History log of /freebsd-10-stable/sys/netatalk/at_extern.h
Revision Date Author Comments
(<<< Hide modified files)
(Show modified files >>>)
# 256281 10-Oct-2013 gjb

Copy head (r256279) to stable/10 as part of the 10.0-RELEASE cycle.

Approved by: re (implicit)
Sponsored by: The FreeBSD Foundation

# 249925 26-Apr-2013 glebius

Add const qualifier to the dst parameter of the ifnet if_output method.


# 194819 24-Jun-2009 rwatson

Break at_ifawithnet() into two variants:

- at_ifawithnet(), which acquires an locks it needs and returns an
at_ifaddr reference.
- at_ifawithnet_locked(), which relies on the caller locking
at_ifaddr_list, and returns a pointer rather than a reference.

Update various consumers to prefer one or the other, including ether
and fddi output, to properly release at_ifaddr references.

Rework at_control() to manage locking and references in a manner
identical to in_control().

MFC after: 6 weeks


# 178888 09-May-2008 julian

Add code to allow the system to handle multiple routing tables.
This particular implementation is designed to be fully backwards compatible
and to be MFC-able to 7.x (and 6.x)

Currently the only protocol that can make use of the multiple tables is IPv4
Similar functionality exists in OpenBSD and Linux.

From my notes:

-----

One thing where FreeBSD has been falling behind, and which by chance I
have some time to work on is "policy based routing", which allows
different
packet streams to be routed by more than just the destination address.

Constraints:
------------

I want to make some form of this available in the 6.x tree
(and by extension 7.x) , but FreeBSD in general needs it so I might as
well do it in -current and back port the portions I need.

One of the ways that this can be done is to have the ability to
instantiate multiple kernel routing tables (which I will now
refer to as "Forwarding Information Bases" or "FIBs" for political
correctness reasons). Which FIB a particular packet uses to make
the next hop decision can be decided by a number of mechanisms.
The policies these mechanisms implement are the "Policies" referred
to in "Policy based routing".

One of the constraints I have if I try to back port this work to
6.x is that it must be implemented as a EXTENSION to the existing
ABIs in 6.x so that third party applications do not need to be
recompiled in timespan of the branch.

This first version will not have some of the bells and whistles that
will come with later versions. It will, for example, be limited to 16
tables in the first commit.
Implementation method, Compatible version. (part 1)
-------------------------------
For this reason I have implemented a "sufficient subset" of a
multiple routing table solution in Perforce, and back-ported it
to 6.x. (also in Perforce though not always caught up with what I
have done in -current/P4). The subset allows a number of FIBs
to be defined at compile time (8 is sufficient for my purposes in 6.x)
and implements the changes needed to allow IPV4 to use them. I have not
done the changes for ipv6 simply because I do not need it, and I do not
have enough knowledge of ipv6 (e.g. neighbor discovery) needed to do it.

Other protocol families are left untouched and should there be
users with proprietary protocol families, they should continue to work
and be oblivious to the existence of the extra FIBs.

To understand how this is done, one must know that the current FIB
code starts everything off with a single dimensional array of
pointers to FIB head structures (One per protocol family), each of
which in turn points to the trie of routes available to that family.

The basic change in the ABI compatible version of the change is to
extent that array to be a 2 dimensional array, so that
instead of protocol family X looking at rt_tables[X] for the
table it needs, it looks at rt_tables[Y][X] when for all
protocol families except ipv4 Y is always 0.
Code that is unaware of the change always just sees the first row
of the table, which of course looks just like the one dimensional
array that existed before.

The entry points rtrequest(), rtalloc(), rtalloc1(), rtalloc_ign()
are all maintained, but refer only to the first row of the array,
so that existing callers in proprietary protocols can continue to
do the "right thing".
Some new entry points are added, for the exclusive use of ipv4 code
called in_rtrequest(), in_rtalloc(), in_rtalloc1() and in_rtalloc_ign(),
which have an extra argument which refers the code to the correct row.

