igb_main.c revision 11878:ac93462db6d7
1/*
2 * CDDL HEADER START
3 *
4 * Copyright(c) 2007-2009 Intel Corporation. All rights reserved.
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22
23/*
24 * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
25 * Use is subject to license terms.
26 */
27
28#include "igb_sw.h"
29
30static char ident[] = "Intel 1Gb Ethernet";
31static char igb_version[] = "igb 1.1.13";
32
33/*
34 * Local function protoypes
35 */
36static int igb_register_mac(igb_t *);
37static int igb_identify_hardware(igb_t *);
38static int igb_regs_map(igb_t *);
39static void igb_init_properties(igb_t *);
40static int igb_init_driver_settings(igb_t *);
41static void igb_init_locks(igb_t *);
42static void igb_destroy_locks(igb_t *);
43static int igb_init_mac_address(igb_t *);
44static int igb_init(igb_t *);
45static int igb_init_adapter(igb_t *);
46static void igb_stop_adapter(igb_t *);
47static int igb_reset(igb_t *);
48static void igb_tx_clean(igb_t *);
49static boolean_t igb_tx_drain(igb_t *);
50static boolean_t igb_rx_drain(igb_t *);
51static int igb_alloc_rings(igb_t *);
52static int igb_alloc_rx_data(igb_t *);
53static void igb_free_rx_data(igb_t *);
54static void igb_free_rings(igb_t *);
55static void igb_setup_rings(igb_t *);
56static void igb_setup_rx(igb_t *);
57static void igb_setup_tx(igb_t *);
58static void igb_setup_rx_ring(igb_rx_ring_t *);
59static void igb_setup_tx_ring(igb_tx_ring_t *);
60static void igb_setup_rss(igb_t *);
61static void igb_setup_mac_rss_classify(igb_t *);
62static void igb_setup_mac_classify(igb_t *);
63static void igb_init_unicst(igb_t *);
64static void igb_setup_multicst(igb_t *);
65static void igb_get_phy_state(igb_t *);
66static void igb_param_sync(igb_t *);
67static void igb_get_conf(igb_t *);
68static int igb_get_prop(igb_t *, char *, int, int, int);
69static boolean_t igb_is_link_up(igb_t *);
70static boolean_t igb_link_check(igb_t *);
71static void igb_local_timer(void *);
72static void igb_link_timer(void *);
73static void igb_arm_watchdog_timer(igb_t *);
74static void igb_start_watchdog_timer(igb_t *);
75static void igb_restart_watchdog_timer(igb_t *);
76static void igb_stop_watchdog_timer(igb_t *);
77static void igb_start_link_timer(igb_t *);
78static void igb_stop_link_timer(igb_t *);
79static void igb_disable_adapter_interrupts(igb_t *);
80static void igb_enable_adapter_interrupts_82575(igb_t *);
81static void igb_enable_adapter_interrupts_82576(igb_t *);
82static void igb_enable_adapter_interrupts_82580(igb_t *);
83static boolean_t is_valid_mac_addr(uint8_t *);
84static boolean_t igb_stall_check(igb_t *);
85static boolean_t igb_set_loopback_mode(igb_t *, uint32_t);
86static void igb_set_external_loopback(igb_t *);
87static void igb_set_internal_phy_loopback(igb_t *);
88static void igb_set_internal_serdes_loopback(igb_t *);
89static boolean_t igb_find_mac_address(igb_t *);
90static int igb_alloc_intrs(igb_t *);
91static int igb_alloc_intr_handles(igb_t *, int);
92static int igb_add_intr_handlers(igb_t *);
93static void igb_rem_intr_handlers(igb_t *);
94static void igb_rem_intrs(igb_t *);
95static int igb_enable_intrs(igb_t *);
96static int igb_disable_intrs(igb_t *);
97static void igb_setup_msix_82575(igb_t *);
98static void igb_setup_msix_82576(igb_t *);
99static void igb_setup_msix_82580(igb_t *);
100static uint_t igb_intr_legacy(void *, void *);
101static uint_t igb_intr_msi(void *, void *);
102static uint_t igb_intr_rx(void *, void *);
103static uint_t igb_intr_tx(void *, void *);
104static uint_t igb_intr_tx_other(void *, void *);
105static void igb_intr_rx_work(igb_rx_ring_t *);
106static void igb_intr_tx_work(igb_tx_ring_t *);
107static void igb_intr_link_work(igb_t *);
108static void igb_get_driver_control(struct e1000_hw *);
109static void igb_release_driver_control(struct e1000_hw *);
110
111static int igb_attach(dev_info_t *, ddi_attach_cmd_t);
112static int igb_detach(dev_info_t *, ddi_detach_cmd_t);
113static int igb_resume(dev_info_t *);
114static int igb_suspend(dev_info_t *);
115static int igb_quiesce(dev_info_t *);
116static void igb_unconfigure(dev_info_t *, igb_t *);
117static int igb_fm_error_cb(dev_info_t *, ddi_fm_error_t *,
118    const void *);
119static void igb_fm_init(igb_t *);
120static void igb_fm_fini(igb_t *);
121static void igb_release_multicast(igb_t *);
122
123char *igb_priv_props[] = {
124	"_tx_copy_thresh",
125	"_tx_recycle_thresh",
126	"_tx_overload_thresh",
127	"_tx_resched_thresh",
128	"_rx_copy_thresh",
129	"_rx_limit_per_intr",
130	"_intr_throttling",
131	"_adv_pause_cap",
132	"_adv_asym_pause_cap",
133	NULL
134};
135
136static struct cb_ops igb_cb_ops = {
137	nulldev,		/* cb_open */
138	nulldev,		/* cb_close */
139	nodev,			/* cb_strategy */
140	nodev,			/* cb_print */
141	nodev,			/* cb_dump */
142	nodev,			/* cb_read */
143	nodev,			/* cb_write */
144	nodev,			/* cb_ioctl */
145	nodev,			/* cb_devmap */
146	nodev,			/* cb_mmap */
147	nodev,			/* cb_segmap */
148	nochpoll,		/* cb_chpoll */
149	ddi_prop_op,		/* cb_prop_op */
150	NULL,			/* cb_stream */
151	D_MP | D_HOTPLUG,	/* cb_flag */
152	CB_REV,			/* cb_rev */
153	nodev,			/* cb_aread */
154	nodev			/* cb_awrite */
155};
156
157static struct dev_ops igb_dev_ops = {
158	DEVO_REV,		/* devo_rev */
159	0,			/* devo_refcnt */
160	NULL,			/* devo_getinfo */
161	nulldev,		/* devo_identify */
162	nulldev,		/* devo_probe */
163	igb_attach,		/* devo_attach */
164	igb_detach,		/* devo_detach */
165	nodev,			/* devo_reset */
166	&igb_cb_ops,		/* devo_cb_ops */
167	NULL,			/* devo_bus_ops */
168	ddi_power,		/* devo_power */
169	igb_quiesce,	/* devo_quiesce */
170};
171
172static struct modldrv igb_modldrv = {
173	&mod_driverops,		/* Type of module.  This one is a driver */
174	ident,			/* Discription string */
175	&igb_dev_ops,		/* driver ops */
176};
177
178static struct modlinkage igb_modlinkage = {
179	MODREV_1, &igb_modldrv, NULL
180};
181
182/* Access attributes for register mapping */
183ddi_device_acc_attr_t igb_regs_acc_attr = {
184	DDI_DEVICE_ATTR_V1,
185	DDI_STRUCTURE_LE_ACC,
186	DDI_STRICTORDER_ACC,
187	DDI_FLAGERR_ACC
188};
189
190#define	IGB_M_CALLBACK_FLAGS \
191	(MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP | MC_PROPINFO)
192
193static mac_callbacks_t igb_m_callbacks = {
194	IGB_M_CALLBACK_FLAGS,
195	igb_m_stat,
196	igb_m_start,
197	igb_m_stop,
198	igb_m_promisc,
199	igb_m_multicst,
200	NULL,
201	NULL,
202	NULL,
203	igb_m_ioctl,
204	igb_m_getcapab,
205	NULL,
206	NULL,
207	igb_m_setprop,
208	igb_m_getprop,
209	igb_m_propinfo
210};
211
212/*
213 * Initialize capabilities of each supported adapter type
214 */
215static adapter_info_t igb_82575_cap = {
216	/* limits */
217	4,		/* maximum number of rx queues */
218	1,		/* minimum number of rx queues */
219	4,		/* default number of rx queues */
220	4,		/* maximum number of tx queues */
221	1,		/* minimum number of tx queues */
222	4,		/* default number of tx queues */
223	65535,		/* maximum interrupt throttle rate */
224	0,		/* minimum interrupt throttle rate */
225	200,		/* default interrupt throttle rate */
226
227	/* function pointers */
228	igb_enable_adapter_interrupts_82575,
229	igb_setup_msix_82575,
230
231	/* capabilities */
232	(IGB_FLAG_HAS_DCA |	/* capability flags */
233	IGB_FLAG_VMDQ_POOL),
234
235	0xffc00000		/* mask for RXDCTL register */
236};
237
238static adapter_info_t igb_82576_cap = {
239	/* limits */
240	16,		/* maximum number of rx queues */
241	1,		/* minimum number of rx queues */
242	4,		/* default number of rx queues */
243	16,		/* maximum number of tx queues */
244	1,		/* minimum number of tx queues */
245	4,		/* default number of tx queues */
246	65535,		/* maximum interrupt throttle rate */
247	0,		/* minimum interrupt throttle rate */
248	200,		/* default interrupt throttle rate */
249
250	/* function pointers */
251	igb_enable_adapter_interrupts_82576,
252	igb_setup_msix_82576,
253
254	/* capabilities */
255	(IGB_FLAG_HAS_DCA |	/* capability flags */
256	IGB_FLAG_VMDQ_POOL |
257	IGB_FLAG_NEED_CTX_IDX),
258
259	0xffe00000		/* mask for RXDCTL register */
260};
261
262static adapter_info_t igb_82580_cap = {
263	/* limits */
264	8,		/* maximum number of rx queues */
265	1,		/* minimum number of rx queues */
266	4,		/* default number of rx queues */
267	8,		/* maximum number of tx queues */
268	1,		/* minimum number of tx queues */
269	4,		/* default number of tx queues */
270	65535,		/* maximum interrupt throttle rate */
271	0,		/* minimum interrupt throttle rate */
272	200,		/* default interrupt throttle rate */
273
274	/* function pointers */
275	igb_enable_adapter_interrupts_82580,
276	igb_setup_msix_82580,
277
278	/* capabilities */
279	(IGB_FLAG_HAS_DCA |	/* capability flags */
280	IGB_FLAG_VMDQ_POOL |
281	IGB_FLAG_NEED_CTX_IDX),
282
283	0xffe00000		/* mask for RXDCTL register */
284};
285
286/*
287 * Module Initialization Functions
288 */
289
290int
291_init(void)
292{
293	int status;
294
295	mac_init_ops(&igb_dev_ops, MODULE_NAME);
296
297	status = mod_install(&igb_modlinkage);
298
299	if (status != DDI_SUCCESS) {
300		mac_fini_ops(&igb_dev_ops);
301	}
302
303	return (status);
304}
305
306int
307_fini(void)
308{
309	int status;
310
311	status = mod_remove(&igb_modlinkage);
312
313	if (status == DDI_SUCCESS) {
314		mac_fini_ops(&igb_dev_ops);
315	}
316
317	return (status);
318
319}
320
321int
322_info(struct modinfo *modinfop)
323{
324	int status;
325
326	status = mod_info(&igb_modlinkage, modinfop);
327
328	return (status);
329}
330
331/*
332 * igb_attach - driver attach
333 *
334 * This function is the device specific initialization entry
335 * point. This entry point is required and must be written.
336 * The DDI_ATTACH command must be provided in the attach entry
337 * point. When attach() is called with cmd set to DDI_ATTACH,
338 * all normal kernel services (such as kmem_alloc(9F)) are
339 * available for use by the driver.
340 *
341 * The attach() function will be called once for each instance
342 * of  the  device  on  the  system with cmd set to DDI_ATTACH.
343 * Until attach() succeeds, the only driver entry points which
344 * may be called are open(9E) and getinfo(9E).
345 */
346static int
347igb_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
348{
349	igb_t *igb;
350	struct igb_osdep *osdep;
351	struct e1000_hw *hw;
352	int instance;
353
354	/*
355	 * Check the command and perform corresponding operations
356	 */
357	switch (cmd) {
358	default:
359		return (DDI_FAILURE);
360
361	case DDI_RESUME:
362		return (igb_resume(devinfo));
363
364	case DDI_ATTACH:
365		break;
366	}
367
368	/* Get the device instance */
369	instance = ddi_get_instance(devinfo);
370
371	/* Allocate memory for the instance data structure */
372	igb = kmem_zalloc(sizeof (igb_t), KM_SLEEP);
373
374	igb->dip = devinfo;
375	igb->instance = instance;
376
377	hw = &igb->hw;
378	osdep = &igb->osdep;
379	hw->back = osdep;
380	osdep->igb = igb;
381
382	/* Attach the instance pointer to the dev_info data structure */
383	ddi_set_driver_private(devinfo, igb);
384
385
386	/* Initialize for fma support */
387	igb->fm_capabilities = igb_get_prop(igb, "fm-capable",
388	    0, 0x0f,
389	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
390	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
391	igb_fm_init(igb);
392	igb->attach_progress |= ATTACH_PROGRESS_FMINIT;
393
394	/*
395	 * Map PCI config space registers
396	 */
397	if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) {
398		igb_error(igb, "Failed to map PCI configurations");
399		goto attach_fail;
400	}
401	igb->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG;
402
403	/*
404	 * Identify the chipset family
405	 */
406	if (igb_identify_hardware(igb) != IGB_SUCCESS) {
407		igb_error(igb, "Failed to identify hardware");
408		goto attach_fail;
409	}
410
411	/*
412	 * Map device registers
413	 */
414	if (igb_regs_map(igb) != IGB_SUCCESS) {
415		igb_error(igb, "Failed to map device registers");
416		goto attach_fail;
417	}
418	igb->attach_progress |= ATTACH_PROGRESS_REGS_MAP;
419
420	/*
421	 * Initialize driver parameters
422	 */
423	igb_init_properties(igb);
424	igb->attach_progress |= ATTACH_PROGRESS_PROPS;
425
426	/*
427	 * Allocate interrupts
428	 */
429	if (igb_alloc_intrs(igb) != IGB_SUCCESS) {
430		igb_error(igb, "Failed to allocate interrupts");
431		goto attach_fail;
432	}
433	igb->attach_progress |= ATTACH_PROGRESS_ALLOC_INTR;
434
435	/*
436	 * Allocate rx/tx rings based on the ring numbers.
437	 * The actual numbers of rx/tx rings are decided by the number of
438	 * allocated interrupt vectors, so we should allocate the rings after
439	 * interrupts are allocated.
440	 */
441	if (igb_alloc_rings(igb) != IGB_SUCCESS) {
442		igb_error(igb, "Failed to allocate rx/tx rings or groups");
443		goto attach_fail;
444	}
445	igb->attach_progress |= ATTACH_PROGRESS_ALLOC_RINGS;
446
447	/*
448	 * Add interrupt handlers
449	 */
450	if (igb_add_intr_handlers(igb) != IGB_SUCCESS) {
451		igb_error(igb, "Failed to add interrupt handlers");
452		goto attach_fail;
453	}
454	igb->attach_progress |= ATTACH_PROGRESS_ADD_INTR;
455
456	/*
457	 * Initialize driver parameters
458	 */
459	if (igb_init_driver_settings(igb) != IGB_SUCCESS) {
460		igb_error(igb, "Failed to initialize driver settings");
461		goto attach_fail;
462	}
463
464	if (igb_check_acc_handle(igb->osdep.cfg_handle) != DDI_FM_OK) {
465		ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
466		goto attach_fail;
467	}
468
469	/*
470	 * Initialize mutexes for this device.
471	 * Do this before enabling the interrupt handler and
472	 * register the softint to avoid the condition where
473	 * interrupt handler can try using uninitialized mutex
474	 */
475	igb_init_locks(igb);
476	igb->attach_progress |= ATTACH_PROGRESS_LOCKS;
477
478	/*
479	 * Initialize the adapter
480	 */
481	if (igb_init(igb) != IGB_SUCCESS) {
482		igb_error(igb, "Failed to initialize adapter");
483		goto attach_fail;
484	}
485	igb->attach_progress |= ATTACH_PROGRESS_INIT_ADAPTER;
486
487	/*
488	 * Initialize statistics
489	 */
490	if (igb_init_stats(igb) != IGB_SUCCESS) {
491		igb_error(igb, "Failed to initialize statistics");
492		goto attach_fail;
493	}
494	igb->attach_progress |= ATTACH_PROGRESS_STATS;
495
496	/*
497	 * Register the driver to the MAC
498	 */
499	if (igb_register_mac(igb) != IGB_SUCCESS) {
500		igb_error(igb, "Failed to register MAC");
501		goto attach_fail;
502	}
503	igb->attach_progress |= ATTACH_PROGRESS_MAC;
504
505	/*
506	 * Now that mutex locks are initialized, and the chip is also
507	 * initialized, enable interrupts.
508	 */
509	if (igb_enable_intrs(igb) != IGB_SUCCESS) {
510		igb_error(igb, "Failed to enable DDI interrupts");
511		goto attach_fail;
512	}
513	igb->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR;
514
515	igb_log(igb, "%s", igb_version);
516	atomic_or_32(&igb->igb_state, IGB_INITIALIZED);
517
518	return (DDI_SUCCESS);
519
520attach_fail:
521	igb_unconfigure(devinfo, igb);
522	return (DDI_FAILURE);
523}
524
525/*
526 * igb_detach - driver detach
527 *
528 * The detach() function is the complement of the attach routine.
529 * If cmd is set to DDI_DETACH, detach() is used to remove  the
530 * state  associated  with  a  given  instance of a device node
531 * prior to the removal of that instance from the system.
532 *
533 * The detach() function will be called once for each  instance
534 * of the device for which there has been a successful attach()
535 * once there are no longer  any  opens  on  the  device.
536 *
537 * Interrupts routine are disabled, All memory allocated by this
538 * driver are freed.
539 */
540static int
541igb_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
542{
543	igb_t *igb;
544
545	/*
546	 * Check detach command
547	 */
548	switch (cmd) {
549	default:
550		return (DDI_FAILURE);
551
552	case DDI_SUSPEND:
553		return (igb_suspend(devinfo));
554
555	case DDI_DETACH:
556		break;
557	}
558
559
560	/*
561	 * Get the pointer to the driver private data structure
562	 */
563	igb = (igb_t *)ddi_get_driver_private(devinfo);
564	if (igb == NULL)
565		return (DDI_FAILURE);
566
567	/*
568	 * Unregister MAC. If failed, we have to fail the detach
569	 */
570	if (mac_unregister(igb->mac_hdl) != 0) {
571		igb_error(igb, "Failed to unregister MAC");
572		return (DDI_FAILURE);
573	}
574	igb->attach_progress &= ~ATTACH_PROGRESS_MAC;
575
576	/*
577	 * If the device is still running, it needs to be stopped first.
578	 * This check is necessary because under some specific circumstances,
579	 * the detach routine can be called without stopping the interface
580	 * first.
581	 */
582	mutex_enter(&igb->gen_lock);
583	if (igb->igb_state & IGB_STARTED) {
584		atomic_and_32(&igb->igb_state, ~IGB_STARTED);
585		igb_stop(igb, B_TRUE);
586		mutex_exit(&igb->gen_lock);
587		/* Disable and stop the watchdog timer */
588		igb_disable_watchdog_timer(igb);
589	} else
590		mutex_exit(&igb->gen_lock);
591
592	/*
593	 * Check if there are still rx buffers held by the upper layer.
594	 * If so, fail the detach.
595	 */
596	if (!igb_rx_drain(igb))
597		return (DDI_FAILURE);
598
599	/*
600	 * Do the remaining unconfigure routines
601	 */
602	igb_unconfigure(devinfo, igb);
603
604	return (DDI_SUCCESS);
605}
606
607/*
608 * quiesce(9E) entry point.
609 *
610 * This function is called when the system is single-threaded at high
611 * PIL with preemption disabled. Therefore, this function must not be
612 * blocked.
613 *
614 * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
615 * DDI_FAILURE indicates an error condition and should almost never happen.
