004			kmutex_t *hash_lock;
5005			uint64_t buf_sz;
5006
5007			if (arc_warm == B_FALSE)
5008				ab_prev = list_next(list, ab);
5009			else
5010				ab_prev = list_prev(list, ab);
5011			ARCSTAT_INCR(arcstat_l2_write_buffer_bytes_scanned, ab->b_size);
5012
5013			hash_lock = HDR_LOCK(ab);
5014			if (!mutex_tryenter(hash_lock)) {
5015				ARCSTAT_BUMP(arcstat_l2_write_trylock_fail);
5016				/*
5017				 * Skip this buffer rather than waiting.
5018				 */
5019				continue;
5020			}
5021
5022			passed_sz += ab->b_size;
5023			if (passed_sz > headroom) {
5024				/*
5025				 * Searched too far.
5026				 */
5027				mutex_exit(hash_lock);
5028				ARCSTAT_BUMP(arcstat_l2_write_passed_headroom);
5029				break;
5030			}
5031
5032			if (!l2arc_write_eligible(guid, ab)) {
5033				mutex_exit(hash_lock);
5034				continue;
5035			}
5036
5037			if ((write_sz + ab->b_size) > target_sz) {
5038				full = B_TRUE;
5039				mutex_exit(hash_lock);
5040				ARCSTAT_BUMP(arcstat_l2_write_full);
5041				break;
5042			}
5043
5044			if (pio == NULL) {
5045				/*
5046				 * Insert a dummy header on the buflist so
5047				 * l2arc_write_done() can find where the
5048				 * write buffers begin without searching.
5049				 */
5050				list_insert_head(dev->l2ad_buflist, head);
5051
5052				cb = kmem_alloc(
5053				    sizeof (l2arc_write_callback_t), KM_SLEEP);
5054				cb->l2wcb_dev = dev;
5055				cb->l2wcb_head = head;
5056				pio = zio_root(spa, l2arc_write_done, cb,
5057				    ZIO_FLAG_CANFAIL);
5058				ARCSTAT_BUMP(arcstat_l2_write_pios);
5059			}
5060
5061			/*
5062			 * Create and add a new L2ARC header.
5063			 */
5064			l2hdr = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP);
5065			l2hdr->b_dev = dev;
5066			ab->b_flags |= ARC_L2_WRITING;
5067
5068			/*
5069			 * Temporarily stash the data buffer in b_tmp_cdata.
5070			 * The subsequent write step will pick it up from
5071			 * there. This is because can't access ab->b_buf
5072			 * without holding the hash_lock, which we in turn
5073			 * can't access without holding the ARC list locks
5074			 * (which we want to avoid during compression/writing).
5075			 */
5076			l2hdr->b_compress = ZIO_COMPRESS_OFF;
5077			l2hdr->b_asize = ab->b_size;
5078			l2hdr->b_tmp_cdata = ab->b_buf->b_data;
5079
5080			buf_sz = ab->b_size;
5081			ab->b_l2hdr = l2hdr;
5082
5083			list_insert_head(dev->l2ad_buflist, ab);
5084
5085			/*
5086			 * Compute and store the buffer cksum before
5087			 * writing.  On debug the cksum is verified first.
5088			 */
5089			arc_cksum_verify(ab->b_buf);
5090			arc_cksum_compute(ab->b_buf, B_TRUE);
5091
5092			mutex_exit(hash_lock);
5093
5094			write_sz += buf_sz;
5095		}
5096
5097		mutex_exit(list_lock);
5098
5099		if (full == B_TRUE)
5100			break;
5101	}
5102
5103	/* No buffers selected for writing? */
5104	if (pio == NULL) {
5105		ASSERT0(write_sz);
5106		mutex_exit(&l2arc_buflist_mtx);
5107		kmem_cache_free(hdr_cache, head);
5108		return (0);
5109	}
5110
5111	/*
5112	 * Now start writing the buffers. We're starting at the write head
5113	 * and work backwards, retracing the course of the buffer selector
5114	 * loop above.
5115	 */
5116	for (ab = list_prev(dev->l2ad_buflist, head); ab;
5117	    ab = list_prev(dev->l2ad_buflist, ab)) {
5118		l2arc_buf_hdr_t *l2hdr;
5119		uint64_t buf_sz;
5120
5121		/*
5122		 * We shouldn't need to lock the buffer here, since we flagged
5123		 * it as ARC_L2_WRITING in the previous step, but we must take
5124		 * care to only access its L2 cache parameters. In particular,
5125		 * ab->b_buf may be invalid by now due to ARC eviction.
