1/* Reload pseudo regs into hard regs for insns that require hard regs.
2   Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4   Free Software Foundation, Inc.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 2, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING.  If not, write to the Free
20Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2102110-1301, USA.  */
22
23#include "config.h"
24#include "system.h"
25#include "coretypes.h"
26#include "tm.h"
27
28#include "machmode.h"
29#include "hard-reg-set.h"
30#include "rtl.h"
31#include "tm_p.h"
32#include "obstack.h"
33#include "insn-config.h"
34#include "flags.h"
35#include "function.h"
36#include "expr.h"
37#include "optabs.h"
38#include "regs.h"
39#include "addresses.h"
40#include "basic-block.h"
41#include "reload.h"
42#include "recog.h"
43#include "output.h"
44#include "real.h"
45#include "toplev.h"
46#include "except.h"
47#include "tree.h"
48#include "target.h"
49
50/* This file contains the reload pass of the compiler, which is
51   run after register allocation has been done.  It checks that
52   each insn is valid (operands required to be in registers really
53   are in registers of the proper class) and fixes up invalid ones
54   by copying values temporarily into registers for the insns
55   that need them.
56
57   The results of register allocation are described by the vector
58   reg_renumber; the insns still contain pseudo regs, but reg_renumber
59   can be used to find which hard reg, if any, a pseudo reg is in.
60
61   The technique we always use is to free up a few hard regs that are
62   called ``reload regs'', and for each place where a pseudo reg
63   must be in a hard reg, copy it temporarily into one of the reload regs.
64
65   Reload regs are allocated locally for every instruction that needs
66   reloads.  When there are pseudos which are allocated to a register that
67   has been chosen as a reload reg, such pseudos must be ``spilled''.
68   This means that they go to other hard regs, or to stack slots if no other
69   available hard regs can be found.  Spilling can invalidate more
70   insns, requiring additional need for reloads, so we must keep checking
71   until the process stabilizes.
72
73   For machines with different classes of registers, we must keep track
74   of the register class needed for each reload, and make sure that
75   we allocate enough reload registers of each class.
76
77   The file reload.c contains the code that checks one insn for
78   validity and reports the reloads that it needs.  This file
79   is in charge of scanning the entire rtl code, accumulating the
80   reload needs, spilling, assigning reload registers to use for
81   fixing up each insn, and generating the new insns to copy values
82   into the reload registers.  */
83
84/* During reload_as_needed, element N contains a REG rtx for the hard reg
85   into which reg N has been reloaded (perhaps for a previous insn).  */
86static rtx *reg_last_reload_reg;
87
88/* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
89   for an output reload that stores into reg N.  */
90static regset_head reg_has_output_reload;
91
92/* Indicates which hard regs are reload-registers for an output reload
93   in the current insn.  */
94static HARD_REG_SET reg_is_output_reload;
95
96/* Element N is the constant value to which pseudo reg N is equivalent,
97   or zero if pseudo reg N is not equivalent to a constant.
98   find_reloads looks at this in order to replace pseudo reg N
99   with the constant it stands for.  */
100rtx *reg_equiv_constant;
101
102/* Element N is an invariant value to which pseudo reg N is equivalent.
103   eliminate_regs_in_insn uses this to replace pseudos in particular
104   contexts.  */
105rtx *reg_equiv_invariant;
106
107/* Element N is a memory location to which pseudo reg N is equivalent,
108   prior to any register elimination (such as frame pointer to stack
109   pointer).  Depending on whether or not it is a valid address, this value
110   is transferred to either reg_equiv_address or reg_equiv_mem.  */
111rtx *reg_equiv_memory_loc;
112
113/* We allocate reg_equiv_memory_loc inside a varray so that the garbage
114   collector can keep track of what is inside.  */
115VEC(rtx,gc) *reg_equiv_memory_loc_vec;
116
117/* Element N is the address of stack slot to which pseudo reg N is equivalent.
118   This is used when the address is not valid as a memory address
119   (because its displacement is too big for the machine.)  */
120rtx *reg_equiv_address;
121
122/* Element N is the memory slot to which pseudo reg N is equivalent,
123   or zero if pseudo reg N is not equivalent to a memory slot.  */
124rtx *reg_equiv_mem;
125
126/* Element N is an EXPR_LIST of REG_EQUIVs containing MEMs with
127   alternate representations of the location of pseudo reg N.  */
128rtx *reg_equiv_alt_mem_list;
129
130/* Widest width in which each pseudo reg is referred to (via subreg).  */
131static unsigned int *reg_max_ref_width;
132
133/* Element N is the list of insns that initialized reg N from its equivalent
134   constant or memory slot.  */
135rtx *reg_equiv_init;
136int reg_equiv_init_size;
137
138/* Vector to remember old contents of reg_renumber before spilling.  */
139static short *reg_old_renumber;
140
141/* During reload_as_needed, element N contains the last pseudo regno reloaded
142   into hard register N.  If that pseudo reg occupied more than one register,
143   reg_reloaded_contents points to that pseudo for each spill register in
144   use; all of these must remain set for an inheritance to occur.  */
145static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
146
147/* During reload_as_needed, element N contains the insn for which
148   hard register N was last used.   Its contents are significant only
149   when reg_reloaded_valid is set for this register.  */
150static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
151
152/* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid.  */
153static HARD_REG_SET reg_reloaded_valid;
154/* Indicate if the register was dead at the end of the reload.
155   This is only valid if reg_reloaded_contents is set and valid.  */
156static HARD_REG_SET reg_reloaded_dead;
157
158/* Indicate whether the register's current value is one that is not
159   safe to retain across a call, even for registers that are normally
160   call-saved.  */
161static HARD_REG_SET reg_reloaded_call_part_clobbered;
162
163/* Number of spill-regs so far; number of valid elements of spill_regs.  */
164static int n_spills;
165
166/* In parallel with spill_regs, contains REG rtx's for those regs.
167   Holds the last rtx used for any given reg, or 0 if it has never
168   been used for spilling yet.  This rtx is reused, provided it has
169   the proper mode.  */
170static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
171
172/* In parallel with spill_regs, contains nonzero for a spill reg
173   that was stored after the last time it was used.
174   The precise value is the insn generated to do the store.  */
175static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
176
177/* This is the register that was stored with spill_reg_store.  This is a
178   copy of reload_out / reload_out_reg when the value was stored; if
179   reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg.  */
180static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
181
182/* This table is the inverse mapping of spill_regs:
183   indexed by hard reg number,
184   it contains the position of that reg in spill_regs,
185   or -1 for something that is not in spill_regs.
186
187   ?!?  This is no longer accurate.  */
188static short spill_reg_order[FIRST_PSEUDO_REGISTER];
189
190/* This reg set indicates registers that can't be used as spill registers for
191   the currently processed insn.  These are the hard registers which are live
192   during the insn, but not allocated to pseudos, as well as fixed
193   registers.  */
194static HARD_REG_SET bad_spill_regs;
195
196/* These are the hard registers that can't be used as spill register for any
197   insn.  This includes registers used for user variables and registers that
198   we can't eliminate.  A register that appears in this set also can't be used
199   to retry register allocation.  */
200static HARD_REG_SET bad_spill_regs_global;
201
202/* Describes order of use of registers for reloading
203   of spilled pseudo-registers.  `n_spills' is the number of
204   elements that are actually valid; new ones are added at the end.
205
206   Both spill_regs and spill_reg_order are used on two occasions:
207   once during find_reload_regs, where they keep track of the spill registers
208   for a single insn, but also during reload_as_needed where they show all
209   the registers ever used by reload.  For the latter case, the information
210   is calculated during finish_spills.  */
211static short spill_regs[FIRST_PSEUDO_REGISTER];
212
213/* This vector of reg sets indicates, for each pseudo, which hard registers
214   may not be used for retrying global allocation because the register was
215   formerly spilled from one of them.  If we allowed reallocating a pseudo to
216   a register that it was already allocated to, reload might not
217   terminate.  */
218static HARD_REG_SET *pseudo_previous_regs;
219
220/* This vector of reg sets indicates, for each pseudo, which hard
221   registers may not be used for retrying global allocation because they
222   are used as spill registers during one of the insns in which the
223   pseudo is live.  */
224static HARD_REG_SET *pseudo_forbidden_regs;
225
226/* All hard regs that have been used as spill registers for any insn are
227   marked in this set.  */
228static HARD_REG_SET used_spill_regs;
229
230/* Index of last register assigned as a spill register.  We allocate in
231   a round-robin fashion.  */
232static int last_spill_reg;
233
234/* Nonzero if indirect addressing is supported on the machine; this means
235   that spilling (REG n) does not require reloading it into a register in
236   order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))).  The
237   value indicates the level of indirect addressing supported, e.g., two
238   means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
239   a hard register.  */
240static char spill_indirect_levels;
241
242/* Nonzero if indirect addressing is supported when the innermost MEM is
243   of the form (MEM (SYMBOL_REF sym)).  It is assumed that the level to
244   which these are valid is the same as spill_indirect_levels, above.  */
245char indirect_symref_ok;
246
247/* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid.  */
248char double_reg_address_ok;
249
250/* Record the stack slot for each spilled hard register.  */
251static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
252
253/* Width allocated so far for that stack slot.  */
254static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
255
256/* Record which pseudos needed to be spilled.  */
257static regset_head spilled_pseudos;
258
259/* Used for communication between order_regs_for_reload and count_pseudo.
260   Used to avoid counting one pseudo twice.  */
261static regset_head pseudos_counted;
262
263/* First uid used by insns created by reload in this function.
264   Used in find_equiv_reg.  */
265int reload_first_uid;
266
267/* Flag set by local-alloc or global-alloc if anything is live in
268   a call-clobbered reg across calls.  */
269int caller_save_needed;
270
271/* Set to 1 while reload_as_needed is operating.
272   Required by some machines to handle any generated moves differently.  */
273int reload_in_progress = 0;
274
275/* These arrays record the insn_code of insns that may be needed to
276   perform input and output reloads of special objects.  They provide a
277   place to pass a scratch register.  */
278enum insn_code reload_in_optab[NUM_MACHINE_MODES];
279enum insn_code reload_out_optab[NUM_MACHINE_MODES];
280
281/* This obstack is used for allocation of rtl during register elimination.
282   The allocated storage can be freed once find_reloads has processed the
283   insn.  */
284static struct obstack reload_obstack;
285
286/* Points to the beginning of the reload_obstack.  All insn_chain structures
287   are allocated first.  */
288static char *reload_startobj;
289
290/* The point after all insn_chain structures.  Used to quickly deallocate
291   memory allocated in copy_reloads during calculate_needs_all_insns.  */
292static char *reload_firstobj;
293
294/* This points before all local rtl generated by register elimination.
295   Used to quickly free all memory after processing one insn.  */
296static char *reload_insn_firstobj;
297
298/* List of insn_chain instructions, one for every insn that reload needs to
299   examine.  */
300struct insn_chain *reload_insn_chain;
301
302/* List of all insns needing reloads.  */
303static struct insn_chain *insns_need_reload;
304
305/* This structure is used to record information about register eliminations.
306   Each array entry describes one possible way of eliminating a register
307   in favor of another.   If there is more than one way of eliminating a
308   particular register, the most preferred should be specified first.  */
309
310struct elim_table
311{
312  int from;			/* Register number to be eliminated.  */
313  int to;			/* Register number used as replacement.  */
314  HOST_WIDE_INT initial_offset;	/* Initial difference between values.  */
315  int can_eliminate;		/* Nonzero if this elimination can be done.  */
316  int can_eliminate_previous;	/* Value of CAN_ELIMINATE in previous scan over
317				   insns made by reload.  */
318  HOST_WIDE_INT offset;		/* Current offset between the two regs.  */
319  HOST_WIDE_INT previous_offset;/* Offset at end of previous insn.  */
320  int ref_outside_mem;		/* "to" has been referenced outside a MEM.  */
321  rtx from_rtx;			/* REG rtx for the register to be eliminated.
322				   We cannot simply compare the number since
323				   we might then spuriously replace a hard
324				   register corresponding to a pseudo
325				   assigned to the reg to be eliminated.  */
326  rtx to_rtx;			/* REG rtx for the replacement.  */
327};
328
329static struct elim_table *reg_eliminate = 0;
330
331/* This is an intermediate structure to initialize the table.  It has
332   exactly the members provided by ELIMINABLE_REGS.  */
333static const struct elim_table_1
334{
335  const int from;
336  const int to;
337} reg_eliminate_1[] =
338
339/* If a set of eliminable registers was specified, define the table from it.
340   Otherwise, default to the normal case of the frame pointer being
341   replaced by the stack pointer.  */
342
343#ifdef ELIMINABLE_REGS
344  ELIMINABLE_REGS;
345#else
346  {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
347#endif
348
349#define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
350
351/* Record the number of pending eliminations that have an offset not equal
352   to their initial offset.  If nonzero, we use a new copy of each
353   replacement result in any insns encountered.  */
354int num_not_at_initial_offset;
355
356/* Count the number of registers that we may be able to eliminate.  */
357static int num_eliminable;
358/* And the number of registers that are equivalent to a constant that
359   can be eliminated to frame_pointer / arg_pointer + constant.  */
360static int num_eliminable_invariants;
361
362/* For each label, we record the offset of each elimination.  If we reach
363   a label by more than one path and an offset differs, we cannot do the
364   elimination.  This information is indexed by the difference of the
365   number of the label and the first label number.  We can't offset the
366   pointer itself as this can cause problems on machines with segmented
367   memory.  The first table is an array of flags that records whether we
368   have yet encountered a label and the second table is an array of arrays,
369   one entry in the latter array for each elimination.  */
370
371static int first_label_num;
372static char *offsets_known_at;
373static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
374
375/* Number of labels in the current function.  */
376
377static int num_labels;
378
379static void replace_pseudos_in (rtx *, enum machine_mode, rtx);
380static void maybe_fix_stack_asms (void);
381static void copy_reloads (struct insn_chain *);
382static void calculate_needs_all_insns (int);
383static int find_reg (struct insn_chain *, int);
384static void find_reload_regs (struct insn_chain *);
385static void select_reload_regs (void);
386static void delete_caller_save_insns (void);
387
388static void spill_failure (rtx, enum reg_class);
389static void count_spilled_pseudo (int, int, int);
390static void delete_dead_insn (rtx);
391static void alter_reg (int, int);
392static void set_label_offsets (rtx, rtx, int);
393static void check_eliminable_occurrences (rtx);
394static void elimination_effects (rtx, enum machine_mode);
395static int eliminate_regs_in_insn (rtx, int);
396static void update_eliminable_offsets (void);
397static void mark_not_eliminable (rtx, rtx, void *);
398static void set_initial_elim_offsets (void);
399static bool verify_initial_elim_offsets (void);
400static void set_initial_label_offsets (void);
401static void set_offsets_for_label (rtx);
402static void init_elim_table (void);
403static void update_eliminables (HARD_REG_SET *);
404static void spill_hard_reg (unsigned int, int);
405static int finish_spills (int);
406static void scan_paradoxical_subregs (rtx);
407static void count_pseudo (int);
408static void order_regs_for_reload (struct insn_chain *);
409static void reload_as_needed (int);
410static void forget_old_reloads_1 (rtx, rtx, void *);
411static void forget_marked_reloads (regset);
412static int reload_reg_class_lower (const void *, const void *);
413static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
414				    enum machine_mode);
415static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
416				     enum machine_mode);
417static int reload_reg_free_p (unsigned int, int, enum reload_type);
418static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
419					rtx, rtx, int, int);
420static int free_for_value_p (int, enum machine_mode, int, enum reload_type,
421			     rtx, rtx, int, int);
422static int reload_reg_reaches_end_p (unsigned int, int, enum reload_type);
423static int allocate_reload_reg (struct insn_chain *, int, int);
424static int conflicts_with_override (rtx);
425static void failed_reload (rtx, int);
426static int set_reload_reg (int, int);
427static void choose_reload_regs_init (struct insn_chain *, rtx *);
428static void choose_reload_regs (struct insn_chain *);
429static void merge_assigned_reloads (rtx);
430static void emit_input_reload_insns (struct insn_chain *, struct reload *,
431				     rtx, int);
432static void emit_output_reload_insns (struct insn_chain *, struct reload *,
433				      int);
434static void do_input_reload (struct insn_chain *, struct reload *, int);
435static void do_output_reload (struct insn_chain *, struct reload *, int);
436static bool inherit_piecemeal_p (int, int);
437static void emit_reload_insns (struct insn_chain *);
438static void delete_output_reload (rtx, int, int);
439static void delete_address_reloads (rtx, rtx);
440static void delete_address_reloads_1 (rtx, rtx, rtx);
441static rtx inc_for_reload (rtx, rtx, rtx, int);
442#ifdef AUTO_INC_DEC
443static void add_auto_inc_notes (rtx, rtx);
444#endif
445static void copy_eh_notes (rtx, rtx);
446static int reloads_conflict (int, int);
447static rtx gen_reload (rtx, rtx, int, enum reload_type);
448static rtx emit_insn_if_valid_for_reload (rtx);
449
450/* Initialize the reload pass once per compilation.  */
451
452void
453init_reload (void)
454{
455  int i;
456
457  /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
458     Set spill_indirect_levels to the number of levels such addressing is
459     permitted, zero if it is not permitted at all.  */
460
461  rtx tem
462    = gen_rtx_MEM (Pmode,
463		   gen_rtx_PLUS (Pmode,
464				 gen_rtx_REG (Pmode,
465					      LAST_VIRTUAL_REGISTER + 1),
466				 GEN_INT (4)));
467  spill_indirect_levels = 0;
468
469  while (memory_address_p (QImode, tem))
470    {
471      spill_indirect_levels++;
472      tem = gen_rtx_MEM (Pmode, tem);
473    }
474
475  /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)).  */
476
477  tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
478  indirect_symref_ok = memory_address_p (QImode, tem);
479
480  /* See if reg+reg is a valid (and offsettable) address.  */
481
482  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
483    {
484      tem = gen_rtx_PLUS (Pmode,
485			  gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
486			  gen_rtx_REG (Pmode, i));
487
488      /* This way, we make sure that reg+reg is an offsettable address.  */
489      tem = plus_constant (tem, 4);
490
491      if (memory_address_p (QImode, tem))
492	{
493	  double_reg_address_ok = 1;
494	  break;
495	}
496    }
497
498  /* Initialize obstack for our rtl allocation.  */
499  gcc_obstack_init (&reload_obstack);
500  reload_startobj = obstack_alloc (&reload_obstack, 0);
501
502  INIT_REG_SET (&spilled_pseudos);
503  INIT_REG_SET (&pseudos_counted);
504}
505
506/* List of insn chains that are currently unused.  */
507static struct insn_chain *unused_insn_chains = 0;
508
509/* Allocate an empty insn_chain structure.  */
510struct insn_chain *
511new_insn_chain (void)
512{
513  struct insn_chain *c;
514
515  if (unused_insn_chains == 0)
516    {
517      c = obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
518      INIT_REG_SET (&c->live_throughout);
519      INIT_REG_SET (&c->dead_or_set);
520    }
521  else
522    {
523      c = unused_insn_chains;
524      unused_insn_chains = c->next;
525    }
526  c->is_caller_save_insn = 0;
527  c->need_operand_change = 0;
528  c->need_reload = 0;
529  c->need_elim = 0;
530  return c;
531}
532
533/* Small utility function to set all regs in hard reg set TO which are
534   allocated to pseudos in regset FROM.  */
535
536void
537compute_use_by_pseudos (HARD_REG_SET *to, regset from)
538{
539  unsigned int regno;
540  reg_set_iterator rsi;
541
542  EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
543    {
544      int r = reg_renumber[regno];
545      int nregs;
546
547      if (r < 0)
548	{
549	  /* reload_combine uses the information from
550	     BASIC_BLOCK->global_live_at_start, which might still
551	     contain registers that have not actually been allocated
552	     since they have an equivalence.  */
553	  gcc_assert (reload_completed);
554	}
555      else
556	{
557	  nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
558	  while (nregs-- > 0)
559	    SET_HARD_REG_BIT (*to, r + nregs);
560	}
561    }
562}
563
564/* Replace all pseudos found in LOC with their corresponding
565   equivalences.  */
566
567static void
568replace_pseudos_in (rtx *loc, enum machine_mode mem_mode, rtx usage)
569{
570  rtx x = *loc;
571  enum rtx_code code;
572  const char *fmt;
573  int i, j;
574
575  if (! x)
576    return;
577
578  code = GET_CODE (x);
579  if (code == REG)
580    {
581      unsigned int regno = REGNO (x);
582
583      if (regno < FIRST_PSEUDO_REGISTER)
584	return;
585
586      x = eliminate_regs (x, mem_mode, usage);
587      if (x != *loc)
588	{
589	  *loc = x;
590	  replace_pseudos_in (loc, mem_mode, usage);
591	  return;
592	}
593
594      if (reg_equiv_constant[regno])
595	*loc = reg_equiv_constant[regno];
596      else if (reg_equiv_mem[regno])
597	*loc = reg_equiv_mem[regno];
598      else if (reg_equiv_address[regno])
599	*loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address[regno]);
600      else
601	{
602	  gcc_assert (!REG_P (regno_reg_rtx[regno])
603		      || REGNO (regno_reg_rtx[regno]) != regno);
604	  *loc = regno_reg_rtx[regno];
605	}
606
607      return;
608    }
609  else if (code == MEM)
610    {
611      replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
612      return;
613    }
614
615  /* Process each of our operands recursively.  */
616  fmt = GET_RTX_FORMAT (code);
617  for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
618    if (*fmt == 'e')
619      replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
620    else if (*fmt == 'E')
621      for (j = 0; j < XVECLEN (x, i); j++)
622	replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
623}
624
625
626/* Global variables used by reload and its subroutines.  */
627
628/* Set during calculate_needs if an insn needs register elimination.  */
629static int something_needs_elimination;
630/* Set during calculate_needs if an insn needs an operand changed.  */
631static int something_needs_operands_changed;
632
633/* Nonzero means we couldn't get enough spill regs.  */
634static int failure;
635
636/* Main entry point for the reload pass.
637
638   FIRST is the first insn of the function being compiled.
639
640   GLOBAL nonzero means we were called from global_alloc
641   and should attempt to reallocate any pseudoregs that we
642   displace from hard regs we will use for reloads.
643   If GLOBAL is zero, we do not have enough information to do that,
644   so any pseudo reg that is spilled must go to the stack.
645
646   Return value is nonzero if reload failed
647   and we must not do any more for this function.  */
648
649int
650reload (rtx first, int global)
651{
652  int i;
653  rtx insn;
654  struct elim_table *ep;
655  basic_block bb;
656
657  /* Make sure even insns with volatile mem refs are recognizable.  */
658  init_recog ();
659
660  failure = 0;
661
662  reload_firstobj = obstack_alloc (&reload_obstack, 0);
663
664  /* Make sure that the last insn in the chain
665     is not something that needs reloading.  */
666  emit_note (NOTE_INSN_DELETED);
667
668  /* Enable find_equiv_reg to distinguish insns made by reload.  */
669  reload_first_uid = get_max_uid ();
670
671#ifdef SECONDARY_MEMORY_NEEDED
672  /* Initialize the secondary memory table.  */
673  clear_secondary_mem ();
674#endif
675
676  /* We don't have a stack slot for any spill reg yet.  */
677  memset (spill_stack_slot, 0, sizeof spill_stack_slot);
678  memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
679
680  /* Initialize the save area information for caller-save, in case some
681     are needed.  */
682  init_save_areas ();
683
684  /* Compute which hard registers are now in use
685     as homes for pseudo registers.
686     This is done here rather than (eg) in global_alloc
687     because this point is reached even if not optimizing.  */
688  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
689    mark_home_live (i);
690
691  /* A function that receives a nonlocal goto must save all call-saved
692     registers.  */
693  if (current_function_has_nonlocal_label)
694    for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
695      if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
696	regs_ever_live[i] = 1;
697
698  /* Find all the pseudo registers that didn't get hard regs
699     but do have known equivalent constants or memory slots.
700     These include parameters (known equivalent to parameter slots)
701     and cse'd or loop-moved constant memory addresses.
702
703     Record constant equivalents in reg_equiv_constant
704     so they will be substituted by find_reloads.
705     Record memory equivalents in reg_mem_equiv so they can
706     be substituted eventually by altering the REG-rtx's.  */
707
708  reg_equiv_constant = XCNEWVEC (rtx, max_regno);
709  reg_equiv_invariant = XCNEWVEC (rtx, max_regno);
710  reg_equiv_mem = XCNEWVEC (rtx, max_regno);
711  reg_equiv_alt_mem_list = XCNEWVEC (rtx, max_regno);
712  reg_equiv_address = XCNEWVEC (rtx, max_regno);
713  reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
714  reg_old_renumber = XCNEWVEC (short, max_regno);
715  memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
716  pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
717  pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
718
719  CLEAR_HARD_REG_SET (bad_spill_regs_global);
720
721  /* Look for REG_EQUIV notes; record what each pseudo is equivalent
722     to.  Also find all paradoxical subregs and find largest such for
723     each pseudo.  */
724
725  num_eliminable_invariants = 0;
726  for (insn = first; insn; insn = NEXT_INSN (insn))
727    {
728      rtx set = single_set (insn);
729
730      /* We may introduce USEs that we want to remove at the end, so
731	 we'll mark them with QImode.  Make sure there are no
732	 previously-marked insns left by say regmove.  */
733      if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
734	  && GET_MODE (insn) != VOIDmode)
735	PUT_MODE (insn, VOIDmode);
736
737      if (INSN_P (insn))
738	scan_paradoxical_subregs (PATTERN (insn));
739
740      if (set != 0 && REG_P (SET_DEST (set)))
741	{
742	  rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
743	  rtx x;
744
745	  if (! note)
746	    continue;
747
748	  i = REGNO (SET_DEST (set));
749	  x = XEXP (note, 0);
750
751	  if (i <= LAST_VIRTUAL_REGISTER)
752	    continue;
753
754	  if (! function_invariant_p (x)
755	      || ! flag_pic
756	      /* A function invariant is often CONSTANT_P but may
757		 include a register.  We promise to only pass
758		 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P.  */
759	      || (CONSTANT_P (x)
760		  && LEGITIMATE_PIC_OPERAND_P (x)))
761	    {
762	      /* It can happen that a REG_EQUIV note contains a MEM
763		 that is not a legitimate memory operand.  As later
764		 stages of reload assume that all addresses found
765		 in the reg_equiv_* arrays were originally legitimate,
766		 we ignore such REG_EQUIV notes.  */
767	      if (memory_operand (x, VOIDmode))
768		{
769		  /* Always unshare the equivalence, so we can
770		     substitute into this insn without touching the
771		       equivalence.  */
772		  reg_equiv_memory_loc[i] = copy_rtx (x);
773		}
774	      else if (function_invariant_p (x))
775		{
776		  if (GET_CODE (x) == PLUS)
777		    {
778		      /* This is PLUS of frame pointer and a constant,
779			 and might be shared.  Unshare it.  */
780		      reg_equiv_invariant[i] = copy_rtx (x);
781		      num_eliminable_invariants++;
782		    }
783		  else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
784		    {
785		      reg_equiv_invariant[i] = x;
786		      num_eliminable_invariants++;
787		    }
788		  else if (LEGITIMATE_CONSTANT_P (x))
789		    reg_equiv_constant[i] = x;
790		  else
791		    {
792		      reg_equiv_memory_loc[i]
793			= force_const_mem (GET_MODE (SET_DEST (set)), x);
794		      if (! reg_equiv_memory_loc[i])
795			reg_equiv_init[i] = NULL_RTX;
796		    }
797		}
798	      else
799		{
800		  reg_equiv_init[i] = NULL_RTX;
801		  continue;
802		}
803	    }
804	  else
805	    reg_equiv_init[i] = NULL_RTX;
806	}
807    }
808
809  if (dump_file)
810    for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
811      if (reg_equiv_init[i])
812	{
813	  fprintf (dump_file, "init_insns for %u: ", i);
814	  print_inline_rtx (dump_file, reg_equiv_init[i], 20);
815	  fprintf (dump_file, "\n");
816	}
817
818  init_elim_table ();
819
820  first_label_num = get_first_label_num ();
821  num_labels = max_label_num () - first_label_num;
822
823  /* Allocate the tables used to store offset information at labels.  */
824  /* We used to use alloca here, but the size of what it would try to
825     allocate would occasionally cause it to exceed the stack limit and
826     cause a core dump.  */
827  offsets_known_at = XNEWVEC (char, num_labels);
828  offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
829
830  /* Alter each pseudo-reg rtx to contain its hard reg number.
831     Assign stack slots to the pseudos that lack hard regs or equivalents.
832     Do not touch virtual registers.  */
833
834  for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
835    alter_reg (i, -1);
836
837  /* If we have some registers we think can be eliminated, scan all insns to
838     see if there is an insn that sets one of these registers to something
839     other than itself plus a constant.  If so, the register cannot be
840     eliminated.  Doing this scan here eliminates an extra pass through the
841     main reload loop in the most common case where register elimination
842     cannot be done.  */
843  for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
844    if (INSN_P (insn))
845      note_stores (PATTERN (insn), mark_not_eliminable, NULL);
846
847  maybe_fix_stack_asms ();
848
849  insns_need_reload = 0;
850  something_needs_elimination = 0;
851
852  /* Initialize to -1, which means take the first spill register.  */
853  last_spill_reg = -1;
854
855  /* Spill any hard regs that we know we can't eliminate.  */
856  CLEAR_HARD_REG_SET (used_spill_regs);
857  /* There can be multiple ways to eliminate a register;
858     they should be listed adjacently.
859     Elimination for any register fails only if all possible ways fail.  */
860  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
861    {
862      int from = ep->from;
863      int can_eliminate = 0;
864      do
865	{
866          can_eliminate |= ep->can_eliminate;
867          ep++;
868	}
869      while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
870      if (! can_eliminate)
871	spill_hard_reg (from, 1);
872    }
873
874#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
875  if (frame_pointer_needed)
876    spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
877#endif
878  finish_spills (global);
879
880  /* From now on, we may need to generate moves differently.  We may also
881     allow modifications of insns which cause them to not be recognized.
882     Any such modifications will be cleaned up during reload itself.  */
883  reload_in_progress = 1;
884
885  /* This loop scans the entire function each go-round
886     and repeats until one repetition spills no additional hard regs.  */
887  for (;;)
888    {
889      int something_changed;
890      int did_spill;
891
892      HOST_WIDE_INT starting_frame_size;
893
894      /* Round size of stack frame to stack_alignment_needed.  This must be done
895	 here because the stack size may be a part of the offset computation
896	 for register elimination, and there might have been new stack slots
897	 created in the last iteration of this loop.  */
898      if (cfun->stack_alignment_needed)
899        assign_stack_local (BLKmode, 0, cfun->stack_alignment_needed);
900
901      starting_frame_size = get_frame_size ();
902
903      set_initial_elim_offsets ();
904      set_initial_label_offsets ();
905
906      /* For each pseudo register that has an equivalent location defined,
907	 try to eliminate any eliminable registers (such as the frame pointer)
908	 assuming initial offsets for the replacement register, which
909	 is the normal case.
910
911	 If the resulting location is directly addressable, substitute
912	 the MEM we just got directly for the old REG.
913
914	 If it is not addressable but is a constant or the sum of a hard reg
915	 and constant, it is probably not addressable because the constant is
916	 out of range, in that case record the address; we will generate
917	 hairy code to compute the address in a register each time it is
918	 needed.  Similarly if it is a hard register, but one that is not
919	 valid as an address register.
920
921	 If the location is not addressable, but does not have one of the
922	 above forms, assign a stack slot.  We have to do this to avoid the
923	 potential of producing lots of reloads if, e.g., a location involves
924	 a pseudo that didn't get a hard register and has an equivalent memory
925	 location that also involves a pseudo that didn't get a hard register.
926
927	 Perhaps at some point we will improve reload_when_needed handling
928	 so this problem goes away.  But that's very hairy.  */
929
930      for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
931	if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
932	  {
933	    rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
934
935	    if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
936					 XEXP (x, 0)))
937	      reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
938	    else if (CONSTANT_P (XEXP (x, 0))
939		     || (REG_P (XEXP (x, 0))
940			 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
941		     || (GET_CODE (XEXP (x, 0)) == PLUS
942			 && REG_P (XEXP (XEXP (x, 0), 0))
943			 && (REGNO (XEXP (XEXP (x, 0), 0))
944			     < FIRST_PSEUDO_REGISTER)
945			 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
946	      reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
947	    else
948	      {
949		/* Make a new stack slot.  Then indicate that something
950		   changed so we go back and recompute offsets for
951		   eliminable registers because the allocation of memory
952		   below might change some offset.  reg_equiv_{mem,address}
953		   will be set up for this pseudo on the next pass around
954		   the loop.  */
955		reg_equiv_memory_loc[i] = 0;
956		reg_equiv_init[i] = 0;
957		alter_reg (i, -1);
958	      }
959	  }
960
961      if (caller_save_needed)
962	setup_save_areas ();
963
964      /* If we allocated another stack slot, redo elimination bookkeeping.  */
965      if (starting_frame_size != get_frame_size ())
966	continue;
967
968      if (caller_save_needed)
969	{
970	  save_call_clobbered_regs ();
971	  /* That might have allocated new insn_chain structures.  */
972	  reload_firstobj = obstack_alloc (&reload_obstack, 0);
973	}
974
975      calculate_needs_all_insns (global);
976
977      CLEAR_REG_SET (&spilled_pseudos);
978      did_spill = 0;
979
980      something_changed = 0;
981
982      /* If we allocated any new memory locations, make another pass
983	 since it might have changed elimination offsets.  */
984      if (starting_frame_size != get_frame_size ())
985	something_changed = 1;
986
987      /* Even if the frame size remained the same, we might still have
988	 changed elimination offsets, e.g. if find_reloads called
989	 force_const_mem requiring the back end to allocate a constant
990	 pool base register that needs to be saved on the stack.  */
991      else if (!verify_initial_elim_offsets ())
992	something_changed = 1;
993
994      {
995	HARD_REG_SET to_spill;
996	CLEAR_HARD_REG_SET (to_spill);
997	update_eliminables (&to_spill);
998	AND_COMPL_HARD_REG_SET(used_spill_regs, to_spill);
999
1000	for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1001	  if (TEST_HARD_REG_BIT (to_spill, i))
1002	    {
1003	      spill_hard_reg (i, 1);
1004	      did_spill = 1;
1005
1006	      /* Regardless of the state of spills, if we previously had
1007		 a register that we thought we could eliminate, but now can
1008		 not eliminate, we must run another pass.
1009
1010		 Consider pseudos which have an entry in reg_equiv_* which
1011		 reference an eliminable register.  We must make another pass
1012		 to update reg_equiv_* so that we do not substitute in the
1013		 old value from when we thought the elimination could be
1014		 performed.  */
1015	      something_changed = 1;
1016	    }
1017      }
1018
1019      select_reload_regs ();
1020      if (failure)
1021	goto failed;
1022
1023      if (insns_need_reload != 0 || did_spill)
1024	something_changed |= finish_spills (global);
1025
1026      if (! something_changed)
1027	break;
1028
1029      if (caller_save_needed)
1030	delete_caller_save_insns ();
1031
1032      obstack_free (&reload_obstack, reload_firstobj);
1033    }
1034
1035  /* If global-alloc was run, notify it of any register eliminations we have
1036     done.  */
1037  if (global)
1038    for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1039      if (ep->can_eliminate)
1040	mark_elimination (ep->from, ep->to);
1041
1042  /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1043     If that insn didn't set the register (i.e., it copied the register to
1044     memory), just delete that insn instead of the equivalencing insn plus
1045     anything now dead.  If we call delete_dead_insn on that insn, we may
1046     delete the insn that actually sets the register if the register dies
1047     there and that is incorrect.  */
1048
1049  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1050    {
1051      if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
1052	{
1053	  rtx list;
1054	  for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
1055	    {
1056	      rtx equiv_insn = XEXP (list, 0);
1057
1058	      /* If we already deleted the insn or if it may trap, we can't
1059		 delete it.  The latter case shouldn't happen, but can
1060		 if an insn has a variable address, gets a REG_EH_REGION
1061		 note added to it, and then gets converted into a load
1062		 from a constant address.  */
1063	      if (NOTE_P (equiv_insn)
1064		  || can_throw_internal (equiv_insn))
1065		;
1066	      else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1067		delete_dead_insn (equiv_insn);
1068	      else
1069		SET_INSN_DELETED (equiv_insn);
1070	    }
1071	}
1072    }
1073
1074  /* Use the reload registers where necessary
1075     by generating move instructions to move the must-be-register
1076     values into or out of the reload registers.  */
1077
1078  if (insns_need_reload != 0 || something_needs_elimination
1079      || something_needs_operands_changed)
1080    {
1081      HOST_WIDE_INT old_frame_size = get_frame_size ();
1082
1083      reload_as_needed (global);
1084
1085      gcc_assert (old_frame_size == get_frame_size ());
1086
1087      gcc_assert (verify_initial_elim_offsets ());
1088    }
1089
1090  /* If we were able to eliminate the frame pointer, show that it is no
1091     longer live at the start of any basic block.  If it ls live by
1092     virtue of being in a pseudo, that pseudo will be marked live
1093     and hence the frame pointer will be known to be live via that
1094     pseudo.  */
1095
1096  if (! frame_pointer_needed)
1097    FOR_EACH_BB (bb)
1098      CLEAR_REGNO_REG_SET (bb->il.rtl->global_live_at_start,
1099			   HARD_FRAME_POINTER_REGNUM);
1100
1101  /* Come here (with failure set nonzero) if we can't get enough spill
1102     regs.  */
1103 failed:
1104
1105  CLEAR_REG_SET (&spilled_pseudos);
1106  reload_in_progress = 0;
1107
1108  /* Now eliminate all pseudo regs by modifying them into
1109     their equivalent memory references.