616 */
617static int
618igb_quiesce(dev_info_t *devinfo)
619{
620	igb_t *igb;
621	struct e1000_hw *hw;
622
623	igb = (igb_t *)ddi_get_driver_private(devinfo);
624
625	if (igb == NULL)
626		return (DDI_FAILURE);
627
628	hw = &igb->hw;
629
630	/*
631	 * Disable the adapter interrupts
632	 */
633	igb_disable_adapter_interrupts(igb);
634
635	/* Tell firmware driver is no longer in control */
636	igb_release_driver_control(hw);
637
638	/*
639	 * Reset the chipset
640	 */
641	(void) e1000_reset_hw(hw);
642
643	/*
644	 * Reset PHY if possible
645	 */
646	if (e1000_check_reset_block(hw) == E1000_SUCCESS)
647		(void) e1000_phy_hw_reset(hw);
648
649	return (DDI_SUCCESS);
650}
651
652/*
653 * igb_unconfigure - release all resources held by this instance
654 */
655static void
656igb_unconfigure(dev_info_t *devinfo, igb_t *igb)
657{
658	/*
659	 * Disable interrupt
660	 */
661	if (igb->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
662		(void) igb_disable_intrs(igb);
663	}
664
665	/*
666	 * Unregister MAC
667	 */
668	if (igb->attach_progress & ATTACH_PROGRESS_MAC) {
669		(void) mac_unregister(igb->mac_hdl);
670	}
671
672	/*
673	 * Free statistics
674	 */
675	if (igb->attach_progress & ATTACH_PROGRESS_STATS) {
676		kstat_delete((kstat_t *)igb->igb_ks);
677	}
678
679	/*
680	 * Remove interrupt handlers
681	 */
682	if (igb->attach_progress & ATTACH_PROGRESS_ADD_INTR) {
683		igb_rem_intr_handlers(igb);
684	}
685
686	/*
687	 * Remove interrupts
688	 */
689	if (igb->attach_progress & ATTACH_PROGRESS_ALLOC_INTR) {
690		igb_rem_intrs(igb);
691	}
692
693	/*
694	 * Remove driver properties
695	 */
696	if (igb->attach_progress & ATTACH_PROGRESS_PROPS) {
697		(void) ddi_prop_remove_all(devinfo);
698	}
699
700	/*
701	 * Stop the adapter
702	 */
703	if (igb->attach_progress & ATTACH_PROGRESS_INIT_ADAPTER) {
704		mutex_enter(&igb->gen_lock);
705		igb_stop_adapter(igb);
706		mutex_exit(&igb->gen_lock);
707		if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
708			ddi_fm_service_impact(igb->dip, DDI_SERVICE_UNAFFECTED);
709	}
710
711	/*
712	 * Free multicast table
713	 */
714	igb_release_multicast(igb);
715
716	/*
717	 * Free register handle
718	 */
719	if (igb->attach_progress & ATTACH_PROGRESS_REGS_MAP) {
720		if (igb->osdep.reg_handle != NULL)
721			ddi_regs_map_free(&igb->osdep.reg_handle);
722	}
723
724	/*
725	 * Free PCI config handle
726	 */
727	if (igb->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) {
728		if (igb->osdep.cfg_handle != NULL)
729			pci_config_teardown(&igb->osdep.cfg_handle);
730	}
731
732	/*
733	 * Free locks
734	 */
735	if (igb->attach_progress & ATTACH_PROGRESS_LOCKS) {
736		igb_destroy_locks(igb);
737	}
738
739	/*
740	 * Free the rx/tx rings
741	 */
742	if (igb->attach_progress & ATTACH_PROGRESS_ALLOC_RINGS) {
743		igb_free_rings(igb);
744	}
745
746	/*
747	 * Remove FMA
748	 */
749	if (igb->attach_progress & ATTACH_PROGRESS_FMINIT) {
750		igb_fm_fini(igb);
751	}
752
753	/*
754	 * Free the driver data structure
755	 */
756	kmem_free(igb, sizeof (igb_t));
757
758	ddi_set_driver_private(devinfo, NULL);
759}
760
761/*
762 * igb_register_mac - Register the driver and its function pointers with
763 * the GLD interface
764 */
765static int
766igb_register_mac(igb_t *igb)
767{
768	struct e1000_hw *hw = &igb->hw;
769	mac_register_t *mac;
770	int status;
771
772	if ((mac = mac_alloc(MAC_VERSION)) == NULL)
773		return (IGB_FAILURE);
774
775	mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
776	mac->m_driver = igb;
777	mac->m_dip = igb->dip;
778	mac->m_src_addr = hw->mac.addr;
779	mac->m_callbacks = &igb_m_callbacks;
780	mac->m_min_sdu = 0;
781	mac->m_max_sdu = igb->max_frame_size -
782	    sizeof (struct ether_vlan_header) - ETHERFCSL;
783	mac->m_margin = VLAN_TAGSZ;
784	mac->m_priv_props = igb_priv_props;
785	mac->m_v12n = MAC_VIRT_LEVEL1;
786
787	status = mac_register(mac, &igb->mac_hdl);
788
789	mac_free(mac);
790
791	return ((status == 0) ? IGB_SUCCESS : IGB_FAILURE);
792}
793
794/*
795 * igb_identify_hardware - Identify the type of the chipset
796 */
797static int
798igb_identify_hardware(igb_t *igb)
799{
800	struct e1000_hw *hw = &igb->hw;
801	struct igb_osdep *osdep = &igb->osdep;
802
803	/*
804	 * Get the device id
805	 */
806	hw->vendor_id =
807	    pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID);
808	hw->device_id =
809	    pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID);
810	hw->revision_id =
811	    pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID);
812	hw->subsystem_device_id =
813	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID);
814	hw->subsystem_vendor_id =
815	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID);
816
817	/*
818	 * Set the mac type of the adapter based on the device id
819	 */
820	if (e1000_set_mac_type(hw) != E1000_SUCCESS) {
821		return (IGB_FAILURE);
822	}
823
824	/*
825	 * Install adapter capabilities based on mac type
826	 */
827	switch (hw->mac.type) {
828	case e1000_82575:
829		igb->capab = &igb_82575_cap;
830		break;
831	case e1000_82576:
832		igb->capab = &igb_82576_cap;
833		break;
834	case e1000_82580:
835		igb->capab = &igb_82580_cap;
836		break;
837	default:
838		return (IGB_FAILURE);
839	}
840
841	return (IGB_SUCCESS);
842}
843
844/*
845 * igb_regs_map - Map the device registers
846 */
847static int
848igb_regs_map(igb_t *igb)
849{
850	dev_info_t *devinfo = igb->dip;
851	struct e1000_hw *hw = &igb->hw;
852	struct igb_osdep *osdep = &igb->osdep;
853	off_t mem_size;
854
855	/*
856	 * First get the size of device registers to be mapped.
857	 */
858	if (ddi_dev_regsize(devinfo, IGB_ADAPTER_REGSET, &mem_size) !=
859	    DDI_SUCCESS) {
860		return (IGB_FAILURE);
861	}
862
863	/*
864	 * Call ddi_regs_map_setup() to map registers
865	 */
866	if ((ddi_regs_map_setup(devinfo, IGB_ADAPTER_REGSET,
867	    (caddr_t *)&hw->hw_addr, 0,
868	    mem_size, &igb_regs_acc_attr,
869	    &osdep->reg_handle)) != DDI_SUCCESS) {
870		return (IGB_FAILURE);
871	}
872
873	return (IGB_SUCCESS);
874}
875
876/*
877 * igb_init_properties - Initialize driver properties
878 */
879static void
880igb_init_properties(igb_t *igb)
881{
882	/*
883	 * Get conf file properties, including link settings
884	 * jumbo frames, ring number, descriptor number, etc.
885	 */
886	igb_get_conf(igb);
887}
888
889/*
890 * igb_init_driver_settings - Initialize driver settings
891 *
892 * The settings include hardware function pointers, bus information,
893 * rx/tx rings settings, link state, and any other parameters that
894 * need to be setup during driver initialization.
895 */
896static int
897igb_init_driver_settings(igb_t *igb)
898{
899	struct e1000_hw *hw = &igb->hw;
900	igb_rx_ring_t *rx_ring;
901	igb_tx_ring_t *tx_ring;
902	uint32_t rx_size;
903	uint32_t tx_size;
904	int i;
905
906	/*
907	 * Initialize chipset specific hardware function pointers
908	 */
909	if (e1000_setup_init_funcs(hw, B_TRUE) != E1000_SUCCESS) {
910		return (IGB_FAILURE);
911	}
912
913	/*
914	 * Get bus information
915	 */
916	if (e1000_get_bus_info(hw) != E1000_SUCCESS) {
917		return (IGB_FAILURE);
918	}
919
920	/*
921	 * Get the system page size
922	 */
923	igb->page_size = ddi_ptob(igb->dip, (ulong_t)1);
924
925	/*
926	 * Set rx buffer size
927	 * The IP header alignment room is counted in the calculation.
928	 * The rx buffer size is in unit of 1K that is required by the
929	 * chipset hardware.
930	 */
931	rx_size = igb->max_frame_size + IPHDR_ALIGN_ROOM;
932	igb->rx_buf_size = ((rx_size >> 10) +
933	    ((rx_size & (((uint32_t)1 << 10) - 1)) > 0 ? 1 : 0)) << 10;
934
935	/*
936	 * Set tx buffer size
937	 */
938	tx_size = igb->max_frame_size;
939	igb->tx_buf_size = ((tx_size >> 10) +
940	    ((tx_size & (((uint32_t)1 << 10) - 1)) > 0 ? 1 : 0)) << 10;
941
942	/*
943	 * Initialize rx/tx rings parameters
944	 */
945	for (i = 0; i < igb->num_rx_rings; i++) {
946		rx_ring = &igb->rx_rings[i];
947		rx_ring->index = i;
948		rx_ring->igb = igb;
949	}
950
951	for (i = 0; i < igb->num_tx_rings; i++) {
952		tx_ring = &igb->tx_rings[i];
953		tx_ring->index = i;
954		tx_ring->igb = igb;
955		if (igb->tx_head_wb_enable)
956			tx_ring->tx_recycle = igb_tx_recycle_head_wb;
957		else
958			tx_ring->tx_recycle = igb_tx_recycle_legacy;
959
960		tx_ring->ring_size = igb->tx_ring_size;
961		tx_ring->free_list_size = igb->tx_ring_size +
962		    (igb->tx_ring_size >> 1);
963	}
964
965	/*
966	 * Initialize values of interrupt throttling rates
967	 */
968	for (i = 1; i < MAX_NUM_EITR; i++)
969		igb->intr_throttling[i] = igb->intr_throttling[0];
970
971	/*
972	 * The initial link state should be "unknown"
973	 */
974	igb->link_state = LINK_STATE_UNKNOWN;
975
976	return (IGB_SUCCESS);
977}
978
979/*
980 * igb_init_locks - Initialize locks
981 */
982static void
983igb_init_locks(igb_t *igb)
984{
985	igb_rx_ring_t *rx_ring;
986	igb_tx_ring_t *tx_ring;
987	int i;
988
989	for (i = 0; i < igb->num_rx_rings; i++) {
990		rx_ring = &igb->rx_rings[i];
991		mutex_init(&rx_ring->rx_lock, NULL,
992		    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
993	}
994
995	for (i = 0; i < igb->num_tx_rings; i++) {
996		tx_ring = &igb->tx_rings[i];
997		mutex_init(&tx_ring->tx_lock, NULL,
998		    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
999		mutex_init(&tx_ring->recycle_lock, NULL,
1000		    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1001		mutex_init(&tx_ring->tcb_head_lock, NULL,
1002		    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1003		mutex_init(&tx_ring->tcb_tail_lock, NULL,
1004		    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1005	}
1006
1007	mutex_init(&igb->gen_lock, NULL,
1008	    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1009
1010	mutex_init(&igb->watchdog_lock, NULL,
1011	    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1012
1013	mutex_init(&igb->link_lock, NULL,
1014	    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1015}
1016
1017/*
1018 * igb_destroy_locks - Destroy locks
1019 */
1020static void
1021igb_destroy_locks(igb_t *igb)
1022{
1023	igb_rx_ring_t *rx_ring;
1024	igb_tx_ring_t *tx_ring;
1025	int i;
1026
1027	for (i = 0; i < igb->num_rx_rings; i++) {
1028		rx_ring = &igb->rx_rings[i];
1029		mutex_destroy(&rx_ring->rx_lock);
1030	}
1031
1032	for (i = 0; i < igb->num_tx_rings; i++) {
1033		tx_ring = &igb->tx_rings[i];
1034		mutex_destroy(&tx_ring->tx_lock);
1035		mutex_destroy(&tx_ring->recycle_lock);
1036		mutex_destroy(&tx_ring->tcb_head_lock);
1037		mutex_destroy(&tx_ring->tcb_tail_lock);
1038	}
1039
1040	mutex_destroy(&igb->gen_lock);
1041	mutex_destroy(&igb->watchdog_lock);
1042	mutex_destroy(&igb->link_lock);
1043}
1044
1045static int
1046igb_resume(dev_info_t *devinfo)
1047{
1048	igb_t *igb;
1049
1050	igb = (igb_t *)ddi_get_driver_private(devinfo);
1051	if (igb == NULL)
1052		return (DDI_FAILURE);
1053
1054	mutex_enter(&igb->gen_lock);
1055
1056	if (igb->igb_state & IGB_STARTED) {
1057		if (igb_start(igb, B_FALSE) != IGB_SUCCESS) {
1058			mutex_exit(&igb->gen_lock);
1059			return (DDI_FAILURE);
1060		}
1061
1062		/*
1063		 * Enable and start the watchdog timer
1064		 */
1065		igb_enable_watchdog_timer(igb);
1066	}
1067
1068	atomic_and_32(&igb->igb_state, ~IGB_SUSPENDED);
1069
1070	mutex_exit(&igb->gen_lock);
1071
1072	return (DDI_SUCCESS);
1073}
1074
1075static int
1076igb_suspend(dev_info_t *devinfo)
1077{
1078	igb_t *igb;
1079
1080	igb = (igb_t *)ddi_get_driver_private(devinfo);
1081	if (igb == NULL)
1082		return (DDI_FAILURE);
1083
1084	mutex_enter(&igb->gen_lock);
1085
1086	atomic_or_32(&igb->igb_state, IGB_SUSPENDED);
1087
1088	if (!(igb->igb_state & IGB_STARTED)) {
1089		mutex_exit(&igb->gen_lock);
1090		return (DDI_SUCCESS);
1091	}
1092
1093	igb_stop(igb, B_FALSE);
1094
1095	mutex_exit(&igb->gen_lock);
1096
1097	/*
1098	 * Disable and stop the watchdog timer
1099	 */
1100	igb_disable_watchdog_timer(igb);
1101
1102	return (DDI_SUCCESS);
1103}
1104
1105static int
1106igb_init(igb_t *igb)
1107{
1108	mutex_enter(&igb->gen_lock);
1109
1110	/*
1111	 * Initilize the adapter
1112	 */
1113	if (igb_init_adapter(igb) != IGB_SUCCESS) {
1114		mutex_exit(&igb->gen_lock);
1115		igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1116		ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1117		return (IGB_FAILURE);
1118	}
1119
1120	mutex_exit(&igb->gen_lock);
1121
1122	return (IGB_SUCCESS);
1123}
1124
1125/*
1126 * igb_init_mac_address - Initialize the default MAC address
1127 *
1128 * On success, the MAC address is entered in the igb->hw.mac.addr
1129 * and hw->mac.perm_addr fields and the adapter's RAR(0) receive
1130 * address register.
1131 *
1132 * Important side effects:
1133 * 1. adapter is reset - this is required to put it in a known state.
1134 * 2. all of non-volatile memory (NVM) is read & checksummed - NVM is where
1135 * MAC address and all default settings are stored, so a valid checksum
1136 * is required.
1137 */
1138static int
1139igb_init_mac_address(igb_t *igb)
1140{
1141	struct e1000_hw *hw = &igb->hw;
1142
1143	ASSERT(mutex_owned(&igb->gen_lock));
1144
1145	/*
1146	 * Reset chipset to put the hardware in a known state
1147	 * before we try to get MAC address from NVM.
1148	 */
1149	if (e1000_reset_hw(hw) != E1000_SUCCESS) {
1150		igb_error(igb, "Adapter reset failed.");
1151		goto init_mac_fail;
1152	}
1153
1154	/*
1155	 * NVM validation
1156	 */
1157	if (e1000_validate_nvm_checksum(hw) < 0) {
1158		/*
1159		 * Some PCI-E parts fail the first check due to
1160		 * the link being in sleep state.  Call it again,
1161		 * if it fails a second time its a real issue.
1162		 */
1163		if (e1000_validate_nvm_checksum(hw) < 0) {
1164			igb_error(igb,
1165			    "Invalid NVM checksum. Please contact "
1166			    "the vendor to update the NVM.");
1167			goto init_mac_fail;
1168		}
1169	}
1170
1171	/*
1172	 * Get the mac address
1173	 * This function should handle SPARC case correctly.
1174	 */
1175	if (!igb_find_mac_address(igb)) {
1176		igb_error(igb, "Failed to get the mac address");
1177		goto init_mac_fail;
1178	}
1179
1180	/* Validate mac address */
1181	if (!is_valid_mac_addr(hw->mac.addr)) {
1182		igb_error(igb, "Invalid mac address");
1183		goto init_mac_fail;
1184	}
1185
1186	return (IGB_SUCCESS);
1187
1188init_mac_fail:
1189	return (IGB_FAILURE);
1190}
1191
1192/*
1193 * igb_init_adapter - Initialize the adapter
1194 */
1195static int
1196igb_init_adapter(igb_t *igb)
1197{
1198	struct e1000_hw *hw = &igb->hw;
1199	uint32_t pba;
1200	uint32_t high_water;
1201	int i;
1202
1203	ASSERT(mutex_owned(&igb->gen_lock));
1204
1205	/*
1206	 * In order to obtain the default MAC address, this will reset the
1207	 * adapter and validate the NVM that the address and many other
1208	 * default settings come from.
1209	 */
1210	if (igb_init_mac_address(igb) != IGB_SUCCESS) {
1211		igb_error(igb, "Failed to initialize MAC address");
1212		goto init_adapter_fail;
1213	}
1214
1215	/*
1216	 * Setup flow control
1217	 *
1218	 * These parameters set thresholds for the adapter's generation(Tx)
1219	 * and response(Rx) to Ethernet PAUSE frames.  These are just threshold
1220	 * settings.  Flow control is enabled or disabled in the configuration
1221	 * file.
1222	 * High-water mark is set down from the top of the rx fifo (not
1223	 * sensitive to max_frame_size) and low-water is set just below
1224	 * high-water mark.
1225	 * The high water mark must be low enough to fit one full frame above
1226	 * it in the rx FIFO.  Should be the lower of:
1227	 * 90% of the Rx FIFO size, or the full Rx FIFO size minus one full
1228	 * frame.
1229	 */
1230	/*
1231	 * The default setting of PBA is correct for 82575 and other supported
1232	 * adapters do not have the E1000_PBA register, so PBA value is only
1233	 * used for calculation here and is never written to the adapter.
1234	 */
1235	if (hw->mac.type == e1000_82575) {
1236		pba = E1000_PBA_34K;
1237	} else {
1238		pba = E1000_PBA_64K;
1239	}
1240
1241	high_water = min(((pba << 10) * 9 / 10),
1242	    ((pba << 10) - igb->max_frame_size));
1243
1244	if (hw->mac.type == e1000_82575) {
1245		/* 8-byte granularity */
1246		hw->fc.high_water = high_water & 0xFFF8;
1247		hw->fc.low_water = hw->fc.high_water - 8;
1248	} else {
1249		/* 16-byte granularity */
1250		hw->fc.high_water = high_water & 0xFFF0;
1251		hw->fc.low_water = hw->fc.high_water - 16;
1252	}
1253
1254	hw->fc.pause_time = E1000_FC_PAUSE_TIME;
1255	hw->fc.send_xon = B_TRUE;
1256
1257	(void) e1000_validate_mdi_setting(hw);
1258
1259	/*
1260	 * Reset the chipset hardware the second time to put PBA settings
1261	 * into effect.
1262	 */
1263	if (e1000_reset_hw(hw) != E1000_SUCCESS) {
1264		igb_error(igb, "Second reset failed");
1265		goto init_adapter_fail;
1266	}
1267
1268	/*
1269	 * Don't wait for auto-negotiation to complete
1270	 */
1271	hw->phy.autoneg_wait_to_complete = B_FALSE;
1272
1273	/*
1274	 * Copper options
1275	 */
1276	if (hw->phy.media_type == e1000_media_type_copper) {
1277		hw->phy.mdix = 0;	/* AUTO_ALL_MODES */
1278		hw->phy.disable_polarity_correction = B_FALSE;
1279		hw->phy.ms_type = e1000_ms_hw_default; /* E1000_MASTER_SLAVE */
1280	}
1281
1282	/*
1283	 * Initialize link settings
1284	 */
1285	(void) igb_setup_link(igb, B_FALSE);
1286
1287	/*
1288	 * Configure/Initialize hardware
1289	 */
1290	if (e1000_init_hw(hw) != E1000_SUCCESS) {
1291		igb_error(igb, "Failed to initialize hardware");
1292		goto init_adapter_fail;
1293	}
1294
1295	/*
1296	 *  Start the link setup timer
1297	 */
1298	igb_start_link_timer(igb);
1299
1300	/*
1301	 * Disable wakeup control by default
1302	 */
1303	E1000_WRITE_REG(hw, E1000_WUC, 0);
1304
1305	/*
1306	 * Record phy info in hw struct
1307	 */
1308	(void) e1000_get_phy_info(hw);
1309
1310	/*
1311	 * Make sure driver has control
1312	 */
1313	igb_get_driver_control(hw);
1314
1315	/*
1316	 * Restore LED settings to the default from EEPROM
1317	 * to meet the standard for Sun platforms.
1318	 */
1319	(void) e1000_cleanup_led(hw);
1320
1321	/*
1322	 * Setup MSI-X interrupts
1323	 */
1324	if (igb->intr_type == DDI_INTR_TYPE_MSIX)
1325		igb->capab->setup_msix(igb);
1326
1327	/*
1328	 * Initialize unicast addresses.
1329	 */
1330	igb_init_unicst(igb);
1331
1332	/*
1333	 * Setup and initialize the mctable structures.
1334	 */
1335	igb_setup_multicst(igb);
1336
1337	/*
1338	 * Set interrupt throttling rate
1339	 */
1340	for (i = 0; i < igb->intr_cnt; i++)
1341		E1000_WRITE_REG(hw, E1000_EITR(i), igb->intr_throttling[i]);
1342
1343	/*
1344	 * Save the state of the phy
1345	 */
1346	igb_get_phy_state(igb);
1347
1348	igb_param_sync(igb);
1349
1350	return (IGB_SUCCESS);
1351
1352init_adapter_fail:
1353	/*
1354	 * Reset PHY if possible
1355	 */
1356	if (e1000_check_reset_block(hw) == E1000_SUCCESS)
1357		(void) e1000_phy_hw_reset(hw);
1358
1359	return (IGB_FAILURE);
1360}
1361
1362/*
1363 * igb_stop_adapter - Stop the adapter
1364 */
1365static void
1366igb_stop_adapter(igb_t *igb)
1367{
1368	struct e1000_hw *hw = &igb->hw;
1369
1370	ASSERT(mutex_owned(&igb->gen_lock));
1371
1372	/* Stop the link setup timer */
1373	igb_stop_link_timer(igb);
1374
1375	/* Tell firmware driver is no longer in control */
1376	igb_release_driver_control(hw);
1377
1378	/*
1379	 * Reset the chipset
1380	 */
1381	if (e1000_reset_hw(hw) != E1000_SUCCESS) {
1382		igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1383		ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1384	}
1385
1386	/*
1387	 * e1000_phy_hw_reset is not needed here, MAC reset above is sufficient
1388	 */
1389}
1390
1391/*
1392 * igb_reset - Reset the chipset and restart the driver.
1393 *
1394 * It involves stopping and re-starting the chipset,
1395 * and re-configuring the rx/tx rings.
1396 */
1397static int
1398igb_reset(igb_t *igb)
1399{
1400	int i;
1401
1402	mutex_enter(&igb->gen_lock);
1403
1404	ASSERT(igb->igb_state & IGB_STARTED);
1405	atomic_and_32(&igb->igb_state, ~IGB_STARTED);
1406
1407	/*
1408	 * Disable the adapter interrupts to stop any rx/tx activities
1409	 * before draining pending data and resetting hardware.
