1/*
2 * arch/alpha/lib/ev6-clear_user.S
3 * 21264 version contributed by Rick Gorton <rick.gorton@alpha-processor.com>
4 *
5 * Zero user space, handling exceptions as we go.
6 *
7 * We have to make sure that $0 is always up-to-date and contains the
8 * right "bytes left to zero" value (and that it is updated only _after_
9 * a successful copy).  There is also some rather minor exception setup
10 * stuff.
11 *
12 * NOTE! This is not directly C-callable, because the calling semantics
13 * are different:
14 *
15 * Inputs:
16 *	length in $0
17 *	destination address in $6
18 *	exception pointer in $7
19 *	return address in $28 (exceptions expect it there)
20 *
21 * Outputs:
22 *	bytes left to copy in $0
23 *
24 * Clobbers:
25 *	$1,$2,$3,$4,$5,$6
26 *
27 * Much of the information about 21264 scheduling/coding comes from:
28 *	Compiler Writer's Guide for the Alpha 21264
29 *	abbreviated as 'CWG' in other comments here
30 *	ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc-library.html
31 * Scheduling notation:
32 *	E	- either cluster
33 *	U	- upper subcluster; U0 - subcluster U0; U1 - subcluster U1
34 *	L	- lower subcluster; L0 - subcluster L0; L1 - subcluster L1
35 * Try not to change the actual algorithm if possible for consistency.
36 * Determining actual stalls (other than slotting) doesn't appear to be easy to do.
37 * From perusing the source code context where this routine is called, it is
38 * a fair assumption that significant fractions of entire pages are zeroed, so
39 * it's going to be worth the effort to hand-unroll a big loop, and use wh64.
40 * ASSUMPTION:
41 *	The believed purpose of only updating $0 after a store is that a signal
42 *	may come along during the execution of this chunk of code, and we don't
43 *	want to leave a hole (and we also want to avoid repeating lots of work)
44 */
45
46/* Allow an exception for an insn; exit if we get one.  */
47#define EX(x,y...)			\
48	99: x,##y;			\
49	.section __ex_table,"a";	\
50	.gprel32 99b;			\
51	lda $31, $exception-99b($31); 	\
52	.previous
53
54	.set noat
55	.set noreorder
56	.align 4
57
58	.globl __do_clear_user
59	.ent __do_clear_user
60	.frame	$30, 0, $28
61	.prologue 0
62
63				# Pipeline info : Slotting & Comments
64__do_clear_user:
65	ldgp	$29,0($27)	# we do exceptions -- we need the gp.
66				# Macro instruction becomes ldah/lda
67				# .. .. E  E	:
68	and	$6, 7, $4	# .. E  .. ..	: find dest head misalignment
69	beq	$0, $zerolength # U  .. .. ..	:  U L U L
70
71	addq	$0, $4, $1	# .. .. .. E	: bias counter
72	and	$1, 7, $2	# .. .. E  ..	: number of misaligned bytes in tail
73# Note - we never actually use $2, so this is a moot computation
74# and we can rewrite this later...
75	srl	$1, 3, $1	# .. E  .. ..	: number of quadwords to clear
76	beq	$4, $headalign	# U  .. .. ..	: U L U L
77
78/*
79 * Head is not aligned.  Write (8 - $4) bytes to head of destination
80 * This means $6 is known to be misaligned
81 */
82	EX( ldq_u $5, 0($6) )	# .. .. .. L	: load dst word to mask back in
83	beq	$1, $onebyte	# .. .. U  ..	: sub-word store?
84	mskql	$5, $6, $5	# .. U  .. ..	: take care of misaligned head
85	addq	$6, 8, $6	# E  .. .. .. 	: L U U L
86
87	EX( stq_u $5, -8($6) )	# .. .. .. L	:
88	subq	$1, 1, $1	# .. .. E  ..	:
89	addq	$0, $4, $0	# .. E  .. ..	: bytes left -= 8 - misalignment
90	subq	$0, 8, $0	# E  .. .. ..	: U L U L
91
92	.align	4
93/*
94 * (The .align directive ought to be a moot point)
95 * values upon initial entry to the loop
96 * $1 is number of quadwords to clear (zero is a valid value)
97 * $2 is number of trailing bytes (0..7) ($2 never used...)
98 * $6 is known to be aligned 0mod8
99 */
100$headalign:
101	subq	$1, 16, $4	# .. .. .. E	: If < 16, we can not use the huge loop
102	and	$6, 0x3f, $2	# .. .. E  ..	: Forward work for huge loop
103	subq	$2, 0x40, $3	# .. E  .. ..	: bias counter (huge loop)
104	blt	$4, $trailquad	# U  .. .. ..	: U L U L
105
106/*
107 * We know that we're going to do at least 16 quads, which means we are
108 * going to be able to use the large block clear loop at least once.
109 * Figure out how many quads we need to clear before we are 0mod64 aligned
110 * so we can use the wh64 instruction.
111 */
112
113	nop			# .. .. .. E
114	nop			# .. .. E  ..
115	nop			# .. E  .. ..