1110     The REG-rtx's for the pseudos are modified in place,
1111     so all insns that used to refer to them now refer to memory.
1112
1113     For a reg that has a reg_equiv_address, all those insns
1114     were changed by reloading so that no insns refer to it any longer;
1115     but the DECL_RTL of a variable decl may refer to it,
1116     and if so this causes the debugging info to mention the variable.  */
1117
1118  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1119    {
1120      rtx addr = 0;
1121
1122      if (reg_equiv_mem[i])
1123	addr = XEXP (reg_equiv_mem[i], 0);
1124
1125      if (reg_equiv_address[i])
1126	addr = reg_equiv_address[i];
1127
1128      if (addr)
1129	{
1130	  if (reg_renumber[i] < 0)
1131	    {
1132	      rtx reg = regno_reg_rtx[i];
1133
1134	      REG_USERVAR_P (reg) = 0;
1135	      PUT_CODE (reg, MEM);
1136	      XEXP (reg, 0) = addr;
1137	      if (reg_equiv_memory_loc[i])
1138		MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc[i]);
1139	      else
1140		{
1141		  MEM_IN_STRUCT_P (reg) = MEM_SCALAR_P (reg) = 0;
1142		  MEM_ATTRS (reg) = 0;
1143		}
1144	      MEM_NOTRAP_P (reg) = 1;
1145	    }
1146	  else if (reg_equiv_mem[i])
1147	    XEXP (reg_equiv_mem[i], 0) = addr;
1148	}
1149    }
1150
1151  /* We must set reload_completed now since the cleanup_subreg_operands call
1152     below will re-recognize each insn and reload may have generated insns
1153     which are only valid during and after reload.  */
1154  reload_completed = 1;
1155
1156  /* Make a pass over all the insns and delete all USEs which we inserted
1157     only to tag a REG_EQUAL note on them.  Remove all REG_DEAD and REG_UNUSED
1158     notes.  Delete all CLOBBER insns, except those that refer to the return
1159     value and the special mem:BLK CLOBBERs added to prevent the scheduler
1160     from misarranging variable-array code, and simplify (subreg (reg))
1161     operands.  Also remove all REG_RETVAL and REG_LIBCALL notes since they
1162     are no longer useful or accurate.  Strip and regenerate REG_INC notes
1163     that may have been moved around.  */
1164
1165  for (insn = first; insn; insn = NEXT_INSN (insn))
1166    if (INSN_P (insn))
1167      {
1168	rtx *pnote;
1169
1170	if (CALL_P (insn))
1171	  replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1172			      VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1173
1174	if ((GET_CODE (PATTERN (insn)) == USE
1175	     /* We mark with QImode USEs introduced by reload itself.  */
1176	     && (GET_MODE (insn) == QImode
1177		 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1178	    || (GET_CODE (PATTERN (insn)) == CLOBBER
1179		&& (!MEM_P (XEXP (PATTERN (insn), 0))
1180		    || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1181		    || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1182			&& XEXP (XEXP (PATTERN (insn), 0), 0)
1183				!= stack_pointer_rtx))
1184		&& (!REG_P (XEXP (PATTERN (insn), 0))
1185		    || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1186	  {
1187	    delete_insn (insn);
1188	    continue;
1189	  }
1190
1191	/* Some CLOBBERs may survive until here and still reference unassigned
1192	   pseudos with const equivalent, which may in turn cause ICE in later
1193	   passes if the reference remains in place.  */
1194	if (GET_CODE (PATTERN (insn)) == CLOBBER)
1195	  replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1196			      VOIDmode, PATTERN (insn));
1197
1198	/* Discard obvious no-ops, even without -O.  This optimization
1199	   is fast and doesn't interfere with debugging.  */
1200	if (NONJUMP_INSN_P (insn)
1201	    && GET_CODE (PATTERN (insn)) == SET
1202	    && REG_P (SET_SRC (PATTERN (insn)))
1203	    && REG_P (SET_DEST (PATTERN (insn)))
1204	    && (REGNO (SET_SRC (PATTERN (insn)))
1205		== REGNO (SET_DEST (PATTERN (insn)))))
1206	  {
1207	    delete_insn (insn);
1208	    continue;
1209	  }
1210
1211	pnote = &REG_NOTES (insn);
1212	while (*pnote != 0)
1213	  {
1214	    if (REG_NOTE_KIND (*pnote) == REG_DEAD
1215		|| REG_NOTE_KIND (*pnote) == REG_UNUSED
1216		|| REG_NOTE_KIND (*pnote) == REG_INC
1217		|| REG_NOTE_KIND (*pnote) == REG_RETVAL
1218		|| REG_NOTE_KIND (*pnote) == REG_LIBCALL)
1219	      *pnote = XEXP (*pnote, 1);
1220	    else
1221	      pnote = &XEXP (*pnote, 1);
1222	  }
1223
1224#ifdef AUTO_INC_DEC
1225	add_auto_inc_notes (insn, PATTERN (insn));
1226#endif
1227
1228	/* Simplify (subreg (reg)) if it appears as an operand.  */
1229	cleanup_subreg_operands (insn);
1230
1231	/* Clean up invalid ASMs so that they don't confuse later passes.
1232	   See PR 21299.  */
1233	if (asm_noperands (PATTERN (insn)) >= 0)
1234	  {
1235	    extract_insn (insn);
1236	    if (!constrain_operands (1))
1237	      {
1238		error_for_asm (insn,
1239			       "%<asm%> operand has impossible constraints");
1240		delete_insn (insn);
1241		continue;
1242	      }
1243	  }
1244      }
1245
1246  /* If we are doing stack checking, give a warning if this function's
1247     frame size is larger than we expect.  */
1248  if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1249    {
1250      HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1251      static int verbose_warned = 0;
1252
1253      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1254	if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i])
1255	  size += UNITS_PER_WORD;
1256
1257      if (size > STACK_CHECK_MAX_FRAME_SIZE)
1258	{
1259	  warning (0, "frame size too large for reliable stack checking");
1260	  if (! verbose_warned)
1261	    {
1262	      warning (0, "try reducing the number of local variables");
1263	      verbose_warned = 1;
1264	    }
1265	}
1266    }
1267
1268  /* Indicate that we no longer have known memory locations or constants.  */
1269  if (reg_equiv_constant)
1270    free (reg_equiv_constant);
1271  if (reg_equiv_invariant)
1272    free (reg_equiv_invariant);
1273  reg_equiv_constant = 0;
1274  reg_equiv_invariant = 0;
1275  VEC_free (rtx, gc, reg_equiv_memory_loc_vec);
1276  reg_equiv_memory_loc = 0;
1277
1278  if (offsets_known_at)
1279    free (offsets_known_at);
1280  if (offsets_at)
1281    free (offsets_at);
1282
1283  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1284    if (reg_equiv_alt_mem_list[i])
1285      free_EXPR_LIST_list (&reg_equiv_alt_mem_list[i]);
1286  free (reg_equiv_alt_mem_list);
1287
1288  free (reg_equiv_mem);
1289  reg_equiv_init = 0;
1290  free (reg_equiv_address);
1291  free (reg_max_ref_width);
1292  free (reg_old_renumber);
1293  free (pseudo_previous_regs);
1294  free (pseudo_forbidden_regs);
1295
1296  CLEAR_HARD_REG_SET (used_spill_regs);
1297  for (i = 0; i < n_spills; i++)
1298    SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1299
1300  /* Free all the insn_chain structures at once.  */
1301  obstack_free (&reload_obstack, reload_startobj);
1302  unused_insn_chains = 0;
1303  fixup_abnormal_edges ();
1304
1305  /* Replacing pseudos with their memory equivalents might have
1306     created shared rtx.  Subsequent passes would get confused
1307     by this, so unshare everything here.  */
1308  unshare_all_rtl_again (first);
1309
1310#ifdef STACK_BOUNDARY
1311  /* init_emit has set the alignment of the hard frame pointer
1312     to STACK_BOUNDARY.  It is very likely no longer valid if
1313     the hard frame pointer was used for register allocation.  */
1314  if (!frame_pointer_needed)
1315    REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1316#endif
1317
1318  return failure;
1319}
1320
1321/* Yet another special case.  Unfortunately, reg-stack forces people to
1322   write incorrect clobbers in asm statements.  These clobbers must not
1323   cause the register to appear in bad_spill_regs, otherwise we'll call
1324   fatal_insn later.  We clear the corresponding regnos in the live
1325   register sets to avoid this.
1326   The whole thing is rather sick, I'm afraid.  */
1327
1328static void
1329maybe_fix_stack_asms (void)
1330{
1331#ifdef STACK_REGS
1332  const char *constraints[MAX_RECOG_OPERANDS];
1333  enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1334  struct insn_chain *chain;
1335
1336  for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1337    {
1338      int i, noperands;
1339      HARD_REG_SET clobbered, allowed;
1340      rtx pat;
1341
1342      if (! INSN_P (chain->insn)
1343	  || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1344	continue;
1345      pat = PATTERN (chain->insn);
1346      if (GET_CODE (pat) != PARALLEL)
1347	continue;
1348
1349      CLEAR_HARD_REG_SET (clobbered);
1350      CLEAR_HARD_REG_SET (allowed);
1351
1352      /* First, make a mask of all stack regs that are clobbered.  */
1353      for (i = 0; i < XVECLEN (pat, 0); i++)
1354	{
1355	  rtx t = XVECEXP (pat, 0, i);
1356	  if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1357	    SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1358	}
1359
1360      /* Get the operand values and constraints out of the insn.  */
1361      decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1362			   constraints, operand_mode);
1363
1364      /* For every operand, see what registers are allowed.  */
1365      for (i = 0; i < noperands; i++)
1366	{
1367	  const char *p = constraints[i];
1368	  /* For every alternative, we compute the class of registers allowed
1369	     for reloading in CLS, and merge its contents into the reg set
1370	     ALLOWED.  */
1371	  int cls = (int) NO_REGS;
1372
1373	  for (;;)
1374	    {
1375	      char c = *p;
1376
1377	      if (c == '\0' || c == ',' || c == '#')
1378		{
1379		  /* End of one alternative - mark the regs in the current
1380		     class, and reset the class.  */
1381		  IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1382		  cls = NO_REGS;
1383		  p++;
1384		  if (c == '#')
1385		    do {
1386		      c = *p++;
1387		    } while (c != '\0' && c != ',');
1388		  if (c == '\0')
1389		    break;
1390		  continue;
1391		}
1392
1393	      switch (c)
1394		{
1395		case '=': case '+': case '*': case '%': case '?': case '!':
1396		case '0': case '1': case '2': case '3': case '4': case 'm':
1397		case '<': case '>': case 'V': case 'o': case '&': case 'E':
1398		case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
1399		case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
1400		case 'P':
1401		  break;
1402
1403		case 'p':
1404		  cls = (int) reg_class_subunion[cls]
1405		      [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1406		  break;
1407
1408		case 'g':
1409		case 'r':
1410		  cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1411		  break;
1412
1413		default:
1414		  if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1415		    cls = (int) reg_class_subunion[cls]
1416		      [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1417		  else
1418		    cls = (int) reg_class_subunion[cls]
1419		      [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1420		}
1421	      p += CONSTRAINT_LEN (c, p);
1422	    }
1423	}
1424      /* Those of the registers which are clobbered, but allowed by the
1425	 constraints, must be usable as reload registers.  So clear them
1426	 out of the life information.  */
1427      AND_HARD_REG_SET (allowed, clobbered);
1428      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1429	if (TEST_HARD_REG_BIT (allowed, i))
1430	  {
1431	    CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1432	    CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1433	  }
1434    }
1435
1436#endif
1437}
1438
1439/* Copy the global variables n_reloads and rld into the corresponding elts
1440   of CHAIN.  */
1441static void
1442copy_reloads (struct insn_chain *chain)
1443{
1444  chain->n_reloads = n_reloads;
1445  chain->rld = obstack_alloc (&reload_obstack,
1446			      n_reloads * sizeof (struct reload));
1447  memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1448  reload_insn_firstobj = obstack_alloc (&reload_obstack, 0);
1449}
1450
1451/* Walk the chain of insns, and determine for each whether it needs reloads
1452   and/or eliminations.  Build the corresponding insns_need_reload list, and
1453   set something_needs_elimination as appropriate.  */
1454static void
1455calculate_needs_all_insns (int global)
1456{
1457  struct insn_chain **pprev_reload = &insns_need_reload;
1458  struct insn_chain *chain, *next = 0;
1459
1460  something_needs_elimination = 0;
1461
1462  reload_insn_firstobj = obstack_alloc (&reload_obstack, 0);
1463  for (chain = reload_insn_chain; chain != 0; chain = next)
1464    {
1465      rtx insn = chain->insn;
1466
1467      next = chain->next;
1468
1469      /* Clear out the shortcuts.  */
1470      chain->n_reloads = 0;
1471      chain->need_elim = 0;
1472      chain->need_reload = 0;
1473      chain->need_operand_change = 0;
1474
1475      /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1476	 include REG_LABEL), we need to see what effects this has on the
1477	 known offsets at labels.  */
1478
1479      if (LABEL_P (insn) || JUMP_P (insn)
1480	  || (INSN_P (insn) && REG_NOTES (insn) != 0))
1481	set_label_offsets (insn, insn, 0);
1482
1483      if (INSN_P (insn))
1484	{
1485	  rtx old_body = PATTERN (insn);
1486	  int old_code = INSN_CODE (insn);
1487	  rtx old_notes = REG_NOTES (insn);
1488	  int did_elimination = 0;
1489	  int operands_changed = 0;
1490	  rtx set = single_set (insn);
1491
1492	  /* Skip insns that only set an equivalence.  */
1493	  if (set && REG_P (SET_DEST (set))
1494	      && reg_renumber[REGNO (SET_DEST (set))] < 0
1495	      && (reg_equiv_constant[REGNO (SET_DEST (set))]
1496		  || (reg_equiv_invariant[REGNO (SET_DEST (set))]))
1497		      && reg_equiv_init[REGNO (SET_DEST (set))])
1498	    continue;
1499
1500	  /* If needed, eliminate any eliminable registers.  */
1501	  if (num_eliminable || num_eliminable_invariants)
1502	    did_elimination = eliminate_regs_in_insn (insn, 0);
1503
1504	  /* Analyze the instruction.  */
1505	  operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1506					   global, spill_reg_order);
1507
1508	  /* If a no-op set needs more than one reload, this is likely
1509	     to be something that needs input address reloads.  We
1510	     can't get rid of this cleanly later, and it is of no use
1511	     anyway, so discard it now.
1512	     We only do this when expensive_optimizations is enabled,
1513	     since this complements reload inheritance / output
1514	     reload deletion, and it can make debugging harder.  */
1515	  if (flag_expensive_optimizations && n_reloads > 1)
1516	    {
1517	      rtx set = single_set (insn);
1518	      if (set
1519		  && SET_SRC (set) == SET_DEST (set)
1520		  && REG_P (SET_SRC (set))
1521		  && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1522		{
1523		  delete_insn (insn);
1524		  /* Delete it from the reload chain.  */
1525		  if (chain->prev)
1526		    chain->prev->next = next;
1527		  else
1528		    reload_insn_chain = next;
1529		  if (next)
1530		    next->prev = chain->prev;
1531		  chain->next = unused_insn_chains;
1532		  unused_insn_chains = chain;
1533		  continue;
1534		}
1535	    }
1536	  if (num_eliminable)
1537	    update_eliminable_offsets ();
1538
1539	  /* Remember for later shortcuts which insns had any reloads or
1540	     register eliminations.  */
1541	  chain->need_elim = did_elimination;
1542	  chain->need_reload = n_reloads > 0;
1543	  chain->need_operand_change = operands_changed;
1544
1545	  /* Discard any register replacements done.  */
1546	  if (did_elimination)
1547	    {
1548	      obstack_free (&reload_obstack, reload_insn_firstobj);
1549	      PATTERN (insn) = old_body;
1550	      INSN_CODE (insn) = old_code;
1551	      REG_NOTES (insn) = old_notes;
1552	      something_needs_elimination = 1;
1553	    }
1554
1555	  something_needs_operands_changed |= operands_changed;
1556
1557	  if (n_reloads != 0)
1558	    {
1559	      copy_reloads (chain);
1560	      *pprev_reload = chain;
1561	      pprev_reload = &chain->next_need_reload;
1562	    }
1563	}
1564    }
1565  *pprev_reload = 0;
1566}
1567
1568/* Comparison function for qsort to decide which of two reloads
1569   should be handled first.  *P1 and *P2 are the reload numbers.  */
1570
1571static int
1572reload_reg_class_lower (const void *r1p, const void *r2p)
1573{
1574  int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1575  int t;
1576
1577  /* Consider required reloads before optional ones.  */
1578  t = rld[r1].optional - rld[r2].optional;
1579  if (t != 0)
1580    return t;
1581
1582  /* Count all solitary classes before non-solitary ones.  */
1583  t = ((reg_class_size[(int) rld[r2].class] == 1)
1584       - (reg_class_size[(int) rld[r1].class] == 1));
1585  if (t != 0)
1586    return t;
1587
1588  /* Aside from solitaires, consider all multi-reg groups first.  */
1589  t = rld[r2].nregs - rld[r1].nregs;
1590  if (t != 0)
1591    return t;
1592
1593  /* Consider reloads in order of increasing reg-class number.  */
1594  t = (int) rld[r1].class - (int) rld[r2].class;
1595  if (t != 0)
1596    return t;
1597
1598  /* If reloads are equally urgent, sort by reload number,
1599     so that the results of qsort leave nothing to chance.  */
1600  return r1 - r2;
1601}
1602
1603/* The cost of spilling each hard reg.  */
1604static int spill_cost[FIRST_PSEUDO_REGISTER];
1605
1606/* When spilling multiple hard registers, we use SPILL_COST for the first
1607   spilled hard reg and SPILL_ADD_COST for subsequent regs.  SPILL_ADD_COST
1608   only the first hard reg for a multi-reg pseudo.  */
1609static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1610
1611/* Update the spill cost arrays, considering that pseudo REG is live.  */
1612
1613static void
1614count_pseudo (int reg)
1615{
1616  int freq = REG_FREQ (reg);
1617  int r = reg_renumber[reg];
1618  int nregs;
1619
1620  if (REGNO_REG_SET_P (&pseudos_counted, reg)
1621      || REGNO_REG_SET_P (&spilled_pseudos, reg))
1622    return;
1623
1624  SET_REGNO_REG_SET (&pseudos_counted, reg);
1625
1626  gcc_assert (r >= 0);
1627
1628  spill_add_cost[r] += freq;
1629
1630  nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1631  while (nregs-- > 0)
1632    spill_cost[r + nregs] += freq;
1633}
1634
1635/* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1636   contents of BAD_SPILL_REGS for the insn described by CHAIN.  */
1637
1638static void
1639order_regs_for_reload (struct insn_chain *chain)
1640{
1641  unsigned i;
1642  HARD_REG_SET used_by_pseudos;
1643  HARD_REG_SET used_by_pseudos2;
1644  reg_set_iterator rsi;
1645
1646  COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1647
1648  memset (spill_cost, 0, sizeof spill_cost);
1649  memset (spill_add_cost, 0, sizeof spill_add_cost);
1650
1651  /* Count number of uses of each hard reg by pseudo regs allocated to it
1652     and then order them by decreasing use.  First exclude hard registers
1653     that are live in or across this insn.  */
1654
1655  REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1656  REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1657  IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1658  IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1659
1660  /* Now find out which pseudos are allocated to it, and update
1661     hard_reg_n_uses.  */
1662  CLEAR_REG_SET (&pseudos_counted);
1663
1664  EXECUTE_IF_SET_IN_REG_SET
1665    (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1666    {
1667      count_pseudo (i);
1668    }
1669  EXECUTE_IF_SET_IN_REG_SET
1670    (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1671    {
1672      count_pseudo (i);
1673    }
1674  CLEAR_REG_SET (&pseudos_counted);
1675}
1676
1677/* Vector of reload-numbers showing the order in which the reloads should
1678   be processed.  */
1679static short reload_order[MAX_RELOADS];
1680
1681/* This is used to keep track of the spill regs used in one insn.  */
1682static HARD_REG_SET used_spill_regs_local;
1683
1684/* We decided to spill hard register SPILLED, which has a size of
1685   SPILLED_NREGS.  Determine how pseudo REG, which is live during the insn,
1686   is affected.  We will add it to SPILLED_PSEUDOS if necessary, and we will
1687   update SPILL_COST/SPILL_ADD_COST.  */
1688
1689static void
1690count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1691{
1692  int r = reg_renumber[reg];
1693  int nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1694
1695  if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1696      || spilled + spilled_nregs <= r || r + nregs <= spilled)
1697    return;
1698
1699  SET_REGNO_REG_SET (&spilled_pseudos, reg);
1700
1701  spill_add_cost[r] -= REG_FREQ (reg);
1702  while (nregs-- > 0)
1703    spill_cost[r + nregs] -= REG_FREQ (reg);
1704}
1705
1706/* Find reload register to use for reload number ORDER.  */
1707
1708static int
1709find_reg (struct insn_chain *chain, int order)
1710{
1711  int rnum = reload_order[order];
1712  struct reload *rl = rld + rnum;
1713  int best_cost = INT_MAX;
1714  int best_reg = -1;
1715  unsigned int i, j;
1716  int k;
1717  HARD_REG_SET not_usable;
1718  HARD_REG_SET used_by_other_reload;
1719  reg_set_iterator rsi;
1720
1721  COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1722  IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1723  IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->class]);
1724
1725  CLEAR_HARD_REG_SET (used_by_other_reload);
1726  for (k = 0; k < order; k++)
1727    {
1728      int other = reload_order[k];
1729
1730      if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1731	for (j = 0; j < rld[other].nregs; j++)
1732	  SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1733    }
1734
1735  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1736    {
1737      unsigned int regno = i;
1738
1739      if (! TEST_HARD_REG_BIT (not_usable, regno)
1740	  && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1741	  && HARD_REGNO_MODE_OK (regno, rl->mode))
1742	{
1743	  int this_cost = spill_cost[regno];
1744	  int ok = 1;
1745	  unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1746
1747	  for (j = 1; j < this_nregs; j++)
1748	    {
1749	      this_cost += spill_add_cost[regno + j];
1750	      if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1751		  || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1752		ok = 0;
1753	    }
1754	  if (! ok)
1755	    continue;
1756	  if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1757	    this_cost--;
1758	  if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1759	    this_cost--;
1760	  if (this_cost < best_cost
1761	      /* Among registers with equal cost, prefer caller-saved ones, or
1762		 use REG_ALLOC_ORDER if it is defined.  */
1763	      || (this_cost == best_cost
1764#ifdef REG_ALLOC_ORDER
1765		  && (inv_reg_alloc_order[regno]
1766		      < inv_reg_alloc_order[best_reg])
1767#else
1768		  && call_used_regs[regno]
1769		  && ! call_used_regs[best_reg]
1770#endif
1771		  ))
1772	    {
1773	      best_reg = regno;
1774	      best_cost = this_cost;
1775	    }
1776	}
1777    }
1778  if (best_reg == -1)
1779    return 0;
1780
1781  if (dump_file)
1782    fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1783
1784  rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1785  rl->regno = best_reg;
1786
1787  EXECUTE_IF_SET_IN_REG_SET
1788    (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1789    {
1790      count_spilled_pseudo (best_reg, rl->nregs, j);
1791    }
1792
1793  EXECUTE_IF_SET_IN_REG_SET
1794    (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1795    {
1796      count_spilled_pseudo (best_reg, rl->nregs, j);
1797    }
1798
1799  for (i = 0; i < rl->nregs; i++)
1800    {
1801      gcc_assert (spill_cost[best_reg + i] == 0);
1802      gcc_assert (spill_add_cost[best_reg + i] == 0);
1803      SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1804    }
1805  return 1;
1806}
1807
1808/* Find more reload regs to satisfy the remaining need of an insn, which
1809   is given by CHAIN.
1810   Do it by ascending class number, since otherwise a reg
1811   might be spilled for a big class and might fail to count
1812   for a smaller class even though it belongs to that class.  */
1813
1814static void
1815find_reload_regs (struct insn_chain *chain)
1816{
1817  int i;
1818
1819  /* In order to be certain of getting the registers we need,
1820     we must sort the reloads into order of increasing register class.
1821     Then our grabbing of reload registers will parallel the process
1822     that provided the reload registers.  */
1823  for (i = 0; i < chain->n_reloads; i++)
1824    {
1825      /* Show whether this reload already has a hard reg.  */
1826      if (chain->rld[i].reg_rtx)
1827	{
1828	  int regno = REGNO (chain->rld[i].reg_rtx);
1829	  chain->rld[i].regno = regno;
1830	  chain->rld[i].nregs
1831	    = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
1832	}
1833      else
1834	chain->rld[i].regno = -1;
1835      reload_order[i] = i;
1836    }
1837
1838  n_reloads = chain->n_reloads;
1839  memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1840
1841  CLEAR_HARD_REG_SET (used_spill_regs_local);
1842
1843  if (dump_file)
1844    fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1845
1846  qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1847
1848  /* Compute the order of preference for hard registers to spill.  */
1849
1850  order_regs_for_reload (chain);
1851
1852  for (i = 0; i < n_reloads; i++)
1853    {
1854      int r = reload_order[i];
1855
1856      /* Ignore reloads that got marked inoperative.  */
1857      if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1858	  && ! rld[r].optional
1859	  && rld[r].regno == -1)
1860	if (! find_reg (chain, i))
1861	  {
1862	    if (dump_file)
1863	      fprintf(dump_file, "reload failure for reload %d\n", r);
1864	    spill_failure (chain->insn, rld[r].class);
1865	    failure = 1;
1866	    return;
1867	  }
1868    }
1869
1870  COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
1871  IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
1872
1873  memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1874}
1875
1876static void
1877select_reload_regs (void)
1878{
1879  struct insn_chain *chain;
1880
1881  /* Try to satisfy the needs for each insn.  */
1882  for (chain = insns_need_reload; chain != 0;
1883       chain = chain->next_need_reload)
1884    find_reload_regs (chain);
1885}
1886
1887/* Delete all insns that were inserted by emit_caller_save_insns during
1888   this iteration.  */
1889static void
1890delete_caller_save_insns (void)
1891{
1892  struct insn_chain *c = reload_insn_chain;
1893
1894  while (c != 0)
1895    {
1896      while (c != 0 && c->is_caller_save_insn)
1897	{
1898	  struct insn_chain *next = c->next;
1899	  rtx insn = c->insn;
1900
1901	  if (c == reload_insn_chain)
1902	    reload_insn_chain = next;
1903	  delete_insn (insn);
1904
1905	  if (next)
1906	    next->prev = c->prev;
1907	  if (c->prev)
1908	    c->prev->next = next;
1909	  c->next = unused_insn_chains;
1910	  unused_insn_chains = c;
1911	  c = next;
1912	}
1913      if (c != 0)
1914	c = c->next;
1915    }
1916}
1917
1918/* Handle the failure to find a register to spill.
1919   INSN should be one of the insns which needed this particular spill reg.  */
1920
1921static void
1922spill_failure (rtx insn, enum reg_class class)
1923{
1924  if (asm_noperands (PATTERN (insn)) >= 0)
1925    error_for_asm (insn, "can't find a register in class %qs while "
1926		   "reloading %<asm%>",
1927		   reg_class_names[class]);
1928  else
1929    {
1930      error ("unable to find a register to spill in class %qs",
1931	     reg_class_names[class]);
1932
1933      if (dump_file)
1934	{
1935	  fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
1936	  debug_reload_to_stream (dump_file);
1937	}
1938      fatal_insn ("this is the insn:", insn);
1939    }
1940}
1941
1942/* Delete an unneeded INSN and any previous insns who sole purpose is loading
1943   data that is dead in INSN.  */
1944
1945static void
1946delete_dead_insn (rtx insn)
1947{
1948  rtx prev = prev_real_insn (insn);
1949  rtx prev_dest;
1950
1951  /* If the previous insn sets a register that dies in our insn, delete it
1952     too.  */
1953  if (prev && GET_CODE (PATTERN (prev)) == SET
1954      && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
1955      && reg_mentioned_p (prev_dest, PATTERN (insn))
1956      && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
1957      && ! side_effects_p (SET_SRC (PATTERN (prev))))
1958    delete_dead_insn (prev);
1959
1960  SET_INSN_DELETED (insn);
1961}
1962
1963/* Modify the home of pseudo-reg I.
1964   The new home is present in reg_renumber[I].
1965
1966   FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
1967   or it may be -1, meaning there is none or it is not relevant.
1968   This is used so that all pseudos spilled from a given hard reg
1969   can share one stack slot.  */
1970
1971static void
1972alter_reg (int i, int from_reg)
1973{
1974  /* When outputting an inline function, this can happen
1975     for a reg that isn't actually used.  */
1976  if (regno_reg_rtx[i] == 0)
1977    return;
1978
1979  /* If the reg got changed to a MEM at rtl-generation time,
1980     ignore it.  */
1981  if (!REG_P (regno_reg_rtx[i]))
1982    return;
1983
1984  /* Modify the reg-rtx to contain the new hard reg
1985     number or else to contain its pseudo reg number.  */
1986  REGNO (regno_reg_rtx[i])
1987    = reg_renumber[i] >= 0 ? reg_renumber[i] : i;
1988
1989  /* If we have a pseudo that is needed but has no hard reg or equivalent,
1990     allocate a stack slot for it.  */
1991
1992  if (reg_renumber[i] < 0
1993      && REG_N_REFS (i) > 0
1994      && reg_equiv_constant[i] == 0
1995      && (reg_equiv_invariant[i] == 0 || reg_equiv_init[i] == 0)
1996      && reg_equiv_memory_loc[i] == 0)
1997    {
1998      rtx x;
1999      enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2000      unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2001      unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2002      unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2003      unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2004      int adjust = 0;
2005
2006      /* Each pseudo reg has an inherent size which comes from its own mode,
2007	 and a total size which provides room for paradoxical subregs
2008	 which refer to the pseudo reg in wider modes.
2009
2010	 We can use a slot already allocated if it provides both
2011	 enough inherent space and enough total space.
2012	 Otherwise, we allocate a new slot, making sure that it has no less
2013	 inherent space, and no less total space, then the previous slot.  */
2014      if (from_reg == -1)
2015	{
2016	  /* No known place to spill from => no slot to reuse.  */
2017	  x = assign_stack_local (mode, total_size,
2018				  min_align > inherent_align
2019				  || total_size > inherent_size ? -1 : 0);
2020	  if (BYTES_BIG_ENDIAN)
2021	    /* Cancel the  big-endian correction done in assign_stack_local.
2022	       Get the address of the beginning of the slot.
2023	       This is so we can do a big-endian correction unconditionally
2024	       below.  */
2025	    adjust = inherent_size - total_size;
2026
2027	  /* Nothing can alias this slot except this pseudo.  */
2028	  set_mem_alias_set (x, new_alias_set ());
2029	}
2030
2031      /* Reuse a stack slot if possible.  */
2032      else if (spill_stack_slot[from_reg] != 0
2033	       && spill_stack_slot_width[from_reg] >= total_size
2034	       && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2035		   >= inherent_size)
2036	       && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2037	x = spill_stack_slot[from_reg];
2038
2039      /* Allocate a bigger slot.  */
2040      else
2041	{
2042	  /* Compute maximum size needed, both for inherent size
2043	     and for total size.  */
2044	  rtx stack_slot;
2045
2046	  if (spill_stack_slot[from_reg])
2047	    {
2048	      if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2049		  > inherent_size)
2050		mode = GET_MODE (spill_stack_slot[from_reg]);
2051	      if (spill_stack_slot_width[from_reg] > total_size)
2052		total_size = spill_stack_slot_width[from_reg];
2053	      if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2054		min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2055	    }
2056
2057	  /* Make a slot with that size.  */
2058	  x = assign_stack_local (mode, total_size,
2059				  min_align > inherent_align
2060				  || total_size > inherent_size ? -1 : 0);
2061	  stack_slot = x;
2062
2063	  /* All pseudos mapped to this slot can alias each other.  */
2064	  if (spill_stack_slot[from_reg])
2065	    set_mem_alias_set (x, MEM_ALIAS_SET (spill_stack_slot[from_reg]));
2066	  else
2067	    set_mem_alias_set (x, new_alias_set ());
2068
2069	  if (BYTES_BIG_ENDIAN)
2070	    {
2071	      /* Cancel the  big-endian correction done in assign_stack_local.
2072		 Get the address of the beginning of the slot.
2073		 This is so we can do a big-endian correction unconditionally
2074		 below.  */
2075	      adjust = GET_MODE_SIZE (mode) - total_size;
2076	      if (adjust)
2077		stack_slot
2078		  = adjust_address_nv (x, mode_for_size (total_size
2079							 * BITS_PER_UNIT,
2080							 MODE_INT, 1),
2081				       adjust);
2082	    }
2083
2084	  spill_stack_slot[from_reg] = stack_slot;
2085	  spill_stack_slot_width[from_reg] = total_size;
2086	}
2087
2088      /* On a big endian machine, the "address" of the slot
2089	 is the address of the low part that fits its inherent mode.  */
2090      if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2091	adjust += (total_size - inherent_size);
2092
2093      /* If we have any adjustment to make, or if the stack slot is the
2094	 wrong mode, make a new stack slot.  */
2095      x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2096
2097      /* If we have a decl for the original register, set it for the
2098	 memory.  If this is a shared MEM, make a copy.  */
2099      if (REG_EXPR (regno_reg_rtx[i])
2100	  && DECL_P (REG_EXPR (regno_reg_rtx[i])))
2101	{
2102	  rtx decl = DECL_RTL_IF_SET (REG_EXPR (regno_reg_rtx[i]));
2103
2104	  /* We can do this only for the DECLs home pseudo, not for
2105	     any copies of it, since otherwise when the stack slot
2106	     is reused, nonoverlapping_memrefs_p might think they
2107	     cannot overlap.  */
2108	  if (decl && REG_P (decl) && REGNO (decl) == (unsigned) i)
2109	    {
2110	      if (from_reg != -1 && spill_stack_slot[from_reg] == x)
2111		x = copy_rtx (x);
2112
2113	      set_mem_attrs_from_reg (x, regno_reg_rtx[i]);
2114	    }
2115	}
2116
2117      /* Save the stack slot for later.  */
2118      reg_equiv_memory_loc[i] = x;
2119    }
2120}
2121
2122/* Mark the slots in regs_ever_live for the hard regs
2123   used by pseudo-reg number REGNO.  */
2124
2125void
2126mark_home_live (int regno)
2127{
2128  int i, lim;
2129
2130  i = reg_renumber[regno];
2131  if (i < 0)
2132    return;
2133  lim = i + hard_regno_nregs[i][PSEUDO_REGNO_MODE (regno)];
2134  while (i < lim)
2135    regs_ever_live[i++] = 1;
2136}
2137
2138/* This function handles the tracking of elimination offsets around branches.
