1/* multi_arith.h: multi-precision integer arithmetic functions, needed
2   to do extended-precision floating point.
3
4   (c) 1998 David Huggins-Daines.
5
6   Somewhat based on arch/alpha/math-emu/ieee-math.c, which is (c)
7   David Mosberger-Tang.
8
9   You may copy, modify, and redistribute this file under the terms of
10   the GNU General Public License, version 2, or any later version, at
11   your convenience. */
12
13/* Note:
14
15   These are not general multi-precision math routines.  Rather, they
16   implement the subset of integer arithmetic that we need in order to
17   multiply, divide, and normalize 128-bit unsigned mantissae.  */
18
19#ifndef MULTI_ARITH_H
20#define MULTI_ARITH_H
21
22
23extern inline void fp_denormalize(struct fp_ext *reg, unsigned int cnt)
24{
25	reg->exp += cnt;
26
27	switch (cnt) {
28	case 0 ... 8:
29		reg->lowmant = reg->mant.m32[1] << (8 - cnt);
30		reg->mant.m32[1] = (reg->mant.m32[1] >> cnt) |
31				   (reg->mant.m32[0] << (32 - cnt));
32		reg->mant.m32[0] = reg->mant.m32[0] >> cnt;
33		break;
34	case 9 ... 32:
35		reg->lowmant = reg->mant.m32[1] >> (cnt - 8);
36		if (reg->mant.m32[1] << (40 - cnt))
37			reg->lowmant |= 1;
38		reg->mant.m32[1] = (reg->mant.m32[1] >> cnt) |
39				   (reg->mant.m32[0] << (32 - cnt));
40		reg->mant.m32[0] = reg->mant.m32[0] >> cnt;
41		break;
42	case 33 ... 39:
43		asm volatile ("bfextu %1{%2,#8},%0" : "=d" (reg->lowmant)
44			: "m" (reg->mant.m32[0]), "d" (64 - cnt));
45		if (reg->mant.m32[1] << (40 - cnt))
46			reg->lowmant |= 1;
47		reg->mant.m32[1] = reg->mant.m32[0] >> (cnt - 32);
48		reg->mant.m32[0] = 0;
49		break;
50	case 40 ... 71:
51		reg->lowmant = reg->mant.m32[0] >> (cnt - 40);
52		if ((reg->mant.m32[0] << (72 - cnt)) || reg->mant.m32[1])
53			reg->lowmant |= 1;
54		reg->mant.m32[1] = reg->mant.m32[0] >> (cnt - 32);
55		reg->mant.m32[0] = 0;
56		break;
57	default:
58		reg->lowmant = reg->mant.m32[0] || reg->mant.m32[1];
59		reg->mant.m32[0] = 0;
60		reg->mant.m32[1] = 0;
61		break;
62	}
63}
64
65extern inline int fp_overnormalize(struct fp_ext *reg)
66{
67	int shift;
68
69	if (reg->mant.m32[0]) {
70		asm ("bfffo %1{#0,#32},%0" : "=d" (shift) : "dm" (reg->mant.m32[0]));
71		reg->mant.m32[0] = (reg->mant.m32[0] << shift) | (reg->mant.m32[1] >> (32 - shift));
72		reg->mant.m32[1] = (reg->mant.m32[1] << shift);
73	} else {
74		asm ("bfffo %1{#0,#32},%0" : "=d" (shift) : "dm" (reg->mant.m32[1]));
75		reg->mant.m32[0] = (reg->mant.m32[1] << shift);
76		reg->mant.m32[1] = 0;
77		shift += 32;
78	}
79
80	return shift;
81}
82
83extern inline int fp_addmant(struct fp_ext *dest, struct fp_ext *src)
84{
85	int carry;
86
87	/* we assume here, gcc only insert move and a clr instr */
88	asm volatile ("add.b %1,%0" : "=d,g" (dest->lowmant)
89		: "g,d" (src->lowmant), "0,0" (dest->lowmant));
90	asm volatile ("addx.l %1,%0" : "=d" (dest->mant.m32[1])
91		: "d" (src->mant.m32[1]), "0" (dest->mant.m32[1]));
92	asm volatile ("addx.l %1,%0" : "=d" (dest->mant.m32[0])
93		: "d" (src->mant.m32[0]), "0" (dest->mant.m32[0]));
94	asm volatile ("addx.l %0,%0" : "=d" (carry) : "0" (0));
95
96	return carry;
97}
98
99extern inline int fp_addcarry(struct fp_ext *reg)
100{
101	if (++reg->exp == 0x7fff) {
102		if (reg->mant.m64)
