1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright (c) International Business Machines Corp., 2006
4 * Copyright (c) Nokia Corporation, 2006, 2007
5 *
6 * Author: Artem Bityutskiy (���������������� ����������)
7 */
8
9/*
10 * This file includes volume table manipulation code. The volume table is an
11 * on-flash table containing volume meta-data like name, number of reserved
12 * physical eraseblocks, type, etc. The volume table is stored in the so-called
13 * "layout volume".
14 *
15 * The layout volume is an internal volume which is organized as follows. It
16 * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical
17 * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each
18 * other. This redundancy guarantees robustness to unclean reboots. The volume
19 * table is basically an array of volume table records. Each record contains
20 * full information about the volume and protected by a CRC checksum. Note,
21 * nowadays we use the atomic LEB change operation when updating the volume
22 * table, so we do not really need 2 LEBs anymore, but we preserve the older
23 * design for the backward compatibility reasons.
24 *
25 * When the volume table is changed, it is first changed in RAM. Then LEB 0 is
26 * erased, and the updated volume table is written back to LEB 0. Then same for
27 * LEB 1. This scheme guarantees recoverability from unclean reboots.
28 *
29 * In this UBI implementation the on-flash volume table does not contain any
30 * information about how much data static volumes contain.
31 *
32 * But it would still be beneficial to store this information in the volume
33 * table. For example, suppose we have a static volume X, and all its physical
34 * eraseblocks became bad for some reasons. Suppose we are attaching the
35 * corresponding MTD device, for some reason we find no logical eraseblocks
36 * corresponding to the volume X. According to the volume table volume X does
37 * exist. So we don't know whether it is just empty or all its physical
38 * eraseblocks went bad. So we cannot alarm the user properly.
39 *
40 * The volume table also stores so-called "update marker", which is used for
41 * volume updates. Before updating the volume, the update marker is set, and
42 * after the update operation is finished, the update marker is cleared. So if
43 * the update operation was interrupted (e.g. by an unclean reboot) - the
44 * update marker is still there and we know that the volume's contents is
45 * damaged.
46 */
47
48#ifndef __UBOOT__
49#include <log.h>
50#include <dm/devres.h>
51#include <linux/crc32.h>
52#include <linux/err.h>
53#include <linux/slab.h>
54#include <asm/div64.h>
55#include <u-boot/crc.h>
56#else
57#include <ubi_uboot.h>
58#include <linux/bug.h>
59#endif
60
61#include <linux/err.h>
62#include "ubi.h"
63
64static void self_vtbl_check(const struct ubi_device *ubi);
65
66/* Empty volume table record */
67static struct ubi_vtbl_record empty_vtbl_record;
68
69/**
70 * ubi_update_layout_vol - helper for updatting layout volumes on flash
71 * @ubi: UBI device description object
72 */
73static int ubi_update_layout_vol(struct ubi_device *ubi)
74{
75	struct ubi_volume *layout_vol;
76	int i, err;
77
78	layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)];
79	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
80		err = ubi_eba_atomic_leb_change(ubi, layout_vol, i, ubi->vtbl,
81						ubi->vtbl_size);
82		if (err)
83			return err;
84	}
85
86	return 0;
87}
88
89/**
90 * ubi_change_vtbl_record - change volume table record.
91 * @ubi: UBI device description object
92 * @idx: table index to change
93 * @vtbl_rec: new volume table record
94 *
95 * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty
96 * volume table record is written. The caller does not have to calculate CRC of
97 * the record as it is done by this function. Returns zero in case of success
98 * and a negative error code in case of failure.
99 */
100int ubi_change_vtbl_record(struct ubi_device *ubi, int idx,
101			   struct ubi_vtbl_record *vtbl_rec)
102{
103	int err;
104	uint32_t crc;
105
106	ubi_assert(idx >= 0 && idx < ubi->vtbl_slots);
107
108	if (!vtbl_rec)
109		vtbl_rec = &empty_vtbl_record;
110	else {
111		crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC);
112		vtbl_rec->crc = cpu_to_be32(crc);
113	}
114
115	memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record));
116	err = ubi_update_layout_vol(ubi);
117
118	self_vtbl_check(ubi);
119	return err ? err : 0;
120}
121
122/**
123 * ubi_vtbl_rename_volumes - rename UBI volumes in the volume table.