2139
2140   X is a piece of RTL being scanned.
2141
2142   INSN is the insn that it came from, if any.
2143
2144   INITIAL_P is nonzero if we are to set the offset to be the initial
2145   offset and zero if we are setting the offset of the label to be the
2146   current offset.  */
2147
2148static void
2149set_label_offsets (rtx x, rtx insn, int initial_p)
2150{
2151  enum rtx_code code = GET_CODE (x);
2152  rtx tem;
2153  unsigned int i;
2154  struct elim_table *p;
2155
2156  switch (code)
2157    {
2158    case LABEL_REF:
2159      if (LABEL_REF_NONLOCAL_P (x))
2160	return;
2161
2162      x = XEXP (x, 0);
2163
2164      /* ... fall through ...  */
2165
2166    case CODE_LABEL:
2167      /* If we know nothing about this label, set the desired offsets.  Note
2168	 that this sets the offset at a label to be the offset before a label
2169	 if we don't know anything about the label.  This is not correct for
2170	 the label after a BARRIER, but is the best guess we can make.  If
2171	 we guessed wrong, we will suppress an elimination that might have
2172	 been possible had we been able to guess correctly.  */
2173
2174      if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2175	{
2176	  for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2177	    offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2178	      = (initial_p ? reg_eliminate[i].initial_offset
2179		 : reg_eliminate[i].offset);
2180	  offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2181	}
2182
2183      /* Otherwise, if this is the definition of a label and it is
2184	 preceded by a BARRIER, set our offsets to the known offset of
2185	 that label.  */
2186
2187      else if (x == insn
2188	       && (tem = prev_nonnote_insn (insn)) != 0
2189	       && BARRIER_P (tem))
2190	set_offsets_for_label (insn);
2191      else
2192	/* If neither of the above cases is true, compare each offset
2193	   with those previously recorded and suppress any eliminations
2194	   where the offsets disagree.  */
2195
2196	for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2197	  if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2198	      != (initial_p ? reg_eliminate[i].initial_offset
2199		  : reg_eliminate[i].offset))
2200	    reg_eliminate[i].can_eliminate = 0;
2201
2202      return;
2203
2204    case JUMP_INSN:
2205      set_label_offsets (PATTERN (insn), insn, initial_p);
2206
2207      /* ... fall through ...  */
2208
2209    case INSN:
2210    case CALL_INSN:
2211      /* Any labels mentioned in REG_LABEL notes can be branched to indirectly
2212	 and hence must have all eliminations at their initial offsets.  */
2213      for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2214	if (REG_NOTE_KIND (tem) == REG_LABEL)
2215	  set_label_offsets (XEXP (tem, 0), insn, 1);
2216      return;
2217
2218    case PARALLEL:
2219    case ADDR_VEC:
2220    case ADDR_DIFF_VEC:
2221      /* Each of the labels in the parallel or address vector must be
2222	 at their initial offsets.  We want the first field for PARALLEL
2223	 and ADDR_VEC and the second field for ADDR_DIFF_VEC.  */
2224
2225      for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2226	set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2227			   insn, initial_p);
2228      return;
2229
2230    case SET:
2231      /* We only care about setting PC.  If the source is not RETURN,
2232	 IF_THEN_ELSE, or a label, disable any eliminations not at
2233	 their initial offsets.  Similarly if any arm of the IF_THEN_ELSE
2234	 isn't one of those possibilities.  For branches to a label,
2235	 call ourselves recursively.
2236
2237	 Note that this can disable elimination unnecessarily when we have
2238	 a non-local goto since it will look like a non-constant jump to
2239	 someplace in the current function.  This isn't a significant
2240	 problem since such jumps will normally be when all elimination
2241	 pairs are back to their initial offsets.  */
2242
2243      if (SET_DEST (x) != pc_rtx)
2244	return;
2245
2246      switch (GET_CODE (SET_SRC (x)))
2247	{
2248	case PC:
2249	case RETURN:
2250	  return;
2251
2252	case LABEL_REF:
2253	  set_label_offsets (SET_SRC (x), insn, initial_p);
2254	  return;
2255
2256	case IF_THEN_ELSE:
2257	  tem = XEXP (SET_SRC (x), 1);
2258	  if (GET_CODE (tem) == LABEL_REF)
2259	    set_label_offsets (XEXP (tem, 0), insn, initial_p);
2260	  else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2261	    break;
2262
2263	  tem = XEXP (SET_SRC (x), 2);
2264	  if (GET_CODE (tem) == LABEL_REF)
2265	    set_label_offsets (XEXP (tem, 0), insn, initial_p);
2266	  else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2267	    break;
2268	  return;
2269
2270	default:
2271	  break;
2272	}
2273
2274      /* If we reach here, all eliminations must be at their initial
2275	 offset because we are doing a jump to a variable address.  */
2276      for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2277	if (p->offset != p->initial_offset)
2278	  p->can_eliminate = 0;
2279      break;
2280
2281    default:
2282      break;
2283    }
2284}
2285
2286/* Scan X and replace any eliminable registers (such as fp) with a
2287   replacement (such as sp), plus an offset.
2288
2289   MEM_MODE is the mode of an enclosing MEM.  We need this to know how
2290   much to adjust a register for, e.g., PRE_DEC.  Also, if we are inside a
2291   MEM, we are allowed to replace a sum of a register and the constant zero
2292   with the register, which we cannot do outside a MEM.  In addition, we need
2293   to record the fact that a register is referenced outside a MEM.
2294
2295   If INSN is an insn, it is the insn containing X.  If we replace a REG
2296   in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2297   CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2298   the REG is being modified.
2299
2300   Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2301   That's used when we eliminate in expressions stored in notes.
2302   This means, do not set ref_outside_mem even if the reference
2303   is outside of MEMs.
2304
2305   REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2306   replacements done assuming all offsets are at their initial values.  If
2307   they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2308   encounter, return the actual location so that find_reloads will do
2309   the proper thing.  */
2310
2311static rtx
2312eliminate_regs_1 (rtx x, enum machine_mode mem_mode, rtx insn,
2313		  bool may_use_invariant)
2314{
2315  enum rtx_code code = GET_CODE (x);
2316  struct elim_table *ep;
2317  int regno;
2318  rtx new;
2319  int i, j;
2320  const char *fmt;
2321  int copied = 0;
2322
2323  if (! current_function_decl)
2324    return x;
2325
2326  switch (code)
2327    {
2328    case CONST_INT:
2329    case CONST_DOUBLE:
2330    case CONST_VECTOR:
2331    case CONST:
2332    case SYMBOL_REF:
2333    case CODE_LABEL:
2334    case PC:
2335    case CC0:
2336    case ASM_INPUT:
2337    case ADDR_VEC:
2338    case ADDR_DIFF_VEC:
2339    case RETURN:
2340      return x;
2341
2342    case REG:
2343      regno = REGNO (x);
2344
2345      /* First handle the case where we encounter a bare register that
2346	 is eliminable.  Replace it with a PLUS.  */
2347      if (regno < FIRST_PSEUDO_REGISTER)
2348	{
2349	  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2350	       ep++)
2351	    if (ep->from_rtx == x && ep->can_eliminate)
2352	      return plus_constant (ep->to_rtx, ep->previous_offset);
2353
2354	}
2355      else if (reg_renumber && reg_renumber[regno] < 0
2356	       && reg_equiv_invariant && reg_equiv_invariant[regno])
2357	{
2358	  if (may_use_invariant)
2359	    return eliminate_regs_1 (copy_rtx (reg_equiv_invariant[regno]),
2360			             mem_mode, insn, true);
2361	  /* There exists at least one use of REGNO that cannot be
2362	     eliminated.  Prevent the defining insn from being deleted.  */
2363	  reg_equiv_init[regno] = NULL_RTX;
2364	  alter_reg (regno, -1);
2365	}
2366      return x;
2367
2368    /* You might think handling MINUS in a manner similar to PLUS is a
2369       good idea.  It is not.  It has been tried multiple times and every
2370       time the change has had to have been reverted.
2371
2372       Other parts of reload know a PLUS is special (gen_reload for example)
2373       and require special code to handle code a reloaded PLUS operand.
2374
2375       Also consider backends where the flags register is clobbered by a
2376       MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2377       lea instruction comes to mind).  If we try to reload a MINUS, we
2378       may kill the flags register that was holding a useful value.
2379
2380       So, please before trying to handle MINUS, consider reload as a
2381       whole instead of this little section as well as the backend issues.  */
2382    case PLUS:
2383      /* If this is the sum of an eliminable register and a constant, rework
2384	 the sum.  */
2385      if (REG_P (XEXP (x, 0))
2386	  && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2387	  && CONSTANT_P (XEXP (x, 1)))
2388	{
2389	  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2390	       ep++)
2391	    if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2392	      {
2393		/* The only time we want to replace a PLUS with a REG (this
2394		   occurs when the constant operand of the PLUS is the negative
2395		   of the offset) is when we are inside a MEM.  We won't want
2396		   to do so at other times because that would change the
2397		   structure of the insn in a way that reload can't handle.
2398		   We special-case the commonest situation in
2399		   eliminate_regs_in_insn, so just replace a PLUS with a
2400		   PLUS here, unless inside a MEM.  */
2401		if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
2402		    && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2403		  return ep->to_rtx;
2404		else
2405		  return gen_rtx_PLUS (Pmode, ep->to_rtx,
2406				       plus_constant (XEXP (x, 1),
2407						      ep->previous_offset));
2408	      }
2409
2410	  /* If the register is not eliminable, we are done since the other
2411	     operand is a constant.  */
2412	  return x;
2413	}
2414
2415      /* If this is part of an address, we want to bring any constant to the
2416	 outermost PLUS.  We will do this by doing register replacement in
2417	 our operands and seeing if a constant shows up in one of them.
2418
2419	 Note that there is no risk of modifying the structure of the insn,
2420	 since we only get called for its operands, thus we are either
2421	 modifying the address inside a MEM, or something like an address
2422	 operand of a load-address insn.  */
2423
2424      {
2425	rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true);
2426	rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true);
2427
2428	if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2429	  {
2430	    /* If one side is a PLUS and the other side is a pseudo that
2431	       didn't get a hard register but has a reg_equiv_constant,
2432	       we must replace the constant here since it may no longer
2433	       be in the position of any operand.  */
2434	    if (GET_CODE (new0) == PLUS && REG_P (new1)
2435		&& REGNO (new1) >= FIRST_PSEUDO_REGISTER
2436		&& reg_renumber[REGNO (new1)] < 0
2437		&& reg_equiv_constant != 0
2438		&& reg_equiv_constant[REGNO (new1)] != 0)
2439	      new1 = reg_equiv_constant[REGNO (new1)];
2440	    else if (GET_CODE (new1) == PLUS && REG_P (new0)
2441		     && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2442		     && reg_renumber[REGNO (new0)] < 0
2443		     && reg_equiv_constant[REGNO (new0)] != 0)
2444	      new0 = reg_equiv_constant[REGNO (new0)];
2445
2446	    new = form_sum (new0, new1);
2447
2448	    /* As above, if we are not inside a MEM we do not want to
2449	       turn a PLUS into something else.  We might try to do so here
2450	       for an addition of 0 if we aren't optimizing.  */
2451	    if (! mem_mode && GET_CODE (new) != PLUS)
2452	      return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
2453	    else
2454	      return new;
2455	  }
2456      }
2457      return x;
2458
2459    case MULT:
2460      /* If this is the product of an eliminable register and a
2461	 constant, apply the distribute law and move the constant out
2462	 so that we have (plus (mult ..) ..).  This is needed in order
2463	 to keep load-address insns valid.   This case is pathological.
2464	 We ignore the possibility of overflow here.  */
2465      if (REG_P (XEXP (x, 0))
2466	  && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2467	  && GET_CODE (XEXP (x, 1)) == CONST_INT)
2468	for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2469	     ep++)
2470	  if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2471	    {
2472	      if (! mem_mode
2473		  /* Refs inside notes don't count for this purpose.  */
2474		  && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2475				      || GET_CODE (insn) == INSN_LIST)))
2476		ep->ref_outside_mem = 1;
2477
2478	      return
2479		plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2480			       ep->previous_offset * INTVAL (XEXP (x, 1)));
2481	    }
2482
2483      /* ... fall through ...  */
2484
2485    case CALL:
2486    case COMPARE:
2487    /* See comments before PLUS about handling MINUS.  */
2488    case MINUS:
2489    case DIV:      case UDIV:
2490    case MOD:      case UMOD:
2491    case AND:      case IOR:      case XOR:
2492    case ROTATERT: case ROTATE:
2493    case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2494    case NE:       case EQ:
2495    case GE:       case GT:       case GEU:    case GTU:
2496    case LE:       case LT:       case LEU:    case LTU:
2497      {
2498	rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false);
2499	rtx new1 = XEXP (x, 1)
2500		   ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false) : 0;
2501
2502	if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2503	  return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2504      }
2505      return x;
2506
2507    case EXPR_LIST:
2508      /* If we have something in XEXP (x, 0), the usual case, eliminate it.  */
2509      if (XEXP (x, 0))
2510	{
2511	  new = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true);
2512	  if (new != XEXP (x, 0))
2513	    {
2514	      /* If this is a REG_DEAD note, it is not valid anymore.
2515		 Using the eliminated version could result in creating a
2516		 REG_DEAD note for the stack or frame pointer.  */
2517	      if (GET_MODE (x) == REG_DEAD)
2518		return (XEXP (x, 1)
2519			? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true)
2520			: NULL_RTX);
2521
2522	      x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
2523	    }
2524	}
2525
2526      /* ... fall through ...  */
2527
2528    case INSN_LIST:
2529      /* Now do eliminations in the rest of the chain.  If this was
2530	 an EXPR_LIST, this might result in allocating more memory than is
2531	 strictly needed, but it simplifies the code.  */
2532      if (XEXP (x, 1))
2533	{
2534	  new = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true);
2535	  if (new != XEXP (x, 1))
2536	    return
2537	      gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
2538	}
2539      return x;
2540
2541    case PRE_INC:
2542    case POST_INC:
2543    case PRE_DEC:
2544    case POST_DEC:
2545    case STRICT_LOW_PART:
2546    case NEG:          case NOT:
2547    case SIGN_EXTEND:  case ZERO_EXTEND:
2548    case TRUNCATE:     case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2549    case FLOAT:        case FIX:
2550    case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2551    case ABS:
2552    case SQRT:
2553    case FFS:
2554    case CLZ:
2555    case CTZ:
2556    case POPCOUNT:
2557    case PARITY:
2558    case BSWAP:
2559      new = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false);
2560      if (new != XEXP (x, 0))
2561	return gen_rtx_fmt_e (code, GET_MODE (x), new);
2562      return x;
2563
2564    case SUBREG:
2565      /* Similar to above processing, but preserve SUBREG_BYTE.
2566	 Convert (subreg (mem)) to (mem) if not paradoxical.
2567	 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2568	 pseudo didn't get a hard reg, we must replace this with the
2569	 eliminated version of the memory location because push_reload
2570	 may do the replacement in certain circumstances.  */
2571      if (REG_P (SUBREG_REG (x))
2572	  && (GET_MODE_SIZE (GET_MODE (x))
2573	      <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2574	  && reg_equiv_memory_loc != 0
2575	  && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2576	{
2577	  new = SUBREG_REG (x);
2578	}
2579      else
2580	new = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false);
2581
2582      if (new != SUBREG_REG (x))
2583	{
2584	  int x_size = GET_MODE_SIZE (GET_MODE (x));
2585	  int new_size = GET_MODE_SIZE (GET_MODE (new));
2586
2587	  if (MEM_P (new)
2588	      && ((x_size < new_size
2589#ifdef WORD_REGISTER_OPERATIONS
2590		   /* On these machines, combine can create rtl of the form
2591		      (set (subreg:m1 (reg:m2 R) 0) ...)
2592		      where m1 < m2, and expects something interesting to
2593		      happen to the entire word.  Moreover, it will use the
2594		      (reg:m2 R) later, expecting all bits to be preserved.
2595		      So if the number of words is the same, preserve the
2596		      subreg so that push_reload can see it.  */
2597		   && ! ((x_size - 1) / UNITS_PER_WORD
2598			 == (new_size -1 ) / UNITS_PER_WORD)
2599#endif
2600		   )
2601		  || x_size == new_size)
2602	      )
2603	    return adjust_address_nv (new, GET_MODE (x), SUBREG_BYTE (x));
2604	  else
2605	    return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_BYTE (x));
2606	}
2607
2608      return x;
2609
2610    case MEM:
2611      /* Our only special processing is to pass the mode of the MEM to our
2612	 recursive call and copy the flags.  While we are here, handle this
2613	 case more efficiently.  */
2614      return
2615	replace_equiv_address_nv (x,
2616				  eliminate_regs_1 (XEXP (x, 0), GET_MODE (x),
2617						    insn, true));
2618
2619    case USE:
2620      /* Handle insn_list USE that a call to a pure function may generate.  */
2621      new = eliminate_regs_1 (XEXP (x, 0), 0, insn, false);
2622      if (new != XEXP (x, 0))
2623	return gen_rtx_USE (GET_MODE (x), new);
2624      return x;
2625
2626    case CLOBBER:
2627    case ASM_OPERANDS:
2628    case SET:
2629      gcc_unreachable ();
2630
2631    default:
2632      break;
2633    }
2634
2635  /* Process each of our operands recursively.  If any have changed, make a
2636     copy of the rtx.  */
2637  fmt = GET_RTX_FORMAT (code);
2638  for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2639    {
2640      if (*fmt == 'e')
2641	{
2642	  new = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false);
2643	  if (new != XEXP (x, i) && ! copied)
2644	    {
2645	      x = shallow_copy_rtx (x);
2646	      copied = 1;
2647	    }
2648	  XEXP (x, i) = new;
2649	}
2650      else if (*fmt == 'E')
2651	{
2652	  int copied_vec = 0;
2653	  for (j = 0; j < XVECLEN (x, i); j++)
2654	    {
2655	      new = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false);
2656	      if (new != XVECEXP (x, i, j) && ! copied_vec)
2657		{
2658		  rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2659					     XVEC (x, i)->elem);
2660		  if (! copied)
2661		    {
2662		      x = shallow_copy_rtx (x);
2663		      copied = 1;
2664		    }
2665		  XVEC (x, i) = new_v;
2666		  copied_vec = 1;
2667		}
2668	      XVECEXP (x, i, j) = new;
2669	    }
2670	}
2671    }
2672
2673  return x;
2674}
2675
2676rtx
2677eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn)
2678{
2679  return eliminate_regs_1 (x, mem_mode, insn, false);
2680}
2681
2682/* Scan rtx X for modifications of elimination target registers.  Update
2683   the table of eliminables to reflect the changed state.  MEM_MODE is
2684   the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM.  */
2685
2686static void
2687elimination_effects (rtx x, enum machine_mode mem_mode)
2688{
2689  enum rtx_code code = GET_CODE (x);
2690  struct elim_table *ep;
2691  int regno;
2692  int i, j;
2693  const char *fmt;
2694
2695  switch (code)
2696    {
2697    case CONST_INT:
2698    case CONST_DOUBLE:
2699    case CONST_VECTOR:
2700    case CONST:
2701    case SYMBOL_REF:
2702    case CODE_LABEL:
2703    case PC:
2704    case CC0:
2705    case ASM_INPUT:
2706    case ADDR_VEC:
2707    case ADDR_DIFF_VEC:
2708    case RETURN:
2709      return;
2710
2711    case REG:
2712      regno = REGNO (x);
2713
2714      /* First handle the case where we encounter a bare register that
2715	 is eliminable.  Replace it with a PLUS.  */
2716      if (regno < FIRST_PSEUDO_REGISTER)
2717	{
2718	  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2719	       ep++)
2720	    if (ep->from_rtx == x && ep->can_eliminate)
2721	      {
2722		if (! mem_mode)
2723		  ep->ref_outside_mem = 1;
2724		return;
2725	      }
2726
2727	}
2728      else if (reg_renumber[regno] < 0 && reg_equiv_constant
2729	       && reg_equiv_constant[regno]
2730	       && ! function_invariant_p (reg_equiv_constant[regno]))
2731	elimination_effects (reg_equiv_constant[regno], mem_mode);
2732      return;
2733
2734    case PRE_INC:
2735    case POST_INC:
2736    case PRE_DEC:
2737    case POST_DEC:
2738    case POST_MODIFY:
2739    case PRE_MODIFY:
2740      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2741	if (ep->to_rtx == XEXP (x, 0))
2742	  {
2743	    int size = GET_MODE_SIZE (mem_mode);
2744
2745	    /* If more bytes than MEM_MODE are pushed, account for them.  */
2746#ifdef PUSH_ROUNDING
2747	    if (ep->to_rtx == stack_pointer_rtx)
2748	      size = PUSH_ROUNDING (size);
2749#endif
2750	    if (code == PRE_DEC || code == POST_DEC)
2751	      ep->offset += size;
2752	    else if (code == PRE_INC || code == POST_INC)
2753	      ep->offset -= size;
2754	    else if ((code == PRE_MODIFY || code == POST_MODIFY)
2755		     && GET_CODE (XEXP (x, 1)) == PLUS
2756		     && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
2757		     && CONSTANT_P (XEXP (XEXP (x, 1), 1)))
2758	      ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
2759	  }
2760
2761      /* These two aren't unary operators.  */
2762      if (code == POST_MODIFY || code == PRE_MODIFY)
2763	break;
2764
2765      /* Fall through to generic unary operation case.  */
2766    case STRICT_LOW_PART:
2767    case NEG:          case NOT:
2768    case SIGN_EXTEND:  case ZERO_EXTEND:
2769    case TRUNCATE:     case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2770    case FLOAT:        case FIX:
2771    case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2772    case ABS:
2773    case SQRT:
2774    case FFS:
2775    case CLZ:
2776    case CTZ:
2777    case POPCOUNT:
2778    case PARITY:
2779    case BSWAP:
2780      elimination_effects (XEXP (x, 0), mem_mode);
2781      return;
2782
2783    case SUBREG:
2784      if (REG_P (SUBREG_REG (x))
2785	  && (GET_MODE_SIZE (GET_MODE (x))
2786	      <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2787	  && reg_equiv_memory_loc != 0
2788	  && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2789	return;
2790
2791      elimination_effects (SUBREG_REG (x), mem_mode);
2792      return;
2793
2794    case USE:
2795      /* If using a register that is the source of an eliminate we still
2796	 think can be performed, note it cannot be performed since we don't
2797	 know how this register is used.  */
2798      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2799	if (ep->from_rtx == XEXP (x, 0))
2800	  ep->can_eliminate = 0;
2801
2802      elimination_effects (XEXP (x, 0), mem_mode);
2803      return;
2804
2805    case CLOBBER:
2806      /* If clobbering a register that is the replacement register for an
2807	 elimination we still think can be performed, note that it cannot
2808	 be performed.  Otherwise, we need not be concerned about it.  */
2809      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2810	if (ep->to_rtx == XEXP (x, 0))
2811	  ep->can_eliminate = 0;
2812
2813      elimination_effects (XEXP (x, 0), mem_mode);
2814      return;
2815
2816    case SET:
2817      /* Check for setting a register that we know about.  */
2818      if (REG_P (SET_DEST (x)))
2819	{
2820	  /* See if this is setting the replacement register for an
2821	     elimination.
2822
2823	     If DEST is the hard frame pointer, we do nothing because we
2824	     assume that all assignments to the frame pointer are for
2825	     non-local gotos and are being done at a time when they are valid
2826	     and do not disturb anything else.  Some machines want to
2827	     eliminate a fake argument pointer (or even a fake frame pointer)
2828	     with either the real frame or the stack pointer.  Assignments to
2829	     the hard frame pointer must not prevent this elimination.  */
2830
2831	  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2832	       ep++)
2833	    if (ep->to_rtx == SET_DEST (x)
2834		&& SET_DEST (x) != hard_frame_pointer_rtx)
2835	      {
2836		/* If it is being incremented, adjust the offset.  Otherwise,
2837		   this elimination can't be done.  */
2838		rtx src = SET_SRC (x);
2839
2840		if (GET_CODE (src) == PLUS
2841		    && XEXP (src, 0) == SET_DEST (x)
2842		    && GET_CODE (XEXP (src, 1)) == CONST_INT)
2843		  ep->offset -= INTVAL (XEXP (src, 1));
2844		else
2845		  ep->can_eliminate = 0;
2846	      }
2847	}
2848
2849      elimination_effects (SET_DEST (x), 0);
2850      elimination_effects (SET_SRC (x), 0);
2851      return;
2852
2853    case MEM:
2854      /* Our only special processing is to pass the mode of the MEM to our
2855	 recursive call.  */
2856      elimination_effects (XEXP (x, 0), GET_MODE (x));
2857      return;
2858
2859    default:
2860      break;
2861    }
2862
2863  fmt = GET_RTX_FORMAT (code);
2864  for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2865    {
2866      if (*fmt == 'e')
2867	elimination_effects (XEXP (x, i), mem_mode);
2868      else if (*fmt == 'E')
2869	for (j = 0; j < XVECLEN (x, i); j++)
2870	  elimination_effects (XVECEXP (x, i, j), mem_mode);
2871    }
2872}
2873
2874/* Descend through rtx X and verify that no references to eliminable registers
2875   remain.  If any do remain, mark the involved register as not
2876   eliminable.  */
2877
2878static void
2879check_eliminable_occurrences (rtx x)
2880{
2881  const char *fmt;
2882  int i;
2883  enum rtx_code code;
2884
2885  if (x == 0)
2886    return;
2887
2888  code = GET_CODE (x);
2889
2890  if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
2891    {
2892      struct elim_table *ep;
2893
2894      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2895	if (ep->from_rtx == x)
2896	  ep->can_eliminate = 0;
2897      return;
2898    }
2899
2900  fmt = GET_RTX_FORMAT (code);
2901  for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2902    {
2903      if (*fmt == 'e')
2904	check_eliminable_occurrences (XEXP (x, i));
2905      else if (*fmt == 'E')
2906	{
2907	  int j;
2908	  for (j = 0; j < XVECLEN (x, i); j++)
2909	    check_eliminable_occurrences (XVECEXP (x, i, j));
2910	}
2911    }
2912}
2913
2914/* Scan INSN and eliminate all eliminable registers in it.
2915
2916   If REPLACE is nonzero, do the replacement destructively.  Also
2917   delete the insn as dead it if it is setting an eliminable register.
2918
2919   If REPLACE is zero, do all our allocations in reload_obstack.
2920
2921   If no eliminations were done and this insn doesn't require any elimination
2922   processing (these are not identical conditions: it might be updating sp,
2923   but not referencing fp; this needs to be seen during reload_as_needed so
2924   that the offset between fp and sp can be taken into consideration), zero
2925   is returned.  Otherwise, 1 is returned.  */
2926
2927static int
2928eliminate_regs_in_insn (rtx insn, int replace)
2929{
2930  int icode = recog_memoized (insn);
2931  rtx old_body = PATTERN (insn);
2932  int insn_is_asm = asm_noperands (old_body) >= 0;
2933  rtx old_set = single_set (insn);
2934  rtx new_body;
2935  int val = 0;
2936  int i;
2937  rtx substed_operand[MAX_RECOG_OPERANDS];
2938  rtx orig_operand[MAX_RECOG_OPERANDS];
2939  struct elim_table *ep;
2940  rtx plus_src, plus_cst_src;
2941
2942  if (! insn_is_asm && icode < 0)
2943    {
2944      gcc_assert (GET_CODE (PATTERN (insn)) == USE
2945		  || GET_CODE (PATTERN (insn)) == CLOBBER
2946		  || GET_CODE (PATTERN (insn)) == ADDR_VEC
2947		  || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2948		  || GET_CODE (PATTERN (insn)) == ASM_INPUT);
2949      return 0;
2950    }
2951
2952  if (old_set != 0 && REG_P (SET_DEST (old_set))
2953      && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
2954    {
2955      /* Check for setting an eliminable register.  */
2956      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2957	if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
2958	  {
2959#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2960	    /* If this is setting the frame pointer register to the
2961	       hardware frame pointer register and this is an elimination
2962	       that will be done (tested above), this insn is really
2963	       adjusting the frame pointer downward to compensate for
2964	       the adjustment done before a nonlocal goto.  */
2965	    if (ep->from == FRAME_POINTER_REGNUM
2966		&& ep->to == HARD_FRAME_POINTER_REGNUM)
2967	      {
2968		rtx base = SET_SRC (old_set);
2969		rtx base_insn = insn;
2970		HOST_WIDE_INT offset = 0;
2971
2972		while (base != ep->to_rtx)
2973		  {
2974		    rtx prev_insn, prev_set;
2975
2976		    if (GET_CODE (base) == PLUS
2977		        && GET_CODE (XEXP (base, 1)) == CONST_INT)
2978		      {
2979		        offset += INTVAL (XEXP (base, 1));
2980		        base = XEXP (base, 0);
2981		      }
2982		    else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
2983			     && (prev_set = single_set (prev_insn)) != 0
2984			     && rtx_equal_p (SET_DEST (prev_set), base))
2985		      {
2986		        base = SET_SRC (prev_set);
2987		        base_insn = prev_insn;
2988		      }
2989		    else
2990		      break;
2991		  }
2992
2993		if (base == ep->to_rtx)
2994		  {
2995		    rtx src
2996		      = plus_constant (ep->to_rtx, offset - ep->offset);
2997
2998		    new_body = old_body;
2999		    if (! replace)
3000		      {
3001			new_body = copy_insn (old_body);
3002			if (REG_NOTES (insn))
3003			  REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3004		      }
3005		    PATTERN (insn) = new_body;
3006		    old_set = single_set (insn);
3007
3008		    /* First see if this insn remains valid when we
3009		       make the change.  If not, keep the INSN_CODE
3010		       the same and let reload fit it up.  */
3011		    validate_change (insn, &SET_SRC (old_set), src, 1);
3012		    validate_change (insn, &SET_DEST (old_set),
3013				     ep->to_rtx, 1);
3014		    if (! apply_change_group ())
3015		      {
3016			SET_SRC (old_set) = src;
3017			SET_DEST (old_set) = ep->to_rtx;
3018		      }
3019
3020		    val = 1;
3021		    goto done;
3022		  }
3023	      }
3024#endif
3025
3026	    /* In this case this insn isn't serving a useful purpose.  We
3027	       will delete it in reload_as_needed once we know that this
3028	       elimination is, in fact, being done.
3029
3030	       If REPLACE isn't set, we can't delete this insn, but needn't
3031	       process it since it won't be used unless something changes.  */
3032	    if (replace)
3033	      {
3034		delete_dead_insn (insn);
3035		return 1;
3036	      }
3037	    val = 1;
3038	    goto done;
3039	  }
3040    }
3041
3042  /* We allow one special case which happens to work on all machines we
3043     currently support: a single set with the source or a REG_EQUAL
3044     note being a PLUS of an eliminable register and a constant.  */
3045  plus_src = plus_cst_src = 0;
3046  if (old_set && REG_P (SET_DEST (old_set)))
3047    {
3048      if (GET_CODE (SET_SRC (old_set)) == PLUS)
3049	plus_src = SET_SRC (old_set);
3050      /* First see if the source is of the form (plus (...) CST).  */
3051      if (plus_src
3052	  && GET_CODE (XEXP (plus_src, 1)) == CONST_INT)
3053	plus_cst_src = plus_src;
3054      else if (REG_P (SET_SRC (old_set))
3055	       || plus_src)
3056	{
3057	  /* Otherwise, see if we have a REG_EQUAL note of the form
3058	     (plus (...) CST).  */
3059	  rtx links;
3060	  for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3061	    {
3062	      if (REG_NOTE_KIND (links) == REG_EQUAL
3063		  && GET_CODE (XEXP (links, 0)) == PLUS
3064		  && GET_CODE (XEXP (XEXP (links, 0), 1)) == CONST_INT)
3065		{
3066		  plus_cst_src = XEXP (links, 0);
3067		  break;
3068		}
3069	    }
3070	}
3071
3072      /* Check that the first operand of the PLUS is a hard reg or
3073	 the lowpart subreg of one.  */
3074      if (plus_cst_src)
3075	{
3076	  rtx reg = XEXP (plus_cst_src, 0);
3077	  if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3078	    reg = SUBREG_REG (reg);
3079
3080	  if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3081	    plus_cst_src = 0;
3082	}
3083    }
3084  if (plus_cst_src)
3085    {
3086      rtx reg = XEXP (plus_cst_src, 0);
3087      HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3088
3089      if (GET_CODE (reg) == SUBREG)
3090	reg = SUBREG_REG (reg);
3091
3092      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3093	if (ep->from_rtx == reg && ep->can_eliminate)
3094	  {
3095	    rtx to_rtx = ep->to_rtx;
3096	    offset += ep->offset;
3097	    offset = trunc_int_for_mode (offset, GET_MODE (reg));
3098
3099	    if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3100	      to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3101				    to_rtx);
3102	    /* If we have a nonzero offset, and the source is already
3103	       a simple REG, the following transformation would
3104	       increase the cost of the insn by replacing a simple REG
3105	       with (plus (reg sp) CST).  So try only when we already
3106	       had a PLUS before.  */
3107	    if (offset == 0 || plus_src)
3108	      {
3109		rtx new_src = plus_constant (to_rtx, offset);
3110
3111		new_body = old_body;
3112		if (! replace)
3113		  {
3114		    new_body = copy_insn (old_body);
3115		    if (REG_NOTES (insn))
3116		      REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3117		  }
3118		PATTERN (insn) = new_body;
3119		old_set = single_set (insn);
3120
3121		/* First see if this insn remains valid when we make the
3122		   change.  If not, try to replace the whole pattern with
3123		   a simple set (this may help if the original insn was a
3124		   PARALLEL that was only recognized as single_set due to
3125		   REG_UNUSED notes).  If this isn't valid either, keep
3126		   the INSN_CODE the same and let reload fix it up.  */
3127		if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3128		  {
3129		    rtx new_pat = gen_rtx_SET (VOIDmode,
3130					       SET_DEST (old_set), new_src);
3131
3132		    if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3133		      SET_SRC (old_set) = new_src;
3134		  }
3135	      }
3136	    else
3137	      break;
3138
3139	    val = 1;
3140	    /* This can't have an effect on elimination offsets, so skip right
3141	       to the end.  */
3142	    goto done;
3143	  }
3144    }
3145
3146  /* Determine the effects of this insn on elimination offsets.  */
3147  elimination_effects (old_body, 0);
3148
3149  /* Eliminate all eliminable registers occurring in operands that
3150     can be handled by reload.  */
3151  extract_insn (insn);
3152  for (i = 0; i < recog_data.n_operands; i++)
3153    {
3154      orig_operand[i] = recog_data.operand[i];
3155      substed_operand[i] = recog_data.operand[i];
3156
3157      /* For an asm statement, every operand is eliminable.  */
3158      if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3159	{
3160	  bool is_set_src, in_plus;
3161
3162	  /* Check for setting a register that we know about.  */
3163	  if (recog_data.operand_type[i] != OP_IN
3164	      && REG_P (orig_operand[i]))
3165	    {
3166	      /* If we are assigning to a register that can be eliminated, it
3167		 must be as part of a PARALLEL, since the code above handles
3168		 single SETs.  We must indicate that we can no longer
3169		 eliminate this reg.  */
3170	      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3171		   ep++)
3172		if (ep->from_rtx == orig_operand[i])
3173		  ep->can_eliminate = 0;
3174	    }
3175
3176	  /* Companion to the above plus substitution, we can allow
3177	     invariants as the source of a plain move.  */
3178	  is_set_src = false;
3179	  if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3180	    is_set_src = true;
3181	  in_plus = false;
3182	  if (plus_src
3183	      && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3184		  || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3185	    in_plus = true;
3186
3187	  substed_operand[i]
3188	    = eliminate_regs_1 (recog_data.operand[i], 0,
3189			        replace ? insn : NULL_RTX,
3190				is_set_src || in_plus);
3191	  if (substed_operand[i] != orig_operand[i])
3192	    val = 1;
3193	  /* Terminate the search in check_eliminable_occurrences at
3194	     this point.  */
3195	  *recog_data.operand_loc[i] = 0;
3196
3197	/* If an output operand changed from a REG to a MEM and INSN is an
3198	   insn, write a CLOBBER insn.  */
3199	  if (recog_data.operand_type[i] != OP_IN
3200	      && REG_P (orig_operand[i])
3201	      && MEM_P (substed_operand[i])
3202	      && replace)
3203	    emit_insn_after (gen_rtx_CLOBBER (VOIDmode, orig_operand[i]),
3204			     insn);
3205	}
3206    }
3207
3208  for (i = 0; i < recog_data.n_dups; i++)
3209    *recog_data.dup_loc[i]
3210      = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3211
3212  /* If any eliminable remain, they aren't eliminable anymore.  */
3213  check_eliminable_occurrences (old_body);
3214
3215  /* Substitute the operands; the new values are in the substed_operand
3216     array.  */
3217  for (i = 0; i < recog_data.n_operands; i++)
3218    *recog_data.operand_loc[i] = substed_operand[i];
3219  for (i = 0; i < recog_data.n_dups; i++)
3220    *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3221
3222  /* If we are replacing a body that was a (set X (plus Y Z)), try to
3223     re-recognize the insn.  We do this in case we had a simple addition
3224     but now can do this as a load-address.  This saves an insn in this
3225     common case.
3226     If re-recognition fails, the old insn code number will still be used,
3227     and some register operands may have changed into PLUS expressions.
