arc.c revision 260763
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
26 */
27
28/*
29 * DVA-based Adjustable Replacement Cache
30 *
31 * While much of the theory of operation used here is
32 * based on the self-tuning, low overhead replacement cache
33 * presented by Megiddo and Modha at FAST 2003, there are some
34 * significant differences:
35 *
36 * 1. The Megiddo and Modha model assumes any page is evictable.
37 * Pages in its cache cannot be "locked" into memory.  This makes
38 * the eviction algorithm simple: evict the last page in the list.
39 * This also make the performance characteristics easy to reason
40 * about.  Our cache is not so simple.  At any given moment, some
41 * subset of the blocks in the cache are un-evictable because we
42 * have handed out a reference to them.  Blocks are only evictable
43 * when there are no external references active.  This makes
44 * eviction far more problematic:  we choose to evict the evictable
45 * blocks that are the "lowest" in the list.
46 *
47 * There are times when it is not possible to evict the requested
48 * space.  In these circumstances we are unable to adjust the cache
49 * size.  To prevent the cache growing unbounded at these times we
50 * implement a "cache throttle" that slows the flow of new data
51 * into the cache until we can make space available.
52 *
53 * 2. The Megiddo and Modha model assumes a fixed cache size.
54 * Pages are evicted when the cache is full and there is a cache
55 * miss.  Our model has a variable sized cache.  It grows with
56 * high use, but also tries to react to memory pressure from the
57 * operating system: decreasing its size when system memory is
58 * tight.
59 *
60 * 3. The Megiddo and Modha model assumes a fixed page size. All
61 * elements of the cache are therefore exactly the same size.  So
62 * when adjusting the cache size following a cache miss, its simply
63 * a matter of choosing a single page to evict.  In our model, we
64 * have variable sized cache blocks (rangeing from 512 bytes to
65 * 128K bytes).  We therefore choose a set of blocks to evict to make
66 * space for a cache miss that approximates as closely as possible
67 * the space used by the new block.
68 *
69 * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
70 * by N. Megiddo & D. Modha, FAST 2003
71 */
72
73/*
74 * The locking model:
75 *
76 * A new reference to a cache buffer can be obtained in two
77 * ways: 1) via a hash table lookup using the DVA as a key,
78 * or 2) via one of the ARC lists.  The arc_read() interface
79 * uses method 1, while the internal arc algorithms for
80 * adjusting the cache use method 2.  We therefore provide two
81 * types of locks: 1) the hash table lock array, and 2) the
82 * arc list locks.
83 *
84 * Buffers do not have their own mutexs, rather they rely on the
85 * hash table mutexs for the bulk of their protection (i.e. most
86 * fields in the arc_buf_hdr_t are protected by these mutexs).
87 *
88 * buf_hash_find() returns the appropriate mutex (held) when it
89 * locates the requested buffer in the hash table.  It returns
90 * NULL for the mutex if the buffer was not in the table.
91 *
92 * buf_hash_remove() expects the appropriate hash mutex to be
93 * already held before it is invoked.
94 *
95 * Each arc state also has a mutex which is used to protect the
96 * buffer list associated with the state.  When attempting to
97 * obtain a hash table lock while holding an arc list lock you
98 * must use: mutex_tryenter() to avoid deadlock.  Also note that
99 * the active state mutex must be held before the ghost state mutex.
100 *
101 * Arc buffers may have an associated eviction callback function.
102 * This function will be invoked prior to removing the buffer (e.g.
103 * in arc_do_user_evicts()).  Note however that the data associated
104 * with the buffer may be evicted prior to the callback.  The callback
105 * must be made with *no locks held* (to prevent deadlock).  Additionally,
106 * the users of callbacks must ensure that their private data is
107 * protected from simultaneous callbacks from arc_buf_evict()
108 * and arc_do_user_evicts().
109 *
110 * Note that the majority of the performance stats are manipulated
111 * with atomic operations.
112 *
113 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
114 *
115 *	- L2ARC buflist creation
116 *	- L2ARC buflist eviction
117 *	- L2ARC write completion, which walks L2ARC buflists
118 *	- ARC header destruction, as it removes from L2ARC buflists
119 *	- ARC header release, as it removes from L2ARC buflists
120 */
121
122#include <sys/spa.h>
123#include <sys/zio.h>
124#include <sys/zio_compress.h>
125#include <sys/zfs_context.h>
126#include <sys/arc.h>
127#include <sys/refcount.h>
128#include <sys/vdev.h>
129#include <sys/vdev_impl.h>
130#include <sys/dsl_pool.h>
131#ifdef _KERNEL
132#include <sys/dnlc.h>
133#endif
134#include <sys/callb.h>
135#include <sys/kstat.h>
136#include <sys/trim_map.h>
137#include <zfs_fletcher.h>
138#include <sys/sdt.h>
139
140#include <vm/vm_pageout.h>
141
142#ifdef illumos
143#ifndef _KERNEL
144/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
145boolean_t arc_watch = B_FALSE;
146int arc_procfd;
147#endif
148#endif /* illumos */
149
150static kmutex_t		arc_reclaim_thr_lock;
151static kcondvar_t	arc_reclaim_thr_cv;	/* used to signal reclaim thr */
152static uint8_t		arc_thread_exit;
153
154#define	ARC_REDUCE_DNLC_PERCENT	3
155uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
156
157typedef enum arc_reclaim_strategy {
158	ARC_RECLAIM_AGGR,		/* Aggressive reclaim strategy */
159	ARC_RECLAIM_CONS		/* Conservative reclaim strategy */
160} arc_reclaim_strategy_t;
161
162/*
163 * The number of iterations through arc_evict_*() before we
164 * drop & reacquire the lock.
165 */
166int arc_evict_iterations = 100;
167
168/* number of seconds before growing cache again */
169static int		arc_grow_retry = 60;
170
171/* shift of arc_c for calculating both min and max arc_p */
172static int		arc_p_min_shift = 4;
173
174/* log2(fraction of arc to reclaim) */
175static int		arc_shrink_shift = 5;
176
177/*
178 * minimum lifespan of a prefetch block in clock ticks
179 * (initialized in arc_init())
180 */
181static int		arc_min_prefetch_lifespan;
182
183/*
184 * If this percent of memory is free, don't throttle.
185 */
186int arc_lotsfree_percent = 10;
187
188static int arc_dead;
189extern int zfs_prefetch_disable;
190
191/*
192 * The arc has filled available memory and has now warmed up.
193 */
194static boolean_t arc_warm;
195
196/*
197 * These tunables are for performance analysis.
198 */
199uint64_t zfs_arc_max;
200uint64_t zfs_arc_min;
201uint64_t zfs_arc_meta_limit = 0;
202int zfs_arc_grow_retry = 0;
203int zfs_arc_shrink_shift = 0;
204int zfs_arc_p_min_shift = 0;
205int zfs_disable_dup_eviction = 0;
206
207TUNABLE_QUAD("vfs.zfs.arc_max", &zfs_arc_max);
208TUNABLE_QUAD("vfs.zfs.arc_min", &zfs_arc_min);
209TUNABLE_QUAD("vfs.zfs.arc_meta_limit", &zfs_arc_meta_limit);
210SYSCTL_DECL(_vfs_zfs);
211SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_max, CTLFLAG_RDTUN, &zfs_arc_max, 0,
212    "Maximum ARC size");
213SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_min, CTLFLAG_RDTUN, &zfs_arc_min, 0,
214    "Minimum ARC size");
215
216/*
217 * Note that buffers can be in one of 6 states:
218 *	ARC_anon	- anonymous (discussed below)
219 *	ARC_mru		- recently used, currently cached
220 *	ARC_mru_ghost	- recentely used, no longer in cache
221 *	ARC_mfu		- frequently used, currently cached
222 *	ARC_mfu_ghost	- frequently used, no longer in cache
223 *	ARC_l2c_only	- exists in L2ARC but not other states
224 * When there are no active references to the buffer, they are
225 * are linked onto a list in one of these arc states.  These are
226 * the only buffers that can be evicted or deleted.  Within each
227 * state there are multiple lists, one for meta-data and one for
228 * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
229 * etc.) is tracked separately so that it can be managed more
230 * explicitly: favored over data, limited explicitly.
231 *
232 * Anonymous buffers are buffers that are not associated with
233 * a DVA.  These are buffers that hold dirty block copies
234 * before they are written to stable storage.  By definition,
235 * they are "ref'd" and are considered part of arc_mru
236 * that cannot be freed.  Generally, they will aquire a DVA
237 * as they are written and migrate onto the arc_mru list.
238 *
239 * The ARC_l2c_only state is for buffers that are in the second
240 * level ARC but no longer in any of the ARC_m* lists.  The second
241 * level ARC itself may also contain buffers that are in any of
242 * the ARC_m* states - meaning that a buffer can exist in two
243 * places.  The reason for the ARC_l2c_only state is to keep the
244 * buffer header in the hash table, so that reads that hit the
245 * second level ARC benefit from these fast lookups.
246 */
247
248#define	ARCS_LOCK_PAD		CACHE_LINE_SIZE
249struct arcs_lock {
250	kmutex_t	arcs_lock;
251#ifdef _KERNEL
252	unsigned char	pad[(ARCS_LOCK_PAD - sizeof (kmutex_t))];
253#endif
254};
255
256/*
257 * must be power of two for mask use to work
258 *
259 */
260#define ARC_BUFC_NUMDATALISTS		16
261#define ARC_BUFC_NUMMETADATALISTS	16
262#define ARC_BUFC_NUMLISTS	(ARC_BUFC_NUMMETADATALISTS + ARC_BUFC_NUMDATALISTS)
263
264typedef struct arc_state {
265	uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];	/* amount of evictable data */
266	uint64_t arcs_size;	/* total amount of data in this state */
267	list_t	arcs_lists[ARC_BUFC_NUMLISTS]; /* list of evictable buffers */
268	struct arcs_lock arcs_locks[ARC_BUFC_NUMLISTS] __aligned(CACHE_LINE_SIZE);
269} arc_state_t;
270
271#define ARCS_LOCK(s, i)	(&((s)->arcs_locks[(i)].arcs_lock))
272
273/* The 6 states: */
274static arc_state_t ARC_anon;
275static arc_state_t ARC_mru;
276static arc_state_t ARC_mru_ghost;
277static arc_state_t ARC_mfu;
278static arc_state_t ARC_mfu_ghost;
279static arc_state_t ARC_l2c_only;
280
281typedef struct arc_stats {
282	kstat_named_t arcstat_hits;
283	kstat_named_t arcstat_misses;
284	kstat_named_t arcstat_demand_data_hits;
285	kstat_named_t arcstat_demand_data_misses;
286	kstat_named_t arcstat_demand_metadata_hits;
287	kstat_named_t arcstat_demand_metadata_misses;
288	kstat_named_t arcstat_prefetch_data_hits;
289	kstat_named_t arcstat_prefetch_data_misses;
290	kstat_named_t arcstat_prefetch_metadata_hits;
291	kstat_named_t arcstat_prefetch_metadata_misses;
292	kstat_named_t arcstat_mru_hits;
293	kstat_named_t arcstat_mru_ghost_hits;
294	kstat_named_t arcstat_mfu_hits;
295	kstat_named_t arcstat_mfu_ghost_hits;
296	kstat_named_t arcstat_allocated;
297	kstat_named_t arcstat_deleted;
298	kstat_named_t arcstat_stolen;
299	kstat_named_t arcstat_recycle_miss;
300	/*
301	 * Number of buffers that could not be evicted because the hash lock
302	 * was held by another thread.  The lock may not necessarily be held
303	 * by something using the same buffer, since hash locks are shared
304	 * by multiple buffers.
305	 */
306	kstat_named_t arcstat_mutex_miss;
307	/*
308	 * Number of buffers skipped because they have I/O in progress, are
309	 * indrect prefetch buffers that have not lived long enough, or are
310	 * not from the spa we're trying to evict from.
311	 */
312	kstat_named_t arcstat_evict_skip;
313	kstat_named_t arcstat_evict_l2_cached;
314	kstat_named_t arcstat_evict_l2_eligible;
315	kstat_named_t arcstat_evict_l2_ineligible;
316	kstat_named_t arcstat_hash_elements;
317	kstat_named_t arcstat_hash_elements_max;
318	kstat_named_t arcstat_hash_collisions;
319	kstat_named_t arcstat_hash_chains;
320	kstat_named_t arcstat_hash_chain_max;
321	kstat_named_t arcstat_p;
322	kstat_named_t arcstat_c;
323	kstat_named_t arcstat_c_min;
324	kstat_named_t arcstat_c_max;
325	kstat_named_t arcstat_size;
326	kstat_named_t arcstat_hdr_size;
327	kstat_named_t arcstat_data_size;
328	kstat_named_t arcstat_other_size;
329	kstat_named_t arcstat_l2_hits;
330	kstat_named_t arcstat_l2_misses;
331	kstat_named_t arcstat_l2_feeds;
332	kstat_named_t arcstat_l2_rw_clash;
333	kstat_named_t arcstat_l2_read_bytes;
334	kstat_named_t arcstat_l2_write_bytes;
335	kstat_named_t arcstat_l2_writes_sent;
336	kstat_named_t arcstat_l2_writes_done;
337	kstat_named_t arcstat_l2_writes_error;
338	kstat_named_t arcstat_l2_writes_hdr_miss;
339	kstat_named_t arcstat_l2_evict_lock_retry;
340	kstat_named_t arcstat_l2_evict_reading;
341	kstat_named_t arcstat_l2_free_on_write;
342	kstat_named_t arcstat_l2_abort_lowmem;
343	kstat_named_t arcstat_l2_cksum_bad;
344	kstat_named_t arcstat_l2_io_error;
345	kstat_named_t arcstat_l2_size;
346	kstat_named_t arcstat_l2_asize;
347	kstat_named_t arcstat_l2_hdr_size;
348	kstat_named_t arcstat_l2_compress_successes;
349	kstat_named_t arcstat_l2_compress_zeros;
350	kstat_named_t arcstat_l2_compress_failures;
351	kstat_named_t arcstat_l2_write_trylock_fail;
352	kstat_named_t arcstat_l2_write_passed_headroom;
353	kstat_named_t arcstat_l2_write_spa_mismatch;
354	kstat_named_t arcstat_l2_write_in_l2;
355	kstat_named_t arcstat_l2_write_hdr_io_in_progress;
356	kstat_named_t arcstat_l2_write_not_cacheable;
357	kstat_named_t arcstat_l2_write_full;
358	kstat_named_t arcstat_l2_write_buffer_iter;
359	kstat_named_t arcstat_l2_write_pios;
360	kstat_named_t arcstat_l2_write_buffer_bytes_scanned;
361	kstat_named_t arcstat_l2_write_buffer_list_iter;
362	kstat_named_t arcstat_l2_write_buffer_list_null_iter;
363	kstat_named_t arcstat_memory_throttle_count;
364	kstat_named_t arcstat_duplicate_buffers;
365	kstat_named_t arcstat_duplicate_buffers_size;
366	kstat_named_t arcstat_duplicate_reads;
367} arc_stats_t;
368
369static arc_stats_t arc_stats = {
370	{ "hits",			KSTAT_DATA_UINT64 },
371	{ "misses",			KSTAT_DATA_UINT64 },
372	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
373	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
374	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
375	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
376	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
377	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
378	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
379	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
380	{ "mru_hits",			KSTAT_DATA_UINT64 },
381	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
382	{ "mfu_hits",			KSTAT_DATA_UINT64 },
383	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
384	{ "allocated",			KSTAT_DATA_UINT64 },
385	{ "deleted",			KSTAT_DATA_UINT64 },
386	{ "stolen",			KSTAT_DATA_UINT64 },
387	{ "recycle_miss",		KSTAT_DATA_UINT64 },
388	{ "mutex_miss",			KSTAT_DATA_UINT64 },
389	{ "evict_skip",			KSTAT_DATA_UINT64 },
390	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
391	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
392	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
393	{ "hash_elements",		KSTAT_DATA_UINT64 },
394	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
395	{ "hash_collisions",		KSTAT_DATA_UINT64 },
396	{ "hash_chains",		KSTAT_DATA_UINT64 },
397	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
398	{ "p",				KSTAT_DATA_UINT64 },
399	{ "c",				KSTAT_DATA_UINT64 },
400	{ "c_min",			KSTAT_DATA_UINT64 },
401	{ "c_max",			KSTAT_DATA_UINT64 },
402	{ "size",			KSTAT_DATA_UINT64 },
403	{ "hdr_size",			KSTAT_DATA_UINT64 },
404	{ "data_size",			KSTAT_DATA_UINT64 },
405	{ "other_size",			KSTAT_DATA_UINT64 },
406	{ "l2_hits",			KSTAT_DATA_UINT64 },
407	{ "l2_misses",			KSTAT_DATA_UINT64 },
408	{ "l2_feeds",			KSTAT_DATA_UINT64 },
409	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
410	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
411	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
412	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
413	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
414	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
415	{ "l2_writes_hdr_miss",		KSTAT_DATA_UINT64 },
416	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
417	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
418	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
419	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
420	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
421	{ "l2_io_error",		KSTAT_DATA_UINT64 },
422	{ "l2_size",			KSTAT_DATA_UINT64 },
423	{ "l2_asize",			KSTAT_DATA_UINT64 },
424	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
425	{ "l2_compress_successes",	KSTAT_DATA_UINT64 },
426	{ "l2_compress_zeros",		KSTAT_DATA_UINT64 },
427	{ "l2_compress_failures",	KSTAT_DATA_UINT64 },
428	{ "l2_write_trylock_fail",	KSTAT_DATA_UINT64 },
429	{ "l2_write_passed_headroom",	KSTAT_DATA_UINT64 },
430	{ "l2_write_spa_mismatch",	KSTAT_DATA_UINT64 },
431	{ "l2_write_in_l2",		KSTAT_DATA_UINT64 },
432	{ "l2_write_io_in_progress",	KSTAT_DATA_UINT64 },
433	{ "l2_write_not_cacheable",	KSTAT_DATA_UINT64 },
434	{ "l2_write_full",		KSTAT_DATA_UINT64 },
435	{ "l2_write_buffer_iter",	KSTAT_DATA_UINT64 },
436	{ "l2_write_pios",		KSTAT_DATA_UINT64 },
437	{ "l2_write_buffer_bytes_scanned", KSTAT_DATA_UINT64 },
438	{ "l2_write_buffer_list_iter",	KSTAT_DATA_UINT64 },
439	{ "l2_write_buffer_list_null_iter", KSTAT_DATA_UINT64 },
440	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
441	{ "duplicate_buffers",		KSTAT_DATA_UINT64 },
442	{ "duplicate_buffers_size",	KSTAT_DATA_UINT64 },
443	{ "duplicate_reads",		KSTAT_DATA_UINT64 }
444};
445
446#define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
447
448#define	ARCSTAT_INCR(stat, val) \
449	atomic_add_64(&arc_stats.stat.value.ui64, (val))
450
451#define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
452#define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
453
454#define	ARCSTAT_MAX(stat, val) {					\
455	uint64_t m;							\
456	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
457	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
458		continue;						\
459}
460
461#define	ARCSTAT_MAXSTAT(stat) \
462	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
463
464/*
465 * We define a macro to allow ARC hits/misses to be easily broken down by
466 * two separate conditions, giving a total of four different subtypes for
467 * each of hits and misses (so eight statistics total).
468 */
469#define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
470	if (cond1) {							\
471		if (cond2) {						\
472			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
473		} else {						\
474			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
475		}							\
476	} else {							\
477		if (cond2) {						\
478			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
479		} else {						\
480			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
481		}							\
482	}
483
484kstat_t			*arc_ksp;
485static arc_state_t	*arc_anon;
486static arc_state_t	*arc_mru;
487static arc_state_t	*arc_mru_ghost;
488static arc_state_t	*arc_mfu;
489static arc_state_t	*arc_mfu_ghost;
490static arc_state_t	*arc_l2c_only;
491
492/*
493 * There are several ARC variables that are critical to export as kstats --
494 * but we don't want to have to grovel around in the kstat whenever we wish to
495 * manipulate them.  For these variables, we therefore define them to be in
496 * terms of the statistic variable.  This assures that we are not introducing
497 * the possibility of inconsistency by having shadow copies of the variables,
498 * while still allowing the code to be readable.
499 */
500#define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
501#define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
502#define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
503#define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
504#define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
505
506#define	L2ARC_IS_VALID_COMPRESS(_c_) \
507	((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY)
508
509static int		arc_no_grow;	/* Don't try to grow cache size */
510static uint64_t		arc_tempreserve;
511static uint64_t		arc_loaned_bytes;
512static uint64_t		arc_meta_used;
513static uint64_t		arc_meta_limit;
514static uint64_t		arc_meta_max = 0;
515SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_meta_used, CTLFLAG_RD, &arc_meta_used, 0,
516    "ARC metadata used");
517SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_meta_limit, CTLFLAG_RW, &arc_meta_limit, 0,
518    "ARC metadata limit");
519
520typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
521
522typedef struct arc_callback arc_callback_t;
523
524struct arc_callback {
525	void			*acb_private;
526	arc_done_func_t		*acb_done;
527	arc_buf_t		*acb_buf;
528	zio_t			*acb_zio_dummy;
529	arc_callback_t		*acb_next;
530};
531
532typedef struct arc_write_callback arc_write_callback_t;
533
534struct arc_write_callback {
535	void		*awcb_private;
536	arc_done_func_t	*awcb_ready;
537	arc_done_func_t	*awcb_physdone;
538	arc_done_func_t	*awcb_done;
539	arc_buf_t	*awcb_buf;
540};
541
542struct arc_buf_hdr {
543	/* protected by hash lock */
544	dva_t			b_dva;
545	uint64_t		b_birth;
546	uint64_t		b_cksum0;
547
548	kmutex_t		b_freeze_lock;
549	zio_cksum_t		*b_freeze_cksum;
550	void			*b_thawed;
551
552	arc_buf_hdr_t		*b_hash_next;
553	arc_buf_t		*b_buf;
554	uint32_t		b_flags;
555	uint32_t		b_datacnt;
556
557	arc_callback_t		*b_acb;
558	kcondvar_t		b_cv;
559
560	/* immutable */
561	arc_buf_contents_t	b_type;
562	uint64_t		b_size;
563	uint64_t		b_spa;
564
565	/* protected by arc state mutex */
566	arc_state_t		*b_state;
567	list_node_t		b_arc_node;
568
569	/* updated atomically */
570	clock_t			b_arc_access;
571
572	/* self protecting */
573	refcount_t		b_refcnt;
574
575	l2arc_buf_hdr_t		*b_l2hdr;
576	list_node_t		b_l2node;
577};
578
579static arc_buf_t *arc_eviction_list;
580static kmutex_t arc_eviction_mtx;
581static arc_buf_hdr_t arc_eviction_hdr;
582static void arc_get_data_buf(arc_buf_t *buf);
583static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
584static int arc_evict_needed(arc_buf_contents_t type);
585static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes);
586#ifdef illumos
587static void arc_buf_watch(arc_buf_t *buf);
588#endif /* illumos */
589
590static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab);
591
592#define	GHOST_STATE(state)	\
593	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
594	(state) == arc_l2c_only)
595
596/*
597 * Private ARC flags.  These flags are private ARC only flags that will show up
598 * in b_flags in the arc_hdr_buf_t.  Some flags are publicly declared, and can
599 * be passed in as arc_flags in things like arc_read.  However, these flags
600 * should never be passed and should only be set by ARC code.  When adding new
601 * public flags, make sure not to smash the private ones.
