History log of /freebsd-current/sys/opencrypto/xform_gmac.c
Revision Date Author Comments
# 685dc743 16-Aug-2023 Warner Losh <imp@FreeBSD.org>

sys: Remove $FreeBSD$: one-line .c pattern

Remove /^[\s*]*__FBSDID\("\$FreeBSD\$"\);?\s*\n/


# faf470ff 24-Jan-2022 John Baldwin <jhb@FreeBSD.org>

xform_*.c: Add headers when needed to compile standalone.

Reviewed by: markj
Sponsored by: The FreeBSD Foundation
Differential Revision: https://reviews.freebsd.org/D33994


# d8787d4f 26-Jul-2021 Mark Johnston <markj@FreeBSD.org>

crypto: Constify all transform descriptors

No functional change intended.

Reviewed by: ae, jhb
MFC after: 1 week
Sponsored by: The FreeBSD Foundation
Differential Revision: https://reviews.freebsd.org/D31196


# 9b6b2f86 10-Jun-2020 John Baldwin <jhb@FreeBSD.org>

Adjust crypto_apply function callbacks for OCF.

- crypto_apply() is only used for reading a buffer to compute a
digest, so change the data pointer to a const pointer.

- To better match m_apply(), change the data pointer type to void *
and the length from uint16_t to u_int. The length field in
particular matters as none of the apply logic was splitting requests
larger than UINT16_MAX.

- Adjust the auth_xform Update callback to match the function
prototype passed to crypto_apply() and crypto_apply_buf(). This
removes the needs for casts when using the Update callback.

- Change the Reinit and Setkey callbacks to also use a u_int length
instead of uint16_t.

- Update auth transforms for the changes. While here, use C99
initializers for auth_hash structures and avoid casts on callbacks.

Reviewed by: cem
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D25171


# 3e947048 20-May-2020 John Baldwin <jhb@FreeBSD.org>

Various cleanups to the software encryption transform interface.

- Consistently use 'void *' for key schedules / key contexts instead
of a mix of 'caddr_t', 'uint8_t *', and 'void *'.

- Add a ctxsize member to enc_xform similar to what auth transforms use
and require callers to malloc/zfree the context. The setkey callback
now supplies the caller-allocated context pointer and the zerokey
callback is removed. Callers now always use zfree() to ensure
key contexts are zeroed.

- Consistently use C99 initializers for all statically-initialized
instances of 'struct enc_xform'.

- Change the encrypt and decrypt functions to accept separate in and
out buffer pointers. Almost all of the backend crypto functions
already supported separate input and output buffers and this makes
it simpler to support separate buffers in OCF.

- Remove xform_userland.h shim to permit transforms to be compiled in
userland. Transforms no longer call malloc/free directly.

Reviewed by: cem (earlier version)
Sponsored by: Netflix
Differential Revision: https://reviews.freebsd.org/D24855


# c0341432 27-Mar-2020 John Baldwin <jhb@FreeBSD.org>

Refactor driver and consumer interfaces for OCF (in-kernel crypto).

- The linked list of cryptoini structures used in session
initialization is replaced with a new flat structure: struct
crypto_session_params. This session includes a new mode to define
how the other fields should be interpreted. Available modes
include:

- COMPRESS (for compression/decompression)
- CIPHER (for simply encryption/decryption)
- DIGEST (computing and verifying digests)
- AEAD (combined auth and encryption such as AES-GCM and AES-CCM)
- ETA (combined auth and encryption using encrypt-then-authenticate)

Additional modes could be added in the future (e.g. if we wanted to
support TLS MtE for AES-CBC in the kernel we could add a new mode
for that. TLS modes might also affect how AAD is interpreted, etc.)

The flat structure also includes the key lengths and algorithms as
before. However, code doesn't have to walk the linked list and
switch on the algorithm to determine which key is the auth key vs
encryption key. The 'csp_auth_*' fields are always used for auth
keys and settings and 'csp_cipher_*' for cipher. (Compression
algorithms are stored in csp_cipher_alg.)

- Drivers no longer register a list of supported algorithms. This
doesn't quite work when you factor in modes (e.g. a driver might
support both AES-CBC and SHA2-256-HMAC separately but not combined
for ETA). Instead, a new 'crypto_probesession' method has been
added to the kobj interface for symmteric crypto drivers. This
method returns a negative value on success (similar to how
device_probe works) and the crypto framework uses this value to pick
the "best" driver. There are three constants for hardware
(e.g. ccr), accelerated software (e.g. aesni), and plain software
(cryptosoft) that give preference in that order. One effect of this
is that if you request only hardware when creating a new session,
you will no longer get a session using accelerated software.
Another effect is that the default setting to disallow software
crypto via /dev/crypto now disables accelerated software.

Once a driver is chosen, 'crypto_newsession' is invoked as before.

- Crypto operations are now solely described by the flat 'cryptop'
structure. The linked list of descriptors has been removed.

A separate enum has been added to describe the type of data buffer
in use instead of using CRYPTO_F_* flags to make it easier to add
more types in the future if needed (e.g. wired userspace buffers for
zero-copy). It will also make it easier to re-introduce separate
input and output buffers (in-kernel TLS would benefit from this).