3228     These will be handled by find_reloads by loading them into a register
3229     again.  */
3230
3231  if (val)
3232    {
3233      /* If we aren't replacing things permanently and we changed something,
3234	 make another copy to ensure that all the RTL is new.  Otherwise
3235	 things can go wrong if find_reload swaps commutative operands
3236	 and one is inside RTL that has been copied while the other is not.  */
3237      new_body = old_body;
3238      if (! replace)
3239	{
3240	  new_body = copy_insn (old_body);
3241	  if (REG_NOTES (insn))
3242	    REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3243	}
3244      PATTERN (insn) = new_body;
3245
3246      /* If we had a move insn but now we don't, rerecognize it.  This will
3247	 cause spurious re-recognition if the old move had a PARALLEL since
3248	 the new one still will, but we can't call single_set without
3249	 having put NEW_BODY into the insn and the re-recognition won't
3250	 hurt in this rare case.  */
3251      /* ??? Why this huge if statement - why don't we just rerecognize the
3252	 thing always?  */
3253      if (! insn_is_asm
3254	  && old_set != 0
3255	  && ((REG_P (SET_SRC (old_set))
3256	       && (GET_CODE (new_body) != SET
3257		   || !REG_P (SET_SRC (new_body))))
3258	      /* If this was a load from or store to memory, compare
3259		 the MEM in recog_data.operand to the one in the insn.
3260		 If they are not equal, then rerecognize the insn.  */
3261	      || (old_set != 0
3262		  && ((MEM_P (SET_SRC (old_set))
3263		       && SET_SRC (old_set) != recog_data.operand[1])
3264		      || (MEM_P (SET_DEST (old_set))
3265			  && SET_DEST (old_set) != recog_data.operand[0])))
3266	      /* If this was an add insn before, rerecognize.  */
3267	      || GET_CODE (SET_SRC (old_set)) == PLUS))
3268	{
3269	  int new_icode = recog (PATTERN (insn), insn, 0);
3270	  if (new_icode >= 0)
3271	    INSN_CODE (insn) = new_icode;
3272	}
3273    }
3274
3275  /* Restore the old body.  If there were any changes to it, we made a copy
3276     of it while the changes were still in place, so we'll correctly return
3277     a modified insn below.  */
3278  if (! replace)
3279    {
3280      /* Restore the old body.  */
3281      for (i = 0; i < recog_data.n_operands; i++)
3282	*recog_data.operand_loc[i] = orig_operand[i];
3283      for (i = 0; i < recog_data.n_dups; i++)
3284	*recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3285    }
3286
3287  /* Update all elimination pairs to reflect the status after the current
3288     insn.  The changes we make were determined by the earlier call to
3289     elimination_effects.
3290
3291     We also detect cases where register elimination cannot be done,
3292     namely, if a register would be both changed and referenced outside a MEM
3293     in the resulting insn since such an insn is often undefined and, even if
3294     not, we cannot know what meaning will be given to it.  Note that it is
3295     valid to have a register used in an address in an insn that changes it
3296     (presumably with a pre- or post-increment or decrement).
3297
3298     If anything changes, return nonzero.  */
3299
3300  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3301    {
3302      if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3303	ep->can_eliminate = 0;
3304
3305      ep->ref_outside_mem = 0;
3306
3307      if (ep->previous_offset != ep->offset)
3308	val = 1;
3309    }
3310
3311 done:
3312  /* If we changed something, perform elimination in REG_NOTES.  This is
3313     needed even when REPLACE is zero because a REG_DEAD note might refer
3314     to a register that we eliminate and could cause a different number
3315     of spill registers to be needed in the final reload pass than in
3316     the pre-passes.  */
3317  if (val && REG_NOTES (insn) != 0)
3318    REG_NOTES (insn)
3319      = eliminate_regs_1 (REG_NOTES (insn), 0, REG_NOTES (insn), true);
3320
3321  return val;
3322}
3323
3324/* Loop through all elimination pairs.
3325   Recalculate the number not at initial offset.
3326
3327   Compute the maximum offset (minimum offset if the stack does not
3328   grow downward) for each elimination pair.  */
3329
3330static void
3331update_eliminable_offsets (void)
3332{
3333  struct elim_table *ep;
3334
3335  num_not_at_initial_offset = 0;
3336  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3337    {
3338      ep->previous_offset = ep->offset;
3339      if (ep->can_eliminate && ep->offset != ep->initial_offset)
3340	num_not_at_initial_offset++;
3341    }
3342}
3343
3344/* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3345   replacement we currently believe is valid, mark it as not eliminable if X
3346   modifies DEST in any way other than by adding a constant integer to it.
3347
3348   If DEST is the frame pointer, we do nothing because we assume that
3349   all assignments to the hard frame pointer are nonlocal gotos and are being
3350   done at a time when they are valid and do not disturb anything else.
3351   Some machines want to eliminate a fake argument pointer with either the
3352   frame or stack pointer.  Assignments to the hard frame pointer must not
3353   prevent this elimination.
3354
3355   Called via note_stores from reload before starting its passes to scan
3356   the insns of the function.  */
3357
3358static void
3359mark_not_eliminable (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
3360{
3361  unsigned int i;
3362
3363  /* A SUBREG of a hard register here is just changing its mode.  We should
3364     not see a SUBREG of an eliminable hard register, but check just in
3365     case.  */
3366  if (GET_CODE (dest) == SUBREG)
3367    dest = SUBREG_REG (dest);
3368
3369  if (dest == hard_frame_pointer_rtx)
3370    return;
3371
3372  for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3373    if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3374	&& (GET_CODE (x) != SET
3375	    || GET_CODE (SET_SRC (x)) != PLUS
3376	    || XEXP (SET_SRC (x), 0) != dest
3377	    || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
3378      {
3379	reg_eliminate[i].can_eliminate_previous
3380	  = reg_eliminate[i].can_eliminate = 0;
3381	num_eliminable--;
3382      }
3383}
3384
3385/* Verify that the initial elimination offsets did not change since the
3386   last call to set_initial_elim_offsets.  This is used to catch cases
3387   where something illegal happened during reload_as_needed that could
3388   cause incorrect code to be generated if we did not check for it.  */
3389
3390static bool
3391verify_initial_elim_offsets (void)
3392{
3393  HOST_WIDE_INT t;
3394
3395  if (!num_eliminable)
3396    return true;
3397
3398#ifdef ELIMINABLE_REGS
3399  {
3400   struct elim_table *ep;
3401
3402   for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3403     {
3404       INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3405       if (t != ep->initial_offset)
3406	 return false;
3407     }
3408  }
3409#else
3410  INITIAL_FRAME_POINTER_OFFSET (t);
3411  if (t != reg_eliminate[0].initial_offset)
3412    return false;
3413#endif
3414
3415  return true;
3416}
3417
3418/* Reset all offsets on eliminable registers to their initial values.  */
3419
3420static void
3421set_initial_elim_offsets (void)
3422{
3423  struct elim_table *ep = reg_eliminate;
3424
3425#ifdef ELIMINABLE_REGS
3426  for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3427    {
3428      INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3429      ep->previous_offset = ep->offset = ep->initial_offset;
3430    }
3431#else
3432  INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3433  ep->previous_offset = ep->offset = ep->initial_offset;
3434#endif
3435
3436  num_not_at_initial_offset = 0;
3437}
3438
3439/* Subroutine of set_initial_label_offsets called via for_each_eh_label.  */
3440
3441static void
3442set_initial_eh_label_offset (rtx label)
3443{
3444  set_label_offsets (label, NULL_RTX, 1);
3445}
3446
3447/* Initialize the known label offsets.
3448   Set a known offset for each forced label to be at the initial offset
3449   of each elimination.  We do this because we assume that all
3450   computed jumps occur from a location where each elimination is
3451   at its initial offset.
3452   For all other labels, show that we don't know the offsets.  */
3453
3454static void
3455set_initial_label_offsets (void)
3456{
3457  rtx x;
3458  memset (offsets_known_at, 0, num_labels);
3459
3460  for (x = forced_labels; x; x = XEXP (x, 1))
3461    if (XEXP (x, 0))
3462      set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3463
3464  for_each_eh_label (set_initial_eh_label_offset);
3465}
3466
3467/* Set all elimination offsets to the known values for the code label given
3468   by INSN.  */
3469
3470static void
3471set_offsets_for_label (rtx insn)
3472{
3473  unsigned int i;
3474  int label_nr = CODE_LABEL_NUMBER (insn);
3475  struct elim_table *ep;
3476
3477  num_not_at_initial_offset = 0;
3478  for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3479    {
3480      ep->offset = ep->previous_offset
3481		 = offsets_at[label_nr - first_label_num][i];
3482      if (ep->can_eliminate && ep->offset != ep->initial_offset)
3483	num_not_at_initial_offset++;
3484    }
3485}
3486
3487/* See if anything that happened changes which eliminations are valid.
3488   For example, on the SPARC, whether or not the frame pointer can
3489   be eliminated can depend on what registers have been used.  We need
3490   not check some conditions again (such as flag_omit_frame_pointer)
3491   since they can't have changed.  */
3492
3493static void
3494update_eliminables (HARD_REG_SET *pset)
3495{
3496  int previous_frame_pointer_needed = frame_pointer_needed;
3497  struct elim_table *ep;
3498
3499  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3500    if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
3501#ifdef ELIMINABLE_REGS
3502	|| ! CAN_ELIMINATE (ep->from, ep->to)
3503#endif
3504	)
3505      ep->can_eliminate = 0;
3506
3507  /* Look for the case where we have discovered that we can't replace
3508     register A with register B and that means that we will now be
3509     trying to replace register A with register C.  This means we can
3510     no longer replace register C with register B and we need to disable
3511     such an elimination, if it exists.  This occurs often with A == ap,
3512     B == sp, and C == fp.  */
3513
3514  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3515    {
3516      struct elim_table *op;
3517      int new_to = -1;
3518
3519      if (! ep->can_eliminate && ep->can_eliminate_previous)
3520	{
3521	  /* Find the current elimination for ep->from, if there is a
3522	     new one.  */
3523	  for (op = reg_eliminate;
3524	       op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3525	    if (op->from == ep->from && op->can_eliminate)
3526	      {
3527		new_to = op->to;
3528		break;
3529	      }
3530
3531	  /* See if there is an elimination of NEW_TO -> EP->TO.  If so,
3532	     disable it.  */
3533	  for (op = reg_eliminate;
3534	       op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3535	    if (op->from == new_to && op->to == ep->to)
3536	      op->can_eliminate = 0;
3537	}
3538    }
3539
3540  /* See if any registers that we thought we could eliminate the previous
3541     time are no longer eliminable.  If so, something has changed and we
3542     must spill the register.  Also, recompute the number of eliminable
3543     registers and see if the frame pointer is needed; it is if there is
3544     no elimination of the frame pointer that we can perform.  */
3545
3546  frame_pointer_needed = 1;
3547  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3548    {
3549      if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
3550	  && ep->to != HARD_FRAME_POINTER_REGNUM)
3551	frame_pointer_needed = 0;
3552
3553      if (! ep->can_eliminate && ep->can_eliminate_previous)
3554	{
3555	  ep->can_eliminate_previous = 0;
3556	  SET_HARD_REG_BIT (*pset, ep->from);
3557	  num_eliminable--;
3558	}
3559    }
3560
3561  /* If we didn't need a frame pointer last time, but we do now, spill
3562     the hard frame pointer.  */
3563  if (frame_pointer_needed && ! previous_frame_pointer_needed)
3564    SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3565}
3566
3567/* Initialize the table of registers to eliminate.  */
3568
3569static void
3570init_elim_table (void)
3571{
3572  struct elim_table *ep;
3573#ifdef ELIMINABLE_REGS
3574  const struct elim_table_1 *ep1;
3575#endif
3576
3577  if (!reg_eliminate)
3578    reg_eliminate = xcalloc (sizeof (struct elim_table), NUM_ELIMINABLE_REGS);
3579
3580  /* Does this function require a frame pointer?  */
3581
3582  frame_pointer_needed = (! flag_omit_frame_pointer
3583			  /* ?? If EXIT_IGNORE_STACK is set, we will not save
3584			     and restore sp for alloca.  So we can't eliminate
3585			     the frame pointer in that case.  At some point,
3586			     we should improve this by emitting the
3587			     sp-adjusting insns for this case.  */
3588			  || (current_function_calls_alloca
3589			      && EXIT_IGNORE_STACK)
3590			  || current_function_accesses_prior_frames
3591			  || FRAME_POINTER_REQUIRED);
3592
3593  num_eliminable = 0;
3594
3595#ifdef ELIMINABLE_REGS
3596  for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3597       ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3598    {
3599      ep->from = ep1->from;
3600      ep->to = ep1->to;
3601      ep->can_eliminate = ep->can_eliminate_previous
3602	= (CAN_ELIMINATE (ep->from, ep->to)
3603	   && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
3604    }
3605#else
3606  reg_eliminate[0].from = reg_eliminate_1[0].from;
3607  reg_eliminate[0].to = reg_eliminate_1[0].to;
3608  reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
3609    = ! frame_pointer_needed;
3610#endif
3611
3612  /* Count the number of eliminable registers and build the FROM and TO
3613     REG rtx's.  Note that code in gen_rtx_REG will cause, e.g.,
3614     gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3615     We depend on this.  */
3616  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3617    {
3618      num_eliminable += ep->can_eliminate;
3619      ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3620      ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3621    }
3622}
3623
3624/* Kick all pseudos out of hard register REGNO.
3625
3626   If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3627   because we found we can't eliminate some register.  In the case, no pseudos
3628   are allowed to be in the register, even if they are only in a block that
3629   doesn't require spill registers, unlike the case when we are spilling this
3630   hard reg to produce another spill register.
3631
3632   Return nonzero if any pseudos needed to be kicked out.  */
3633
3634static void
3635spill_hard_reg (unsigned int regno, int cant_eliminate)
3636{
3637  int i;
3638
3639  if (cant_eliminate)
3640    {
3641      SET_HARD_REG_BIT (bad_spill_regs_global, regno);
3642      regs_ever_live[regno] = 1;
3643    }
3644
3645  /* Spill every pseudo reg that was allocated to this reg
3646     or to something that overlaps this reg.  */
3647
3648  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3649    if (reg_renumber[i] >= 0
3650	&& (unsigned int) reg_renumber[i] <= regno
3651	&& ((unsigned int) reg_renumber[i]
3652	    + hard_regno_nregs[(unsigned int) reg_renumber[i]]
3653			      [PSEUDO_REGNO_MODE (i)]
3654	    > regno))
3655      SET_REGNO_REG_SET (&spilled_pseudos, i);
3656}
3657
3658/* After find_reload_regs has been run for all insn that need reloads,
3659   and/or spill_hard_regs was called, this function is used to actually
3660   spill pseudo registers and try to reallocate them.  It also sets up the
3661   spill_regs array for use by choose_reload_regs.  */
3662
3663static int
3664finish_spills (int global)
3665{
3666  struct insn_chain *chain;
3667  int something_changed = 0;
3668  unsigned i;
3669  reg_set_iterator rsi;
3670
3671  /* Build the spill_regs array for the function.  */
3672  /* If there are some registers still to eliminate and one of the spill regs
3673     wasn't ever used before, additional stack space may have to be
3674     allocated to store this register.  Thus, we may have changed the offset
3675     between the stack and frame pointers, so mark that something has changed.
3676
3677     One might think that we need only set VAL to 1 if this is a call-used
3678     register.  However, the set of registers that must be saved by the
3679     prologue is not identical to the call-used set.  For example, the
3680     register used by the call insn for the return PC is a call-used register,
3681     but must be saved by the prologue.  */
3682
3683  n_spills = 0;
3684  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3685    if (TEST_HARD_REG_BIT (used_spill_regs, i))
3686      {
3687	spill_reg_order[i] = n_spills;
3688	spill_regs[n_spills++] = i;
3689	if (num_eliminable && ! regs_ever_live[i])
3690	  something_changed = 1;
3691	regs_ever_live[i] = 1;
3692      }
3693    else
3694      spill_reg_order[i] = -1;
3695
3696  EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
3697    {
3698      /* Record the current hard register the pseudo is allocated to in
3699	 pseudo_previous_regs so we avoid reallocating it to the same
3700	 hard reg in a later pass.  */
3701      gcc_assert (reg_renumber[i] >= 0);
3702
3703      SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
3704      /* Mark it as no longer having a hard register home.  */
3705      reg_renumber[i] = -1;
3706      /* We will need to scan everything again.  */
3707      something_changed = 1;
3708    }
3709
3710  /* Retry global register allocation if possible.  */
3711  if (global)
3712    {
3713      memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
3714      /* For every insn that needs reloads, set the registers used as spill
3715	 regs in pseudo_forbidden_regs for every pseudo live across the
3716	 insn.  */
3717      for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
3718	{
3719	  EXECUTE_IF_SET_IN_REG_SET
3720	    (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
3721	    {
3722	      IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
3723				chain->used_spill_regs);
3724	    }
3725	  EXECUTE_IF_SET_IN_REG_SET
3726	    (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
3727	    {
3728	      IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
3729				chain->used_spill_regs);
3730	    }
3731	}
3732
3733      /* Retry allocating the spilled pseudos.  For each reg, merge the
3734	 various reg sets that indicate which hard regs can't be used,
3735	 and call retry_global_alloc.
3736	 We change spill_pseudos here to only contain pseudos that did not
3737	 get a new hard register.  */
3738      for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
3739	if (reg_old_renumber[i] != reg_renumber[i])
3740	  {
3741	    HARD_REG_SET forbidden;
3742	    COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
3743	    IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
3744	    IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
3745	    retry_global_alloc (i, forbidden);
3746	    if (reg_renumber[i] >= 0)
3747	      CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
3748	  }
3749    }
3750
3751  /* Fix up the register information in the insn chain.
3752     This involves deleting those of the spilled pseudos which did not get
3753     a new hard register home from the live_{before,after} sets.  */
3754  for (chain = reload_insn_chain; chain; chain = chain->next)
3755    {
3756      HARD_REG_SET used_by_pseudos;
3757      HARD_REG_SET used_by_pseudos2;
3758
3759      AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
3760      AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
3761
3762      /* Mark any unallocated hard regs as available for spills.  That
3763	 makes inheritance work somewhat better.  */
3764      if (chain->need_reload)
3765	{
3766	  REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
3767	  REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
3768	  IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
3769
3770	  /* Save the old value for the sanity test below.  */
3771	  COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
3772
3773	  compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
3774	  compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
3775	  COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
3776	  AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
3777
3778	  /* Make sure we only enlarge the set.  */
3779	  GO_IF_HARD_REG_SUBSET (used_by_pseudos2, chain->used_spill_regs, ok);
3780	  gcc_unreachable ();
3781	ok:;
3782	}
3783    }
3784
3785  /* Let alter_reg modify the reg rtx's for the modified pseudos.  */
3786  for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
3787    {
3788      int regno = reg_renumber[i];
3789      if (reg_old_renumber[i] == regno)
3790	continue;
3791
3792      alter_reg (i, reg_old_renumber[i]);
3793      reg_old_renumber[i] = regno;
3794      if (dump_file)
3795	{
3796	  if (regno == -1)
3797	    fprintf (dump_file, " Register %d now on stack.\n\n", i);
3798	  else
3799	    fprintf (dump_file, " Register %d now in %d.\n\n",
3800		     i, reg_renumber[i]);
3801	}
3802    }
3803
3804  return something_changed;
3805}
3806
3807/* Find all paradoxical subregs within X and update reg_max_ref_width.  */
3808
3809static void
3810scan_paradoxical_subregs (rtx x)
3811{
3812  int i;
3813  const char *fmt;
3814  enum rtx_code code = GET_CODE (x);
3815
3816  switch (code)
3817    {
3818    case REG:
3819    case CONST_INT:
3820    case CONST:
3821    case SYMBOL_REF:
3822    case LABEL_REF:
3823    case CONST_DOUBLE:
3824    case CONST_VECTOR: /* shouldn't happen, but just in case.  */
3825    case CC0:
3826    case PC:
3827    case USE:
3828    case CLOBBER:
3829      return;
3830
3831    case SUBREG:
3832      if (REG_P (SUBREG_REG (x))
3833	  && (GET_MODE_SIZE (GET_MODE (x))
3834	      > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
3835	reg_max_ref_width[REGNO (SUBREG_REG (x))]
3836	  = GET_MODE_SIZE (GET_MODE (x));
3837      return;
3838
3839    default:
3840      break;
3841    }
3842
3843  fmt = GET_RTX_FORMAT (code);
3844  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3845    {
3846      if (fmt[i] == 'e')
3847	scan_paradoxical_subregs (XEXP (x, i));
3848      else if (fmt[i] == 'E')
3849	{
3850	  int j;
3851	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3852	    scan_paradoxical_subregs (XVECEXP (x, i, j));
3853	}
3854    }
3855}
3856
3857/* A subroutine of reload_as_needed.  If INSN has a REG_EH_REGION note,
3858   examine all of the reload insns between PREV and NEXT exclusive, and
3859   annotate all that may trap.  */
3860
3861static void
3862fixup_eh_region_note (rtx insn, rtx prev, rtx next)
3863{
3864  rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3865  unsigned int trap_count;
3866  rtx i;
3867
3868  if (note == NULL)
3869    return;
3870
3871  if (may_trap_p (PATTERN (insn)))
3872    trap_count = 1;
3873  else
3874    {
3875      remove_note (insn, note);
3876      trap_count = 0;
3877    }
3878
3879  for (i = NEXT_INSN (prev); i != next; i = NEXT_INSN (i))
3880    if (INSN_P (i) && i != insn && may_trap_p (PATTERN (i)))
3881      {
3882	trap_count++;
3883	REG_NOTES (i)
3884	  = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (note, 0), REG_NOTES (i));
3885      }
3886}
3887
3888/* Reload pseudo-registers into hard regs around each insn as needed.
3889   Additional register load insns are output before the insn that needs it
3890   and perhaps store insns after insns that modify the reloaded pseudo reg.
3891
3892   reg_last_reload_reg and reg_reloaded_contents keep track of
3893   which registers are already available in reload registers.
3894   We update these for the reloads that we perform,
3895   as the insns are scanned.  */
3896
3897static void
3898reload_as_needed (int live_known)
3899{
3900  struct insn_chain *chain;
3901#if defined (AUTO_INC_DEC)
3902  int i;
3903#endif
3904  rtx x;
3905
3906  memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
3907  memset (spill_reg_store, 0, sizeof spill_reg_store);
3908  reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
3909  INIT_REG_SET (&reg_has_output_reload);
3910  CLEAR_HARD_REG_SET (reg_reloaded_valid);
3911  CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
3912
3913  set_initial_elim_offsets ();
3914
3915  for (chain = reload_insn_chain; chain; chain = chain->next)
3916    {
3917      rtx prev = 0;
3918      rtx insn = chain->insn;
3919      rtx old_next = NEXT_INSN (insn);
3920
3921      /* If we pass a label, copy the offsets from the label information
3922	 into the current offsets of each elimination.  */
3923      if (LABEL_P (insn))
3924	set_offsets_for_label (insn);
3925
3926      else if (INSN_P (insn))
3927	{
3928	  regset_head regs_to_forget;
3929	  INIT_REG_SET (&regs_to_forget);
3930	  note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
3931
3932	  /* If this is a USE and CLOBBER of a MEM, ensure that any
3933	     references to eliminable registers have been removed.  */
3934
3935	  if ((GET_CODE (PATTERN (insn)) == USE
3936	       || GET_CODE (PATTERN (insn)) == CLOBBER)
3937	      && MEM_P (XEXP (PATTERN (insn), 0)))
3938	    XEXP (XEXP (PATTERN (insn), 0), 0)
3939	      = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
3940				GET_MODE (XEXP (PATTERN (insn), 0)),
3941				NULL_RTX);
3942
3943	  /* If we need to do register elimination processing, do so.
3944	     This might delete the insn, in which case we are done.  */
3945	  if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
3946	    {
3947	      eliminate_regs_in_insn (insn, 1);
3948	      if (NOTE_P (insn))
3949		{
3950		  update_eliminable_offsets ();
3951		  CLEAR_REG_SET (&regs_to_forget);
3952		  continue;
3953		}
3954	    }
3955
3956	  /* If need_elim is nonzero but need_reload is zero, one might think
3957	     that we could simply set n_reloads to 0.  However, find_reloads
3958	     could have done some manipulation of the insn (such as swapping
3959	     commutative operands), and these manipulations are lost during
3960	     the first pass for every insn that needs register elimination.
3961	     So the actions of find_reloads must be redone here.  */
3962
3963	  if (! chain->need_elim && ! chain->need_reload
3964	      && ! chain->need_operand_change)
3965	    n_reloads = 0;
3966	  /* First find the pseudo regs that must be reloaded for this insn.
3967	     This info is returned in the tables reload_... (see reload.h).
3968	     Also modify the body of INSN by substituting RELOAD
3969	     rtx's for those pseudo regs.  */
3970	  else
3971	    {
3972	      CLEAR_REG_SET (&reg_has_output_reload);
3973	      CLEAR_HARD_REG_SET (reg_is_output_reload);
3974
3975	      find_reloads (insn, 1, spill_indirect_levels, live_known,
3976			    spill_reg_order);
3977	    }
3978
3979	  if (n_reloads > 0)
3980	    {
3981	      rtx next = NEXT_INSN (insn);
3982	      rtx p;
3983
3984	      prev = PREV_INSN (insn);
3985
3986	      /* Now compute which reload regs to reload them into.  Perhaps
3987		 reusing reload regs from previous insns, or else output
3988		 load insns to reload them.  Maybe output store insns too.
3989		 Record the choices of reload reg in reload_reg_rtx.  */
3990	      choose_reload_regs (chain);
3991
3992	      /* Merge any reloads that we didn't combine for fear of
3993		 increasing the number of spill registers needed but now
3994		 discover can be safely merged.  */
3995	      if (SMALL_REGISTER_CLASSES)
3996		merge_assigned_reloads (insn);
3997
3998	      /* Generate the insns to reload operands into or out of
3999		 their reload regs.  */
4000	      emit_reload_insns (chain);
4001
4002	      /* Substitute the chosen reload regs from reload_reg_rtx
4003		 into the insn's body (or perhaps into the bodies of other
4004		 load and store insn that we just made for reloading
4005		 and that we moved the structure into).  */
4006	      subst_reloads (insn);
4007
4008	      /* Adjust the exception region notes for loads and stores.  */
4009	      if (flag_non_call_exceptions && !CALL_P (insn))
4010		fixup_eh_region_note (insn, prev, next);
4011
4012	      /* If this was an ASM, make sure that all the reload insns
4013		 we have generated are valid.  If not, give an error
4014		 and delete them.  */
4015	      if (asm_noperands (PATTERN (insn)) >= 0)
4016		for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
4017		  if (p != insn && INSN_P (p)
4018		      && GET_CODE (PATTERN (p)) != USE
4019		      && (recog_memoized (p) < 0
4020			  || (extract_insn (p), ! constrain_operands (1))))
4021		    {
4022		      error_for_asm (insn,
4023				     "%<asm%> operand requires "
4024				     "impossible reload");
4025		      delete_insn (p);
4026		    }
4027	    }
4028
4029	  if (num_eliminable && chain->need_elim)
4030	    update_eliminable_offsets ();
4031
4032	  /* Any previously reloaded spilled pseudo reg, stored in this insn,
4033	     is no longer validly lying around to save a future reload.
4034	     Note that this does not detect pseudos that were reloaded
4035	     for this insn in order to be stored in
4036	     (obeying register constraints).  That is correct; such reload
4037	     registers ARE still valid.  */
4038	  forget_marked_reloads (&regs_to_forget);
4039	  CLEAR_REG_SET (&regs_to_forget);
4040
4041	  /* There may have been CLOBBER insns placed after INSN.  So scan
4042	     between INSN and NEXT and use them to forget old reloads.  */
4043	  for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4044	    if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4045	      note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4046
4047#ifdef AUTO_INC_DEC
4048	  /* Likewise for regs altered by auto-increment in this insn.
4049	     REG_INC notes have been changed by reloading:
4050	     find_reloads_address_1 records substitutions for them,
4051	     which have been performed by subst_reloads above.  */
4052	  for (i = n_reloads - 1; i >= 0; i--)
4053	    {
4054	      rtx in_reg = rld[i].in_reg;
4055	      if (in_reg)
4056		{
4057		  enum rtx_code code = GET_CODE (in_reg);
4058		  /* PRE_INC / PRE_DEC will have the reload register ending up
4059		     with the same value as the stack slot, but that doesn't
4060		     hold true for POST_INC / POST_DEC.  Either we have to
4061		     convert the memory access to a true POST_INC / POST_DEC,
4062		     or we can't use the reload register for inheritance.  */
4063		  if ((code == POST_INC || code == POST_DEC)
4064		      && TEST_HARD_REG_BIT (reg_reloaded_valid,
4065					    REGNO (rld[i].reg_rtx))
4066		      /* Make sure it is the inc/dec pseudo, and not
4067			 some other (e.g. output operand) pseudo.  */
4068		      && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4069			  == REGNO (XEXP (in_reg, 0))))
4070
4071		    {
4072		      rtx reload_reg = rld[i].reg_rtx;
4073		      enum machine_mode mode = GET_MODE (reload_reg);
4074		      int n = 0;
4075		      rtx p;
4076
4077		      for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4078			{
4079			  /* We really want to ignore REG_INC notes here, so
4080			     use PATTERN (p) as argument to reg_set_p .  */
4081			  if (reg_set_p (reload_reg, PATTERN (p)))
4082			    break;
4083			  n = count_occurrences (PATTERN (p), reload_reg, 0);
4084			  if (! n)
4085			    continue;
4086			  if (n == 1)
4087			    {
4088			      n = validate_replace_rtx (reload_reg,
4089							gen_rtx_fmt_e (code,
4090								       mode,
4091								       reload_reg),
4092							p);
4093
4094			      /* We must also verify that the constraints
4095				 are met after the replacement.  */
4096			      extract_insn (p);
4097			      if (n)
4098				n = constrain_operands (1);
4099			      else
4100				break;
4101
4102			      /* If the constraints were not met, then
4103				 undo the replacement.  */
4104			      if (!n)
4105				{
4106				  validate_replace_rtx (gen_rtx_fmt_e (code,
4107								       mode,
4108								       reload_reg),
4109							reload_reg, p);
4110				  break;
4111				}
4112
4113			    }
4114			  break;
4115			}
4116		      if (n == 1)
4117			{
4118			  REG_NOTES (p)
4119			    = gen_rtx_EXPR_LIST (REG_INC, reload_reg,
4120						 REG_NOTES (p));
4121			  /* Mark this as having an output reload so that the
4122			     REG_INC processing code below won't invalidate
4123			     the reload for inheritance.  */
4124			  SET_HARD_REG_BIT (reg_is_output_reload,
4125					    REGNO (reload_reg));
4126			  SET_REGNO_REG_SET (&reg_has_output_reload,
4127					     REGNO (XEXP (in_reg, 0)));
4128			}
4129		      else
4130			forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4131					      NULL);
4132		    }
4133		  else if ((code == PRE_INC || code == PRE_DEC)
4134			   && TEST_HARD_REG_BIT (reg_reloaded_valid,
4135						 REGNO (rld[i].reg_rtx))
4136			   /* Make sure it is the inc/dec pseudo, and not
4137			      some other (e.g. output operand) pseudo.  */
4138			   && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4139			       == REGNO (XEXP (in_reg, 0))))
4140		    {
4141		      SET_HARD_REG_BIT (reg_is_output_reload,
4142					REGNO (rld[i].reg_rtx));
4143		      SET_REGNO_REG_SET (&reg_has_output_reload,
4144					 REGNO (XEXP (in_reg, 0)));
4145		    }
4146		}
4147	    }
4148	  /* If a pseudo that got a hard register is auto-incremented,
4149	     we must purge records of copying it into pseudos without
4150	     hard registers.  */
4151	  for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4152	    if (REG_NOTE_KIND (x) == REG_INC)
4153	      {
4154		/* See if this pseudo reg was reloaded in this insn.
4155		   If so, its last-reload info is still valid
4156		   because it is based on this insn's reload.  */
4157		for (i = 0; i < n_reloads; i++)
4158		  if (rld[i].out == XEXP (x, 0))
4159		    break;
4160
4161		if (i == n_reloads)
4162		  forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4163	      }
4164#endif
4165	}
4166      /* A reload reg's contents are unknown after a label.  */
4167      if (LABEL_P (insn))
4168	CLEAR_HARD_REG_SET (reg_reloaded_valid);
4169
4170      /* Don't assume a reload reg is still good after a call insn
4171	 if it is a call-used reg, or if it contains a value that will
4172         be partially clobbered by the call.  */
4173      else if (CALL_P (insn))
4174	{
4175	AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4176	AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4177	}
4178    }
4179
4180  /* Clean up.  */
4181  free (reg_last_reload_reg);
4182  CLEAR_REG_SET (&reg_has_output_reload);
4183}
4184
4185/* Discard all record of any value reloaded from X,
4186   or reloaded in X from someplace else;
4187   unless X is an output reload reg of the current insn.
4188
4189   X may be a hard reg (the reload reg)
4190   or it may be a pseudo reg that was reloaded from.
4191
4192   When DATA is non-NULL just mark the registers in regset
4193   to be forgotten later.  */
4194
4195static void
4196forget_old_reloads_1 (rtx x, rtx ignored ATTRIBUTE_UNUSED,
4197		      void *data)
4198{
4199  unsigned int regno;
4200  unsigned int nr;
4201  regset regs = (regset) data;
4202
4203  /* note_stores does give us subregs of hard regs,
4204     subreg_regno_offset requires a hard reg.  */
4205  while (GET_CODE (x) == SUBREG)
4206    {
4207      /* We ignore the subreg offset when calculating the regno,
4208	 because we are using the entire underlying hard register
4209	 below.  */
4210      x = SUBREG_REG (x);
4211    }
4212
4213  if (!REG_P (x))
4214    return;
4215
4216  regno = REGNO (x);
4217
4218  if (regno >= FIRST_PSEUDO_REGISTER)
4219    nr = 1;
4220  else
4221    {
4222      unsigned int i;
4223
4224      nr = hard_regno_nregs[regno][GET_MODE (x)];
4225      /* Storing into a spilled-reg invalidates its contents.
4226	 This can happen if a block-local pseudo is allocated to that reg
4227	 and it wasn't spilled because this block's total need is 0.
4228	 Then some insn might have an optional reload and use this reg.  */
4229      if (!regs)
4230	for (i = 0; i < nr; i++)
4231	  /* But don't do this if the reg actually serves as an output
4232	     reload reg in the current instruction.  */
4233	  if (n_reloads == 0
4234	      || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4235	    {
4236	      CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4237	      CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, regno + i);
4238	      spill_reg_store[regno + i] = 0;
4239	    }
4240    }
4241
4242  if (regs)
4243    while (nr-- > 0)
4244      SET_REGNO_REG_SET (regs, regno + nr);
4245  else
4246    {
4247      /* Since value of X has changed,
4248	 forget any value previously copied from it.  */
4249
4250      while (nr-- > 0)
4251	/* But don't forget a copy if this is the output reload
4252	   that establishes the copy's validity.  */
4253	if (n_reloads == 0
4254	    || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4255	  reg_last_reload_reg[regno + nr] = 0;
4256     }
4257}
4258
4259/* Forget the reloads marked in regset by previous function.  */
4260static void
4261forget_marked_reloads (regset regs)
4262{
4263  unsigned int reg;
4264  reg_set_iterator rsi;
4265  EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4266    {
4267      if (reg < FIRST_PSEUDO_REGISTER
4268	  /* But don't do this if the reg actually serves as an output
4269	     reload reg in the current instruction.  */
4270	  && (n_reloads == 0
4271	      || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4272	  {
4273	    CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
4274	    CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, reg);
4275	    spill_reg_store[reg] = 0;
4276	  }
4277      if (n_reloads == 0
4278	  || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
4279	reg_last_reload_reg[reg] = 0;
4280    }
4281}
4282
4283/* The following HARD_REG_SETs indicate when each hard register is
4284   used for a reload of various parts of the current insn.  */
4285
4286/* If reg is unavailable for all reloads.  */
4287static HARD_REG_SET reload_reg_unavailable;
4288/* If reg is in use as a reload reg for a RELOAD_OTHER reload.  */
4289static HARD_REG_SET reload_reg_used;
4290/* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I.  */
4291static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4292/* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I.  */
4293static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4294/* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I.  */
4295static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4296/* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I.  */
4297static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4298/* If reg is in use for a RELOAD_FOR_INPUT reload for operand I.  */
4299static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4300/* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I.  */
4301static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4302/* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload.  */
4303static HARD_REG_SET reload_reg_used_in_op_addr;
4304/* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload.  */
4305static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4306/* If reg is in use for a RELOAD_FOR_INSN reload.  */
4307static HARD_REG_SET reload_reg_used_in_insn;
4308/* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload.  */
4309static HARD_REG_SET reload_reg_used_in_other_addr;
4310
4311/* If reg is in use as a reload reg for any sort of reload.  */
4312static HARD_REG_SET reload_reg_used_at_all;
4313
4314/* If reg is use as an inherited reload.  We just mark the first register
4315   in the group.  */
4316static HARD_REG_SET reload_reg_used_for_inherit;
4317
4318/* Records which hard regs are used in any way, either as explicit use or
4319   by being allocated to a pseudo during any point of the current insn.  */
4320static HARD_REG_SET reg_used_in_insn;
4321
4322/* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4323   TYPE. MODE is used to indicate how many consecutive regs are
4324   actually used.  */
4325
4326static void
4327mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
4328			enum machine_mode mode)
4329{
4330  unsigned int nregs = hard_regno_nregs[regno][mode];
4331  unsigned int i;
4332
4333  for (i = regno; i < nregs + regno; i++)
4334    {
4335      switch (type)
4336	{
4337	case RELOAD_OTHER:
4338	  SET_HARD_REG_BIT (reload_reg_used, i);
4339	  break;
4340
4341	case RELOAD_FOR_INPUT_ADDRESS:
4342	  SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
4343	  break;
4344
4345	case RELOAD_FOR_INPADDR_ADDRESS:
4346	  SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
4347	  break;
4348
4349	case RELOAD_FOR_OUTPUT_ADDRESS:
4350	  SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
4351	  break;
4352
4353	case RELOAD_FOR_OUTADDR_ADDRESS:
4354	  SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
4355	  break;
4356
4357	case RELOAD_FOR_OPERAND_ADDRESS:
4358	  SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
4359	  break;
4360
4361	case RELOAD_FOR_OPADDR_ADDR:
4362	  SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
4363	  break;
4364
4365	case RELOAD_FOR_OTHER_ADDRESS:
4366	  SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
4367	  break;
4368
4369	case RELOAD_FOR_INPUT:
4370	  SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
4371	  break;
4372
4373	case RELOAD_FOR_OUTPUT:
4374	  SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
4375	  break;
4376
4377	case RELOAD_FOR_INSN:
4378	  SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
4379	  break;
4380	}
4381
4382      SET_HARD_REG_BIT (reload_reg_used_at_all, i);
4383    }
4384}
4385
4386/* Similarly, but show REGNO is no longer in use for a reload.  */
4387
4388static void
4389clear_reload_reg_in_use (unsigned int regno, int opnum,
4390			 enum reload_type type, enum machine_mode mode)
4391{
4392  unsigned int nregs = hard_regno_nregs[regno][mode];
4393  unsigned int start_regno, end_regno, r;
4394  int i;
4395  /* A complication is that for some reload types, inheritance might
4396     allow multiple reloads of the same types to share a reload register.