In addition, there are some new entry points (currently called
rtalloc_fib() and friends) that check the Address family being
looked up and call either rtalloc() (and friends) if the protocol
is not IPv4 forcing the action to row 0 or to the appropriate row
if it IS IPv4 (and that info is available). These are for calling
from code that is not specific to any particular protocol. The way
these are implemented would change in the non ABI preserving code
to be added later.

One feature of the first version of the code is that for ipv4,
the interface routes show up automatically on all the FIBs, so
that no matter what FIB you select you always have the basic
direct attached hosts available to you. (rtinit() does this
automatically).

You CAN delete an interface route from one FIB should you want
to but by default it's there. ARP information is also available
in each FIB. It's assumed that the same machine would have the
same MAC address, regardless of which FIB you are using to get
to it.

This brings us as to how the correct FIB is selected for an outgoing
IPV4 packet.

Firstly, all packets have a FIB associated with them. if nothing
has been done to change it, it will be FIB 0. The FIB is changed
in the following ways.

Packets fall into one of a number of classes.

1/ locally generated packets, coming from a socket/PCB.
Such packets select a FIB from a number associated with the
socket/PCB. This in turn is inherited from the process,
but can be changed by a socket option. The process in turn
inherits it on fork. I have written a utility call setfib
that acts a bit like nice..

setfib -3 ping target.example.com # will use fib 3 for ping.

It is an obvious extension to make it a property of a jail
but I have not done so. It can be achieved by combining the setfib and
jail commands.

2/ packets received on an interface for forwarding.
By default these packets would use table 0,
(or possibly a number settable in a sysctl(not yet)).
but prior to routing the firewall can inspect them (see below).
(possibly in the future you may be able to associate a FIB
with packets received on an interface.. An ifconfig arg, but not yet.)

3/ packets inspected by a packet classifier, which can arbitrarily
associate a fib with it on a packet by packet basis.
A fib assigned to a packet by a packet classifier
(such as ipfw) would over-ride a fib associated by
a more default source. (such as cases 1 or 2).

4/ a tcp listen socket associated with a fib will generate
accept sockets that are associated with that same fib.

5/ Packets generated in response to some other packet (e.g. reset
or icmp packets). These should use the FIB associated with the
packet being reponded to.

6/ Packets generated during encapsulation.
gif, tun and other tunnel interfaces will encapsulate using the FIB
that was in effect withthe proces that set up the tunnel.
thus setfib 1 ifconfig gif0 [tunnel instructions]
will set the fib for the tunnel to use to be fib 1.

Routing messages would be associated with their
process, and thus select one FIB or another.
messages from the kernel would be associated with the fib they
refer to and would only be received by a routing socket associated
with that fib. (not yet implemented)

In addition Netstat has been edited to be able to cope with the
fact that the array is now 2 dimensional. (It looks in system
memory using libkvm (!)). Old versions of netstat see only the first FIB.

In addition two sysctls are added to give:
a) the number of FIBs compiled in (active)
b) the default FIB of the calling process.

Early testing experience:
-------------------------

Basically our (IronPort's) appliance does this functionality already
using ipfw fwd but that method has some drawbacks.

For example,
It can't fully simulate a routing table because it can't influence the
socket's choice of local address when a connect() is done.

Testing during the generating of these changes has been
remarkably smooth so far. Multiple tables have co-existed
with no notable side effects, and packets have been routes
accordingly.

ipfw has grown 2 new keywords:

setfib N ip from anay to any
count ip from any to any fib N

In pf there seems to be a requirement to be able to give symbolic names to the
fibs but I do not have that capacity. I am not sure if it is required.

SCTP has interestingly enough built in support for this, called VRFs
in Cisco parlance. it will be interesting to see how that handles it
when it suddenly actually does something.