602 */
603
604#define	ARC_IN_HASH_TABLE	(1 << 9)	/* this buffer is hashed */
605#define	ARC_IO_IN_PROGRESS	(1 << 10)	/* I/O in progress for buf */
606#define	ARC_IO_ERROR		(1 << 11)	/* I/O failed for buf */
607#define	ARC_FREED_IN_READ	(1 << 12)	/* buf freed while in read */
608#define	ARC_BUF_AVAILABLE	(1 << 13)	/* block not in active use */
609#define	ARC_INDIRECT		(1 << 14)	/* this is an indirect block */
610#define	ARC_FREE_IN_PROGRESS	(1 << 15)	/* hdr about to be freed */
611#define	ARC_L2_WRITING		(1 << 16)	/* L2ARC write in progress */
612#define	ARC_L2_EVICTED		(1 << 17)	/* evicted during I/O */
613#define	ARC_L2_WRITE_HEAD	(1 << 18)	/* head of write list */
614
615#define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_IN_HASH_TABLE)
616#define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS)
617#define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_IO_ERROR)
618#define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_PREFETCH)
619#define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FREED_IN_READ)
620#define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_BUF_AVAILABLE)
621#define	HDR_FREE_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
622#define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_L2CACHE)
623#define	HDR_L2_READING(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS &&	\
624				    (hdr)->b_l2hdr != NULL)
625#define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_L2_WRITING)
626#define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_L2_EVICTED)
627#define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_L2_WRITE_HEAD)
628
629/*
630 * Other sizes
631 */
632
633#define	HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
634#define	L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
635
636/*
637 * Hash table routines
638 */
639
640#define	HT_LOCK_PAD	CACHE_LINE_SIZE
641
642struct ht_lock {
643	kmutex_t	ht_lock;
644#ifdef _KERNEL
645	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
646#endif
647};
648
649#define	BUF_LOCKS 256
650typedef struct buf_hash_table {
651	uint64_t ht_mask;
652	arc_buf_hdr_t **ht_table;
653	struct ht_lock ht_locks[BUF_LOCKS] __aligned(CACHE_LINE_SIZE);
654} buf_hash_table_t;
655
656static buf_hash_table_t buf_hash_table;
657
658#define	BUF_HASH_INDEX(spa, dva, birth) \
659	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
660#define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
661#define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
662#define	HDR_LOCK(hdr) \
663	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
664
665uint64_t zfs_crc64_table[256];
666
667/*
668 * Level 2 ARC
669 */
670
671#define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
672#define	L2ARC_HEADROOM		2			/* num of writes */
673/*
674 * If we discover during ARC scan any buffers to be compressed, we boost
675 * our headroom for the next scanning cycle by this percentage multiple.
676 */
677#define	L2ARC_HEADROOM_BOOST	200
678#define	L2ARC_FEED_SECS		1		/* caching interval secs */
679#define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
680
681#define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
682#define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
683
684/* L2ARC Performance Tunables */
685uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
686uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
687uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
688uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
689uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
690uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
691boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
692boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
693boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
694
695SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_max, CTLFLAG_RW,
696    &l2arc_write_max, 0, "max write size");
697SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_boost, CTLFLAG_RW,
698    &l2arc_write_boost, 0, "extra write during warmup");
699SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_headroom, CTLFLAG_RW,
700    &l2arc_headroom, 0, "number of dev writes");
701SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_secs, CTLFLAG_RW,
702    &l2arc_feed_secs, 0, "interval seconds");
703SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_min_ms, CTLFLAG_RW,
704    &l2arc_feed_min_ms, 0, "min interval milliseconds");
705
706SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_noprefetch, CTLFLAG_RW,
707    &l2arc_noprefetch, 0, "don't cache prefetch bufs");
708SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_feed_again, CTLFLAG_RW,
709    &l2arc_feed_again, 0, "turbo warmup");
710SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_norw, CTLFLAG_RW,
711    &l2arc_norw, 0, "no reads during writes");
712
713SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_size, CTLFLAG_RD,
714    &ARC_anon.arcs_size, 0, "size of anonymous state");
715SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_metadata_lsize, CTLFLAG_RD,
716    &ARC_anon.arcs_lsize[ARC_BUFC_METADATA], 0, "size of anonymous state");
717SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_data_lsize, CTLFLAG_RD,
718    &ARC_anon.arcs_lsize[ARC_BUFC_DATA], 0, "size of anonymous state");
719
720SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_size, CTLFLAG_RD,
721    &ARC_mru.arcs_size, 0, "size of mru state");
722SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_metadata_lsize, CTLFLAG_RD,
723    &ARC_mru.arcs_lsize[ARC_BUFC_METADATA], 0, "size of metadata in mru state");
724SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_data_lsize, CTLFLAG_RD,
725    &ARC_mru.arcs_lsize[ARC_BUFC_DATA], 0, "size of data in mru state");
726
727SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_size, CTLFLAG_RD,
728    &ARC_mru_ghost.arcs_size, 0, "size of mru ghost state");
729SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_metadata_lsize, CTLFLAG_RD,
730    &ARC_mru_ghost.arcs_lsize[ARC_BUFC_METADATA], 0,
731    "size of metadata in mru ghost state");
732SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_data_lsize, CTLFLAG_RD,
733    &ARC_mru_ghost.arcs_lsize[ARC_BUFC_DATA], 0,
734    "size of data in mru ghost state");
735
736SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_size, CTLFLAG_RD,
737    &ARC_mfu.arcs_size, 0, "size of mfu state");
738SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_metadata_lsize, CTLFLAG_RD,
739    &ARC_mfu.arcs_lsize[ARC_BUFC_METADATA], 0, "size of metadata in mfu state");
740SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_data_lsize, CTLFLAG_RD,
741    &ARC_mfu.arcs_lsize[ARC_BUFC_DATA], 0, "size of data in mfu state");
742
743SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_size, CTLFLAG_RD,
744    &ARC_mfu_ghost.arcs_size, 0, "size of mfu ghost state");
745SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_metadata_lsize, CTLFLAG_RD,
746    &ARC_mfu_ghost.arcs_lsize[ARC_BUFC_METADATA], 0,
747    "size of metadata in mfu ghost state");
748SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_data_lsize, CTLFLAG_RD,
749    &ARC_mfu_ghost.arcs_lsize[ARC_BUFC_DATA], 0,
750    "size of data in mfu ghost state");
751
752SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2c_only_size, CTLFLAG_RD,
753    &ARC_l2c_only.arcs_size, 0, "size of mru state");
754
755/*
756 * L2ARC Internals
757 */
758typedef struct l2arc_dev {
759	vdev_t			*l2ad_vdev;	/* vdev */
760	spa_t			*l2ad_spa;	/* spa */
761	uint64_t		l2ad_hand;	/* next write location */
762	uint64_t		l2ad_start;	/* first addr on device */
763	uint64_t		l2ad_end;	/* last addr on device */
764	uint64_t		l2ad_evict;	/* last addr eviction reached */
765	boolean_t		l2ad_first;	/* first sweep through */
766	boolean_t		l2ad_writing;	/* currently writing */
767	list_t			*l2ad_buflist;	/* buffer list */
768	list_node_t		l2ad_node;	/* device list node */
769} l2arc_dev_t;
770
771static list_t L2ARC_dev_list;			/* device list */
772static list_t *l2arc_dev_list;			/* device list pointer */
773static kmutex_t l2arc_dev_mtx;			/* device list mutex */
774static l2arc_dev_t *l2arc_dev_last;		/* last device used */
775static kmutex_t l2arc_buflist_mtx;		/* mutex for all buflists */
776static list_t L2ARC_free_on_write;		/* free after write buf list */
777static list_t *l2arc_free_on_write;		/* free after write list ptr */
778static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
779static uint64_t l2arc_ndev;			/* number of devices */
780
781typedef struct l2arc_read_callback {
782	arc_buf_t		*l2rcb_buf;		/* read buffer */
783	spa_t			*l2rcb_spa;		/* spa */
784	blkptr_t		l2rcb_bp;		/* original blkptr */
785	zbookmark_t		l2rcb_zb;		/* original bookmark */
786	int			l2rcb_flags;		/* original flags */
787	enum zio_compress	l2rcb_compress;		/* applied compress */
788} l2arc_read_callback_t;
789
790typedef struct l2arc_write_callback {
791	l2arc_dev_t	*l2wcb_dev;		/* device info */
792	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
793} l2arc_write_callback_t;
794
795struct l2arc_buf_hdr {
796	/* protected by arc_buf_hdr  mutex */
797	l2arc_dev_t		*b_dev;		/* L2ARC device */
798	uint64_t		b_daddr;	/* disk address, offset byte */
799	/* compression applied to buffer data */
800	enum zio_compress	b_compress;
801	/* real alloc'd buffer size depending on b_compress applied */
802	int			b_asize;
803	/* temporary buffer holder for in-flight compressed data */
804	void			*b_tmp_cdata;
805};
806
807typedef struct l2arc_data_free {
808	/* protected by l2arc_free_on_write_mtx */
809	void		*l2df_data;
810	size_t		l2df_size;
811	void		(*l2df_func)(void *, size_t);
812	list_node_t	l2df_list_node;
813} l2arc_data_free_t;
814
815static kmutex_t l2arc_feed_thr_lock;
816static kcondvar_t l2arc_feed_thr_cv;
817static uint8_t l2arc_thread_exit;
818
819static void l2arc_read_done(zio_t *zio);
820static void l2arc_hdr_stat_add(void);
821static void l2arc_hdr_stat_remove(void);
822
823static boolean_t l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr);
824static void l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr,
825    enum zio_compress c);
826static void l2arc_release_cdata_buf(arc_buf_hdr_t *ab);
827
828static uint64_t
829buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
830{
831	uint8_t *vdva = (uint8_t *)dva;
832	uint64_t crc = -1ULL;
833	int i;
834
835	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
836
837	for (i = 0; i < sizeof (dva_t); i++)
838		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
839
840	crc ^= (spa>>8) ^ birth;
841
842	return (crc);
843}
844
845#define	BUF_EMPTY(buf)						\
846	((buf)->b_dva.dva_word[0] == 0 &&			\
847	(buf)->b_dva.dva_word[1] == 0 &&			\
848	(buf)->b_birth == 0)
849
850#define	BUF_EQUAL(spa, dva, birth, buf)				\
851	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
852	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
853	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
854
855static void
856buf_discard_identity(arc_buf_hdr_t *hdr)
857{
858	hdr->b_dva.dva_word[0] = 0;
859	hdr->b_dva.dva_word[1] = 0;
860	hdr->b_birth = 0;
861	hdr->b_cksum0 = 0;
862}
863
864static arc_buf_hdr_t *
865buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp)
866{
867	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
868	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
869	arc_buf_hdr_t *buf;
870
871	mutex_enter(hash_lock);
872	for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
873	    buf = buf->b_hash_next) {
874		if (BUF_EQUAL(spa, dva, birth, buf)) {
875			*lockp = hash_lock;
876			return (buf);
877		}
878	}
879	mutex_exit(hash_lock);
880	*lockp = NULL;
881	return (NULL);
882}
883
884/*
885 * Insert an entry into the hash table.  If there is already an element
886 * equal to elem in the hash table, then the already existing element
887 * will be returned and the new element will not be inserted.
888 * Otherwise returns NULL.
889 */
890static arc_buf_hdr_t *
891buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
892{
893	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
894	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
895	arc_buf_hdr_t *fbuf;
896	uint32_t i;
897
898	ASSERT(!HDR_IN_HASH_TABLE(buf));
899	*lockp = hash_lock;
900	mutex_enter(hash_lock);
901	for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
902	    fbuf = fbuf->b_hash_next, i++) {
903		if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
904			return (fbuf);
905	}
906
907	buf->b_hash_next = buf_hash_table.ht_table[idx];
908	buf_hash_table.ht_table[idx] = buf;
909	buf->b_flags |= ARC_IN_HASH_TABLE;
910
911	/* collect some hash table performance data */
912	if (i > 0) {
913		ARCSTAT_BUMP(arcstat_hash_collisions);
914		if (i == 1)
915			ARCSTAT_BUMP(arcstat_hash_chains);
916
917		ARCSTAT_MAX(arcstat_hash_chain_max, i);
918	}
919
920	ARCSTAT_BUMP(arcstat_hash_elements);
921	ARCSTAT_MAXSTAT(arcstat_hash_elements);
922
923	return (NULL);
924}
925
926static void
927buf_hash_remove(arc_buf_hdr_t *buf)
928{
929	arc_buf_hdr_t *fbuf, **bufp;
930	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
931
932	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
933	ASSERT(HDR_IN_HASH_TABLE(buf));
934
935	bufp = &buf_hash_table.ht_table[idx];
936	while ((fbuf = *bufp) != buf) {
937		ASSERT(fbuf != NULL);
938		bufp = &fbuf->b_hash_next;
939	}
940	*bufp = buf->b_hash_next;
941	buf->b_hash_next = NULL;
942	buf->b_flags &= ~ARC_IN_HASH_TABLE;
943
944	/* collect some hash table performance data */
945	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
946
947	if (buf_hash_table.ht_table[idx] &&
948	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
949		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
950}
951
952/*
953 * Global data structures and functions for the buf kmem cache.
954 */
955static kmem_cache_t *hdr_cache;
956static kmem_cache_t *buf_cache;
957
958static void
959buf_fini(void)
960{
961	int i;
962
963	kmem_free(buf_hash_table.ht_table,
964	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
965	for (i = 0; i < BUF_LOCKS; i++)
966		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
967	kmem_cache_destroy(hdr_cache);
968	kmem_cache_destroy(buf_cache);
969}
970
971/*
972 * Constructor callback - called when the cache is empty
973 * and a new buf is requested.
974 */
975/* ARGSUSED */
976static int
977hdr_cons(void *vbuf, void *unused, int kmflag)
978{
979	arc_buf_hdr_t *buf = vbuf;
980
981	bzero(buf, sizeof (arc_buf_hdr_t));
982	refcount_create(&buf->b_refcnt);
983	cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
984	mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
985	arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
986
987	return (0);
988}
989
990/* ARGSUSED */
991static int
992buf_cons(void *vbuf, void *unused, int kmflag)
993{
994	arc_buf_t *buf = vbuf;
995
996	bzero(buf, sizeof (arc_buf_t));
997	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
998	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
999
1000	return (0);
1001}
1002
1003/*
1004 * Destructor callback - called when a cached buf is
1005 * no longer required.
1006 */
1007/* ARGSUSED */
1008static void
1009hdr_dest(void *vbuf, void *unused)
1010{
1011	arc_buf_hdr_t *buf = vbuf;
1012
1013	ASSERT(BUF_EMPTY(buf));
1014	refcount_destroy(&buf->b_refcnt);
1015	cv_destroy(&buf->b_cv);
1016	mutex_destroy(&buf->b_freeze_lock);
1017	arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
1018}
1019
1020/* ARGSUSED */
1021static void
1022buf_dest(void *vbuf, void *unused)
1023{
1024	arc_buf_t *buf = vbuf;
1025
1026	mutex_destroy(&buf->b_evict_lock);
1027	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1028}
1029
1030/*
1031 * Reclaim callback -- invoked when memory is low.
1032 */
1033/* ARGSUSED */
1034static void
1035hdr_recl(void *unused)
1036{
1037	dprintf("hdr_recl called\n");
1038	/*
1039	 * umem calls the reclaim func when we destroy the buf cache,
1040	 * which is after we do arc_fini().
1041	 */
1042	if (!arc_dead)
1043		cv_signal(&arc_reclaim_thr_cv);
1044}
1045
1046static void
1047buf_init(void)
1048{
1049	uint64_t *ct;
1050	uint64_t hsize = 1ULL << 12;
1051	int i, j;
1052
1053	/*
1054	 * The hash table is big enough to fill all of physical memory
1055	 * with an average 64K block size.  The table will take up
1056	 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
1057	 */
1058	while (hsize * 65536 < (uint64_t)physmem * PAGESIZE)
1059		hsize <<= 1;
1060retry:
1061	buf_hash_table.ht_mask = hsize - 1;
1062	buf_hash_table.ht_table =
1063	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1064	if (buf_hash_table.ht_table == NULL) {
1065		ASSERT(hsize > (1ULL << 8));
1066		hsize >>= 1;
1067		goto retry;
1068	}
1069
1070	hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
1071	    0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
1072	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1073	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1074
1075	for (i = 0; i < 256; i++)
1076		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1077			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1078
1079	for (i = 0; i < BUF_LOCKS; i++) {
1080		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1081		    NULL, MUTEX_DEFAULT, NULL);
1082	}
1083}
1084
1085#define	ARC_MINTIME	(hz>>4) /* 62 ms */
1086
1087static void
1088arc_cksum_verify(arc_buf_t *buf)
1089{
1090	zio_cksum_t zc;
1091
1092	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1093		return;
1094
1095	mutex_enter(&buf->b_hdr->b_freeze_lock);
1096	if (buf->b_hdr->b_freeze_cksum == NULL ||
1097	    (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
1098		mutex_exit(&buf->b_hdr->b_freeze_lock);
1099		return;
1100	}
1101	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1102	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
1103		panic("buffer modified while frozen!");
1104	mutex_exit(&buf->b_hdr->b_freeze_lock);
1105}
1106
1107static int
1108arc_cksum_equal(arc_buf_t *buf)
1109{
1110	zio_cksum_t zc;
1111	int equal;
1112
1113	mutex_enter(&buf->b_hdr->b_freeze_lock);
1114	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1115	equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
1116	mutex_exit(&buf->b_hdr->b_freeze_lock);
1117
1118	return (equal);
1119}
1120
1121static void
1122arc_cksum_compute(arc_buf_t *buf, boolean_t force)
1123{
1124	if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1125		return;
1126
1127	mutex_enter(&buf->b_hdr->b_freeze_lock);
1128	if (buf->b_hdr->b_freeze_cksum != NULL) {
1129		mutex_exit(&buf->b_hdr->b_freeze_lock);
1130		return;
1131	}
1132	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
1133	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1134	    buf->b_hdr->b_freeze_cksum);
1135	mutex_exit(&buf->b_hdr->b_freeze_lock);
1136#ifdef illumos
1137	arc_buf_watch(buf);
1138#endif /* illumos */
1139}
1140
1141#ifdef illumos
1142#ifndef _KERNEL
1143typedef struct procctl {
1144	long cmd;
1145	prwatch_t prwatch;
1146} procctl_t;
1147#endif
1148
1149/* ARGSUSED */
1150static void
1151arc_buf_unwatch(arc_buf_t *buf)
1152{
1153#ifndef _KERNEL
1154	if (arc_watch) {
1155		int result;
1156		procctl_t ctl;
1157		ctl.cmd = PCWATCH;
1158		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1159		ctl.prwatch.pr_size = 0;
1160		ctl.prwatch.pr_wflags = 0;
1161		result = write(arc_procfd, &ctl, sizeof (ctl));
1162		ASSERT3U(result, ==, sizeof (ctl));
1163	}
1164#endif
1165}
1166
1167/* ARGSUSED */
1168static void
1169arc_buf_watch(arc_buf_t *buf)
1170{
1171#ifndef _KERNEL
1172	if (arc_watch) {
1173		int result;
1174		procctl_t ctl;
1175		ctl.cmd = PCWATCH;
1176		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1177		ctl.prwatch.pr_size = buf->b_hdr->b_size;
1178		ctl.prwatch.pr_wflags = WA_WRITE;
1179		result = write(arc_procfd, &ctl, sizeof (ctl));
1180		ASSERT3U(result, ==, sizeof (ctl));
1181	}
1182#endif
1183}
1184#endif /* illumos */
1185
1186void
1187arc_buf_thaw(arc_buf_t *buf)
1188{
1189	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1190		if (buf->b_hdr->b_state != arc_anon)
1191			panic("modifying non-anon buffer!");
1192		if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
1193			panic("modifying buffer while i/o in progress!");
1194		arc_cksum_verify(buf);
1195	}
1196
1197	mutex_enter(&buf->b_hdr->b_freeze_lock);
1198	if (buf->b_hdr->b_freeze_cksum != NULL) {
1199		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1200		buf->b_hdr->b_freeze_cksum = NULL;
1201	}
1202
1203	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1204		if (buf->b_hdr->b_thawed)
1205			kmem_free(buf->b_hdr->b_thawed, 1);
1206		buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP);
1207	}
1208
1209	mutex_exit(&buf->b_hdr->b_freeze_lock);
1210
1211#ifdef illumos
1212	arc_buf_unwatch(buf);
1213#endif /* illumos */
1214}
1215
1216void
1217arc_buf_freeze(arc_buf_t *buf)
1218{
1219	kmutex_t *hash_lock;
1220
1221	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1222		return;
1223
1224	hash_lock = HDR_LOCK(buf->b_hdr);
1225	mutex_enter(hash_lock);
1226
1227	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1228	    buf->b_hdr->b_state == arc_anon);
1229	arc_cksum_compute(buf, B_FALSE);
1230	mutex_exit(hash_lock);
1231
1232}
1233
1234static void
1235get_buf_info(arc_buf_hdr_t *ab, arc_state_t *state, list_t **list, kmutex_t **lock)
1236{
1237	uint64_t buf_hashid = buf_hash(ab->b_spa, &ab->b_dva, ab->b_birth);
1238
1239	if (ab->b_type == ARC_BUFC_METADATA)
1240		buf_hashid &= (ARC_BUFC_NUMMETADATALISTS - 1);
1241	else {
1242		buf_hashid &= (ARC_BUFC_NUMDATALISTS - 1);
1243		buf_hashid += ARC_BUFC_NUMMETADATALISTS;
1244	}
1245
1246	*list = &state->arcs_lists[buf_hashid];
1247	*lock = ARCS_LOCK(state, buf_hashid);
1248}
1249
1250
1251static void
1252add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1253{
1254	ASSERT(MUTEX_HELD(hash_lock));
1255
1256	if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
1257	    (ab->b_state != arc_anon)) {
1258		uint64_t delta = ab->b_size * ab->b_datacnt;
1259		uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
1260		list_t *list;
1261		kmutex_t *lock;
1262
1263		get_buf_info(ab, ab->b_state, &list, &lock);
1264		ASSERT(!MUTEX_HELD(lock));
1265		mutex_enter(lock);
1266		ASSERT(list_link_active(&ab->b_arc_node));
1267		list_remove(list, ab);
1268		if (GHOST_STATE(ab->b_state)) {
1269			ASSERT0(ab->b_datacnt);
1270			ASSERT3P(ab->b_buf, ==, NULL);
1271			delta = ab->b_size;
1272		}
1273		ASSERT(delta > 0);
1274		ASSERT3U(*size, >=, delta);
1275		atomic_add_64(size, -delta);
1276		mutex_exit(lock);
1277		/* remove the prefetch flag if we get a reference */
1278		if (ab->b_flags & ARC_PREFETCH)
1279			ab->b_flags &= ~ARC_PREFETCH;
1280	}
1281}
1282
1283static int
1284remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1285{
1286	int cnt;
1287	arc_state_t *state = ab->b_state;
1288
1289	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1290	ASSERT(!GHOST_STATE(state));
1291
1292	if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
1293	    (state != arc_anon)) {
1294		uint64_t *size = &state->arcs_lsize[ab->b_type];
1295		list_t *list;
1296		kmutex_t *lock;
1297
1298		get_buf_info(ab, state, &list, &lock);
1299		ASSERT(!MUTEX_HELD(lock));
1300		mutex_enter(lock);
1301		ASSERT(!list_link_active(&ab->b_arc_node));
1302		list_insert_head(list, ab);
1303		ASSERT(ab->b_datacnt > 0);
1304		atomic_add_64(size, ab->b_size * ab->b_datacnt);
1305		mutex_exit(lock);
1306	}
1307	return (cnt);
1308}
1309
1310/*
1311 * Move the supplied buffer to the indicated state.  The mutex
1312 * for the buffer must be held by the caller.
1313 */
1314static void
1315arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
1316{
1317	arc_state_t *old_state = ab->b_state;
1318	int64_t refcnt = refcount_count(&ab->b_refcnt);
1319	uint64_t from_delta, to_delta;
1320	list_t *list;
1321	kmutex_t *lock;
1322
1323	ASSERT(MUTEX_HELD(hash_lock));
1324	ASSERT3P(new_state, !=, old_state);
1325	ASSERT(refcnt == 0 || ab->b_datacnt > 0);
1326	ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
1327	ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon);
1328
1329	from_delta = to_delta = ab->b_datacnt * ab->b_size;
1330
1331	/*
1332	 * If this buffer is evictable, transfer it from the
1333	 * old state list to the new state list.
1334	 */
1335	if (refcnt == 0) {
1336		if (old_state != arc_anon) {
1337			int use_mutex;
1338			uint64_t *size = &old_state->arcs_lsize[ab->b_type];
1339
1340			get_buf_info(ab, old_state, &list, &lock);
1341			use_mutex = !MUTEX_HELD(lock);
1342			if (use_mutex)
1343				mutex_enter(lock);
1344
1345			ASSERT(list_link_active(&ab->b_arc_node));
1346			list_remove(list, ab);
1347
1348			/*
1349			 * If prefetching out of the ghost cache,
1350			 * we will have a non-zero datacnt.