124 * @ubi: UBI device description object
125 * @rename_list: list of &struct ubi_rename_entry objects
126 *
127 * This function re-names multiple volumes specified in @req in the volume
128 * table. Returns zero in case of success and a negative error code in case of
129 * failure.
130 */
131int ubi_vtbl_rename_volumes(struct ubi_device *ubi,
132			    struct list_head *rename_list)
133{
134	struct ubi_rename_entry *re;
135
136	list_for_each_entry(re, rename_list, list) {
137		uint32_t crc;
138		struct ubi_volume *vol = re->desc->vol;
139		struct ubi_vtbl_record *vtbl_rec = &ubi->vtbl[vol->vol_id];
140
141		if (re->remove) {
142			memcpy(vtbl_rec, &empty_vtbl_record,
143			       sizeof(struct ubi_vtbl_record));
144			continue;
145		}
146
147		vtbl_rec->name_len = cpu_to_be16(re->new_name_len);
148		memcpy(vtbl_rec->name, re->new_name, re->new_name_len);
149		memset(vtbl_rec->name + re->new_name_len, 0,
150		       UBI_VOL_NAME_MAX + 1 - re->new_name_len);
151		crc = crc32(UBI_CRC32_INIT, vtbl_rec,
152			    UBI_VTBL_RECORD_SIZE_CRC);
153		vtbl_rec->crc = cpu_to_be32(crc);
154	}
155
156	return ubi_update_layout_vol(ubi);
157}
158
159/**
160 * vtbl_check - check if volume table is not corrupted and sensible.
161 * @ubi: UBI device description object
162 * @vtbl: volume table
163 *
164 * This function returns zero if @vtbl is all right, %1 if CRC is incorrect,
165 * and %-EINVAL if it contains inconsistent data.
166 */
167static int vtbl_check(const struct ubi_device *ubi,
168		      const struct ubi_vtbl_record *vtbl)
169{
170	int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len;
171	int upd_marker, err;
172	uint32_t crc;
173	const char *name;
174
175	for (i = 0; i < ubi->vtbl_slots; i++) {
176		cond_resched();
177
178		reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
179		alignment = be32_to_cpu(vtbl[i].alignment);
180		data_pad = be32_to_cpu(vtbl[i].data_pad);
181		upd_marker = vtbl[i].upd_marker;
182		vol_type = vtbl[i].vol_type;
183		name_len = be16_to_cpu(vtbl[i].name_len);
184		name = &vtbl[i].name[0];
185
186		crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC);
187		if (be32_to_cpu(vtbl[i].crc) != crc) {
188			ubi_err(ubi, "bad CRC at record %u: %#08x, not %#08x",
189				 i, crc, be32_to_cpu(vtbl[i].crc));
190			ubi_dump_vtbl_record(&vtbl[i], i);
191			return 1;
192		}
193
194		if (reserved_pebs == 0) {
195			if (memcmp(&vtbl[i], &empty_vtbl_record,
196						UBI_VTBL_RECORD_SIZE)) {
197				err = 2;
198				goto bad;
199			}
200			continue;
201		}
202
203		if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 ||
204		    name_len < 0) {
205			err = 3;
206			goto bad;
207		}
208
209		if (alignment > ubi->leb_size || alignment == 0) {
210			err = 4;
211			goto bad;
212		}
213
214		n = alignment & (ubi->min_io_size - 1);
215		if (alignment != 1 && n) {
216			err = 5;
217			goto bad;
218		}
219
220		n = ubi->leb_size % alignment;
221		if (data_pad != n) {
222			ubi_err(ubi, "bad data_pad, has to be %d", n);
223			err = 6;
224			goto bad;
225		}
226
227		if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
228			err = 7;
229			goto bad;
230		}
231
232		if (upd_marker != 0 && upd_marker != 1) {
233			err = 8;
234			goto bad;
235		}
236
237		if (reserved_pebs > ubi->good_peb_count) {
238			ubi_err(ubi, "too large reserved_pebs %d, good PEBs %d",
239				reserved_pebs, ubi->good_peb_count);
240			err = 9;