103			fp_set_sr(FPSR_EXC_INEX2);
104		reg->mant.m64 = 0;
105		fp_set_sr(FPSR_EXC_OVFL);
106		return 0;
107	}
108	reg->lowmant = (reg->mant.m32[1] << 7) | (reg->lowmant ? 1 : 0);
109	reg->mant.m32[1] = (reg->mant.m32[1] >> 1) |
110			   (reg->mant.m32[0] << 31);
111	reg->mant.m32[0] = (reg->mant.m32[0] >> 1) | 0x80000000;
112
113	return 1;
114}
115
116extern inline void fp_submant(struct fp_ext *dest, struct fp_ext *src1, struct fp_ext *src2)
117{
118	/* we assume here, gcc only insert move and a clr instr */
119	asm volatile ("sub.b %1,%0" : "=d,g" (dest->lowmant)
120		: "g,d" (src2->lowmant), "0,0" (src1->lowmant));
121	asm volatile ("subx.l %1,%0" : "=d" (dest->mant.m32[1])
122		: "d" (src2->mant.m32[1]), "0" (src1->mant.m32[1]));
123	asm volatile ("subx.l %1,%0" : "=d" (dest->mant.m32[0])
124		: "d" (src2->mant.m32[0]), "0" (src1->mant.m32[0]));
125}
126
127#define fp_mul64(desth, destl, src1, src2) ({				\
128	asm ("mulu.l %2,%1:%0" : "=d" (destl), "=d" (desth)		\
129		: "g" (src1), "0" (src2));				\
130})
131#define fp_div64(quot, rem, srch, srcl, div)				\
132	asm ("divu.l %2,%1:%0" : "=d" (quot), "=d" (rem)		\
133		: "dm" (div), "1" (srch), "0" (srcl))
134#define fp_add64(dest1, dest2, src1, src2) ({				\
135	asm ("add.l %1,%0" : "=d,dm" (dest2)				\
136		: "dm,d" (src2), "0,0" (dest2));			\
137	asm ("addx.l %1,%0" : "=d" (dest1)				\
138		: "d" (src1), "0" (dest1));				\
139})
140#define fp_addx96(dest, src) ({						\
141	/* we assume here, gcc only insert move and a clr instr */	\
142	asm volatile ("add.l %1,%0" : "=d,g" (dest->m32[2])		\
143		: "g,d" (temp.m32[1]), "0,0" (dest->m32[2]));		\
144	asm volatile ("addx.l %1,%0" : "=d" (dest->m32[1])		\
145		: "d" (temp.m32[0]), "0" (dest->m32[1]));		\
146	asm volatile ("addx.l %1,%0" : "=d" (dest->m32[0])		\
147		: "d" (0), "0" (dest->m32[0]));				\
148})
149#define fp_sub64(dest, src) ({						\
150	asm ("sub.l %1,%0" : "=d,dm" (dest.m32[1])			\
151		: "dm,d" (src.m32[1]), "0,0" (dest.m32[1]));		\
152	asm ("subx.l %1,%0" : "=d" (dest.m32[0])			\
153		: "d" (src.m32[0]), "0" (dest.m32[0]));			\
154})
155#define fp_sub96c(dest, srch, srcm, srcl) ({				\
156	char carry;							\
157	asm ("sub.l %1,%0" : "=d,dm" (dest.m32[2])			\
158		: "dm,d" (srcl), "0,0" (dest.m32[2]));			\
159	asm ("subx.l %1,%0" : "=d" (dest.m32[1])			\
160		: "d" (srcm), "0" (dest.m32[1]));			\
161	asm ("subx.l %2,%1; scs %0" : "=d" (carry), "=d" (dest.m32[0])	\
162		: "d" (srch), "1" (dest.m32[0]));			\
163	carry;								\
164})
165
166extern inline void fp_multiplymant(union fp_mant128 *dest, struct fp_ext *src1, struct fp_ext *src2)
167{
168	union fp_mant64 temp;
169
170	fp_mul64(dest->m32[0], dest->m32[1], src1->mant.m32[0], src2->mant.m32[0]);
171	fp_mul64(dest->m32[2], dest->m32[3], src1->mant.m32[1], src2->mant.m32[1]);
172
173	fp_mul64(temp.m32[0], temp.m32[1], src1->mant.m32[0], src2->mant.m32[1]);
174	fp_addx96(dest, temp);
175
176	fp_mul64(temp.m32[0], temp.m32[1], src1->mant.m32[1], src2->mant.m32[0]);
177	fp_addx96(dest, temp);
178}
179
180extern inline void fp_dividemant(union fp_mant128 *dest, struct fp_ext *src, struct fp_ext *div)
181{
182	union fp_mant128 tmp;
183	union fp_mant64 tmp64;
184	unsigned long *mantp = dest->m32;
185	unsigned long fix, rem, first, dummy;