1351			 */
1352			if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1353				/* ghost elements have a ghost size */
1354				ASSERT(ab->b_buf == NULL);
1355				from_delta = ab->b_size;
1356			}
1357			ASSERT3U(*size, >=, from_delta);
1358			atomic_add_64(size, -from_delta);
1359
1360			if (use_mutex)
1361				mutex_exit(lock);
1362		}
1363		if (new_state != arc_anon) {
1364			int use_mutex;
1365			uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1366
1367			get_buf_info(ab, new_state, &list, &lock);
1368			use_mutex = !MUTEX_HELD(lock);
1369			if (use_mutex)
1370				mutex_enter(lock);
1371
1372			list_insert_head(list, ab);
1373
1374			/* ghost elements have a ghost size */
1375			if (GHOST_STATE(new_state)) {
1376				ASSERT(ab->b_datacnt == 0);
1377				ASSERT(ab->b_buf == NULL);
1378				to_delta = ab->b_size;
1379			}
1380			atomic_add_64(size, to_delta);
1381
1382			if (use_mutex)
1383				mutex_exit(lock);
1384		}
1385	}
1386
1387	ASSERT(!BUF_EMPTY(ab));
1388	if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab))
1389		buf_hash_remove(ab);
1390
1391	/* adjust state sizes */
1392	if (to_delta)
1393		atomic_add_64(&new_state->arcs_size, to_delta);
1394	if (from_delta) {
1395		ASSERT3U(old_state->arcs_size, >=, from_delta);
1396		atomic_add_64(&old_state->arcs_size, -from_delta);
1397	}
1398	ab->b_state = new_state;
1399
1400	/* adjust l2arc hdr stats */
1401	if (new_state == arc_l2c_only)
1402		l2arc_hdr_stat_add();
1403	else if (old_state == arc_l2c_only)
1404		l2arc_hdr_stat_remove();
1405}
1406
1407void
1408arc_space_consume(uint64_t space, arc_space_type_t type)
1409{
1410	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1411
1412	switch (type) {
1413	case ARC_SPACE_DATA:
1414		ARCSTAT_INCR(arcstat_data_size, space);
1415		break;
1416	case ARC_SPACE_OTHER:
1417		ARCSTAT_INCR(arcstat_other_size, space);
1418		break;
1419	case ARC_SPACE_HDRS:
1420		ARCSTAT_INCR(arcstat_hdr_size, space);
1421		break;
1422	case ARC_SPACE_L2HDRS:
1423		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1424		break;
1425	}
1426
1427	atomic_add_64(&arc_meta_used, space);
1428	atomic_add_64(&arc_size, space);
1429}
1430
1431void
1432arc_space_return(uint64_t space, arc_space_type_t type)
1433{
1434	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1435
1436	switch (type) {
1437	case ARC_SPACE_DATA:
1438		ARCSTAT_INCR(arcstat_data_size, -space);
1439		break;
1440	case ARC_SPACE_OTHER:
1441		ARCSTAT_INCR(arcstat_other_size, -space);
1442		break;
1443	case ARC_SPACE_HDRS:
1444		ARCSTAT_INCR(arcstat_hdr_size, -space);
1445		break;
1446	case ARC_SPACE_L2HDRS:
1447		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1448		break;
1449	}
1450
1451	ASSERT(arc_meta_used >= space);
1452	if (arc_meta_max < arc_meta_used)
1453		arc_meta_max = arc_meta_used;
1454	atomic_add_64(&arc_meta_used, -space);
1455	ASSERT(arc_size >= space);
1456	atomic_add_64(&arc_size, -space);
1457}
1458
1459void *
1460arc_data_buf_alloc(uint64_t size)
1461{
1462	if (arc_evict_needed(ARC_BUFC_DATA))
1463		cv_signal(&arc_reclaim_thr_cv);
1464	atomic_add_64(&arc_size, size);
1465	return (zio_data_buf_alloc(size));
1466}
1467
1468void
1469arc_data_buf_free(void *buf, uint64_t size)
1470{
1471	zio_data_buf_free(buf, size);
1472	ASSERT(arc_size >= size);
1473	atomic_add_64(&arc_size, -size);
1474}
1475
1476arc_buf_t *
1477arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1478{
1479	arc_buf_hdr_t *hdr;
1480	arc_buf_t *buf;
1481
1482	ASSERT3U(size, >, 0);
1483	hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1484	ASSERT(BUF_EMPTY(hdr));
1485	hdr->b_size = size;
1486	hdr->b_type = type;
1487	hdr->b_spa = spa_load_guid(spa);
1488	hdr->b_state = arc_anon;
1489	hdr->b_arc_access = 0;
1490	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1491	buf->b_hdr = hdr;
1492	buf->b_data = NULL;
1493	buf->b_efunc = NULL;
1494	buf->b_private = NULL;
1495	buf->b_next = NULL;
1496	hdr->b_buf = buf;
1497	arc_get_data_buf(buf);
1498	hdr->b_datacnt = 1;
1499	hdr->b_flags = 0;
1500	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1501	(void) refcount_add(&hdr->b_refcnt, tag);
1502
1503	return (buf);
1504}
1505
1506static char *arc_onloan_tag = "onloan";
1507
1508/*
1509 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1510 * flight data by arc_tempreserve_space() until they are "returned". Loaned
1511 * buffers must be returned to the arc before they can be used by the DMU or
1512 * freed.
1513 */
1514arc_buf_t *
1515arc_loan_buf(spa_t *spa, int size)
1516{
1517	arc_buf_t *buf;
1518
1519	buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1520
1521	atomic_add_64(&arc_loaned_bytes, size);
1522	return (buf);
1523}
1524
1525/*
1526 * Return a loaned arc buffer to the arc.
1527 */
1528void
1529arc_return_buf(arc_buf_t *buf, void *tag)
1530{
1531	arc_buf_hdr_t *hdr = buf->b_hdr;
1532
1533	ASSERT(buf->b_data != NULL);
1534	(void) refcount_add(&hdr->b_refcnt, tag);
1535	(void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag);
1536
1537	atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1538}
1539
1540/* Detach an arc_buf from a dbuf (tag) */
1541void
1542arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1543{
1544	arc_buf_hdr_t *hdr;
1545
1546	ASSERT(buf->b_data != NULL);
1547	hdr = buf->b_hdr;
1548	(void) refcount_add(&hdr->b_refcnt, arc_onloan_tag);
1549	(void) refcount_remove(&hdr->b_refcnt, tag);
1550	buf->b_efunc = NULL;
1551	buf->b_private = NULL;
1552
1553	atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1554}
1555
1556static arc_buf_t *
1557arc_buf_clone(arc_buf_t *from)
1558{
1559	arc_buf_t *buf;
1560	arc_buf_hdr_t *hdr = from->b_hdr;
1561	uint64_t size = hdr->b_size;
1562
1563	ASSERT(hdr->b_state != arc_anon);
1564
1565	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1566	buf->b_hdr = hdr;
1567	buf->b_data = NULL;
1568	buf->b_efunc = NULL;
1569	buf->b_private = NULL;
1570	buf->b_next = hdr->b_buf;
1571	hdr->b_buf = buf;
1572	arc_get_data_buf(buf);
1573	bcopy(from->b_data, buf->b_data, size);
1574
1575	/*
1576	 * This buffer already exists in the arc so create a duplicate
1577	 * copy for the caller.  If the buffer is associated with user data
1578	 * then track the size and number of duplicates.  These stats will be
1579	 * updated as duplicate buffers are created and destroyed.
1580	 */
1581	if (hdr->b_type == ARC_BUFC_DATA) {
1582		ARCSTAT_BUMP(arcstat_duplicate_buffers);
1583		ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
1584	}
1585	hdr->b_datacnt += 1;
1586	return (buf);
1587}
1588
1589void
1590arc_buf_add_ref(arc_buf_t *buf, void* tag)
1591{
1592	arc_buf_hdr_t *hdr;
1593	kmutex_t *hash_lock;
1594
1595	/*
1596	 * Check to see if this buffer is evicted.  Callers
1597	 * must verify b_data != NULL to know if the add_ref
1598	 * was successful.
1599	 */
1600	mutex_enter(&buf->b_evict_lock);
1601	if (buf->b_data == NULL) {
1602		mutex_exit(&buf->b_evict_lock);
1603		return;
1604	}
1605	hash_lock = HDR_LOCK(buf->b_hdr);
1606	mutex_enter(hash_lock);
1607	hdr = buf->b_hdr;
1608	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1609	mutex_exit(&buf->b_evict_lock);
1610
1611	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1612	add_reference(hdr, hash_lock, tag);
1613	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
1614	arc_access(hdr, hash_lock);
1615	mutex_exit(hash_lock);
1616	ARCSTAT_BUMP(arcstat_hits);
1617	ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1618	    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1619	    data, metadata, hits);
1620}
1621
1622/*
1623 * Free the arc data buffer.  If it is an l2arc write in progress,
1624 * the buffer is placed on l2arc_free_on_write to be freed later.
1625 */
1626static void
1627arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
1628{
1629	arc_buf_hdr_t *hdr = buf->b_hdr;
1630
1631	if (HDR_L2_WRITING(hdr)) {
1632		l2arc_data_free_t *df;
1633		df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
1634		df->l2df_data = buf->b_data;
1635		df->l2df_size = hdr->b_size;
1636		df->l2df_func = free_func;
1637		mutex_enter(&l2arc_free_on_write_mtx);
1638		list_insert_head(l2arc_free_on_write, df);
1639		mutex_exit(&l2arc_free_on_write_mtx);
1640		ARCSTAT_BUMP(arcstat_l2_free_on_write);
1641	} else {
1642		free_func(buf->b_data, hdr->b_size);
1643	}
1644}
1645
1646static void
1647arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
1648{
1649	arc_buf_t **bufp;
1650
1651	/* free up data associated with the buf */
1652	if (buf->b_data) {
1653		arc_state_t *state = buf->b_hdr->b_state;
1654		uint64_t size = buf->b_hdr->b_size;
1655		arc_buf_contents_t type = buf->b_hdr->b_type;
1656
1657		arc_cksum_verify(buf);
1658#ifdef illumos
1659		arc_buf_unwatch(buf);
1660#endif /* illumos */
1661
1662		if (!recycle) {
1663			if (type == ARC_BUFC_METADATA) {
1664				arc_buf_data_free(buf, zio_buf_free);
1665				arc_space_return(size, ARC_SPACE_DATA);
1666			} else {
1667				ASSERT(type == ARC_BUFC_DATA);
1668				arc_buf_data_free(buf, zio_data_buf_free);
1669				ARCSTAT_INCR(arcstat_data_size, -size);
1670				atomic_add_64(&arc_size, -size);
1671			}
1672		}
1673		if (list_link_active(&buf->b_hdr->b_arc_node)) {
1674			uint64_t *cnt = &state->arcs_lsize[type];
1675
1676			ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1677			ASSERT(state != arc_anon);
1678
1679			ASSERT3U(*cnt, >=, size);
1680			atomic_add_64(cnt, -size);
1681		}
1682		ASSERT3U(state->arcs_size, >=, size);
1683		atomic_add_64(&state->arcs_size, -size);
1684		buf->b_data = NULL;
1685
1686		/*
1687		 * If we're destroying a duplicate buffer make sure
1688		 * that the appropriate statistics are updated.
1689		 */
1690		if (buf->b_hdr->b_datacnt > 1 &&
1691		    buf->b_hdr->b_type == ARC_BUFC_DATA) {
1692			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
1693			ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
1694		}
1695		ASSERT(buf->b_hdr->b_datacnt > 0);
1696		buf->b_hdr->b_datacnt -= 1;
1697	}
1698
1699	/* only remove the buf if requested */
1700	if (!all)
1701		return;
1702
1703	/* remove the buf from the hdr list */
1704	for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1705		continue;
1706	*bufp = buf->b_next;
1707	buf->b_next = NULL;
1708
1709	ASSERT(buf->b_efunc == NULL);
1710
1711	/* clean up the buf */
1712	buf->b_hdr = NULL;
1713	kmem_cache_free(buf_cache, buf);
1714}
1715
1716static void
1717arc_hdr_destroy(arc_buf_hdr_t *hdr)
1718{
1719	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1720	ASSERT3P(hdr->b_state, ==, arc_anon);
1721	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1722	l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr;
1723
1724	if (l2hdr != NULL) {
1725		boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx);
1726		/*
1727		 * To prevent arc_free() and l2arc_evict() from
1728		 * attempting to free the same buffer at the same time,
1729		 * a FREE_IN_PROGRESS flag is given to arc_free() to
1730		 * give it priority.  l2arc_evict() can't destroy this
1731		 * header while we are waiting on l2arc_buflist_mtx.
1732		 *
1733		 * The hdr may be removed from l2ad_buflist before we
1734		 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
1735		 */
1736		if (!buflist_held) {
1737			mutex_enter(&l2arc_buflist_mtx);
1738			l2hdr = hdr->b_l2hdr;
1739		}
1740
1741		if (l2hdr != NULL) {
1742			trim_map_free(l2hdr->b_dev->l2ad_vdev, l2hdr->b_daddr,
1743			    hdr->b_size, 0);
1744			list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
1745			ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1746			ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
1747			kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
1748			if (hdr->b_state == arc_l2c_only)
1749				l2arc_hdr_stat_remove();
1750			hdr->b_l2hdr = NULL;
1751		}
1752
1753		if (!buflist_held)
1754			mutex_exit(&l2arc_buflist_mtx);
1755	}
1756
1757	if (!BUF_EMPTY(hdr)) {
1758		ASSERT(!HDR_IN_HASH_TABLE(hdr));
1759		buf_discard_identity(hdr);
1760	}
1761	while (hdr->b_buf) {
1762		arc_buf_t *buf = hdr->b_buf;
1763
1764		if (buf->b_efunc) {
1765			mutex_enter(&arc_eviction_mtx);
1766			mutex_enter(&buf->b_evict_lock);
1767			ASSERT(buf->b_hdr != NULL);
1768			arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1769			hdr->b_buf = buf->b_next;
1770			buf->b_hdr = &arc_eviction_hdr;
1771			buf->b_next = arc_eviction_list;
1772			arc_eviction_list = buf;
1773			mutex_exit(&buf->b_evict_lock);
1774			mutex_exit(&arc_eviction_mtx);
1775		} else {
1776			arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1777		}
1778	}
1779	if (hdr->b_freeze_cksum != NULL) {
1780		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1781		hdr->b_freeze_cksum = NULL;
1782	}
1783	if (hdr->b_thawed) {
1784		kmem_free(hdr->b_thawed, 1);
1785		hdr->b_thawed = NULL;
1786	}
1787
1788	ASSERT(!list_link_active(&hdr->b_arc_node));
1789	ASSERT3P(hdr->b_hash_next, ==, NULL);
1790	ASSERT3P(hdr->b_acb, ==, NULL);
1791	kmem_cache_free(hdr_cache, hdr);
1792}
1793
1794void
1795arc_buf_free(arc_buf_t *buf, void *tag)
1796{
1797	arc_buf_hdr_t *hdr = buf->b_hdr;
1798	int hashed = hdr->b_state != arc_anon;
1799
1800	ASSERT(buf->b_efunc == NULL);
1801	ASSERT(buf->b_data != NULL);
1802
1803	if (hashed) {
1804		kmutex_t *hash_lock = HDR_LOCK(hdr);
1805
1806		mutex_enter(hash_lock);
1807		hdr = buf->b_hdr;
1808		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1809
1810		(void) remove_reference(hdr, hash_lock, tag);
1811		if (hdr->b_datacnt > 1) {
1812			arc_buf_destroy(buf, FALSE, TRUE);
1813		} else {
1814			ASSERT(buf == hdr->b_buf);
1815			ASSERT(buf->b_efunc == NULL);
1816			hdr->b_flags |= ARC_BUF_AVAILABLE;
1817		}
1818		mutex_exit(hash_lock);
1819	} else if (HDR_IO_IN_PROGRESS(hdr)) {
1820		int destroy_hdr;
1821		/*
1822		 * We are in the middle of an async write.  Don't destroy
1823		 * this buffer unless the write completes before we finish
1824		 * decrementing the reference count.
1825		 */
1826		mutex_enter(&arc_eviction_mtx);
1827		(void) remove_reference(hdr, NULL, tag);
1828		ASSERT(refcount_is_zero(&hdr->b_refcnt));
1829		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1830		mutex_exit(&arc_eviction_mtx);
1831		if (destroy_hdr)
1832			arc_hdr_destroy(hdr);
1833	} else {
1834		if (remove_reference(hdr, NULL, tag) > 0)
1835			arc_buf_destroy(buf, FALSE, TRUE);
1836		else
1837			arc_hdr_destroy(hdr);
1838	}
1839}
1840
1841boolean_t
1842arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1843{
1844	arc_buf_hdr_t *hdr = buf->b_hdr;
1845	kmutex_t *hash_lock = HDR_LOCK(hdr);
1846	boolean_t no_callback = (buf->b_efunc == NULL);
1847
1848	if (hdr->b_state == arc_anon) {
1849		ASSERT(hdr->b_datacnt == 1);
1850		arc_buf_free(buf, tag);
1851		return (no_callback);
1852	}
1853
1854	mutex_enter(hash_lock);
1855	hdr = buf->b_hdr;
1856	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1857	ASSERT(hdr->b_state != arc_anon);
1858	ASSERT(buf->b_data != NULL);
1859
1860	(void) remove_reference(hdr, hash_lock, tag);
1861	if (hdr->b_datacnt > 1) {
1862		if (no_callback)
1863			arc_buf_destroy(buf, FALSE, TRUE);
1864	} else if (no_callback) {
1865		ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1866		ASSERT(buf->b_efunc == NULL);
1867		hdr->b_flags |= ARC_BUF_AVAILABLE;
1868	}
1869	ASSERT(no_callback || hdr->b_datacnt > 1 ||
1870	    refcount_is_zero(&hdr->b_refcnt));
1871	mutex_exit(hash_lock);
1872	return (no_callback);
1873}
1874
1875int
1876arc_buf_size(arc_buf_t *buf)
1877{
1878	return (buf->b_hdr->b_size);
1879}
1880
1881/*
1882 * Called from the DMU to determine if the current buffer should be
1883 * evicted. In order to ensure proper locking, the eviction must be initiated
1884 * from the DMU. Return true if the buffer is associated with user data and
1885 * duplicate buffers still exist.
1886 */
1887boolean_t
1888arc_buf_eviction_needed(arc_buf_t *buf)
1889{
1890	arc_buf_hdr_t *hdr;
1891	boolean_t evict_needed = B_FALSE;
1892
1893	if (zfs_disable_dup_eviction)
1894		return (B_FALSE);
1895
1896	mutex_enter(&buf->b_evict_lock);
1897	hdr = buf->b_hdr;
1898	if (hdr == NULL) {
1899		/*
1900		 * We are in arc_do_user_evicts(); let that function
1901		 * perform the eviction.
1902		 */
1903		ASSERT(buf->b_data == NULL);
1904		mutex_exit(&buf->b_evict_lock);
1905		return (B_FALSE);
1906	} else if (buf->b_data == NULL) {
1907		/*
1908		 * We have already been added to the arc eviction list;
1909		 * recommend eviction.
1910		 */
1911		ASSERT3P(hdr, ==, &arc_eviction_hdr);
1912		mutex_exit(&buf->b_evict_lock);
1913		return (B_TRUE);
1914	}
1915
1916	if (hdr->b_datacnt > 1 && hdr->b_type == ARC_BUFC_DATA)
1917		evict_needed = B_TRUE;
1918
1919	mutex_exit(&buf->b_evict_lock);
1920	return (evict_needed);
1921}
1922
1923/*
1924 * Evict buffers from list until we've removed the specified number of
1925 * bytes.  Move the removed buffers to the appropriate evict state.
1926 * If the recycle flag is set, then attempt to "recycle" a buffer:
1927 * - look for a buffer to evict that is `bytes' long.
1928 * - return the data block from this buffer rather than freeing it.
1929 * This flag is used by callers that are trying to make space for a
1930 * new buffer in a full arc cache.
1931 *
1932 * This function makes a "best effort".  It skips over any buffers
1933 * it can't get a hash_lock on, and so may not catch all candidates.
1934 * It may also return without evicting as much space as requested.
1935 */
1936static void *
1937arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
1938    arc_buf_contents_t type)
1939{
1940	arc_state_t *evicted_state;
1941	uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1942	int64_t bytes_remaining;
1943	arc_buf_hdr_t *ab, *ab_prev = NULL;
1944	list_t *evicted_list, *list, *evicted_list_start, *list_start;
1945	kmutex_t *lock, *evicted_lock;
1946	kmutex_t *hash_lock;
1947	boolean_t have_lock;
1948	void *stolen = NULL;
1949	arc_buf_hdr_t marker = { 0 };
1950	int count = 0;
1951	static int evict_metadata_offset, evict_data_offset;
1952	int i, idx, offset, list_count, lists;
1953
1954	ASSERT(state == arc_mru || state == arc_mfu);
1955
1956	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1957
1958	if (type == ARC_BUFC_METADATA) {
1959		offset = 0;
1960		list_count = ARC_BUFC_NUMMETADATALISTS;
1961		list_start = &state->arcs_lists[0];
1962		evicted_list_start = &evicted_state->arcs_lists[0];
1963		idx = evict_metadata_offset;
1964	} else {
1965		offset = ARC_BUFC_NUMMETADATALISTS;
1966		list_start = &state->arcs_lists[offset];
1967		evicted_list_start = &evicted_state->arcs_lists[offset];
1968		list_count = ARC_BUFC_NUMDATALISTS;
1969		idx = evict_data_offset;
1970	}
1971	bytes_remaining = evicted_state->arcs_lsize[type];
1972	lists = 0;
1973
1974evict_start:
1975	list = &list_start[idx];
1976	evicted_list = &evicted_list_start[idx];
1977	lock = ARCS_LOCK(state, (offset + idx));
1978	evicted_lock = ARCS_LOCK(evicted_state, (offset + idx));
1979
1980	mutex_enter(lock);
1981	mutex_enter(evicted_lock);
1982
1983	for (ab = list_tail(list); ab; ab = ab_prev) {
1984		ab_prev = list_prev(list, ab);
1985		bytes_remaining -= (ab->b_size * ab->b_datacnt);
1986		/* prefetch buffers have a minimum lifespan */
1987		if (HDR_IO_IN_PROGRESS(ab) ||
1988		    (spa && ab->b_spa != spa) ||
1989		    (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
1990		    ddi_get_lbolt() - ab->b_arc_access <
1991		    arc_min_prefetch_lifespan)) {
1992			skipped++;
1993			continue;
1994		}
1995		/* "lookahead" for better eviction candidate */
1996		if (recycle && ab->b_size != bytes &&
1997		    ab_prev && ab_prev->b_size == bytes)
1998			continue;
1999
2000		/* ignore markers */
2001		if (ab->b_spa == 0)
2002			continue;
2003
2004		/*
2005		 * It may take a long time to evict all the bufs requested.
2006		 * To avoid blocking all arc activity, periodically drop
2007		 * the arcs_mtx and give other threads a chance to run
2008		 * before reacquiring the lock.
2009		 *
2010		 * If we are looking for a buffer to recycle, we are in
2011		 * the hot code path, so don't sleep.
2012		 */
2013		if (!recycle && count++ > arc_evict_iterations) {
2014			list_insert_after(list, ab, &marker);
2015			mutex_exit(evicted_lock);
2016			mutex_exit(lock);
2017			kpreempt(KPREEMPT_SYNC);
2018			mutex_enter(lock);
2019			mutex_enter(evicted_lock);
2020			ab_prev = list_prev(list, &marker);
2021			list_remove(list, &marker);
2022			count = 0;
2023			continue;
2024		}
2025
2026		hash_lock = HDR_LOCK(ab);
2027		have_lock = MUTEX_HELD(hash_lock);
2028		if (have_lock || mutex_tryenter(hash_lock)) {
2029			ASSERT0(refcount_count(&ab->b_refcnt));
2030			ASSERT(ab->b_datacnt > 0);
2031			while (ab->b_buf) {
2032				arc_buf_t *buf = ab->b_buf;
2033				if (!mutex_tryenter(&buf->b_evict_lock)) {
2034					missed += 1;
2035					break;
2036				}
2037				if (buf->b_data) {
2038					bytes_evicted += ab->b_size;
2039					if (recycle && ab->b_type == type &&
2040					    ab->b_size == bytes &&
2041					    !HDR_L2_WRITING(ab)) {
2042						stolen = buf->b_data;
2043						recycle = FALSE;
2044					}
2045				}
2046				if (buf->b_efunc) {
2047					mutex_enter(&arc_eviction_mtx);
2048					arc_buf_destroy(buf,
2049					    buf->b_data == stolen, FALSE);
2050					ab->b_buf = buf->b_next;
2051					buf->b_hdr = &arc_eviction_hdr;
2052					buf->b_next = arc_eviction_list;
2053					arc_eviction_list = buf;
2054					mutex_exit(&arc_eviction_mtx);
2055					mutex_exit(&buf->b_evict_lock);
2056				} else {
2057					mutex_exit(&buf->b_evict_lock);
2058					arc_buf_destroy(buf,
2059					    buf->b_data == stolen, TRUE);
2060				}
2061			}
2062
2063			if (ab->b_l2hdr) {
2064				ARCSTAT_INCR(arcstat_evict_l2_cached,
2065				    ab->b_size);
2066			} else {
2067				if (l2arc_write_eligible(ab->b_spa, ab)) {
2068					ARCSTAT_INCR(arcstat_evict_l2_eligible,
2069					    ab->b_size);
2070				} else {
2071					ARCSTAT_INCR(
2072					    arcstat_evict_l2_ineligible,
2073					    ab->b_size);
2074				}
2075			}
2076
2077			if (ab->b_datacnt == 0) {
2078				arc_change_state(evicted_state, ab, hash_lock);
2079				ASSERT(HDR_IN_HASH_TABLE(ab));
2080				ab->b_flags |= ARC_IN_HASH_TABLE;
2081				ab->b_flags &= ~ARC_BUF_AVAILABLE;
2082				DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
2083			}
2084			if (!have_lock)
2085				mutex_exit(hash_lock);
2086			if (bytes >= 0 && bytes_evicted >= bytes)
2087				break;
2088			if (bytes_remaining > 0) {
2089				mutex_exit(evicted_lock);
2090				mutex_exit(lock);
2091				idx  = ((idx + 1) & (list_count - 1));
2092				lists++;
2093				goto evict_start;
2094			}
2095		} else {
2096			missed += 1;
2097		}
2098	}
2099
2100	mutex_exit(evicted_lock);
2101	mutex_exit(lock);
2102
2103	idx  = ((idx + 1) & (list_count - 1));
2104	lists++;
2105
2106	if (bytes_evicted < bytes) {
2107		if (lists < list_count)
2108			goto evict_start;
2109		else
2110			dprintf("only evicted %lld bytes from %x",
2111			    (longlong_t)bytes_evicted, state);
2112	}
2113	if (type == ARC_BUFC_METADATA)
2114		evict_metadata_offset = idx;
2115	else
2116		evict_data_offset = idx;
2117
2118	if (skipped)
2119		ARCSTAT_INCR(arcstat_evict_skip, skipped);
2120
2121	if (missed)
2122		ARCSTAT_INCR(arcstat_mutex_miss, missed);
2123
2124	/*
2125	 * Note: we have just evicted some data into the ghost state,
2126	 * potentially putting the ghost size over the desired size.  Rather
2127	 * that evicting from the ghost list in this hot code path, leave
2128	 * this chore to the arc_reclaim_thread().