Where to next:
--------------------

After committing the ABI compatible version and MFCing it, I'd
like to proceed in a forward direction in -current. this will
result in some roto-tilling in the routing code.

Firstly: the current code's idea of having a separate tree per
protocol family, all of the same format, and pointed to by the
1 dimensional array is a bit silly. Especially when one considers that
there is code that makes assumptions about every protocol having the
same internal structures there. Some protocols don't WANT that
sort of structure. (for example the whole idea of a netmask is foreign
to appletalk). This needs to be made opaque to the external code.

My suggested first change is to add routing method pointers to the
'domain' structure, along with information pointing the data.
instead of having an array of pointers to uniform structures,
there would be an array pointing to the 'domain' structures
for each protocol address domain (protocol family),
and the methods this reached would be called. The methods would have
an argument that gives FIB number, but the protocol would be free
to ignore it.

When the ABI can be changed it raises the possibilty of the
addition of a fib entry into the "struct route". Currently,
the structure contains the sockaddr of the desination, and the resulting
fib entry. To make this work fully, one could add a fib number
so that given an address and a fib, one can find the third element, the
fib entry.

Interaction with the ARP layer/ LL layer would need to be
revisited as well. Qing Li has been working on this already.

This work was sponsored by Ironport Systems/Cisco

Reviewed by: several including rwatson, bz and mlair (parts each)
Obtained from: Ironport systems/Cisco


# 165972 12-Jan-2007 rwatson

Cleanup of netatalk atalk layer includes, protocol definitions, and
routing:

- style(9) cleanup -- white space, braces, etc.

- Make include guards consistent with our more general naming
convention.

- Rearrange and complete forward structure declarations in at_extern.h,
remove testing of guards of various other include files to protect
function declarations.

This leaves an ifdef _KERNEL in at_var.h, but from inspection it seems
likely that this file is not actually safe for inclusion in user space
still. However, since it's not included from within src/ so this does
not appear to be an issue (ifconfig, etc, have migrated to the generic
cross-protocol ioctls for address operations).


# 165971 12-Jan-2007 rwatson

Re-style aarp with style(9): normal plethora of white space, brace,
etc, changes.

Remove a small amount of #if !defined(__FreeBSD__) code.

Add missing include guard for _NETATALK_AARP_H_.

Remove unneeded (and conflicting) extern prototype for aarptfree().


# 142226 22-Feb-2005 rwatson

Convert the aa_ifaddr timeout to a callout, and run the aarprobe callout
MPSAFE. Acquire the aarptab_mtx to make sure that the callout and msleep
in the ioctl thread don't race.

MFC after: 1 week


# 139827 07-Jan-2005 imp

/* -> /*- for license, minor formatting changes, insert COPYRIGHT into files


# 128636 25-Apr-2004 luigi

This commit does two things:

1. rt_check() cleanup:
rt_check() is only necessary for some address families to gain access
to the corresponding arp entry, so call it only in/near the *resolve()
routines where it is actually used -- at the moment this is
arpresolve(), nd6_storelladdr() (the call is embedded here),
and atmresolve() (the call is just before atmresolve to reduce
the number of changes).
This change will make it a lot easier to decouple the arp table
from the routing table.

There is an extra call to rt_check() in if_iso88025subr.c to
determine the routing info length. I have left it alone for
the time being.

The interface of arpresolve() and nd6_storelladdr() now changes slightly:
+ the 'rtentry' parameter (really a hint from the upper level layer)
is now passed unchanged from *_output(), so it becomes the route
to the final destination and not to the gateway.
+ the routines will return 0 if resolution is possible, non-zero
otherwise.
+ arpresolve() returns EWOULDBLOCK in case the mbuf is being held
waiting for an arp reply -- in this case the error code is masked
in the caller so the upper layer protocol will not see a failure.

2. arpcom untangling
Where possible, use 'struct ifnet' instead of 'struct arpcom' variables,
and use the IFP2AC macro to access arpcom fields.
This mostly affects the netatalk code.