241			goto bad;
242		}
243
244		if (name_len > UBI_VOL_NAME_MAX) {
245			err = 10;
246			goto bad;
247		}
248
249		if (name[0] == '\0') {
250			err = 11;
251			goto bad;
252		}
253
254		if (name_len != strnlen(name, name_len + 1)) {
255			err = 12;
256			goto bad;
257		}
258	}
259
260	/* Checks that all names are unique */
261	for (i = 0; i < ubi->vtbl_slots - 1; i++) {
262		for (n = i + 1; n < ubi->vtbl_slots; n++) {
263			int len1 = be16_to_cpu(vtbl[i].name_len);
264			int len2 = be16_to_cpu(vtbl[n].name_len);
265
266			if (len1 > 0 && len1 == len2 &&
267#ifndef __UBOOT__
268			    !strncmp(vtbl[i].name, vtbl[n].name, len1)) {
269#else
270			    !strncmp((char *)vtbl[i].name, vtbl[n].name, len1)) {
271#endif
272				ubi_err(ubi, "volumes %d and %d have the same name \"%s\"",
273					i, n, vtbl[i].name);
274				ubi_dump_vtbl_record(&vtbl[i], i);
275				ubi_dump_vtbl_record(&vtbl[n], n);
276				return -EINVAL;
277			}
278		}
279	}
280
281	return 0;
282
283bad:
284	ubi_err(ubi, "volume table check failed: record %d, error %d", i, err);
285	ubi_dump_vtbl_record(&vtbl[i], i);
286	return -EINVAL;
287}
288
289/**
290 * create_vtbl - create a copy of volume table.
291 * @ubi: UBI device description object
292 * @ai: attaching information
293 * @copy: number of the volume table copy
294 * @vtbl: contents of the volume table
295 *
296 * This function returns zero in case of success and a negative error code in
297 * case of failure.
298 */
299static int create_vtbl(struct ubi_device *ubi, struct ubi_attach_info *ai,
300		       int copy, void *vtbl)
301{
302	int err, tries = 0;
303	struct ubi_vid_hdr *vid_hdr;
304	struct ubi_ainf_peb *new_aeb;
305
306	dbg_gen("create volume table (copy #%d)", copy + 1);
307
308	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
309	if (!vid_hdr)
310		return -ENOMEM;
311
312retry:
313	new_aeb = ubi_early_get_peb(ubi, ai);
314	if (IS_ERR(new_aeb)) {
315		err = PTR_ERR(new_aeb);
316		goto out_free;
317	}
318
319	vid_hdr->vol_type = UBI_LAYOUT_VOLUME_TYPE;
320	vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOLUME_ID);
321	vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT;
322	vid_hdr->data_size = vid_hdr->used_ebs =
323			     vid_hdr->data_pad = cpu_to_be32(0);
324	vid_hdr->lnum = cpu_to_be32(copy);
325	vid_hdr->sqnum = cpu_to_be64(++ai->max_sqnum);
326
327	/* The EC header is already there, write the VID header */
328	err = ubi_io_write_vid_hdr(ubi, new_aeb->pnum, vid_hdr);
329	if (err)
330		goto write_error;
331
332	/* Write the layout volume contents */
333	err = ubi_io_write_data(ubi, vtbl, new_aeb->pnum, 0, ubi->vtbl_size);
334	if (err)
335		goto write_error;
336
337	/*
338	 * And add it to the attaching information. Don't delete the old version
339	 * of this LEB as it will be deleted and freed in 'ubi_add_to_av()'.
340	 */
341	err = ubi_add_to_av(ubi, ai, new_aeb->pnum, new_aeb->ec, vid_hdr, 0);
342	kmem_cache_free(ai->aeb_slab_cache, new_aeb);
343	ubi_free_vid_hdr(ubi, vid_hdr);
344	return err;
345
346write_error:
347	if (err == -EIO && ++tries <= 5) {
348		/*
349		 * Probably this physical eraseblock went bad, try to pick
350		 * another one.
351		 */
352		list_add(&new_aeb->u.list, &ai->erase);
353		goto retry;
354	}
355	kmem_cache_free(ai->aeb_slab_cache, new_aeb);
356out_free:
357	ubi_free_vid_hdr(ubi, vid_hdr);
358	return err;
359
360}
361
362/**
363 * process_lvol - process the layout volume.