2129	 */
2130
2131	if (stolen)
2132		ARCSTAT_BUMP(arcstat_stolen);
2133	return (stolen);
2134}
2135
2136/*
2137 * Remove buffers from list until we've removed the specified number of
2138 * bytes.  Destroy the buffers that are removed.
2139 */
2140static void
2141arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes)
2142{
2143	arc_buf_hdr_t *ab, *ab_prev;
2144	arc_buf_hdr_t marker = { 0 };
2145	list_t *list, *list_start;
2146	kmutex_t *hash_lock, *lock;
2147	uint64_t bytes_deleted = 0;
2148	uint64_t bufs_skipped = 0;
2149	int count = 0;
2150	static int evict_offset;
2151	int list_count, idx = evict_offset;
2152	int offset, lists = 0;
2153
2154	ASSERT(GHOST_STATE(state));
2155
2156	/*
2157	 * data lists come after metadata lists
2158	 */
2159	list_start = &state->arcs_lists[ARC_BUFC_NUMMETADATALISTS];
2160	list_count = ARC_BUFC_NUMDATALISTS;
2161	offset = ARC_BUFC_NUMMETADATALISTS;
2162
2163evict_start:
2164	list = &list_start[idx];
2165	lock = ARCS_LOCK(state, idx + offset);
2166
2167	mutex_enter(lock);
2168	for (ab = list_tail(list); ab; ab = ab_prev) {
2169		ab_prev = list_prev(list, ab);
2170		if (ab->b_type > ARC_BUFC_NUMTYPES)
2171			panic("invalid ab=%p", (void *)ab);
2172		if (spa && ab->b_spa != spa)
2173			continue;
2174
2175		/* ignore markers */
2176		if (ab->b_spa == 0)
2177			continue;
2178
2179		hash_lock = HDR_LOCK(ab);
2180		/* caller may be trying to modify this buffer, skip it */
2181		if (MUTEX_HELD(hash_lock))
2182			continue;
2183
2184		/*
2185		 * It may take a long time to evict all the bufs requested.
2186		 * To avoid blocking all arc activity, periodically drop
2187		 * the arcs_mtx and give other threads a chance to run
2188		 * before reacquiring the lock.
2189		 */
2190		if (count++ > arc_evict_iterations) {
2191			list_insert_after(list, ab, &marker);
2192			mutex_exit(lock);
2193			kpreempt(KPREEMPT_SYNC);
2194			mutex_enter(lock);
2195			ab_prev = list_prev(list, &marker);
2196			list_remove(list, &marker);
2197			count = 0;
2198			continue;
2199		}
2200		if (mutex_tryenter(hash_lock)) {
2201			ASSERT(!HDR_IO_IN_PROGRESS(ab));
2202			ASSERT(ab->b_buf == NULL);
2203			ARCSTAT_BUMP(arcstat_deleted);
2204			bytes_deleted += ab->b_size;
2205
2206			if (ab->b_l2hdr != NULL) {
2207				/*
2208				 * This buffer is cached on the 2nd Level ARC;
2209				 * don't destroy the header.
2210				 */
2211				arc_change_state(arc_l2c_only, ab, hash_lock);
2212				mutex_exit(hash_lock);
2213			} else {
2214				arc_change_state(arc_anon, ab, hash_lock);
2215				mutex_exit(hash_lock);
2216				arc_hdr_destroy(ab);
2217			}
2218
2219			DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
2220			if (bytes >= 0 && bytes_deleted >= bytes)
2221				break;
2222		} else if (bytes < 0) {
2223			/*
2224			 * Insert a list marker and then wait for the
2225			 * hash lock to become available. Once its
2226			 * available, restart from where we left off.
2227			 */
2228			list_insert_after(list, ab, &marker);
2229			mutex_exit(lock);
2230			mutex_enter(hash_lock);
2231			mutex_exit(hash_lock);
2232			mutex_enter(lock);
2233			ab_prev = list_prev(list, &marker);
2234			list_remove(list, &marker);
2235		} else {
2236			bufs_skipped += 1;
2237		}
2238
2239	}
2240	mutex_exit(lock);
2241	idx  = ((idx + 1) & (ARC_BUFC_NUMDATALISTS - 1));
2242	lists++;
2243
2244	if (lists < list_count)
2245		goto evict_start;
2246
2247	evict_offset = idx;
2248	if ((uintptr_t)list > (uintptr_t)&state->arcs_lists[ARC_BUFC_NUMMETADATALISTS] &&
2249	    (bytes < 0 || bytes_deleted < bytes)) {
2250		list_start = &state->arcs_lists[0];
2251		list_count = ARC_BUFC_NUMMETADATALISTS;
2252		offset = lists = 0;
2253		goto evict_start;
2254	}
2255
2256	if (bufs_skipped) {
2257		ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
2258		ASSERT(bytes >= 0);
2259	}
2260
2261	if (bytes_deleted < bytes)
2262		dprintf("only deleted %lld bytes from %p",
2263		    (longlong_t)bytes_deleted, state);
2264}
2265
2266static void
2267arc_adjust(void)
2268{
2269	int64_t adjustment, delta;
2270
2271	/*
2272	 * Adjust MRU size
2273	 */
2274
2275	adjustment = MIN((int64_t)(arc_size - arc_c),
2276	    (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used -
2277	    arc_p));
2278
2279	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
2280		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment);
2281		(void) arc_evict(arc_mru, 0, delta, FALSE, ARC_BUFC_DATA);
2282		adjustment -= delta;
2283	}
2284
2285	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2286		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
2287		(void) arc_evict(arc_mru, 0, delta, FALSE,
2288		    ARC_BUFC_METADATA);
2289	}
2290
2291	/*
2292	 * Adjust MFU size
2293	 */
2294
2295	adjustment = arc_size - arc_c;
2296
2297	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
2298		delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]);
2299		(void) arc_evict(arc_mfu, 0, delta, FALSE, ARC_BUFC_DATA);
2300		adjustment -= delta;
2301	}
2302
2303	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2304		int64_t delta = MIN(adjustment,
2305		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA]);
2306		(void) arc_evict(arc_mfu, 0, delta, FALSE,
2307		    ARC_BUFC_METADATA);
2308	}
2309
2310	/*
2311	 * Adjust ghost lists
2312	 */
2313
2314	adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
2315
2316	if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
2317		delta = MIN(arc_mru_ghost->arcs_size, adjustment);
2318		arc_evict_ghost(arc_mru_ghost, 0, delta);
2319	}
2320
2321	adjustment =
2322	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
2323
2324	if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
2325		delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
2326		arc_evict_ghost(arc_mfu_ghost, 0, delta);
2327	}
2328}
2329
2330static void
2331arc_do_user_evicts(void)
2332{
2333	static arc_buf_t *tmp_arc_eviction_list;
2334
2335	/*
2336	 * Move list over to avoid LOR
2337	 */
2338restart:
2339	mutex_enter(&arc_eviction_mtx);
2340	tmp_arc_eviction_list = arc_eviction_list;
2341	arc_eviction_list = NULL;
2342	mutex_exit(&arc_eviction_mtx);
2343
2344	while (tmp_arc_eviction_list != NULL) {
2345		arc_buf_t *buf = tmp_arc_eviction_list;
2346		tmp_arc_eviction_list = buf->b_next;
2347		mutex_enter(&buf->b_evict_lock);
2348		buf->b_hdr = NULL;
2349		mutex_exit(&buf->b_evict_lock);
2350
2351		if (buf->b_efunc != NULL)
2352			VERIFY(buf->b_efunc(buf) == 0);
2353
2354		buf->b_efunc = NULL;
2355		buf->b_private = NULL;
2356		kmem_cache_free(buf_cache, buf);
2357	}
2358
2359	if (arc_eviction_list != NULL)
2360		goto restart;
2361}
2362
2363/*
2364 * Flush all *evictable* data from the cache for the given spa.
2365 * NOTE: this will not touch "active" (i.e. referenced) data.
2366 */
2367void
2368arc_flush(spa_t *spa)
2369{
2370	uint64_t guid = 0;
2371
2372	if (spa)
2373		guid = spa_load_guid(spa);
2374
2375	while (arc_mru->arcs_lsize[ARC_BUFC_DATA]) {
2376		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
2377		if (spa)
2378			break;
2379	}
2380	while (arc_mru->arcs_lsize[ARC_BUFC_METADATA]) {
2381		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
2382		if (spa)
2383			break;
2384	}
2385	while (arc_mfu->arcs_lsize[ARC_BUFC_DATA]) {
2386		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
2387		if (spa)
2388			break;
2389	}
2390	while (arc_mfu->arcs_lsize[ARC_BUFC_METADATA]) {
2391		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
2392		if (spa)
2393			break;
2394	}
2395
2396	arc_evict_ghost(arc_mru_ghost, guid, -1);
2397	arc_evict_ghost(arc_mfu_ghost, guid, -1);
2398
2399	mutex_enter(&arc_reclaim_thr_lock);
2400	arc_do_user_evicts();
2401	mutex_exit(&arc_reclaim_thr_lock);
2402	ASSERT(spa || arc_eviction_list == NULL);
2403}
2404
2405void
2406arc_shrink(void)
2407{
2408	if (arc_c > arc_c_min) {
2409		uint64_t to_free;
2410
2411#ifdef _KERNEL
2412		to_free = arc_c >> arc_shrink_shift;
2413#else
2414		to_free = arc_c >> arc_shrink_shift;
2415#endif
2416		if (arc_c > arc_c_min + to_free)
2417			atomic_add_64(&arc_c, -to_free);
2418		else
2419			arc_c = arc_c_min;
2420
2421		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
2422		if (arc_c > arc_size)
2423			arc_c = MAX(arc_size, arc_c_min);
2424		if (arc_p > arc_c)
2425			arc_p = (arc_c >> 1);
2426		ASSERT(arc_c >= arc_c_min);
2427		ASSERT((int64_t)arc_p >= 0);
2428	}
2429
2430	if (arc_size > arc_c)
2431		arc_adjust();
2432}
2433
2434static int needfree = 0;
2435
2436static int
2437arc_reclaim_needed(void)
2438{
2439
2440#ifdef _KERNEL
2441
2442	if (needfree)
2443		return (1);
2444
2445	/*
2446	 * Cooperate with pagedaemon when it's time for it to scan
2447	 * and reclaim some pages.
2448	 */
2449	if (vm_paging_needed())
2450		return (1);
2451
2452#ifdef sun
2453	/*
2454	 * take 'desfree' extra pages, so we reclaim sooner, rather than later
2455	 */
2456	extra = desfree;
2457
2458	/*
2459	 * check that we're out of range of the pageout scanner.  It starts to
2460	 * schedule paging if freemem is less than lotsfree and needfree.
2461	 * lotsfree is the high-water mark for pageout, and needfree is the
2462	 * number of needed free pages.  We add extra pages here to make sure
2463	 * the scanner doesn't start up while we're freeing memory.
2464	 */
2465	if (freemem < lotsfree + needfree + extra)
2466		return (1);
2467
2468	/*
2469	 * check to make sure that swapfs has enough space so that anon
2470	 * reservations can still succeed. anon_resvmem() checks that the
2471	 * availrmem is greater than swapfs_minfree, and the number of reserved
2472	 * swap pages.  We also add a bit of extra here just to prevent
2473	 * circumstances from getting really dire.
2474	 */
2475	if (availrmem < swapfs_minfree + swapfs_reserve + extra)
2476		return (1);
2477
2478#if defined(__i386)
2479	/*
2480	 * If we're on an i386 platform, it's possible that we'll exhaust the
2481	 * kernel heap space before we ever run out of available physical
2482	 * memory.  Most checks of the size of the heap_area compare against
2483	 * tune.t_minarmem, which is the minimum available real memory that we
2484	 * can have in the system.  However, this is generally fixed at 25 pages
2485	 * which is so low that it's useless.  In this comparison, we seek to
2486	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
2487	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
2488	 * free)
2489	 */
2490	if (btop(vmem_size(heap_arena, VMEM_FREE)) <
2491	    (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2))
2492		return (1);
2493#endif
2494#else	/* !sun */
2495	if (kmem_used() > (kmem_size() * 3) / 4)
2496		return (1);
2497#endif	/* sun */
2498
2499#else
2500	if (spa_get_random(100) == 0)
2501		return (1);
2502#endif
2503	return (0);
2504}
2505
2506extern kmem_cache_t	*zio_buf_cache[];
2507extern kmem_cache_t	*zio_data_buf_cache[];
2508
2509static void
2510arc_kmem_reap_now(arc_reclaim_strategy_t strat)
2511{
2512	size_t			i;
2513	kmem_cache_t		*prev_cache = NULL;
2514	kmem_cache_t		*prev_data_cache = NULL;
2515
2516#ifdef _KERNEL
2517	if (arc_meta_used >= arc_meta_limit) {
2518		/*
2519		 * We are exceeding our meta-data cache limit.
2520		 * Purge some DNLC entries to release holds on meta-data.
2521		 */
2522		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
2523	}
2524#if defined(__i386)
2525	/*
2526	 * Reclaim unused memory from all kmem caches.
2527	 */
2528	kmem_reap();
2529#endif
2530#endif
2531
2532	/*
2533	 * An aggressive reclamation will shrink the cache size as well as
2534	 * reap free buffers from the arc kmem caches.
2535	 */
2536	if (strat == ARC_RECLAIM_AGGR)
2537		arc_shrink();
2538
2539	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
2540		if (zio_buf_cache[i] != prev_cache) {
2541			prev_cache = zio_buf_cache[i];
2542			kmem_cache_reap_now(zio_buf_cache[i]);
2543		}
2544		if (zio_data_buf_cache[i] != prev_data_cache) {
2545			prev_data_cache = zio_data_buf_cache[i];
2546			kmem_cache_reap_now(zio_data_buf_cache[i]);
2547		}
2548	}
2549	kmem_cache_reap_now(buf_cache);
2550	kmem_cache_reap_now(hdr_cache);
2551}
2552
2553static void
2554arc_reclaim_thread(void *dummy __unused)
2555{
2556	clock_t			growtime = 0;
2557	arc_reclaim_strategy_t	last_reclaim = ARC_RECLAIM_CONS;
2558	callb_cpr_t		cpr;
2559
2560	CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
2561
2562	mutex_enter(&arc_reclaim_thr_lock);
2563	while (arc_thread_exit == 0) {
2564		if (arc_reclaim_needed()) {
2565
2566			if (arc_no_grow) {
2567				if (last_reclaim == ARC_RECLAIM_CONS) {
2568					last_reclaim = ARC_RECLAIM_AGGR;
2569				} else {
2570					last_reclaim = ARC_RECLAIM_CONS;
2571				}
2572			} else {
2573				arc_no_grow = TRUE;
2574				last_reclaim = ARC_RECLAIM_AGGR;
2575				membar_producer();
2576			}
2577
2578			/* reset the growth delay for every reclaim */
2579			growtime = ddi_get_lbolt() + (arc_grow_retry * hz);
2580
2581			if (needfree && last_reclaim == ARC_RECLAIM_CONS) {
2582				/*
2583				 * If needfree is TRUE our vm_lowmem hook
2584				 * was called and in that case we must free some
2585				 * memory, so switch to aggressive mode.
2586				 */
2587				arc_no_grow = TRUE;
2588				last_reclaim = ARC_RECLAIM_AGGR;
2589			}
2590			arc_kmem_reap_now(last_reclaim);
2591			arc_warm = B_TRUE;
2592
2593		} else if (arc_no_grow && ddi_get_lbolt() >= growtime) {
2594			arc_no_grow = FALSE;
2595		}
2596
2597		arc_adjust();
2598
2599		if (arc_eviction_list != NULL)
2600			arc_do_user_evicts();
2601
2602#ifdef _KERNEL
2603		if (needfree) {
2604			needfree = 0;
2605			wakeup(&needfree);
2606		}
2607#endif
2608
2609		/* block until needed, or one second, whichever is shorter */
2610		CALLB_CPR_SAFE_BEGIN(&cpr);
2611		(void) cv_timedwait(&arc_reclaim_thr_cv,
2612		    &arc_reclaim_thr_lock, hz);
2613		CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
2614	}
2615
2616	arc_thread_exit = 0;
2617	cv_broadcast(&arc_reclaim_thr_cv);
2618	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_thr_lock */
2619	thread_exit();
2620}
2621
2622/*
2623 * Adapt arc info given the number of bytes we are trying to add and
2624 * the state that we are comming from.  This function is only called
2625 * when we are adding new content to the cache.
2626 */
2627static void
2628arc_adapt(int bytes, arc_state_t *state)
2629{
2630	int mult;
2631	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
2632
2633	if (state == arc_l2c_only)
2634		return;
2635
2636	ASSERT(bytes > 0);
2637	/*
2638	 * Adapt the target size of the MRU list:
2639	 *	- if we just hit in the MRU ghost list, then increase
2640	 *	  the target size of the MRU list.
2641	 *	- if we just hit in the MFU ghost list, then increase
2642	 *	  the target size of the MFU list by decreasing the
2643	 *	  target size of the MRU list.
2644	 */
2645	if (state == arc_mru_ghost) {
2646		mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
2647		    1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
2648		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
2649
2650		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
2651	} else if (state == arc_mfu_ghost) {
2652		uint64_t delta;
2653
2654		mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
2655		    1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
2656		mult = MIN(mult, 10);
2657
2658		delta = MIN(bytes * mult, arc_p);
2659		arc_p = MAX(arc_p_min, arc_p - delta);
2660	}
2661	ASSERT((int64_t)arc_p >= 0);
2662
2663	if (arc_reclaim_needed()) {
2664		cv_signal(&arc_reclaim_thr_cv);
2665		return;
2666	}
2667
2668	if (arc_no_grow)
2669		return;
2670
2671	if (arc_c >= arc_c_max)
2672		return;
2673
2674	/*
2675	 * If we're within (2 * maxblocksize) bytes of the target
2676	 * cache size, increment the target cache size
2677	 */
2678	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
2679		atomic_add_64(&arc_c, (int64_t)bytes);
2680		if (arc_c > arc_c_max)
2681			arc_c = arc_c_max;
2682		else if (state == arc_anon)
2683			atomic_add_64(&arc_p, (int64_t)bytes);
2684		if (arc_p > arc_c)
2685			arc_p = arc_c;
2686	}
2687	ASSERT((int64_t)arc_p >= 0);
2688}
2689
2690/*
2691 * Check if the cache has reached its limits and eviction is required
2692 * prior to insert.
2693 */
2694static int
2695arc_evict_needed(arc_buf_contents_t type)
2696{
2697	if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
2698		return (1);
2699
2700#ifdef sun
2701#ifdef _KERNEL
2702	/*
2703	 * If zio data pages are being allocated out of a separate heap segment,
2704	 * then enforce that the size of available vmem for this area remains
2705	 * above about 1/32nd free.
2706	 */
2707	if (type == ARC_BUFC_DATA && zio_arena != NULL &&
2708	    vmem_size(zio_arena, VMEM_FREE) <
2709	    (vmem_size(zio_arena, VMEM_ALLOC) >> 5))
2710		return (1);
2711#endif
2712#endif	/* sun */
2713
2714	if (arc_reclaim_needed())
2715		return (1);
2716
2717	return (arc_size > arc_c);
2718}
2719
2720/*
2721 * The buffer, supplied as the first argument, needs a data block.
2722 * So, if we are at cache max, determine which cache should be victimized.
2723 * We have the following cases:
2724 *
2725 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2726 * In this situation if we're out of space, but the resident size of the MFU is
2727 * under the limit, victimize the MFU cache to satisfy this insertion request.
2728 *
2729 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2730 * Here, we've used up all of the available space for the MRU, so we need to
2731 * evict from our own cache instead.  Evict from the set of resident MRU
2732 * entries.
2733 *
2734 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2735 * c minus p represents the MFU space in the cache, since p is the size of the
2736 * cache that is dedicated to the MRU.  In this situation there's still space on
2737 * the MFU side, so the MRU side needs to be victimized.
2738 *
2739 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2740 * MFU's resident set is consuming more space than it has been allotted.  In
2741 * this situation, we must victimize our own cache, the MFU, for this insertion.
2742 */
2743static void
2744arc_get_data_buf(arc_buf_t *buf)
2745{
2746	arc_state_t		*state = buf->b_hdr->b_state;
2747	uint64_t		size = buf->b_hdr->b_size;
2748	arc_buf_contents_t	type = buf->b_hdr->b_type;
2749
2750	arc_adapt(size, state);
2751
2752	/*
2753	 * We have not yet reached cache maximum size,
2754	 * just allocate a new buffer.
2755	 */
2756	if (!arc_evict_needed(type)) {
2757		if (type == ARC_BUFC_METADATA) {
2758			buf->b_data = zio_buf_alloc(size);
2759			arc_space_consume(size, ARC_SPACE_DATA);
2760		} else {
2761			ASSERT(type == ARC_BUFC_DATA);
2762			buf->b_data = zio_data_buf_alloc(size);
2763			ARCSTAT_INCR(arcstat_data_size, size);
2764			atomic_add_64(&arc_size, size);
2765		}
2766		goto out;
2767	}
2768
2769	/*
2770	 * If we are prefetching from the mfu ghost list, this buffer
2771	 * will end up on the mru list; so steal space from there.
2772	 */
2773	if (state == arc_mfu_ghost)
2774		state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2775	else if (state == arc_mru_ghost)
2776		state = arc_mru;
2777
2778	if (state == arc_mru || state == arc_anon) {
2779		uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
2780		state = (arc_mfu->arcs_lsize[type] >= size &&
2781		    arc_p > mru_used) ? arc_mfu : arc_mru;
2782	} else {
2783		/* MFU cases */
2784		uint64_t mfu_space = arc_c - arc_p;
2785		state =  (arc_mru->arcs_lsize[type] >= size &&
2786		    mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2787	}
2788	if ((buf->b_data = arc_evict(state, 0, size, TRUE, type)) == NULL) {
2789		if (type == ARC_BUFC_METADATA) {
2790			buf->b_data = zio_buf_alloc(size);
2791			arc_space_consume(size, ARC_SPACE_DATA);
2792		} else {
2793			ASSERT(type == ARC_BUFC_DATA);
2794			buf->b_data = zio_data_buf_alloc(size);
2795			ARCSTAT_INCR(arcstat_data_size, size);
2796			atomic_add_64(&arc_size, size);
2797		}
2798		ARCSTAT_BUMP(arcstat_recycle_miss);
2799	}
2800	ASSERT(buf->b_data != NULL);
2801out:
2802	/*
2803	 * Update the state size.  Note that ghost states have a
2804	 * "ghost size" and so don't need to be updated.