=== Detailed changes: ===
net/if_arcsubr.c
rt_check() cleanup, remove a useless variable

net/if_atmsubr.c
rt_check() cleanup

net/if_ethersubr.c
rt_check() cleanup, arpcom untangling

net/if_fddisubr.c
rt_check() cleanup, arpcom untangling

net/if_iso88025subr.c
rt_check() cleanup

netatalk/aarp.c
arpcom untangling, remove a block of duplicated code

netatalk/at_extern.h
arpcom untangling

netinet/if_ether.c
rt_check() cleanup (change arpresolve)

netinet6/nd6.c
rt_check() cleanup (change nd6_storelladdr)


# 111888 04-Mar-2003 jlemon

Update netisr handling; Each SWI now registers its queue, and all queue
drain routines are done by swi_net, which allows for better queue control
at some future point. Packets may also be directly dispatched to a netisr
instead of queued, this may be of interest at some installations, but
currently defaults to off.

Reviewed by: hsu, silby, jayanth, sam
Sponsored by: DARPA, NAI Labs


# 92745 20-Mar-2002 alfred

Remove __P.


# 83366 12-Sep-2001 julian

KSE Milestone 2
Note ALL MODULES MUST BE RECOMPILED
make the kernel aware that there are smaller units of scheduling than the
process. (but only allow one thread per process at this time).
This is functionally equivalent to teh previousl -current except
that there is a thread associated with each process.

Sorry john! (your next MFC will be a doosie!)

Reviewed by: peter@freebsd.org, dillon@freebsd.org

X-MFC after: ha ha ha ha


# 36735 07-Jun-1998 dfr

This commit fixes various 64bit portability problems required for
FreeBSD/alpha. The most significant item is to change the command
argument to ioctl functions from int to u_long. This change brings us
inline with various other BSD versions. Driver writers may like to
use (__FreeBSD_version == 300003) to detect this change.

The prototype FreeBSD/alpha machdep will follow in a couple of days
time.


# 33054 03-Feb-1998 bde

Forward declare some structs so that this file is more self-sufficient.


# 32350 08-Jan-1998 eivind

Make INET a proper option.

This will not make any of object files that LINT create change; there
might be differences with INET disabled, but hardly anything compiled
before without INET anyway. Now the 'obvious' things will give a
proper error if compiled without inet - ipx_ip, ipfw, tcp_debug. The
only thing that _should_ work (but can't be made to compile reasonably
easily) is sppp :-(

This commit move struct arpcom from <netinet/if_ether.h> to
<net/if_arp.h>.


# 30822 28-Oct-1997 julian

Fix various problems with netatalk kernel support.
Some of these changes are a bit rough and will become
more polished later. the changes to if_ethersubr should largely be moved
to within the appletalk code, but that will happen later.
A few of these were related to network-byteorder problems,
and more were related to loopback failures.


# 29187 07-Sep-1997 bde

Cleaned up a little.


# 25791 13-May-1997 julian

First cut at patches to make appletalk compile again
after the dissapearance of the USRREQ() entrypoint.


# 25047 20-Apr-1997 bde

Fixed the type of timeout functions and removed casts that hid the
type mismatches. There was no problem in practice (at least on 386's).


# 23396 05-Mar-1997 julian

make the netatalk output routine matcy the prtotype used in the
protocol structure. Silences a warning from Gcc.


# 20407 13-Dec-1996 wollman

Convert the interface address and IP interface address structures
to TAILQs. Fix places which referenced these for no good reason
that I can see (the references remain, but were fixed to compile
again; they are still questionable).


# 15885 23-May-1996 julian

Obtained from: netatalk distribution netatalk@itd.umich.edu

Kernel Appletalk protocol support
both CAP and netatalk can make use of this..
still needs some owrk but it seemd the right tiime to commit it
so other can experiment.