364 * @ubi: UBI device description object
365 * @ai: attaching information
366 * @av: layout volume attaching information
367 *
368 * This function is responsible for reading the layout volume, ensuring it is
369 * not corrupted, and recovering from corruptions if needed. Returns volume
370 * table in case of success and a negative error code in case of failure.
371 */
372static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi,
373					    struct ubi_attach_info *ai,
374					    struct ubi_ainf_volume *av)
375{
376	int err;
377	struct rb_node *rb;
378	struct ubi_ainf_peb *aeb;
379	struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL };
380	int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1};
381
382	/*
383	 * UBI goes through the following steps when it changes the layout
384	 * volume:
385	 * a. erase LEB 0;
386	 * b. write new data to LEB 0;
387	 * c. erase LEB 1;
388	 * d. write new data to LEB 1.
389	 *
390	 * Before the change, both LEBs contain the same data.
391	 *
392	 * Due to unclean reboots, the contents of LEB 0 may be lost, but there
393	 * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not.
394	 * Similarly, LEB 1 may be lost, but there should be LEB 0. And
395	 * finally, unclean reboots may result in a situation when neither LEB
396	 * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB
397	 * 0 contains more recent information.
398	 *
399	 * So the plan is to first check LEB 0. Then
400	 * a. if LEB 0 is OK, it must be containing the most recent data; then
401	 *    we compare it with LEB 1, and if they are different, we copy LEB
402	 *    0 to LEB 1;
403	 * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1
404	 *    to LEB 0.
405	 */
406
407	dbg_gen("check layout volume");
408
409	/* Read both LEB 0 and LEB 1 into memory */
410	ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
411		leb[aeb->lnum] = vzalloc(ubi->vtbl_size);
412		if (!leb[aeb->lnum]) {
413			err = -ENOMEM;
414			goto out_free;
415		}
416
417		err = ubi_io_read_data(ubi, leb[aeb->lnum], aeb->pnum, 0,
418				       ubi->vtbl_size);
419		if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err))
420			/*
421			 * Scrub the PEB later. Note, -EBADMSG indicates an
422			 * uncorrectable ECC error, but we have our own CRC and
423			 * the data will be checked later. If the data is OK,
424			 * the PEB will be scrubbed (because we set
425			 * aeb->scrub). If the data is not OK, the contents of
426			 * the PEB will be recovered from the second copy, and
427			 * aeb->scrub will be cleared in
428			 * 'ubi_add_to_av()'.
429			 */
430			aeb->scrub = 1;
431		else if (err)
432			goto out_free;
433	}
434
435	err = -EINVAL;
436	if (leb[0]) {
437		leb_corrupted[0] = vtbl_check(ubi, leb[0]);
438		if (leb_corrupted[0] < 0)
439			goto out_free;
440	}
441
442	if (!leb_corrupted[0]) {
443		/* LEB 0 is OK */
444		if (leb[1])
445			leb_corrupted[1] = memcmp(leb[0], leb[1],
446						  ubi->vtbl_size);
447		if (leb_corrupted[1]) {
448			ubi_warn(ubi, "volume table copy #2 is corrupted");
449			err = create_vtbl(ubi, ai, 1, leb[0]);
450			if (err)
451				goto out_free;
452			ubi_msg(ubi, "volume table was restored");
453		}
454
455		/* Both LEB 1 and LEB 2 are OK and consistent */
456		vfree(leb[1]);
457		return leb[0];
458	} else {
459		/* LEB 0 is corrupted or does not exist */
460		if (leb[1]) {
461			leb_corrupted[1] = vtbl_check(ubi, leb[1]);
462			if (leb_corrupted[1] < 0)
463				goto out_free;
464		}
465		if (leb_corrupted[1]) {
466			/* Both LEB 0 and LEB 1 are corrupted */
467			ubi_err(ubi, "both volume tables are corrupted");
468			goto out_free;
469		}
470
471		ubi_warn(ubi, "volume table copy #1 is corrupted");
472		err = create_vtbl(ubi, ai, 0, leb[1]);
473		if (err)
474			goto out_free;
475		ubi_msg(ubi, "volume table was restored");
476
477		vfree(leb[0]);
478		return leb[1];
479	}
480
481out_free:
482	vfree(leb[0]);
483	vfree(leb[1]);
484	return ERR_PTR(err);
485}
486
487/**
488 * create_empty_lvol - create empty layout volume.