2805	 */
2806	if (!GHOST_STATE(buf->b_hdr->b_state)) {
2807		arc_buf_hdr_t *hdr = buf->b_hdr;
2808
2809		atomic_add_64(&hdr->b_state->arcs_size, size);
2810		if (list_link_active(&hdr->b_arc_node)) {
2811			ASSERT(refcount_is_zero(&hdr->b_refcnt));
2812			atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2813		}
2814		/*
2815		 * If we are growing the cache, and we are adding anonymous
2816		 * data, and we have outgrown arc_p, update arc_p
2817		 */
2818		if (arc_size < arc_c && hdr->b_state == arc_anon &&
2819		    arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2820			arc_p = MIN(arc_c, arc_p + size);
2821	}
2822	ARCSTAT_BUMP(arcstat_allocated);
2823}
2824
2825/*
2826 * This routine is called whenever a buffer is accessed.
2827 * NOTE: the hash lock is dropped in this function.
2828 */
2829static void
2830arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2831{
2832	clock_t now;
2833
2834	ASSERT(MUTEX_HELD(hash_lock));
2835
2836	if (buf->b_state == arc_anon) {
2837		/*
2838		 * This buffer is not in the cache, and does not
2839		 * appear in our "ghost" list.  Add the new buffer
2840		 * to the MRU state.
2841		 */
2842
2843		ASSERT(buf->b_arc_access == 0);
2844		buf->b_arc_access = ddi_get_lbolt();
2845		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2846		arc_change_state(arc_mru, buf, hash_lock);
2847
2848	} else if (buf->b_state == arc_mru) {
2849		now = ddi_get_lbolt();
2850
2851		/*
2852		 * If this buffer is here because of a prefetch, then either:
2853		 * - clear the flag if this is a "referencing" read
2854		 *   (any subsequent access will bump this into the MFU state).
2855		 * or
2856		 * - move the buffer to the head of the list if this is
2857		 *   another prefetch (to make it less likely to be evicted).
2858		 */
2859		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2860			if (refcount_count(&buf->b_refcnt) == 0) {
2861				ASSERT(list_link_active(&buf->b_arc_node));
2862			} else {
2863				buf->b_flags &= ~ARC_PREFETCH;
2864				ARCSTAT_BUMP(arcstat_mru_hits);
2865			}
2866			buf->b_arc_access = now;
2867			return;
2868		}
2869
2870		/*
2871		 * This buffer has been "accessed" only once so far,
2872		 * but it is still in the cache. Move it to the MFU
2873		 * state.
2874		 */
2875		if (now > buf->b_arc_access + ARC_MINTIME) {
2876			/*
2877			 * More than 125ms have passed since we
2878			 * instantiated this buffer.  Move it to the
2879			 * most frequently used state.
2880			 */
2881			buf->b_arc_access = now;
2882			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2883			arc_change_state(arc_mfu, buf, hash_lock);
2884		}
2885		ARCSTAT_BUMP(arcstat_mru_hits);
2886	} else if (buf->b_state == arc_mru_ghost) {
2887		arc_state_t	*new_state;
2888		/*
2889		 * This buffer has been "accessed" recently, but
2890		 * was evicted from the cache.  Move it to the
2891		 * MFU state.
2892		 */
2893
2894		if (buf->b_flags & ARC_PREFETCH) {
2895			new_state = arc_mru;
2896			if (refcount_count(&buf->b_refcnt) > 0)
2897				buf->b_flags &= ~ARC_PREFETCH;
2898			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2899		} else {
2900			new_state = arc_mfu;
2901			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2902		}
2903
2904		buf->b_arc_access = ddi_get_lbolt();
2905		arc_change_state(new_state, buf, hash_lock);
2906
2907		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2908	} else if (buf->b_state == arc_mfu) {
2909		/*
2910		 * This buffer has been accessed more than once and is
2911		 * still in the cache.  Keep it in the MFU state.
2912		 *
2913		 * NOTE: an add_reference() that occurred when we did
2914		 * the arc_read() will have kicked this off the list.
2915		 * If it was a prefetch, we will explicitly move it to
2916		 * the head of the list now.
2917		 */
2918		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2919			ASSERT(refcount_count(&buf->b_refcnt) == 0);
2920			ASSERT(list_link_active(&buf->b_arc_node));
2921		}
2922		ARCSTAT_BUMP(arcstat_mfu_hits);
2923		buf->b_arc_access = ddi_get_lbolt();
2924	} else if (buf->b_state == arc_mfu_ghost) {
2925		arc_state_t	*new_state = arc_mfu;
2926		/*
2927		 * This buffer has been accessed more than once but has
2928		 * been evicted from the cache.  Move it back to the
2929		 * MFU state.
2930		 */
2931
2932		if (buf->b_flags & ARC_PREFETCH) {
2933			/*
2934			 * This is a prefetch access...
2935			 * move this block back to the MRU state.
2936			 */
2937			ASSERT0(refcount_count(&buf->b_refcnt));
2938			new_state = arc_mru;
2939		}
2940
2941		buf->b_arc_access = ddi_get_lbolt();
2942		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2943		arc_change_state(new_state, buf, hash_lock);
2944
2945		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2946	} else if (buf->b_state == arc_l2c_only) {
2947		/*
2948		 * This buffer is on the 2nd Level ARC.
2949		 */
2950
2951		buf->b_arc_access = ddi_get_lbolt();
2952		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2953		arc_change_state(arc_mfu, buf, hash_lock);
2954	} else {
2955		ASSERT(!"invalid arc state");
2956	}
2957}
2958
2959/* a generic arc_done_func_t which you can use */
2960/* ARGSUSED */
2961void
2962arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2963{
2964	if (zio == NULL || zio->io_error == 0)
2965		bcopy(buf->b_data, arg, buf->b_hdr->b_size);
2966	VERIFY(arc_buf_remove_ref(buf, arg));
2967}
2968
2969/* a generic arc_done_func_t */
2970void
2971arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2972{
2973	arc_buf_t **bufp = arg;
2974	if (zio && zio->io_error) {
2975		VERIFY(arc_buf_remove_ref(buf, arg));
2976		*bufp = NULL;
2977	} else {
2978		*bufp = buf;
2979		ASSERT(buf->b_data);
2980	}
2981}
2982
2983static void
2984arc_read_done(zio_t *zio)
2985{
2986	arc_buf_hdr_t	*hdr, *found;
2987	arc_buf_t	*buf;
2988	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
2989	kmutex_t	*hash_lock;
2990	arc_callback_t	*callback_list, *acb;
2991	int		freeable = FALSE;
2992
2993	buf = zio->io_private;
2994	hdr = buf->b_hdr;
2995
2996	/*
2997	 * The hdr was inserted into hash-table and removed from lists
2998	 * prior to starting I/O.  We should find this header, since
2999	 * it's in the hash table, and it should be legit since it's
3000	 * not possible to evict it during the I/O.  The only possible
3001	 * reason for it not to be found is if we were freed during the
3002	 * read.
3003	 */
3004	found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth,
3005	    &hash_lock);
3006
3007	ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
3008	    (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
3009	    (found == hdr && HDR_L2_READING(hdr)));
3010
3011	hdr->b_flags &= ~ARC_L2_EVICTED;
3012	if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
3013		hdr->b_flags &= ~ARC_L2CACHE;
3014
3015	/* byteswap if necessary */
3016	callback_list = hdr->b_acb;
3017	ASSERT(callback_list != NULL);
3018	if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
3019		dmu_object_byteswap_t bswap =
3020		    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
3021		arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
3022		    byteswap_uint64_array :
3023		    dmu_ot_byteswap[bswap].ob_func;
3024		func(buf->b_data, hdr->b_size);
3025	}
3026
3027	arc_cksum_compute(buf, B_FALSE);
3028#ifdef illumos
3029	arc_buf_watch(buf);
3030#endif /* illumos */
3031
3032	if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) {
3033		/*
3034		 * Only call arc_access on anonymous buffers.  This is because
3035		 * if we've issued an I/O for an evicted buffer, we've already
3036		 * called arc_access (to prevent any simultaneous readers from
3037		 * getting confused).
3038		 */
3039		arc_access(hdr, hash_lock);
3040	}
3041
3042	/* create copies of the data buffer for the callers */
3043	abuf = buf;
3044	for (acb = callback_list; acb; acb = acb->acb_next) {
3045		if (acb->acb_done) {
3046			if (abuf == NULL) {
3047				ARCSTAT_BUMP(arcstat_duplicate_reads);
3048				abuf = arc_buf_clone(buf);
3049			}
3050			acb->acb_buf = abuf;
3051			abuf = NULL;
3052		}
3053	}
3054	hdr->b_acb = NULL;
3055	hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3056	ASSERT(!HDR_BUF_AVAILABLE(hdr));
3057	if (abuf == buf) {
3058		ASSERT(buf->b_efunc == NULL);
3059		ASSERT(hdr->b_datacnt == 1);
3060		hdr->b_flags |= ARC_BUF_AVAILABLE;
3061	}
3062
3063	ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
3064
3065	if (zio->io_error != 0) {
3066		hdr->b_flags |= ARC_IO_ERROR;
3067		if (hdr->b_state != arc_anon)
3068			arc_change_state(arc_anon, hdr, hash_lock);
3069		if (HDR_IN_HASH_TABLE(hdr))
3070			buf_hash_remove(hdr);
3071		freeable = refcount_is_zero(&hdr->b_refcnt);
3072	}
3073
3074	/*
3075	 * Broadcast before we drop the hash_lock to avoid the possibility
3076	 * that the hdr (and hence the cv) might be freed before we get to
3077	 * the cv_broadcast().
3078	 */
3079	cv_broadcast(&hdr->b_cv);
3080
3081	if (hash_lock) {
3082		mutex_exit(hash_lock);
3083	} else {
3084		/*
3085		 * This block was freed while we waited for the read to
3086		 * complete.  It has been removed from the hash table and
3087		 * moved to the anonymous state (so that it won't show up
3088		 * in the cache).
3089		 */
3090		ASSERT3P(hdr->b_state, ==, arc_anon);
3091		freeable = refcount_is_zero(&hdr->b_refcnt);
3092	}
3093
3094	/* execute each callback and free its structure */
3095	while ((acb = callback_list) != NULL) {
3096		if (acb->acb_done)
3097			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
3098
3099		if (acb->acb_zio_dummy != NULL) {
3100			acb->acb_zio_dummy->io_error = zio->io_error;
3101			zio_nowait(acb->acb_zio_dummy);
3102		}
3103
3104		callback_list = acb->acb_next;
3105		kmem_free(acb, sizeof (arc_callback_t));
3106	}
3107
3108	if (freeable)
3109		arc_hdr_destroy(hdr);
3110}
3111
3112/*
3113 * "Read" the block block at the specified DVA (in bp) via the
3114 * cache.  If the block is found in the cache, invoke the provided
3115 * callback immediately and return.  Note that the `zio' parameter
3116 * in the callback will be NULL in this case, since no IO was
3117 * required.  If the block is not in the cache pass the read request
3118 * on to the spa with a substitute callback function, so that the
3119 * requested block will be added to the cache.
3120 *
3121 * If a read request arrives for a block that has a read in-progress,
3122 * either wait for the in-progress read to complete (and return the
3123 * results); or, if this is a read with a "done" func, add a record
3124 * to the read to invoke the "done" func when the read completes,
3125 * and return; or just return.
3126 *
3127 * arc_read_done() will invoke all the requested "done" functions
3128 * for readers of this block.
3129 */
3130int
3131arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
3132    void *private, zio_priority_t priority, int zio_flags, uint32_t *arc_flags,
3133    const zbookmark_t *zb)
3134{
3135	arc_buf_hdr_t *hdr;
3136	arc_buf_t *buf = NULL;
3137	kmutex_t *hash_lock;
3138	zio_t *rzio;
3139	uint64_t guid = spa_load_guid(spa);
3140
3141top:
3142	hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp),
3143	    &hash_lock);
3144	if (hdr && hdr->b_datacnt > 0) {
3145
3146		*arc_flags |= ARC_CACHED;
3147
3148		if (HDR_IO_IN_PROGRESS(hdr)) {
3149
3150			if (*arc_flags & ARC_WAIT) {
3151				cv_wait(&hdr->b_cv, hash_lock);
3152				mutex_exit(hash_lock);
3153				goto top;
3154			}
3155			ASSERT(*arc_flags & ARC_NOWAIT);
3156
3157			if (done) {
3158				arc_callback_t	*acb = NULL;
3159
3160				acb = kmem_zalloc(sizeof (arc_callback_t),
3161				    KM_SLEEP);
3162				acb->acb_done = done;
3163				acb->acb_private = private;
3164				if (pio != NULL)
3165					acb->acb_zio_dummy = zio_null(pio,
3166					    spa, NULL, NULL, NULL, zio_flags);
3167
3168				ASSERT(acb->acb_done != NULL);
3169				acb->acb_next = hdr->b_acb;
3170				hdr->b_acb = acb;
3171				add_reference(hdr, hash_lock, private);
3172				mutex_exit(hash_lock);
3173				return (0);
3174			}
3175			mutex_exit(hash_lock);
3176			return (0);
3177		}
3178
3179		ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
3180
3181		if (done) {
3182			add_reference(hdr, hash_lock, private);
3183			/*
3184			 * If this block is already in use, create a new
3185			 * copy of the data so that we will be guaranteed
3186			 * that arc_release() will always succeed.
3187			 */
3188			buf = hdr->b_buf;
3189			ASSERT(buf);
3190			ASSERT(buf->b_data);
3191			if (HDR_BUF_AVAILABLE(hdr)) {
3192				ASSERT(buf->b_efunc == NULL);
3193				hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3194			} else {
3195				buf = arc_buf_clone(buf);
3196			}
3197
3198		} else if (*arc_flags & ARC_PREFETCH &&
3199		    refcount_count(&hdr->b_refcnt) == 0) {
3200			hdr->b_flags |= ARC_PREFETCH;
3201		}
3202		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
3203		arc_access(hdr, hash_lock);
3204		if (*arc_flags & ARC_L2CACHE)
3205			hdr->b_flags |= ARC_L2CACHE;
3206		if (*arc_flags & ARC_L2COMPRESS)
3207			hdr->b_flags |= ARC_L2COMPRESS;
3208		mutex_exit(hash_lock);
3209		ARCSTAT_BUMP(arcstat_hits);
3210		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
3211		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
3212		    data, metadata, hits);
3213
3214		if (done)
3215			done(NULL, buf, private);
3216	} else {
3217		uint64_t size = BP_GET_LSIZE(bp);
3218		arc_callback_t	*acb;
3219		vdev_t *vd = NULL;
3220		uint64_t addr = 0;
3221		boolean_t devw = B_FALSE;
3222		enum zio_compress b_compress = ZIO_COMPRESS_OFF;
3223		uint64_t b_asize = 0;
3224
3225		if (hdr == NULL) {
3226			/* this block is not in the cache */
3227			arc_buf_hdr_t	*exists;
3228			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
3229			buf = arc_buf_alloc(spa, size, private, type);
3230			hdr = buf->b_hdr;
3231			hdr->b_dva = *BP_IDENTITY(bp);
3232			hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
3233			hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
3234			exists = buf_hash_insert(hdr, &hash_lock);
3235			if (exists) {
3236				/* somebody beat us to the hash insert */
3237				mutex_exit(hash_lock);
3238				buf_discard_identity(hdr);
3239				(void) arc_buf_remove_ref(buf, private);
3240				goto top; /* restart the IO request */
3241			}
3242			/* if this is a prefetch, we don't have a reference */
3243			if (*arc_flags & ARC_PREFETCH) {
3244				(void) remove_reference(hdr, hash_lock,
3245				    private);
3246				hdr->b_flags |= ARC_PREFETCH;
3247			}
3248			if (*arc_flags & ARC_L2CACHE)
3249				hdr->b_flags |= ARC_L2CACHE;
3250			if (*arc_flags & ARC_L2COMPRESS)
3251				hdr->b_flags |= ARC_L2COMPRESS;
3252			if (BP_GET_LEVEL(bp) > 0)
3253				hdr->b_flags |= ARC_INDIRECT;
3254		} else {
3255			/* this block is in the ghost cache */
3256			ASSERT(GHOST_STATE(hdr->b_state));
3257			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3258			ASSERT0(refcount_count(&hdr->b_refcnt));
3259			ASSERT(hdr->b_buf == NULL);
3260
3261			/* if this is a prefetch, we don't have a reference */
3262			if (*arc_flags & ARC_PREFETCH)
3263				hdr->b_flags |= ARC_PREFETCH;
3264			else
3265				add_reference(hdr, hash_lock, private);
3266			if (*arc_flags & ARC_L2CACHE)
3267				hdr->b_flags |= ARC_L2CACHE;
3268			if (*arc_flags & ARC_L2COMPRESS)
3269				hdr->b_flags |= ARC_L2COMPRESS;
3270			buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
3271			buf->b_hdr = hdr;
3272			buf->b_data = NULL;
3273			buf->b_efunc = NULL;
3274			buf->b_private = NULL;
3275			buf->b_next = NULL;
3276			hdr->b_buf = buf;
3277			ASSERT(hdr->b_datacnt == 0);
3278			hdr->b_datacnt = 1;
3279			arc_get_data_buf(buf);
3280			arc_access(hdr, hash_lock);
3281		}
3282
3283		ASSERT(!GHOST_STATE(hdr->b_state));
3284
3285		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
3286		acb->acb_done = done;
3287		acb->acb_private = private;
3288
3289		ASSERT(hdr->b_acb == NULL);
3290		hdr->b_acb = acb;
3291		hdr->b_flags |= ARC_IO_IN_PROGRESS;
3292
3293		if (hdr->b_l2hdr != NULL &&
3294		    (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
3295			devw = hdr->b_l2hdr->b_dev->l2ad_writing;
3296			addr = hdr->b_l2hdr->b_daddr;
3297			b_compress = hdr->b_l2hdr->b_compress;
3298			b_asize = hdr->b_l2hdr->b_asize;
3299			/*
3300			 * Lock out device removal.
3301			 */
3302			if (vdev_is_dead(vd) ||
3303			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
3304				vd = NULL;
3305		}
3306
3307		mutex_exit(hash_lock);
3308
3309		/*
3310		 * At this point, we have a level 1 cache miss.  Try again in
3311		 * L2ARC if possible.
3312		 */
3313		ASSERT3U(hdr->b_size, ==, size);
3314		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
3315		    uint64_t, size, zbookmark_t *, zb);
3316		ARCSTAT_BUMP(arcstat_misses);
3317		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
3318		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
3319		    data, metadata, misses);
3320#ifdef _KERNEL
3321		curthread->td_ru.ru_inblock++;
3322#endif
3323
3324		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
3325			/*
3326			 * Read from the L2ARC if the following are true:
3327			 * 1. The L2ARC vdev was previously cached.
3328			 * 2. This buffer still has L2ARC metadata.
3329			 * 3. This buffer isn't currently writing to the L2ARC.
3330			 * 4. The L2ARC entry wasn't evicted, which may
3331			 *    also have invalidated the vdev.
3332			 * 5. This isn't prefetch and l2arc_noprefetch is set.
3333			 */
3334			if (hdr->b_l2hdr != NULL &&
3335			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
3336			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
3337				l2arc_read_callback_t *cb;
3338
3339				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
3340				ARCSTAT_BUMP(arcstat_l2_hits);
3341
3342				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
3343				    KM_SLEEP);
3344				cb->l2rcb_buf = buf;
3345				cb->l2rcb_spa = spa;
3346				cb->l2rcb_bp = *bp;
3347				cb->l2rcb_zb = *zb;
3348				cb->l2rcb_flags = zio_flags;
3349				cb->l2rcb_compress = b_compress;
3350
3351				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
3352				    addr + size < vd->vdev_psize -
3353				    VDEV_LABEL_END_SIZE);
3354
3355				/*
3356				 * l2arc read.  The SCL_L2ARC lock will be
3357				 * released by l2arc_read_done().
3358				 * Issue a null zio if the underlying buffer
3359				 * was squashed to zero size by compression.
3360				 */
3361				if (b_compress == ZIO_COMPRESS_EMPTY) {
3362					rzio = zio_null(pio, spa, vd,
3363					    l2arc_read_done, cb,
3364					    zio_flags | ZIO_FLAG_DONT_CACHE |
3365					    ZIO_FLAG_CANFAIL |
3366					    ZIO_FLAG_DONT_PROPAGATE |
3367					    ZIO_FLAG_DONT_RETRY);
3368				} else {
3369					rzio = zio_read_phys(pio, vd, addr,
3370					    b_asize, buf->b_data,
3371					    ZIO_CHECKSUM_OFF,
3372					    l2arc_read_done, cb, priority,
3373					    zio_flags | ZIO_FLAG_DONT_CACHE |
3374					    ZIO_FLAG_CANFAIL |
3375					    ZIO_FLAG_DONT_PROPAGATE |
3376					    ZIO_FLAG_DONT_RETRY, B_FALSE);
3377				}
3378				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
3379				    zio_t *, rzio);
3380				ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize);
3381
3382				if (*arc_flags & ARC_NOWAIT) {
3383					zio_nowait(rzio);
3384					return (0);
3385				}
3386
3387				ASSERT(*arc_flags & ARC_WAIT);
3388				if (zio_wait(rzio) == 0)
3389					return (0);
3390
3391				/* l2arc read error; goto zio_read() */
3392			} else {
3393				DTRACE_PROBE1(l2arc__miss,
3394				    arc_buf_hdr_t *, hdr);
3395				ARCSTAT_BUMP(arcstat_l2_misses);
3396				if (HDR_L2_WRITING(hdr))
3397					ARCSTAT_BUMP(arcstat_l2_rw_clash);
3398				spa_config_exit(spa, SCL_L2ARC, vd);
3399			}
3400		} else {
3401			if (vd != NULL)
3402				spa_config_exit(spa, SCL_L2ARC, vd);
3403			if (l2arc_ndev != 0) {
3404				DTRACE_PROBE1(l2arc__miss,
3405				    arc_buf_hdr_t *, hdr);
3406				ARCSTAT_BUMP(arcstat_l2_misses);
3407			}
3408		}
3409
3410		rzio = zio_read(pio, spa, bp, buf->b_data, size,
3411		    arc_read_done, buf, priority, zio_flags, zb);
3412
3413		if (*arc_flags & ARC_WAIT)
3414			return (zio_wait(rzio));
3415
3416		ASSERT(*arc_flags & ARC_NOWAIT);
3417		zio_nowait(rzio);
3418	}
3419	return (0);
3420}
3421
3422void
3423arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
3424{
3425	ASSERT(buf->b_hdr != NULL);
3426	ASSERT(buf->b_hdr->b_state != arc_anon);
3427	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
3428	ASSERT(buf->b_efunc == NULL);
3429	ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
3430
3431	buf->b_efunc = func;
3432	buf->b_private = private;
3433}
3434
3435/*
3436 * Notify the arc that a block was freed, and thus will never be used again.
3437 */
3438void
3439arc_freed(spa_t *spa, const blkptr_t *bp)
3440{
3441	arc_buf_hdr_t *hdr;
3442	kmutex_t *hash_lock;
3443	uint64_t guid = spa_load_guid(spa);
3444
3445	hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp),
3446	    &hash_lock);
3447	if (hdr == NULL)
3448		return;
3449	if (HDR_BUF_AVAILABLE(hdr)) {
3450		arc_buf_t *buf = hdr->b_buf;
3451		add_reference(hdr, hash_lock, FTAG);
3452		hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3453		mutex_exit(hash_lock);
3454
3455		arc_release(buf, FTAG);
3456		(void) arc_buf_remove_ref(buf, FTAG);
3457	} else {
3458		mutex_exit(hash_lock);
3459	}
3460
3461}
3462
3463/*
3464 * This is used by the DMU to let the ARC know that a buffer is
3465 * being evicted, so the ARC should clean up.  If this arc buf
3466 * is not yet in the evicted state, it will be put there.
3467 */
3468int
3469arc_buf_evict(arc_buf_t *buf)
3470{
3471	arc_buf_hdr_t *hdr;
3472	kmutex_t *hash_lock;
3473	arc_buf_t **bufp;
3474	list_t *list, *evicted_list;
3475	kmutex_t *lock, *evicted_lock;
3476
3477	mutex_enter(&buf->b_evict_lock);
3478	hdr = buf->b_hdr;
3479	if (hdr == NULL) {
3480		/*
3481		 * We are in arc_do_user_evicts().
3482		 */
3483		ASSERT(buf->b_data == NULL);
3484		mutex_exit(&buf->b_evict_lock);
3485		return (0);
3486	} else if (buf->b_data == NULL) {
3487		arc_buf_t copy = *buf; /* structure assignment */
3488		/*
3489		 * We are on the eviction list; process this buffer now
3490		 * but let arc_do_user_evicts() do the reaping.