4397     We set check_opnum if we have to check only reloads with the same
4398     operand number, and check_any if we have to check all reloads.  */
4399  int check_opnum = 0;
4400  int check_any = 0;
4401  HARD_REG_SET *used_in_set;
4402
4403  switch (type)
4404    {
4405    case RELOAD_OTHER:
4406      used_in_set = &reload_reg_used;
4407      break;
4408
4409    case RELOAD_FOR_INPUT_ADDRESS:
4410      used_in_set = &reload_reg_used_in_input_addr[opnum];
4411      break;
4412
4413    case RELOAD_FOR_INPADDR_ADDRESS:
4414      check_opnum = 1;
4415      used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
4416      break;
4417
4418    case RELOAD_FOR_OUTPUT_ADDRESS:
4419      used_in_set = &reload_reg_used_in_output_addr[opnum];
4420      break;
4421
4422    case RELOAD_FOR_OUTADDR_ADDRESS:
4423      check_opnum = 1;
4424      used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
4425      break;
4426
4427    case RELOAD_FOR_OPERAND_ADDRESS:
4428      used_in_set = &reload_reg_used_in_op_addr;
4429      break;
4430
4431    case RELOAD_FOR_OPADDR_ADDR:
4432      check_any = 1;
4433      used_in_set = &reload_reg_used_in_op_addr_reload;
4434      break;
4435
4436    case RELOAD_FOR_OTHER_ADDRESS:
4437      used_in_set = &reload_reg_used_in_other_addr;
4438      check_any = 1;
4439      break;
4440
4441    case RELOAD_FOR_INPUT:
4442      used_in_set = &reload_reg_used_in_input[opnum];
4443      break;
4444
4445    case RELOAD_FOR_OUTPUT:
4446      used_in_set = &reload_reg_used_in_output[opnum];
4447      break;
4448
4449    case RELOAD_FOR_INSN:
4450      used_in_set = &reload_reg_used_in_insn;
4451      break;
4452    default:
4453      gcc_unreachable ();
4454    }
4455  /* We resolve conflicts with remaining reloads of the same type by
4456     excluding the intervals of reload registers by them from the
4457     interval of freed reload registers.  Since we only keep track of
4458     one set of interval bounds, we might have to exclude somewhat
4459     more than what would be necessary if we used a HARD_REG_SET here.
4460     But this should only happen very infrequently, so there should
4461     be no reason to worry about it.  */
4462
4463  start_regno = regno;
4464  end_regno = regno + nregs;
4465  if (check_opnum || check_any)
4466    {
4467      for (i = n_reloads - 1; i >= 0; i--)
4468	{
4469	  if (rld[i].when_needed == type
4470	      && (check_any || rld[i].opnum == opnum)
4471	      && rld[i].reg_rtx)
4472	    {
4473	      unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
4474	      unsigned int conflict_end
4475		= (conflict_start
4476		   + hard_regno_nregs[conflict_start][rld[i].mode]);
4477
4478	      /* If there is an overlap with the first to-be-freed register,
4479		 adjust the interval start.  */
4480	      if (conflict_start <= start_regno && conflict_end > start_regno)
4481		start_regno = conflict_end;
4482	      /* Otherwise, if there is a conflict with one of the other
4483		 to-be-freed registers, adjust the interval end.  */
4484	      if (conflict_start > start_regno && conflict_start < end_regno)
4485		end_regno = conflict_start;
4486	    }
4487	}
4488    }
4489
4490  for (r = start_regno; r < end_regno; r++)
4491    CLEAR_HARD_REG_BIT (*used_in_set, r);
4492}
4493
4494/* 1 if reg REGNO is free as a reload reg for a reload of the sort
4495   specified by OPNUM and TYPE.  */
4496
4497static int
4498reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
4499{
4500  int i;
4501
4502  /* In use for a RELOAD_OTHER means it's not available for anything.  */
4503  if (TEST_HARD_REG_BIT (reload_reg_used, regno)
4504      || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4505    return 0;
4506
4507  switch (type)
4508    {
4509    case RELOAD_OTHER:
4510      /* In use for anything means we can't use it for RELOAD_OTHER.  */
4511      if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
4512	  || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4513	  || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
4514	  || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4515	return 0;
4516
4517      for (i = 0; i < reload_n_operands; i++)
4518	if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4519	    || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4520	    || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4521	    || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4522	    || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4523	    || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4524	  return 0;
4525
4526      return 1;
4527
4528    case RELOAD_FOR_INPUT:
4529      if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4530	  || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
4531	return 0;
4532
4533      if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4534	return 0;
4535
4536      /* If it is used for some other input, can't use it.  */
4537      for (i = 0; i < reload_n_operands; i++)
4538	if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4539	  return 0;
4540
4541      /* If it is used in a later operand's address, can't use it.  */
4542      for (i = opnum + 1; i < reload_n_operands; i++)
4543	if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4544	    || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4545	  return 0;
4546
4547      return 1;
4548
4549    case RELOAD_FOR_INPUT_ADDRESS:
4550      /* Can't use a register if it is used for an input address for this
4551	 operand or used as an input in an earlier one.  */
4552      if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
4553	  || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4554	return 0;
4555
4556      for (i = 0; i < opnum; i++)
4557	if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4558	  return 0;
4559
4560      return 1;
4561
4562    case RELOAD_FOR_INPADDR_ADDRESS:
4563      /* Can't use a register if it is used for an input address
4564	 for this operand or used as an input in an earlier
4565	 one.  */
4566      if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4567	return 0;
4568
4569      for (i = 0; i < opnum; i++)
4570	if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4571	  return 0;
4572
4573      return 1;
4574
4575    case RELOAD_FOR_OUTPUT_ADDRESS:
4576      /* Can't use a register if it is used for an output address for this
4577	 operand or used as an output in this or a later operand.  Note
4578	 that multiple output operands are emitted in reverse order, so
4579	 the conflicting ones are those with lower indices.  */
4580      if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
4581	return 0;
4582
4583      for (i = 0; i <= opnum; i++)
4584	if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4585	  return 0;
4586
4587      return 1;
4588
4589    case RELOAD_FOR_OUTADDR_ADDRESS:
4590      /* Can't use a register if it is used for an output address
4591	 for this operand or used as an output in this or a
4592	 later operand.  Note that multiple output operands are
4593	 emitted in reverse order, so the conflicting ones are
4594	 those with lower indices.  */
4595      if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
4596	return 0;
4597
4598      for (i = 0; i <= opnum; i++)
4599	if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4600	  return 0;
4601
4602      return 1;
4603
4604    case RELOAD_FOR_OPERAND_ADDRESS:
4605      for (i = 0; i < reload_n_operands; i++)
4606	if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4607	  return 0;
4608
4609      return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4610	      && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4611
4612    case RELOAD_FOR_OPADDR_ADDR:
4613      for (i = 0; i < reload_n_operands; i++)
4614	if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4615	  return 0;
4616
4617      return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
4618
4619    case RELOAD_FOR_OUTPUT:
4620      /* This cannot share a register with RELOAD_FOR_INSN reloads, other
4621	 outputs, or an operand address for this or an earlier output.
4622	 Note that multiple output operands are emitted in reverse order,
4623	 so the conflicting ones are those with higher indices.  */
4624      if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4625	return 0;
4626
4627      for (i = 0; i < reload_n_operands; i++)
4628	if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4629	  return 0;
4630
4631      for (i = opnum; i < reload_n_operands; i++)
4632	if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4633	    || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4634	  return 0;
4635
4636      return 1;
4637
4638    case RELOAD_FOR_INSN:
4639      for (i = 0; i < reload_n_operands; i++)
4640	if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4641	    || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4642	  return 0;
4643
4644      return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4645	      && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4646
4647    case RELOAD_FOR_OTHER_ADDRESS:
4648      return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
4649
4650    default:
4651      gcc_unreachable ();
4652    }
4653}
4654
4655/* Return 1 if the value in reload reg REGNO, as used by a reload
4656   needed for the part of the insn specified by OPNUM and TYPE,
4657   is still available in REGNO at the end of the insn.
4658
4659   We can assume that the reload reg was already tested for availability
4660   at the time it is needed, and we should not check this again,
4661   in case the reg has already been marked in use.  */
4662
4663static int
4664reload_reg_reaches_end_p (unsigned int regno, int opnum, enum reload_type type)
4665{
4666  int i;
4667
4668  switch (type)
4669    {
4670    case RELOAD_OTHER:
4671      /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
4672	 its value must reach the end.  */
4673      return 1;
4674
4675      /* If this use is for part of the insn,
4676	 its value reaches if no subsequent part uses the same register.
4677	 Just like the above function, don't try to do this with lots
4678	 of fallthroughs.  */
4679
4680    case RELOAD_FOR_OTHER_ADDRESS:
4681      /* Here we check for everything else, since these don't conflict
4682	 with anything else and everything comes later.  */
4683
4684      for (i = 0; i < reload_n_operands; i++)
4685	if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4686	    || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4687	    || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
4688	    || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4689	    || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4690	    || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4691	  return 0;
4692
4693      return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4694	      && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
4695	      && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4696	      && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
4697
4698    case RELOAD_FOR_INPUT_ADDRESS:
4699    case RELOAD_FOR_INPADDR_ADDRESS:
4700      /* Similar, except that we check only for this and subsequent inputs
4701	 and the address of only subsequent inputs and we do not need
4702	 to check for RELOAD_OTHER objects since they are known not to
4703	 conflict.  */
4704
4705      for (i = opnum; i < reload_n_operands; i++)
4706	if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4707	  return 0;
4708
4709      for (i = opnum + 1; i < reload_n_operands; i++)
4710	if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4711	    || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4712	  return 0;
4713
4714      for (i = 0; i < reload_n_operands; i++)
4715	if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4716	    || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4717	    || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4718	  return 0;
4719
4720      if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4721	return 0;
4722
4723      return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4724	      && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4725	      && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4726
4727    case RELOAD_FOR_INPUT:
4728      /* Similar to input address, except we start at the next operand for
4729	 both input and input address and we do not check for
4730	 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
4731	 would conflict.  */
4732
4733      for (i = opnum + 1; i < reload_n_operands; i++)
4734	if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4735	    || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4736	    || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4737	  return 0;
4738
4739      /* ... fall through ...  */
4740
4741    case RELOAD_FOR_OPERAND_ADDRESS:
4742      /* Check outputs and their addresses.  */
4743
4744      for (i = 0; i < reload_n_operands; i++)
4745	if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4746	    || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4747	    || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4748	  return 0;
4749
4750      return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
4751
4752    case RELOAD_FOR_OPADDR_ADDR:
4753      for (i = 0; i < reload_n_operands; i++)
4754	if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4755	    || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4756	    || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4757	  return 0;
4758
4759      return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4760	      && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4761	      && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4762
4763    case RELOAD_FOR_INSN:
4764      /* These conflict with other outputs with RELOAD_OTHER.  So
4765	 we need only check for output addresses.  */
4766
4767      opnum = reload_n_operands;
4768
4769      /* ... fall through ...  */
4770
4771    case RELOAD_FOR_OUTPUT:
4772    case RELOAD_FOR_OUTPUT_ADDRESS:
4773    case RELOAD_FOR_OUTADDR_ADDRESS:
4774      /* We already know these can't conflict with a later output.  So the
4775	 only thing to check are later output addresses.
4776	 Note that multiple output operands are emitted in reverse order,
4777	 so the conflicting ones are those with lower indices.  */
4778      for (i = 0; i < opnum; i++)
4779	if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4780	    || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4781	  return 0;
4782
4783      return 1;
4784
4785    default:
4786      gcc_unreachable ();
4787    }
4788}
4789
4790/* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
4791   Return 0 otherwise.
4792
4793   This function uses the same algorithm as reload_reg_free_p above.  */
4794
4795static int
4796reloads_conflict (int r1, int r2)
4797{
4798  enum reload_type r1_type = rld[r1].when_needed;
4799  enum reload_type r2_type = rld[r2].when_needed;
4800  int r1_opnum = rld[r1].opnum;
4801  int r2_opnum = rld[r2].opnum;
4802
4803  /* RELOAD_OTHER conflicts with everything.  */
4804  if (r2_type == RELOAD_OTHER)
4805    return 1;
4806
4807  /* Otherwise, check conflicts differently for each type.  */
4808
4809  switch (r1_type)
4810    {
4811    case RELOAD_FOR_INPUT:
4812      return (r2_type == RELOAD_FOR_INSN
4813	      || r2_type == RELOAD_FOR_OPERAND_ADDRESS
4814	      || r2_type == RELOAD_FOR_OPADDR_ADDR
4815	      || r2_type == RELOAD_FOR_INPUT
4816	      || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
4817		   || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
4818		  && r2_opnum > r1_opnum));
4819
4820    case RELOAD_FOR_INPUT_ADDRESS:
4821      return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
4822	      || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4823
4824    case RELOAD_FOR_INPADDR_ADDRESS:
4825      return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
4826	      || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4827
4828    case RELOAD_FOR_OUTPUT_ADDRESS:
4829      return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
4830	      || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4831
4832    case RELOAD_FOR_OUTADDR_ADDRESS:
4833      return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
4834	      || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4835
4836    case RELOAD_FOR_OPERAND_ADDRESS:
4837      return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
4838	      || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4839
4840    case RELOAD_FOR_OPADDR_ADDR:
4841      return (r2_type == RELOAD_FOR_INPUT
4842	      || r2_type == RELOAD_FOR_OPADDR_ADDR);
4843
4844    case RELOAD_FOR_OUTPUT:
4845      return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
4846	      || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
4847		   || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
4848		  && r2_opnum >= r1_opnum));
4849
4850    case RELOAD_FOR_INSN:
4851      return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
4852	      || r2_type == RELOAD_FOR_INSN
4853	      || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4854
4855    case RELOAD_FOR_OTHER_ADDRESS:
4856      return r2_type == RELOAD_FOR_OTHER_ADDRESS;
4857
4858    case RELOAD_OTHER:
4859      return 1;
4860
4861    default:
4862      gcc_unreachable ();
4863    }
4864}
4865
4866/* Indexed by reload number, 1 if incoming value
4867   inherited from previous insns.  */
4868static char reload_inherited[MAX_RELOADS];
4869
4870/* For an inherited reload, this is the insn the reload was inherited from,
4871   if we know it.  Otherwise, this is 0.  */
4872static rtx reload_inheritance_insn[MAX_RELOADS];
4873
4874/* If nonzero, this is a place to get the value of the reload,
4875   rather than using reload_in.  */
4876static rtx reload_override_in[MAX_RELOADS];
4877
4878/* For each reload, the hard register number of the register used,
4879   or -1 if we did not need a register for this reload.  */
4880static int reload_spill_index[MAX_RELOADS];
4881
4882/* Subroutine of free_for_value_p, used to check a single register.
4883   START_REGNO is the starting regno of the full reload register
4884   (possibly comprising multiple hard registers) that we are considering.  */
4885
4886static int
4887reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
4888			     enum reload_type type, rtx value, rtx out,
4889			     int reloadnum, int ignore_address_reloads)
4890{
4891  int time1;
4892  /* Set if we see an input reload that must not share its reload register
4893     with any new earlyclobber, but might otherwise share the reload
4894     register with an output or input-output reload.  */
4895  int check_earlyclobber = 0;
4896  int i;
4897  int copy = 0;
4898
4899  if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4900    return 0;
4901
4902  if (out == const0_rtx)
4903    {
4904      copy = 1;
4905      out = NULL_RTX;
4906    }
4907
4908  /* We use some pseudo 'time' value to check if the lifetimes of the
4909     new register use would overlap with the one of a previous reload
4910     that is not read-only or uses a different value.
4911     The 'time' used doesn't have to be linear in any shape or form, just
4912     monotonic.
4913     Some reload types use different 'buckets' for each operand.
4914     So there are MAX_RECOG_OPERANDS different time values for each
4915     such reload type.
4916     We compute TIME1 as the time when the register for the prospective
4917     new reload ceases to be live, and TIME2 for each existing
4918     reload as the time when that the reload register of that reload
4919     becomes live.
4920     Where there is little to be gained by exact lifetime calculations,
4921     we just make conservative assumptions, i.e. a longer lifetime;
4922     this is done in the 'default:' cases.  */
4923  switch (type)
4924    {
4925    case RELOAD_FOR_OTHER_ADDRESS:
4926      /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads.  */
4927      time1 = copy ? 0 : 1;
4928      break;
4929    case RELOAD_OTHER:
4930      time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
4931      break;
4932      /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
4933	 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT.  By adding 0 / 1 / 2 ,
4934	 respectively, to the time values for these, we get distinct time
4935	 values.  To get distinct time values for each operand, we have to
4936	 multiply opnum by at least three.  We round that up to four because
4937	 multiply by four is often cheaper.  */
4938    case RELOAD_FOR_INPADDR_ADDRESS:
4939      time1 = opnum * 4 + 2;
4940      break;
4941    case RELOAD_FOR_INPUT_ADDRESS:
4942      time1 = opnum * 4 + 3;
4943      break;
4944    case RELOAD_FOR_INPUT:
4945      /* All RELOAD_FOR_INPUT reloads remain live till the instruction
4946	 executes (inclusive).  */
4947      time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
4948      break;
4949    case RELOAD_FOR_OPADDR_ADDR:
4950      /* opnum * 4 + 4
4951	 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
4952      time1 = MAX_RECOG_OPERANDS * 4 + 1;
4953      break;
4954    case RELOAD_FOR_OPERAND_ADDRESS:
4955      /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
4956	 is executed.  */
4957      time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
4958      break;
4959    case RELOAD_FOR_OUTADDR_ADDRESS:
4960      time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
4961      break;
4962    case RELOAD_FOR_OUTPUT_ADDRESS:
4963      time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
4964      break;
4965    default:
4966      time1 = MAX_RECOG_OPERANDS * 5 + 5;
4967    }
4968
4969  for (i = 0; i < n_reloads; i++)
4970    {
4971      rtx reg = rld[i].reg_rtx;
4972      if (reg && REG_P (reg)
4973	  && ((unsigned) regno - true_regnum (reg)
4974	      <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
4975	  && i != reloadnum)
4976	{
4977	  rtx other_input = rld[i].in;
4978
4979	  /* If the other reload loads the same input value, that
4980	     will not cause a conflict only if it's loading it into
4981	     the same register.  */
4982	  if (true_regnum (reg) != start_regno)
4983	    other_input = NULL_RTX;
4984	  if (! other_input || ! rtx_equal_p (other_input, value)
4985	      || rld[i].out || out)
4986	    {
4987	      int time2;
4988	      switch (rld[i].when_needed)
4989		{
4990		case RELOAD_FOR_OTHER_ADDRESS:
4991		  time2 = 0;
4992		  break;
4993		case RELOAD_FOR_INPADDR_ADDRESS:
4994		  /* find_reloads makes sure that a
4995		     RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
4996		     by at most one - the first -
4997		     RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS .  If the
4998		     address reload is inherited, the address address reload
4999		     goes away, so we can ignore this conflict.  */
5000		  if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5001		      && ignore_address_reloads
5002		      /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5003			 Then the address address is still needed to store
5004			 back the new address.  */
5005		      && ! rld[reloadnum].out)
5006		    continue;
5007		  /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5008		     RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5009		     reloads go away.  */
5010		  if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5011		      && ignore_address_reloads
5012		      /* Unless we are reloading an auto_inc expression.  */
5013		      && ! rld[reloadnum].out)
5014		    continue;
5015		  time2 = rld[i].opnum * 4 + 2;
5016		  break;
5017		case RELOAD_FOR_INPUT_ADDRESS:
5018		  if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5019		      && ignore_address_reloads
5020		      && ! rld[reloadnum].out)
5021		    continue;
5022		  time2 = rld[i].opnum * 4 + 3;
5023		  break;
5024		case RELOAD_FOR_INPUT:
5025		  time2 = rld[i].opnum * 4 + 4;
5026		  check_earlyclobber = 1;
5027		  break;
5028		  /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5029		     == MAX_RECOG_OPERAND * 4  */
5030		case RELOAD_FOR_OPADDR_ADDR:
5031		  if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5032		      && ignore_address_reloads
5033		      && ! rld[reloadnum].out)
5034		    continue;
5035		  time2 = MAX_RECOG_OPERANDS * 4 + 1;
5036		  break;
5037		case RELOAD_FOR_OPERAND_ADDRESS:
5038		  time2 = MAX_RECOG_OPERANDS * 4 + 2;
5039		  check_earlyclobber = 1;
5040		  break;
5041		case RELOAD_FOR_INSN:
5042		  time2 = MAX_RECOG_OPERANDS * 4 + 3;
5043		  break;
5044		case RELOAD_FOR_OUTPUT:
5045		  /* All RELOAD_FOR_OUTPUT reloads become live just after the
5046		     instruction is executed.  */
5047		  time2 = MAX_RECOG_OPERANDS * 4 + 4;
5048		  break;
5049		  /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5050		     the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5051		     value.  */
5052		case RELOAD_FOR_OUTADDR_ADDRESS:
5053		  if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5054		      && ignore_address_reloads
5055		      && ! rld[reloadnum].out)
5056		    continue;
5057		  time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
5058		  break;
5059		case RELOAD_FOR_OUTPUT_ADDRESS:
5060		  time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
5061		  break;
5062		case RELOAD_OTHER:
5063		  /* If there is no conflict in the input part, handle this
5064		     like an output reload.  */
5065		  if (! rld[i].in || rtx_equal_p (other_input, value))
5066		    {
5067		      time2 = MAX_RECOG_OPERANDS * 4 + 4;
5068		      /* Earlyclobbered outputs must conflict with inputs.  */
5069		      if (earlyclobber_operand_p (rld[i].out))
5070			time2 = MAX_RECOG_OPERANDS * 4 + 3;
5071
5072		      break;
5073		    }
5074		  time2 = 1;
5075		  /* RELOAD_OTHER might be live beyond instruction execution,
5076		     but this is not obvious when we set time2 = 1.  So check
5077		     here if there might be a problem with the new reload
5078		     clobbering the register used by the RELOAD_OTHER.  */
5079		  if (out)
5080		    return 0;
5081		  break;
5082		default:
5083		  return 0;
5084		}
5085	      if ((time1 >= time2
5086		   && (! rld[i].in || rld[i].out
5087		       || ! rtx_equal_p (other_input, value)))
5088		  || (out && rld[reloadnum].out_reg
5089		      && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
5090		return 0;
5091	    }
5092	}
5093    }
5094
5095  /* Earlyclobbered outputs must conflict with inputs.  */
5096  if (check_earlyclobber && out && earlyclobber_operand_p (out))
5097    return 0;
5098
5099  return 1;
5100}
5101
5102/* Return 1 if the value in reload reg REGNO, as used by a reload
5103   needed for the part of the insn specified by OPNUM and TYPE,
5104   may be used to load VALUE into it.
5105
5106   MODE is the mode in which the register is used, this is needed to
5107   determine how many hard regs to test.
5108
5109   Other read-only reloads with the same value do not conflict
5110   unless OUT is nonzero and these other reloads have to live while
5111   output reloads live.
5112   If OUT is CONST0_RTX, this is a special case: it means that the
5113   test should not be for using register REGNO as reload register, but
5114   for copying from register REGNO into the reload register.
5115
5116   RELOADNUM is the number of the reload we want to load this value for;
5117   a reload does not conflict with itself.
5118
5119   When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
5120   reloads that load an address for the very reload we are considering.
5121
5122   The caller has to make sure that there is no conflict with the return
5123   register.  */
5124
5125static int
5126free_for_value_p (int regno, enum machine_mode mode, int opnum,
5127		  enum reload_type type, rtx value, rtx out, int reloadnum,
5128		  int ignore_address_reloads)
5129{
5130  int nregs = hard_regno_nregs[regno][mode];
5131  while (nregs-- > 0)
5132    if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
5133				       value, out, reloadnum,
5134				       ignore_address_reloads))
5135      return 0;
5136  return 1;
5137}
5138
5139/* Return nonzero if the rtx X is invariant over the current function.  */
5140/* ??? Actually, the places where we use this expect exactly what is
5141   tested here, and not everything that is function invariant.  In
5142   particular, the frame pointer and arg pointer are special cased;
5143   pic_offset_table_rtx is not, and we must not spill these things to
5144   memory.  */
5145
5146int
5147function_invariant_p (rtx x)
5148{
5149  if (CONSTANT_P (x))
5150    return 1;
5151  if (x == frame_pointer_rtx || x == arg_pointer_rtx)
5152    return 1;
5153  if (GET_CODE (x) == PLUS
5154      && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
5155      && CONSTANT_P (XEXP (x, 1)))
5156    return 1;
5157  return 0;
5158}
5159
5160/* Determine whether the reload reg X overlaps any rtx'es used for
5161   overriding inheritance.  Return nonzero if so.  */
5162
5163static int
5164conflicts_with_override (rtx x)
5165{
5166  int i;
5167  for (i = 0; i < n_reloads; i++)
5168    if (reload_override_in[i]
5169	&& reg_overlap_mentioned_p (x, reload_override_in[i]))
5170      return 1;
5171  return 0;
5172}
5173
5174/* Give an error message saying we failed to find a reload for INSN,
5175   and clear out reload R.  */
5176static void
5177failed_reload (rtx insn, int r)
5178{
5179  if (asm_noperands (PATTERN (insn)) < 0)
5180    /* It's the compiler's fault.  */
5181    fatal_insn ("could not find a spill register", insn);
5182
5183  /* It's the user's fault; the operand's mode and constraint
5184     don't match.  Disable this reload so we don't crash in final.  */
5185  error_for_asm (insn,
5186		 "%<asm%> operand constraint incompatible with operand size");
5187  rld[r].in = 0;
5188  rld[r].out = 0;
5189  rld[r].reg_rtx = 0;
5190  rld[r].optional = 1;
5191  rld[r].secondary_p = 1;
5192}
5193
5194/* I is the index in SPILL_REG_RTX of the reload register we are to allocate
5195   for reload R.  If it's valid, get an rtx for it.  Return nonzero if
5196   successful.  */
5197static int
5198set_reload_reg (int i, int r)
5199{
5200  int regno;
5201  rtx reg = spill_reg_rtx[i];
5202
5203  if (reg == 0 || GET_MODE (reg) != rld[r].mode)
5204    spill_reg_rtx[i] = reg
5205      = gen_rtx_REG (rld[r].mode, spill_regs[i]);
5206
5207  regno = true_regnum (reg);
5208
5209  /* Detect when the reload reg can't hold the reload mode.
5210     This used to be one `if', but Sequent compiler can't handle that.  */
5211  if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
5212    {
5213      enum machine_mode test_mode = VOIDmode;
5214      if (rld[r].in)
5215	test_mode = GET_MODE (rld[r].in);
5216      /* If rld[r].in has VOIDmode, it means we will load it
5217	 in whatever mode the reload reg has: to wit, rld[r].mode.
5218	 We have already tested that for validity.  */
5219      /* Aside from that, we need to test that the expressions
5220	 to reload from or into have modes which are valid for this
5221	 reload register.  Otherwise the reload insns would be invalid.  */
5222      if (! (rld[r].in != 0 && test_mode != VOIDmode
5223	     && ! HARD_REGNO_MODE_OK (regno, test_mode)))
5224	if (! (rld[r].out != 0
5225	       && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
5226	  {
5227	    /* The reg is OK.  */
5228	    last_spill_reg = i;
5229
5230	    /* Mark as in use for this insn the reload regs we use
5231	       for this.  */
5232	    mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
5233				    rld[r].when_needed, rld[r].mode);
5234
5235	    rld[r].reg_rtx = reg;
5236	    reload_spill_index[r] = spill_regs[i];
5237	    return 1;
5238	  }
5239    }
5240  return 0;
5241}
5242
5243/* Find a spill register to use as a reload register for reload R.
5244   LAST_RELOAD is nonzero if this is the last reload for the insn being
5245   processed.
5246
5247   Set rld[R].reg_rtx to the register allocated.
5248
5249   We return 1 if successful, or 0 if we couldn't find a spill reg and
5250   we didn't change anything.  */
5251
5252static int
5253allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
5254		     int last_reload)
5255{
5256  int i, pass, count;
5257
5258  /* If we put this reload ahead, thinking it is a group,
5259     then insist on finding a group.  Otherwise we can grab a
5260     reg that some other reload needs.
5261     (That can happen when we have a 68000 DATA_OR_FP_REG
5262     which is a group of data regs or one fp reg.)
5263     We need not be so restrictive if there are no more reloads
5264     for this insn.
5265
5266     ??? Really it would be nicer to have smarter handling
5267     for that kind of reg class, where a problem like this is normal.
5268     Perhaps those classes should be avoided for reloading
5269     by use of more alternatives.  */
5270
5271  int force_group = rld[r].nregs > 1 && ! last_reload;
5272
5273  /* If we want a single register and haven't yet found one,
5274     take any reg in the right class and not in use.
5275     If we want a consecutive group, here is where we look for it.
5276
5277     We use two passes so we can first look for reload regs to
5278     reuse, which are already in use for other reloads in this insn,
5279     and only then use additional registers.
5280     I think that maximizing reuse is needed to make sure we don't
5281     run out of reload regs.  Suppose we have three reloads, and
5282     reloads A and B can share regs.  These need two regs.
5283     Suppose A and B are given different regs.
5284     That leaves none for C.  */
5285  for (pass = 0; pass < 2; pass++)
5286    {
5287      /* I is the index in spill_regs.
5288	 We advance it round-robin between insns to use all spill regs
5289	 equally, so that inherited reloads have a chance
5290	 of leapfrogging each other.  */
5291
5292      i = last_spill_reg;
5293
5294      for (count = 0; count < n_spills; count++)
5295	{
5296	  int class = (int) rld[r].class;
5297	  int regnum;
5298
5299	  i++;
5300	  if (i >= n_spills)
5301	    i -= n_spills;
5302	  regnum = spill_regs[i];
5303
5304	  if ((reload_reg_free_p (regnum, rld[r].opnum,
5305				  rld[r].when_needed)
5306	       || (rld[r].in
5307		   /* We check reload_reg_used to make sure we
5308		      don't clobber the return register.  */
5309		   && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
5310		   && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
5311					rld[r].when_needed, rld[r].in,
5312					rld[r].out, r, 1)))
5313	      && TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
5314	      && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
5315	      /* Look first for regs to share, then for unshared.  But
5316		 don't share regs used for inherited reloads; they are
5317		 the ones we want to preserve.  */
5318	      && (pass
5319		  || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
5320					 regnum)
5321		      && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
5322					      regnum))))
5323	    {
5324	      int nr = hard_regno_nregs[regnum][rld[r].mode];
5325	      /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5326		 (on 68000) got us two FP regs.  If NR is 1,
5327		 we would reject both of them.  */
5328	      if (force_group)
5329		nr = rld[r].nregs;
5330	      /* If we need only one reg, we have already won.  */
5331	      if (nr == 1)
5332		{
5333		  /* But reject a single reg if we demand a group.  */
5334		  if (force_group)
5335		    continue;
5336		  break;
5337		}
5338	      /* Otherwise check that as many consecutive regs as we need
5339		 are available here.  */
5340	      while (nr > 1)
5341		{
5342		  int regno = regnum + nr - 1;
5343		  if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
5344			&& spill_reg_order[regno] >= 0
5345			&& reload_reg_free_p (regno, rld[r].opnum,
5346					      rld[r].when_needed)))
5347		    break;
5348		  nr--;
5349		}
5350	      if (nr == 1)
5351		break;
5352	    }
5353	}
5354
5355      /* If we found something on pass 1, omit pass 2.  */
5356      if (count < n_spills)
5357	break;
5358    }
5359
5360  /* We should have found a spill register by now.  */
5361  if (count >= n_spills)
5362    return 0;
5363
5364  /* I is the index in SPILL_REG_RTX of the reload register we are to
5365     allocate.  Get an rtx for it and find its register number.  */
5366
5367  return set_reload_reg (i, r);
5368}
5369
5370/* Initialize all the tables needed to allocate reload registers.
5371   CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5372   is the array we use to restore the reg_rtx field for every reload.  */
5373
5374static void
5375choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
5376{
5377  int i;
5378
5379  for (i = 0; i < n_reloads; i++)
5380    rld[i].reg_rtx = save_reload_reg_rtx[i];
5381
5382  memset (reload_inherited, 0, MAX_RELOADS);
5383  memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
5384  memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
5385
5386  CLEAR_HARD_REG_SET (reload_reg_used);
5387  CLEAR_HARD_REG_SET (reload_reg_used_at_all);
5388  CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
5389  CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
5390  CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
5391  CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
5392
5393  CLEAR_HARD_REG_SET (reg_used_in_insn);
5394  {
5395    HARD_REG_SET tmp;
5396    REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
5397    IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5398    REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
5399    IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5400    compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
5401    compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
5402  }
5403
5404  for (i = 0; i < reload_n_operands; i++)
5405    {
5406      CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
5407      CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
5408      CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
5409      CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
5410      CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
5411      CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
5412    }
5413
5414  COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
5415
5416  CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
5417
5418  for (i = 0; i < n_reloads; i++)
5419    /* If we have already decided to use a certain register,
5420       don't use it in another way.  */
5421    if (rld[i].reg_rtx)
5422      mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
5423			      rld[i].when_needed, rld[i].mode);
5424}
5425
5426/* Assign hard reg targets for the pseudo-registers we must reload
5427   into hard regs for this insn.
5428   Also output the instructions to copy them in and out of the hard regs.
5429
5430   For machines with register classes, we are responsible for
5431   finding a reload reg in the proper class.  */
5432
5433static void
5434choose_reload_regs (struct insn_chain *chain)
5435{
5436  rtx insn = chain->insn;
5437  int i, j;
5438  unsigned int max_group_size = 1;
5439  enum reg_class group_class = NO_REGS;
5440  int pass, win, inheritance;
5441
5442  rtx save_reload_reg_rtx[MAX_RELOADS];
5443
5444  /* In order to be certain of getting the registers we need,
5445     we must sort the reloads into order of increasing register class.
5446     Then our grabbing of reload registers will parallel the process
5447     that provided the reload registers.
5448
5449     Also note whether any of the reloads wants a consecutive group of regs.
5450     If so, record the maximum size of the group desired and what
5451     register class contains all the groups needed by this insn.  */
5452
5453  for (j = 0; j < n_reloads; j++)
5454    {
5455      reload_order[j] = j;
5456      if (rld[j].reg_rtx != NULL_RTX)
5457	{
5458	  gcc_assert (REG_P (rld[j].reg_rtx)
5459		      && HARD_REGISTER_P (rld[j].reg_rtx));
5460	  reload_spill_index[j] = REGNO (rld[j].reg_rtx);
5461	}
5462      else
5463	reload_spill_index[j] = -1;
5464
5465      if (rld[j].nregs > 1)
5466	{
5467	  max_group_size = MAX (rld[j].nregs, max_group_size);
5468	  group_class
5469	    = reg_class_superunion[(int) rld[j].class][(int) group_class];
5470	}
5471
5472      save_reload_reg_rtx[j] = rld[j].reg_rtx;
5473    }
5474
5475  if (n_reloads > 1)
5476    qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
5477
5478  /* If -O, try first with inheritance, then turning it off.