489 * @ubi: UBI device description object
490 * @ai: attaching information
491 *
492 * This function returns volume table contents in case of success and a
493 * negative error code in case of failure.
494 */
495static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi,
496						 struct ubi_attach_info *ai)
497{
498	int i;
499	struct ubi_vtbl_record *vtbl;
500
501	vtbl = vzalloc(ubi->vtbl_size);
502	if (!vtbl)
503		return ERR_PTR(-ENOMEM);
504
505	for (i = 0; i < ubi->vtbl_slots; i++)
506		memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE);
507
508	for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
509		int err;
510
511		err = create_vtbl(ubi, ai, i, vtbl);
512		if (err) {
513			vfree(vtbl);
514			return ERR_PTR(err);
515		}
516	}
517
518	return vtbl;
519}
520
521/**
522 * init_volumes - initialize volume information for existing volumes.
523 * @ubi: UBI device description object
524 * @ai: scanning information
525 * @vtbl: volume table
526 *
527 * This function allocates volume description objects for existing volumes.
528 * Returns zero in case of success and a negative error code in case of
529 * failure.
530 */
531static int init_volumes(struct ubi_device *ubi,
532			const struct ubi_attach_info *ai,
533			const struct ubi_vtbl_record *vtbl)
534{
535	int i, reserved_pebs = 0;
536	struct ubi_ainf_volume *av;
537	struct ubi_volume *vol;
538
539	for (i = 0; i < ubi->vtbl_slots; i++) {
540		cond_resched();
541
542		if (be32_to_cpu(vtbl[i].reserved_pebs) == 0)
543			continue; /* Empty record */
544
545		vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
546		if (!vol)
547			return -ENOMEM;
548
549		vol->reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
550		vol->alignment = be32_to_cpu(vtbl[i].alignment);
551		vol->data_pad = be32_to_cpu(vtbl[i].data_pad);
552		vol->upd_marker = vtbl[i].upd_marker;
553		vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ?
554					UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
555		vol->name_len = be16_to_cpu(vtbl[i].name_len);
556		vol->usable_leb_size = ubi->leb_size - vol->data_pad;
557		memcpy(vol->name, vtbl[i].name, vol->name_len);
558		vol->name[vol->name_len] = '\0';
559		vol->vol_id = i;
560
561		if (vtbl[i].flags & UBI_VTBL_SKIP_CRC_CHECK_FLG)
562			vol->skip_check = 1;
563
564		if (vtbl[i].flags & UBI_VTBL_AUTORESIZE_FLG) {
565			/* Auto re-size flag may be set only for one volume */
566			if (ubi->autoresize_vol_id != -1) {
567				ubi_err(ubi, "more than one auto-resize volume (%d and %d)",
568					ubi->autoresize_vol_id, i);
569				kfree(vol);
570				return -EINVAL;
571			}
572
573			ubi->autoresize_vol_id = i;
574		}
575
576		ubi_assert(!ubi->volumes[i]);
577		ubi->volumes[i] = vol;
578		ubi->vol_count += 1;
579		vol->ubi = ubi;
580		reserved_pebs += vol->reserved_pebs;
581
582		/*
583		 * In case of dynamic volume UBI knows nothing about how many
584		 * data is stored there. So assume the whole volume is used.
585		 */
586		if (vol->vol_type == UBI_DYNAMIC_VOLUME) {
587			vol->used_ebs = vol->reserved_pebs;
588			vol->last_eb_bytes = vol->usable_leb_size;
589			vol->used_bytes =
590				(long long)vol->used_ebs * vol->usable_leb_size;
591			continue;
592		}
593
594		/* Static volumes only */
595		av = ubi_find_av(ai, i);
596		if (!av || !av->leb_count) {
597			/*
598			 * No eraseblocks belonging to this volume found. We
599			 * don't actually know whether this static volume is
600			 * completely corrupted or just contains no data. And
601			 * we cannot know this as long as data size is not
602			 * stored on flash. So we just assume the volume is
603			 * empty. FIXME: this should be handled.