3491		 */
3492		buf->b_efunc = NULL;
3493		mutex_exit(&buf->b_evict_lock);
3494		VERIFY(copy.b_efunc(&copy) == 0);
3495		return (1);
3496	}
3497	hash_lock = HDR_LOCK(hdr);
3498	mutex_enter(hash_lock);
3499	hdr = buf->b_hdr;
3500	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3501
3502	ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
3503	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
3504
3505	/*
3506	 * Pull this buffer off of the hdr
3507	 */
3508	bufp = &hdr->b_buf;
3509	while (*bufp != buf)
3510		bufp = &(*bufp)->b_next;
3511	*bufp = buf->b_next;
3512
3513	ASSERT(buf->b_data != NULL);
3514	arc_buf_destroy(buf, FALSE, FALSE);
3515
3516	if (hdr->b_datacnt == 0) {
3517		arc_state_t *old_state = hdr->b_state;
3518		arc_state_t *evicted_state;
3519
3520		ASSERT(hdr->b_buf == NULL);
3521		ASSERT(refcount_is_zero(&hdr->b_refcnt));
3522
3523		evicted_state =
3524		    (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3525
3526		get_buf_info(hdr, old_state, &list, &lock);
3527		get_buf_info(hdr, evicted_state, &evicted_list, &evicted_lock);
3528		mutex_enter(lock);
3529		mutex_enter(evicted_lock);
3530
3531		arc_change_state(evicted_state, hdr, hash_lock);
3532		ASSERT(HDR_IN_HASH_TABLE(hdr));
3533		hdr->b_flags |= ARC_IN_HASH_TABLE;
3534		hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3535
3536		mutex_exit(evicted_lock);
3537		mutex_exit(lock);
3538	}
3539	mutex_exit(hash_lock);
3540	mutex_exit(&buf->b_evict_lock);
3541
3542	VERIFY(buf->b_efunc(buf) == 0);
3543	buf->b_efunc = NULL;
3544	buf->b_private = NULL;
3545	buf->b_hdr = NULL;
3546	buf->b_next = NULL;
3547	kmem_cache_free(buf_cache, buf);
3548	return (1);
3549}
3550
3551/*
3552 * Release this buffer from the cache, making it an anonymous buffer.  This
3553 * must be done after a read and prior to modifying the buffer contents.
3554 * If the buffer has more than one reference, we must make
3555 * a new hdr for the buffer.
3556 */
3557void
3558arc_release(arc_buf_t *buf, void *tag)
3559{
3560	arc_buf_hdr_t *hdr;
3561	kmutex_t *hash_lock = NULL;
3562	l2arc_buf_hdr_t *l2hdr;
3563	uint64_t buf_size;
3564
3565	/*
3566	 * It would be nice to assert that if it's DMU metadata (level >
3567	 * 0 || it's the dnode file), then it must be syncing context.
3568	 * But we don't know that information at this level.
3569	 */
3570
3571	mutex_enter(&buf->b_evict_lock);
3572	hdr = buf->b_hdr;
3573
3574	/* this buffer is not on any list */
3575	ASSERT(refcount_count(&hdr->b_refcnt) > 0);
3576
3577	if (hdr->b_state == arc_anon) {
3578		/* this buffer is already released */
3579		ASSERT(buf->b_efunc == NULL);
3580	} else {
3581		hash_lock = HDR_LOCK(hdr);
3582		mutex_enter(hash_lock);
3583		hdr = buf->b_hdr;
3584		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3585	}
3586
3587	l2hdr = hdr->b_l2hdr;
3588	if (l2hdr) {
3589		mutex_enter(&l2arc_buflist_mtx);
3590		hdr->b_l2hdr = NULL;
3591		list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
3592	}
3593	buf_size = hdr->b_size;
3594
3595	/*
3596	 * Do we have more than one buf?
3597	 */
3598	if (hdr->b_datacnt > 1) {
3599		arc_buf_hdr_t *nhdr;
3600		arc_buf_t **bufp;
3601		uint64_t blksz = hdr->b_size;
3602		uint64_t spa = hdr->b_spa;
3603		arc_buf_contents_t type = hdr->b_type;
3604		uint32_t flags = hdr->b_flags;
3605
3606		ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
3607		/*
3608		 * Pull the data off of this hdr and attach it to
3609		 * a new anonymous hdr.
3610		 */
3611		(void) remove_reference(hdr, hash_lock, tag);
3612		bufp = &hdr->b_buf;
3613		while (*bufp != buf)
3614			bufp = &(*bufp)->b_next;
3615		*bufp = buf->b_next;
3616		buf->b_next = NULL;
3617
3618		ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
3619		atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
3620		if (refcount_is_zero(&hdr->b_refcnt)) {
3621			uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
3622			ASSERT3U(*size, >=, hdr->b_size);
3623			atomic_add_64(size, -hdr->b_size);
3624		}
3625
3626		/*
3627		 * We're releasing a duplicate user data buffer, update
3628		 * our statistics accordingly.
3629		 */
3630		if (hdr->b_type == ARC_BUFC_DATA) {
3631			ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
3632			ARCSTAT_INCR(arcstat_duplicate_buffers_size,
3633			    -hdr->b_size);
3634		}
3635		hdr->b_datacnt -= 1;
3636		arc_cksum_verify(buf);
3637#ifdef illumos
3638		arc_buf_unwatch(buf);
3639#endif /* illumos */
3640
3641		mutex_exit(hash_lock);
3642
3643		nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3644		nhdr->b_size = blksz;
3645		nhdr->b_spa = spa;
3646		nhdr->b_type = type;
3647		nhdr->b_buf = buf;
3648		nhdr->b_state = arc_anon;
3649		nhdr->b_arc_access = 0;
3650		nhdr->b_flags = flags & ARC_L2_WRITING;
3651		nhdr->b_l2hdr = NULL;
3652		nhdr->b_datacnt = 1;
3653		nhdr->b_freeze_cksum = NULL;
3654		(void) refcount_add(&nhdr->b_refcnt, tag);
3655		buf->b_hdr = nhdr;
3656		mutex_exit(&buf->b_evict_lock);
3657		atomic_add_64(&arc_anon->arcs_size, blksz);
3658	} else {
3659		mutex_exit(&buf->b_evict_lock);
3660		ASSERT(refcount_count(&hdr->b_refcnt) == 1);
3661		ASSERT(!list_link_active(&hdr->b_arc_node));
3662		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3663		if (hdr->b_state != arc_anon)
3664			arc_change_state(arc_anon, hdr, hash_lock);
3665		hdr->b_arc_access = 0;
3666		if (hash_lock)
3667			mutex_exit(hash_lock);
3668
3669		buf_discard_identity(hdr);
3670		arc_buf_thaw(buf);
3671	}
3672	buf->b_efunc = NULL;
3673	buf->b_private = NULL;
3674
3675	if (l2hdr) {
3676		ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
3677		trim_map_free(l2hdr->b_dev->l2ad_vdev, l2hdr->b_daddr,
3678		    hdr->b_size, 0);
3679		kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
3680		ARCSTAT_INCR(arcstat_l2_size, -buf_size);
3681		mutex_exit(&l2arc_buflist_mtx);
3682	}
3683}
3684
3685int
3686arc_released(arc_buf_t *buf)
3687{
3688	int released;
3689
3690	mutex_enter(&buf->b_evict_lock);
3691	released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
3692	mutex_exit(&buf->b_evict_lock);
3693	return (released);
3694}
3695
3696int
3697arc_has_callback(arc_buf_t *buf)
3698{
3699	int callback;
3700
3701	mutex_enter(&buf->b_evict_lock);
3702	callback = (buf->b_efunc != NULL);
3703	mutex_exit(&buf->b_evict_lock);
3704	return (callback);
3705}
3706
3707#ifdef ZFS_DEBUG
3708int
3709arc_referenced(arc_buf_t *buf)
3710{
3711	int referenced;
3712
3713	mutex_enter(&buf->b_evict_lock);
3714	referenced = (refcount_count(&buf->b_hdr->b_refcnt));
3715	mutex_exit(&buf->b_evict_lock);
3716	return (referenced);
3717}
3718#endif
3719
3720static void
3721arc_write_ready(zio_t *zio)
3722{
3723	arc_write_callback_t *callback = zio->io_private;
3724	arc_buf_t *buf = callback->awcb_buf;
3725	arc_buf_hdr_t *hdr = buf->b_hdr;
3726
3727	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
3728	callback->awcb_ready(zio, buf, callback->awcb_private);
3729
3730	/*
3731	 * If the IO is already in progress, then this is a re-write
3732	 * attempt, so we need to thaw and re-compute the cksum.
3733	 * It is the responsibility of the callback to handle the
3734	 * accounting for any re-write attempt.
3735	 */
3736	if (HDR_IO_IN_PROGRESS(hdr)) {
3737		mutex_enter(&hdr->b_freeze_lock);
3738		if (hdr->b_freeze_cksum != NULL) {
3739			kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
3740			hdr->b_freeze_cksum = NULL;
3741		}
3742		mutex_exit(&hdr->b_freeze_lock);
3743	}
3744	arc_cksum_compute(buf, B_FALSE);
3745	hdr->b_flags |= ARC_IO_IN_PROGRESS;
3746}
3747
3748/*
3749 * The SPA calls this callback for each physical write that happens on behalf
3750 * of a logical write.  See the comment in dbuf_write_physdone() for details.
3751 */
3752static void
3753arc_write_physdone(zio_t *zio)
3754{
3755	arc_write_callback_t *cb = zio->io_private;
3756	if (cb->awcb_physdone != NULL)
3757		cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
3758}
3759
3760static void
3761arc_write_done(zio_t *zio)
3762{
3763	arc_write_callback_t *callback = zio->io_private;
3764	arc_buf_t *buf = callback->awcb_buf;
3765	arc_buf_hdr_t *hdr = buf->b_hdr;
3766
3767	ASSERT(hdr->b_acb == NULL);
3768
3769	if (zio->io_error == 0) {
3770		hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3771		hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
3772		hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3773	} else {
3774		ASSERT(BUF_EMPTY(hdr));
3775	}
3776
3777	/*
3778	 * If the block to be written was all-zero, we may have
3779	 * compressed it away.  In this case no write was performed
3780	 * so there will be no dva/birth/checksum.  The buffer must
3781	 * therefore remain anonymous (and uncached).
3782	 */
3783	if (!BUF_EMPTY(hdr)) {
3784		arc_buf_hdr_t *exists;
3785		kmutex_t *hash_lock;
3786
3787		ASSERT(zio->io_error == 0);
3788
3789		arc_cksum_verify(buf);
3790
3791		exists = buf_hash_insert(hdr, &hash_lock);
3792		if (exists) {
3793			/*
3794			 * This can only happen if we overwrite for
3795			 * sync-to-convergence, because we remove
3796			 * buffers from the hash table when we arc_free().
3797			 */
3798			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
3799				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3800					panic("bad overwrite, hdr=%p exists=%p",
3801					    (void *)hdr, (void *)exists);
3802				ASSERT(refcount_is_zero(&exists->b_refcnt));
3803				arc_change_state(arc_anon, exists, hash_lock);
3804				mutex_exit(hash_lock);
3805				arc_hdr_destroy(exists);
3806				exists = buf_hash_insert(hdr, &hash_lock);
3807				ASSERT3P(exists, ==, NULL);
3808			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
3809				/* nopwrite */
3810				ASSERT(zio->io_prop.zp_nopwrite);
3811				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3812					panic("bad nopwrite, hdr=%p exists=%p",
3813					    (void *)hdr, (void *)exists);
3814			} else {
3815				/* Dedup */
3816				ASSERT(hdr->b_datacnt == 1);
3817				ASSERT(hdr->b_state == arc_anon);
3818				ASSERT(BP_GET_DEDUP(zio->io_bp));
3819				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
3820			}
3821		}
3822		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3823		/* if it's not anon, we are doing a scrub */
3824		if (!exists && hdr->b_state == arc_anon)
3825			arc_access(hdr, hash_lock);
3826		mutex_exit(hash_lock);
3827	} else {
3828		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3829	}
3830
3831	ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3832	callback->awcb_done(zio, buf, callback->awcb_private);
3833
3834	kmem_free(callback, sizeof (arc_write_callback_t));
3835}
3836
3837zio_t *
3838arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
3839    blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
3840    const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone,
3841    arc_done_func_t *done, void *private, zio_priority_t priority,
3842    int zio_flags, const zbookmark_t *zb)
3843{
3844	arc_buf_hdr_t *hdr = buf->b_hdr;
3845	arc_write_callback_t *callback;
3846	zio_t *zio;
3847
3848	ASSERT(ready != NULL);
3849	ASSERT(done != NULL);
3850	ASSERT(!HDR_IO_ERROR(hdr));
3851	ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
3852	ASSERT(hdr->b_acb == NULL);
3853	if (l2arc)
3854		hdr->b_flags |= ARC_L2CACHE;
3855	if (l2arc_compress)
3856		hdr->b_flags |= ARC_L2COMPRESS;
3857	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
3858	callback->awcb_ready = ready;
3859	callback->awcb_physdone = physdone;
3860	callback->awcb_done = done;
3861	callback->awcb_private = private;
3862	callback->awcb_buf = buf;
3863
3864	zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
3865	    arc_write_ready, arc_write_physdone, arc_write_done, callback,
3866	    priority, zio_flags, zb);
3867
3868	return (zio);
3869}
3870
3871static int
3872arc_memory_throttle(uint64_t reserve, uint64_t txg)
3873{
3874#ifdef _KERNEL
3875	uint64_t available_memory =
3876	    ptoa((uintmax_t)cnt.v_free_count + cnt.v_cache_count);
3877	static uint64_t page_load = 0;
3878	static uint64_t last_txg = 0;
3879
3880#ifdef sun
3881#if defined(__i386)
3882	available_memory =
3883	    MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
3884#endif
3885#endif	/* sun */
3886
3887	if (cnt.v_free_count + cnt.v_cache_count >
3888	    (uint64_t)physmem * arc_lotsfree_percent / 100)
3889		return (0);
3890
3891	if (txg > last_txg) {
3892		last_txg = txg;
3893		page_load = 0;
3894	}
3895	/*
3896	 * If we are in pageout, we know that memory is already tight,
3897	 * the arc is already going to be evicting, so we just want to
3898	 * continue to let page writes occur as quickly as possible.
3899	 */
3900	if (curproc == pageproc) {
3901		if (page_load > available_memory / 4)
3902			return (SET_ERROR(ERESTART));
3903		/* Note: reserve is inflated, so we deflate */
3904		page_load += reserve / 8;
3905		return (0);
3906	} else if (page_load > 0 && arc_reclaim_needed()) {
3907		/* memory is low, delay before restarting */
3908		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3909		return (SET_ERROR(EAGAIN));
3910	}
3911	page_load = 0;
3912#endif
3913	return (0);
3914}
3915
3916void
3917arc_tempreserve_clear(uint64_t reserve)
3918{
3919	atomic_add_64(&arc_tempreserve, -reserve);
3920	ASSERT((int64_t)arc_tempreserve >= 0);
3921}
3922
3923int
3924arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3925{
3926	int error;
3927	uint64_t anon_size;
3928
3929	if (reserve > arc_c/4 && !arc_no_grow)
3930		arc_c = MIN(arc_c_max, reserve * 4);
3931	if (reserve > arc_c)
3932		return (SET_ERROR(ENOMEM));
3933
3934	/*
3935	 * Don't count loaned bufs as in flight dirty data to prevent long
3936	 * network delays from blocking transactions that are ready to be
3937	 * assigned to a txg.
3938	 */
3939	anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
3940
3941	/*
3942	 * Writes will, almost always, require additional memory allocations
3943	 * in order to compress/encrypt/etc the data.  We therefore need to
3944	 * make sure that there is sufficient available memory for this.
3945	 */
3946	error = arc_memory_throttle(reserve, txg);
3947	if (error != 0)
3948		return (error);
3949
3950	/*
3951	 * Throttle writes when the amount of dirty data in the cache
3952	 * gets too large.  We try to keep the cache less than half full
3953	 * of dirty blocks so that our sync times don't grow too large.
3954	 * Note: if two requests come in concurrently, we might let them
3955	 * both succeed, when one of them should fail.  Not a huge deal.
3956	 */
3957
3958	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
3959	    anon_size > arc_c / 4) {
3960		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3961		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3962		    arc_tempreserve>>10,
3963		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3964		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3965		    reserve>>10, arc_c>>10);
3966		return (SET_ERROR(ERESTART));
3967	}
3968	atomic_add_64(&arc_tempreserve, reserve);
3969	return (0);
3970}
3971
3972static kmutex_t arc_lowmem_lock;
3973#ifdef _KERNEL
3974static eventhandler_tag arc_event_lowmem = NULL;
3975
3976static void
3977arc_lowmem(void *arg __unused, int howto __unused)
3978{
3979
3980	/* Serialize access via arc_lowmem_lock. */
3981	mutex_enter(&arc_lowmem_lock);
3982	mutex_enter(&arc_reclaim_thr_lock);
3983	needfree = 1;
3984	cv_signal(&arc_reclaim_thr_cv);
3985
3986	/*
3987	 * It is unsafe to block here in arbitrary threads, because we can come
3988	 * here from ARC itself and may hold ARC locks and thus risk a deadlock
3989	 * with ARC reclaim thread.
3990	 */
3991	if (curproc == pageproc) {
3992		while (needfree)
3993			msleep(&needfree, &arc_reclaim_thr_lock, 0, "zfs:lowmem", 0);
3994	}
3995	mutex_exit(&arc_reclaim_thr_lock);
3996	mutex_exit(&arc_lowmem_lock);
3997}
3998#endif
3999
4000void
4001arc_init(void)
4002{
4003	int i, prefetch_tunable_set = 0;
4004
4005	mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
4006	cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
4007	mutex_init(&arc_lowmem_lock, NULL, MUTEX_DEFAULT, NULL);
4008
4009	/* Convert seconds to clock ticks */
4010	arc_min_prefetch_lifespan = 1 * hz;
4011
4012	/* Start out with 1/8 of all memory */
4013	arc_c = kmem_size() / 8;
4014
4015#ifdef sun
4016#ifdef _KERNEL
4017	/*
4018	 * On architectures where the physical memory can be larger
4019	 * than the addressable space (intel in 32-bit mode), we may
4020	 * need to limit the cache to 1/8 of VM size.
4021	 */
4022	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
4023#endif
4024#endif	/* sun */
4025	/* set min cache to 1/32 of all memory, or 16MB, whichever is more */
4026	arc_c_min = MAX(arc_c / 4, 64<<18);
4027	/* set max to 1/2 of all memory, or all but 1GB, whichever is more */
4028	if (arc_c * 8 >= 1<<30)
4029		arc_c_max = (arc_c * 8) - (1<<30);
4030	else
4031		arc_c_max = arc_c_min;
4032	arc_c_max = MAX(arc_c * 5, arc_c_max);
4033
4034#ifdef _KERNEL
4035	/*
4036	 * Allow the tunables to override our calculations if they are
4037	 * reasonable (ie. over 16MB)
4038	 */
4039	if (zfs_arc_max > 64<<18 && zfs_arc_max < kmem_size())
4040		arc_c_max = zfs_arc_max;
4041	if (zfs_arc_min > 64<<18 && zfs_arc_min <= arc_c_max)
4042		arc_c_min = zfs_arc_min;
4043#endif
4044
4045	arc_c = arc_c_max;
4046	arc_p = (arc_c >> 1);
4047
4048	/* limit meta-data to 1/4 of the arc capacity */
4049	arc_meta_limit = arc_c_max / 4;
4050
4051	/* Allow the tunable to override if it is reasonable */
4052	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
4053		arc_meta_limit = zfs_arc_meta_limit;
4054
4055	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
4056		arc_c_min = arc_meta_limit / 2;
4057
4058	if (zfs_arc_grow_retry > 0)
4059		arc_grow_retry = zfs_arc_grow_retry;
4060
4061	if (zfs_arc_shrink_shift > 0)
4062		arc_shrink_shift = zfs_arc_shrink_shift;
4063
4064	if (zfs_arc_p_min_shift > 0)
4065		arc_p_min_shift = zfs_arc_p_min_shift;
4066
4067	/* if kmem_flags are set, lets try to use less memory */
4068	if (kmem_debugging())
4069		arc_c = arc_c / 2;
4070	if (arc_c < arc_c_min)
4071		arc_c = arc_c_min;
4072
4073	zfs_arc_min = arc_c_min;
4074	zfs_arc_max = arc_c_max;
4075
4076	arc_anon = &ARC_anon;
4077	arc_mru = &ARC_mru;
4078	arc_mru_ghost = &ARC_mru_ghost;
4079	arc_mfu = &ARC_mfu;
4080	arc_mfu_ghost = &ARC_mfu_ghost;
4081	arc_l2c_only = &ARC_l2c_only;
4082	arc_size = 0;
4083
4084	for (i = 0; i < ARC_BUFC_NUMLISTS; i++) {
4085		mutex_init(&arc_anon->arcs_locks[i].arcs_lock,
4086		    NULL, MUTEX_DEFAULT, NULL);
4087		mutex_init(&arc_mru->arcs_locks[i].arcs_lock,
4088		    NULL, MUTEX_DEFAULT, NULL);
4089		mutex_init(&arc_mru_ghost->arcs_locks[i].arcs_lock,
4090		    NULL, MUTEX_DEFAULT, NULL);
4091		mutex_init(&arc_mfu->arcs_locks[i].arcs_lock,
4092		    NULL, MUTEX_DEFAULT, NULL);
4093		mutex_init(&arc_mfu_ghost->arcs_locks[i].arcs_lock,
4094		    NULL, MUTEX_DEFAULT, NULL);
4095		mutex_init(&arc_l2c_only->arcs_locks[i].arcs_lock,
4096		    NULL, MUTEX_DEFAULT, NULL);
4097
4098		list_create(&arc_mru->arcs_lists[i],
4099		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4100		list_create(&arc_mru_ghost->arcs_lists[i],
4101		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4102		list_create(&arc_mfu->arcs_lists[i],
4103		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4104		list_create(&arc_mfu_ghost->arcs_lists[i],
4105		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4106		list_create(&arc_mfu_ghost->arcs_lists[i],
4107		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4108		list_create(&arc_l2c_only->arcs_lists[i],
4109		    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4110	}
4111
4112	buf_init();
4113
4114	arc_thread_exit = 0;
4115	arc_eviction_list = NULL;
4116	mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
4117	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
4118
4119	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
4120	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
4121
4122	if (arc_ksp != NULL) {
4123		arc_ksp->ks_data = &arc_stats;
4124		kstat_install(arc_ksp);
4125	}
4126
4127	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
4128	    TS_RUN, minclsyspri);
4129
4130#ifdef _KERNEL
4131	arc_event_lowmem = EVENTHANDLER_REGISTER(vm_lowmem, arc_lowmem, NULL,
4132	    EVENTHANDLER_PRI_FIRST);
4133#endif
4134
4135	arc_dead = FALSE;
4136	arc_warm = B_FALSE;
4137
4138	/*
4139	 * Calculate maximum amount of dirty data per pool.
4140	 *
4141	 * If it has been set by /etc/system, take that.
4142	 * Otherwise, use a percentage of physical memory defined by
4143	 * zfs_dirty_data_max_percent (default 10%) with a cap at
4144	 * zfs_dirty_data_max_max (default 4GB).