5479     If not -O, don't do inheritance.
5480     Using inheritance when not optimizing leads to paradoxes
5481     with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5482     because one side of the comparison might be inherited.  */
5483  win = 0;
5484  for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
5485    {
5486      choose_reload_regs_init (chain, save_reload_reg_rtx);
5487
5488      /* Process the reloads in order of preference just found.
5489	 Beyond this point, subregs can be found in reload_reg_rtx.
5490
5491	 This used to look for an existing reloaded home for all of the
5492	 reloads, and only then perform any new reloads.  But that could lose
5493	 if the reloads were done out of reg-class order because a later
5494	 reload with a looser constraint might have an old home in a register
5495	 needed by an earlier reload with a tighter constraint.
5496
5497	 To solve this, we make two passes over the reloads, in the order
5498	 described above.  In the first pass we try to inherit a reload
5499	 from a previous insn.  If there is a later reload that needs a
5500	 class that is a proper subset of the class being processed, we must
5501	 also allocate a spill register during the first pass.
5502
5503	 Then make a second pass over the reloads to allocate any reloads
5504	 that haven't been given registers yet.  */
5505
5506      for (j = 0; j < n_reloads; j++)
5507	{
5508	  int r = reload_order[j];
5509	  rtx search_equiv = NULL_RTX;
5510
5511	  /* Ignore reloads that got marked inoperative.  */
5512	  if (rld[r].out == 0 && rld[r].in == 0
5513	      && ! rld[r].secondary_p)
5514	    continue;
5515
5516	  /* If find_reloads chose to use reload_in or reload_out as a reload
5517	     register, we don't need to chose one.  Otherwise, try even if it
5518	     found one since we might save an insn if we find the value lying
5519	     around.
5520	     Try also when reload_in is a pseudo without a hard reg.  */
5521	  if (rld[r].in != 0 && rld[r].reg_rtx != 0
5522	      && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
5523		  || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
5524		      && !MEM_P (rld[r].in)
5525		      && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
5526	    continue;
5527
5528#if 0 /* No longer needed for correct operation.
5529	 It might give better code, or might not; worth an experiment?  */
5530	  /* If this is an optional reload, we can't inherit from earlier insns
5531	     until we are sure that any non-optional reloads have been allocated.
5532	     The following code takes advantage of the fact that optional reloads
5533	     are at the end of reload_order.  */
5534	  if (rld[r].optional != 0)
5535	    for (i = 0; i < j; i++)
5536	      if ((rld[reload_order[i]].out != 0
5537		   || rld[reload_order[i]].in != 0
5538		   || rld[reload_order[i]].secondary_p)
5539		  && ! rld[reload_order[i]].optional
5540		  && rld[reload_order[i]].reg_rtx == 0)
5541		allocate_reload_reg (chain, reload_order[i], 0);
5542#endif
5543
5544	  /* First see if this pseudo is already available as reloaded
5545	     for a previous insn.  We cannot try to inherit for reloads
5546	     that are smaller than the maximum number of registers needed
5547	     for groups unless the register we would allocate cannot be used
5548	     for the groups.
5549
5550	     We could check here to see if this is a secondary reload for
5551	     an object that is already in a register of the desired class.
5552	     This would avoid the need for the secondary reload register.
5553	     But this is complex because we can't easily determine what
5554	     objects might want to be loaded via this reload.  So let a
5555	     register be allocated here.  In `emit_reload_insns' we suppress
5556	     one of the loads in the case described above.  */
5557
5558	  if (inheritance)
5559	    {
5560	      int byte = 0;
5561	      int regno = -1;
5562	      enum machine_mode mode = VOIDmode;
5563
5564	      if (rld[r].in == 0)
5565		;
5566	      else if (REG_P (rld[r].in))
5567		{
5568		  regno = REGNO (rld[r].in);
5569		  mode = GET_MODE (rld[r].in);
5570		}
5571	      else if (REG_P (rld[r].in_reg))
5572		{
5573		  regno = REGNO (rld[r].in_reg);
5574		  mode = GET_MODE (rld[r].in_reg);
5575		}
5576	      else if (GET_CODE (rld[r].in_reg) == SUBREG
5577		       && REG_P (SUBREG_REG (rld[r].in_reg)))
5578		{
5579		  byte = SUBREG_BYTE (rld[r].in_reg);
5580		  regno = REGNO (SUBREG_REG (rld[r].in_reg));
5581		  if (regno < FIRST_PSEUDO_REGISTER)
5582		    regno = subreg_regno (rld[r].in_reg);
5583		  mode = GET_MODE (rld[r].in_reg);
5584		}
5585#ifdef AUTO_INC_DEC
5586	      else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
5587		       && REG_P (XEXP (rld[r].in_reg, 0)))
5588		{
5589		  regno = REGNO (XEXP (rld[r].in_reg, 0));
5590		  mode = GET_MODE (XEXP (rld[r].in_reg, 0));
5591		  rld[r].out = rld[r].in;
5592		}
5593#endif
5594#if 0
5595	      /* This won't work, since REGNO can be a pseudo reg number.
5596		 Also, it takes much more hair to keep track of all the things
5597		 that can invalidate an inherited reload of part of a pseudoreg.  */
5598	      else if (GET_CODE (rld[r].in) == SUBREG
5599		       && REG_P (SUBREG_REG (rld[r].in)))
5600		regno = subreg_regno (rld[r].in);
5601#endif
5602
5603	      if (regno >= 0 && reg_last_reload_reg[regno] != 0)
5604		{
5605		  enum reg_class class = rld[r].class, last_class;
5606		  rtx last_reg = reg_last_reload_reg[regno];
5607		  enum machine_mode need_mode;
5608
5609		  i = REGNO (last_reg);
5610		  i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
5611		  last_class = REGNO_REG_CLASS (i);
5612
5613		  if (byte == 0)
5614		    need_mode = mode;
5615		  else
5616		    need_mode
5617		      = smallest_mode_for_size (GET_MODE_BITSIZE (mode)
5618						+ byte * BITS_PER_UNIT,
5619						GET_MODE_CLASS (mode));
5620
5621		  if ((GET_MODE_SIZE (GET_MODE (last_reg))
5622		       >= GET_MODE_SIZE (need_mode))
5623#ifdef CANNOT_CHANGE_MODE_CLASS
5624		      /* Verify that the register in "i" can be obtained
5625			 from LAST_REG.  */
5626		      && !REG_CANNOT_CHANGE_MODE_P (REGNO (last_reg),
5627						    GET_MODE (last_reg),
5628						    mode)
5629#endif
5630		      && reg_reloaded_contents[i] == regno
5631		      && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
5632		      && HARD_REGNO_MODE_OK (i, rld[r].mode)
5633		      && (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
5634			  /* Even if we can't use this register as a reload
5635			     register, we might use it for reload_override_in,
5636			     if copying it to the desired class is cheap
5637			     enough.  */
5638			  || ((REGISTER_MOVE_COST (mode, last_class, class)
5639			       < MEMORY_MOVE_COST (mode, class, 1))
5640			      && (secondary_reload_class (1, class, mode,
5641							  last_reg)
5642				  == NO_REGS)
5643#ifdef SECONDARY_MEMORY_NEEDED
5644			      && ! SECONDARY_MEMORY_NEEDED (last_class, class,
5645							    mode)
5646#endif
5647			      ))
5648
5649		      && (rld[r].nregs == max_group_size
5650			  || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
5651						  i))
5652		      && free_for_value_p (i, rld[r].mode, rld[r].opnum,
5653					   rld[r].when_needed, rld[r].in,
5654					   const0_rtx, r, 1))
5655		    {
5656		      /* If a group is needed, verify that all the subsequent
5657			 registers still have their values intact.  */
5658		      int nr = hard_regno_nregs[i][rld[r].mode];
5659		      int k;
5660
5661		      for (k = 1; k < nr; k++)
5662			if (reg_reloaded_contents[i + k] != regno
5663			    || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
5664			  break;
5665
5666		      if (k == nr)
5667			{
5668			  int i1;
5669			  int bad_for_class;
5670
5671			  last_reg = (GET_MODE (last_reg) == mode
5672				      ? last_reg : gen_rtx_REG (mode, i));
5673
5674			  bad_for_class = 0;
5675			  for (k = 0; k < nr; k++)
5676			    bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5677								  i+k);
5678
5679			  /* We found a register that contains the
5680			     value we need.  If this register is the
5681			     same as an `earlyclobber' operand of the
5682			     current insn, just mark it as a place to
5683			     reload from since we can't use it as the
5684			     reload register itself.  */
5685
5686			  for (i1 = 0; i1 < n_earlyclobbers; i1++)
5687			    if (reg_overlap_mentioned_for_reload_p
5688				(reg_last_reload_reg[regno],
5689				 reload_earlyclobbers[i1]))
5690			      break;
5691
5692			  if (i1 != n_earlyclobbers
5693			      || ! (free_for_value_p (i, rld[r].mode,
5694						      rld[r].opnum,
5695						      rld[r].when_needed, rld[r].in,
5696						      rld[r].out, r, 1))
5697			      /* Don't use it if we'd clobber a pseudo reg.  */
5698			      || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
5699				  && rld[r].out
5700				  && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
5701			      /* Don't clobber the frame pointer.  */
5702			      || (i == HARD_FRAME_POINTER_REGNUM
5703				  && frame_pointer_needed
5704				  && rld[r].out)
5705			      /* Don't really use the inherited spill reg
5706				 if we need it wider than we've got it.  */
5707			      || (GET_MODE_SIZE (rld[r].mode)
5708				  > GET_MODE_SIZE (mode))
5709			      || bad_for_class
5710
5711			      /* If find_reloads chose reload_out as reload
5712				 register, stay with it - that leaves the
5713				 inherited register for subsequent reloads.  */
5714			      || (rld[r].out && rld[r].reg_rtx
5715				  && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
5716			    {
5717			      if (! rld[r].optional)
5718				{
5719				  reload_override_in[r] = last_reg;
5720				  reload_inheritance_insn[r]
5721				    = reg_reloaded_insn[i];
5722				}
5723			    }
5724			  else
5725			    {
5726			      int k;
5727			      /* We can use this as a reload reg.  */
5728			      /* Mark the register as in use for this part of
5729				 the insn.  */
5730			      mark_reload_reg_in_use (i,
5731						      rld[r].opnum,
5732						      rld[r].when_needed,
5733						      rld[r].mode);
5734			      rld[r].reg_rtx = last_reg;
5735			      reload_inherited[r] = 1;
5736			      reload_inheritance_insn[r]
5737				= reg_reloaded_insn[i];
5738			      reload_spill_index[r] = i;
5739			      for (k = 0; k < nr; k++)
5740				SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5741						  i + k);
5742			    }
5743			}
5744		    }
5745		}
5746	    }
5747
5748	  /* Here's another way to see if the value is already lying around.  */
5749	  if (inheritance
5750	      && rld[r].in != 0
5751	      && ! reload_inherited[r]
5752	      && rld[r].out == 0
5753	      && (CONSTANT_P (rld[r].in)
5754		  || GET_CODE (rld[r].in) == PLUS
5755		  || REG_P (rld[r].in)
5756		  || MEM_P (rld[r].in))
5757	      && (rld[r].nregs == max_group_size
5758		  || ! reg_classes_intersect_p (rld[r].class, group_class)))
5759	    search_equiv = rld[r].in;
5760	  /* If this is an output reload from a simple move insn, look
5761	     if an equivalence for the input is available.  */
5762	  else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
5763	    {
5764	      rtx set = single_set (insn);
5765
5766	      if (set
5767		  && rtx_equal_p (rld[r].out, SET_DEST (set))
5768		  && CONSTANT_P (SET_SRC (set)))
5769		search_equiv = SET_SRC (set);
5770	    }
5771
5772	  if (search_equiv)
5773	    {
5774	      rtx equiv
5775		= find_equiv_reg (search_equiv, insn, rld[r].class,
5776				  -1, NULL, 0, rld[r].mode);
5777	      int regno = 0;
5778
5779	      if (equiv != 0)
5780		{
5781		  if (REG_P (equiv))
5782		    regno = REGNO (equiv);
5783		  else
5784		    {
5785		      /* This must be a SUBREG of a hard register.
5786			 Make a new REG since this might be used in an
5787			 address and not all machines support SUBREGs
5788			 there.  */
5789		      gcc_assert (GET_CODE (equiv) == SUBREG);
5790		      regno = subreg_regno (equiv);
5791		      equiv = gen_rtx_REG (rld[r].mode, regno);
5792		      /* If we choose EQUIV as the reload register, but the
5793			 loop below decides to cancel the inheritance, we'll
5794			 end up reloading EQUIV in rld[r].mode, not the mode
5795			 it had originally.  That isn't safe when EQUIV isn't
5796			 available as a spill register since its value might
5797			 still be live at this point.  */
5798		      for (i = regno; i < regno + (int) rld[r].nregs; i++)
5799			if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
5800			  equiv = 0;
5801		    }
5802		}
5803
5804	      /* If we found a spill reg, reject it unless it is free
5805		 and of the desired class.  */
5806	      if (equiv != 0)
5807		{
5808		  int regs_used = 0;
5809		  int bad_for_class = 0;
5810		  int max_regno = regno + rld[r].nregs;
5811
5812		  for (i = regno; i < max_regno; i++)
5813		    {
5814		      regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
5815						      i);
5816		      bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5817							   i);
5818		    }
5819
5820		  if ((regs_used
5821		       && ! free_for_value_p (regno, rld[r].mode,
5822					      rld[r].opnum, rld[r].when_needed,
5823					      rld[r].in, rld[r].out, r, 1))
5824		      || bad_for_class)
5825		    equiv = 0;
5826		}
5827
5828	      if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
5829		equiv = 0;
5830
5831	      /* We found a register that contains the value we need.
5832		 If this register is the same as an `earlyclobber' operand
5833		 of the current insn, just mark it as a place to reload from
5834		 since we can't use it as the reload register itself.  */
5835
5836	      if (equiv != 0)
5837		for (i = 0; i < n_earlyclobbers; i++)
5838		  if (reg_overlap_mentioned_for_reload_p (equiv,
5839							  reload_earlyclobbers[i]))
5840		    {
5841		      if (! rld[r].optional)
5842			reload_override_in[r] = equiv;
5843		      equiv = 0;
5844		      break;
5845		    }
5846
5847	      /* If the equiv register we have found is explicitly clobbered
5848		 in the current insn, it depends on the reload type if we
5849		 can use it, use it for reload_override_in, or not at all.
5850		 In particular, we then can't use EQUIV for a
5851		 RELOAD_FOR_OUTPUT_ADDRESS reload.  */
5852
5853	      if (equiv != 0)
5854		{
5855		  if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
5856		    switch (rld[r].when_needed)
5857		      {
5858		      case RELOAD_FOR_OTHER_ADDRESS:
5859		      case RELOAD_FOR_INPADDR_ADDRESS:
5860		      case RELOAD_FOR_INPUT_ADDRESS:
5861		      case RELOAD_FOR_OPADDR_ADDR:
5862			break;
5863		      case RELOAD_OTHER:
5864		      case RELOAD_FOR_INPUT:
5865		      case RELOAD_FOR_OPERAND_ADDRESS:
5866			if (! rld[r].optional)
5867			  reload_override_in[r] = equiv;
5868			/* Fall through.  */
5869		      default:
5870			equiv = 0;
5871			break;
5872		      }
5873		  else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
5874		    switch (rld[r].when_needed)
5875		      {
5876		      case RELOAD_FOR_OTHER_ADDRESS:
5877		      case RELOAD_FOR_INPADDR_ADDRESS:
5878		      case RELOAD_FOR_INPUT_ADDRESS:
5879		      case RELOAD_FOR_OPADDR_ADDR:
5880		      case RELOAD_FOR_OPERAND_ADDRESS:
5881		      case RELOAD_FOR_INPUT:
5882			break;
5883		      case RELOAD_OTHER:
5884			if (! rld[r].optional)
5885			  reload_override_in[r] = equiv;
5886			/* Fall through.  */
5887		      default:
5888			equiv = 0;
5889			break;
5890		      }
5891		}
5892
5893	      /* If we found an equivalent reg, say no code need be generated
5894		 to load it, and use it as our reload reg.  */
5895	      if (equiv != 0
5896		  && (regno != HARD_FRAME_POINTER_REGNUM
5897		      || !frame_pointer_needed))
5898		{
5899		  int nr = hard_regno_nregs[regno][rld[r].mode];
5900		  int k;
5901		  rld[r].reg_rtx = equiv;
5902		  reload_inherited[r] = 1;
5903
5904		  /* If reg_reloaded_valid is not set for this register,
5905		     there might be a stale spill_reg_store lying around.
5906		     We must clear it, since otherwise emit_reload_insns
5907		     might delete the store.  */
5908		  if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
5909		    spill_reg_store[regno] = NULL_RTX;
5910		  /* If any of the hard registers in EQUIV are spill
5911		     registers, mark them as in use for this insn.  */
5912		  for (k = 0; k < nr; k++)
5913		    {
5914		      i = spill_reg_order[regno + k];
5915		      if (i >= 0)
5916			{
5917			  mark_reload_reg_in_use (regno, rld[r].opnum,
5918						  rld[r].when_needed,
5919						  rld[r].mode);
5920			  SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5921					    regno + k);
5922			}
5923		    }
5924		}
5925	    }
5926
5927	  /* If we found a register to use already, or if this is an optional
5928	     reload, we are done.  */
5929	  if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
5930	    continue;
5931
5932#if 0
5933	  /* No longer needed for correct operation.  Might or might
5934	     not give better code on the average.  Want to experiment?  */
5935
5936	  /* See if there is a later reload that has a class different from our
5937	     class that intersects our class or that requires less register
5938	     than our reload.  If so, we must allocate a register to this
5939	     reload now, since that reload might inherit a previous reload
5940	     and take the only available register in our class.  Don't do this
5941	     for optional reloads since they will force all previous reloads
5942	     to be allocated.  Also don't do this for reloads that have been
5943	     turned off.  */
5944
5945	  for (i = j + 1; i < n_reloads; i++)
5946	    {
5947	      int s = reload_order[i];
5948
5949	      if ((rld[s].in == 0 && rld[s].out == 0
5950		   && ! rld[s].secondary_p)
5951		  || rld[s].optional)
5952		continue;
5953
5954	      if ((rld[s].class != rld[r].class
5955		   && reg_classes_intersect_p (rld[r].class,
5956					       rld[s].class))
5957		  || rld[s].nregs < rld[r].nregs)
5958		break;
5959	    }
5960
5961	  if (i == n_reloads)
5962	    continue;
5963
5964	  allocate_reload_reg (chain, r, j == n_reloads - 1);
5965#endif
5966	}
5967
5968      /* Now allocate reload registers for anything non-optional that
5969	 didn't get one yet.  */
5970      for (j = 0; j < n_reloads; j++)
5971	{
5972	  int r = reload_order[j];
5973
5974	  /* Ignore reloads that got marked inoperative.  */
5975	  if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
5976	    continue;
5977
5978	  /* Skip reloads that already have a register allocated or are
5979	     optional.  */
5980	  if (rld[r].reg_rtx != 0 || rld[r].optional)
5981	    continue;
5982
5983	  if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
5984	    break;
5985	}
5986
5987      /* If that loop got all the way, we have won.  */
5988      if (j == n_reloads)
5989	{
5990	  win = 1;
5991	  break;
5992	}
5993
5994      /* Loop around and try without any inheritance.  */
5995    }
5996
5997  if (! win)
5998    {
5999      /* First undo everything done by the failed attempt
6000	 to allocate with inheritance.  */
6001      choose_reload_regs_init (chain, save_reload_reg_rtx);
6002
6003      /* Some sanity tests to verify that the reloads found in the first
6004	 pass are identical to the ones we have now.  */
6005      gcc_assert (chain->n_reloads == n_reloads);
6006
6007      for (i = 0; i < n_reloads; i++)
6008	{
6009	  if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6010	    continue;
6011	  gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
6012	  for (j = 0; j < n_spills; j++)
6013	    if (spill_regs[j] == chain->rld[i].regno)
6014	      if (! set_reload_reg (j, i))
6015		failed_reload (chain->insn, i);
6016	}
6017    }
6018
6019  /* If we thought we could inherit a reload, because it seemed that
6020     nothing else wanted the same reload register earlier in the insn,
6021     verify that assumption, now that all reloads have been assigned.
6022     Likewise for reloads where reload_override_in has been set.  */
6023
6024  /* If doing expensive optimizations, do one preliminary pass that doesn't
6025     cancel any inheritance, but removes reloads that have been needed only
6026     for reloads that we know can be inherited.  */
6027  for (pass = flag_expensive_optimizations; pass >= 0; pass--)
6028    {
6029      for (j = 0; j < n_reloads; j++)
6030	{
6031	  int r = reload_order[j];
6032	  rtx check_reg;
6033	  if (reload_inherited[r] && rld[r].reg_rtx)
6034	    check_reg = rld[r].reg_rtx;
6035	  else if (reload_override_in[r]
6036		   && (REG_P (reload_override_in[r])
6037		       || GET_CODE (reload_override_in[r]) == SUBREG))
6038	    check_reg = reload_override_in[r];
6039	  else
6040	    continue;
6041	  if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
6042				  rld[r].opnum, rld[r].when_needed, rld[r].in,
6043				  (reload_inherited[r]
6044				   ? rld[r].out : const0_rtx),
6045				  r, 1))
6046	    {
6047	      if (pass)
6048		continue;
6049	      reload_inherited[r] = 0;
6050	      reload_override_in[r] = 0;
6051	    }
6052	  /* If we can inherit a RELOAD_FOR_INPUT, or can use a
6053	     reload_override_in, then we do not need its related
6054	     RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
6055	     likewise for other reload types.
6056	     We handle this by removing a reload when its only replacement
6057	     is mentioned in reload_in of the reload we are going to inherit.
6058	     A special case are auto_inc expressions; even if the input is
6059	     inherited, we still need the address for the output.  We can
6060	     recognize them because they have RELOAD_OUT set to RELOAD_IN.
6061	     If we succeeded removing some reload and we are doing a preliminary
6062	     pass just to remove such reloads, make another pass, since the
6063	     removal of one reload might allow us to inherit another one.  */
6064	  else if (rld[r].in
6065		   && rld[r].out != rld[r].in
6066		   && remove_address_replacements (rld[r].in) && pass)
6067	    pass = 2;
6068	}
6069    }
6070
6071  /* Now that reload_override_in is known valid,
6072     actually override reload_in.  */
6073  for (j = 0; j < n_reloads; j++)
6074    if (reload_override_in[j])
6075      rld[j].in = reload_override_in[j];
6076
6077  /* If this reload won't be done because it has been canceled or is
6078     optional and not inherited, clear reload_reg_rtx so other
6079     routines (such as subst_reloads) don't get confused.  */
6080  for (j = 0; j < n_reloads; j++)
6081    if (rld[j].reg_rtx != 0
6082	&& ((rld[j].optional && ! reload_inherited[j])
6083	    || (rld[j].in == 0 && rld[j].out == 0
6084		&& ! rld[j].secondary_p)))
6085      {
6086	int regno = true_regnum (rld[j].reg_rtx);
6087
6088	if (spill_reg_order[regno] >= 0)
6089	  clear_reload_reg_in_use (regno, rld[j].opnum,
6090				   rld[j].when_needed, rld[j].mode);
6091	rld[j].reg_rtx = 0;
6092	reload_spill_index[j] = -1;
6093      }
6094
6095  /* Record which pseudos and which spill regs have output reloads.  */
6096  for (j = 0; j < n_reloads; j++)
6097    {
6098      int r = reload_order[j];
6099
6100      i = reload_spill_index[r];
6101
6102      /* I is nonneg if this reload uses a register.
6103	 If rld[r].reg_rtx is 0, this is an optional reload
6104	 that we opted to ignore.  */
6105      if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
6106	  && rld[r].reg_rtx != 0)
6107	{
6108	  int nregno = REGNO (rld[r].out_reg);
6109	  int nr = 1;
6110
6111	  if (nregno < FIRST_PSEUDO_REGISTER)
6112	    nr = hard_regno_nregs[nregno][rld[r].mode];
6113
6114	  while (--nr >= 0)
6115	    SET_REGNO_REG_SET (&reg_has_output_reload,
6116			       nregno + nr);
6117
6118	  if (i >= 0)
6119	    {
6120	      nr = hard_regno_nregs[i][rld[r].mode];
6121	      while (--nr >= 0)
6122		SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
6123	    }
6124
6125	  gcc_assert (rld[r].when_needed == RELOAD_OTHER
6126		      || rld[r].when_needed == RELOAD_FOR_OUTPUT
6127		      || rld[r].when_needed == RELOAD_FOR_INSN);
6128	}
6129    }
6130}
6131
6132/* Deallocate the reload register for reload R.  This is called from
6133   remove_address_replacements.  */
6134
6135void
6136deallocate_reload_reg (int r)
6137{
6138  int regno;
6139
6140  if (! rld[r].reg_rtx)
6141    return;
6142  regno = true_regnum (rld[r].reg_rtx);
6143  rld[r].reg_rtx = 0;
6144  if (spill_reg_order[regno] >= 0)
6145    clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
6146			     rld[r].mode);
6147  reload_spill_index[r] = -1;
6148}
6149
6150/* If SMALL_REGISTER_CLASSES is nonzero, we may not have merged two
6151   reloads of the same item for fear that we might not have enough reload
6152   registers. However, normally they will get the same reload register
6153   and hence actually need not be loaded twice.
6154
6155   Here we check for the most common case of this phenomenon: when we have
6156   a number of reloads for the same object, each of which were allocated
6157   the same reload_reg_rtx, that reload_reg_rtx is not used for any other
6158   reload, and is not modified in the insn itself.  If we find such,
6159   merge all the reloads and set the resulting reload to RELOAD_OTHER.
6160   This will not increase the number of spill registers needed and will
6161   prevent redundant code.  */
6162
6163static void
6164merge_assigned_reloads (rtx insn)
6165{
6166  int i, j;
6167
6168  /* Scan all the reloads looking for ones that only load values and
6169     are not already RELOAD_OTHER and ones whose reload_reg_rtx are
6170     assigned and not modified by INSN.  */
6171
6172  for (i = 0; i < n_reloads; i++)
6173    {
6174      int conflicting_input = 0;
6175      int max_input_address_opnum = -1;
6176      int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
6177
6178      if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
6179	  || rld[i].out != 0 || rld[i].reg_rtx == 0
6180	  || reg_set_p (rld[i].reg_rtx, insn))
6181	continue;
6182
6183      /* Look at all other reloads.  Ensure that the only use of this
6184	 reload_reg_rtx is in a reload that just loads the same value
6185	 as we do.  Note that any secondary reloads must be of the identical
6186	 class since the values, modes, and result registers are the
6187	 same, so we need not do anything with any secondary reloads.  */
6188
6189      for (j = 0; j < n_reloads; j++)
6190	{
6191	  if (i == j || rld[j].reg_rtx == 0
6192	      || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
6193					    rld[i].reg_rtx))
6194	    continue;
6195
6196	  if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6197	      && rld[j].opnum > max_input_address_opnum)
6198	    max_input_address_opnum = rld[j].opnum;
6199
6200	  /* If the reload regs aren't exactly the same (e.g, different modes)
6201	     or if the values are different, we can't merge this reload.
6202	     But if it is an input reload, we might still merge
6203	     RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads.  */
6204
6205	  if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6206	      || rld[j].out != 0 || rld[j].in == 0
6207	      || ! rtx_equal_p (rld[i].in, rld[j].in))
6208	    {
6209	      if (rld[j].when_needed != RELOAD_FOR_INPUT
6210		  || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
6211		       || rld[i].opnum > rld[j].opnum)
6212		      && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
6213		break;
6214	      conflicting_input = 1;
6215	      if (min_conflicting_input_opnum > rld[j].opnum)
6216		min_conflicting_input_opnum = rld[j].opnum;
6217	    }
6218	}
6219
6220      /* If all is OK, merge the reloads.  Only set this to RELOAD_OTHER if
6221	 we, in fact, found any matching reloads.  */
6222
6223      if (j == n_reloads
6224	  && max_input_address_opnum <= min_conflicting_input_opnum)
6225	{
6226	  gcc_assert (rld[i].when_needed != RELOAD_FOR_OUTPUT);
6227
6228	  for (j = 0; j < n_reloads; j++)
6229	    if (i != j && rld[j].reg_rtx != 0
6230		&& rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6231		&& (! conflicting_input
6232		    || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6233		    || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
6234	      {
6235		rld[i].when_needed = RELOAD_OTHER;
6236		rld[j].in = 0;
6237		reload_spill_index[j] = -1;
6238		transfer_replacements (i, j);
6239	      }
6240
6241	  /* If this is now RELOAD_OTHER, look for any reloads that
6242	     load parts of this operand and set them to
6243	     RELOAD_FOR_OTHER_ADDRESS if they were for inputs,
6244	     RELOAD_OTHER for outputs.  Note that this test is
6245	     equivalent to looking for reloads for this operand
6246	     number.
6247
6248	     We must take special care with RELOAD_FOR_OUTPUT_ADDRESS;
6249	     it may share registers with a RELOAD_FOR_INPUT, so we can
6250	     not change it to RELOAD_FOR_OTHER_ADDRESS.  We should
6251	     never need to, since we do not modify RELOAD_FOR_OUTPUT.
6252
6253	     It is possible that the RELOAD_FOR_OPERAND_ADDRESS
6254	     instruction is assigned the same register as the earlier
6255	     RELOAD_FOR_OTHER_ADDRESS instruction.  Merging these two
6256	     instructions will cause the RELOAD_FOR_OTHER_ADDRESS
6257	     instruction to be deleted later on.  */
6258
6259	  if (rld[i].when_needed == RELOAD_OTHER)
6260	    for (j = 0; j < n_reloads; j++)
6261	      if (rld[j].in != 0
6262		  && rld[j].when_needed != RELOAD_OTHER
6263		  && rld[j].when_needed != RELOAD_FOR_OTHER_ADDRESS
6264		  && rld[j].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
6265		  && rld[j].when_needed != RELOAD_FOR_OPERAND_ADDRESS
6266		  && (! conflicting_input
6267		      || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6268		      || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6269		  && reg_overlap_mentioned_for_reload_p (rld[j].in,
6270							 rld[i].in))
6271		{
6272		  int k;
6273
6274		  rld[j].when_needed
6275		    = ((rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6276			|| rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6277		       ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
6278
6279		  /* Check to see if we accidentally converted two
6280		     reloads that use the same reload register with
6281		     different inputs to the same type.  If so, the
6282		     resulting code won't work.  */
6283		  if (rld[j].reg_rtx)
6284		    for (k = 0; k < j; k++)
6285		      gcc_assert (rld[k].in == 0 || rld[k].reg_rtx == 0
6286				  || rld[k].when_needed != rld[j].when_needed
6287				  || !rtx_equal_p (rld[k].reg_rtx,
6288						   rld[j].reg_rtx)
6289				  || rtx_equal_p (rld[k].in,
6290						  rld[j].in));
6291		}
6292	}
6293    }
6294}
6295
6296/* These arrays are filled by emit_reload_insns and its subroutines.  */
6297static rtx input_reload_insns[MAX_RECOG_OPERANDS];
6298static rtx other_input_address_reload_insns = 0;
6299static rtx other_input_reload_insns = 0;
6300static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
6301static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6302static rtx output_reload_insns[MAX_RECOG_OPERANDS];
6303static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
6304static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6305static rtx operand_reload_insns = 0;
6306static rtx other_operand_reload_insns = 0;
6307static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
6308
6309/* Values to be put in spill_reg_store are put here first.  */
6310static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
6311static HARD_REG_SET reg_reloaded_died;
6312
6313/* Check if *RELOAD_REG is suitable as an intermediate or scratch register
6314   of class NEW_CLASS with mode NEW_MODE.  Or alternatively, if alt_reload_reg
6315   is nonzero, if that is suitable.  On success, change *RELOAD_REG to the
6316   adjusted register, and return true.  Otherwise, return false.  */
6317static bool
6318reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
6319			    enum reg_class new_class,
6320			    enum machine_mode new_mode)
6321
6322{
6323  rtx reg;
6324
6325  for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
6326    {
6327      unsigned regno = REGNO (reg);
6328
6329      if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
6330	continue;
6331      if (GET_MODE (reg) != new_mode)
6332	{
6333	  if (!HARD_REGNO_MODE_OK (regno, new_mode))
6334	    continue;
6335	  if (hard_regno_nregs[regno][new_mode]
6336	      > hard_regno_nregs[regno][GET_MODE (reg)])
6337	    continue;
6338	  reg = reload_adjust_reg_for_mode (reg, new_mode);
6339	}
6340      *reload_reg = reg;
6341      return true;
6342    }
6343  return false;
6344}
6345
6346/* Check if *RELOAD_REG is suitable as a scratch register for the reload
6347   pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
6348   nonzero, if that is suitable.  On success, change *RELOAD_REG to the
6349   adjusted register, and return true.  Otherwise, return false.  */
6350static bool
6351reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
6352			     enum insn_code icode)
6353
6354{
6355  enum reg_class new_class = scratch_reload_class (icode);
6356  enum machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
6357
6358  return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
6359				     new_class, new_mode);
6360}
6361
6362/* Generate insns to perform reload RL, which is for the insn in CHAIN and
6363   has the number J.  OLD contains the value to be used as input.  */
6364
6365static void
6366emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
6367			 rtx old, int j)
6368{
6369  rtx insn = chain->insn;
6370  rtx reloadreg = rl->reg_rtx;
6371  rtx oldequiv_reg = 0;
6372  rtx oldequiv = 0;
6373  int special = 0;
6374  enum machine_mode mode;
6375  rtx *where;
6376
6377  /* Determine the mode to reload in.
6378     This is very tricky because we have three to choose from.
6379     There is the mode the insn operand wants (rl->inmode).
6380     There is the mode of the reload register RELOADREG.
6381     There is the intrinsic mode of the operand, which we could find
6382     by stripping some SUBREGs.
6383     It turns out that RELOADREG's mode is irrelevant:
6384     we can change that arbitrarily.
6385
6386     Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
6387     then the reload reg may not support QImode moves, so use SImode.
6388     If foo is in memory due to spilling a pseudo reg, this is safe,
6389     because the QImode value is in the least significant part of a
6390     slot big enough for a SImode.  If foo is some other sort of
6391     memory reference, then it is impossible to reload this case,
6392     so previous passes had better make sure this never happens.
6393
6394     Then consider a one-word union which has SImode and one of its
6395     members is a float, being fetched as (SUBREG:SF union:SI).
6396     We must fetch that as SFmode because we could be loading into
6397     a float-only register.  In this case OLD's mode is correct.
6398
6399     Consider an immediate integer: it has VOIDmode.  Here we need
6400     to get a mode from something else.
6401
6402     In some cases, there is a fourth mode, the operand's
6403     containing mode.  If the insn specifies a containing mode for
6404     this operand, it overrides all others.