1410	 */
1411	igb_disable_adapter_interrupts(igb);
1412
1413	/*
1414	 * Drain the pending transmit packets
1415	 */
1416	(void) igb_tx_drain(igb);
1417
1418	for (i = 0; i < igb->num_rx_rings; i++)
1419		mutex_enter(&igb->rx_rings[i].rx_lock);
1420	for (i = 0; i < igb->num_tx_rings; i++)
1421		mutex_enter(&igb->tx_rings[i].tx_lock);
1422
1423	/*
1424	 * Stop the adapter
1425	 */
1426	igb_stop_adapter(igb);
1427
1428	/*
1429	 * Clean the pending tx data/resources
1430	 */
1431	igb_tx_clean(igb);
1432
1433	/*
1434	 * Start the adapter
1435	 */
1436	if (igb_init_adapter(igb) != IGB_SUCCESS) {
1437		igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1438		goto reset_failure;
1439	}
1440
1441	/*
1442	 * Setup the rx/tx rings
1443	 */
1444	igb->tx_ring_init = B_FALSE;
1445	igb_setup_rings(igb);
1446
1447	atomic_and_32(&igb->igb_state, ~(IGB_ERROR | IGB_STALL));
1448
1449	/*
1450	 * Enable adapter interrupts
1451	 * The interrupts must be enabled after the driver state is START
1452	 */
1453	igb->capab->enable_intr(igb);
1454
1455	if (igb_check_acc_handle(igb->osdep.cfg_handle) != DDI_FM_OK)
1456		goto reset_failure;
1457
1458	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
1459		goto reset_failure;
1460
1461	for (i = igb->num_tx_rings - 1; i >= 0; i--)
1462		mutex_exit(&igb->tx_rings[i].tx_lock);
1463	for (i = igb->num_rx_rings - 1; i >= 0; i--)
1464		mutex_exit(&igb->rx_rings[i].rx_lock);
1465
1466	atomic_or_32(&igb->igb_state, IGB_STARTED);
1467
1468	mutex_exit(&igb->gen_lock);
1469
1470	return (IGB_SUCCESS);
1471
1472reset_failure:
1473	for (i = igb->num_tx_rings - 1; i >= 0; i--)
1474		mutex_exit(&igb->tx_rings[i].tx_lock);
1475	for (i = igb->num_rx_rings - 1; i >= 0; i--)
1476		mutex_exit(&igb->rx_rings[i].rx_lock);
1477
1478	mutex_exit(&igb->gen_lock);
1479
1480	ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1481
1482	return (IGB_FAILURE);
1483}
1484
1485/*
1486 * igb_tx_clean - Clean the pending transmit packets and DMA resources
1487 */
1488static void
1489igb_tx_clean(igb_t *igb)
1490{
1491	igb_tx_ring_t *tx_ring;
1492	tx_control_block_t *tcb;
1493	link_list_t pending_list;
1494	uint32_t desc_num;
1495	int i, j;
1496
1497	LINK_LIST_INIT(&pending_list);
1498
1499	for (i = 0; i < igb->num_tx_rings; i++) {
1500		tx_ring = &igb->tx_rings[i];
1501
1502		mutex_enter(&tx_ring->recycle_lock);
1503
1504		/*
1505		 * Clean the pending tx data - the pending packets in the
1506		 * work_list that have no chances to be transmitted again.
1507		 *
1508		 * We must ensure the chipset is stopped or the link is down
1509		 * before cleaning the transmit packets.
1510		 */
1511		desc_num = 0;
1512		for (j = 0; j < tx_ring->ring_size; j++) {
1513			tcb = tx_ring->work_list[j];
1514			if (tcb != NULL) {
1515				desc_num += tcb->desc_num;
1516
1517				tx_ring->work_list[j] = NULL;
1518
1519				igb_free_tcb(tcb);
1520
1521				LIST_PUSH_TAIL(&pending_list, &tcb->link);
1522			}
1523		}
1524
1525		if (desc_num > 0) {
1526			atomic_add_32(&tx_ring->tbd_free, desc_num);
1527			ASSERT(tx_ring->tbd_free == tx_ring->ring_size);
1528
1529			/*
1530			 * Reset the head and tail pointers of the tbd ring;
1531			 * Reset the head write-back if it is enabled.
1532			 */
1533			tx_ring->tbd_head = 0;
1534			tx_ring->tbd_tail = 0;
1535			if (igb->tx_head_wb_enable)
1536				*tx_ring->tbd_head_wb = 0;
1537
1538			E1000_WRITE_REG(&igb->hw, E1000_TDH(tx_ring->index), 0);
1539			E1000_WRITE_REG(&igb->hw, E1000_TDT(tx_ring->index), 0);
1540		}
1541
1542		mutex_exit(&tx_ring->recycle_lock);
1543
1544		/*
1545		 * Add the tx control blocks in the pending list to
1546		 * the free list.
1547		 */
1548		igb_put_free_list(tx_ring, &pending_list);
1549	}
1550}
1551
1552/*
1553 * igb_tx_drain - Drain the tx rings to allow pending packets to be transmitted
1554 */
1555static boolean_t
1556igb_tx_drain(igb_t *igb)
1557{
1558	igb_tx_ring_t *tx_ring;
1559	boolean_t done;
1560	int i, j;
1561
1562	/*
1563	 * Wait for a specific time to allow pending tx packets
1564	 * to be transmitted.
1565	 *
1566	 * Check the counter tbd_free to see if transmission is done.
1567	 * No lock protection is needed here.
1568	 *
1569	 * Return B_TRUE if all pending packets have been transmitted;
1570	 * Otherwise return B_FALSE;
1571	 */
1572	for (i = 0; i < TX_DRAIN_TIME; i++) {
1573
1574		done = B_TRUE;
1575		for (j = 0; j < igb->num_tx_rings; j++) {
1576			tx_ring = &igb->tx_rings[j];
1577			done = done &&
1578			    (tx_ring->tbd_free == tx_ring->ring_size);
1579		}
1580
1581		if (done)
1582			break;
1583
1584		msec_delay(1);
1585	}
1586
1587	return (done);
1588}
1589
1590/*
1591 * igb_rx_drain - Wait for all rx buffers to be released by upper layer
1592 */
1593static boolean_t
1594igb_rx_drain(igb_t *igb)
1595{
1596	boolean_t done;
1597	int i;
1598
1599	/*
1600	 * Polling the rx free list to check if those rx buffers held by
1601	 * the upper layer are released.
1602	 *
1603	 * Check the counter rcb_free to see if all pending buffers are
1604	 * released. No lock protection is needed here.
1605	 *
1606	 * Return B_TRUE if all pending buffers have been released;
1607	 * Otherwise return B_FALSE;
1608	 */
1609	for (i = 0; i < RX_DRAIN_TIME; i++) {
1610		done = (igb->rcb_pending == 0);
1611
1612		if (done)
1613			break;
1614
1615		msec_delay(1);
1616	}
1617
1618	return (done);
1619}
1620
1621/*
1622 * igb_start - Start the driver/chipset
1623 */
1624int
1625igb_start(igb_t *igb, boolean_t alloc_buffer)
1626{
1627	int i;
1628
1629	ASSERT(mutex_owned(&igb->gen_lock));
1630
1631	if (alloc_buffer) {
1632		if (igb_alloc_rx_data(igb) != IGB_SUCCESS) {
1633			igb_error(igb,
1634			    "Failed to allocate software receive rings");
1635			return (IGB_FAILURE);
1636		}
1637
1638		/* Allocate buffers for all the rx/tx rings */
1639		if (igb_alloc_dma(igb) != IGB_SUCCESS) {
1640			igb_error(igb, "Failed to allocate DMA resource");
1641			return (IGB_FAILURE);
1642		}
1643
1644		igb->tx_ring_init = B_TRUE;
1645	} else {
1646		igb->tx_ring_init = B_FALSE;
1647	}
1648
1649	for (i = 0; i < igb->num_rx_rings; i++)
1650		mutex_enter(&igb->rx_rings[i].rx_lock);
1651	for (i = 0; i < igb->num_tx_rings; i++)
1652		mutex_enter(&igb->tx_rings[i].tx_lock);
1653
1654	/*
1655	 * Start the adapter
1656	 */
1657	if ((igb->attach_progress & ATTACH_PROGRESS_INIT_ADAPTER) == 0) {
1658		if (igb_init_adapter(igb) != IGB_SUCCESS) {
1659			igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1660			goto start_failure;
1661		}
1662		igb->attach_progress |= ATTACH_PROGRESS_INIT_ADAPTER;
1663	}
1664
1665	/*
1666	 * Setup the rx/tx rings
1667	 */
1668	igb_setup_rings(igb);
1669
1670	/*
1671	 * Enable adapter interrupts
1672	 * The interrupts must be enabled after the driver state is START
1673	 */
1674	igb->capab->enable_intr(igb);
1675
1676	if (igb_check_acc_handle(igb->osdep.cfg_handle) != DDI_FM_OK)
1677		goto start_failure;
1678
1679	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
1680		goto start_failure;
1681
1682	for (i = igb->num_tx_rings - 1; i >= 0; i--)
1683		mutex_exit(&igb->tx_rings[i].tx_lock);
1684	for (i = igb->num_rx_rings - 1; i >= 0; i--)
1685		mutex_exit(&igb->rx_rings[i].rx_lock);
1686
1687	return (IGB_SUCCESS);
1688
1689start_failure:
1690	for (i = igb->num_tx_rings - 1; i >= 0; i--)
1691		mutex_exit(&igb->tx_rings[i].tx_lock);
1692	for (i = igb->num_rx_rings - 1; i >= 0; i--)
1693		mutex_exit(&igb->rx_rings[i].rx_lock);
1694
1695	ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1696
1697	return (IGB_FAILURE);
1698}
1699
1700/*
1701 * igb_stop - Stop the driver/chipset
1702 */
1703void
1704igb_stop(igb_t *igb, boolean_t free_buffer)
1705{
1706	int i;
1707
1708	ASSERT(mutex_owned(&igb->gen_lock));
1709
1710	igb->attach_progress &= ~ATTACH_PROGRESS_INIT_ADAPTER;
1711
1712	/*
1713	 * Disable the adapter interrupts
1714	 */
1715	igb_disable_adapter_interrupts(igb);
1716
1717	/*
1718	 * Drain the pending tx packets
1719	 */
1720	(void) igb_tx_drain(igb);
1721
1722	for (i = 0; i < igb->num_rx_rings; i++)
1723		mutex_enter(&igb->rx_rings[i].rx_lock);
1724	for (i = 0; i < igb->num_tx_rings; i++)
1725		mutex_enter(&igb->tx_rings[i].tx_lock);
1726
1727	/*
1728	 * Stop the adapter
1729	 */
1730	igb_stop_adapter(igb);
1731
1732	/*
1733	 * Clean the pending tx data/resources
1734	 */
1735	igb_tx_clean(igb);
1736
1737	for (i = igb->num_tx_rings - 1; i >= 0; i--)
1738		mutex_exit(&igb->tx_rings[i].tx_lock);
1739	for (i = igb->num_rx_rings - 1; i >= 0; i--)
1740		mutex_exit(&igb->rx_rings[i].rx_lock);
1741
1742	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
1743		ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1744
1745	if (igb->link_state == LINK_STATE_UP) {
1746		igb->link_state = LINK_STATE_UNKNOWN;
1747		mac_link_update(igb->mac_hdl, igb->link_state);
1748	}
1749
1750	if (free_buffer) {
1751		/*
1752		 * Release the DMA/memory resources of rx/tx rings
1753		 */
1754		igb_free_dma(igb);
1755		igb_free_rx_data(igb);
1756	}
1757}
1758
1759/*
1760 * igb_alloc_rings - Allocate memory space for rx/tx rings
1761 */
1762static int
1763igb_alloc_rings(igb_t *igb)
1764{
1765	/*
1766	 * Allocate memory space for rx rings
1767	 */
1768	igb->rx_rings = kmem_zalloc(
1769	    sizeof (igb_rx_ring_t) * igb->num_rx_rings,
1770	    KM_NOSLEEP);
1771
1772	if (igb->rx_rings == NULL) {
1773		return (IGB_FAILURE);
1774	}
1775
1776	/*
1777	 * Allocate memory space for tx rings
1778	 */
1779	igb->tx_rings = kmem_zalloc(
1780	    sizeof (igb_tx_ring_t) * igb->num_tx_rings,
1781	    KM_NOSLEEP);
1782
1783	if (igb->tx_rings == NULL) {
1784		kmem_free(igb->rx_rings,
1785		    sizeof (igb_rx_ring_t) * igb->num_rx_rings);
1786		igb->rx_rings = NULL;
1787		return (IGB_FAILURE);
1788	}
1789
1790	/*
1791	 * Allocate memory space for rx ring groups
1792	 */
1793	igb->rx_groups = kmem_zalloc(
1794	    sizeof (igb_rx_group_t) * igb->num_rx_groups,
1795	    KM_NOSLEEP);
1796
1797	if (igb->rx_groups == NULL) {
1798		kmem_free(igb->rx_rings,
1799		    sizeof (igb_rx_ring_t) * igb->num_rx_rings);
1800		kmem_free(igb->tx_rings,
1801		    sizeof (igb_tx_ring_t) * igb->num_tx_rings);
1802		igb->rx_rings = NULL;
1803		igb->tx_rings = NULL;
1804		return (IGB_FAILURE);
1805	}
1806
1807	return (IGB_SUCCESS);
1808}
1809
1810/*
1811 * igb_free_rings - Free the memory space of rx/tx rings.
1812 */
1813static void
1814igb_free_rings(igb_t *igb)
1815{
1816	if (igb->rx_rings != NULL) {
1817		kmem_free(igb->rx_rings,
1818		    sizeof (igb_rx_ring_t) * igb->num_rx_rings);
1819		igb->rx_rings = NULL;
1820	}
1821
1822	if (igb->tx_rings != NULL) {
1823		kmem_free(igb->tx_rings,
1824		    sizeof (igb_tx_ring_t) * igb->num_tx_rings);
1825		igb->tx_rings = NULL;
1826	}
1827
1828	if (igb->rx_groups != NULL) {
1829		kmem_free(igb->rx_groups,
1830		    sizeof (igb_rx_group_t) * igb->num_rx_groups);
1831		igb->rx_groups = NULL;
1832	}
1833}
1834
1835static int
1836igb_alloc_rx_data(igb_t *igb)
1837{
1838	igb_rx_ring_t *rx_ring;
1839	int i;
1840
1841	for (i = 0; i < igb->num_rx_rings; i++) {
1842		rx_ring = &igb->rx_rings[i];
1843		if (igb_alloc_rx_ring_data(rx_ring) != IGB_SUCCESS)
1844			goto alloc_rx_rings_failure;
1845	}
1846	return (IGB_SUCCESS);
1847
1848alloc_rx_rings_failure:
1849	igb_free_rx_data(igb);
1850	return (IGB_FAILURE);
1851}
1852
1853static void
1854igb_free_rx_data(igb_t *igb)
1855{
1856	igb_rx_ring_t *rx_ring;
1857	igb_rx_data_t *rx_data;
1858	int i;
1859
1860	for (i = 0; i < igb->num_rx_rings; i++) {
1861		rx_ring = &igb->rx_rings[i];
1862
1863		mutex_enter(&igb->rx_pending_lock);
1864		rx_data = rx_ring->rx_data;
1865
1866		if (rx_data != NULL) {
1867			rx_data->flag |= IGB_RX_STOPPED;
1868
1869			if (rx_data->rcb_pending == 0) {
1870				igb_free_rx_ring_data(rx_data);
1871				rx_ring->rx_data = NULL;
1872			}
1873		}
1874
1875		mutex_exit(&igb->rx_pending_lock);
1876	}
1877}
1878
1879/*
1880 * igb_setup_rings - Setup rx/tx rings
1881 */
1882static void
1883igb_setup_rings(igb_t *igb)
1884{
1885	/*
1886	 * Setup the rx/tx rings, including the following:
1887	 *
1888	 * 1. Setup the descriptor ring and the control block buffers;
1889	 * 2. Initialize necessary registers for receive/transmit;
1890	 * 3. Initialize software pointers/parameters for receive/transmit;
1891	 */
1892	igb_setup_rx(igb);
1893
1894	igb_setup_tx(igb);
1895}
1896
1897static void
1898igb_setup_rx_ring(igb_rx_ring_t *rx_ring)
1899{
1900	igb_t *igb = rx_ring->igb;
1901	igb_rx_data_t *rx_data = rx_ring->rx_data;
1902	struct e1000_hw *hw = &igb->hw;
1903	rx_control_block_t *rcb;
1904	union e1000_adv_rx_desc	*rbd;
1905	uint32_t size;
1906	uint32_t buf_low;
1907	uint32_t buf_high;
1908	uint32_t rxdctl;
1909	int i;
1910
1911	ASSERT(mutex_owned(&rx_ring->rx_lock));
1912	ASSERT(mutex_owned(&igb->gen_lock));
1913
1914	/*
1915	 * Initialize descriptor ring with buffer addresses
1916	 */
1917	for (i = 0; i < igb->rx_ring_size; i++) {
1918		rcb = rx_data->work_list[i];
1919		rbd = &rx_data->rbd_ring[i];
1920
1921		rbd->read.pkt_addr = rcb->rx_buf.dma_address;
1922		rbd->read.hdr_addr = NULL;
1923	}
1924
1925	/*
1926	 * Initialize the base address registers
1927	 */
1928	buf_low = (uint32_t)rx_data->rbd_area.dma_address;
1929	buf_high = (uint32_t)(rx_data->rbd_area.dma_address >> 32);
1930	E1000_WRITE_REG(hw, E1000_RDBAH(rx_ring->index), buf_high);
1931	E1000_WRITE_REG(hw, E1000_RDBAL(rx_ring->index), buf_low);
1932
1933	/*
1934	 * Initialize the length register
1935	 */
1936	size = rx_data->ring_size * sizeof (union e1000_adv_rx_desc);
1937	E1000_WRITE_REG(hw, E1000_RDLEN(rx_ring->index), size);
1938
1939	/*
1940	 * Initialize buffer size & descriptor type
1941	 */
1942	E1000_WRITE_REG(hw, E1000_SRRCTL(rx_ring->index),
1943	    ((igb->rx_buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) |
1944	    E1000_SRRCTL_DESCTYPE_ADV_ONEBUF));
1945
1946	/*
1947	 * Setup the Receive Descriptor Control Register (RXDCTL)
1948	 */
1949	rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(rx_ring->index));
1950	rxdctl &= igb->capab->rxdctl_mask;
1951	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1952	rxdctl |= 16;		/* pthresh */
1953	rxdctl |= 8 << 8;	/* hthresh */
1954	rxdctl |= 1 << 16;	/* wthresh */
1955	E1000_WRITE_REG(hw, E1000_RXDCTL(rx_ring->index), rxdctl);
1956
1957	rx_data->rbd_next = 0;
1958}
1959
1960static void
1961igb_setup_rx(igb_t *igb)
1962{
1963	igb_rx_ring_t *rx_ring;
1964	igb_rx_data_t *rx_data;
1965	igb_rx_group_t *rx_group;
1966	struct e1000_hw *hw = &igb->hw;
1967	uint32_t rctl, rxcsum;
1968	uint32_t ring_per_group;
1969	int i;
1970
1971	/*
1972	 * Setup the Receive Control Register (RCTL), and enable the
1973	 * receiver. The initial configuration is to: enable the receiver,
1974	 * accept broadcasts, discard bad packets, accept long packets,
1975	 * disable VLAN filter checking, and set receive buffer size to
1976	 * 2k.  For 82575, also set the receive descriptor minimum
1977	 * threshold size to 1/2 the ring.
1978	 */
1979	rctl = E1000_READ_REG(hw, E1000_RCTL);
1980
1981	/*
1982	 * Clear the field used for wakeup control.  This driver doesn't do
1983	 * wakeup but leave this here for completeness.
1984	 */
1985	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1986	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1987
1988	rctl |= (E1000_RCTL_EN |	/* Enable Receive Unit */
1989	    E1000_RCTL_BAM |		/* Accept Broadcast Packets */
1990	    E1000_RCTL_LPE |		/* Large Packet Enable */
1991					/* Multicast filter offset */
1992	    (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT) |
1993	    E1000_RCTL_RDMTS_HALF |	/* rx descriptor threshold */
1994	    E1000_RCTL_SECRC);		/* Strip Ethernet CRC */
1995
1996	for (i = 0; i < igb->num_rx_groups; i++) {
1997		rx_group = &igb->rx_groups[i];
1998		rx_group->index = i;
1999		rx_group->igb = igb;
2000	}
2001
2002	/*
2003	 * Set up all rx descriptor rings - must be called before receive unit
2004	 * enabled.
2005	 */
2006	ring_per_group = igb->num_rx_rings / igb->num_rx_groups;
2007	for (i = 0; i < igb->num_rx_rings; i++) {
2008		rx_ring = &igb->rx_rings[i];
2009		igb_setup_rx_ring(rx_ring);
2010
2011		/*
2012		 * Map a ring to a group by assigning a group index
2013		 */
2014		rx_ring->group_index = i / ring_per_group;
2015	}
2016
2017	/*
2018	 * Setup the Rx Long Packet Max Length register
2019	 */
2020	E1000_WRITE_REG(hw, E1000_RLPML, igb->max_frame_size);
2021
2022	/*
2023	 * Hardware checksum settings
2024	 */
2025	if (igb->rx_hcksum_enable) {
2026		rxcsum =
2027		    E1000_RXCSUM_TUOFL |	/* TCP/UDP checksum */
2028		    E1000_RXCSUM_IPOFL;		/* IP checksum */
2029
2030		E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2031	}
2032
2033	/*
2034	 * Setup classify and RSS for multiple receive queues
2035	 */
2036	switch (igb->vmdq_mode) {
2037	case E1000_VMDQ_OFF:
2038		/*
2039		 * One ring group, only RSS is needed when more than
2040		 * one ring enabled.
2041		 */
2042		if (igb->num_rx_rings > 1)
2043			igb_setup_rss(igb);
2044		break;
2045	case E1000_VMDQ_MAC:
2046		/*
2047		 * Multiple groups, each group has one ring,
2048		 * only the MAC classification is needed.
2049		 */
2050		igb_setup_mac_classify(igb);
2051		break;
2052	case E1000_VMDQ_MAC_RSS:
2053		/*
2054		 * Multiple groups and multiple rings, both
2055		 * MAC classification and RSS are needed.
2056		 */
2057		igb_setup_mac_rss_classify(igb);
2058		break;
2059	}
2060
2061	/*
2062	 * Enable the receive unit - must be done after all
2063	 * the rx setup above.