4145	 */
4146	if (zfs_dirty_data_max == 0) {
4147		zfs_dirty_data_max = ptob(physmem) *
4148		    zfs_dirty_data_max_percent / 100;
4149		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
4150		    zfs_dirty_data_max_max);
4151	}
4152
4153#ifdef _KERNEL
4154	if (TUNABLE_INT_FETCH("vfs.zfs.prefetch_disable", &zfs_prefetch_disable))
4155		prefetch_tunable_set = 1;
4156
4157#ifdef __i386__
4158	if (prefetch_tunable_set == 0) {
4159		printf("ZFS NOTICE: Prefetch is disabled by default on i386 "
4160		    "-- to enable,\n");
4161		printf("            add \"vfs.zfs.prefetch_disable=0\" "
4162		    "to /boot/loader.conf.\n");
4163		zfs_prefetch_disable = 1;
4164	}
4165#else
4166	if ((((uint64_t)physmem * PAGESIZE) < (1ULL << 32)) &&
4167	    prefetch_tunable_set == 0) {
4168		printf("ZFS NOTICE: Prefetch is disabled by default if less "
4169		    "than 4GB of RAM is present;\n"
4170		    "            to enable, add \"vfs.zfs.prefetch_disable=0\" "
4171		    "to /boot/loader.conf.\n");
4172		zfs_prefetch_disable = 1;
4173	}
4174#endif
4175	/* Warn about ZFS memory and address space requirements. */
4176	if (((uint64_t)physmem * PAGESIZE) < (256 + 128 + 64) * (1 << 20)) {
4177		printf("ZFS WARNING: Recommended minimum RAM size is 512MB; "
4178		    "expect unstable behavior.\n");
4179	}
4180	if (kmem_size() < 512 * (1 << 20)) {
4181		printf("ZFS WARNING: Recommended minimum kmem_size is 512MB; "
4182		    "expect unstable behavior.\n");
4183		printf("             Consider tuning vm.kmem_size and "
4184		    "vm.kmem_size_max\n");
4185		printf("             in /boot/loader.conf.\n");
4186	}
4187#endif
4188}
4189
4190void
4191arc_fini(void)
4192{
4193	int i;
4194
4195	mutex_enter(&arc_reclaim_thr_lock);
4196	arc_thread_exit = 1;
4197	cv_signal(&arc_reclaim_thr_cv);
4198	while (arc_thread_exit != 0)
4199		cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
4200	mutex_exit(&arc_reclaim_thr_lock);
4201
4202	arc_flush(NULL);
4203
4204	arc_dead = TRUE;
4205
4206	if (arc_ksp != NULL) {
4207		kstat_delete(arc_ksp);
4208		arc_ksp = NULL;
4209	}
4210
4211	mutex_destroy(&arc_eviction_mtx);
4212	mutex_destroy(&arc_reclaim_thr_lock);
4213	cv_destroy(&arc_reclaim_thr_cv);
4214
4215	for (i = 0; i < ARC_BUFC_NUMLISTS; i++) {
4216		list_destroy(&arc_mru->arcs_lists[i]);
4217		list_destroy(&arc_mru_ghost->arcs_lists[i]);
4218		list_destroy(&arc_mfu->arcs_lists[i]);
4219		list_destroy(&arc_mfu_ghost->arcs_lists[i]);
4220		list_destroy(&arc_l2c_only->arcs_lists[i]);
4221
4222		mutex_destroy(&arc_anon->arcs_locks[i].arcs_lock);
4223		mutex_destroy(&arc_mru->arcs_locks[i].arcs_lock);
4224		mutex_destroy(&arc_mru_ghost->arcs_locks[i].arcs_lock);
4225		mutex_destroy(&arc_mfu->arcs_locks[i].arcs_lock);
4226		mutex_destroy(&arc_mfu_ghost->arcs_locks[i].arcs_lock);
4227		mutex_destroy(&arc_l2c_only->arcs_locks[i].arcs_lock);
4228	}
4229
4230	buf_fini();
4231
4232	ASSERT(arc_loaned_bytes == 0);
4233
4234	mutex_destroy(&arc_lowmem_lock);
4235#ifdef _KERNEL
4236	if (arc_event_lowmem != NULL)
4237		EVENTHANDLER_DEREGISTER(vm_lowmem, arc_event_lowmem);
4238#endif
4239}
4240
4241/*
4242 * Level 2 ARC
4243 *
4244 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
4245 * It uses dedicated storage devices to hold cached data, which are populated
4246 * using large infrequent writes.  The main role of this cache is to boost
4247 * the performance of random read workloads.  The intended L2ARC devices
4248 * include short-stroked disks, solid state disks, and other media with
4249 * substantially faster read latency than disk.
4250 *
4251 *                 +-----------------------+
4252 *                 |         ARC           |
4253 *                 +-----------------------+
4254 *                    |         ^     ^
4255 *                    |         |     |
4256 *      l2arc_feed_thread()    arc_read()
4257 *                    |         |     |
4258 *                    |  l2arc read   |
4259 *                    V         |     |
4260 *               +---------------+    |
4261 *               |     L2ARC     |    |
4262 *               +---------------+    |
4263 *                   |    ^           |
4264 *          l2arc_write() |           |
4265 *                   |    |           |
4266 *                   V    |           |
4267 *                 +-------+      +-------+
4268 *                 | vdev  |      | vdev  |
4269 *                 | cache |      | cache |
4270 *                 +-------+      +-------+
4271 *                 +=========+     .-----.
4272 *                 :  L2ARC  :    |-_____-|
4273 *                 : devices :    | Disks |
4274 *                 +=========+    `-_____-'
4275 *
4276 * Read requests are satisfied from the following sources, in order:
4277 *
4278 *	1) ARC
4279 *	2) vdev cache of L2ARC devices
4280 *	3) L2ARC devices
4281 *	4) vdev cache of disks
4282 *	5) disks
4283 *
4284 * Some L2ARC device types exhibit extremely slow write performance.
4285 * To accommodate for this there are some significant differences between
4286 * the L2ARC and traditional cache design:
4287 *
4288 * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
4289 * the ARC behave as usual, freeing buffers and placing headers on ghost
4290 * lists.  The ARC does not send buffers to the L2ARC during eviction as
4291 * this would add inflated write latencies for all ARC memory pressure.
4292 *
4293 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
4294 * It does this by periodically scanning buffers from the eviction-end of
4295 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
4296 * not already there. It scans until a headroom of buffers is satisfied,
4297 * which itself is a buffer for ARC eviction. If a compressible buffer is
4298 * found during scanning and selected for writing to an L2ARC device, we
4299 * temporarily boost scanning headroom during the next scan cycle to make
4300 * sure we adapt to compression effects (which might significantly reduce
4301 * the data volume we write to L2ARC). The thread that does this is
4302 * l2arc_feed_thread(), illustrated below; example sizes are included to
4303 * provide a better sense of ratio than this diagram:
4304 *
4305 *	       head -->                        tail
4306 *	        +---------------------+----------+
4307 *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
4308 *	        +---------------------+----------+   |   o L2ARC eligible
4309 *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
4310 *	        +---------------------+----------+   |
4311 *	             15.9 Gbytes      ^ 32 Mbytes    |
4312 *	                           headroom          |
4313 *	                                      l2arc_feed_thread()
4314 *	                                             |
4315 *	                 l2arc write hand <--[oooo]--'
4316 *	                         |           8 Mbyte
4317 *	                         |          write max
4318 *	                         V
4319 *		  +==============================+
4320 *	L2ARC dev |####|#|###|###|    |####| ... |
4321 *	          +==============================+
4322 *	                     32 Gbytes
4323 *
4324 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
4325 * evicted, then the L2ARC has cached a buffer much sooner than it probably
4326 * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
4327 * safe to say that this is an uncommon case, since buffers at the end of
4328 * the ARC lists have moved there due to inactivity.
4329 *
4330 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
4331 * then the L2ARC simply misses copying some buffers.  This serves as a
4332 * pressure valve to prevent heavy read workloads from both stalling the ARC
4333 * with waits and clogging the L2ARC with writes.  This also helps prevent
4334 * the potential for the L2ARC to churn if it attempts to cache content too
4335 * quickly, such as during backups of the entire pool.
4336 *
4337 * 5. After system boot and before the ARC has filled main memory, there are
4338 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
4339 * lists can remain mostly static.  Instead of searching from tail of these
4340 * lists as pictured, the l2arc_feed_thread() will search from the list heads
4341 * for eligible buffers, greatly increasing its chance of finding them.
4342 *
4343 * The L2ARC device write speed is also boosted during this time so that
4344 * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
4345 * there are no L2ARC reads, and no fear of degrading read performance
4346 * through increased writes.
4347 *
4348 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
4349 * the vdev queue can aggregate them into larger and fewer writes.  Each
4350 * device is written to in a rotor fashion, sweeping writes through
4351 * available space then repeating.
4352 *
4353 * 7. The L2ARC does not store dirty content.  It never needs to flush
4354 * write buffers back to disk based storage.
4355 *
4356 * 8. If an ARC buffer is written (and dirtied) which also exists in the
4357 * L2ARC, the now stale L2ARC buffer is immediately dropped.
4358 *
4359 * The performance of the L2ARC can be tweaked by a number of tunables, which
4360 * may be necessary for different workloads:
4361 *
4362 *	l2arc_write_max		max write bytes per interval
4363 *	l2arc_write_boost	extra write bytes during device warmup
4364 *	l2arc_noprefetch	skip caching prefetched buffers
4365 *	l2arc_headroom		number of max device writes to precache
4366 *	l2arc_headroom_boost	when we find compressed buffers during ARC
4367 *				scanning, we multiply headroom by this
4368 *				percentage factor for the next scan cycle,
4369 *				since more compressed buffers are likely to
4370 *				be present
4371 *	l2arc_feed_secs		seconds between L2ARC writing
4372 *
4373 * Tunables may be removed or added as future performance improvements are
4374 * integrated, and also may become zpool properties.
4375 *
4376 * There are three key functions that control how the L2ARC warms up:
4377 *
4378 *	l2arc_write_eligible()	check if a buffer is eligible to cache
4379 *	l2arc_write_size()	calculate how much to write
4380 *	l2arc_write_interval()	calculate sleep delay between writes
4381 *
4382 * These three functions determine what to write, how much, and how quickly
4383 * to send writes.
4384 */
4385
4386static boolean_t
4387l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab)
4388{
4389	/*
4390	 * A buffer is *not* eligible for the L2ARC if it:
4391	 * 1. belongs to a different spa.
4392	 * 2. is already cached on the L2ARC.
4393	 * 3. has an I/O in progress (it may be an incomplete read).
4394	 * 4. is flagged not eligible (zfs property).
4395	 */
4396	if (ab->b_spa != spa_guid) {
4397		ARCSTAT_BUMP(arcstat_l2_write_spa_mismatch);
4398		return (B_FALSE);
4399	}
4400	if (ab->b_l2hdr != NULL) {
4401		ARCSTAT_BUMP(arcstat_l2_write_in_l2);
4402		return (B_FALSE);
4403	}
4404	if (HDR_IO_IN_PROGRESS(ab)) {
4405		ARCSTAT_BUMP(arcstat_l2_write_hdr_io_in_progress);
4406		return (B_FALSE);
4407	}
4408	if (!HDR_L2CACHE(ab)) {
4409		ARCSTAT_BUMP(arcstat_l2_write_not_cacheable);
4410		return (B_FALSE);
4411	}
4412
4413	return (B_TRUE);
4414}
4415
4416static uint64_t
4417l2arc_write_size(void)
4418{
4419	uint64_t size;
4420
4421	/*
4422	 * Make sure our globals have meaningful values in case the user
4423	 * altered them.
4424	 */
4425	size = l2arc_write_max;
4426	if (size == 0) {
4427		cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
4428		    "be greater than zero, resetting it to the default (%d)",
4429		    L2ARC_WRITE_SIZE);
4430		size = l2arc_write_max = L2ARC_WRITE_SIZE;
4431	}
4432
4433	if (arc_warm == B_FALSE)
4434		size += l2arc_write_boost;
4435
4436	return (size);
4437
4438}
4439
4440static clock_t
4441l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
4442{
4443	clock_t interval, next, now;
4444
4445	/*
4446	 * If the ARC lists are busy, increase our write rate; if the
4447	 * lists are stale, idle back.  This is achieved by checking
4448	 * how much we previously wrote - if it was more than half of
4449	 * what we wanted, schedule the next write much sooner.
4450	 */
4451	if (l2arc_feed_again && wrote > (wanted / 2))
4452		interval = (hz * l2arc_feed_min_ms) / 1000;
4453	else
4454		interval = hz * l2arc_feed_secs;
4455
4456	now = ddi_get_lbolt();
4457	next = MAX(now, MIN(now + interval, began + interval));
4458
4459	return (next);
4460}
4461
4462static void
4463l2arc_hdr_stat_add(void)
4464{
4465	ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE);
4466	ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
4467}
4468
4469static void
4470l2arc_hdr_stat_remove(void)
4471{
4472	ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE));
4473	ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
4474}
4475
4476/*
4477 * Cycle through L2ARC devices.  This is how L2ARC load balances.
4478 * If a device is returned, this also returns holding the spa config lock.
4479 */
4480static l2arc_dev_t *
4481l2arc_dev_get_next(void)
4482{
4483	l2arc_dev_t *first, *next = NULL;
4484
4485	/*
4486	 * Lock out the removal of spas (spa_namespace_lock), then removal
4487	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
4488	 * both locks will be dropped and a spa config lock held instead.
4489	 */
4490	mutex_enter(&spa_namespace_lock);
4491	mutex_enter(&l2arc_dev_mtx);
4492
4493	/* if there are no vdevs, there is nothing to do */
4494	if (l2arc_ndev == 0)
4495		goto out;
4496
4497	first = NULL;
4498	next = l2arc_dev_last;
4499	do {
4500		/* loop around the list looking for a non-faulted vdev */
4501		if (next == NULL) {
4502			next = list_head(l2arc_dev_list);
4503		} else {
4504			next = list_next(l2arc_dev_list, next);
4505			if (next == NULL)
4506				next = list_head(l2arc_dev_list);
4507		}
4508
4509		/* if we have come back to the start, bail out */
4510		if (first == NULL)
4511			first = next;
4512		else if (next == first)
4513			break;
4514
4515	} while (vdev_is_dead(next->l2ad_vdev));
4516
4517	/* if we were unable to find any usable vdevs, return NULL */
4518	if (vdev_is_dead(next->l2ad_vdev))
4519		next = NULL;
4520
4521	l2arc_dev_last = next;
4522
4523out:
4524	mutex_exit(&l2arc_dev_mtx);
4525
4526	/*
4527	 * Grab the config lock to prevent the 'next' device from being
4528	 * removed while we are writing to it.
4529	 */
4530	if (next != NULL)
4531		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
4532	mutex_exit(&spa_namespace_lock);
4533
4534	return (next);
4535}
4536
4537/*
4538 * Free buffers that were tagged for destruction.
4539 */
4540static void
4541l2arc_do_free_on_write()
4542{
4543	list_t *buflist;
4544	l2arc_data_free_t *df, *df_prev;
4545
4546	mutex_enter(&l2arc_free_on_write_mtx);
4547	buflist = l2arc_free_on_write;
4548
4549	for (df = list_tail(buflist); df; df = df_prev) {
4550		df_prev = list_prev(buflist, df);
4551		ASSERT(df->l2df_data != NULL);
4552		ASSERT(df->l2df_func != NULL);
4553		df->l2df_func(df->l2df_data, df->l2df_size);
4554		list_remove(buflist, df);
4555		kmem_free(df, sizeof (l2arc_data_free_t));
4556	}
4557
4558	mutex_exit(&l2arc_free_on_write_mtx);
4559}
4560
4561/*
4562 * A write to a cache device has completed.  Update all headers to allow
4563 * reads from these buffers to begin.
4564 */
4565static void
4566l2arc_write_done(zio_t *zio)
4567{
4568	l2arc_write_callback_t *cb;
4569	l2arc_dev_t *dev;
4570	list_t *buflist;
4571	arc_buf_hdr_t *head, *ab, *ab_prev;
4572	l2arc_buf_hdr_t *abl2;
4573	kmutex_t *hash_lock;
4574
4575	cb = zio->io_private;
4576	ASSERT(cb != NULL);
4577	dev = cb->l2wcb_dev;
4578	ASSERT(dev != NULL);
4579	head = cb->l2wcb_head;
4580	ASSERT(head != NULL);
4581	buflist = dev->l2ad_buflist;
4582	ASSERT(buflist != NULL);
4583	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
4584	    l2arc_write_callback_t *, cb);
4585
4586	if (zio->io_error != 0)
4587		ARCSTAT_BUMP(arcstat_l2_writes_error);
4588
4589	mutex_enter(&l2arc_buflist_mtx);
4590
4591	/*
4592	 * All writes completed, or an error was hit.
4593	 */
4594	for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
4595		ab_prev = list_prev(buflist, ab);
4596
4597		hash_lock = HDR_LOCK(ab);
4598		if (!mutex_tryenter(hash_lock)) {
4599			/*
4600			 * This buffer misses out.  It may be in a stage
4601			 * of eviction.  Its ARC_L2_WRITING flag will be
4602			 * left set, denying reads to this buffer.
4603			 */
4604			ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
4605			continue;
4606		}
4607
4608		abl2 = ab->b_l2hdr;
4609
4610		/*
4611		 * Release the temporary compressed buffer as soon as possible.
4612		 */
4613		if (abl2->b_compress != ZIO_COMPRESS_OFF)
4614			l2arc_release_cdata_buf(ab);
4615
4616		if (zio->io_error != 0) {
4617			/*
4618			 * Error - drop L2ARC entry.
4619			 */
4620			list_remove(buflist, ab);
4621			ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize);
4622			ab->b_l2hdr = NULL;
4623			trim_map_free(abl2->b_dev->l2ad_vdev, abl2->b_daddr,
4624			    ab->b_size, 0);
4625			kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4626			ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4627		}
4628
4629		/*
4630		 * Allow ARC to begin reads to this L2ARC entry.
4631		 */
4632		ab->b_flags &= ~ARC_L2_WRITING;
4633
4634		mutex_exit(hash_lock);
4635	}
4636
4637	atomic_inc_64(&l2arc_writes_done);
4638	list_remove(buflist, head);
4639	kmem_cache_free(hdr_cache, head);
4640	mutex_exit(&l2arc_buflist_mtx);
4641
4642	l2arc_do_free_on_write();
4643
4644	kmem_free(cb, sizeof (l2arc_write_callback_t));
4645}
4646
4647/*
4648 * A read to a cache device completed.  Validate buffer contents before
4649 * handing over to the regular ARC routines.
4650 */
4651static void
4652l2arc_read_done(zio_t *zio)
4653{
4654	l2arc_read_callback_t *cb;
4655	arc_buf_hdr_t *hdr;
4656	arc_buf_t *buf;
4657	kmutex_t *hash_lock;
4658	int equal;
4659
4660	ASSERT(zio->io_vd != NULL);
4661	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
4662
4663	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
4664
4665	cb = zio->io_private;
4666	ASSERT(cb != NULL);
4667	buf = cb->l2rcb_buf;
4668	ASSERT(buf != NULL);
4669
4670	hash_lock = HDR_LOCK(buf->b_hdr);
4671	mutex_enter(hash_lock);
4672	hdr = buf->b_hdr;
4673	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4674
4675	/*
4676	 * If the buffer was compressed, decompress it first.
4677	 */
4678	if (cb->l2rcb_compress != ZIO_COMPRESS_OFF)
4679		l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress);
4680	ASSERT(zio->io_data != NULL);
4681
4682	/*
4683	 * Check this survived the L2ARC journey.
4684	 */
4685	equal = arc_cksum_equal(buf);
4686	if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
4687		mutex_exit(hash_lock);
4688		zio->io_private = buf;
4689		zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
4690		zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
4691		arc_read_done(zio);
4692	} else {
4693		mutex_exit(hash_lock);
4694		/*
4695		 * Buffer didn't survive caching.  Increment stats and
4696		 * reissue to the original storage device.
4697		 */
4698		if (zio->io_error != 0) {
4699			ARCSTAT_BUMP(arcstat_l2_io_error);
4700		} else {
4701			zio->io_error = SET_ERROR(EIO);
4702		}
4703		if (!equal)
4704			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
4705
4706		/*
4707		 * If there's no waiter, issue an async i/o to the primary
4708		 * storage now.  If there *is* a waiter, the caller must
4709		 * issue the i/o in a context where it's OK to block.
4710		 */
4711		if (zio->io_waiter == NULL) {
4712			zio_t *pio = zio_unique_parent(zio);
4713
4714			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
4715
4716			zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
4717			    buf->b_data, zio->io_size, arc_read_done, buf,
4718			    zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
4719		}
4720	}
4721
4722	kmem_free(cb, sizeof (l2arc_read_callback_t));
4723}
4724
4725/*
4726 * This is the list priority from which the L2ARC will search for pages to
4727 * cache.  This is used within loops (0..3) to cycle through lists in the
4728 * desired order.  This order can have a significant effect on cache
4729 * performance.
4730 *
4731 * Currently the metadata lists are hit first, MFU then MRU, followed by
4732 * the data lists.  This function returns a locked list, and also returns
4733 * the lock pointer.
4734 */
4735static list_t *
4736l2arc_list_locked(int list_num, kmutex_t **lock)
4737{
4738	list_t *list = NULL;
4739	int idx;
4740
4741	ASSERT(list_num >= 0 && list_num < 2 * ARC_BUFC_NUMLISTS);
4742
4743	if (list_num < ARC_BUFC_NUMMETADATALISTS) {
4744		idx = list_num;
4745		list = &arc_mfu->arcs_lists[idx];
4746		*lock = ARCS_LOCK(arc_mfu, idx);
4747	} else if (list_num < ARC_BUFC_NUMMETADATALISTS * 2) {
4748		idx = list_num - ARC_BUFC_NUMMETADATALISTS;
4749		list = &arc_mru->arcs_lists[idx];
4750		*lock = ARCS_LOCK(arc_mru, idx);
4751	} else if (list_num < (ARC_BUFC_NUMMETADATALISTS * 2 +
4752		ARC_BUFC_NUMDATALISTS)) {
4753		idx = list_num - ARC_BUFC_NUMMETADATALISTS;
4754		list = &arc_mfu->arcs_lists[idx];
4755		*lock = ARCS_LOCK(arc_mfu, idx);
4756	} else {
4757		idx = list_num - ARC_BUFC_NUMLISTS;
4758		list = &arc_mru->arcs_lists[idx];
4759		*lock = ARCS_LOCK(arc_mru, idx);
4760	}
4761
4762	ASSERT(!(MUTEX_HELD(*lock)));
4763	mutex_enter(*lock);
4764	return (list);
4765}
4766
4767/*
4768 * Evict buffers from the device write hand to the distance specified in
4769 * bytes.  This distance may span populated buffers, it may span nothing.
4770 * This is clearing a region on the L2ARC device ready for writing.
4771 * If the 'all' boolean is set, every buffer is evicted.
4772 */
4773static void
4774l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
4775{
4776	list_t *buflist;
4777	l2arc_buf_hdr_t *abl2;
4778	arc_buf_hdr_t *ab, *ab_prev;
4779	kmutex_t *hash_lock;
4780	uint64_t taddr;
4781
4782	buflist = dev->l2ad_buflist;
4783
4784	if (buflist == NULL)
4785		return;
4786
4787	if (!all && dev->l2ad_first) {
4788		/*
4789		 * This is the first sweep through the device.  There is
4790		 * nothing to evict.
4791		 */
4792		return;
4793	}
4794
4795	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
4796		/*
4797		 * When nearing the end of the device, evict to the end
4798		 * before the device write hand jumps to the start.
4799		 */
4800		taddr = dev->l2ad_end;
4801	} else {
4802		taddr = dev->l2ad_hand + distance;
4803	}
4804	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
4805	    uint64_t, taddr, boolean_t, all);
4806
4807top:
4808	mutex_enter(&l2arc_buflist_mtx);
4809	for (ab = list_tail(buflist); ab; ab = ab_prev) {
4810		ab_prev = list_prev(buflist, ab);
4811
4812		hash_lock = HDR_LOCK(ab);
4813		if (!mutex_tryenter(hash_lock)) {
4814			/*
4815			 * Missed the hash lock.  Retry.
4816			 */
4817			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
4818			mutex_exit(&l2arc_buflist_mtx);
4819			mutex_enter(hash_lock);
4820			mutex_exit(hash_lock);
4821			goto top;
4822		}
4823
4824		if (HDR_L2_WRITE_HEAD(ab)) {
4825			/*
4826			 * We hit a write head node.  Leave it for
4827			 * l2arc_write_done().
4828			 */
4829			list_remove(buflist, ab);
4830			mutex_exit(hash_lock);
4831			continue;
4832		}
4833
4834		if (!all && ab->b_l2hdr != NULL &&
4835		    (ab->b_l2hdr->b_daddr > taddr ||
4836		    ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
4837			/*
4838			 * We've evicted to the target address,
4839			 * or the end of the device.
4840			 */
4841			mutex_exit(hash_lock);
4842			break;
4843		}
4844
4845		if (HDR_FREE_IN_PROGRESS(ab)) {
4846			/*
4847			 * Already on the path to destruction.
4848			 */
4849			mutex_exit(hash_lock);
4850			continue;
4851		}
4852
4853		if (ab->b_state == arc_l2c_only) {
4854			ASSERT(!HDR_L2_READING(ab));
4855			/*
4856			 * This doesn't exist in the ARC.  Destroy.
4857			 * arc_hdr_destroy() will call list_remove()
4858			 * and decrement arcstat_l2_size.
4859			 */
4860			arc_change_state(arc_anon, ab, hash_lock);
4861			arc_hdr_destroy(ab);
4862		} else {
4863			/*
4864			 * Invalidate issued or about to be issued
4865			 * reads, since we may be about to write
4866			 * over this location.
4867			 */
4868			if (HDR_L2_READING(ab)) {
4869				ARCSTAT_BUMP(arcstat_l2_evict_reading);
4870				ab->b_flags |= ARC_L2_EVICTED;
4871			}
4872
4873			/*
4874			 * Tell ARC this no longer exists in L2ARC.