6405
6406     I am not sure whether the algorithm here is always right,
6407     but it does the right things in those cases.  */
6408
6409  mode = GET_MODE (old);
6410  if (mode == VOIDmode)
6411    mode = rl->inmode;
6412
6413  /* delete_output_reload is only invoked properly if old contains
6414     the original pseudo register.  Since this is replaced with a
6415     hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6416     find the pseudo in RELOAD_IN_REG.  */
6417  if (reload_override_in[j]
6418      && REG_P (rl->in_reg))
6419    {
6420      oldequiv = old;
6421      old = rl->in_reg;
6422    }
6423  if (oldequiv == 0)
6424    oldequiv = old;
6425  else if (REG_P (oldequiv))
6426    oldequiv_reg = oldequiv;
6427  else if (GET_CODE (oldequiv) == SUBREG)
6428    oldequiv_reg = SUBREG_REG (oldequiv);
6429
6430  /* If we are reloading from a register that was recently stored in
6431     with an output-reload, see if we can prove there was
6432     actually no need to store the old value in it.  */
6433
6434  if (optimize && REG_P (oldequiv)
6435      && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6436      && spill_reg_store[REGNO (oldequiv)]
6437      && REG_P (old)
6438      && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
6439	  || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6440			  rl->out_reg)))
6441    delete_output_reload (insn, j, REGNO (oldequiv));
6442
6443  /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
6444     then load RELOADREG from OLDEQUIV.  Note that we cannot use
6445     gen_lowpart_common since it can do the wrong thing when
6446     RELOADREG has a multi-word mode.  Note that RELOADREG
6447     must always be a REG here.  */
6448
6449  if (GET_MODE (reloadreg) != mode)
6450    reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6451  while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
6452    oldequiv = SUBREG_REG (oldequiv);
6453  if (GET_MODE (oldequiv) != VOIDmode
6454      && mode != GET_MODE (oldequiv))
6455    oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
6456
6457  /* Switch to the right place to emit the reload insns.  */
6458  switch (rl->when_needed)
6459    {
6460    case RELOAD_OTHER:
6461      where = &other_input_reload_insns;
6462      break;
6463    case RELOAD_FOR_INPUT:
6464      where = &input_reload_insns[rl->opnum];
6465      break;
6466    case RELOAD_FOR_INPUT_ADDRESS:
6467      where = &input_address_reload_insns[rl->opnum];
6468      break;
6469    case RELOAD_FOR_INPADDR_ADDRESS:
6470      where = &inpaddr_address_reload_insns[rl->opnum];
6471      break;
6472    case RELOAD_FOR_OUTPUT_ADDRESS:
6473      where = &output_address_reload_insns[rl->opnum];
6474      break;
6475    case RELOAD_FOR_OUTADDR_ADDRESS:
6476      where = &outaddr_address_reload_insns[rl->opnum];
6477      break;
6478    case RELOAD_FOR_OPERAND_ADDRESS:
6479      where = &operand_reload_insns;
6480      break;
6481    case RELOAD_FOR_OPADDR_ADDR:
6482      where = &other_operand_reload_insns;
6483      break;
6484    case RELOAD_FOR_OTHER_ADDRESS:
6485      where = &other_input_address_reload_insns;
6486      break;
6487    default:
6488      gcc_unreachable ();
6489    }
6490
6491  push_to_sequence (*where);
6492
6493  /* Auto-increment addresses must be reloaded in a special way.  */
6494  if (rl->out && ! rl->out_reg)
6495    {
6496      /* We are not going to bother supporting the case where a
6497	 incremented register can't be copied directly from
6498	 OLDEQUIV since this seems highly unlikely.  */
6499      gcc_assert (rl->secondary_in_reload < 0);
6500
6501      if (reload_inherited[j])
6502	oldequiv = reloadreg;
6503
6504      old = XEXP (rl->in_reg, 0);
6505
6506      if (optimize && REG_P (oldequiv)
6507	  && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6508	  && spill_reg_store[REGNO (oldequiv)]
6509	  && REG_P (old)
6510	  && (dead_or_set_p (insn,
6511			     spill_reg_stored_to[REGNO (oldequiv)])
6512	      || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6513			      old)))
6514	delete_output_reload (insn, j, REGNO (oldequiv));
6515
6516      /* Prevent normal processing of this reload.  */
6517      special = 1;
6518      /* Output a special code sequence for this case.  */
6519      new_spill_reg_store[REGNO (reloadreg)]
6520	= inc_for_reload (reloadreg, oldequiv, rl->out,
6521			  rl->inc);
6522    }
6523
6524  /* If we are reloading a pseudo-register that was set by the previous
6525     insn, see if we can get rid of that pseudo-register entirely
6526     by redirecting the previous insn into our reload register.  */
6527
6528  else if (optimize && REG_P (old)
6529	   && REGNO (old) >= FIRST_PSEUDO_REGISTER
6530	   && dead_or_set_p (insn, old)
6531	   /* This is unsafe if some other reload
6532	      uses the same reg first.  */
6533	   && ! conflicts_with_override (reloadreg)
6534	   && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
6535				rl->when_needed, old, rl->out, j, 0))
6536    {
6537      rtx temp = PREV_INSN (insn);
6538      while (temp && NOTE_P (temp))
6539	temp = PREV_INSN (temp);
6540      if (temp
6541	  && NONJUMP_INSN_P (temp)
6542	  && GET_CODE (PATTERN (temp)) == SET
6543	  && SET_DEST (PATTERN (temp)) == old
6544	  /* Make sure we can access insn_operand_constraint.  */
6545	  && asm_noperands (PATTERN (temp)) < 0
6546	  /* This is unsafe if operand occurs more than once in current
6547	     insn.  Perhaps some occurrences aren't reloaded.  */
6548	  && count_occurrences (PATTERN (insn), old, 0) == 1)
6549	{
6550	  rtx old = SET_DEST (PATTERN (temp));
6551	  /* Store into the reload register instead of the pseudo.  */
6552	  SET_DEST (PATTERN (temp)) = reloadreg;
6553
6554	  /* Verify that resulting insn is valid.  */
6555	  extract_insn (temp);
6556	  if (constrain_operands (1))
6557	    {
6558	      /* If the previous insn is an output reload, the source is
6559		 a reload register, and its spill_reg_store entry will
6560		 contain the previous destination.  This is now
6561		 invalid.  */
6562	      if (REG_P (SET_SRC (PATTERN (temp)))
6563		  && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
6564		{
6565		  spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6566		  spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6567		}
6568
6569	      /* If these are the only uses of the pseudo reg,
6570		 pretend for GDB it lives in the reload reg we used.  */
6571	      if (REG_N_DEATHS (REGNO (old)) == 1
6572		  && REG_N_SETS (REGNO (old)) == 1)
6573		{
6574		  reg_renumber[REGNO (old)] = REGNO (rl->reg_rtx);
6575		  alter_reg (REGNO (old), -1);
6576		}
6577	      special = 1;
6578	    }
6579	  else
6580	    {
6581	      SET_DEST (PATTERN (temp)) = old;
6582	    }
6583	}
6584    }
6585
6586  /* We can't do that, so output an insn to load RELOADREG.  */
6587
6588  /* If we have a secondary reload, pick up the secondary register
6589     and icode, if any.  If OLDEQUIV and OLD are different or
6590     if this is an in-out reload, recompute whether or not we
6591     still need a secondary register and what the icode should
6592     be.  If we still need a secondary register and the class or
6593     icode is different, go back to reloading from OLD if using
6594     OLDEQUIV means that we got the wrong type of register.  We
6595     cannot have different class or icode due to an in-out reload
6596     because we don't make such reloads when both the input and
6597     output need secondary reload registers.  */
6598
6599  if (! special && rl->secondary_in_reload >= 0)
6600    {
6601      rtx second_reload_reg = 0;
6602      rtx third_reload_reg = 0;
6603      int secondary_reload = rl->secondary_in_reload;
6604      rtx real_oldequiv = oldequiv;
6605      rtx real_old = old;
6606      rtx tmp;
6607      enum insn_code icode;
6608      enum insn_code tertiary_icode = CODE_FOR_nothing;
6609
6610      /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
6611	 and similarly for OLD.
6612	 See comments in get_secondary_reload in reload.c.  */
6613      /* If it is a pseudo that cannot be replaced with its
6614	 equivalent MEM, we must fall back to reload_in, which
6615	 will have all the necessary substitutions registered.
6616	 Likewise for a pseudo that can't be replaced with its
6617	 equivalent constant.
6618
6619	 Take extra care for subregs of such pseudos.  Note that
6620	 we cannot use reg_equiv_mem in this case because it is
6621	 not in the right mode.  */
6622
6623      tmp = oldequiv;
6624      if (GET_CODE (tmp) == SUBREG)
6625	tmp = SUBREG_REG (tmp);
6626      if (REG_P (tmp)
6627	  && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6628	  && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6629	      || reg_equiv_constant[REGNO (tmp)] != 0))
6630	{
6631	  if (! reg_equiv_mem[REGNO (tmp)]
6632	      || num_not_at_initial_offset
6633	      || GET_CODE (oldequiv) == SUBREG)
6634	    real_oldequiv = rl->in;
6635	  else
6636	    real_oldequiv = reg_equiv_mem[REGNO (tmp)];
6637	}
6638
6639      tmp = old;
6640      if (GET_CODE (tmp) == SUBREG)
6641	tmp = SUBREG_REG (tmp);
6642      if (REG_P (tmp)
6643	  && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6644	  && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6645	      || reg_equiv_constant[REGNO (tmp)] != 0))
6646	{
6647	  if (! reg_equiv_mem[REGNO (tmp)]
6648	      || num_not_at_initial_offset
6649	      || GET_CODE (old) == SUBREG)
6650	    real_old = rl->in;
6651	  else
6652	    real_old = reg_equiv_mem[REGNO (tmp)];
6653	}
6654
6655      second_reload_reg = rld[secondary_reload].reg_rtx;
6656      if (rld[secondary_reload].secondary_in_reload >= 0)
6657	{
6658	  int tertiary_reload = rld[secondary_reload].secondary_in_reload;
6659
6660	  third_reload_reg = rld[tertiary_reload].reg_rtx;
6661	  tertiary_icode = rld[secondary_reload].secondary_in_icode;
6662	  /* We'd have to add more code for quartary reloads.  */
6663	  gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
6664	}
6665      icode = rl->secondary_in_icode;
6666
6667      if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
6668	  || (rl->in != 0 && rl->out != 0))
6669	{
6670	  secondary_reload_info sri, sri2;
6671	  enum reg_class new_class, new_t_class;
6672
6673	  sri.icode = CODE_FOR_nothing;
6674	  sri.prev_sri = NULL;
6675	  new_class = targetm.secondary_reload (1, real_oldequiv, rl->class,
6676						mode, &sri);
6677
6678	  if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
6679	    second_reload_reg = 0;
6680	  else if (new_class == NO_REGS)
6681	    {
6682	      if (reload_adjust_reg_for_icode (&second_reload_reg,
6683					       third_reload_reg, sri.icode))
6684		icode = sri.icode, third_reload_reg = 0;
6685	      else
6686		oldequiv = old, real_oldequiv = real_old;
6687	    }
6688	  else if (sri.icode != CODE_FOR_nothing)
6689	    /* We currently lack a way to express this in reloads.  */
6690	    gcc_unreachable ();
6691	  else
6692	    {
6693	      sri2.icode = CODE_FOR_nothing;
6694	      sri2.prev_sri = &sri;
6695	      new_t_class = targetm.secondary_reload (1, real_oldequiv,
6696						      new_class, mode, &sri);
6697	      if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
6698		{
6699		  if (reload_adjust_reg_for_temp (&second_reload_reg,
6700						  third_reload_reg,
6701						  new_class, mode))
6702		    third_reload_reg = 0, tertiary_icode = sri2.icode;
6703		  else
6704		    oldequiv = old, real_oldequiv = real_old;
6705		}
6706	      else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
6707		{
6708		  rtx intermediate = second_reload_reg;
6709
6710		  if (reload_adjust_reg_for_temp (&intermediate, NULL,
6711						  new_class, mode)
6712		      && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
6713						      sri2.icode))
6714		    {
6715		      second_reload_reg = intermediate;
6716		      tertiary_icode = sri2.icode;
6717		    }
6718		  else
6719		    oldequiv = old, real_oldequiv = real_old;
6720		}
6721	      else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
6722		{
6723		  rtx intermediate = second_reload_reg;
6724
6725		  if (reload_adjust_reg_for_temp (&intermediate, NULL,
6726						  new_class, mode)
6727		      && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
6728						      new_t_class, mode))
6729		    {
6730		      second_reload_reg = intermediate;
6731		      tertiary_icode = sri2.icode;
6732		    }
6733		  else
6734		    oldequiv = old, real_oldequiv = real_old;
6735		}
6736	      else
6737		/* This could be handled more intelligently too.  */
6738		oldequiv = old, real_oldequiv = real_old;
6739	    }
6740	}
6741
6742      /* If we still need a secondary reload register, check
6743	 to see if it is being used as a scratch or intermediate
6744	 register and generate code appropriately.  If we need
6745	 a scratch register, use REAL_OLDEQUIV since the form of
6746	 the insn may depend on the actual address if it is
6747	 a MEM.  */
6748
6749      if (second_reload_reg)
6750	{
6751	  if (icode != CODE_FOR_nothing)
6752	    {
6753	      /* We'd have to add extra code to handle this case.  */
6754	      gcc_assert (!third_reload_reg);
6755
6756	      emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
6757					  second_reload_reg));
6758	      special = 1;
6759	    }
6760	  else
6761	    {
6762	      /* See if we need a scratch register to load the
6763		 intermediate register (a tertiary reload).  */
6764	      if (tertiary_icode != CODE_FOR_nothing)
6765		{
6766		  emit_insn ((GEN_FCN (tertiary_icode)
6767			      (second_reload_reg, real_oldequiv,
6768			       third_reload_reg)));
6769		}
6770	      else if (third_reload_reg)
6771		{
6772		  gen_reload (third_reload_reg, real_oldequiv,
6773			      rl->opnum,
6774			      rl->when_needed);
6775		  gen_reload (second_reload_reg, third_reload_reg,
6776			      rl->opnum,
6777			      rl->when_needed);
6778		}
6779	      else
6780		gen_reload (second_reload_reg, real_oldequiv,
6781			    rl->opnum,
6782			    rl->when_needed);
6783
6784	      oldequiv = second_reload_reg;
6785	    }
6786	}
6787    }
6788
6789  if (! special && ! rtx_equal_p (reloadreg, oldequiv))
6790    {
6791      rtx real_oldequiv = oldequiv;
6792
6793      if ((REG_P (oldequiv)
6794	   && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
6795	   && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
6796	       || reg_equiv_constant[REGNO (oldequiv)] != 0))
6797	  || (GET_CODE (oldequiv) == SUBREG
6798	      && REG_P (SUBREG_REG (oldequiv))
6799	      && (REGNO (SUBREG_REG (oldequiv))
6800		  >= FIRST_PSEUDO_REGISTER)
6801	      && ((reg_equiv_memory_loc
6802		   [REGNO (SUBREG_REG (oldequiv))] != 0)
6803		  || (reg_equiv_constant
6804		      [REGNO (SUBREG_REG (oldequiv))] != 0)))
6805	  || (CONSTANT_P (oldequiv)
6806	      && (PREFERRED_RELOAD_CLASS (oldequiv,
6807					  REGNO_REG_CLASS (REGNO (reloadreg)))
6808		  == NO_REGS)))
6809	real_oldequiv = rl->in;
6810      gen_reload (reloadreg, real_oldequiv, rl->opnum,
6811		  rl->when_needed);
6812    }
6813
6814  if (flag_non_call_exceptions)
6815    copy_eh_notes (insn, get_insns ());
6816
6817  /* End this sequence.  */
6818  *where = get_insns ();
6819  end_sequence ();
6820
6821  /* Update reload_override_in so that delete_address_reloads_1
6822     can see the actual register usage.  */
6823  if (oldequiv_reg)
6824    reload_override_in[j] = oldequiv;
6825}
6826
6827/* Generate insns to for the output reload RL, which is for the insn described
6828   by CHAIN and has the number J.  */
6829static void
6830emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
6831			  int j)
6832{
6833  rtx reloadreg = rl->reg_rtx;
6834  rtx insn = chain->insn;
6835  int special = 0;
6836  rtx old = rl->out;
6837  enum machine_mode mode = GET_MODE (old);
6838  rtx p;
6839
6840  if (rl->when_needed == RELOAD_OTHER)
6841    start_sequence ();
6842  else
6843    push_to_sequence (output_reload_insns[rl->opnum]);
6844
6845  /* Determine the mode to reload in.
6846     See comments above (for input reloading).  */
6847
6848  if (mode == VOIDmode)
6849    {
6850      /* VOIDmode should never happen for an output.  */
6851      if (asm_noperands (PATTERN (insn)) < 0)
6852	/* It's the compiler's fault.  */
6853	fatal_insn ("VOIDmode on an output", insn);
6854      error_for_asm (insn, "output operand is constant in %<asm%>");
6855      /* Prevent crash--use something we know is valid.  */
6856      mode = word_mode;
6857      old = gen_rtx_REG (mode, REGNO (reloadreg));
6858    }
6859
6860  if (GET_MODE (reloadreg) != mode)
6861    reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6862
6863  /* If we need two reload regs, set RELOADREG to the intermediate
6864     one, since it will be stored into OLD.  We might need a secondary
6865     register only for an input reload, so check again here.  */
6866
6867  if (rl->secondary_out_reload >= 0)
6868    {
6869      rtx real_old = old;
6870      int secondary_reload = rl->secondary_out_reload;
6871      int tertiary_reload = rld[secondary_reload].secondary_out_reload;
6872
6873      if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
6874	  && reg_equiv_mem[REGNO (old)] != 0)
6875	real_old = reg_equiv_mem[REGNO (old)];
6876
6877      if (secondary_reload_class (0, rl->class, mode, real_old) != NO_REGS)
6878	{
6879	  rtx second_reloadreg = reloadreg;
6880	  reloadreg = rld[secondary_reload].reg_rtx;
6881
6882	  /* See if RELOADREG is to be used as a scratch register
6883	     or as an intermediate register.  */
6884	  if (rl->secondary_out_icode != CODE_FOR_nothing)
6885	    {
6886	      /* We'd have to add extra code to handle this case.  */
6887	      gcc_assert (tertiary_reload < 0);
6888
6889	      emit_insn ((GEN_FCN (rl->secondary_out_icode)
6890			  (real_old, second_reloadreg, reloadreg)));
6891	      special = 1;
6892	    }
6893	  else
6894	    {
6895	      /* See if we need both a scratch and intermediate reload
6896		 register.  */
6897
6898	      enum insn_code tertiary_icode
6899		= rld[secondary_reload].secondary_out_icode;
6900
6901	      /* We'd have to add more code for quartary reloads.  */
6902	      gcc_assert (tertiary_reload < 0
6903			  || rld[tertiary_reload].secondary_out_reload < 0);
6904
6905	      if (GET_MODE (reloadreg) != mode)
6906		reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6907
6908	      if (tertiary_icode != CODE_FOR_nothing)
6909		{
6910		  rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
6911		  rtx tem;
6912
6913		  /* Copy primary reload reg to secondary reload reg.
6914		     (Note that these have been swapped above, then
6915		     secondary reload reg to OLD using our insn.)  */
6916
6917		  /* If REAL_OLD is a paradoxical SUBREG, remove it
6918		     and try to put the opposite SUBREG on
6919		     RELOADREG.  */
6920		  if (GET_CODE (real_old) == SUBREG
6921		      && (GET_MODE_SIZE (GET_MODE (real_old))
6922			  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
6923		      && 0 != (tem = gen_lowpart_common
6924			       (GET_MODE (SUBREG_REG (real_old)),
6925				reloadreg)))
6926		    real_old = SUBREG_REG (real_old), reloadreg = tem;
6927
6928		  gen_reload (reloadreg, second_reloadreg,
6929			      rl->opnum, rl->when_needed);
6930		  emit_insn ((GEN_FCN (tertiary_icode)
6931			      (real_old, reloadreg, third_reloadreg)));
6932		  special = 1;
6933		}
6934
6935	      else
6936		{
6937		  /* Copy between the reload regs here and then to
6938		     OUT later.  */
6939
6940		  gen_reload (reloadreg, second_reloadreg,
6941			      rl->opnum, rl->when_needed);
6942		  if (tertiary_reload >= 0)
6943		    {
6944		      rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
6945
6946		      gen_reload (third_reloadreg, reloadreg,
6947				  rl->opnum, rl->when_needed);
6948		      reloadreg = third_reloadreg;
6949		    }
6950		}
6951	    }
6952	}
6953    }
6954
6955  /* Output the last reload insn.  */
6956  if (! special)
6957    {
6958      rtx set;
6959
6960      /* Don't output the last reload if OLD is not the dest of
6961	 INSN and is in the src and is clobbered by INSN.  */
6962      if (! flag_expensive_optimizations
6963	  || !REG_P (old)
6964	  || !(set = single_set (insn))
6965	  || rtx_equal_p (old, SET_DEST (set))
6966	  || !reg_mentioned_p (old, SET_SRC (set))
6967	  || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
6968	       && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
6969	gen_reload (old, reloadreg, rl->opnum,
6970		    rl->when_needed);
6971    }
6972
6973  /* Look at all insns we emitted, just to be safe.  */
6974  for (p = get_insns (); p; p = NEXT_INSN (p))
6975    if (INSN_P (p))
6976      {
6977	rtx pat = PATTERN (p);
6978
6979	/* If this output reload doesn't come from a spill reg,
6980	   clear any memory of reloaded copies of the pseudo reg.
6981	   If this output reload comes from a spill reg,
6982	   reg_has_output_reload will make this do nothing.  */
6983	note_stores (pat, forget_old_reloads_1, NULL);
6984
6985	if (reg_mentioned_p (rl->reg_rtx, pat))
6986	  {
6987	    rtx set = single_set (insn);
6988	    if (reload_spill_index[j] < 0
6989		&& set
6990		&& SET_SRC (set) == rl->reg_rtx)
6991	      {
6992		int src = REGNO (SET_SRC (set));
6993
6994		reload_spill_index[j] = src;
6995		SET_HARD_REG_BIT (reg_is_output_reload, src);
6996		if (find_regno_note (insn, REG_DEAD, src))
6997		  SET_HARD_REG_BIT (reg_reloaded_died, src);
6998	      }
6999	    if (REGNO (rl->reg_rtx) < FIRST_PSEUDO_REGISTER)
7000	      {
7001		int s = rl->secondary_out_reload;
7002		set = single_set (p);
7003		/* If this reload copies only to the secondary reload
7004		   register, the secondary reload does the actual
7005		   store.  */
7006		if (s >= 0 && set == NULL_RTX)
7007		  /* We can't tell what function the secondary reload
7008		     has and where the actual store to the pseudo is
7009		     made; leave new_spill_reg_store alone.  */
7010		  ;
7011		else if (s >= 0
7012			 && SET_SRC (set) == rl->reg_rtx
7013			 && SET_DEST (set) == rld[s].reg_rtx)
7014		  {
7015		    /* Usually the next instruction will be the
7016		       secondary reload insn;  if we can confirm
7017		       that it is, setting new_spill_reg_store to
7018		       that insn will allow an extra optimization.  */
7019		    rtx s_reg = rld[s].reg_rtx;
7020		    rtx next = NEXT_INSN (p);
7021		    rld[s].out = rl->out;
7022		    rld[s].out_reg = rl->out_reg;
7023		    set = single_set (next);
7024		    if (set && SET_SRC (set) == s_reg
7025			&& ! new_spill_reg_store[REGNO (s_reg)])
7026		      {
7027			SET_HARD_REG_BIT (reg_is_output_reload,
7028					  REGNO (s_reg));
7029			new_spill_reg_store[REGNO (s_reg)] = next;
7030		      }
7031		  }
7032		else
7033		  new_spill_reg_store[REGNO (rl->reg_rtx)] = p;
7034	      }
7035	  }
7036      }
7037
7038  if (rl->when_needed == RELOAD_OTHER)
7039    {
7040      emit_insn (other_output_reload_insns[rl->opnum]);
7041      other_output_reload_insns[rl->opnum] = get_insns ();
7042    }
7043  else
7044    output_reload_insns[rl->opnum] = get_insns ();
7045
7046  if (flag_non_call_exceptions)
7047    copy_eh_notes (insn, get_insns ());
7048
7049  end_sequence ();
7050}
7051
7052/* Do input reloading for reload RL, which is for the insn described by CHAIN
7053   and has the number J.  */
7054static void
7055do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7056{
7057  rtx insn = chain->insn;
7058  rtx old = (rl->in && MEM_P (rl->in)
7059	     ? rl->in_reg : rl->in);
7060
7061  if (old != 0
7062      /* AUTO_INC reloads need to be handled even if inherited.  We got an
7063	 AUTO_INC reload if reload_out is set but reload_out_reg isn't.  */
7064      && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7065      && ! rtx_equal_p (rl->reg_rtx, old)
7066      && rl->reg_rtx != 0)
7067    emit_input_reload_insns (chain, rld + j, old, j);
7068
7069  /* When inheriting a wider reload, we have a MEM in rl->in,
7070     e.g. inheriting a SImode output reload for
7071     (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10)))  */
7072  if (optimize && reload_inherited[j] && rl->in
7073      && MEM_P (rl->in)
7074      && MEM_P (rl->in_reg)
7075      && reload_spill_index[j] >= 0
7076      && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7077    rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7078
7079  /* If we are reloading a register that was recently stored in with an
7080     output-reload, see if we can prove there was
7081     actually no need to store the old value in it.  */
7082
7083  if (optimize
7084      /* Only attempt this for input reloads; for RELOAD_OTHER we miss
7085	 that there may be multiple uses of the previous output reload.
7086	 Restricting to RELOAD_FOR_INPUT is mostly paranoia.  */
7087      && rl->when_needed == RELOAD_FOR_INPUT
7088      && (reload_inherited[j] || reload_override_in[j])
7089      && rl->reg_rtx
7090      && REG_P (rl->reg_rtx)
7091      && spill_reg_store[REGNO (rl->reg_rtx)] != 0
7092#if 0
7093      /* There doesn't seem to be any reason to restrict this to pseudos
7094	 and doing so loses in the case where we are copying from a
7095	 register of the wrong class.  */
7096      && (REGNO (spill_reg_stored_to[REGNO (rl->reg_rtx)])
7097	  >= FIRST_PSEUDO_REGISTER)
7098#endif
7099      /* The insn might have already some references to stackslots
7100	 replaced by MEMs, while reload_out_reg still names the
7101	 original pseudo.  */
7102      && (dead_or_set_p (insn,
7103			 spill_reg_stored_to[REGNO (rl->reg_rtx)])
7104	  || rtx_equal_p (spill_reg_stored_to[REGNO (rl->reg_rtx)],
7105			  rl->out_reg)))
7106    delete_output_reload (insn, j, REGNO (rl->reg_rtx));
7107}
7108
7109/* Do output reloading for reload RL, which is for the insn described by
7110   CHAIN and has the number J.
7111   ??? At some point we need to support handling output reloads of
7112   JUMP_INSNs or insns that set cc0.  */
7113static void
7114do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
7115{
7116  rtx note, old;
7117  rtx insn = chain->insn;
7118  /* If this is an output reload that stores something that is
7119     not loaded in this same reload, see if we can eliminate a previous
7120     store.  */
7121  rtx pseudo = rl->out_reg;
7122
7123  if (pseudo
7124      && optimize
7125      && REG_P (pseudo)
7126      && ! rtx_equal_p (rl->in_reg, pseudo)
7127      && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7128      && reg_last_reload_reg[REGNO (pseudo)])
7129    {
7130      int pseudo_no = REGNO (pseudo);
7131      int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7132
7133      /* We don't need to test full validity of last_regno for
7134	 inherit here; we only want to know if the store actually
7135	 matches the pseudo.  */
7136      if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
7137	  && reg_reloaded_contents[last_regno] == pseudo_no
7138	  && spill_reg_store[last_regno]
7139	  && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
7140	delete_output_reload (insn, j, last_regno);
7141    }
7142
7143  old = rl->out_reg;
7144  if (old == 0
7145      || rl->reg_rtx == old
7146      || rl->reg_rtx == 0)
7147    return;
7148
7149  /* An output operand that dies right away does need a reload,
7150     but need not be copied from it.  Show the new location in the
7151     REG_UNUSED note.  */
7152  if ((REG_P (old) || GET_CODE (old) == SCRATCH)
7153      && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
7154    {
7155      XEXP (note, 0) = rl->reg_rtx;
7156      return;
7157    }
7158  /* Likewise for a SUBREG of an operand that dies.  */
7159  else if (GET_CODE (old) == SUBREG
7160	   && REG_P (SUBREG_REG (old))
7161	   && 0 != (note = find_reg_note (insn, REG_UNUSED,
7162					  SUBREG_REG (old))))
7163    {
7164      XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
7165					   rl->reg_rtx);
7166      return;
7167    }
7168  else if (GET_CODE (old) == SCRATCH)
7169    /* If we aren't optimizing, there won't be a REG_UNUSED note,
7170       but we don't want to make an output reload.  */
7171    return;
7172
7173  /* If is a JUMP_INSN, we can't support output reloads yet.  */
7174  gcc_assert (NONJUMP_INSN_P (insn));
7175
7176  emit_output_reload_insns (chain, rld + j, j);
7177}
7178
7179/* Reload number R reloads from or to a group of hard registers starting at
7180   register REGNO.  Return true if it can be treated for inheritance purposes
7181   like a group of reloads, each one reloading a single hard register.
7182   The caller has already checked that the spill register and REGNO use
7183   the same number of registers to store the reload value.  */
7184
7185static bool
7186inherit_piecemeal_p (int r ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED)
7187{
7188#ifdef CANNOT_CHANGE_MODE_CLASS
7189  return (!REG_CANNOT_CHANGE_MODE_P (reload_spill_index[r],
7190				     GET_MODE (rld[r].reg_rtx),
7191				     reg_raw_mode[reload_spill_index[r]])
7192	  && !REG_CANNOT_CHANGE_MODE_P (regno,
7193					GET_MODE (rld[r].reg_rtx),
7194					reg_raw_mode[regno]));
7195#else
7196  return true;
7197#endif
7198}
7199
7200/* Output insns to reload values in and out of the chosen reload regs.  */
7201
7202static void
7203emit_reload_insns (struct insn_chain *chain)
7204{
7205  rtx insn = chain->insn;
7206
7207  int j;
7208
7209  CLEAR_HARD_REG_SET (reg_reloaded_died);
7210
7211  for (j = 0; j < reload_n_operands; j++)
7212    input_reload_insns[j] = input_address_reload_insns[j]
7213      = inpaddr_address_reload_insns[j]
7214      = output_reload_insns[j] = output_address_reload_insns[j]
7215      = outaddr_address_reload_insns[j]
7216      = other_output_reload_insns[j] = 0;
7217  other_input_address_reload_insns = 0;
7218  other_input_reload_insns = 0;
7219  operand_reload_insns = 0;
7220  other_operand_reload_insns = 0;
7221
7222  /* Dump reloads into the dump file.  */
7223  if (dump_file)
7224    {
7225      fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
7226      debug_reload_to_stream (dump_file);
7227    }
7228
7229  /* Now output the instructions to copy the data into and out of the
7230     reload registers.  Do these in the order that the reloads were reported,
7231     since reloads of base and index registers precede reloads of operands
7232     and the operands may need the base and index registers reloaded.  */
7233
7234  for (j = 0; j < n_reloads; j++)
7235    {
7236      if (rld[j].reg_rtx
7237	  && REGNO (rld[j].reg_rtx) < FIRST_PSEUDO_REGISTER)
7238	new_spill_reg_store[REGNO (rld[j].reg_rtx)] = 0;
7239
7240      do_input_reload (chain, rld + j, j);
7241      do_output_reload (chain, rld + j, j);
7242    }
7243
7244  /* Now write all the insns we made for reloads in the order expected by
7245     the allocation functions.  Prior to the insn being reloaded, we write
7246     the following reloads:
7247
7248     RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
7249
7250     RELOAD_OTHER reloads.
7251
7252     For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
7253     by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
7254     RELOAD_FOR_INPUT reload for the operand.
7255
7256     RELOAD_FOR_OPADDR_ADDRS reloads.
7257
7258     RELOAD_FOR_OPERAND_ADDRESS reloads.
7259
7260     After the insn being reloaded, we write the following:
7261
7262     For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
7263     by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
7264     RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
7265     reloads for the operand.  The RELOAD_OTHER output reloads are
7266     output in descending order by reload number.  */
7267
7268  emit_insn_before (other_input_address_reload_insns, insn);
7269  emit_insn_before (other_input_reload_insns, insn);
7270
7271  for (j = 0; j < reload_n_operands; j++)
7272    {
7273      emit_insn_before (inpaddr_address_reload_insns[j], insn);
7274      emit_insn_before (input_address_reload_insns[j], insn);
7275      emit_insn_before (input_reload_insns[j], insn);
7276    }
7277
7278  emit_insn_before (other_operand_reload_insns, insn);
7279  emit_insn_before (operand_reload_insns, insn);
7280
7281  for (j = 0; j < reload_n_operands; j++)
7282    {
7283      rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
7284      x = emit_insn_after (output_address_reload_insns[j], x);
7285      x = emit_insn_after (output_reload_insns[j], x);
7286      emit_insn_after (other_output_reload_insns[j], x);
7287    }
7288
7289  /* For all the spill regs newly reloaded in this instruction,
7290     record what they were reloaded from, so subsequent instructions
7291     can inherit the reloads.
7292
7293     Update spill_reg_store for the reloads of this insn.
7294     Copy the elements that were updated in the loop above.  */
7295
7296  for (j = 0; j < n_reloads; j++)
7297    {
7298      int r = reload_order[j];
7299      int i = reload_spill_index[r];
7300
7301      /* If this is a non-inherited input reload from a pseudo, we must
7302	 clear any memory of a previous store to the same pseudo.  Only do
7303	 something if there will not be an output reload for the pseudo
7304	 being reloaded.  */
7305      if (rld[r].in_reg != 0
7306	  && ! (reload_inherited[r] || reload_override_in[r]))
7307	{
7308	  rtx reg = rld[r].in_reg;
7309
7310	  if (GET_CODE (reg) == SUBREG)
7311	    reg = SUBREG_REG (reg);
7312
7313	  if (REG_P (reg)
7314	      && REGNO (reg) >= FIRST_PSEUDO_REGISTER
7315	      && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
7316	    {
7317	      int nregno = REGNO (reg);
7318
7319	      if (reg_last_reload_reg[nregno])
7320		{
7321		  int last_regno = REGNO (reg_last_reload_reg[nregno]);
7322
7323		  if (reg_reloaded_contents[last_regno] == nregno)
7324		    spill_reg_store[last_regno] = 0;
7325		}
7326	    }
7327	}
7328
7329      /* I is nonneg if this reload used a register.
7330	 If rld[r].reg_rtx is 0, this is an optional reload
7331	 that we opted to ignore.  */
7332
7333      if (i >= 0 && rld[r].reg_rtx != 0)
7334	{
7335	  int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
7336	  int k;
7337	  int part_reaches_end = 0;
7338	  int all_reaches_end = 1;
7339
7340	  /* For a multi register reload, we need to check if all or part
7341	     of the value lives to the end.  */
7342	  for (k = 0; k < nr; k++)
7343	    {
7344	      if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
7345					    rld[r].when_needed))
7346		part_reaches_end = 1;
7347	      else
7348		all_reaches_end = 0;
7349	    }
7350
7351	  /* Ignore reloads that don't reach the end of the insn in
7352	     entirety.  */
7353	  if (all_reaches_end)
7354	    {
7355	      /* First, clear out memory of what used to be in this spill reg.
7356		 If consecutive registers are used, clear them all.  */
7357
7358	      for (k = 0; k < nr; k++)
7359  	        {
7360		CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7361  		  CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7362  		}
7363
7364	      /* Maybe the spill reg contains a copy of reload_out.  */
7365	      if (rld[r].out != 0
7366		  && (REG_P (rld[r].out)
7367#ifdef AUTO_INC_DEC
7368		      || ! rld[r].out_reg
7369#endif
7370		      || REG_P (rld[r].out_reg)))
7371		{
7372		  rtx out = (REG_P (rld[r].out)
7373			     ? rld[r].out
7374			     : rld[r].out_reg
7375			     ? rld[r].out_reg
7376/* AUTO_INC */		     : XEXP (rld[r].in_reg, 0));
7377		  int nregno = REGNO (out);
7378		  int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7379			     : hard_regno_nregs[nregno]
7380					       [GET_MODE (rld[r].reg_rtx)]);
7381		  bool piecemeal;
7382
7383		  spill_reg_store[i] = new_spill_reg_store[i];
7384		  spill_reg_stored_to[i] = out;
7385		  reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7386
7387		  piecemeal = (nregno < FIRST_PSEUDO_REGISTER
7388			       && nr == nnr
7389			       && inherit_piecemeal_p (r, nregno));
7390
7391		  /* If NREGNO is a hard register, it may occupy more than
7392		     one register.  If it does, say what is in the
7393		     rest of the registers assuming that both registers
7394		     agree on how many words the object takes.  If not,
7395		     invalidate the subsequent registers.  */
7396
7397		  if (nregno < FIRST_PSEUDO_REGISTER)
7398		    for (k = 1; k < nnr; k++)
7399		      reg_last_reload_reg[nregno + k]
7400			= (piecemeal
7401			   ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
7402			   : 0);
7403
7404		  /* Now do the inverse operation.  */
7405		  for (k = 0; k < nr; k++)
7406		    {
7407		      CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7408		      reg_reloaded_contents[i + k]
7409			= (nregno >= FIRST_PSEUDO_REGISTER || !piecemeal
7410			   ? nregno
7411			   : nregno + k);
7412		      reg_reloaded_insn[i + k] = insn;
7413		      SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7414		      if (HARD_REGNO_CALL_PART_CLOBBERED (i + k, GET_MODE (out)))
7415			SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7416		    }
7417		}
7418
7419	      /* Maybe the spill reg contains a copy of reload_in.  Only do
7420		 something if there will not be an output reload for
7421		 the register being reloaded.  */
7422	      else if (rld[r].out_reg == 0
7423		       && rld[r].in != 0
7424		       && ((REG_P (rld[r].in)
7425			    && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER
7426	                    && !REGNO_REG_SET_P (&reg_has_output_reload,
7427			      			 REGNO (rld[r].in)))
7428			   || (REG_P (rld[r].in_reg)
7429			       && !REGNO_REG_SET_P (&reg_has_output_reload,
7430						    REGNO (rld[r].in_reg))))
7431		       && ! reg_set_p (rld[r].reg_rtx, PATTERN (insn)))
7432		{
7433		  int nregno;
7434		  int nnr;
7435		  rtx in;
7436		  bool piecemeal;
7437
7438		  if (REG_P (rld[r].in)
7439		      && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
7440		    in = rld[r].in;
7441		  else if (REG_P (rld[r].in_reg))
7442		    in = rld[r].in_reg;
7443		  else
7444		    in = XEXP (rld[r].in_reg, 0);
7445		  nregno = REGNO (in);
7446
7447		  nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7448			 : hard_regno_nregs[nregno]
7449					   [GET_MODE (rld[r].reg_rtx)]);
7450
7451		  reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7452
7453		  piecemeal = (nregno < FIRST_PSEUDO_REGISTER
7454			       && nr == nnr
7455			       && inherit_piecemeal_p (r, nregno));
7456
7457		  if (nregno < FIRST_PSEUDO_REGISTER)
7458		    for (k = 1; k < nnr; k++)
7459		      reg_last_reload_reg[nregno + k]
7460			= (piecemeal
7461			   ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
7462			   : 0);
7463
7464		  /* Unless we inherited this reload, show we haven't
7465		     recently done a store.
