1/*
2 * This header file contains simple Read/Write macros for addressing the SDRAM,
3 * devices, GT`s internal registers and PCI (using the PCI`s address space).
4 *
5 * Copyright Galileo Technology.
6 */
7#ifndef __INCcoreh
8#define __INCcoreh
9
10#include <linux/types.h>
11#include <asm/byteorder.h>
12#include <asm/gt64120.h>
13
14#define INTERNAL_REG_BASE_ADDR 0x14000000
15
16#define NO_BIT          0x00000000
17#define BIT0            0x00000001
18#define BIT1            0x00000002
19#define BIT2            0x00000004
20#define BIT3            0x00000008
21#define BIT4            0x00000010
22#define BIT5            0x00000020
23#define BIT6            0x00000040
24#define BIT7            0x00000080
25#define BIT8            0x00000100
26#define BIT9            0x00000200
27#define BIT10           0x00000400
28#define BIT11           0x00000800
29#define BIT12           0x00001000
30#define BIT13           0x00002000
31#define BIT14           0x00004000
32#define BIT15           0x00008000
33#define BIT16           0x00010000
34#define BIT17           0x00020000
35#define BIT18           0x00040000
36#define BIT19           0x00080000
37#define BIT20           0x00100000
38#define BIT21           0x00200000
39#define BIT22           0x00400000
40#define BIT23           0x00800000
41#define BIT24           0x01000000
42#define BIT25           0x02000000
43#define BIT26           0x04000000
44#define BIT27           0x08000000
45#define BIT28           0x10000000
46#define BIT29           0x20000000
47#define BIT30           0x40000000
48#define BIT31           0x80000000
49
50#define _1K             0x00000400
51#define _2K             0x00000800
52#define _4K             0x00001000
53#define _8K             0x00002000
54#define _16K            0x00004000
55#define _32K            0x00008000
56#define _64K            0x00010000
57#define _128K           0x00020000
58#define _256K           0x00040000
59#define _512K           0x00080000
60
61#define _1M             0x00100000
62#define _2M             0x00200000
63#define _3M             0x00300000
64#define _4M             0x00400000
65#define _5M             0x00500000
66#define _6M             0x00600000
67#define _7M             0x00700000
68#define _8M             0x00800000
69#define _9M             0x00900000
70#define _10M            0x00a00000
71#define _11M            0x00b00000
72#define _12M            0x00c00000
73#define _13M            0x00d00000
74#define _14M            0x00e00000
75#define _15M            0x00f00000
76#define _16M            0x01000000
77
78typedef enum _bool{false,true} bool;
79
80#ifndef NULL
81#define NULL 0
82#endif
83
84/* The two following defines are according to MIPS architecture. */
85#define NONE_CACHEABLE			0xa0000000
86#define MIPS_CACHEABLE			0x80000000
87
88/* Read/Write to/from GT`s internal registers */
89#define GT_REG_READ(offset, pData)					\
90do {									\
91	*pData = (*((u32 *)(NONE_CACHEABLE |				\
92		INTERNAL_REG_BASE_ADDR | (offset))));			\
93	*pData = cpu_to_le32(*pData);					\
94} while(0)
95
96#define GT_REG_WRITE(offset, data)					\
97	(*((u32 *)(NONE_CACHEABLE | INTERNAL_REG_BASE_ADDR |		\
98		(offset))) = cpu_to_le32(data))
99
100#define VIRTUAL_TO_PHY(y)	((u32)(y) & (u32)0x5fffffff)