5126		 */
5127		l2hdr = ab->b_l2hdr;
5128		l2hdr->b_daddr = dev->l2ad_hand;
5129
5130		if ((ab->b_flags & ARC_L2COMPRESS) &&
5131		    l2hdr->b_asize >= buf_compress_minsz) {
5132			if (l2arc_compress_buf(l2hdr)) {
5133				/*
5134				 * If compression succeeded, enable headroom
5135				 * boost on the next scan cycle.
5136				 */
5137				*headroom_boost = B_TRUE;
5138			}
5139		}
5140
5141		/*
5142		 * Pick up the buffer data we had previously stashed away
5143		 * (and now potentially also compressed).
5144		 */
5145		buf_data = l2hdr->b_tmp_cdata;
5146		buf_sz = l2hdr->b_asize;
5147
5148		/* Compression may have squashed the buffer to zero length. */
5149		if (buf_sz != 0) {
5150			uint64_t buf_p_sz;
5151
5152			wzio = zio_write_phys(pio, dev->l2ad_vdev,
5153			    dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
5154			    NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
5155			    ZIO_FLAG_CANFAIL, B_FALSE);
5156
5157			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
5158			    zio_t *, wzio);
5159			(void) zio_nowait(wzio);
5160
5161			write_asize += buf_sz;
5162			/*
5163			 * Keep the clock hand suitably device-aligned.
5164			 */
5165			buf_p_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
5166			write_psize += buf_p_sz;
5167			dev->l2ad_hand += buf_p_sz;
5168		}
5169	}
5170
5171	mutex_exit(&l2arc_buflist_mtx);
5172
5173	ASSERT3U(write_asize, <=, target_sz);
5174	ARCSTAT_BUMP(arcstat_l2_writes_sent);
5175	ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
5176	ARCSTAT_INCR(arcstat_l2_size, write_sz);
5177	ARCSTAT_INCR(arcstat_l2_asize, write_asize);
5178	vdev_space_update(dev->l2ad_vdev, write_psize, 0, 0);
5179
5180	/*
5181	 * Bump device hand to the device start if it is approaching the end.
5182	 * l2arc_evict() will already have evicted ahead for this case.
5183	 */
5184	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
5185		vdev_space_update(dev->l2ad_vdev,
5186		    dev->l2ad_end - dev->l2ad_hand, 0, 0);
5187		dev->l2ad_hand = dev->l2ad_start;
5188		dev->l2ad_evict = dev->l2ad_start;
5189		dev->l2ad_first = B_FALSE;
5190	}
5191
5192	dev->l2ad_writing = B_TRUE;
5193	(void) zio_wait(pio);
5194	dev->l2ad_writing = B_FALSE;
5195
5196	return (write_asize);
5197}
5198
5199/*
5200 * Compresses an L2ARC buffer.
5201 * The data to be compressed must be prefilled in l2hdr->b_tmp_cdata and its
5202 * size in l2hdr->b_asize. This routine tries to compress the data and
5203 * depending on the compression result there are three possible outcomes:
5204 * *) The buffer was incompressible. The original l2hdr contents were left
5205 *    untouched and are ready for writing to an L2 device.
5206 * *) The buffer was all-zeros, so there is no need to write it to an L2
5207 *    device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is
5208 *    set to zero and b_compress is set to ZIO_COMPRESS_EMPTY.
5209 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary
5210 *    data buffer which holds the compressed data to be written, and b_asize
5211 *    tells us how much data there is. b_compress is set to the appropriate
5212 *    compression algorithm. Once writing is done, invoke
5213 *    l2arc_release_cdata_buf on this l2hdr to free this temporary buffer.
5214 *
5215 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the
5216 * buffer was incompressible).