2064	 */
2065	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2066
2067	/*
2068	 * Initialize all adapter ring head & tail pointers - must
2069	 * be done after receive unit is enabled
2070	 */
2071	for (i = 0; i < igb->num_rx_rings; i++) {
2072		rx_ring = &igb->rx_rings[i];
2073		rx_data = rx_ring->rx_data;
2074		E1000_WRITE_REG(hw, E1000_RDH(i), 0);
2075		E1000_WRITE_REG(hw, E1000_RDT(i), rx_data->ring_size - 1);
2076	}
2077
2078	/*
2079	 * 82575 with manageability enabled needs a special flush to make
2080	 * sure the fifos start clean.
2081	 */
2082	if ((hw->mac.type == e1000_82575) &&
2083	    (E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_RCV_TCO_EN)) {
2084		e1000_rx_fifo_flush_82575(hw);
2085	}
2086}
2087
2088static void
2089igb_setup_tx_ring(igb_tx_ring_t *tx_ring)
2090{
2091	igb_t *igb = tx_ring->igb;
2092	struct e1000_hw *hw = &igb->hw;
2093	uint32_t size;
2094	uint32_t buf_low;
2095	uint32_t buf_high;
2096	uint32_t reg_val;
2097
2098	ASSERT(mutex_owned(&tx_ring->tx_lock));
2099	ASSERT(mutex_owned(&igb->gen_lock));
2100
2101
2102	/*
2103	 * Initialize the length register
2104	 */
2105	size = tx_ring->ring_size * sizeof (union e1000_adv_tx_desc);
2106	E1000_WRITE_REG(hw, E1000_TDLEN(tx_ring->index), size);
2107
2108	/*
2109	 * Initialize the base address registers
2110	 */
2111	buf_low = (uint32_t)tx_ring->tbd_area.dma_address;
2112	buf_high = (uint32_t)(tx_ring->tbd_area.dma_address >> 32);
2113	E1000_WRITE_REG(hw, E1000_TDBAL(tx_ring->index), buf_low);
2114	E1000_WRITE_REG(hw, E1000_TDBAH(tx_ring->index), buf_high);
2115
2116	/*
2117	 * Setup head & tail pointers
2118	 */
2119	E1000_WRITE_REG(hw, E1000_TDH(tx_ring->index), 0);
2120	E1000_WRITE_REG(hw, E1000_TDT(tx_ring->index), 0);
2121
2122	/*
2123	 * Setup head write-back
2124	 */
2125	if (igb->tx_head_wb_enable) {
2126		/*
2127		 * The memory of the head write-back is allocated using
2128		 * the extra tbd beyond the tail of the tbd ring.
2129		 */
2130		tx_ring->tbd_head_wb = (uint32_t *)
2131		    ((uintptr_t)tx_ring->tbd_area.address + size);
2132		*tx_ring->tbd_head_wb = 0;
2133
2134		buf_low = (uint32_t)
2135		    (tx_ring->tbd_area.dma_address + size);
2136		buf_high = (uint32_t)
2137		    ((tx_ring->tbd_area.dma_address + size) >> 32);
2138
2139		/* Set the head write-back enable bit */
2140		buf_low |= E1000_TX_HEAD_WB_ENABLE;
2141
2142		E1000_WRITE_REG(hw, E1000_TDWBAL(tx_ring->index), buf_low);
2143		E1000_WRITE_REG(hw, E1000_TDWBAH(tx_ring->index), buf_high);
2144
2145		/*
2146		 * Turn off relaxed ordering for head write back or it will
2147		 * cause problems with the tx recycling
2148		 */
2149		reg_val = E1000_READ_REG(hw,
2150		    E1000_DCA_TXCTRL(tx_ring->index));
2151		reg_val &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
2152		E1000_WRITE_REG(hw,
2153		    E1000_DCA_TXCTRL(tx_ring->index), reg_val);
2154	} else {
2155		tx_ring->tbd_head_wb = NULL;
2156	}
2157
2158	tx_ring->tbd_head = 0;
2159	tx_ring->tbd_tail = 0;
2160	tx_ring->tbd_free = tx_ring->ring_size;
2161
2162	if (igb->tx_ring_init == B_TRUE) {
2163		tx_ring->tcb_head = 0;
2164		tx_ring->tcb_tail = 0;
2165		tx_ring->tcb_free = tx_ring->free_list_size;
2166	}
2167
2168	/*
2169	 * Enable TXDCTL per queue
2170	 */
2171	reg_val = E1000_READ_REG(hw, E1000_TXDCTL(tx_ring->index));
2172	reg_val |= E1000_TXDCTL_QUEUE_ENABLE;
2173	E1000_WRITE_REG(hw, E1000_TXDCTL(tx_ring->index), reg_val);
2174
2175	/*
2176	 * Initialize hardware checksum offload settings
2177	 */
2178	bzero(&tx_ring->tx_context, sizeof (tx_context_t));
2179}
2180
2181static void
2182igb_setup_tx(igb_t *igb)
2183{
2184	igb_tx_ring_t *tx_ring;
2185	struct e1000_hw *hw = &igb->hw;
2186	uint32_t reg_val;
2187	int i;
2188
2189	for (i = 0; i < igb->num_tx_rings; i++) {
2190		tx_ring = &igb->tx_rings[i];
2191		igb_setup_tx_ring(tx_ring);
2192	}
2193
2194	/*
2195	 * Setup the Transmit Control Register (TCTL)
2196	 */
2197	reg_val = E1000_READ_REG(hw, E1000_TCTL);
2198	reg_val &= ~E1000_TCTL_CT;
2199	reg_val |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2200	    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2201
2202	/* Enable transmits */
2203	reg_val |= E1000_TCTL_EN;
2204
2205	E1000_WRITE_REG(hw, E1000_TCTL, reg_val);
2206}
2207
2208/*
2209 * igb_setup_rss - Setup receive-side scaling feature
2210 */
2211static void
2212igb_setup_rss(igb_t *igb)
2213{
2214	struct e1000_hw *hw = &igb->hw;
2215	uint32_t i, mrqc, rxcsum;
2216	int shift = 0;
2217	uint32_t random;
2218	union e1000_reta {
2219		uint32_t	dword;
2220		uint8_t		bytes[4];
2221	} reta;
2222
2223	/* Setup the Redirection Table */
2224	if (hw->mac.type == e1000_82576) {
2225		shift = 3;
2226	} else if (hw->mac.type == e1000_82575) {
2227		shift = 6;
2228	}
2229	for (i = 0; i < (32 * 4); i++) {
2230		reta.bytes[i & 3] = (i % igb->num_rx_rings) << shift;
2231		if ((i & 3) == 3) {
2232			E1000_WRITE_REG(hw,
2233			    (E1000_RETA(0) + (i & ~3)), reta.dword);
2234		}
2235	}
2236
2237	/* Fill out hash function seeds */
2238	for (i = 0; i < 10; i++) {
2239		(void) random_get_pseudo_bytes((uint8_t *)&random,
2240		    sizeof (uint32_t));
2241		E1000_WRITE_REG(hw, E1000_RSSRK(i), random);
2242	}
2243
2244	/* Setup the Multiple Receive Queue Control register */
2245	mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2246	mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2247	    E1000_MRQC_RSS_FIELD_IPV4_TCP |
2248	    E1000_MRQC_RSS_FIELD_IPV6 |
2249	    E1000_MRQC_RSS_FIELD_IPV6_TCP |
2250	    E1000_MRQC_RSS_FIELD_IPV4_UDP |
2251	    E1000_MRQC_RSS_FIELD_IPV6_UDP |
2252	    E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2253	    E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2254
2255	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2256
2257	/*
2258	 * Disable Packet Checksum to enable RSS for multiple receive queues.
2259	 *
2260	 * The Packet Checksum is not ethernet CRC. It is another kind of
2261	 * checksum offloading provided by the 82575 chipset besides the IP
2262	 * header checksum offloading and the TCP/UDP checksum offloading.
2263	 * The Packet Checksum is by default computed over the entire packet
2264	 * from the first byte of the DA through the last byte of the CRC,
2265	 * including the Ethernet and IP headers.
2266	 *
2267	 * It is a hardware limitation that Packet Checksum is mutually
2268	 * exclusive with RSS.
2269	 */
2270	rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2271	rxcsum |= E1000_RXCSUM_PCSD;
2272	E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2273}
2274
2275/*
2276 * igb_setup_mac_rss_classify - Setup MAC classification and rss
2277 */
2278static void
2279igb_setup_mac_rss_classify(igb_t *igb)
2280{
2281	struct e1000_hw *hw = &igb->hw;
2282	uint32_t i, mrqc, vmdctl, rxcsum;
2283	uint32_t ring_per_group;
2284	int shift_group0, shift_group1;
2285	uint32_t random;
2286	union e1000_reta {
2287		uint32_t	dword;
2288		uint8_t		bytes[4];
2289	} reta;
2290
2291	ring_per_group = igb->num_rx_rings / igb->num_rx_groups;
2292
2293	/* Setup the Redirection Table, it is shared between two groups */
2294	shift_group0 = 2;
2295	shift_group1 = 6;
2296	for (i = 0; i < (32 * 4); i++) {
2297		reta.bytes[i & 3] = ((i % ring_per_group) << shift_group0) |
2298		    ((ring_per_group + (i % ring_per_group)) << shift_group1);
2299		if ((i & 3) == 3) {
2300			E1000_WRITE_REG(hw,
2301			    (E1000_RETA(0) + (i & ~3)), reta.dword);
2302		}
2303	}
2304
2305	/* Fill out hash function seeds */
2306	for (i = 0; i < 10; i++) {
2307		(void) random_get_pseudo_bytes((uint8_t *)&random,
2308		    sizeof (uint32_t));
2309		E1000_WRITE_REG(hw, E1000_RSSRK(i), random);
2310	}
2311
2312	/*
2313	 * Setup the Multiple Receive Queue Control register,
2314	 * enable VMDq based on packet destination MAC address and RSS.
2315	 */
2316	mrqc = E1000_MRQC_ENABLE_VMDQ_MAC_RSS_GROUP;
2317	mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2318	    E1000_MRQC_RSS_FIELD_IPV4_TCP |
2319	    E1000_MRQC_RSS_FIELD_IPV6 |
2320	    E1000_MRQC_RSS_FIELD_IPV6_TCP |
2321	    E1000_MRQC_RSS_FIELD_IPV4_UDP |
2322	    E1000_MRQC_RSS_FIELD_IPV6_UDP |
2323	    E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2324	    E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2325
2326	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2327
2328
2329	/* Define the default group and default queues */
2330	vmdctl = E1000_VMDQ_MAC_GROUP_DEFAULT_QUEUE;
2331	E1000_WRITE_REG(hw, E1000_VT_CTL, vmdctl);
2332
2333	/*
2334	 * Disable Packet Checksum to enable RSS for multiple receive queues.
2335	 *
2336	 * The Packet Checksum is not ethernet CRC. It is another kind of
2337	 * checksum offloading provided by the 82575 chipset besides the IP
2338	 * header checksum offloading and the TCP/UDP checksum offloading.
2339	 * The Packet Checksum is by default computed over the entire packet
2340	 * from the first byte of the DA through the last byte of the CRC,
2341	 * including the Ethernet and IP headers.
2342	 *
2343	 * It is a hardware limitation that Packet Checksum is mutually
2344	 * exclusive with RSS.
2345	 */
2346	rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2347	rxcsum |= E1000_RXCSUM_PCSD;
2348	E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2349}
2350
2351/*
2352 * igb_setup_mac_classify - Setup MAC classification feature
2353 */
2354static void
2355igb_setup_mac_classify(igb_t *igb)
2356{
2357	struct e1000_hw *hw = &igb->hw;
2358	uint32_t mrqc, rxcsum;
2359
2360	/*
2361	 * Setup the Multiple Receive Queue Control register,
2362	 * enable VMDq based on packet destination MAC address.
2363	 */
2364	mrqc = E1000_MRQC_ENABLE_VMDQ_MAC_GROUP;
2365	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2366
2367	/*
2368	 * Disable Packet Checksum to enable RSS for multiple receive queues.
2369	 *
2370	 * The Packet Checksum is not ethernet CRC. It is another kind of
2371	 * checksum offloading provided by the 82575 chipset besides the IP
2372	 * header checksum offloading and the TCP/UDP checksum offloading.
2373	 * The Packet Checksum is by default computed over the entire packet
2374	 * from the first byte of the DA through the last byte of the CRC,
2375	 * including the Ethernet and IP headers.
2376	 *
2377	 * It is a hardware limitation that Packet Checksum is mutually
2378	 * exclusive with RSS.
2379	 */
2380	rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2381	rxcsum |= E1000_RXCSUM_PCSD;
2382	E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2383
2384}
2385
2386/*
2387 * igb_init_unicst - Initialize the unicast addresses
2388 */
2389static void
2390igb_init_unicst(igb_t *igb)
2391{
2392	struct e1000_hw *hw = &igb->hw;
2393	int slot;
2394
2395	/*
2396	 * Here we should consider two situations:
2397	 *
2398	 * 1. Chipset is initialized the first time
2399	 *    Initialize the multiple unicast addresses, and
2400	 *    save the default MAC address.
2401	 *
2402	 * 2. Chipset is reset
2403	 *    Recover the multiple unicast addresses from the
2404	 *    software data structure to the RAR registers.
2405	 */
2406
2407	/*
2408	 * Clear the default MAC address in the RAR0 rgister,
2409	 * which is loaded from EEPROM when system boot or chipreset,
2410	 * this will cause the conficts with add_mac/rem_mac entry
2411	 * points when VMDq is enabled. For this reason, the RAR0
2412	 * must be cleared for both cases mentioned above.
2413	 */
2414	e1000_rar_clear(hw, 0);
2415
2416	if (!igb->unicst_init) {
2417
2418		/* Initialize the multiple unicast addresses */
2419		igb->unicst_total = MAX_NUM_UNICAST_ADDRESSES;
2420		igb->unicst_avail = igb->unicst_total;
2421
2422		for (slot = 0; slot < igb->unicst_total; slot++)
2423			igb->unicst_addr[slot].mac.set = 0;
2424
2425		igb->unicst_init = B_TRUE;
2426	} else {
2427		/* Re-configure the RAR registers */
2428		for (slot = 0; slot < igb->unicst_total; slot++) {
2429			e1000_rar_set_vmdq(hw, igb->unicst_addr[slot].mac.addr,
2430			    slot, igb->vmdq_mode,
2431			    igb->unicst_addr[slot].mac.group_index);
2432		}
2433	}
2434}
2435
2436/*
2437 * igb_unicst_find - Find the slot for the specified unicast address
2438 */
2439int
2440igb_unicst_find(igb_t *igb, const uint8_t *mac_addr)
2441{
2442	int slot;
2443
2444	ASSERT(mutex_owned(&igb->gen_lock));
2445
2446	for (slot = 0; slot < igb->unicst_total; slot++) {
2447		if (bcmp(igb->unicst_addr[slot].mac.addr,
2448		    mac_addr, ETHERADDRL) == 0)
2449			return (slot);
2450	}
2451
2452	return (-1);
2453}
2454
2455/*
2456 * igb_unicst_set - Set the unicast address to the specified slot
2457 */
2458int
2459igb_unicst_set(igb_t *igb, const uint8_t *mac_addr,
2460    int slot)
2461{
2462	struct e1000_hw *hw = &igb->hw;
2463
2464	ASSERT(mutex_owned(&igb->gen_lock));
2465
2466	/*
2467	 * Save the unicast address in the software data structure
2468	 */
2469	bcopy(mac_addr, igb->unicst_addr[slot].mac.addr, ETHERADDRL);
2470
2471	/*
2472	 * Set the unicast address to the RAR register
2473	 */
2474	e1000_rar_set(hw, (uint8_t *)mac_addr, slot);
2475
2476	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
2477		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
2478		return (EIO);
2479	}
2480
2481	return (0);
2482}
2483
2484/*
2485 * igb_multicst_add - Add a multicst address
2486 */
2487int
2488igb_multicst_add(igb_t *igb, const uint8_t *multiaddr)
2489{
2490	struct ether_addr *new_table;
2491	size_t new_len;
2492	size_t old_len;
2493
2494	ASSERT(mutex_owned(&igb->gen_lock));
2495
2496	if ((multiaddr[0] & 01) == 0) {
2497		igb_error(igb, "Illegal multicast address");
2498		return (EINVAL);
2499	}
2500
2501	if (igb->mcast_count >= igb->mcast_max_num) {
2502		igb_error(igb, "Adapter requested more than %d mcast addresses",
2503		    igb->mcast_max_num);
2504		return (ENOENT);
2505	}
2506
2507	if (igb->mcast_count == igb->mcast_alloc_count) {
2508		old_len = igb->mcast_alloc_count *
2509		    sizeof (struct ether_addr);
2510		new_len = (igb->mcast_alloc_count + MCAST_ALLOC_COUNT) *
2511		    sizeof (struct ether_addr);
2512
2513		new_table = kmem_alloc(new_len, KM_NOSLEEP);
2514		if (new_table == NULL) {
2515			igb_error(igb,
2516			    "Not enough memory to alloc mcast table");
2517			return (ENOMEM);
2518		}
2519
2520		if (igb->mcast_table != NULL) {
2521			bcopy(igb->mcast_table, new_table, old_len);
2522			kmem_free(igb->mcast_table, old_len);
2523		}
2524		igb->mcast_alloc_count += MCAST_ALLOC_COUNT;
2525		igb->mcast_table = new_table;
2526	}
2527
2528	bcopy(multiaddr,
2529	    &igb->mcast_table[igb->mcast_count], ETHERADDRL);
2530	igb->mcast_count++;
2531
2532	/*
2533	 * Update the multicast table in the hardware
2534	 */
2535	igb_setup_multicst(igb);
2536
2537	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
2538		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
2539		return (EIO);
2540	}
2541
2542	return (0);
2543}
2544
2545/*
2546 * igb_multicst_remove - Remove a multicst address
2547 */
2548int
2549igb_multicst_remove(igb_t *igb, const uint8_t *multiaddr)
2550{
2551	struct ether_addr *new_table;
2552	size_t new_len;
2553	size_t old_len;
2554	int i;
2555
2556	ASSERT(mutex_owned(&igb->gen_lock));
2557
2558	for (i = 0; i < igb->mcast_count; i++) {
2559		if (bcmp(multiaddr, &igb->mcast_table[i],
2560		    ETHERADDRL) == 0) {
2561			for (i++; i < igb->mcast_count; i++) {
2562				igb->mcast_table[i - 1] =
2563				    igb->mcast_table[i];
2564			}
2565			igb->mcast_count--;
2566			break;
2567		}
2568	}
2569
2570	if ((igb->mcast_alloc_count - igb->mcast_count) >
2571	    MCAST_ALLOC_COUNT) {
2572		old_len = igb->mcast_alloc_count *
2573		    sizeof (struct ether_addr);
2574		new_len = (igb->mcast_alloc_count - MCAST_ALLOC_COUNT) *
2575		    sizeof (struct ether_addr);
2576
2577		new_table = kmem_alloc(new_len, KM_NOSLEEP);
2578		if (new_table != NULL) {
2579			bcopy(igb->mcast_table, new_table, new_len);
2580			kmem_free(igb->mcast_table, old_len);
2581			igb->mcast_alloc_count -= MCAST_ALLOC_COUNT;
2582			igb->mcast_table = new_table;
2583		}
2584	}
2585
2586	/*
2587	 * Update the multicast table in the hardware
2588	 */
2589	igb_setup_multicst(igb);
2590
2591	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
2592		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
2593		return (EIO);
2594	}
2595
2596	return (0);
2597}
2598
2599static void
2600igb_release_multicast(igb_t *igb)
2601{
2602	if (igb->mcast_table != NULL) {
2603		kmem_free(igb->mcast_table,
2604		    igb->mcast_alloc_count * sizeof (struct ether_addr));
2605		igb->mcast_table = NULL;
2606	}
2607}
2608
2609/*
2610 * igb_setup_multicast - setup multicast data structures
2611 *
2612 * This routine initializes all of the multicast related structures
2613 * and save them in the hardware registers.
2614 */
2615static void
2616igb_setup_multicst(igb_t *igb)
2617{
2618	uint8_t *mc_addr_list;
2619	uint32_t mc_addr_count;
2620	struct e1000_hw *hw = &igb->hw;
2621
2622	ASSERT(mutex_owned(&igb->gen_lock));
2623	ASSERT(igb->mcast_count <= igb->mcast_max_num);
2624
2625	mc_addr_list = (uint8_t *)igb->mcast_table;
2626	mc_addr_count = igb->mcast_count;
2627
2628	/*
2629	 * Update the multicase addresses to the MTA registers
2630	 */
2631	e1000_update_mc_addr_list(hw, mc_addr_list, mc_addr_count);
2632}
2633
2634/*
2635 * igb_get_conf - Get driver configurations set in driver.conf
2636 *
2637 * This routine gets user-configured values out of the configuration
2638 * file igb.conf.
2639 *
2640 * For each configurable value, there is a minimum, a maximum, and a
2641 * default.
2642 * If user does not configure a value, use the default.
2643 * If user configures below the minimum, use the minumum.
2644 * If user configures above the maximum, use the maxumum.
2645 */
2646static void
2647igb_get_conf(igb_t *igb)
2648{
2649	struct e1000_hw *hw = &igb->hw;
2650	uint32_t default_mtu;
2651	uint32_t flow_control;
2652	uint32_t ring_per_group;
2653	int i;
2654
2655	/*
2656	 * igb driver supports the following user configurations:
2657	 *
2658	 * Link configurations:
2659	 *    adv_autoneg_cap
2660	 *    adv_1000fdx_cap
2661	 *    adv_100fdx_cap
2662	 *    adv_100hdx_cap
2663	 *    adv_10fdx_cap
2664	 *    adv_10hdx_cap
2665	 * Note: 1000hdx is not supported.
2666	 *
2667	 * Jumbo frame configuration:
2668	 *    default_mtu
2669	 *
2670	 * Ethernet flow control configuration:
2671	 *    flow_control
2672	 *
2673	 * Multiple rings configurations:
2674	 *    tx_queue_number
2675	 *    tx_ring_size
2676	 *    rx_queue_number
2677	 *    rx_ring_size
2678	 *
2679	 * Call igb_get_prop() to get the value for a specific
2680	 * configuration parameter.