4875			 */
4876			if (ab->b_l2hdr != NULL) {
4877				abl2 = ab->b_l2hdr;
4878				ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize);
4879				ab->b_l2hdr = NULL;
4880				kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4881				ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4882			}
4883			list_remove(buflist, ab);
4884
4885			/*
4886			 * This may have been leftover after a
4887			 * failed write.
4888			 */
4889			ab->b_flags &= ~ARC_L2_WRITING;
4890		}
4891		mutex_exit(hash_lock);
4892	}
4893	mutex_exit(&l2arc_buflist_mtx);
4894
4895	vdev_space_update(dev->l2ad_vdev, -(taddr - dev->l2ad_evict), 0, 0);
4896	dev->l2ad_evict = taddr;
4897}
4898
4899/*
4900 * Find and write ARC buffers to the L2ARC device.
4901 *
4902 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
4903 * for reading until they have completed writing.
4904 * The headroom_boost is an in-out parameter used to maintain headroom boost
4905 * state between calls to this function.
4906 *
4907 * Returns the number of bytes actually written (which may be smaller than
4908 * the delta by which the device hand has changed due to alignment).
4909 */
4910static uint64_t
4911l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz,
4912    boolean_t *headroom_boost)
4913{
4914	arc_buf_hdr_t *ab, *ab_prev, *head;
4915	list_t *list;
4916	uint64_t write_asize, write_psize, write_sz, headroom,
4917	    buf_compress_minsz;
4918	void *buf_data;
4919	kmutex_t *list_lock;
4920	boolean_t full;
4921	l2arc_write_callback_t *cb;
4922	zio_t *pio, *wzio;
4923	uint64_t guid = spa_load_guid(spa);
4924	const boolean_t do_headroom_boost = *headroom_boost;
4925	int try;
4926
4927	ASSERT(dev->l2ad_vdev != NULL);
4928
4929	/* Lower the flag now, we might want to raise it again later. */
4930	*headroom_boost = B_FALSE;
4931
4932	pio = NULL;
4933	write_sz = write_asize = write_psize = 0;
4934	full = B_FALSE;
4935	head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
4936	head->b_flags |= ARC_L2_WRITE_HEAD;
4937
4938	ARCSTAT_BUMP(arcstat_l2_write_buffer_iter);
4939	/*
4940	 * We will want to try to compress buffers that are at least 2x the
4941	 * device sector size.
4942	 */
4943	buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift;
4944
4945	/*
4946	 * Copy buffers for L2ARC writing.
4947	 */
4948	mutex_enter(&l2arc_buflist_mtx);
4949	for (try = 0; try < 2 * ARC_BUFC_NUMLISTS; try++) {
4950		uint64_t passed_sz = 0;
4951
4952		list = l2arc_list_locked(try, &list_lock);
4953		ARCSTAT_BUMP(arcstat_l2_write_buffer_list_iter);
4954
4955		/*
4956		 * L2ARC fast warmup.
4957		 *
4958		 * Until the ARC is warm and starts to evict, read from the
4959		 * head of the ARC lists rather than the tail.
4960		 */
4961		if (arc_warm == B_FALSE)
4962			ab = list_head(list);
4963		else
4964			ab = list_tail(list);
4965		if (ab == NULL)
4966			ARCSTAT_BUMP(arcstat_l2_write_buffer_list_null_iter);
4967
4968		headroom = target_sz * l2arc_headroom;
4969		if (do_headroom_boost)
4970			headroom = (headroom * l2arc_headroom_boost) / 100;
4971
4972		for (; ab; ab = ab_prev) {
4973			l2arc_buf_hdr_t *l2hdr;
4974			kmutex_t *hash_lock;
4975			uint64_t buf_sz;
4976
4977			if (arc_warm == B_FALSE)
4978				ab_prev = list_next(list, ab);
4979			else
4980				ab_prev = list_prev(list, ab);
4981			ARCSTAT_INCR(arcstat_l2_write_buffer_bytes_scanned, ab->b_size);
4982
4983			hash_lock = HDR_LOCK(ab);
4984			if (!mutex_tryenter(hash_lock)) {
4985				ARCSTAT_BUMP(arcstat_l2_write_trylock_fail);
4986				/*
4987				 * Skip this buffer rather than waiting.
4988				 */
4989				continue;
4990			}
4991
4992			passed_sz += ab->b_size;
4993			if (passed_sz > headroom) {
4994				/*
4995				 * Searched too far.
4996				 */
4997				mutex_exit(hash_lock);
4998				ARCSTAT_BUMP(arcstat_l2_write_passed_headroom);
4999				break;
5000			}
5001
5002			if (!l2arc_write_eligible(guid, ab)) {
5003				mutex_exit(hash_lock);
5004				continue;
5005			}
5006
5007			if ((write_sz + ab->b_size) > target_sz) {
5008				full = B_TRUE;
5009				mutex_exit(hash_lock);
5010				ARCSTAT_BUMP(arcstat_l2_write_full);
5011				break;
5012			}
5013
5014			if (pio == NULL) {
5015				/*
5016				 * Insert a dummy header on the buflist so
5017				 * l2arc_write_done() can find where the
5018				 * write buffers begin without searching.
5019				 */
5020				list_insert_head(dev->l2ad_buflist, head);
5021
5022				cb = kmem_alloc(
5023				    sizeof (l2arc_write_callback_t), KM_SLEEP);
5024				cb->l2wcb_dev = dev;
5025				cb->l2wcb_head = head;
5026				pio = zio_root(spa, l2arc_write_done, cb,
5027				    ZIO_FLAG_CANFAIL);
5028				ARCSTAT_BUMP(arcstat_l2_write_pios);
5029			}
5030
5031			/*
5032			 * Create and add a new L2ARC header.
5033			 */
5034			l2hdr = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP);
5035			l2hdr->b_dev = dev;
5036			ab->b_flags |= ARC_L2_WRITING;
5037
5038			/*
5039			 * Temporarily stash the data buffer in b_tmp_cdata.
5040			 * The subsequent write step will pick it up from
5041			 * there. This is because can't access ab->b_buf
5042			 * without holding the hash_lock, which we in turn
5043			 * can't access without holding the ARC list locks
5044			 * (which we want to avoid during compression/writing).
5045			 */
5046			l2hdr->b_compress = ZIO_COMPRESS_OFF;
5047			l2hdr->b_asize = ab->b_size;
5048			l2hdr->b_tmp_cdata = ab->b_buf->b_data;
5049
5050			buf_sz = ab->b_size;
5051			ab->b_l2hdr = l2hdr;
5052
5053			list_insert_head(dev->l2ad_buflist, ab);
5054
5055			/*
5056			 * Compute and store the buffer cksum before
5057			 * writing.  On debug the cksum is verified first.
5058			 */
5059			arc_cksum_verify(ab->b_buf);
5060			arc_cksum_compute(ab->b_buf, B_TRUE);
5061
5062			mutex_exit(hash_lock);
5063
5064			write_sz += buf_sz;
5065		}
5066
5067		mutex_exit(list_lock);
5068
5069		if (full == B_TRUE)
5070			break;
5071	}
5072
5073	/* No buffers selected for writing? */
5074	if (pio == NULL) {
5075		ASSERT0(write_sz);
5076		mutex_exit(&l2arc_buflist_mtx);
5077		kmem_cache_free(hdr_cache, head);
5078		return (0);
5079	}
5080
5081	/*
5082	 * Now start writing the buffers. We're starting at the write head
5083	 * and work backwards, retracing the course of the buffer selector
5084	 * loop above.
5085	 */
5086	for (ab = list_prev(dev->l2ad_buflist, head); ab;
5087	    ab = list_prev(dev->l2ad_buflist, ab)) {
5088		l2arc_buf_hdr_t *l2hdr;
5089		uint64_t buf_sz;
5090
5091		/*
5092		 * We shouldn't need to lock the buffer here, since we flagged
5093		 * it as ARC_L2_WRITING in the previous step, but we must take
5094		 * care to only access its L2 cache parameters. In particular,
5095		 * ab->b_buf may be invalid by now due to ARC eviction.
5096		 */
5097		l2hdr = ab->b_l2hdr;
5098		l2hdr->b_daddr = dev->l2ad_hand;
5099
5100		if ((ab->b_flags & ARC_L2COMPRESS) &&
5101		    l2hdr->b_asize >= buf_compress_minsz) {
5102			if (l2arc_compress_buf(l2hdr)) {
5103				/*
5104				 * If compression succeeded, enable headroom
5105				 * boost on the next scan cycle.
5106				 */
5107				*headroom_boost = B_TRUE;
5108			}
5109		}
5110
5111		/*
5112		 * Pick up the buffer data we had previously stashed away
5113		 * (and now potentially also compressed).
5114		 */
5115		buf_data = l2hdr->b_tmp_cdata;
5116		buf_sz = l2hdr->b_asize;
5117
5118		/* Compression may have squashed the buffer to zero length. */
5119		if (buf_sz != 0) {
5120			uint64_t buf_p_sz;
5121
5122			wzio = zio_write_phys(pio, dev->l2ad_vdev,
5123			    dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
5124			    NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
5125			    ZIO_FLAG_CANFAIL, B_FALSE);
5126
5127			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
5128			    zio_t *, wzio);
5129			(void) zio_nowait(wzio);
5130
5131			write_asize += buf_sz;
5132			/*
5133			 * Keep the clock hand suitably device-aligned.
5134			 */
5135			buf_p_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
5136			write_psize += buf_p_sz;
5137			dev->l2ad_hand += buf_p_sz;
5138		}
5139	}
5140
5141	mutex_exit(&l2arc_buflist_mtx);
5142
5143	ASSERT3U(write_asize, <=, target_sz);
5144	ARCSTAT_BUMP(arcstat_l2_writes_sent);
5145	ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
5146	ARCSTAT_INCR(arcstat_l2_size, write_sz);
5147	ARCSTAT_INCR(arcstat_l2_asize, write_asize);
5148	vdev_space_update(dev->l2ad_vdev, write_psize, 0, 0);
5149
5150	/*
5151	 * Bump device hand to the device start if it is approaching the end.
5152	 * l2arc_evict() will already have evicted ahead for this case.
5153	 */
5154	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
5155		vdev_space_update(dev->l2ad_vdev,
5156		    dev->l2ad_end - dev->l2ad_hand, 0, 0);
5157		dev->l2ad_hand = dev->l2ad_start;
5158		dev->l2ad_evict = dev->l2ad_start;
5159		dev->l2ad_first = B_FALSE;
5160	}
5161
5162	dev->l2ad_writing = B_TRUE;
5163	(void) zio_wait(pio);
5164	dev->l2ad_writing = B_FALSE;
5165
5166	return (write_asize);
5167}
5168
5169/*
5170 * Compresses an L2ARC buffer.
5171 * The data to be compressed must be prefilled in l2hdr->b_tmp_cdata and its
5172 * size in l2hdr->b_asize. This routine tries to compress the data and
5173 * depending on the compression result there are three possible outcomes:
5174 * *) The buffer was incompressible. The original l2hdr contents were left
5175 *    untouched and are ready for writing to an L2 device.
5176 * *) The buffer was all-zeros, so there is no need to write it to an L2
5177 *    device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is
5178 *    set to zero and b_compress is set to ZIO_COMPRESS_EMPTY.
5179 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary
5180 *    data buffer which holds the compressed data to be written, and b_asize
5181 *    tells us how much data there is. b_compress is set to the appropriate
5182 *    compression algorithm. Once writing is done, invoke
5183 *    l2arc_release_cdata_buf on this l2hdr to free this temporary buffer.
5184 *
5185 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the
5186 * buffer was incompressible).
5187 */
5188static boolean_t
5189l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr)
5190{
5191	void *cdata;
5192	size_t csize, len;
5193
5194	ASSERT(l2hdr->b_compress == ZIO_COMPRESS_OFF);
5195	ASSERT(l2hdr->b_tmp_cdata != NULL);
5196
5197	len = l2hdr->b_asize;
5198	cdata = zio_data_buf_alloc(len);
5199	csize = zio_compress_data(ZIO_COMPRESS_LZ4, l2hdr->b_tmp_cdata,
5200	    cdata, l2hdr->b_asize, (size_t)(1ULL << l2hdr->b_dev->l2ad_vdev->vdev_ashift));
5201
5202	if (csize == 0) {
5203		/* zero block, indicate that there's nothing to write */
5204		zio_data_buf_free(cdata, len);
5205		l2hdr->b_compress = ZIO_COMPRESS_EMPTY;
5206		l2hdr->b_asize = 0;
5207		l2hdr->b_tmp_cdata = NULL;
5208		ARCSTAT_BUMP(arcstat_l2_compress_zeros);
5209		return (B_TRUE);
5210	} else if (csize > 0 && csize < len) {
5211		/*
5212		 * Compression succeeded, we'll keep the cdata around for
5213		 * writing and release it afterwards.
5214		 */
5215		l2hdr->b_compress = ZIO_COMPRESS_LZ4;
5216		l2hdr->b_asize = csize;
5217		l2hdr->b_tmp_cdata = cdata;
5218		ARCSTAT_BUMP(arcstat_l2_compress_successes);
5219		return (B_TRUE);
5220	} else {
5221		/*
5222		 * Compression failed, release the compressed buffer.
5223		 * l2hdr will be left unmodified.
5224		 */
5225		zio_data_buf_free(cdata, len);
5226		ARCSTAT_BUMP(arcstat_l2_compress_failures);
5227		return (B_FALSE);
5228	}
5229}
5230
5231/*
5232 * Decompresses a zio read back from an l2arc device. On success, the
5233 * underlying zio's io_data buffer is overwritten by the uncompressed
5234 * version. On decompression error (corrupt compressed stream), the
5235 * zio->io_error value is set to signal an I/O error.
5236 *
5237 * Please note that the compressed data stream is not checksummed, so
5238 * if the underlying device is experiencing data corruption, we may feed
5239 * corrupt data to the decompressor, so the decompressor needs to be
5240 * able to handle this situation (LZ4 does).
5241 */
5242static void
5243l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c)
5244{
5245	ASSERT(L2ARC_IS_VALID_COMPRESS(c));
5246
5247	if (zio->io_error != 0) {
5248		/*
5249		 * An io error has occured, just restore the original io
5250		 * size in preparation for a main pool read.
5251		 */
5252		zio->io_orig_size = zio->io_size = hdr->b_size;
5253		return;
5254	}
5255
5256	if (c == ZIO_COMPRESS_EMPTY) {
5257		/*
5258		 * An empty buffer results in a null zio, which means we
5259		 * need to fill its io_data after we're done restoring the
5260		 * buffer's contents.
5261		 */
5262		ASSERT(hdr->b_buf != NULL);
5263		bzero(hdr->b_buf->b_data, hdr->b_size);
5264		zio->io_data = zio->io_orig_data = hdr->b_buf->b_data;
5265	} else {
5266		ASSERT(zio->io_data != NULL);
5267		/*
5268		 * We copy the compressed data from the start of the arc buffer
5269		 * (the zio_read will have pulled in only what we need, the
5270		 * rest is garbage which we will overwrite at decompression)
5271		 * and then decompress back to the ARC data buffer. This way we
5272		 * can minimize copying by simply decompressing back over the
5273		 * original compressed data (rather than decompressing to an
5274		 * aux buffer and then copying back the uncompressed buffer,
5275		 * which is likely to be much larger).
5276		 */
5277		uint64_t csize;
5278		void *cdata;
5279
5280		csize = zio->io_size;
5281		cdata = zio_data_buf_alloc(csize);
5282		bcopy(zio->io_data, cdata, csize);
5283		if (zio_decompress_data(c, cdata, zio->io_data, csize,
5284		    hdr->b_size) != 0)
5285			zio->io_error = EIO;
5286		zio_data_buf_free(cdata, csize);
5287	}
5288
5289	/* Restore the expected uncompressed IO size. */
5290	zio->io_orig_size = zio->io_size = hdr->b_size;
5291}
5292
5293/*
5294 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure.
5295 * This buffer serves as a temporary holder of compressed data while
5296 * the buffer entry is being written to an l2arc device. Once that is
5297 * done, we can dispose of it.
5298 */
5299static void
5300l2arc_release_cdata_buf(arc_buf_hdr_t *ab)
5301{
5302	l2arc_buf_hdr_t *l2hdr = ab->b_l2hdr;
5303
5304	if (l2hdr->b_compress == ZIO_COMPRESS_LZ4) {
5305		/*
5306		 * If the data was compressed, then we've allocated a
5307		 * temporary buffer for it, so now we need to release it.
5308		 */
5309		ASSERT(l2hdr->b_tmp_cdata != NULL);
5310		zio_data_buf_free(l2hdr->b_tmp_cdata, ab->b_size);
5311	}
5312	l2hdr->b_tmp_cdata = NULL;
5313}
5314
5315/*
5316 * This thread feeds the L2ARC at regular intervals.  This is the beating
5317 * heart of the L2ARC.
5318 */
5319static void
5320l2arc_feed_thread(void *dummy __unused)
5321{
5322	callb_cpr_t cpr;
5323	l2arc_dev_t *dev;
5324	spa_t *spa;
5325	uint64_t size, wrote;
5326	clock_t begin, next = ddi_get_lbolt();
5327	boolean_t headroom_boost = B_FALSE;
5328
5329	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
5330
5331	mutex_enter(&l2arc_feed_thr_lock);
5332
5333	while (l2arc_thread_exit == 0) {
5334		CALLB_CPR_SAFE_BEGIN(&cpr);
5335		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
5336		    next - ddi_get_lbolt());
5337		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
5338		next = ddi_get_lbolt() + hz;
5339
5340		/*
5341		 * Quick check for L2ARC devices.
5342		 */
5343		mutex_enter(&l2arc_dev_mtx);
5344		if (l2arc_ndev == 0) {
5345			mutex_exit(&l2arc_dev_mtx);
5346			continue;
5347		}
5348		mutex_exit(&l2arc_dev_mtx);
5349		begin = ddi_get_lbolt();
5350
5351		/*
5352		 * This selects the next l2arc device to write to, and in
5353		 * doing so the next spa to feed from: dev->l2ad_spa.   This
5354		 * will return NULL if there are now no l2arc devices or if
5355		 * they are all faulted.
5356		 *
5357		 * If a device is returned, its spa's config lock is also
5358		 * held to prevent device removal.  l2arc_dev_get_next()
5359		 * will grab and release l2arc_dev_mtx.
5360		 */
5361		if ((dev = l2arc_dev_get_next()) == NULL)
5362			continue;
5363
5364		spa = dev->l2ad_spa;
5365		ASSERT(spa != NULL);
5366
5367		/*
5368		 * If the pool is read-only then force the feed thread to
5369		 * sleep a little longer.
5370		 */
5371		if (!spa_writeable(spa)) {
5372			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
5373			spa_config_exit(spa, SCL_L2ARC, dev);
5374			continue;
5375		}
5376
5377		/*
5378		 * Avoid contributing to memory pressure.
5379		 */
5380		if (arc_reclaim_needed()) {
5381			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
5382			spa_config_exit(spa, SCL_L2ARC, dev);
5383			continue;
5384		}
5385
5386		ARCSTAT_BUMP(arcstat_l2_feeds);
5387
5388		size = l2arc_write_size();
5389
5390		/*
5391		 * Evict L2ARC buffers that will be overwritten.
5392		 */
5393		l2arc_evict(dev, size, B_FALSE);
5394
5395		/*
5396		 * Write ARC buffers.
5397		 */
5398		wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost);
5399
5400		/*
5401		 * Calculate interval between writes.
5402		 */
5403		next = l2arc_write_interval(begin, size, wrote);
5404		spa_config_exit(spa, SCL_L2ARC, dev);
5405	}
5406
5407	l2arc_thread_exit = 0;
5408	cv_broadcast(&l2arc_feed_thr_cv);
5409	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
5410	thread_exit();
5411}
5412
5413boolean_t
5414l2arc_vdev_present(vdev_t *vd)
5415{
5416	l2arc_dev_t *dev;
5417
5418	mutex_enter(&l2arc_dev_mtx);
5419	for (dev = list_head(l2arc_dev_list); dev != NULL;
5420	    dev = list_next(l2arc_dev_list, dev)) {
5421		if (dev->l2ad_vdev == vd)
5422			break;
5423	}
5424	mutex_exit(&l2arc_dev_mtx);
5425
5426	return (dev != NULL);
5427}
5428
5429/*
5430 * Add a vdev for use by the L2ARC.  By this point the spa has already
5431 * validated the vdev and opened it.
5432 */
5433void
5434l2arc_add_vdev(spa_t *spa, vdev_t *vd)
5435{
5436	l2arc_dev_t *adddev;
5437
5438	ASSERT(!l2arc_vdev_present(vd));
5439
5440	vdev_ashift_optimize(vd);
5441
5442	/*
5443	 * Create a new l2arc device entry.
5444	 */
5445	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
5446	adddev->l2ad_spa = spa;
5447	adddev->l2ad_vdev = vd;
5448	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
5449	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
5450	adddev->l2ad_hand = adddev->l2ad_start;
5451	adddev->l2ad_evict = adddev->l2ad_start;
5452	adddev->l2ad_first = B_TRUE;
5453	adddev->l2ad_writing = B_FALSE;
5454
5455	/*
5456	 * This is a list of all ARC buffers that are still valid on the
5457	 * device.
5458	 */
5459	adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
5460	list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
5461	    offsetof(arc_buf_hdr_t, b_l2node));
5462
5463	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
5464
5465	/*
5466	 * Add device to global list
5467	 */
5468	mutex_enter(&l2arc_dev_mtx);
5469	list_insert_head(l2arc_dev_list, adddev);
5470	atomic_inc_64(&l2arc_ndev);
5471	mutex_exit(&l2arc_dev_mtx);
5472}
5473
5474/*
5475 * Remove a vdev from the L2ARC.
5476 */
5477void
5478l2arc_remove_vdev(vdev_t *vd)
5479{
5480	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
5481
5482	/*
5483	 * Find the device by vdev
5484	 */
5485	mutex_enter(&l2arc_dev_mtx);
5486	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
5487		nextdev = list_next(l2arc_dev_list, dev);
5488		if (vd == dev->l2ad_vdev) {
5489			remdev = dev;
5490			break;
5491		}
5492	}
5493	ASSERT(remdev != NULL);
5494
5495	/*
5496	 * Remove device from global list
5497	 */
5498	list_remove(l2arc_dev_list, remdev);
5499	l2arc_dev_last = NULL;		/* may have been invalidated */
5500	atomic_dec_64(&l2arc_ndev);
5501	mutex_exit(&l2arc_dev_mtx);
5502
5503	/*
5504	 * Clear all buflists and ARC references.  L2ARC device flush.
5505	 */
5506	l2arc_evict(remdev, 0, B_TRUE);
5507	list_destroy(remdev->l2ad_buflist);
5508	kmem_free(remdev->l2ad_buflist, sizeof (list_t));
5509	kmem_free(remdev, sizeof (l2arc_dev_t));
5510}
5511
5512void
5513l2arc_init(void)
5514{
5515	l2arc_thread_exit = 0;
5516	l2arc_ndev = 0;
5517	l2arc_writes_sent = 0;
5518	l2arc_writes_done = 0;
5519
5520	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
5521	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
5522	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
5523	mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
5524	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
5525
5526	l2arc_dev_list = &L2ARC_dev_list;
5527	l2arc_free_on_write = &L2ARC_free_on_write;
5528	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
5529	    offsetof(l2arc_dev_t, l2ad_node));
5530	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
5531	    offsetof(l2arc_data_free_t, l2df_list_node));
5532}
5533
5534void
5535l2arc_fini(void)
5536{
5537	/*
5538	 * This is called from dmu_fini(), which is called from spa_fini();
5539	 * Because of this, we can assume that all l2arc devices have
5540	 * already been removed when the pools themselves were removed.
5541	 */
5542
5543	l2arc_do_free_on_write();
5544
5545	mutex_destroy(&l2arc_feed_thr_lock);
5546	cv_destroy(&l2arc_feed_thr_cv);
5547	mutex_destroy(&l2arc_dev_mtx);
5548	mutex_destroy(&l2arc_buflist_mtx);
5549	mutex_destroy(&l2arc_free_on_write_mtx);
5550
5551	list_destroy(l2arc_dev_list);
5552	list_destroy(l2arc_free_on_write);
5553}
5554
5555void
5556l2arc_start(void)
5557{
5558	if (!(spa_mode_global & FWRITE))
5559		return;
5560
5561	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
5562	    TS_RUN, minclsyspri);
5563}
5564
5565void
5566l2arc_stop(void)
5567{
5568	if (!(spa_mode_global & FWRITE))
5569		return;
5570
5571	mutex_enter(&l2arc_feed_thr_lock);
5572	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
5573	l2arc_thread_exit = 1;
5574	while (l2arc_thread_exit != 0)
5575		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
5576	mutex_exit(&l2arc_feed_thr_lock);
5577}
5578