5217 */
5218static boolean_t
5219l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr)
5220{
5221	void *cdata;
5222	size_t csize, len, rounded;
5223
5224	ASSERT(l2hdr->b_compress == ZIO_COMPRESS_OFF);
5225	ASSERT(l2hdr->b_tmp_cdata != NULL);
5226
5227	len = l2hdr->b_asize;
5228	cdata = zio_data_buf_alloc(len);
5229	csize = zio_compress_data(ZIO_COMPRESS_LZ4, l2hdr->b_tmp_cdata,
5230	    cdata, l2hdr->b_asize, (size_t)(1ULL << l2hdr->b_dev->l2ad_vdev->vdev_ashift));
5231
5232	rounded = P2ROUNDUP(csize, (size_t)SPA_MINBLOCKSIZE);
5233	if (rounded > csize) {
5234		bzero((char *)cdata + csize, rounded - csize);
5235		csize = rounded;
5236	}
5237
5238	if (csize == 0) {
5239		/* zero block, indicate that there's nothing to write */
5240		zio_data_buf_free(cdata, len);
5241		l2hdr->b_compress = ZIO_COMPRESS_EMPTY;
5242		l2hdr->b_asize = 0;
5243		l2hdr->b_tmp_cdata = NULL;
5244		ARCSTAT_BUMP(arcstat_l2_compress_zeros);
5245		return (B_TRUE);
5246	} else if (csize > 0 && csize < len) {
5247		/*
5248		 * Compression succeeded, we'll keep the cdata around for
5249		 * writing and release it afterwards.
5250		 */
5251		l2hdr->b_compress = ZIO_COMPRESS_LZ4;
5252		l2hdr->b_asize = csize;
5253		l2hdr->b_tmp_cdata = cdata;
5254		ARCSTAT_BUMP(arcstat_l2_compress_successes);
5255		return (B_TRUE);
5256	} else {
5257		/*
5258		 * Compression failed, release the compressed buffer.
5259		 * l2hdr will be left unmodified.
5260		 */
5261		zio_data_buf_free(cdata, len);
5262		ARCSTAT_BUMP(arcstat_l2_compress_failures);
5263		return (B_FALSE);
5264	}
5265}
5266
5267/*
5268 * Decompresses a zio read back from an l2arc device. On success, the
5269 * underlying zio's io_data buffer is overwritten by the uncompressed
5270 * version. On decompression error (corrupt compressed stream), the
5271 * zio->io_error value is set to signal an I/O error.
5272 *
5273 * Please note that the compressed data stream is not checksummed, so
5274 * if the underlying device is experiencing data corruption, we may feed
5275 * corrupt data to the decompressor, so the decompressor needs to be
5276 * able to handle this situation (LZ4 does).
5277 */
5278static void
5279l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c)
5280{
5281	ASSERT(L2ARC_IS_VALID_COMPRESS(c));
5282
5283	if (zio->io_error != 0) {
5284		/*
5285		 * An io error has occured, just restore the original io
5286		 * size in preparation for a main pool read.
5287		 */
5288		zio->io_orig_size = zio->io_size = hdr->b_size;
5289		return;
5290	}
5291
5292	if (c == ZIO_COMPRESS_EMPTY) {
5293		/*
5294		 * An empty buffer results in a null zio, which means we
5295		 * need to fill its io_data after we're done restoring the
5296		 * buffer's contents.
5297		 */
5298		ASSERT(hdr->b_buf != NULL);
5299		bzero(hdr->b_buf->b_data, hdr->b_size);
5300		zio->io_data = zio->io_orig_data = hdr->b_buf->b_data;
5301	} else {
5302		ASSERT(zio->io_data != NULL);
5303		/*
5304		 * We copy the compressed data from the start of the arc buffer
5305		 * (the zio_read will have pulled in only what we need, the
5306		 * rest is garbage which we will overwrite at decompression)
5307		 * and then decompress back to the ARC data buffer. This way we
5308		 * can minimize copying by simply decompressing back over the
5309		 * original compressed data (rather than decompressing to an
5310		 * aux buffer and then copying back the uncompressed buffer,
5311		 * which is likely to be much larger).
5312		 */
5313		uint64_t csize;
5314		void *cdata;
5315
5316		csize = zio->io_size;
5317		cdata = zio_data_buf_alloc(csize);
5318		bcopy(zio->io_data, cdata, csize);
5319		if (zio_decompress_data(c, cdata, zio->io_data, csize,
5320		    hdr->b_size) != 0)
5321			zio->io_error = EIO;
5322		zio_data_buf_free(cdata, csize);
5323	}
5324
5325	/* Restore the expected uncompressed IO size. */
5326	zio->io_orig_size = zio->io_size = hdr->b_size;
5327}
5328
5329/*
5330 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure.
5331 * This buffer serves as a temporary holder of compressed data while
5332 * the buffer entry is being written to an l2arc device. Once that is
5333 * done, we can dispose of it.
5334 */
5335static void
5336l2arc_release_cdata_buf(arc_buf_hdr_t *ab)
5337{
5338	l2arc_buf_hdr_t *l2hdr = ab->b_l2hdr;
5339
5340	if (l2hdr->b_compress == ZIO_COMPRESS_LZ4) {
5341		/*
5342		 * If the data was compressed, then we've allocated a
5343		 * temporary buffer for it, so now we need to release it.