2681	 */
2682
2683	/*
2684	 * Link configurations
2685	 */
2686	igb->param_adv_autoneg_cap = igb_get_prop(igb,
2687	    PROP_ADV_AUTONEG_CAP, 0, 1, 1);
2688	igb->param_adv_1000fdx_cap = igb_get_prop(igb,
2689	    PROP_ADV_1000FDX_CAP, 0, 1, 1);
2690	igb->param_adv_100fdx_cap = igb_get_prop(igb,
2691	    PROP_ADV_100FDX_CAP, 0, 1, 1);
2692	igb->param_adv_100hdx_cap = igb_get_prop(igb,
2693	    PROP_ADV_100HDX_CAP, 0, 1, 1);
2694	igb->param_adv_10fdx_cap = igb_get_prop(igb,
2695	    PROP_ADV_10FDX_CAP, 0, 1, 1);
2696	igb->param_adv_10hdx_cap = igb_get_prop(igb,
2697	    PROP_ADV_10HDX_CAP, 0, 1, 1);
2698
2699	/*
2700	 * Jumbo frame configurations
2701	 */
2702	default_mtu = igb_get_prop(igb, PROP_DEFAULT_MTU,
2703	    MIN_MTU, MAX_MTU, DEFAULT_MTU);
2704
2705	igb->max_frame_size = default_mtu +
2706	    sizeof (struct ether_vlan_header) + ETHERFCSL;
2707
2708	/*
2709	 * Ethernet flow control configuration
2710	 */
2711	flow_control = igb_get_prop(igb, PROP_FLOW_CONTROL,
2712	    e1000_fc_none, 4, e1000_fc_full);
2713	if (flow_control == 4)
2714		flow_control = e1000_fc_default;
2715
2716	hw->fc.requested_mode = flow_control;
2717
2718	/*
2719	 * Multiple rings configurations
2720	 */
2721	igb->tx_ring_size = igb_get_prop(igb, PROP_TX_RING_SIZE,
2722	    MIN_TX_RING_SIZE, MAX_TX_RING_SIZE, DEFAULT_TX_RING_SIZE);
2723	igb->rx_ring_size = igb_get_prop(igb, PROP_RX_RING_SIZE,
2724	    MIN_RX_RING_SIZE, MAX_RX_RING_SIZE, DEFAULT_RX_RING_SIZE);
2725
2726	igb->mr_enable = igb_get_prop(igb, PROP_MR_ENABLE, 0, 1, 0);
2727	igb->num_rx_groups = igb_get_prop(igb, PROP_RX_GROUP_NUM,
2728	    MIN_RX_GROUP_NUM, MAX_RX_GROUP_NUM, DEFAULT_RX_GROUP_NUM);
2729	/*
2730	 * Currently we do not support VMDq for 82576 and 82580.
2731	 * If it is e1000_82576, set num_rx_groups to 1.
2732	 */
2733	if (hw->mac.type >= e1000_82576)
2734		igb->num_rx_groups = 1;
2735
2736	if (igb->mr_enable) {
2737		igb->num_tx_rings = igb->capab->def_tx_que_num;
2738		igb->num_rx_rings = igb->capab->def_rx_que_num;
2739	} else {
2740		igb->num_tx_rings = 1;
2741		igb->num_rx_rings = 1;
2742
2743		if (igb->num_rx_groups > 1) {
2744			igb_error(igb,
2745			    "Invalid rx groups number. Please enable multiple "
2746			    "rings first");
2747			igb->num_rx_groups = 1;
2748		}
2749	}
2750
2751	/*
2752	 * Check the divisibility between rx rings and rx groups.
2753	 */
2754	for (i = igb->num_rx_groups; i > 0; i--) {
2755		if ((igb->num_rx_rings % i) == 0)
2756			break;
2757	}
2758	if (i != igb->num_rx_groups) {
2759		igb_error(igb,
2760		    "Invalid rx groups number. Downgrade the rx group "
2761		    "number to %d.", i);
2762		igb->num_rx_groups = i;
2763	}
2764
2765	/*
2766	 * Get the ring number per group.
2767	 */
2768	ring_per_group = igb->num_rx_rings / igb->num_rx_groups;
2769
2770	if (igb->num_rx_groups == 1) {
2771		/*
2772		 * One rx ring group, the rx ring number is num_rx_rings.
2773		 */
2774		igb->vmdq_mode = E1000_VMDQ_OFF;
2775	} else if (ring_per_group == 1) {
2776		/*
2777		 * Multiple rx groups, each group has one rx ring.
2778		 */
2779		igb->vmdq_mode = E1000_VMDQ_MAC;
2780	} else {
2781		/*
2782		 * Multiple groups and multiple rings.
2783		 */
2784		igb->vmdq_mode = E1000_VMDQ_MAC_RSS;
2785	}
2786
2787	/*
2788	 * Tunable used to force an interrupt type. The only use is
2789	 * for testing of the lesser interrupt types.
2790	 * 0 = don't force interrupt type
2791	 * 1 = force interrupt type MSIX
2792	 * 2 = force interrupt type MSI
2793	 * 3 = force interrupt type Legacy
2794	 */
2795	igb->intr_force = igb_get_prop(igb, PROP_INTR_FORCE,
2796	    IGB_INTR_NONE, IGB_INTR_LEGACY, IGB_INTR_NONE);
2797
2798	igb->tx_hcksum_enable = igb_get_prop(igb, PROP_TX_HCKSUM_ENABLE,
2799	    0, 1, 1);
2800	igb->rx_hcksum_enable = igb_get_prop(igb, PROP_RX_HCKSUM_ENABLE,
2801	    0, 1, 1);
2802	igb->lso_enable = igb_get_prop(igb, PROP_LSO_ENABLE,
2803	    0, 1, 1);
2804	igb->tx_head_wb_enable = igb_get_prop(igb, PROP_TX_HEAD_WB_ENABLE,
2805	    0, 1, 1);
2806
2807	/*
2808	 * igb LSO needs the tx h/w checksum support.
2809	 * Here LSO will be disabled if tx h/w checksum has been disabled.
2810	 */
2811	if (igb->tx_hcksum_enable == B_FALSE)
2812		igb->lso_enable = B_FALSE;
2813
2814	igb->tx_copy_thresh = igb_get_prop(igb, PROP_TX_COPY_THRESHOLD,
2815	    MIN_TX_COPY_THRESHOLD, MAX_TX_COPY_THRESHOLD,
2816	    DEFAULT_TX_COPY_THRESHOLD);
2817	igb->tx_recycle_thresh = igb_get_prop(igb, PROP_TX_RECYCLE_THRESHOLD,
2818	    MIN_TX_RECYCLE_THRESHOLD, MAX_TX_RECYCLE_THRESHOLD,
2819	    DEFAULT_TX_RECYCLE_THRESHOLD);
2820	igb->tx_overload_thresh = igb_get_prop(igb, PROP_TX_OVERLOAD_THRESHOLD,
2821	    MIN_TX_OVERLOAD_THRESHOLD, MAX_TX_OVERLOAD_THRESHOLD,
2822	    DEFAULT_TX_OVERLOAD_THRESHOLD);
2823	igb->tx_resched_thresh = igb_get_prop(igb, PROP_TX_RESCHED_THRESHOLD,
2824	    MIN_TX_RESCHED_THRESHOLD, MAX_TX_RESCHED_THRESHOLD,
2825	    DEFAULT_TX_RESCHED_THRESHOLD);
2826
2827	igb->rx_copy_thresh = igb_get_prop(igb, PROP_RX_COPY_THRESHOLD,
2828	    MIN_RX_COPY_THRESHOLD, MAX_RX_COPY_THRESHOLD,
2829	    DEFAULT_RX_COPY_THRESHOLD);
2830	igb->rx_limit_per_intr = igb_get_prop(igb, PROP_RX_LIMIT_PER_INTR,
2831	    MIN_RX_LIMIT_PER_INTR, MAX_RX_LIMIT_PER_INTR,
2832	    DEFAULT_RX_LIMIT_PER_INTR);
2833
2834	igb->intr_throttling[0] = igb_get_prop(igb, PROP_INTR_THROTTLING,
2835	    igb->capab->min_intr_throttle,
2836	    igb->capab->max_intr_throttle,
2837	    igb->capab->def_intr_throttle);
2838
2839	/*
2840	 * Max number of multicast addresses
2841	 */
2842	igb->mcast_max_num =
2843	    igb_get_prop(igb, PROP_MCAST_MAX_NUM,
2844	    MIN_MCAST_NUM, MAX_MCAST_NUM, DEFAULT_MCAST_NUM);
2845}
2846
2847/*
2848 * igb_get_prop - Get a property value out of the configuration file igb.conf
2849 *
2850 * Caller provides the name of the property, a default value, a minimum
2851 * value, and a maximum value.
2852 *
2853 * Return configured value of the property, with default, minimum and
2854 * maximum properly applied.
2855 */
2856static int
2857igb_get_prop(igb_t *igb,
2858    char *propname,	/* name of the property */
2859    int minval,		/* minimum acceptable value */
2860    int maxval,		/* maximim acceptable value */
2861    int defval)		/* default value */
2862{
2863	int value;
2864
2865	/*
2866	 * Call ddi_prop_get_int() to read the conf settings
2867	 */
2868	value = ddi_prop_get_int(DDI_DEV_T_ANY, igb->dip,
2869	    DDI_PROP_DONTPASS, propname, defval);
2870
2871	if (value > maxval)
2872		value = maxval;
2873
2874	if (value < minval)
2875		value = minval;
2876
2877	return (value);
2878}
2879
2880/*
2881 * igb_setup_link - Using the link properties to setup the link
2882 */
2883int
2884igb_setup_link(igb_t *igb, boolean_t setup_hw)
2885{
2886	struct e1000_mac_info *mac;
2887	struct e1000_phy_info *phy;
2888	boolean_t invalid;
2889
2890	mac = &igb->hw.mac;
2891	phy = &igb->hw.phy;
2892	invalid = B_FALSE;
2893
2894	if (igb->param_adv_autoneg_cap == 1) {
2895		mac->autoneg = B_TRUE;
2896		phy->autoneg_advertised = 0;
2897
2898		/*
2899		 * 1000hdx is not supported for autonegotiation
2900		 */
2901		if (igb->param_adv_1000fdx_cap == 1)
2902			phy->autoneg_advertised |= ADVERTISE_1000_FULL;
2903
2904		if (igb->param_adv_100fdx_cap == 1)
2905			phy->autoneg_advertised |= ADVERTISE_100_FULL;
2906
2907		if (igb->param_adv_100hdx_cap == 1)
2908			phy->autoneg_advertised |= ADVERTISE_100_HALF;
2909
2910		if (igb->param_adv_10fdx_cap == 1)
2911			phy->autoneg_advertised |= ADVERTISE_10_FULL;
2912
2913		if (igb->param_adv_10hdx_cap == 1)
2914			phy->autoneg_advertised |= ADVERTISE_10_HALF;
2915
2916		if (phy->autoneg_advertised == 0)
2917			invalid = B_TRUE;
2918	} else {
2919		mac->autoneg = B_FALSE;
2920
2921		/*
2922		 * 1000fdx and 1000hdx are not supported for forced link
2923		 */
2924		if (igb->param_adv_100fdx_cap == 1)
2925			mac->forced_speed_duplex = ADVERTISE_100_FULL;
2926		else if (igb->param_adv_100hdx_cap == 1)
2927			mac->forced_speed_duplex = ADVERTISE_100_HALF;
2928		else if (igb->param_adv_10fdx_cap == 1)
2929			mac->forced_speed_duplex = ADVERTISE_10_FULL;
2930		else if (igb->param_adv_10hdx_cap == 1)
2931			mac->forced_speed_duplex = ADVERTISE_10_HALF;
2932		else
2933			invalid = B_TRUE;
2934	}
2935
2936	if (invalid) {
2937		igb_notice(igb, "Invalid link settings. Setup link to "
2938		    "autonegotiation with full link capabilities.");
2939		mac->autoneg = B_TRUE;
2940		phy->autoneg_advertised = ADVERTISE_1000_FULL |
2941		    ADVERTISE_100_FULL | ADVERTISE_100_HALF |
2942		    ADVERTISE_10_FULL | ADVERTISE_10_HALF;
2943	}
2944
2945	if (setup_hw) {
2946		if (e1000_setup_link(&igb->hw) != E1000_SUCCESS)
2947			return (IGB_FAILURE);
2948	}
2949
2950	return (IGB_SUCCESS);
2951}
2952
2953
2954/*
2955 * igb_is_link_up - Check if the link is up
2956 */
2957static boolean_t
2958igb_is_link_up(igb_t *igb)
2959{
2960	struct e1000_hw *hw = &igb->hw;
2961	boolean_t link_up = B_FALSE;
2962
2963	ASSERT(mutex_owned(&igb->gen_lock));
2964
2965	/*
2966	 * get_link_status is set in the interrupt handler on link-status-change
2967	 * or rx sequence error interrupt.  get_link_status will stay
2968	 * false until the e1000_check_for_link establishes link only
2969	 * for copper adapters.
2970	 */
2971	switch (hw->phy.media_type) {
2972	case e1000_media_type_copper:
2973		if (hw->mac.get_link_status) {
2974			(void) e1000_check_for_link(hw);
2975			link_up = !hw->mac.get_link_status;
2976		} else {
2977			link_up = B_TRUE;
2978		}
2979		break;
2980	case e1000_media_type_fiber:
2981		(void) e1000_check_for_link(hw);
2982		link_up = (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU);
2983		break;
2984	case e1000_media_type_internal_serdes:
2985		(void) e1000_check_for_link(hw);
2986		link_up = hw->mac.serdes_has_link;
2987		break;
2988	}
2989
2990	return (link_up);
2991}
2992
2993/*
2994 * igb_link_check - Link status processing
2995 */
2996static boolean_t
2997igb_link_check(igb_t *igb)
2998{
2999	struct e1000_hw *hw = &igb->hw;
3000	uint16_t speed = 0, duplex = 0;
3001	boolean_t link_changed = B_FALSE;
3002
3003	ASSERT(mutex_owned(&igb->gen_lock));
3004
3005	if (igb_is_link_up(igb)) {
3006		/*
3007		 * The Link is up, check whether it was marked as down earlier
3008		 */
3009		if (igb->link_state != LINK_STATE_UP) {
3010			(void) e1000_get_speed_and_duplex(hw, &speed, &duplex);
3011			igb->link_speed = speed;
3012			igb->link_duplex = duplex;
3013			igb->link_state = LINK_STATE_UP;
3014			igb->link_down_timeout = 0;
3015			link_changed = B_TRUE;
3016			if (!igb->link_complete)
3017				igb_stop_link_timer(igb);
3018		}
3019	} else if (igb->link_complete) {
3020		if (igb->link_state != LINK_STATE_DOWN) {
3021			igb->link_speed = 0;
3022			igb->link_duplex = 0;
3023			igb->link_state = LINK_STATE_DOWN;
3024			link_changed = B_TRUE;
3025		}
3026
3027		if (igb->igb_state & IGB_STARTED) {
3028			if (igb->link_down_timeout < MAX_LINK_DOWN_TIMEOUT) {
3029				igb->link_down_timeout++;
3030			} else if (igb->link_down_timeout ==
3031			    MAX_LINK_DOWN_TIMEOUT) {
3032				igb_tx_clean(igb);
3033				igb->link_down_timeout++;
3034			}
3035		}
3036	}
3037
3038	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
3039		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
3040		return (B_FALSE);
3041	}
3042
3043	return (link_changed);
3044}
3045
3046/*
3047 * igb_local_timer - driver watchdog function
3048 *
3049 * This function will handle the hardware stall check, link status
3050 * check and other routines.
3051 */
3052static void
3053igb_local_timer(void *arg)
3054{
3055	igb_t *igb = (igb_t *)arg;
3056	boolean_t link_changed = B_FALSE;
3057
3058	if (igb->igb_state & IGB_ERROR) {
3059		igb->reset_count++;
3060		if (igb_reset(igb) == IGB_SUCCESS)
3061			ddi_fm_service_impact(igb->dip, DDI_SERVICE_RESTORED);
3062
3063		igb_restart_watchdog_timer(igb);
3064		return;
3065	}
3066
3067	if (igb_stall_check(igb) || (igb->igb_state & IGB_STALL)) {
3068		igb_fm_ereport(igb, DDI_FM_DEVICE_STALL);
3069		ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
3070		igb->reset_count++;
3071		if (igb_reset(igb) == IGB_SUCCESS)
3072			ddi_fm_service_impact(igb->dip, DDI_SERVICE_RESTORED);
3073
3074		igb_restart_watchdog_timer(igb);
3075		return;
3076	}
3077
3078	mutex_enter(&igb->gen_lock);
3079	if (!(igb->igb_state & IGB_SUSPENDED) && (igb->igb_state & IGB_STARTED))
3080		link_changed = igb_link_check(igb);
3081	mutex_exit(&igb->gen_lock);
3082
3083	if (link_changed)
3084		mac_link_update(igb->mac_hdl, igb->link_state);
3085
3086	igb_restart_watchdog_timer(igb);
3087}
3088
3089/*
3090 * igb_link_timer - link setup timer function
3091 *
3092 * It is called when the timer for link setup is expired, which indicates
3093 * the completion of the link setup. The link state will not be updated
3094 * until the link setup is completed. And the link state will not be sent
3095 * to the upper layer through mac_link_update() in this function. It will
3096 * be updated in the local timer routine or the interrupts service routine
3097 * after the interface is started (plumbed).
3098 */
3099static void
3100igb_link_timer(void *arg)
3101{
3102	igb_t *igb = (igb_t *)arg;
3103
3104	mutex_enter(&igb->link_lock);
3105	igb->link_complete = B_TRUE;
3106	igb->link_tid = 0;
3107	mutex_exit(&igb->link_lock);
3108}
3109/*
3110 * igb_stall_check - check for transmit stall
3111 *
3112 * This function checks if the adapter is stalled (in transmit).
3113 *
3114 * It is called each time the watchdog timeout is invoked.
3115 * If the transmit descriptor reclaim continuously fails,
3116 * the watchdog value will increment by 1. If the watchdog
3117 * value exceeds the threshold, the igb is assumed to
3118 * have stalled and need to be reset.
3119 */
3120static boolean_t
3121igb_stall_check(igb_t *igb)
3122{
3123	igb_tx_ring_t *tx_ring;
3124	struct e1000_hw *hw = &igb->hw;
3125	boolean_t result;
3126	int i;
3127
3128	if (igb->link_state != LINK_STATE_UP)
3129		return (B_FALSE);
3130
3131	/*
3132	 * If any tx ring is stalled, we'll reset the chipset
3133	 */
3134	result = B_FALSE;
3135	for (i = 0; i < igb->num_tx_rings; i++) {
3136		tx_ring = &igb->tx_rings[i];
3137
3138		if (tx_ring->recycle_fail > 0)
3139			tx_ring->stall_watchdog++;
3140		else
3141			tx_ring->stall_watchdog = 0;
3142
3143		if (tx_ring->stall_watchdog >= STALL_WATCHDOG_TIMEOUT) {
3144			result = B_TRUE;
3145			if (hw->mac.type == e1000_82580) {
3146				hw->dev_spec._82575.global_device_reset
3147				    = B_TRUE;
3148			}
3149			break;
3150		}
3151	}
3152
3153	if (result) {
3154		tx_ring->stall_watchdog = 0;
3155		tx_ring->recycle_fail = 0;
3156	}
3157
3158	return (result);
3159}
3160
3161
3162/*
3163 * is_valid_mac_addr - Check if the mac address is valid
3164 */
3165static boolean_t
3166is_valid_mac_addr(uint8_t *mac_addr)
3167{
3168	const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 };
3169	const uint8_t addr_test2[6] =
3170	    { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3171
3172	if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) ||
3173	    !(bcmp(addr_test2, mac_addr, ETHERADDRL)))
3174		return (B_FALSE);
3175
3176	return (B_TRUE);
3177}
3178
3179static boolean_t
3180igb_find_mac_address(igb_t *igb)
3181{
3182	struct e1000_hw *hw = &igb->hw;
3183#ifdef __sparc
3184	uchar_t *bytes;
3185	struct ether_addr sysaddr;
3186	uint_t nelts;
3187	int err;
3188	boolean_t found = B_FALSE;
3189
3190	/*
3191	 * The "vendor's factory-set address" may already have
3192	 * been extracted from the chip, but if the property
3193	 * "local-mac-address" is set we use that instead.
3194	 *
3195	 * We check whether it looks like an array of 6
3196	 * bytes (which it should, if OBP set it).  If we can't
3197	 * make sense of it this way, we'll ignore it.
3198	 */
3199	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip,
3200	    DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts);
3201	if (err == DDI_PROP_SUCCESS) {
3202		if (nelts == ETHERADDRL) {
3203			while (nelts--)
3204				hw->mac.addr[nelts] = bytes[nelts];
3205			found = B_TRUE;
3206		}
3207		ddi_prop_free(bytes);
3208	}
3209
3210	/*
3211	 * Look up the OBP property "local-mac-address?". If the user has set
3212	 * 'local-mac-address? = false', use "the system address" instead.
3213	 */
3214	if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip, 0,
3215	    "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) {
3216		if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) {
3217			if (localetheraddr(NULL, &sysaddr) != 0) {
3218				bcopy(&sysaddr, hw->mac.addr, ETHERADDRL);
3219				found = B_TRUE;
3220			}
3221		}
3222		ddi_prop_free(bytes);
3223	}
3224
3225	/*
3226	 * Finally(!), if there's a valid "mac-address" property (created
3227	 * if we netbooted from this interface), we must use this instead
3228	 * of any of the above to ensure that the NFS/install server doesn't
3229	 * get confused by the address changing as Solaris takes over!