Try to make the flags related to IV handling less insane:

- CRYPTO_F_IV_SEPARATE means that the IV is stored in the 'crp_iv'
member of the operation structure. If this flag is not set, the
IV is stored in the data buffer at the 'crp_iv_start' offset.

- CRYPTO_F_IV_GENERATE means that a random IV should be generated
and stored into the data buffer. This cannot be used with
CRYPTO_F_IV_SEPARATE.

If a consumer wants to deal with explicit vs implicit IVs, etc. it
can always generate the IV however it needs and store partial IVs in
the buffer and the full IV/nonce in crp_iv and set
CRYPTO_F_IV_SEPARATE.

The layout of the buffer is now described via fields in cryptop.
crp_aad_start and crp_aad_length define the boundaries of any AAD.
Previously with GCM and CCM you defined an auth crd with this range,
but for ETA your auth crd had to span both the AAD and plaintext
(and they had to be adjacent).

crp_payload_start and crp_payload_length define the boundaries of
the plaintext/ciphertext. Modes that only do a single operation
(COMPRESS, CIPHER, DIGEST) should only use this region and leave the
AAD region empty.

If a digest is present (or should be generated), it's starting
location is marked by crp_digest_start.

Instead of using the CRD_F_ENCRYPT flag to determine the direction
of the operation, cryptop now includes an 'op' field defining the
operation to perform. For digests I've added a new VERIFY digest
mode which assumes a digest is present in the input and fails the
request with EBADMSG if it doesn't match the internally-computed
digest. GCM and CCM already assumed this, and the new AEAD mode
requires this for decryption. The new ETA mode now also requires
this for decryption, so IPsec and GELI no longer do their own
authentication verification. Simple DIGEST operations can also do
this, though there are no in-tree consumers.

To eventually support some refcounting to close races, the session
cookie is now passed to crypto_getop() and clients should no longer
set crp_sesssion directly.

- Assymteric crypto operation structures should be allocated via
crypto_getkreq() and freed via crypto_freekreq(). This permits the
crypto layer to track open asym requests and close races with a
driver trying to unregister while asym requests are in flight.

- crypto_copyback, crypto_copydata, crypto_apply, and
crypto_contiguous_subsegment now accept the 'crp' object as the
first parameter instead of individual members. This makes it easier
to deal with different buffer types in the future as well as
separate input and output buffers. It's also simpler for driver
writers to use.

- bus_dmamap_load_crp() loads a DMA mapping for a crypto buffer.
This understands the various types of buffers so that drivers that
use DMA do not have to be aware of different buffer types.

- Helper routines now exist to build an auth context for HMAC IPAD
and OPAD. This reduces some duplicated work among drivers.

- Key buffers are now treated as const throughout the framework and in
device drivers. However, session key buffers provided when a session
is created are expected to remain alive for the duration of the
session.

- GCM and CCM sessions now only specify a cipher algorithm and a cipher
key. The redundant auth information is not needed or used.

- For cryptosoft, split up the code a bit such that the 'process'
callback now invokes a function pointer in the session. This
function pointer is set based on the mode (in effect) though it
simplifies a few edge cases that would otherwise be in the switch in
'process'.

It does split up GCM vs CCM which I think is more readable even if there
is some duplication.

- I changed /dev/crypto to support GMAC requests using CRYPTO_AES_NIST_GMAC
as an auth algorithm and updated cryptocheck to work with it.

- Combined cipher and auth sessions via /dev/crypto now always use ETA
mode. The COP_F_CIPHER_FIRST flag is now a no-op that is ignored.
This was actually documented as being true in crypto(4) before, but
the code had not implemented this before I added the CIPHER_FIRST
flag.

- I have not yet updated /dev/crypto to be aware of explicit modes for
sessions. I will probably do that at some point in the future as well
as teach it about IV/nonce and tag lengths for AEAD so we can support
all of the NIST KAT tests for GCM and CCM.

- I've split up the exising crypto.9 manpage into several pages
of which many are written from scratch.

- I have converted all drivers and consumers in the tree and verified
that they compile, but I have not tested all of them. I have tested
the following drivers:

- cryptosoft
- aesni (AES only)
- blake2
- ccr

and the following consumers:

- cryptodev
- IPsec
- ktls_ocf
- GELI (lightly)

I have not tested the following:

- ccp
- aesni with sha
- hifn
- kgssapi_krb5
- ubsec
- padlock
- safe
- armv8_crypto (aarch64)
- glxsb (i386)
- sec (ppc)
- cesa (armv7)
- cryptocteon (mips64)
- nlmsec (mips64)

Discussed with: cem
Relnotes: yes
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D23677


# 2155bb23 30-Dec-2015 Allan Jude <allanjude@FreeBSD.org>

Break up opencrypto/xform.c so it can be reused piecemeal

Keep xform.c as a meta-file including the broken out bits
existing code that includes xform.c continues to work as normal

Individual algorithms can now be reused elsewhere, including outside
of the kernel

Reviewed by: bapt (previous version), gnn, delphij
Approved by: secteam
MFC after: 1 week
Sponsored by: ScaleEngine Inc.
Differential Revision: https://reviews.freebsd.org/D4674