5344		 */
5345		ASSERT(l2hdr->b_tmp_cdata != NULL);
5346		zio_data_buf_free(l2hdr->b_tmp_cdata, ab->b_size);
5347	}
5348	l2hdr->b_tmp_cdata = NULL;
5349}
5350
5351/*
5352 * This thread feeds the L2ARC at regular intervals.  This is the beating
5353 * heart of the L2ARC.
5354 */
5355static void
5356l2arc_feed_thread(void *dummy __unused)
5357{
5358	callb_cpr_t cpr;
5359	l2arc_dev_t *dev;
5360	spa_t *spa;
5361	uint64_t size, wrote;
5362	clock_t begin, next = ddi_get_lbolt();
5363	boolean_t headroom_boost = B_FALSE;
5364
5365	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
5366
5367	mutex_enter(&l2arc_feed_thr_lock);
5368
5369	while (l2arc_thread_exit == 0) {
5370		CALLB_CPR_SAFE_BEGIN(&cpr);
5371		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
5372		    next - ddi_get_lbolt());
5373		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
5374		next = ddi_get_lbolt() + hz;
5375
5376		/*
5377		 * Quick check for L2ARC devices.
5378		 */
5379		mutex_enter(&l2arc_dev_mtx);
5380		if (l2arc_ndev == 0) {
5381			mutex_exit(&l2arc_dev_mtx);
5382			continue;
5383		}
5384		mutex_exit(&l2arc_dev_mtx);
5385		begin = ddi_get_lbolt();
5386
5387		/*
5388		 * This selects the next l2arc device to write to, and in
5389		 * doing so the next spa to feed from: dev->l2ad_spa.   This
5390		 * will return NULL if there are now no l2arc devices or if
5391		 * they are all faulted.
5392		 *
5393		 * If a device is returned, its spa's config lock is also
5394		 * held to prevent device removal.  l2arc_dev_get_next()
5395		 * will grab and release l2arc_dev_mtx.
5396		 */
5397		if ((dev = l2arc_dev_get_next()) == NULL)
5398			continue;
5399
5400		spa = dev->l2ad_spa;
5401		ASSERT(spa != NULL);
5402
5403		/*
5404		 * If the pool is read-only then force the feed thread to
5405		 * sleep a little longer.
5406		 */
5407		if (!spa_writeable(spa)) {
5408			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
5409			spa_config_exit(spa, SCL_L2ARC, dev);
5410			continue;
5411		}
5412
5413		/*
5414		 * Avoid contributing to memory pressure.
5415		 */
5416		if (arc_reclaim_needed()) {
5417			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
5418			spa_config_exit(spa, SCL_L2ARC, dev);
5419			continue;
5420		}
5421
5422		ARCSTAT_BUMP(arcstat_l2_feeds);
5423
5424		size = l2arc_write_size();
5425
5426		/*
5427		 * Evict L2ARC buffers that will be overwritten.
5428		 */
5429		l2arc_evict(dev, size, B_FALSE);
5430
5431		/*
5432		 * Write ARC buffers.
5433		 */
5434		wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost);
5435
5436		/*
5437		 * Calculate interval between writes.
5438		 */
5439		next = l2arc_write_interval(begin, size, wrote);
5440		spa_config_exit(spa, SCL_L2ARC, dev);
5441	}
5442
5443	l2arc_thread_exit = 0;
5444	cv_broadcast(&l2arc_feed_thr_cv);
5445	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
5446	thread_exit();
5447}
5448
5449boolean_t
5450l2arc_vdev_present(vdev_t *vd)
5451{
5452	l2arc_dev_t *dev;
5453
5454	mutex_enter(&l2arc_dev_mtx);
5455	for (dev = list_head(l2arc_dev_list); dev != NULL;
5456	    dev = list_next(l2arc_dev_list, dev)) {
5457		if (dev->l2ad_vdev == vd)
5458			break;
5459	}
5460	mutex_exit(&l2arc_dev_mtx);
5461
5462	return (dev != NULL);
5463}
5464
5465/*
5466 * Add a vdev for use by the L2ARC.  By this point the spa has already
5467 * validated the vdev and opened it.