3230	 */
3231	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip,
3232	    DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts);
3233	if (err == DDI_PROP_SUCCESS) {
3234		if (nelts == ETHERADDRL) {
3235			while (nelts--)
3236				hw->mac.addr[nelts] = bytes[nelts];
3237			found = B_TRUE;
3238		}
3239		ddi_prop_free(bytes);
3240	}
3241
3242	if (found) {
3243		bcopy(hw->mac.addr, hw->mac.perm_addr, ETHERADDRL);
3244		return (B_TRUE);
3245	}
3246#endif
3247
3248	/*
3249	 * Read the device MAC address from the EEPROM
3250	 */
3251	if (e1000_read_mac_addr(hw) != E1000_SUCCESS)
3252		return (B_FALSE);
3253
3254	return (B_TRUE);
3255}
3256
3257#pragma inline(igb_arm_watchdog_timer)
3258
3259static void
3260igb_arm_watchdog_timer(igb_t *igb)
3261{
3262	/*
3263	 * Fire a watchdog timer
3264	 */
3265	igb->watchdog_tid =
3266	    timeout(igb_local_timer,
3267	    (void *)igb, 1 * drv_usectohz(1000000));
3268
3269}
3270
3271/*
3272 * igb_enable_watchdog_timer - Enable and start the driver watchdog timer
3273 */
3274void
3275igb_enable_watchdog_timer(igb_t *igb)
3276{
3277	mutex_enter(&igb->watchdog_lock);
3278
3279	if (!igb->watchdog_enable) {
3280		igb->watchdog_enable = B_TRUE;
3281		igb->watchdog_start = B_TRUE;
3282		igb_arm_watchdog_timer(igb);
3283	}
3284
3285	mutex_exit(&igb->watchdog_lock);
3286
3287}
3288
3289/*
3290 * igb_disable_watchdog_timer - Disable and stop the driver watchdog timer
3291 */
3292void
3293igb_disable_watchdog_timer(igb_t *igb)
3294{
3295	timeout_id_t tid;
3296
3297	mutex_enter(&igb->watchdog_lock);
3298
3299	igb->watchdog_enable = B_FALSE;
3300	igb->watchdog_start = B_FALSE;
3301	tid = igb->watchdog_tid;
3302	igb->watchdog_tid = 0;
3303
3304	mutex_exit(&igb->watchdog_lock);
3305
3306	if (tid != 0)
3307		(void) untimeout(tid);
3308
3309}
3310
3311/*
3312 * igb_start_watchdog_timer - Start the driver watchdog timer
3313 */
3314static void
3315igb_start_watchdog_timer(igb_t *igb)
3316{
3317	mutex_enter(&igb->watchdog_lock);
3318
3319	if (igb->watchdog_enable) {
3320		if (!igb->watchdog_start) {
3321			igb->watchdog_start = B_TRUE;
3322			igb_arm_watchdog_timer(igb);
3323		}
3324	}
3325
3326	mutex_exit(&igb->watchdog_lock);
3327}
3328
3329/*
3330 * igb_restart_watchdog_timer - Restart the driver watchdog timer
3331 */
3332static void
3333igb_restart_watchdog_timer(igb_t *igb)
3334{
3335	mutex_enter(&igb->watchdog_lock);
3336
3337	if (igb->watchdog_start)
3338		igb_arm_watchdog_timer(igb);
3339
3340	mutex_exit(&igb->watchdog_lock);
3341}
3342
3343/*
3344 * igb_stop_watchdog_timer - Stop the driver watchdog timer
3345 */
3346static void
3347igb_stop_watchdog_timer(igb_t *igb)
3348{
3349	timeout_id_t tid;
3350
3351	mutex_enter(&igb->watchdog_lock);
3352
3353	igb->watchdog_start = B_FALSE;
3354	tid = igb->watchdog_tid;
3355	igb->watchdog_tid = 0;
3356
3357	mutex_exit(&igb->watchdog_lock);
3358
3359	if (tid != 0)
3360		(void) untimeout(tid);
3361}
3362
3363/*
3364 * igb_start_link_timer - Start the link setup timer
3365 */
3366static void
3367igb_start_link_timer(struct igb *igb)
3368{
3369	struct e1000_hw *hw = &igb->hw;
3370	clock_t link_timeout;
3371
3372	if (hw->mac.autoneg)
3373		link_timeout = PHY_AUTO_NEG_LIMIT *
3374		    drv_usectohz(100000);
3375	else
3376		link_timeout = PHY_FORCE_LIMIT * drv_usectohz(100000);
3377
3378	mutex_enter(&igb->link_lock);
3379	if (hw->phy.autoneg_wait_to_complete) {
3380		igb->link_complete = B_TRUE;
3381	} else {
3382		igb->link_complete = B_FALSE;
3383		igb->link_tid = timeout(igb_link_timer, (void *)igb,
3384		    link_timeout);
3385	}
3386	mutex_exit(&igb->link_lock);
3387}
3388
3389/*
3390 * igb_stop_link_timer - Stop the link setup timer
3391 */
3392static void
3393igb_stop_link_timer(struct igb *igb)
3394{
3395	timeout_id_t tid;
3396
3397	mutex_enter(&igb->link_lock);
3398	igb->link_complete = B_TRUE;
3399	tid = igb->link_tid;
3400	igb->link_tid = 0;
3401	mutex_exit(&igb->link_lock);
3402
3403	if (tid != 0)
3404		(void) untimeout(tid);
3405}
3406
3407/*
3408 * igb_disable_adapter_interrupts - Clear/disable all hardware interrupts
3409 */
3410static void
3411igb_disable_adapter_interrupts(igb_t *igb)
3412{
3413	struct e1000_hw *hw = &igb->hw;
3414
3415	/*
3416	 * Set the IMC register to mask all the interrupts,
3417	 * including the tx interrupts.
3418	 */
3419	E1000_WRITE_REG(hw, E1000_IMC, ~0);
3420	E1000_WRITE_REG(hw, E1000_IAM, 0);
3421
3422	/*
3423	 * Additional disabling for MSI-X
3424	 */
3425	if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3426		E1000_WRITE_REG(hw, E1000_EIMC, ~0);
3427		E1000_WRITE_REG(hw, E1000_EIAC, 0);
3428		E1000_WRITE_REG(hw, E1000_EIAM, 0);
3429	}
3430
3431	E1000_WRITE_FLUSH(hw);
3432}
3433
3434/*
3435 * igb_enable_adapter_interrupts_82580 - Enable NIC interrupts for 82580
3436 */
3437static void
3438igb_enable_adapter_interrupts_82580(igb_t *igb)
3439{
3440	struct e1000_hw *hw = &igb->hw;
3441
3442	/* Clear any pending interrupts */
3443	(void) E1000_READ_REG(hw, E1000_ICR);
3444	igb->ims_mask |= E1000_IMS_DRSTA;
3445
3446	if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3447
3448		/* Interrupt enabling for MSI-X */
3449		E1000_WRITE_REG(hw, E1000_EIMS, igb->eims_mask);
3450		E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask);
3451		igb->ims_mask = (E1000_IMS_LSC | E1000_IMS_DRSTA);
3452		E1000_WRITE_REG(hw, E1000_IMS, igb->ims_mask);
3453	} else { /* Interrupt enabling for MSI and legacy */
3454		E1000_WRITE_REG(hw, E1000_IVAR0, E1000_IVAR_VALID);
3455		igb->ims_mask = IMS_ENABLE_MASK | E1000_IMS_TXQE;
3456		igb->ims_mask |= E1000_IMS_DRSTA;
3457		E1000_WRITE_REG(hw, E1000_IMS, igb->ims_mask);
3458	}
3459
3460	/* Disable auto-mask for ICR interrupt bits */
3461	E1000_WRITE_REG(hw, E1000_IAM, 0);
3462
3463	E1000_WRITE_FLUSH(hw);
3464}
3465
3466/*
3467 * igb_enable_adapter_interrupts_82576 - Enable NIC interrupts for 82576
3468 */
3469static void
3470igb_enable_adapter_interrupts_82576(igb_t *igb)
3471{
3472	struct e1000_hw *hw = &igb->hw;
3473
3474	/* Clear any pending interrupts */
3475	(void) E1000_READ_REG(hw, E1000_ICR);
3476
3477	if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3478
3479		/* Interrupt enabling for MSI-X */
3480		E1000_WRITE_REG(hw, E1000_EIMS, igb->eims_mask);
3481		E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask);
3482		igb->ims_mask = E1000_IMS_LSC;
3483		E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
3484	} else {
3485		/* Interrupt enabling for MSI and legacy */
3486		E1000_WRITE_REG(hw, E1000_IVAR0, E1000_IVAR_VALID);
3487		igb->ims_mask = IMS_ENABLE_MASK | E1000_IMS_TXQE;
3488		E1000_WRITE_REG(hw, E1000_IMS,
3489		    (IMS_ENABLE_MASK | E1000_IMS_TXQE));
3490	}
3491
3492	/* Disable auto-mask for ICR interrupt bits */
3493	E1000_WRITE_REG(hw, E1000_IAM, 0);
3494
3495	E1000_WRITE_FLUSH(hw);
3496}
3497
3498/*
3499 * igb_enable_adapter_interrupts_82575 - Enable NIC interrupts for 82575
3500 */
3501static void
3502igb_enable_adapter_interrupts_82575(igb_t *igb)
3503{
3504	struct e1000_hw *hw = &igb->hw;
3505	uint32_t reg;
3506
3507	/* Clear any pending interrupts */
3508	(void) E1000_READ_REG(hw, E1000_ICR);
3509
3510	if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3511		/* Interrupt enabling for MSI-X */
3512		E1000_WRITE_REG(hw, E1000_EIMS, igb->eims_mask);
3513		E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask);
3514		igb->ims_mask = E1000_IMS_LSC;
3515		E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
3516
3517		/* Enable MSI-X PBA support */
3518		reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
3519		reg |= E1000_CTRL_EXT_PBA_CLR;
3520
3521		/* Non-selective interrupt clear-on-read */
3522		reg |= E1000_CTRL_EXT_IRCA;	/* Called NSICR in the EAS */
3523
3524		E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
3525	} else {
3526		/* Interrupt enabling for MSI and legacy */
3527		igb->ims_mask = IMS_ENABLE_MASK;
3528		E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
3529	}
3530
3531	E1000_WRITE_FLUSH(hw);
3532}
3533
3534/*
3535 * Loopback Support
3536 */
3537static lb_property_t lb_normal =
3538	{ normal,	"normal",	IGB_LB_NONE		};
3539static lb_property_t lb_external =
3540	{ external,	"External",	IGB_LB_EXTERNAL		};
3541static lb_property_t lb_phy =
3542	{ internal,	"PHY",		IGB_LB_INTERNAL_PHY	};
3543static lb_property_t lb_serdes =
3544	{ internal,	"SerDes",	IGB_LB_INTERNAL_SERDES	};
3545
3546enum ioc_reply
3547igb_loopback_ioctl(igb_t *igb, struct iocblk *iocp, mblk_t *mp)
3548{
3549	lb_info_sz_t *lbsp;
3550	lb_property_t *lbpp;
3551	struct e1000_hw *hw;
3552	uint32_t *lbmp;
3553	uint32_t size;
3554	uint32_t value;
3555
3556	hw = &igb->hw;
3557
3558	if (mp->b_cont == NULL)
3559		return (IOC_INVAL);
3560
3561	switch (iocp->ioc_cmd) {
3562	default:
3563		return (IOC_INVAL);
3564
3565	case LB_GET_INFO_SIZE:
3566		size = sizeof (lb_info_sz_t);
3567		if (iocp->ioc_count != size)
3568			return (IOC_INVAL);
3569
3570		value = sizeof (lb_normal);
3571		if (hw->phy.media_type == e1000_media_type_copper)
3572			value += sizeof (lb_phy);
3573		else
3574			value += sizeof (lb_serdes);
3575		value += sizeof (lb_external);
3576
3577		lbsp = (lb_info_sz_t *)(uintptr_t)mp->b_cont->b_rptr;
3578		*lbsp = value;
3579		break;
3580
3581	case LB_GET_INFO:
3582		value = sizeof (lb_normal);
3583		if (hw->phy.media_type == e1000_media_type_copper)
3584			value += sizeof (lb_phy);
3585		else
3586			value += sizeof (lb_serdes);
3587		value += sizeof (lb_external);
3588
3589		size = value;
3590		if (iocp->ioc_count != size)
3591			return (IOC_INVAL);
3592
3593		value = 0;
3594		lbpp = (lb_property_t *)(uintptr_t)mp->b_cont->b_rptr;
3595
3596		lbpp[value++] = lb_normal;
3597		if (hw->phy.media_type == e1000_media_type_copper)
3598			lbpp[value++] = lb_phy;
3599		else
3600			lbpp[value++] = lb_serdes;
3601		lbpp[value++] = lb_external;
3602		break;
3603
3604	case LB_GET_MODE:
3605		size = sizeof (uint32_t);
3606		if (iocp->ioc_count != size)
3607			return (IOC_INVAL);
3608
3609		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
3610		*lbmp = igb->loopback_mode;
3611		break;
3612
3613	case LB_SET_MODE:
3614		size = 0;
3615		if (iocp->ioc_count != sizeof (uint32_t))
3616			return (IOC_INVAL);
3617
3618		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
3619		if (!igb_set_loopback_mode(igb, *lbmp))
3620			return (IOC_INVAL);
3621		break;
3622	}
3623
3624	iocp->ioc_count = size;
3625	iocp->ioc_error = 0;
3626
3627	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
3628		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
3629		return (IOC_INVAL);
3630	}
3631
3632	return (IOC_REPLY);
3633}
3634
3635/*
3636 * igb_set_loopback_mode - Setup loopback based on the loopback mode
3637 */
3638static boolean_t
3639igb_set_loopback_mode(igb_t *igb, uint32_t mode)
3640{
3641	struct e1000_hw *hw;
3642	int i;
3643
3644	if (mode == igb->loopback_mode)
3645		return (B_TRUE);
3646
3647	hw = &igb->hw;
3648
3649	igb->loopback_mode = mode;
3650
3651	if (mode == IGB_LB_NONE) {
3652		/* Reset the chip */
3653		hw->phy.autoneg_wait_to_complete = B_TRUE;
3654		(void) igb_reset(igb);
3655		hw->phy.autoneg_wait_to_complete = B_FALSE;
3656		return (B_TRUE);
3657	}
3658
3659	mutex_enter(&igb->gen_lock);
3660
3661	switch (mode) {
3662	default:
3663		mutex_exit(&igb->gen_lock);
3664		return (B_FALSE);
3665
3666	case IGB_LB_EXTERNAL:
3667		igb_set_external_loopback(igb);
3668		break;
3669
3670	case IGB_LB_INTERNAL_PHY:
3671		igb_set_internal_phy_loopback(igb);
3672		break;
3673
3674	case IGB_LB_INTERNAL_SERDES:
3675		igb_set_internal_serdes_loopback(igb);
3676		break;
3677	}
3678
3679	mutex_exit(&igb->gen_lock);
3680
3681	/*
3682	 * When external loopback is set, wait up to 1000ms to get the link up.
3683	 * According to test, 1000ms can work and it's an experimental value.
3684	 */
3685	if (mode == IGB_LB_EXTERNAL) {
3686		for (i = 0; i <= 10; i++) {
3687			mutex_enter(&igb->gen_lock);
3688			(void) igb_link_check(igb);
3689			mutex_exit(&igb->gen_lock);
3690
3691			if (igb->link_state == LINK_STATE_UP)
3692				break;
3693
3694			msec_delay(100);
3695		}
3696
3697		if (igb->link_state != LINK_STATE_UP) {
3698			/*
3699			 * Does not support external loopback.
3700			 * Reset driver to loopback none.
3701			 */
3702			igb->loopback_mode = IGB_LB_NONE;
3703
3704			/* Reset the chip */
3705			hw->phy.autoneg_wait_to_complete = B_TRUE;
3706			(void) igb_reset(igb);
3707			hw->phy.autoneg_wait_to_complete = B_FALSE;
3708
3709			IGB_DEBUGLOG_0(igb, "Set external loopback failed, "
3710			    "reset to loopback none.");
3711
3712			return (B_FALSE);
3713		}
3714	}
3715
3716	return (B_TRUE);
3717}
3718
3719/*
3720 * igb_set_external_loopback - Set the external loopback mode
3721 */
3722static void
3723igb_set_external_loopback(igb_t *igb)
3724{
3725	struct e1000_hw *hw;
3726
3727	hw = &igb->hw;
3728
3729	/* Set phy to known state */
3730	(void) e1000_phy_hw_reset(hw);
3731
3732	(void) e1000_write_phy_reg(hw, 0x0, 0x0140);
3733	(void) e1000_write_phy_reg(hw, 0x9, 0x1b00);
3734	(void) e1000_write_phy_reg(hw, 0x12, 0x1610);
3735	(void) e1000_write_phy_reg(hw, 0x1f37, 0x3f1c);
3736}
3737
3738/*
3739 * igb_set_internal_phy_loopback - Set the internal PHY loopback mode
3740 */
3741static void
3742igb_set_internal_phy_loopback(igb_t *igb)
3743{
3744	struct e1000_hw *hw;
3745	uint32_t ctrl_ext;
3746	uint16_t phy_ctrl;
3747	uint16_t phy_pconf;
3748
3749	hw = &igb->hw;
3750
3751	/* Set link mode to PHY (00b) in the Extended Control register */
3752	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
3753	ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
3754	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
3755
3756	/*
3757	 * Set PHY control register (0x4140):
3758	 *    Set full duplex mode
3759	 *    Set loopback bit
3760	 *    Clear auto-neg enable bit
3761	 *    Set PHY speed
3762	 */
3763	phy_ctrl = MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000 | MII_CR_LOOPBACK;
3764	(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
3765
3766	/* Set the link disable bit in the Port Configuration register */
3767	(void) e1000_read_phy_reg(hw, 0x10, &phy_pconf);
3768	phy_pconf |= (uint16_t)1 << 14;
3769	(void) e1000_write_phy_reg(hw, 0x10, phy_pconf);
3770}
3771
3772/*
3773 * igb_set_internal_serdes_loopback - Set the internal SerDes loopback mode
3774 */
3775static void
3776igb_set_internal_serdes_loopback(igb_t *igb)
3777{
3778	struct e1000_hw *hw;
3779	uint32_t ctrl_ext;
3780	uint32_t ctrl;
3781	uint32_t pcs_lctl;
3782	uint32_t connsw;
3783
3784	hw = &igb->hw;
3785
3786	/* Set link mode to SerDes (11b) in the Extended Control register */
3787	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
3788	ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
3789	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
3790
3791	/* Configure the SerDes to loopback */
3792	E1000_WRITE_REG(hw, E1000_SCTL, 0x410);
3793
3794	/* Set Device Control register */
3795	ctrl = E1000_READ_REG(hw, E1000_CTRL);
3796	ctrl |= (E1000_CTRL_FD |	/* Force full duplex */
3797	    E1000_CTRL_SLU);		/* Force link up */
3798	ctrl &= ~(E1000_CTRL_RFCE |	/* Disable receive flow control */
3799	    E1000_CTRL_TFCE |		/* Disable transmit flow control */
3800	    E1000_CTRL_LRST);		/* Clear link reset */
3801	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
3802
3803	/* Set PCS Link Control register */
3804	pcs_lctl = E1000_READ_REG(hw, E1000_PCS_LCTL);
3805	pcs_lctl |= (E1000_PCS_LCTL_FORCE_LINK |
3806	    E1000_PCS_LCTL_FSD |
3807	    E1000_PCS_LCTL_FDV_FULL |
3808	    E1000_PCS_LCTL_FLV_LINK_UP);
3809	pcs_lctl &= ~E1000_PCS_LCTL_AN_ENABLE;
3810	E1000_WRITE_REG(hw, E1000_PCS_LCTL, pcs_lctl);
3811
3812	/* Set the Copper/Fiber Switch Control - CONNSW register */
3813	connsw = E1000_READ_REG(hw, E1000_CONNSW);
3814	connsw &= ~E1000_CONNSW_ENRGSRC;
3815	E1000_WRITE_REG(hw, E1000_CONNSW, connsw);
3816}
3817
3818#pragma inline(igb_intr_rx_work)
3819/*
3820 * igb_intr_rx_work - rx processing of ISR
3821 */
3822static void
3823igb_intr_rx_work(igb_rx_ring_t *rx_ring)
3824{
3825	mblk_t *mp;
3826
3827	mutex_enter(&rx_ring->rx_lock);
3828	mp = igb_rx(rx_ring, IGB_NO_POLL);
3829	mutex_exit(&rx_ring->rx_lock);
3830
3831	if (mp != NULL)
3832		mac_rx_ring(rx_ring->igb->mac_hdl, rx_ring->ring_handle, mp,
3833		    rx_ring->ring_gen_num);
3834}
3835
3836#pragma inline(igb_intr_tx_work)
3837/*
3838 * igb_intr_tx_work - tx processing of ISR
3839 */
3840static void
3841igb_intr_tx_work(igb_tx_ring_t *tx_ring)
3842{
3843	igb_t *igb = tx_ring->igb;
3844
3845	/* Recycle the tx descriptors */
3846	tx_ring->tx_recycle(tx_ring);
3847
3848	/* Schedule the re-transmit */
3849	if (tx_ring->reschedule &&
3850	    (tx_ring->tbd_free >= igb->tx_resched_thresh)) {
3851		tx_ring->reschedule = B_FALSE;
3852		mac_tx_ring_update(tx_ring->igb->mac_hdl, tx_ring->ring_handle);
3853		IGB_DEBUG_STAT(tx_ring->stat_reschedule);
3854	}
3855}
3856
3857#pragma inline(igb_intr_link_work)
3858/*
3859 * igb_intr_link_work - link-status-change processing of ISR
3860 */
3861static void
3862igb_intr_link_work(igb_t *igb)
3863{
3864	boolean_t link_changed;
3865
3866	igb_stop_watchdog_timer(igb);
3867
3868	mutex_enter(&igb->gen_lock);
3869
3870	/*
3871	 * Because we got a link-status-change interrupt, force
3872	 * e1000_check_for_link() to look at phy
3873	 */
3874	igb->hw.mac.get_link_status = B_TRUE;
3875
3876	/* igb_link_check takes care of link status change */
3877	link_changed = igb_link_check(igb);
3878
3879	/* Get new phy state */
3880	igb_get_phy_state(igb);
3881
3882	mutex_exit(&igb->gen_lock);
3883
3884	if (link_changed)
3885		mac_link_update(igb->mac_hdl, igb->link_state);
3886
3887	igb_start_watchdog_timer(igb);
3888}
3889
3890/*
3891 * igb_intr_legacy - Interrupt handler for legacy interrupts
3892 */
3893static uint_t
3894igb_intr_legacy(void *arg1, void *arg2)
3895{
3896	igb_t *igb = (igb_t *)arg1;
3897	igb_tx_ring_t *tx_ring;
3898	uint32_t icr;
3899	mblk_t *mp;
3900	boolean_t tx_reschedule;
3901	boolean_t link_changed;
3902	uint_t result;
3903
3904	_NOTE(ARGUNUSED(arg2));
3905
3906	mutex_enter(&igb->gen_lock);
3907
3908	if (igb->igb_state & IGB_SUSPENDED) {
3909		mutex_exit(&igb->gen_lock);
3910		return (DDI_INTR_UNCLAIMED);
3911	}
3912
3913	mp = NULL;
3914	tx_reschedule = B_FALSE;
3915	link_changed = B_FALSE;
3916	icr = E1000_READ_REG(&igb->hw, E1000_ICR);
3917
3918	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
3919		mutex_exit(&igb->gen_lock);
3920		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
3921		atomic_or_32(&igb->igb_state, IGB_ERROR);
3922		return (DDI_INTR_UNCLAIMED);
3923	}
3924
3925	if (icr & E1000_ICR_INT_ASSERTED) {
3926		/*
3927		 * E1000_ICR_INT_ASSERTED bit was set:
3928		 * Read(Clear) the ICR, claim this interrupt,
3929		 * look for work to do.