604			 */
605			continue;
606		}
607
608		if (av->leb_count != av->used_ebs) {
609			/*
610			 * We found a static volume which misses several
611			 * eraseblocks. Treat it as corrupted.
612			 */
613			ubi_warn(ubi, "static volume %d misses %d LEBs - corrupted",
614				 av->vol_id, av->used_ebs - av->leb_count);
615			vol->corrupted = 1;
616			continue;
617		}
618
619		vol->used_ebs = av->used_ebs;
620		vol->used_bytes =
621			(long long)(vol->used_ebs - 1) * vol->usable_leb_size;
622		vol->used_bytes += av->last_data_size;
623		vol->last_eb_bytes = av->last_data_size;
624	}
625
626	/* And add the layout volume */
627	vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
628	if (!vol)
629		return -ENOMEM;
630
631	vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS;
632	vol->alignment = UBI_LAYOUT_VOLUME_ALIGN;
633	vol->vol_type = UBI_DYNAMIC_VOLUME;
634	vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1;
635	memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1);
636	vol->usable_leb_size = ubi->leb_size;
637	vol->used_ebs = vol->reserved_pebs;
638	vol->last_eb_bytes = vol->reserved_pebs;
639	vol->used_bytes =
640		(long long)vol->used_ebs * (ubi->leb_size - vol->data_pad);
641	vol->vol_id = UBI_LAYOUT_VOLUME_ID;
642	vol->ref_count = 1;
643
644	ubi_assert(!ubi->volumes[i]);
645	ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol;
646	reserved_pebs += vol->reserved_pebs;
647	ubi->vol_count += 1;
648	vol->ubi = ubi;
649
650	if (reserved_pebs > ubi->avail_pebs) {
651		ubi_err(ubi, "not enough PEBs, required %d, available %d",
652			reserved_pebs, ubi->avail_pebs);
653		if (ubi->corr_peb_count)
654			ubi_err(ubi, "%d PEBs are corrupted and not used",
655				ubi->corr_peb_count);
656	}
657	ubi->rsvd_pebs += reserved_pebs;
658	ubi->avail_pebs -= reserved_pebs;
659
660	return 0;
661}
662
663/**
664 * check_av - check volume attaching information.
665 * @vol: UBI volume description object
666 * @av: volume attaching information
667 *
668 * This function returns zero if the volume attaching information is consistent
669 * to the data read from the volume tabla, and %-EINVAL if not.
670 */
671static int check_av(const struct ubi_volume *vol,
672		    const struct ubi_ainf_volume *av)
673{
674	int err;
675
676	if (av->highest_lnum >= vol->reserved_pebs) {
677		err = 1;
678		goto bad;
679	}
680	if (av->leb_count > vol->reserved_pebs) {
681		err = 2;
682		goto bad;
683	}
684	if (av->vol_type != vol->vol_type) {
685		err = 3;
686		goto bad;
687	}
688	if (av->used_ebs > vol->reserved_pebs) {
689		err = 4;
690		goto bad;
691	}
692	if (av->data_pad != vol->data_pad) {
693		err = 5;
694		goto bad;
695	}
696	return 0;
697
698bad:
699	ubi_err(vol->ubi, "bad attaching information, error %d", err);
700	ubi_dump_av(av);
701	ubi_dump_vol_info(vol);
702	return -EINVAL;
703}
704
705/**
706 * check_attaching_info - check that attaching information.
707 * @ubi: UBI device description object
708 * @ai: attaching information
709 *
710 * Even though we protect on-flash data by CRC checksums, we still don't trust
711 * the media. This function ensures that attaching information is consistent to
712 * the information read from the volume table. Returns zero if the attaching
713 * information is OK and %-EINVAL if it is not.