5468 */
5469void
5470l2arc_add_vdev(spa_t *spa, vdev_t *vd)
5471{
5472	l2arc_dev_t *adddev;
5473
5474	ASSERT(!l2arc_vdev_present(vd));
5475
5476	vdev_ashift_optimize(vd);
5477
5478	/*
5479	 * Create a new l2arc device entry.
5480	 */
5481	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
5482	adddev->l2ad_spa = spa;
5483	adddev->l2ad_vdev = vd;
5484	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
5485	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
5486	adddev->l2ad_hand = adddev->l2ad_start;
5487	adddev->l2ad_evict = adddev->l2ad_start;
5488	adddev->l2ad_first = B_TRUE;
5489	adddev->l2ad_writing = B_FALSE;
5490
5491	/*
5492	 * This is a list of all ARC buffers that are still valid on the
5493	 * device.
5494	 */
5495	adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
5496	list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
5497	    offsetof(arc_buf_hdr_t, b_l2node));
5498
5499	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
5500
5501	/*
5502	 * Add device to global list
5503	 */
5504	mutex_enter(&l2arc_dev_mtx);
5505	list_insert_head(l2arc_dev_list, adddev);
5506	atomic_inc_64(&l2arc_ndev);
5507	mutex_exit(&l2arc_dev_mtx);
5508}
5509
5510/*
5511 * Remove a vdev from the L2ARC.
5512 */
5513void
5514l2arc_remove_vdev(vdev_t *vd)
5515{
5516	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
5517
5518	/*
5519	 * Find the device by vdev
5520	 */
5521	mutex_enter(&l2arc_dev_mtx);
5522	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
5523		nextdev = list_next(l2arc_dev_list, dev);
5524		if (vd == dev->l2ad_vdev) {
5525			remdev = dev;
5526			break;
5527		}
5528	}
5529	ASSERT(remdev != NULL);
5530
5531	/*
5532	 * Remove device from global list
5533	 */
5534	list_remove(l2arc_dev_list, remdev);
5535	l2arc_dev_last = NULL;		/* may have been invalidated */
5536	atomic_dec_64(&l2arc_ndev);
5537	mutex_exit(&l2arc_dev_mtx);
5538
5539	/*
5540	 * Clear all buflists and ARC references.  L2ARC device flush.
5541	 */
5542	l2arc_evict(remdev, 0, B_TRUE);
5543	list_destroy(remdev->l2ad_buflist);
5544	kmem_free(remdev->l2ad_buflist, sizeof (list_t));
5545	kmem_free(remdev, sizeof (l2arc_dev_t));
5546}
5547
5548void
5549l2arc_init(void)
5550{
5551	l2arc_thread_exit = 0;
5552	l2arc_ndev = 0;
5553	l2arc_writes_sent = 0;
5554	l2arc_writes_done = 0;
5555
5556	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
5557	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
5558	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
5559	mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
5560	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
5561
5562	l2arc_dev_list = &L2ARC_dev_list;
5563	l2arc_free_on_write = &L2ARC_free_on_write;
5564	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
5565	    offsetof(l2arc_dev_t, l2ad_node));
5566	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
5567	    offsetof(l2arc_data_free_t, l2df_list_node));
5568}
5569
5570void
5571l2arc_fini(void)
5572{
5573	/*
5574	 * This is called from dmu_fini(), which is called from spa_fini();
5575	 * Because of this, we can assume that all l2arc devices have
5576	 * already been removed when the pools themselves were removed.
5577	 */
5578
5579	l2arc_do_free_on_write();
5580
5581	mutex_destroy(&l2arc_feed_thr_lock);
5582	cv_destroy(&l2arc_feed_thr_cv);
5583	mutex_destroy(&l2arc_dev_mtx);
5584	mutex_destroy(&l2arc_buflist_mtx);
5585	mutex_destroy(&l2arc_free_on_write_mtx);
5586
5587	list_destroy(l2arc_dev_list);
5588	list_destroy(l2arc_free_on_write);
5589}
5590
5591void
5592l2arc_start(void)
5593{
5594	if (!(spa_mode_global & FWRITE))
5595		return;
5596
5597	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
5598	    TS_RUN, minclsyspri);
5599}
5600
5601void
5602l2arc_stop(void)
5603{
5604	if (!(spa_mode_global & FWRITE))
5605		return;
5606
5607	mutex_enter(&l2arc_feed_thr_lock);
5608	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
5609	l2arc_thread_exit = 1;
5610	while (l2arc_thread_exit != 0)
5611		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
5612	mutex_exit(&l2arc_feed_thr_lock);
5613}
5614