3930		 */
3931		ASSERT(igb->num_rx_rings == 1);
3932		ASSERT(igb->num_tx_rings == 1);
3933
3934		/* Make sure all interrupt causes cleared */
3935		(void) E1000_READ_REG(&igb->hw, E1000_EICR);
3936
3937		if (icr & E1000_ICR_RXT0) {
3938			mp = igb_rx(&igb->rx_rings[0], IGB_NO_POLL);
3939		}
3940
3941		if (icr & E1000_ICR_TXDW) {
3942			tx_ring = &igb->tx_rings[0];
3943
3944			/* Recycle the tx descriptors */
3945			tx_ring->tx_recycle(tx_ring);
3946
3947			/* Schedule the re-transmit */
3948			tx_reschedule = (tx_ring->reschedule &&
3949			    (tx_ring->tbd_free >= igb->tx_resched_thresh));
3950		}
3951
3952		if (icr & E1000_ICR_LSC) {
3953			/*
3954			 * Because we got a link-status-change interrupt, force
3955			 * e1000_check_for_link() to look at phy
3956			 */
3957			igb->hw.mac.get_link_status = B_TRUE;
3958
3959			/* igb_link_check takes care of link status change */
3960			link_changed = igb_link_check(igb);
3961
3962			/* Get new phy state */
3963			igb_get_phy_state(igb);
3964		}
3965
3966		if (icr & E1000_ICR_DRSTA) {
3967			/* 82580 Full Device Reset needed */
3968			atomic_or_32(&igb->igb_state, IGB_STALL);
3969		}
3970
3971		result = DDI_INTR_CLAIMED;
3972	} else {
3973		/*
3974		 * E1000_ICR_INT_ASSERTED bit was not set:
3975		 * Don't claim this interrupt.
3976		 */
3977		result = DDI_INTR_UNCLAIMED;
3978	}
3979
3980	mutex_exit(&igb->gen_lock);
3981
3982	/*
3983	 * Do the following work outside of the gen_lock
3984	 */
3985	if (mp != NULL)
3986		mac_rx(igb->mac_hdl, NULL, mp);
3987
3988	if (tx_reschedule)  {
3989		tx_ring->reschedule = B_FALSE;
3990		mac_tx_ring_update(igb->mac_hdl, tx_ring->ring_handle);
3991		IGB_DEBUG_STAT(tx_ring->stat_reschedule);
3992	}
3993
3994	if (link_changed)
3995		mac_link_update(igb->mac_hdl, igb->link_state);
3996
3997	return (result);
3998}
3999
4000/*
4001 * igb_intr_msi - Interrupt handler for MSI
4002 */
4003static uint_t
4004igb_intr_msi(void *arg1, void *arg2)
4005{
4006	igb_t *igb = (igb_t *)arg1;
4007	uint32_t icr;
4008
4009	_NOTE(ARGUNUSED(arg2));
4010
4011	icr = E1000_READ_REG(&igb->hw, E1000_ICR);
4012
4013	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
4014		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
4015		atomic_or_32(&igb->igb_state, IGB_ERROR);
4016		return (DDI_INTR_CLAIMED);
4017	}
4018
4019	/* Make sure all interrupt causes cleared */
4020	(void) E1000_READ_REG(&igb->hw, E1000_EICR);
4021
4022	/*
4023	 * For MSI interrupt, we have only one vector,
4024	 * so we have only one rx ring and one tx ring enabled.
4025	 */
4026	ASSERT(igb->num_rx_rings == 1);
4027	ASSERT(igb->num_tx_rings == 1);
4028
4029	if (icr & E1000_ICR_RXT0) {
4030		igb_intr_rx_work(&igb->rx_rings[0]);
4031	}
4032
4033	if (icr & E1000_ICR_TXDW) {
4034		igb_intr_tx_work(&igb->tx_rings[0]);
4035	}
4036
4037	if (icr & E1000_ICR_LSC) {
4038		igb_intr_link_work(igb);
4039	}
4040
4041	if (icr & E1000_ICR_DRSTA) {
4042		/* 82580 Full Device Reset needed */
4043		atomic_or_32(&igb->igb_state, IGB_STALL);
4044	}
4045
4046	return (DDI_INTR_CLAIMED);
4047}
4048
4049/*
4050 * igb_intr_rx - Interrupt handler for rx
4051 */
4052static uint_t
4053igb_intr_rx(void *arg1, void *arg2)
4054{
4055	igb_rx_ring_t *rx_ring = (igb_rx_ring_t *)arg1;
4056
4057	_NOTE(ARGUNUSED(arg2));
4058
4059	/*
4060	 * Only used via MSI-X vector so don't check cause bits
4061	 * and only clean the given ring.
4062	 */
4063	igb_intr_rx_work(rx_ring);
4064
4065	return (DDI_INTR_CLAIMED);
4066}
4067
4068/*
4069 * igb_intr_tx - Interrupt handler for tx
4070 */
4071static uint_t
4072igb_intr_tx(void *arg1, void *arg2)
4073{
4074	igb_tx_ring_t *tx_ring = (igb_tx_ring_t *)arg1;
4075
4076	_NOTE(ARGUNUSED(arg2));
4077
4078	/*
4079	 * Only used via MSI-X vector so don't check cause bits
4080	 * and only clean the given ring.
4081	 */
4082	igb_intr_tx_work(tx_ring);
4083
4084	return (DDI_INTR_CLAIMED);
4085}
4086
4087/*
4088 * igb_intr_tx_other - Interrupt handler for both tx and other
4089 *
4090 */
4091static uint_t
4092igb_intr_tx_other(void *arg1, void *arg2)
4093{
4094	igb_t *igb = (igb_t *)arg1;
4095	uint32_t icr;
4096
4097	_NOTE(ARGUNUSED(arg2));
4098
4099	icr = E1000_READ_REG(&igb->hw, E1000_ICR);
4100
4101	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
4102		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
4103		atomic_or_32(&igb->igb_state, IGB_ERROR);
4104		return (DDI_INTR_CLAIMED);
4105	}
4106
4107	/*
4108	 * Look for tx reclaiming work first. Remember, in the
4109	 * case of only interrupt sharing, only one tx ring is
4110	 * used
4111	 */
4112	igb_intr_tx_work(&igb->tx_rings[0]);
4113
4114	/*
4115	 * Check for "other" causes.
4116	 */
4117	if (icr & E1000_ICR_LSC) {
4118		igb_intr_link_work(igb);
4119	}
4120
4121	/*
4122	 * The DOUTSYNC bit indicates a tx packet dropped because
4123	 * DMA engine gets "out of sync". There isn't a real fix
4124	 * for this. The Intel recommendation is to count the number
4125	 * of occurrences so user can detect when it is happening.
4126	 * The issue is non-fatal and there's no recovery action
4127	 * available.
4128	 */
4129	if (icr & E1000_ICR_DOUTSYNC) {
4130		IGB_STAT(igb->dout_sync);
4131	}
4132
4133	if (icr & E1000_ICR_DRSTA) {
4134		/* 82580 Full Device Reset needed */
4135		atomic_or_32(&igb->igb_state, IGB_STALL);
4136	}
4137
4138	return (DDI_INTR_CLAIMED);
4139}
4140
4141/*
4142 * igb_alloc_intrs - Allocate interrupts for the driver
4143 *
4144 * Normal sequence is to try MSI-X; if not sucessful, try MSI;
4145 * if not successful, try Legacy.
4146 * igb->intr_force can be used to force sequence to start with
4147 * any of the 3 types.
4148 * If MSI-X is not used, number of tx/rx rings is forced to 1.
4149 */
4150static int
4151igb_alloc_intrs(igb_t *igb)
4152{
4153	dev_info_t *devinfo;
4154	int intr_types;
4155	int rc;
4156
4157	devinfo = igb->dip;
4158
4159	/* Get supported interrupt types */
4160	rc = ddi_intr_get_supported_types(devinfo, &intr_types);
4161
4162	if (rc != DDI_SUCCESS) {
4163		igb_log(igb,
4164		    "Get supported interrupt types failed: %d", rc);
4165		return (IGB_FAILURE);
4166	}
4167	IGB_DEBUGLOG_1(igb, "Supported interrupt types: %x", intr_types);
4168
4169	igb->intr_type = 0;
4170
4171	/* Install MSI-X interrupts */
4172	if ((intr_types & DDI_INTR_TYPE_MSIX) &&
4173	    (igb->intr_force <= IGB_INTR_MSIX)) {
4174		rc = igb_alloc_intr_handles(igb, DDI_INTR_TYPE_MSIX);
4175
4176		if (rc == IGB_SUCCESS)
4177			return (IGB_SUCCESS);
4178
4179		igb_log(igb,
4180		    "Allocate MSI-X failed, trying MSI interrupts...");
4181	}
4182
4183	/* MSI-X not used, force rings to 1 */
4184	igb->num_rx_rings = 1;
4185	igb->num_tx_rings = 1;
4186	igb_log(igb,
4187	    "MSI-X not used, force rx and tx queue number to 1");
4188
4189	/* Install MSI interrupts */
4190	if ((intr_types & DDI_INTR_TYPE_MSI) &&
4191	    (igb->intr_force <= IGB_INTR_MSI)) {
4192		rc = igb_alloc_intr_handles(igb, DDI_INTR_TYPE_MSI);
4193
4194		if (rc == IGB_SUCCESS)
4195			return (IGB_SUCCESS);
4196
4197		igb_log(igb,
4198		    "Allocate MSI failed, trying Legacy interrupts...");
4199	}
4200
4201	/* Install legacy interrupts */
4202	if (intr_types & DDI_INTR_TYPE_FIXED) {
4203		rc = igb_alloc_intr_handles(igb, DDI_INTR_TYPE_FIXED);
4204
4205		if (rc == IGB_SUCCESS)
4206			return (IGB_SUCCESS);
4207
4208		igb_log(igb,
4209		    "Allocate Legacy interrupts failed");
4210	}
4211
4212	/* If none of the 3 types succeeded, return failure */
4213	return (IGB_FAILURE);
4214}
4215
4216/*
4217 * igb_alloc_intr_handles - Allocate interrupt handles.
4218 *
4219 * For legacy and MSI, only 1 handle is needed.  For MSI-X,
4220 * if fewer than 2 handles are available, return failure.
4221 * Upon success, this sets the number of Rx rings to a number that
4222 * matches the handles available for Rx interrupts.
4223 */
4224static int
4225igb_alloc_intr_handles(igb_t *igb, int intr_type)
4226{
4227	dev_info_t *devinfo;
4228	int orig, request, count, avail, actual;
4229	int diff, minimum;
4230	int rc;
4231
4232	devinfo = igb->dip;
4233
4234	switch (intr_type) {
4235	case DDI_INTR_TYPE_FIXED:
4236		request = 1;	/* Request 1 legacy interrupt handle */
4237		minimum = 1;
4238		IGB_DEBUGLOG_0(igb, "interrupt type: legacy");
4239		break;
4240
4241	case DDI_INTR_TYPE_MSI:
4242		request = 1;	/* Request 1 MSI interrupt handle */
4243		minimum = 1;
4244		IGB_DEBUGLOG_0(igb, "interrupt type: MSI");
4245		break;
4246
4247	case DDI_INTR_TYPE_MSIX:
4248		/*
4249		 * Number of vectors for the adapter is
4250		 * # rx rings + # tx rings
4251		 * One of tx vectors is for tx & other
4252		 */
4253		request = igb->num_rx_rings + igb->num_tx_rings;
4254		orig = request;
4255		minimum = 2;
4256		IGB_DEBUGLOG_0(igb, "interrupt type: MSI-X");
4257		break;
4258
4259	default:
4260		igb_log(igb,
4261		    "invalid call to igb_alloc_intr_handles(): %d\n",
4262		    intr_type);
4263		return (IGB_FAILURE);
4264	}
4265	IGB_DEBUGLOG_2(igb, "interrupt handles requested: %d  minimum: %d",
4266	    request, minimum);
4267
4268	/*
4269	 * Get number of supported interrupts
4270	 */
4271	rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
4272	if ((rc != DDI_SUCCESS) || (count < minimum)) {
4273		igb_log(igb,
4274		    "Get supported interrupt number failed. "
4275		    "Return: %d, count: %d", rc, count);
4276		return (IGB_FAILURE);
4277	}
4278	IGB_DEBUGLOG_1(igb, "interrupts supported: %d", count);
4279
4280	/*
4281	 * Get number of available interrupts
4282	 */
4283	rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
4284	if ((rc != DDI_SUCCESS) || (avail < minimum)) {
4285		igb_log(igb,
4286		    "Get available interrupt number failed. "
4287		    "Return: %d, available: %d", rc, avail);
4288		return (IGB_FAILURE);
4289	}
4290	IGB_DEBUGLOG_1(igb, "interrupts available: %d", avail);
4291
4292	if (avail < request) {
4293		igb_log(igb, "Request %d handles, %d available",
4294		    request, avail);
4295		request = avail;
4296	}
4297
4298	actual = 0;
4299	igb->intr_cnt = 0;
4300
4301	/*
4302	 * Allocate an array of interrupt handles
4303	 */
4304	igb->intr_size = request * sizeof (ddi_intr_handle_t);
4305	igb->htable = kmem_alloc(igb->intr_size, KM_SLEEP);
4306
4307	rc = ddi_intr_alloc(devinfo, igb->htable, intr_type, 0,
4308	    request, &actual, DDI_INTR_ALLOC_NORMAL);
4309	if (rc != DDI_SUCCESS) {
4310		igb_log(igb, "Allocate interrupts failed. "
4311		    "return: %d, request: %d, actual: %d",
4312		    rc, request, actual);
4313		goto alloc_handle_fail;
4314	}
4315	IGB_DEBUGLOG_1(igb, "interrupts actually allocated: %d", actual);
4316
4317	igb->intr_cnt = actual;
4318
4319	if (actual < minimum) {
4320		igb_log(igb, "Insufficient interrupt handles allocated: %d",
4321		    actual);
4322		goto alloc_handle_fail;
4323	}
4324
4325	/*
4326	 * For MSI-X, actual might force us to reduce number of tx & rx rings
4327	 */
4328	if ((intr_type == DDI_INTR_TYPE_MSIX) && (orig > actual)) {
4329		diff = orig - actual;
4330		if (diff < igb->num_tx_rings) {
4331			igb_log(igb,
4332			    "MSI-X vectors force Tx queue number to %d",
4333			    igb->num_tx_rings - diff);
4334			igb->num_tx_rings -= diff;
4335		} else {
4336			igb_log(igb,
4337			    "MSI-X vectors force Tx queue number to 1");
4338			igb->num_tx_rings = 1;
4339
4340			igb_log(igb,
4341			    "MSI-X vectors force Rx queue number to %d",
4342			    actual - 1);
4343			igb->num_rx_rings = actual - 1;
4344		}
4345	}
4346
4347	/*
4348	 * Get priority for first vector, assume remaining are all the same
4349	 */
4350	rc = ddi_intr_get_pri(igb->htable[0], &igb->intr_pri);
4351	if (rc != DDI_SUCCESS) {
4352		igb_log(igb,
4353		    "Get interrupt priority failed: %d", rc);
4354		goto alloc_handle_fail;
4355	}
4356
4357	rc = ddi_intr_get_cap(igb->htable[0], &igb->intr_cap);
4358	if (rc != DDI_SUCCESS) {
4359		igb_log(igb,
4360		    "Get interrupt cap failed: %d", rc);
4361		goto alloc_handle_fail;
4362	}
4363
4364	igb->intr_type = intr_type;
4365
4366	return (IGB_SUCCESS);
4367
4368alloc_handle_fail:
4369	igb_rem_intrs(igb);
4370
4371	return (IGB_FAILURE);
4372}
4373
4374/*
4375 * igb_add_intr_handlers - Add interrupt handlers based on the interrupt type
4376 *
4377 * Before adding the interrupt handlers, the interrupt vectors have
4378 * been allocated, and the rx/tx rings have also been allocated.
4379 */
4380static int
4381igb_add_intr_handlers(igb_t *igb)
4382{
4383	igb_rx_ring_t *rx_ring;
4384	igb_tx_ring_t *tx_ring;
4385	int vector;
4386	int rc;
4387	int i;
4388
4389	vector = 0;
4390
4391	switch (igb->intr_type) {
4392	case DDI_INTR_TYPE_MSIX:
4393		/* Add interrupt handler for tx + other */
4394		tx_ring = &igb->tx_rings[0];
4395		rc = ddi_intr_add_handler(igb->htable[vector],
4396		    (ddi_intr_handler_t *)igb_intr_tx_other,
4397		    (void *)igb, NULL);
4398
4399		if (rc != DDI_SUCCESS) {
4400			igb_log(igb,
4401			    "Add tx/other interrupt handler failed: %d", rc);
4402			return (IGB_FAILURE);
4403		}
4404		tx_ring->intr_vector = vector;
4405		vector++;
4406
4407		/* Add interrupt handler for each rx ring */
4408		for (i = 0; i < igb->num_rx_rings; i++) {
4409			rx_ring = &igb->rx_rings[i];
4410
4411			rc = ddi_intr_add_handler(igb->htable[vector],
4412			    (ddi_intr_handler_t *)igb_intr_rx,
4413			    (void *)rx_ring, NULL);
4414
4415			if (rc != DDI_SUCCESS) {
4416				igb_log(igb,
4417				    "Add rx interrupt handler failed. "
4418				    "return: %d, rx ring: %d", rc, i);
4419				for (vector--; vector >= 0; vector--) {
4420					(void) ddi_intr_remove_handler(
4421					    igb->htable[vector]);
4422				}
4423				return (IGB_FAILURE);
4424			}
4425
4426			rx_ring->intr_vector = vector;
4427
4428			vector++;
4429		}
4430
4431		/* Add interrupt handler for each tx ring from 2nd ring */
4432		for (i = 1; i < igb->num_tx_rings; i++) {
4433			tx_ring = &igb->tx_rings[i];
4434
4435			rc = ddi_intr_add_handler(igb->htable[vector],
4436			    (ddi_intr_handler_t *)igb_intr_tx,
4437			    (void *)tx_ring, NULL);
4438
4439			if (rc != DDI_SUCCESS) {
4440				igb_log(igb,
4441				    "Add tx interrupt handler failed. "
4442				    "return: %d, tx ring: %d", rc, i);
4443				for (vector--; vector >= 0; vector--) {
4444					(void) ddi_intr_remove_handler(
4445					    igb->htable[vector]);
4446				}
4447				return (IGB_FAILURE);
4448			}
4449
4450			tx_ring->intr_vector = vector;
4451
4452			vector++;
4453		}
4454
4455		break;
4456
4457	case DDI_INTR_TYPE_MSI:
4458		/* Add interrupt handlers for the only vector */
4459		rc = ddi_intr_add_handler(igb->htable[vector],
4460		    (ddi_intr_handler_t *)igb_intr_msi,
4461		    (void *)igb, NULL);
4462
4463		if (rc != DDI_SUCCESS) {
4464			igb_log(igb,
4465			    "Add MSI interrupt handler failed: %d", rc);
4466			return (IGB_FAILURE);
4467		}
4468
4469		rx_ring = &igb->rx_rings[0];
4470		rx_ring->intr_vector = vector;
4471
4472		vector++;
4473		break;
4474
4475	case DDI_INTR_TYPE_FIXED:
4476		/* Add interrupt handlers for the only vector */
4477		rc = ddi_intr_add_handler(igb->htable[vector],
4478		    (ddi_intr_handler_t *)igb_intr_legacy,
4479		    (void *)igb, NULL);
4480
4481		if (rc != DDI_SUCCESS) {
4482			igb_log(igb,
4483			    "Add legacy interrupt handler failed: %d", rc);
4484			return (IGB_FAILURE);
4485		}
4486
4487		rx_ring = &igb->rx_rings[0];
4488		rx_ring->intr_vector = vector;
4489
4490		vector++;
4491		break;
4492
4493	default:
4494		return (IGB_FAILURE);
4495	}
4496
4497	ASSERT(vector == igb->intr_cnt);
4498
4499	return (IGB_SUCCESS);
4500}
4501
4502/*
4503 * igb_setup_msix_82575 - setup 82575 adapter to use MSI-X interrupts
4504 *
4505 * For each vector enabled on the adapter, Set the MSIXBM register accordingly
4506 */
4507static void
4508igb_setup_msix_82575(igb_t *igb)
4509{
4510	uint32_t eims = 0;
4511	int i, vector;
4512	struct e1000_hw *hw = &igb->hw;
4513
4514	/*
4515	 * Set vector for tx ring 0 and other causes.
4516	 * NOTE assumption that it is vector 0.
4517	 */
4518	vector = 0;
4519
4520	igb->eims_mask = E1000_EICR_TX_QUEUE0 | E1000_EICR_OTHER;
4521	E1000_WRITE_REG(hw, E1000_MSIXBM(vector), igb->eims_mask);
4522	vector++;
4523
4524	for (i = 0; i < igb->num_rx_rings; i++) {
4525		/*
4526		 * Set vector for each rx ring
4527		 */
4528		eims = (E1000_EICR_RX_QUEUE0 << i);
4529		E1000_WRITE_REG(hw, E1000_MSIXBM(vector), eims);
4530
4531		/*
4532		 * Accumulate bits to enable in
4533		 * igb_enable_adapter_interrupts_82575()
4534		 */
4535		igb->eims_mask |= eims;
4536
4537		vector++;
4538	}
4539
4540	for (i = 1; i < igb->num_tx_rings; i++) {
4541		/*
4542		 * Set vector for each tx ring from 2nd tx ring
4543		 */
4544		eims = (E1000_EICR_TX_QUEUE0 << i);
4545		E1000_WRITE_REG(hw, E1000_MSIXBM(vector), eims);
4546
4547		/*
4548		 * Accumulate bits to enable in
4549		 * igb_enable_adapter_interrupts_82575()
4550		 */
4551		igb->eims_mask |= eims;
4552
4553		vector++;
4554	}
4555
4556	ASSERT(vector == igb->intr_cnt);
4557
4558	/*
4559	 * Disable IAM for ICR interrupt bits
4560	 */
4561	E1000_WRITE_REG(hw, E1000_IAM, 0);
4562	E1000_WRITE_FLUSH(hw);
4563}
4564
4565/*
4566 * igb_setup_msix_82576 - setup 82576 adapter to use MSI-X interrupts
4567 *
4568 * 82576 uses a table based method for assigning vectors.  Each queue has a
4569 * single entry in the table to which we write a vector number along with a
4570 * "valid" bit.  The entry is a single byte in a 4-byte register.  Vectors
4571 * take a different position in the 4-byte register depending on whether
4572 * they are numbered above or below 8.