186	int i;
187
188	/* the algorithm below requires dest to be smaller than div,
189	   but both have the high bit set */
190	if (src->mant.m64 >= div->mant.m64) {
191		fp_sub64(src->mant, div->mant);
192		*mantp = 1;
193	} else
194		*mantp = 0;
195	mantp++;
196
197	/* basic idea behind this algorithm: we can't divide two 64bit numbers
198	   (AB/CD) directly, but we can calculate AB/C0, but this means this
199	   quotient is off by C0/CD, so we have to multiply the first result
200	   to fix the result, after that we have nearly the correct result
201	   and only a few corrections are needed. */
202
203	/* C0/CD can be precalculated, but it's an 64bit division again, but
204	   we can make it a bit easier, by dividing first through C so we get
205	   10/1D and now only a single shift and the value fits into 32bit. */
206	fix = 0x80000000;
207	dummy = div->mant.m32[1] / div->mant.m32[0] + 1;
208	dummy = (dummy >> 1) | fix;
209	fp_div64(fix, dummy, fix, 0, dummy);
210	fix--;
211
212	for (i = 0; i < 3; i++, mantp++) {
213		if (src->mant.m32[0] == div->mant.m32[0]) {
214			fp_div64(first, rem, 0, src->mant.m32[1], div->mant.m32[0]);
215
216			fp_mul64(*mantp, dummy, first, fix);
217			*mantp += fix;
218		} else {
219			fp_div64(first, rem, src->mant.m32[0], src->mant.m32[1], div->mant.m32[0]);
220
221			fp_mul64(*mantp, dummy, first, fix);
222		}
223
224		fp_mul64(tmp.m32[0], tmp.m32[1], div->mant.m32[0], first - *mantp);
225		fp_add64(tmp.m32[0], tmp.m32[1], 0, rem);
226		tmp.m32[2] = 0;
227
228		fp_mul64(tmp64.m32[0], tmp64.m32[1], *mantp, div->mant.m32[1]);
229		fp_sub96c(tmp, 0, tmp64.m32[0], tmp64.m32[1]);
230
231		src->mant.m32[0] = tmp.m32[1];
232		src->mant.m32[1] = tmp.m32[2];
233
234		while (!fp_sub96c(tmp, 0, div->mant.m32[0], div->mant.m32[1])) {
235			src->mant.m32[0] = tmp.m32[1];
236			src->mant.m32[1] = tmp.m32[2];
237			*mantp += 1;
238		}
239	}
240}
241
242
243extern inline void fp_putmant128(struct fp_ext *dest, union fp_mant128 *src, int shift)
244{
245	unsigned long tmp;
246
247	switch (shift) {
248	case 0:
249		dest->mant.m64 = src->m64[0];
250		dest->lowmant = src->m32[2] >> 24;
251		if (src->m32[3] || (src->m32[2] << 8))
252			dest->lowmant |= 1;
253		break;
254	case 1:
255		asm volatile ("lsl.l #1,%0"
256			: "=d" (tmp) : "0" (src->m32[2]));
257		asm volatile ("roxl.l #1,%0"
258			: "=d" (dest->mant.m32[1]) : "0" (src->m32[1]));
259		asm volatile ("roxl.l #1,%0"
260			: "=d" (dest->mant.m32[0]) : "0" (src->m32[0]));
261		dest->lowmant = tmp >> 24;
262		if (src->m32[3] || (tmp << 8))
263			dest->lowmant |= 1;
264		break;
265	case 31:
266		asm volatile ("lsr.l #1,%1; roxr.l #1,%0"
267			: "=d" (dest->mant.m32[0])
268			: "d" (src->m32[0]), "0" (src->m32[1]));
269		asm volatile ("roxr.l #1,%0"
270			: "=d" (dest->mant.m32[1]) : "0" (src->m32[2]));
271		asm volatile ("roxr.l #1,%0"
272			: "=d" (tmp) : "0" (src->m32[3]));
273		dest->lowmant = tmp >> 24;
274		if (src->m32[3] << 7)
275			dest->lowmant |= 1;
276		break;
277	case 32:
278		dest->mant.m32[0] = src->m32[1];
279		dest->mant.m32[1] = src->m32[2];
280		dest->lowmant = src->m32[3] >> 24;
281		if (src->m32[3] << 8)
282			dest->lowmant |= 1;
283		break;
284	}
285}
286
287
288#endif	/* MULTI_ARITH_H */
289