116	beq	$3, $bigalign	# U  .. .. ..	: U L U L : Aligned 0mod64
117
118$alignmod64:
119	EX( stq_u $31, 0($6) )	# .. .. .. L
120	addq	$3, 8, $3	# .. .. E  ..
121	subq	$0, 8, $0	# .. E  .. ..
122	nop			# E  .. .. ..	: U L U L
123
124	nop			# .. .. .. E
125	subq	$1, 1, $1	# .. .. E  ..
126	addq	$6, 8, $6	# .. E  .. ..
127	blt	$3, $alignmod64	# U  .. .. ..	: U L U L
128
129$bigalign:
130/*
131 * $0 is the number of bytes left
132 * $1 is the number of quads left
133 * $6 is aligned 0mod64
134 * we know that we'll be taking a minimum of one trip through
135 * CWG Section 3.7.6: do not expect a sustained store rate of > 1/cycle
136 * We are _not_ going to update $0 after every single store.  That
137 * would be silly, because there will be cross-cluster dependencies
138 * no matter how the code is scheduled.  By doing it in slightly
139 * staggered fashion, we can still do this loop in 5 fetches
140 * The worse case will be doing two extra quads in some future execution,
141 * in the event of an interrupted clear.
142 * Assumes the wh64 needs to be for 2 trips through the loop in the future
143 * The wh64 is issued on for the starting destination address for trip +2
144 * through the loop, and if there are less than two trips left, the target
145 * address will be for the current trip.
146 */
147	nop			# E :
148	nop			# E :
149	nop			# E :
150	bis	$6,$6,$3	# E : U L U L : Initial wh64 address is dest
151	/* This might actually help for the current trip... */
152
153$do_wh64:
154	wh64	($3)		# .. .. .. L1	: memory subsystem hint
155	subq	$1, 16, $4	# .. .. E  ..	: Forward calculation - repeat the loop?
156	EX( stq_u $31, 0($6) )	# .. L  .. ..
157	subq	$0, 8, $0	# E  .. .. ..	: U L U L
158
159	addq	$6, 128, $3	# E : Target address of wh64
160	EX( stq_u $31, 8($6) )	# L :
161	EX( stq_u $31, 16($6) )	# L :
162	subq	$0, 16, $0	# E : U L L U
163
164	nop			# E :
165	EX( stq_u $31, 24($6) )	# L :
166	EX( stq_u $31, 32($6) )	# L :
167	subq	$0, 168, $5	# E : U L L U : two trips through the loop left?
168	/* 168 = 192 - 24, since we've already completed some stores */
169
170	subq	$0, 16, $0	# E :
171	EX( stq_u $31, 40($6) )	# L :
172	EX( stq_u $31, 48($6) )	# L :
173	cmovlt	$5, $6, $3	# E : U L L U : Latency 2, extra mapping cycle
174
175	subq	$1, 8, $1	# E :
176	subq	$0, 16, $0	# E :
177	EX( stq_u $31, 56($6) )	# L :
178	nop			# E : U L U L
179
180	nop			# E :
181	subq	$0, 8, $0	# E :
182	addq	$6, 64, $6	# E :
183	bge	$4, $do_wh64	# U : U L U L
184
185$trailquad:
186	# zero to 16 quadwords left to store, plus any trailing bytes
187	# $1 is the number of quadwords left to go.
188	#
189	nop			# .. .. .. E
190	nop			# .. .. E  ..
191	nop			# .. E  .. ..
192	beq	$1, $trailbytes	# U  .. .. ..	: U L U L : Only 0..7 bytes to go
193
194$onequad:
195	EX( stq_u $31, 0($6) )	# .. .. .. L
196	subq	$1, 1, $1	# .. .. E  ..
197	subq	$0, 8, $0	# .. E  .. ..
198	nop			# E  .. .. ..	: U L U L
199
200	nop			# .. .. .. E
201	nop			# .. .. E  ..
202	addq	$6, 8, $6	# .. E  .. ..
203	bgt	$1, $onequad	# U  .. .. ..	: U L U L
204
205	# We have an unknown number of bytes left to go.
206$trailbytes:
207	nop			# .. .. .. E
208	nop			# .. .. E  ..
209	nop			# .. E  .. ..
210	beq	$0, $zerolength	# U  .. .. ..	: U L U L
211
212	# $0 contains the number of bytes left to copy (0..31)
213	# so we will use $0 as the loop counter
214	# We know for a fact that $0 > 0 zero due to previous context
215$onebyte:
216	EX( stb $31, 0($6) )	# .. .. .. L
217	subq	$0, 1, $0	# .. .. E  ..	:
218	addq	$6, 1, $6	# .. E  .. ..	:
219	bgt	$0, $onebyte	# U  .. .. ..	: U L U L
220
221$zerolength:
222$exception:			# Destination for exception recovery(?)
223	nop			# .. .. .. E	:
224	nop			# .. .. E  ..	:
225	nop			# .. E  .. ..	:
226	ret	$31, ($28), 1	# L0 .. .. ..	: L U L U
227	.end __do_clear_user
228
229