4573 */
4574static void
4575igb_setup_msix_82576(igb_t *igb)
4576{
4577	struct e1000_hw *hw = &igb->hw;
4578	uint32_t ivar, index, vector;
4579	int i;
4580
4581	/* must enable msi-x capability before IVAR settings */
4582	E1000_WRITE_REG(hw, E1000_GPIE,
4583	    (E1000_GPIE_MSIX_MODE | E1000_GPIE_PBA | E1000_GPIE_NSICR));
4584
4585	/*
4586	 * Set vector for tx ring 0 and other causes.
4587	 * NOTE assumption that it is vector 0.
4588	 * This is also interdependent with installation of interrupt service
4589	 * routines in igb_add_intr_handlers().
4590	 */
4591
4592	/* assign "other" causes to vector 0 */
4593	vector = 0;
4594	ivar = ((vector | E1000_IVAR_VALID) << 8);
4595	E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
4596
4597	/* assign tx ring 0 to vector 0 */
4598	ivar = ((vector | E1000_IVAR_VALID) << 8);
4599	E1000_WRITE_REG(hw, E1000_IVAR0, ivar);
4600
4601	/* prepare to enable tx & other interrupt causes */
4602	igb->eims_mask = (1 << vector);
4603
4604	vector ++;
4605	for (i = 0; i < igb->num_rx_rings; i++) {
4606		/*
4607		 * Set vector for each rx ring
4608		 */
4609		index = (i & 0x7);
4610		ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4611
4612		if (i < 8) {
4613			/* vector goes into low byte of register */
4614			ivar = ivar & 0xFFFFFF00;
4615			ivar |= (vector | E1000_IVAR_VALID);
4616		} else {
4617			/* vector goes into third byte of register */
4618			ivar = ivar & 0xFF00FFFF;
4619			ivar |= ((vector | E1000_IVAR_VALID) << 16);
4620		}
4621		E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4622
4623		/* Accumulate interrupt-cause bits to enable */
4624		igb->eims_mask |= (1 << vector);
4625
4626		vector ++;
4627	}
4628
4629	for (i = 1; i < igb->num_tx_rings; i++) {
4630		/*
4631		 * Set vector for each tx ring from 2nd tx ring.
4632		 * Note assumption that tx vectors numericall follow rx vectors.
4633		 */
4634		index = (i & 0x7);
4635		ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4636
4637		if (i < 8) {
4638			/* vector goes into second byte of register */
4639			ivar = ivar & 0xFFFF00FF;
4640			ivar |= ((vector | E1000_IVAR_VALID) << 8);
4641		} else {
4642			/* vector goes into fourth byte of register */
4643			ivar = ivar & 0x00FFFFFF;
4644			ivar |= (vector | E1000_IVAR_VALID) << 24;
4645		}
4646		E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4647
4648		/* Accumulate interrupt-cause bits to enable */
4649		igb->eims_mask |= (1 << vector);
4650
4651		vector ++;
4652	}
4653
4654	ASSERT(vector == igb->intr_cnt);
4655}
4656
4657/*
4658 * igb_setup_msix_82580 - setup 82580 adapter to use MSI-X interrupts
4659 *
4660 * 82580 uses same table approach at 82576 but has fewer entries.  Each
4661 * queue has a single entry in the table to which we write a vector number
4662 * along with a "valid" bit.  Vectors take a different position in the
4663 * register depending on * whether * they are numbered above or below 4.
4664 */
4665static void
4666igb_setup_msix_82580(igb_t *igb)
4667{
4668	struct e1000_hw *hw = &igb->hw;
4669	uint32_t ivar, index, vector;
4670	int i;
4671
4672	/* must enable msi-x capability before IVAR settings */
4673	E1000_WRITE_REG(hw, E1000_GPIE, (E1000_GPIE_MSIX_MODE |
4674	    E1000_GPIE_PBA | E1000_GPIE_NSICR | E1000_GPIE_EIAME));
4675	/*
4676	 * Set vector for tx ring 0 and other causes.
4677	 * NOTE assumption that it is vector 0.
4678	 * This is also interdependent with installation of interrupt service
4679	 * routines in igb_add_intr_handlers().
4680	 */
4681
4682	/* assign "other" causes to vector 0 */
4683	vector = 0;
4684	ivar = ((vector | E1000_IVAR_VALID) << 8);
4685	E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
4686
4687	/* assign tx ring 0 to vector 0 */
4688	ivar = ((vector | E1000_IVAR_VALID) << 8);
4689	E1000_WRITE_REG(hw, E1000_IVAR0, ivar);
4690
4691	/* prepare to enable tx & other interrupt causes */
4692	igb->eims_mask = (1 << vector);
4693
4694	vector ++;
4695
4696	for (i = 0; i < igb->num_rx_rings; i++) {
4697		/*
4698		 * Set vector for each rx ring
4699		 */
4700		index = (i >> 1);
4701		ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4702
4703		if (i & 1) {
4704			/* vector goes into third byte of register */
4705			ivar = ivar & 0xFF00FFFF;
4706			ivar |= ((vector | E1000_IVAR_VALID) << 16);
4707		} else {
4708			/* vector goes into low byte of register */
4709			ivar = ivar & 0xFFFFFF00;
4710			ivar |= (vector | E1000_IVAR_VALID);
4711		}
4712		E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4713
4714		/* Accumulate interrupt-cause bits to enable */
4715		igb->eims_mask |= (1 << vector);
4716
4717		vector ++;
4718	}
4719
4720	for (i = 1; i < igb->num_tx_rings; i++) {
4721		/*
4722		 * Set vector for each tx ring from 2nd tx ring.
4723		 * Note assumption that tx vectors numericall follow rx vectors.
4724		 */
4725		index = (i >> 1);
4726		ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4727
4728		if (i & 1) {
4729			/* vector goes into high byte of register */
4730			ivar = ivar & 0x00FFFFFF;
4731			ivar |= ((vector | E1000_IVAR_VALID) << 24);
4732		} else {
4733			/* vector goes into second byte of register */
4734			ivar = ivar & 0xFFFF00FF;
4735			ivar |= (vector | E1000_IVAR_VALID) << 8;
4736		}
4737		E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4738
4739		/* Accumulate interrupt-cause bits to enable */
4740		igb->eims_mask |= (1 << vector);
4741
4742		vector ++;
4743	}
4744	ASSERT(vector == igb->intr_cnt);
4745}
4746
4747/*
4748 * igb_rem_intr_handlers - remove the interrupt handlers
4749 */
4750static void
4751igb_rem_intr_handlers(igb_t *igb)
4752{
4753	int i;
4754	int rc;
4755
4756	for (i = 0; i < igb->intr_cnt; i++) {
4757		rc = ddi_intr_remove_handler(igb->htable[i]);
4758		if (rc != DDI_SUCCESS) {
4759			IGB_DEBUGLOG_1(igb,
4760			    "Remove intr handler failed: %d", rc);
4761		}
4762	}
4763}
4764
4765/*
4766 * igb_rem_intrs - remove the allocated interrupts
4767 */
4768static void
4769igb_rem_intrs(igb_t *igb)
4770{
4771	int i;
4772	int rc;
4773
4774	for (i = 0; i < igb->intr_cnt; i++) {
4775		rc = ddi_intr_free(igb->htable[i]);
4776		if (rc != DDI_SUCCESS) {
4777			IGB_DEBUGLOG_1(igb,
4778			    "Free intr failed: %d", rc);
4779		}
4780	}
4781
4782	kmem_free(igb->htable, igb->intr_size);
4783	igb->htable = NULL;
4784}
4785
4786/*
4787 * igb_enable_intrs - enable all the ddi interrupts
4788 */
4789static int
4790igb_enable_intrs(igb_t *igb)
4791{
4792	int i;
4793	int rc;
4794
4795	/* Enable interrupts */
4796	if (igb->intr_cap & DDI_INTR_FLAG_BLOCK) {
4797		/* Call ddi_intr_block_enable() for MSI */
4798		rc = ddi_intr_block_enable(igb->htable, igb->intr_cnt);
4799		if (rc != DDI_SUCCESS) {
4800			igb_log(igb,
4801			    "Enable block intr failed: %d", rc);
4802			return (IGB_FAILURE);
4803		}
4804	} else {
4805		/* Call ddi_intr_enable() for Legacy/MSI non block enable */
4806		for (i = 0; i < igb->intr_cnt; i++) {
4807			rc = ddi_intr_enable(igb->htable[i]);
4808			if (rc != DDI_SUCCESS) {
4809				igb_log(igb,
4810				    "Enable intr failed: %d", rc);
4811				return (IGB_FAILURE);
4812			}
4813		}
4814	}
4815
4816	return (IGB_SUCCESS);
4817}
4818
4819/*
4820 * igb_disable_intrs - disable all the ddi interrupts
4821 */
4822static int
4823igb_disable_intrs(igb_t *igb)
4824{
4825	int i;
4826	int rc;
4827
4828	/* Disable all interrupts */
4829	if (igb->intr_cap & DDI_INTR_FLAG_BLOCK) {
4830		rc = ddi_intr_block_disable(igb->htable, igb->intr_cnt);
4831		if (rc != DDI_SUCCESS) {
4832			igb_log(igb,
4833			    "Disable block intr failed: %d", rc);
4834			return (IGB_FAILURE);
4835		}
4836	} else {
4837		for (i = 0; i < igb->intr_cnt; i++) {
4838			rc = ddi_intr_disable(igb->htable[i]);
4839			if (rc != DDI_SUCCESS) {
4840				igb_log(igb,
4841				    "Disable intr failed: %d", rc);
4842				return (IGB_FAILURE);
4843			}
4844		}
4845	}
4846
4847	return (IGB_SUCCESS);
4848}
4849
4850/*
4851 * igb_get_phy_state - Get and save the parameters read from PHY registers
4852 */
4853static void
4854igb_get_phy_state(igb_t *igb)
4855{
4856	struct e1000_hw *hw = &igb->hw;
4857	uint16_t phy_ctrl;
4858	uint16_t phy_status;
4859	uint16_t phy_an_adv;
4860	uint16_t phy_an_exp;
4861	uint16_t phy_ext_status;
4862	uint16_t phy_1000t_ctrl;
4863	uint16_t phy_1000t_status;
4864	uint16_t phy_lp_able;
4865
4866	ASSERT(mutex_owned(&igb->gen_lock));
4867
4868	if (hw->phy.media_type == e1000_media_type_copper) {
4869		(void) e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
4870		(void) e1000_read_phy_reg(hw, PHY_STATUS, &phy_status);
4871		(void) e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &phy_an_adv);
4872		(void) e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_an_exp);
4873		(void) e1000_read_phy_reg(hw, PHY_EXT_STATUS, &phy_ext_status);
4874		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_1000t_ctrl);
4875		(void) e1000_read_phy_reg(hw,
4876		    PHY_1000T_STATUS, &phy_1000t_status);
4877		(void) e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_lp_able);
4878
4879		igb->param_autoneg_cap =
4880		    (phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0;
4881		igb->param_pause_cap =
4882		    (phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
4883		igb->param_asym_pause_cap =
4884		    (phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
4885		igb->param_1000fdx_cap =
4886		    ((phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4887		    (phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
4888		igb->param_1000hdx_cap =
4889		    ((phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
4890		    (phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
4891		igb->param_100t4_cap =
4892		    (phy_status & MII_SR_100T4_CAPS) ? 1 : 0;
4893		igb->param_100fdx_cap = ((phy_status & MII_SR_100X_FD_CAPS) ||
4894		    (phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
4895		igb->param_100hdx_cap = ((phy_status & MII_SR_100X_HD_CAPS) ||
4896		    (phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
4897		igb->param_10fdx_cap =
4898		    (phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
4899		igb->param_10hdx_cap =
4900		    (phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
4901		igb->param_rem_fault =
4902		    (phy_status & MII_SR_REMOTE_FAULT) ? 1 : 0;
4903
4904		igb->param_adv_autoneg_cap = hw->mac.autoneg;
4905		igb->param_adv_pause_cap =
4906		    (phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
4907		igb->param_adv_asym_pause_cap =
4908		    (phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
4909		igb->param_adv_1000hdx_cap =
4910		    (phy_1000t_ctrl & CR_1000T_HD_CAPS) ? 1 : 0;
4911		igb->param_adv_100t4_cap =
4912		    (phy_an_adv & NWAY_AR_100T4_CAPS) ? 1 : 0;
4913		igb->param_adv_rem_fault =
4914		    (phy_an_adv & NWAY_AR_REMOTE_FAULT) ? 1 : 0;
4915		if (igb->param_adv_autoneg_cap == 1) {
4916			igb->param_adv_1000fdx_cap =
4917			    (phy_1000t_ctrl & CR_1000T_FD_CAPS) ? 1 : 0;
4918			igb->param_adv_100fdx_cap =
4919			    (phy_an_adv & NWAY_AR_100TX_FD_CAPS) ? 1 : 0;
4920			igb->param_adv_100hdx_cap =
4921			    (phy_an_adv & NWAY_AR_100TX_HD_CAPS) ? 1 : 0;
4922			igb->param_adv_10fdx_cap =
4923			    (phy_an_adv & NWAY_AR_10T_FD_CAPS) ? 1 : 0;
4924			igb->param_adv_10hdx_cap =
4925			    (phy_an_adv & NWAY_AR_10T_HD_CAPS) ? 1 : 0;
4926		}
4927
4928		igb->param_lp_autoneg_cap =
4929		    (phy_an_exp & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0;
4930		igb->param_lp_pause_cap =
4931		    (phy_lp_able & NWAY_LPAR_PAUSE) ? 1 : 0;
4932		igb->param_lp_asym_pause_cap =
4933		    (phy_lp_able & NWAY_LPAR_ASM_DIR) ? 1 : 0;
4934		igb->param_lp_1000fdx_cap =
4935		    (phy_1000t_status & SR_1000T_LP_FD_CAPS) ? 1 : 0;
4936		igb->param_lp_1000hdx_cap =
4937		    (phy_1000t_status & SR_1000T_LP_HD_CAPS) ? 1 : 0;
4938		igb->param_lp_100t4_cap =
4939		    (phy_lp_able & NWAY_LPAR_100T4_CAPS) ? 1 : 0;
4940		igb->param_lp_100fdx_cap =
4941		    (phy_lp_able & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0;
4942		igb->param_lp_100hdx_cap =
4943		    (phy_lp_able & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0;
4944		igb->param_lp_10fdx_cap =
4945		    (phy_lp_able & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0;
4946		igb->param_lp_10hdx_cap =
4947		    (phy_lp_able & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0;
4948		igb->param_lp_rem_fault =
4949		    (phy_lp_able & NWAY_LPAR_REMOTE_FAULT) ? 1 : 0;
4950	} else {
4951		/*
4952		 * 1Gig Fiber adapter only offers 1Gig Full Duplex.
4953		 */
4954		igb->param_autoneg_cap = 0;
4955		igb->param_pause_cap = 1;
4956		igb->param_asym_pause_cap = 1;
4957		igb->param_1000fdx_cap = 1;
4958		igb->param_1000hdx_cap = 0;
4959		igb->param_100t4_cap = 0;
4960		igb->param_100fdx_cap = 0;
4961		igb->param_100hdx_cap = 0;
4962		igb->param_10fdx_cap = 0;
4963		igb->param_10hdx_cap = 0;
4964
4965		igb->param_adv_autoneg_cap = 0;
4966		igb->param_adv_pause_cap = 1;
4967		igb->param_adv_asym_pause_cap = 1;
4968		igb->param_adv_1000fdx_cap = 1;
4969		igb->param_adv_1000hdx_cap = 0;
4970		igb->param_adv_100t4_cap = 0;
4971		igb->param_adv_100fdx_cap = 0;
4972		igb->param_adv_100hdx_cap = 0;
4973		igb->param_adv_10fdx_cap = 0;
4974		igb->param_adv_10hdx_cap = 0;
4975
4976		igb->param_lp_autoneg_cap = 0;
4977		igb->param_lp_pause_cap = 0;
4978		igb->param_lp_asym_pause_cap = 0;
4979		igb->param_lp_1000fdx_cap = 0;
4980		igb->param_lp_1000hdx_cap = 0;
4981		igb->param_lp_100t4_cap = 0;
4982		igb->param_lp_100fdx_cap = 0;
4983		igb->param_lp_100hdx_cap = 0;
4984		igb->param_lp_10fdx_cap = 0;
4985		igb->param_lp_10hdx_cap = 0;
4986		igb->param_lp_rem_fault = 0;
4987	}
4988}
4989
4990/*
4991 * synchronize the adv* and en* parameters.
4992 *
4993 * See comments in <sys/dld.h> for details of the *_en_*
4994 * parameters. The usage of ndd for setting adv parameters will
4995 * synchronize all the en parameters with the e1000g parameters,
4996 * implicitly disabling any settings made via dladm.
4997 */
4998static void
4999igb_param_sync(igb_t *igb)
5000{
5001	igb->param_en_1000fdx_cap = igb->param_adv_1000fdx_cap;
5002	igb->param_en_1000hdx_cap = igb->param_adv_1000hdx_cap;
5003	igb->param_en_100t4_cap = igb->param_adv_100t4_cap;
5004	igb->param_en_100fdx_cap = igb->param_adv_100fdx_cap;
5005	igb->param_en_100hdx_cap = igb->param_adv_100hdx_cap;
5006	igb->param_en_10fdx_cap = igb->param_adv_10fdx_cap;
5007	igb->param_en_10hdx_cap = igb->param_adv_10hdx_cap;
5008}
5009
5010/*
5011 * igb_get_driver_control
5012 */
5013static void
5014igb_get_driver_control(struct e1000_hw *hw)
5015{
5016	uint32_t ctrl_ext;
5017
5018	/* Notify firmware that driver is in control of device */
5019	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5020	ctrl_ext |= E1000_CTRL_EXT_DRV_LOAD;
5021	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5022}
5023
5024/*
5025 * igb_release_driver_control
5026 */
5027static void
5028igb_release_driver_control(struct e1000_hw *hw)
5029{
5030	uint32_t ctrl_ext;
5031
5032	/* Notify firmware that driver is no longer in control of device */
5033	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5034	ctrl_ext &= ~E1000_CTRL_EXT_DRV_LOAD;
5035	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5036}
5037
5038/*
5039 * igb_atomic_reserve - Atomic decrease operation
5040 */
5041int
5042igb_atomic_reserve(uint32_t *count_p, uint32_t n)
5043{
5044	uint32_t oldval;
5045	uint32_t newval;
5046
5047	/* ATOMICALLY */
5048	do {
5049		oldval = *count_p;
5050		if (oldval < n)
5051			return (-1);
5052		newval = oldval - n;
5053	} while (atomic_cas_32(count_p, oldval, newval) != oldval);
5054
5055	return (newval);
5056}
5057
5058/*
5059 * FMA support
5060 */
5061
5062int
5063igb_check_acc_handle(ddi_acc_handle_t handle)
5064{
5065	ddi_fm_error_t de;
5066
5067	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
5068	ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
5069	return (de.fme_status);
5070}
5071
5072int
5073igb_check_dma_handle(ddi_dma_handle_t handle)
5074{
5075	ddi_fm_error_t de;
5076
5077	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
5078	return (de.fme_status);
5079}
5080
5081/*
5082 * The IO fault service error handling callback function
5083 */
5084/*ARGSUSED*/
5085static int
5086igb_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
5087{
5088	/*
5089	 * as the driver can always deal with an error in any dma or
5090	 * access handle, we can just return the fme_status value.
5091	 */
5092	pci_ereport_post(dip, err, NULL);
5093	return (err->fme_status);
5094}
5095
5096static void
5097igb_fm_init(igb_t *igb)
5098{
5099	ddi_iblock_cookie_t iblk;
5100	int fma_dma_flag;
5101
5102	/* Only register with IO Fault Services if we have some capability */
5103	if (igb->fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
5104		igb_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
5105	} else {
5106		igb_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
5107	}
5108
5109	if (igb->fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
5110		fma_dma_flag = 1;
5111	} else {
5112		fma_dma_flag = 0;
5113	}
5114
5115	(void) igb_set_fma_flags(fma_dma_flag);
5116
5117	if (igb->fm_capabilities) {
5118
5119		/* Register capabilities with IO Fault Services */
5120		ddi_fm_init(igb->dip, &igb->fm_capabilities, &iblk);
5121
5122		/*
5123		 * Initialize pci ereport capabilities if ereport capable
5124		 */
5125		if (DDI_FM_EREPORT_CAP(igb->fm_capabilities) ||
5126		    DDI_FM_ERRCB_CAP(igb->fm_capabilities))
5127			pci_ereport_setup(igb->dip);
5128
5129		/*
5130		 * Register error callback if error callback capable
5131		 */
5132		if (DDI_FM_ERRCB_CAP(igb->fm_capabilities))
5133			ddi_fm_handler_register(igb->dip,
5134			    igb_fm_error_cb, (void*) igb);
5135	}
5136}
5137
5138static void
5139igb_fm_fini(igb_t *igb)
5140{
5141	/* Only unregister FMA capabilities if we registered some */
5142	if (igb->fm_capabilities) {
5143
5144		/*
5145		 * Release any resources allocated by pci_ereport_setup()
5146		 */
5147		if (DDI_FM_EREPORT_CAP(igb->fm_capabilities) ||
5148		    DDI_FM_ERRCB_CAP(igb->fm_capabilities))
5149			pci_ereport_teardown(igb->dip);
5150
5151		/*
5152		 * Un-register error callback if error callback capable
5153		 */
5154		if (DDI_FM_ERRCB_CAP(igb->fm_capabilities))
5155			ddi_fm_handler_unregister(igb->dip);
5156
5157		/* Unregister from IO Fault Services */
5158		ddi_fm_fini(igb->dip);
5159	}
5160}
5161
5162void
5163igb_fm_ereport(igb_t *igb, char *detail)
5164{
5165	uint64_t ena;
5166	char buf[FM_MAX_CLASS];
5167
5168	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
5169	ena = fm_ena_generate(0, FM_ENA_FMT1);
5170	if (DDI_FM_EREPORT_CAP(igb->fm_capabilities)) {
5171		ddi_fm_ereport_post(igb->dip, buf, ena, DDI_NOSLEEP,
5172		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
5173	}
5174}
5175