7466		     Previous stores of inherited auto_inc expressions
7467		     also have to be discarded.  */
7468		  if (! reload_inherited[r]
7469		      || (rld[r].out && ! rld[r].out_reg))
7470		    spill_reg_store[i] = 0;
7471
7472		  for (k = 0; k < nr; k++)
7473		    {
7474		      CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7475		      reg_reloaded_contents[i + k]
7476			= (nregno >= FIRST_PSEUDO_REGISTER || !piecemeal
7477			   ? nregno
7478			   : nregno + k);
7479		      reg_reloaded_insn[i + k] = insn;
7480		      SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7481		      if (HARD_REGNO_CALL_PART_CLOBBERED (i + k, GET_MODE (in)))
7482			SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7483		    }
7484		}
7485	    }
7486
7487	  /* However, if part of the reload reaches the end, then we must
7488	     invalidate the old info for the part that survives to the end.  */
7489	  else if (part_reaches_end)
7490	    {
7491	      for (k = 0; k < nr; k++)
7492		if (reload_reg_reaches_end_p (i + k,
7493					      rld[r].opnum,
7494					      rld[r].when_needed))
7495		  CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7496	    }
7497	}
7498
7499      /* The following if-statement was #if 0'd in 1.34 (or before...).
7500	 It's reenabled in 1.35 because supposedly nothing else
7501	 deals with this problem.  */
7502
7503      /* If a register gets output-reloaded from a non-spill register,
7504	 that invalidates any previous reloaded copy of it.
7505	 But forget_old_reloads_1 won't get to see it, because
7506	 it thinks only about the original insn.  So invalidate it here.
7507	 Also do the same thing for RELOAD_OTHER constraints where the
7508	 output is discarded.  */
7509      if (i < 0
7510	  && ((rld[r].out != 0
7511	       && (REG_P (rld[r].out)
7512		   || (MEM_P (rld[r].out)
7513		       && REG_P (rld[r].out_reg))))
7514	      || (rld[r].out == 0 && rld[r].out_reg
7515		  && REG_P (rld[r].out_reg))))
7516	{
7517	  rtx out = ((rld[r].out && REG_P (rld[r].out))
7518		     ? rld[r].out : rld[r].out_reg);
7519	  int nregno = REGNO (out);
7520	  if (nregno >= FIRST_PSEUDO_REGISTER)
7521	    {
7522	      rtx src_reg, store_insn = NULL_RTX;
7523
7524	      reg_last_reload_reg[nregno] = 0;
7525
7526	      /* If we can find a hard register that is stored, record
7527		 the storing insn so that we may delete this insn with
7528		 delete_output_reload.  */
7529	      src_reg = rld[r].reg_rtx;
7530
7531	      /* If this is an optional reload, try to find the source reg
7532		 from an input reload.  */
7533	      if (! src_reg)
7534		{
7535		  rtx set = single_set (insn);
7536		  if (set && SET_DEST (set) == rld[r].out)
7537		    {
7538		      int k;
7539
7540		      src_reg = SET_SRC (set);
7541		      store_insn = insn;
7542		      for (k = 0; k < n_reloads; k++)
7543			{
7544			  if (rld[k].in == src_reg)
7545			    {
7546			      src_reg = rld[k].reg_rtx;
7547			      break;
7548			    }
7549			}
7550		    }
7551		}
7552	      else
7553		store_insn = new_spill_reg_store[REGNO (src_reg)];
7554	      if (src_reg && REG_P (src_reg)
7555		  && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
7556		{
7557		  int src_regno = REGNO (src_reg);
7558		  int nr = hard_regno_nregs[src_regno][rld[r].mode];
7559		  /* The place where to find a death note varies with
7560		     PRESERVE_DEATH_INFO_REGNO_P .  The condition is not
7561		     necessarily checked exactly in the code that moves
7562		     notes, so just check both locations.  */
7563		  rtx note = find_regno_note (insn, REG_DEAD, src_regno);
7564		  if (! note && store_insn)
7565		    note = find_regno_note (store_insn, REG_DEAD, src_regno);
7566		  while (nr-- > 0)
7567		    {
7568		      spill_reg_store[src_regno + nr] = store_insn;
7569		      spill_reg_stored_to[src_regno + nr] = out;
7570		      reg_reloaded_contents[src_regno + nr] = nregno;
7571		      reg_reloaded_insn[src_regno + nr] = store_insn;
7572		      CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr);
7573		      SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr);
7574		      if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + nr,
7575							  GET_MODE (src_reg)))
7576			SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7577					  src_regno + nr);
7578		      SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr);
7579		      if (note)
7580			SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
7581		      else
7582			CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
7583		    }
7584		  reg_last_reload_reg[nregno] = src_reg;
7585		  /* We have to set reg_has_output_reload here, or else
7586		     forget_old_reloads_1 will clear reg_last_reload_reg
7587		     right away.  */
7588		  SET_REGNO_REG_SET (&reg_has_output_reload,
7589				     nregno);
7590		}
7591	    }
7592	  else
7593	    {
7594	      int num_regs = hard_regno_nregs[nregno][GET_MODE (out)];
7595
7596	      while (num_regs-- > 0)
7597		reg_last_reload_reg[nregno + num_regs] = 0;
7598	    }
7599	}
7600    }
7601  IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
7602}
7603
7604/* Go through the motions to emit INSN and test if it is strictly valid.
7605   Return the emitted insn if valid, else return NULL.  */
7606
7607static rtx
7608emit_insn_if_valid_for_reload (rtx insn)
7609{
7610  rtx last = get_last_insn ();
7611  int code;
7612
7613  insn = emit_insn (insn);
7614  code = recog_memoized (insn);
7615
7616  if (code >= 0)
7617    {
7618      extract_insn (insn);
7619      /* We want constrain operands to treat this insn strictly in its
7620	 validity determination, i.e., the way it would after reload has
7621	 completed.  */
7622      if (constrain_operands (1))
7623	return insn;
7624    }
7625
7626  delete_insns_since (last);
7627  return NULL;
7628}
7629
7630/* Emit code to perform a reload from IN (which may be a reload register) to
7631   OUT (which may also be a reload register).  IN or OUT is from operand
7632   OPNUM with reload type TYPE.
7633
7634   Returns first insn emitted.  */
7635
7636static rtx
7637gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
7638{
7639  rtx last = get_last_insn ();
7640  rtx tem;
7641
7642  /* If IN is a paradoxical SUBREG, remove it and try to put the
7643     opposite SUBREG on OUT.  Likewise for a paradoxical SUBREG on OUT.  */
7644  if (GET_CODE (in) == SUBREG
7645      && (GET_MODE_SIZE (GET_MODE (in))
7646	  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
7647      && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
7648    in = SUBREG_REG (in), out = tem;
7649  else if (GET_CODE (out) == SUBREG
7650	   && (GET_MODE_SIZE (GET_MODE (out))
7651	       > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
7652	   && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
7653    out = SUBREG_REG (out), in = tem;
7654
7655  /* How to do this reload can get quite tricky.  Normally, we are being
7656     asked to reload a simple operand, such as a MEM, a constant, or a pseudo
7657     register that didn't get a hard register.  In that case we can just
7658     call emit_move_insn.
7659
7660     We can also be asked to reload a PLUS that adds a register or a MEM to
7661     another register, constant or MEM.  This can occur during frame pointer
7662     elimination and while reloading addresses.  This case is handled by
7663     trying to emit a single insn to perform the add.  If it is not valid,
7664     we use a two insn sequence.
7665
7666     Or we can be asked to reload an unary operand that was a fragment of
7667     an addressing mode, into a register.  If it isn't recognized as-is,
7668     we try making the unop operand and the reload-register the same:
7669     (set reg:X (unop:X expr:Y))
7670     -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
7671
7672     Finally, we could be called to handle an 'o' constraint by putting
7673     an address into a register.  In that case, we first try to do this
7674     with a named pattern of "reload_load_address".  If no such pattern
7675     exists, we just emit a SET insn and hope for the best (it will normally
7676     be valid on machines that use 'o').
7677
7678     This entire process is made complex because reload will never
7679     process the insns we generate here and so we must ensure that
7680     they will fit their constraints and also by the fact that parts of
7681     IN might be being reloaded separately and replaced with spill registers.
7682     Because of this, we are, in some sense, just guessing the right approach
7683     here.  The one listed above seems to work.
7684
7685     ??? At some point, this whole thing needs to be rethought.  */
7686
7687  if (GET_CODE (in) == PLUS
7688      && (REG_P (XEXP (in, 0))
7689	  || GET_CODE (XEXP (in, 0)) == SUBREG
7690	  || MEM_P (XEXP (in, 0)))
7691      && (REG_P (XEXP (in, 1))
7692	  || GET_CODE (XEXP (in, 1)) == SUBREG
7693	  || CONSTANT_P (XEXP (in, 1))
7694	  || MEM_P (XEXP (in, 1))))
7695    {
7696      /* We need to compute the sum of a register or a MEM and another
7697	 register, constant, or MEM, and put it into the reload
7698	 register.  The best possible way of doing this is if the machine
7699	 has a three-operand ADD insn that accepts the required operands.
7700
7701	 The simplest approach is to try to generate such an insn and see if it
7702	 is recognized and matches its constraints.  If so, it can be used.
7703
7704	 It might be better not to actually emit the insn unless it is valid,
7705	 but we need to pass the insn as an operand to `recog' and
7706	 `extract_insn' and it is simpler to emit and then delete the insn if
7707	 not valid than to dummy things up.  */
7708
7709      rtx op0, op1, tem, insn;
7710      int code;
7711
7712      op0 = find_replacement (&XEXP (in, 0));
7713      op1 = find_replacement (&XEXP (in, 1));
7714
7715      /* Since constraint checking is strict, commutativity won't be
7716	 checked, so we need to do that here to avoid spurious failure
7717	 if the add instruction is two-address and the second operand
7718	 of the add is the same as the reload reg, which is frequently
7719	 the case.  If the insn would be A = B + A, rearrange it so
7720	 it will be A = A + B as constrain_operands expects.  */
7721
7722      if (REG_P (XEXP (in, 1))
7723	  && REGNO (out) == REGNO (XEXP (in, 1)))
7724	tem = op0, op0 = op1, op1 = tem;
7725
7726      if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
7727	in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
7728
7729      insn = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
7730      if (insn)
7731	return insn;
7732
7733      /* If that failed, we must use a conservative two-insn sequence.
7734
7735	 Use a move to copy one operand into the reload register.  Prefer
7736	 to reload a constant, MEM or pseudo since the move patterns can
7737	 handle an arbitrary operand.  If OP1 is not a constant, MEM or
7738	 pseudo and OP1 is not a valid operand for an add instruction, then
7739	 reload OP1.
7740
7741	 After reloading one of the operands into the reload register, add
7742	 the reload register to the output register.
7743
7744	 If there is another way to do this for a specific machine, a
7745	 DEFINE_PEEPHOLE should be specified that recognizes the sequence
7746	 we emit below.  */
7747
7748      code = (int) add_optab->handlers[(int) GET_MODE (out)].insn_code;
7749
7750      if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
7751	  || (REG_P (op1)
7752	      && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
7753	  || (code != CODE_FOR_nothing
7754	      && ! ((*insn_data[code].operand[2].predicate)
7755		    (op1, insn_data[code].operand[2].mode))))
7756	tem = op0, op0 = op1, op1 = tem;
7757
7758      gen_reload (out, op0, opnum, type);
7759
7760      /* If OP0 and OP1 are the same, we can use OUT for OP1.
7761	 This fixes a problem on the 32K where the stack pointer cannot
7762	 be used as an operand of an add insn.  */
7763
7764      if (rtx_equal_p (op0, op1))
7765	op1 = out;
7766
7767      insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
7768      if (insn)
7769	{
7770	  /* Add a REG_EQUIV note so that find_equiv_reg can find it.  */
7771	  REG_NOTES (insn)
7772	    = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7773	  return insn;
7774	}
7775
7776      /* If that failed, copy the address register to the reload register.
7777	 Then add the constant to the reload register.  */
7778
7779      gen_reload (out, op1, opnum, type);
7780      insn = emit_insn (gen_add2_insn (out, op0));
7781      REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7782    }
7783
7784#ifdef SECONDARY_MEMORY_NEEDED
7785  /* If we need a memory location to do the move, do it that way.  */
7786  else if ((REG_P (in) || GET_CODE (in) == SUBREG)
7787	   && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
7788	   && (REG_P (out) || GET_CODE (out) == SUBREG)
7789	   && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
7790	   && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
7791				       REGNO_REG_CLASS (reg_or_subregno (out)),
7792				       GET_MODE (out)))
7793    {
7794      /* Get the memory to use and rewrite both registers to its mode.  */
7795      rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
7796
7797      if (GET_MODE (loc) != GET_MODE (out))
7798	out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
7799
7800      if (GET_MODE (loc) != GET_MODE (in))
7801	in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
7802
7803      gen_reload (loc, in, opnum, type);
7804      gen_reload (out, loc, opnum, type);
7805    }
7806#endif
7807  else if (REG_P (out) && UNARY_P (in))
7808    {
7809      rtx insn;
7810      rtx op1;
7811      rtx out_moded;
7812      rtx set;
7813
7814      op1 = find_replacement (&XEXP (in, 0));
7815      if (op1 != XEXP (in, 0))
7816	in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
7817
7818      /* First, try a plain SET.  */
7819      set = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
7820      if (set)
7821	return set;
7822
7823      /* If that failed, move the inner operand to the reload
7824	 register, and try the same unop with the inner expression
7825	 replaced with the reload register.  */
7826
7827      if (GET_MODE (op1) != GET_MODE (out))
7828	out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
7829      else
7830	out_moded = out;
7831
7832      gen_reload (out_moded, op1, opnum, type);
7833
7834      insn
7835	= gen_rtx_SET (VOIDmode, out,
7836		       gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
7837				      out_moded));
7838      insn = emit_insn_if_valid_for_reload (insn);
7839      if (insn)
7840	{
7841	  REG_NOTES (insn)
7842	    = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7843	  return insn;
7844	}
7845
7846      fatal_insn ("Failure trying to reload:", set);
7847    }
7848  /* If IN is a simple operand, use gen_move_insn.  */
7849  else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
7850    {
7851      tem = emit_insn (gen_move_insn (out, in));
7852      /* IN may contain a LABEL_REF, if so add a REG_LABEL note.  */
7853      mark_jump_label (in, tem, 0);
7854    }
7855
7856#ifdef HAVE_reload_load_address
7857  else if (HAVE_reload_load_address)
7858    emit_insn (gen_reload_load_address (out, in));
7859#endif
7860
7861  /* Otherwise, just write (set OUT IN) and hope for the best.  */
7862  else
7863    emit_insn (gen_rtx_SET (VOIDmode, out, in));
7864
7865  /* Return the first insn emitted.
7866     We can not just return get_last_insn, because there may have
7867     been multiple instructions emitted.  Also note that gen_move_insn may
7868     emit more than one insn itself, so we can not assume that there is one
7869     insn emitted per emit_insn_before call.  */
7870
7871  return last ? NEXT_INSN (last) : get_insns ();
7872}
7873
7874/* Delete a previously made output-reload whose result we now believe
7875   is not needed.  First we double-check.
7876
7877   INSN is the insn now being processed.
7878   LAST_RELOAD_REG is the hard register number for which we want to delete
7879   the last output reload.
7880   J is the reload-number that originally used REG.  The caller has made
7881   certain that reload J doesn't use REG any longer for input.  */
7882
7883static void
7884delete_output_reload (rtx insn, int j, int last_reload_reg)
7885{
7886  rtx output_reload_insn = spill_reg_store[last_reload_reg];
7887  rtx reg = spill_reg_stored_to[last_reload_reg];
7888  int k;
7889  int n_occurrences;
7890  int n_inherited = 0;
7891  rtx i1;
7892  rtx substed;
7893
7894  /* It is possible that this reload has been only used to set another reload
7895     we eliminated earlier and thus deleted this instruction too.  */
7896  if (INSN_DELETED_P (output_reload_insn))
7897    return;
7898
7899  /* Get the raw pseudo-register referred to.  */
7900
7901  while (GET_CODE (reg) == SUBREG)
7902    reg = SUBREG_REG (reg);
7903  substed = reg_equiv_memory_loc[REGNO (reg)];
7904
7905  /* This is unsafe if the operand occurs more often in the current
7906     insn than it is inherited.  */
7907  for (k = n_reloads - 1; k >= 0; k--)
7908    {
7909      rtx reg2 = rld[k].in;
7910      if (! reg2)
7911	continue;
7912      if (MEM_P (reg2) || reload_override_in[k])
7913	reg2 = rld[k].in_reg;
7914#ifdef AUTO_INC_DEC
7915      if (rld[k].out && ! rld[k].out_reg)
7916	reg2 = XEXP (rld[k].in_reg, 0);
7917#endif
7918      while (GET_CODE (reg2) == SUBREG)
7919	reg2 = SUBREG_REG (reg2);
7920      if (rtx_equal_p (reg2, reg))
7921	{
7922	  if (reload_inherited[k] || reload_override_in[k] || k == j)
7923	    {
7924	      n_inherited++;
7925	      reg2 = rld[k].out_reg;
7926	      if (! reg2)
7927		continue;
7928	      while (GET_CODE (reg2) == SUBREG)
7929		reg2 = XEXP (reg2, 0);
7930	      if (rtx_equal_p (reg2, reg))
7931		n_inherited++;
7932	    }
7933	  else
7934	    return;
7935	}
7936    }
7937  n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
7938  if (substed)
7939    n_occurrences += count_occurrences (PATTERN (insn),
7940					eliminate_regs (substed, 0,
7941							NULL_RTX), 0);
7942  for (i1 = reg_equiv_alt_mem_list [REGNO (reg)]; i1; i1 = XEXP (i1, 1))
7943    {
7944      gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
7945      n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
7946    }
7947  if (n_occurrences > n_inherited)
7948    return;
7949
7950  /* If the pseudo-reg we are reloading is no longer referenced
7951     anywhere between the store into it and here,
7952     and we're within the same basic block, then the value can only
7953     pass through the reload reg and end up here.
7954     Otherwise, give up--return.  */
7955  for (i1 = NEXT_INSN (output_reload_insn);
7956       i1 != insn; i1 = NEXT_INSN (i1))
7957    {
7958      if (NOTE_INSN_BASIC_BLOCK_P (i1))
7959	return;
7960      if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
7961	  && reg_mentioned_p (reg, PATTERN (i1)))
7962	{
7963	  /* If this is USE in front of INSN, we only have to check that
7964	     there are no more references than accounted for by inheritance.  */
7965	  while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
7966	    {
7967	      n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
7968	      i1 = NEXT_INSN (i1);
7969	    }
7970	  if (n_occurrences <= n_inherited && i1 == insn)
7971	    break;
7972	  return;
7973	}
7974    }
7975
7976  /* We will be deleting the insn.  Remove the spill reg information.  */
7977  for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
7978    {
7979      spill_reg_store[last_reload_reg + k] = 0;
7980      spill_reg_stored_to[last_reload_reg + k] = 0;
7981    }
7982
7983  /* The caller has already checked that REG dies or is set in INSN.
7984     It has also checked that we are optimizing, and thus some
7985     inaccuracies in the debugging information are acceptable.
7986     So we could just delete output_reload_insn.  But in some cases
7987     we can improve the debugging information without sacrificing
7988     optimization - maybe even improving the code: See if the pseudo
7989     reg has been completely replaced with reload regs.  If so, delete
7990     the store insn and forget we had a stack slot for the pseudo.  */
7991  if (rld[j].out != rld[j].in
7992      && REG_N_DEATHS (REGNO (reg)) == 1
7993      && REG_N_SETS (REGNO (reg)) == 1
7994      && REG_BASIC_BLOCK (REGNO (reg)) >= 0
7995      && find_regno_note (insn, REG_DEAD, REGNO (reg)))
7996    {
7997      rtx i2;
7998
7999      /* We know that it was used only between here and the beginning of
8000	 the current basic block.  (We also know that the last use before
8001	 INSN was the output reload we are thinking of deleting, but never
8002	 mind that.)  Search that range; see if any ref remains.  */
8003      for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8004	{
8005	  rtx set = single_set (i2);
8006
8007	  /* Uses which just store in the pseudo don't count,
8008	     since if they are the only uses, they are dead.  */
8009	  if (set != 0 && SET_DEST (set) == reg)
8010	    continue;
8011	  if (LABEL_P (i2)
8012	      || JUMP_P (i2))
8013	    break;
8014	  if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8015	      && reg_mentioned_p (reg, PATTERN (i2)))
8016	    {
8017	      /* Some other ref remains; just delete the output reload we
8018		 know to be dead.  */
8019	      delete_address_reloads (output_reload_insn, insn);
8020	      delete_insn (output_reload_insn);
8021	      return;
8022	    }
8023	}
8024
8025      /* Delete the now-dead stores into this pseudo.  Note that this
8026	 loop also takes care of deleting output_reload_insn.  */
8027      for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8028	{
8029	  rtx set = single_set (i2);
8030
8031	  if (set != 0 && SET_DEST (set) == reg)
8032	    {
8033	      delete_address_reloads (i2, insn);
8034	      delete_insn (i2);
8035	    }
8036	  if (LABEL_P (i2)
8037	      || JUMP_P (i2))
8038	    break;
8039	}
8040
8041      /* For the debugging info, say the pseudo lives in this reload reg.  */
8042      reg_renumber[REGNO (reg)] = REGNO (rld[j].reg_rtx);
8043      alter_reg (REGNO (reg), -1);
8044    }
8045  else
8046    {
8047      delete_address_reloads (output_reload_insn, insn);
8048      delete_insn (output_reload_insn);
8049    }
8050}
8051
8052/* We are going to delete DEAD_INSN.  Recursively delete loads of
8053   reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8054   CURRENT_INSN is being reloaded, so we have to check its reloads too.  */
8055static void
8056delete_address_reloads (rtx dead_insn, rtx current_insn)
8057{
8058  rtx set = single_set (dead_insn);
8059  rtx set2, dst, prev, next;
8060  if (set)
8061    {
8062      rtx dst = SET_DEST (set);
8063      if (MEM_P (dst))
8064	delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8065    }
8066  /* If we deleted the store from a reloaded post_{in,de}c expression,
8067     we can delete the matching adds.  */
8068  prev = PREV_INSN (dead_insn);
8069  next = NEXT_INSN (dead_insn);
8070  if (! prev || ! next)
8071    return;
8072  set = single_set (next);
8073  set2 = single_set (prev);
8074  if (! set || ! set2
8075      || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8076      || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
8077      || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
8078    return;
8079  dst = SET_DEST (set);
8080  if (! rtx_equal_p (dst, SET_DEST (set2))
8081      || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8082      || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8083      || (INTVAL (XEXP (SET_SRC (set), 1))
8084	  != -INTVAL (XEXP (SET_SRC (set2), 1))))
8085    return;
8086  delete_related_insns (prev);
8087  delete_related_insns (next);
8088}
8089
8090/* Subfunction of delete_address_reloads: process registers found in X.  */
8091static void
8092delete_address_reloads_1 (rtx dead_insn, rtx x, rtx current_insn)
8093{
8094  rtx prev, set, dst, i2;
8095  int i, j;
8096  enum rtx_code code = GET_CODE (x);
8097
8098  if (code != REG)
8099    {
8100      const char *fmt = GET_RTX_FORMAT (code);
8101      for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8102	{
8103	  if (fmt[i] == 'e')
8104	    delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
8105	  else if (fmt[i] == 'E')
8106	    {
8107	      for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8108		delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
8109					  current_insn);
8110	    }
8111	}
8112      return;
8113    }
8114
8115  if (spill_reg_order[REGNO (x)] < 0)
8116    return;
8117
8118  /* Scan backwards for the insn that sets x.  This might be a way back due
8119     to inheritance.  */
8120  for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
8121    {
8122      code = GET_CODE (prev);
8123      if (code == CODE_LABEL || code == JUMP_INSN)
8124	return;
8125      if (!INSN_P (prev))
8126	continue;
8127      if (reg_set_p (x, PATTERN (prev)))
8128	break;
8129      if (reg_referenced_p (x, PATTERN (prev)))
8130	return;
8131    }
8132  if (! prev || INSN_UID (prev) < reload_first_uid)
8133    return;
8134  /* Check that PREV only sets the reload register.  */
8135  set = single_set (prev);
8136  if (! set)
8137    return;
8138  dst = SET_DEST (set);
8139  if (!REG_P (dst)
8140      || ! rtx_equal_p (dst, x))
8141    return;
8142  if (! reg_set_p (dst, PATTERN (dead_insn)))
8143    {
8144      /* Check if DST was used in a later insn -
8145	 it might have been inherited.  */
8146      for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
8147	{
8148	  if (LABEL_P (i2))
8149	    break;
8150	  if (! INSN_P (i2))
8151	    continue;
8152	  if (reg_referenced_p (dst, PATTERN (i2)))
8153	    {
8154	      /* If there is a reference to the register in the current insn,
8155		 it might be loaded in a non-inherited reload.  If no other
8156		 reload uses it, that means the register is set before
8157		 referenced.  */
8158	      if (i2 == current_insn)
8159		{
8160		  for (j = n_reloads - 1; j >= 0; j--)
8161		    if ((rld[j].reg_rtx == dst && reload_inherited[j])
8162			|| reload_override_in[j] == dst)
8163		      return;
8164		  for (j = n_reloads - 1; j >= 0; j--)
8165		    if (rld[j].in && rld[j].reg_rtx == dst)
8166		      break;
8167		  if (j >= 0)
8168		    break;
8169		}
8170	      return;
8171	    }
8172	  if (JUMP_P (i2))
8173	    break;
8174	  /* If DST is still live at CURRENT_INSN, check if it is used for
8175	     any reload.  Note that even if CURRENT_INSN sets DST, we still
8176	     have to check the reloads.  */
8177	  if (i2 == current_insn)
8178	    {
8179	      for (j = n_reloads - 1; j >= 0; j--)
8180		if ((rld[j].reg_rtx == dst && reload_inherited[j])
8181		    || reload_override_in[j] == dst)
8182		  return;
8183	      /* ??? We can't finish the loop here, because dst might be
8184		 allocated to a pseudo in this block if no reload in this
8185		 block needs any of the classes containing DST - see
8186		 spill_hard_reg.  There is no easy way to tell this, so we
8187		 have to scan till the end of the basic block.  */
8188	    }
8189	  if (reg_set_p (dst, PATTERN (i2)))
8190	    break;
8191	}
8192    }
8193  delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
8194  reg_reloaded_contents[REGNO (dst)] = -1;
8195  delete_insn (prev);
8196}
8197
8198/* Output reload-insns to reload VALUE into RELOADREG.
8199   VALUE is an autoincrement or autodecrement RTX whose operand
8200   is a register or memory location;
8201   so reloading involves incrementing that location.
8202   IN is either identical to VALUE, or some cheaper place to reload from.
8203
8204   INC_AMOUNT is the number to increment or decrement by (always positive).
8205   This cannot be deduced from VALUE.
8206
8207   Return the instruction that stores into RELOADREG.  */
8208
8209static rtx
8210inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
8211{
8212  /* REG or MEM to be copied and incremented.  */
8213  rtx incloc = find_replacement (&XEXP (value, 0));
8214  /* Nonzero if increment after copying.  */
8215  int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
8216	      || GET_CODE (value) == POST_MODIFY);
8217  rtx last;
8218  rtx inc;
8219  rtx add_insn;
8220  int code;
8221  rtx store;
8222  rtx real_in = in == value ? incloc : in;
8223
8224  /* No hard register is equivalent to this register after
8225     inc/dec operation.  If REG_LAST_RELOAD_REG were nonzero,
8226     we could inc/dec that register as well (maybe even using it for
8227     the source), but I'm not sure it's worth worrying about.  */
8228  if (REG_P (incloc))
8229    reg_last_reload_reg[REGNO (incloc)] = 0;
8230
8231  if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
8232    {
8233      gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
8234      inc = find_replacement (&XEXP (XEXP (value, 1), 1));
8235    }
8236  else
8237    {
8238      if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
8239	inc_amount = -inc_amount;
8240
8241      inc = GEN_INT (inc_amount);
8242    }
8243
8244  /* If this is post-increment, first copy the location to the reload reg.  */
8245  if (post && real_in != reloadreg)
8246    emit_insn (gen_move_insn (reloadreg, real_in));
8247
8248  if (in == value)
8249    {
8250      /* See if we can directly increment INCLOC.  Use a method similar to
8251	 that in gen_reload.  */
8252
8253      last = get_last_insn ();
8254      add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
8255					 gen_rtx_PLUS (GET_MODE (incloc),
8256						       incloc, inc)));
8257
8258      code = recog_memoized (add_insn);
8259      if (code >= 0)
8260	{
8261	  extract_insn (add_insn);
8262	  if (constrain_operands (1))
8263	    {
8264	      /* If this is a pre-increment and we have incremented the value
8265		 where it lives, copy the incremented value to RELOADREG to
8266		 be used as an address.  */
8267
8268	      if (! post)
8269		emit_insn (gen_move_insn (reloadreg, incloc));
8270
8271	      return add_insn;
8272	    }
8273	}
8274      delete_insns_since (last);
8275    }
8276
8277  /* If couldn't do the increment directly, must increment in RELOADREG.
8278     The way we do this depends on whether this is pre- or post-increment.
8279     For pre-increment, copy INCLOC to the reload register, increment it
8280     there, then save back.  */
8281
8282  if (! post)
8283    {
8284      if (in != reloadreg)
8285	emit_insn (gen_move_insn (reloadreg, real_in));
8286      emit_insn (gen_add2_insn (reloadreg, inc));
8287      store = emit_insn (gen_move_insn (incloc, reloadreg));
8288    }
8289  else
8290    {
8291      /* Postincrement.
8292	 Because this might be a jump insn or a compare, and because RELOADREG
8293	 may not be available after the insn in an input reload, we must do
8294	 the incrementation before the insn being reloaded for.
8295
8296	 We have already copied IN to RELOADREG.  Increment the copy in
8297	 RELOADREG, save that back, then decrement RELOADREG so it has
8298	 the original value.  */
8299
8300      emit_insn (gen_add2_insn (reloadreg, inc));
8301      store = emit_insn (gen_move_insn (incloc, reloadreg));
8302      if (GET_CODE (inc) == CONST_INT)
8303	emit_insn (gen_add2_insn (reloadreg, GEN_INT (-INTVAL(inc))));
8304      else
8305	emit_insn (gen_sub2_insn (reloadreg, inc));
8306    }
8307
8308  return store;
8309}
8310
8311#ifdef AUTO_INC_DEC
8312static void
8313add_auto_inc_notes (rtx insn, rtx x)
8314{
8315  enum rtx_code code = GET_CODE (x);
8316  const char *fmt;
8317  int i, j;
8318
8319  if (code == MEM && auto_inc_p (XEXP (x, 0)))
8320    {
8321      REG_NOTES (insn)
8322	= gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
8323      return;
8324    }
8325
8326  /* Scan all the operand sub-expressions.  */
8327  fmt = GET_RTX_FORMAT (code);
8328  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8329    {
8330      if (fmt[i] == 'e')
8331	add_auto_inc_notes (insn, XEXP (x, i));
8332      else if (fmt[i] == 'E')
8333	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8334	  add_auto_inc_notes (insn, XVECEXP (x, i, j));
8335    }
8336}
8337#endif
8338
8339/* Copy EH notes from an insn to its reloads.  */
8340static void
8341copy_eh_notes (rtx insn, rtx x)
8342{
8343  rtx eh_note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
8344  if (eh_note)
8345    {
8346      for (; x != 0; x = NEXT_INSN (x))
8347	{
8348	  if (may_trap_p (PATTERN (x)))
8349	    REG_NOTES (x)
8350	      = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (eh_note, 0),
8351				   REG_NOTES (x));
8352	}
8353    }
8354}
8355
8356/* This is used by reload pass, that does emit some instructions after
8357   abnormal calls moving basic block end, but in fact it wants to emit
8358   them on the edge.  Looks for abnormal call edges, find backward the
8359   proper call and fix the damage.
8360
8361   Similar handle instructions throwing exceptions internally.  */
8362void
8363fixup_abnormal_edges (void)
8364{
8365  bool inserted = false;
8366  basic_block bb;
8367
8368  FOR_EACH_BB (bb)
8369    {
8370      edge e;
8371      edge_iterator ei;
8372
8373      /* Look for cases we are interested in - calls or instructions causing
8374         exceptions.  */
8375      FOR_EACH_EDGE (e, ei, bb->succs)
8376	{
8377	  if (e->flags & EDGE_ABNORMAL_CALL)
8378	    break;
8379	  if ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
8380	      == (EDGE_ABNORMAL | EDGE_EH))
8381	    break;
8382	}
8383      if (e && !CALL_P (BB_END (bb))
8384	  && !can_throw_internal (BB_END (bb)))
8385	{
8386	  rtx insn;
8387
8388	  /* Get past the new insns generated.  Allow notes, as the insns
8389	     may be already deleted.  */
8390	  insn = BB_END (bb);
8391	  while ((NONJUMP_INSN_P (insn) || NOTE_P (insn))
8392		 && !can_throw_internal (insn)
8393		 && insn != BB_HEAD (bb))
8394	    insn = PREV_INSN (insn);
8395
8396	  if (CALL_P (insn) || can_throw_internal (insn))
8397	    {
8398	      rtx stop, next;
8399
8400	      stop = NEXT_INSN (BB_END (bb));
8401	      BB_END (bb) = insn;
8402	      insn = NEXT_INSN (insn);
8403
8404	      FOR_EACH_EDGE (e, ei, bb->succs)
8405		if (e->flags & EDGE_FALLTHRU)
8406		  break;
8407
8408	      while (insn && insn != stop)
8409		{
8410		  next = NEXT_INSN (insn);
8411		  if (INSN_P (insn))
8412		    {
8413	              delete_insn (insn);
8414
8415		      /* Sometimes there's still the return value USE.
8416			 If it's placed after a trapping call (i.e. that
8417			 call is the last insn anyway), we have no fallthru
8418			 edge.  Simply delete this use and don't try to insert
8419			 on the non-existent edge.  */
8420		      if (GET_CODE (PATTERN (insn)) != USE)
8421			{
8422			  /* We're not deleting it, we're moving it.  */
8423			  INSN_DELETED_P (insn) = 0;
8424			  PREV_INSN (insn) = NULL_RTX;
8425			  NEXT_INSN (insn) = NULL_RTX;
8426
8427			  insert_insn_on_edge (insn, e);
8428			  inserted = true;
8429			}
8430		    }
8431		  insn = next;
8432		}
8433	    }
8434
8435	  /* It may be that we don't find any such trapping insn.  In this
8436	     case we discovered quite late that the insn that had been
8437	     marked as can_throw_internal in fact couldn't trap at all.
8438	     So we should in fact delete the EH edges out of the block.  */
8439	  else
8440	    purge_dead_edges (bb);
8441	}
8442    }
8443
8444  /* We've possibly turned single trapping insn into multiple ones.  */
8445  if (flag_non_call_exceptions)
8446    {
8447      sbitmap blocks;
8448      blocks = sbitmap_alloc (last_basic_block);
8449      sbitmap_ones (blocks);
8450      find_many_sub_basic_blocks (blocks);
8451    }
8452
8453  if (inserted)
8454    commit_edge_insertions ();
8455
8456#ifdef ENABLE_CHECKING
8457  /* Verify that we didn't turn one trapping insn into many, and that
8458     we found and corrected all of the problems wrt fixups on the
8459     fallthru edge.  */
8460  verify_flow_info ();
8461#endif
8462}
8463