714 */
715static int check_attaching_info(const struct ubi_device *ubi,
716			       struct ubi_attach_info *ai)
717{
718	int err, i;
719	struct ubi_ainf_volume *av;
720	struct ubi_volume *vol;
721
722	if (ai->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) {
723		ubi_err(ubi, "found %d volumes while attaching, maximum is %d + %d",
724			ai->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots);
725		return -EINVAL;
726	}
727
728	if (ai->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT &&
729	    ai->highest_vol_id < UBI_INTERNAL_VOL_START) {
730		ubi_err(ubi, "too large volume ID %d found",
731			ai->highest_vol_id);
732		return -EINVAL;
733	}
734
735	for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
736		cond_resched();
737
738		av = ubi_find_av(ai, i);
739		vol = ubi->volumes[i];
740		if (!vol) {
741			if (av)
742				ubi_remove_av(ai, av);
743			continue;
744		}
745
746		if (vol->reserved_pebs == 0) {
747			ubi_assert(i < ubi->vtbl_slots);
748
749			if (!av)
750				continue;
751
752			/*
753			 * During attaching we found a volume which does not
754			 * exist according to the information in the volume
755			 * table. This must have happened due to an unclean
756			 * reboot while the volume was being removed. Discard
757			 * these eraseblocks.
758			 */
759			ubi_msg(ubi, "finish volume %d removal", av->vol_id);
760			ubi_remove_av(ai, av);
761		} else if (av) {
762			err = check_av(vol, av);
763			if (err)
764				return err;
765		}
766	}
767
768	return 0;
769}
770
771/**
772 * ubi_read_volume_table - read the volume table.
773 * @ubi: UBI device description object
774 * @ai: attaching information
775 *
776 * This function reads volume table, checks it, recover from errors if needed,
777 * or creates it if needed. Returns zero in case of success and a negative
778 * error code in case of failure.
779 */
780int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_attach_info *ai)
781{
782	int i, err;
783	struct ubi_ainf_volume *av;
784
785	empty_vtbl_record.crc = cpu_to_be32(0xf116c36b);
786
787	/*
788	 * The number of supported volumes is limited by the eraseblock size
789	 * and by the UBI_MAX_VOLUMES constant.
790	 */
791	ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE;
792	if (ubi->vtbl_slots > UBI_MAX_VOLUMES)
793		ubi->vtbl_slots = UBI_MAX_VOLUMES;
794
795	ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE;
796	ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size);
797
798	av = ubi_find_av(ai, UBI_LAYOUT_VOLUME_ID);
799	if (!av) {
800		/*
801		 * No logical eraseblocks belonging to the layout volume were
802		 * found. This could mean that the flash is just empty. In
803		 * this case we create empty layout volume.
804		 *
805		 * But if flash is not empty this must be a corruption or the
806		 * MTD device just contains garbage.
807		 */
808		if (ai->is_empty) {
809			ubi->vtbl = create_empty_lvol(ubi, ai);
810			if (IS_ERR(ubi->vtbl))
811				return PTR_ERR(ubi->vtbl);
812		} else {
813			ubi_err(ubi, "the layout volume was not found");
814			return -EINVAL;
815		}
816	} else {
817		if (av->leb_count > UBI_LAYOUT_VOLUME_EBS) {
818			/* This must not happen with proper UBI images */
819			ubi_err(ubi, "too many LEBs (%d) in layout volume",
820				av->leb_count);
821			return -EINVAL;
822		}
823
824		ubi->vtbl = process_lvol(ubi, ai, av);
825		if (IS_ERR(ubi->vtbl))
826			return PTR_ERR(ubi->vtbl);
827	}
828
829	ubi->avail_pebs = ubi->good_peb_count - ubi->corr_peb_count;
830
831	/*
832	 * The layout volume is OK, initialize the corresponding in-RAM data
833	 * structures.
834	 */
835	err = init_volumes(ubi, ai, ubi->vtbl);
836	if (err)
837		goto out_free;
838
839	/*
840	 * Make sure that the attaching information is consistent to the
841	 * information stored in the volume table.
842	 */
843	err = check_attaching_info(ubi, ai);
844	if (err)
845		goto out_free;
846
847	return 0;
848
849out_free:
850	vfree(ubi->vtbl);
851	for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
852		kfree(ubi->volumes[i]);
853		ubi->volumes[i] = NULL;
854	}
855	return err;
856}
857
858/**
859 * self_vtbl_check - check volume table.
860 * @ubi: UBI device description object
861 */
862static void self_vtbl_check(const struct ubi_device *ubi)
863{
864	if (!ubi_dbg_chk_gen(ubi))
865		return;
866
867	if (vtbl_check(ubi, ubi->vtbl)) {
868		ubi_err(ubi, "self-check failed");
869		BUG();
870	}
871}
872