101#define PHY_TO_VIRTUAL(y)	((u32)(y) | NONE_CACHEABLE)
102
103/* Write 32/16/8 bit Non-Cache-able */
104#define WRITE_CHAR(address, data)					\
105	(*((u8 *)((address) | NONE_CACHEABLE)) = (data))
106#define WRITE_SHORT(address, data)					\
107	(*((u16 *)((address) | NONE_CACHEABLE)) = (u16) data)
108#define WRITE_WORD(address, data)					\
109	(*((u32 *)((address) | NONE_CACHEABLE)) = (u32) data)
110
111/* Write 32/16/8 bits Cacheable */
112#define WRITE_CHAR_CACHEABLE(address, data)				\
113	(*((u8 *)((address) | MIPS_CACHEABLE)) = (data))
114
115#define WRITE_SHORT_CACHEABLE(address, data)				\
116	(*((u16 *)((address) | MIPS_CACHEABLE)) = (u16) data)
117
118#define WRITE_WORD_CACHEABLE(address, data)				\
119	(*((u32 *)((address) | MIPS_CACHEABLE )) = (u32) data)
120
121/* Read 32/16/8 bits NonCacheable - returns data in variable. */
122#define READ_CHAR(address,pData)					\
123	(*(pData) = *((u8 *)((address) | NONE_CACHEABLE)))
124
125#define READ_SHORT(address,pData)					\
126	(*(pData) = *((u16 *)((address) | NONE_CACHEABLE)))
127
128#define READ_WORD(address,pData)					\
129	(*(pData) = *((u32 *)((address) | NONE_CACHEABLE)))
130
131/* Read 32/16/8 bit NonCacheable - returns data direct. */
132#define READCHAR(address)						\
133	(*((u8 *)((address) | NONE_CACHEABLE)))
134
135#define READSHORT(address)						\
136	(*((u16 *)((address) | NONE_CACHEABLE)))
137
138#define READWORD(address)						\
139        (*((u32 *)((address) | NONE_CACHEABLE)))
140
141/* Read 32/16/8 bit Cacheable - returns data in variable. */
142#define READ_CHAR_CACHEABLE(address,pData)				\
143        (*(pData) = *((u8 *)((address) | MIPS_CACHEABLE)))
144
145#define READ_SHORT_CACHEABLE(address,pData)				\
146        (*(pData) = *((u16 *)((address) | MIPS_CACHEABLE)))
147#define READ_WORD_CACHEABLE(address,pData)				\
148        (*(pData) = *((u32 *)((address) | MIPS_CACHEABLE)))
149
150/* Read 32/16/8 bit Cacheable - returns data direct. */
151#define READCHAR_CACHEABLE(address)					\
152	(*((u8 *)((address) | MIPS_CACHEABLE)))
153
154#define READSHORT_CACHEABLE(address)					\
155	(*((u16 *)((address) | MIPS_CACHEABLE)))
156
157#define READWORD_CACHEABLE(address)					\
158	(*((u32 *)((address) | MIPS_CACHEABLE)))
159
160/*
161 * SET_REG_BITS(regOffset,bits) -
162 * gets register offset and bits: a 32bit value. It set to logic '1' in the
163 * internal register the bits which given as an input example:
164 * SET_REG_BITS(0x840,BIT3 | BIT24 | BIT30) - set bits: 3,24 and 30 to logic
165 * '1' in register 0x840 while the other bits stays as is.
166 */
167#define SET_REG_BITS(regOffset,bits)					\
168	(*(u32*)(NONE_CACHEABLE | INTERNAL_REG_BASE_ADDR |		\
169		(regOffset)) |= (u32)cpu_to_le32(bits))
170
171/*
172 * RESET_REG_BITS(regOffset,bits) -
173 * gets register offset and bits: a 32bit value. It set to logic '0' in the
174 * internal register the bits which given as an input example:
175 * RESET_REG_BITS(0x840,BIT3 | BIT24 | BIT30) - set bits: 3,24 and 30 to logic
176 * '0' in register 0x840 while the other bits stays as is.
177 */
178#define RESET_REG_BITS(regOffset,bits)					\
179	(*(u32 *)(NONE_CACHEABLE | INTERNAL_REG_BASE_ADDR |		\
180		(regOffset)) &= ~((u32)cpu_to_le32(bits)))
181
182#endif /* __INCcoreh */
183