Bootstrap.java revision 1400:6e41fdc6acdf
1/*
2 * Copyright (c) 2010, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package jdk.nashorn.internal.runtime.linker;
27
28import static jdk.nashorn.internal.codegen.CompilerConstants.staticCallNoLookup;
29import static jdk.nashorn.internal.runtime.ECMAErrors.typeError;
30
31import java.lang.invoke.CallSite;
32import java.lang.invoke.ConstantCallSite;
33import java.lang.invoke.MethodHandle;
34import java.lang.invoke.MethodHandles;
35import java.lang.invoke.MethodHandles.Lookup;
36import java.lang.invoke.MethodType;
37import jdk.internal.dynalink.CallSiteDescriptor;
38import jdk.internal.dynalink.DynamicLinker;
39import jdk.internal.dynalink.DynamicLinkerFactory;
40import jdk.internal.dynalink.GuardedInvocationFilter;
41import jdk.internal.dynalink.beans.BeansLinker;
42import jdk.internal.dynalink.beans.StaticClass;
43import jdk.internal.dynalink.linker.GuardedInvocation;
44import jdk.internal.dynalink.linker.LinkRequest;
45import jdk.internal.dynalink.linker.LinkerServices;
46import jdk.internal.dynalink.linker.MethodTypeConversionStrategy;
47import jdk.internal.dynalink.support.TypeUtilities;
48import jdk.nashorn.api.scripting.JSObject;
49import jdk.nashorn.internal.codegen.CompilerConstants.Call;
50import jdk.nashorn.internal.lookup.MethodHandleFactory;
51import jdk.nashorn.internal.lookup.MethodHandleFunctionality;
52import jdk.nashorn.internal.objects.ScriptFunctionImpl;
53import jdk.nashorn.internal.runtime.ECMAException;
54import jdk.nashorn.internal.runtime.JSType;
55import jdk.nashorn.internal.runtime.OptimisticReturnFilters;
56import jdk.nashorn.internal.runtime.ScriptFunction;
57import jdk.nashorn.internal.runtime.ScriptRuntime;
58import jdk.nashorn.internal.runtime.options.Options;
59
60/**
61 * This class houses bootstrap method for invokedynamic instructions generated by compiler.
62 */
63public final class Bootstrap {
64    /** Reference to the seed boostrap function */
65    public static final Call BOOTSTRAP = staticCallNoLookup(Bootstrap.class, "bootstrap", CallSite.class, Lookup.class, String.class, MethodType.class, int.class);
66
67    private static final MethodHandleFunctionality MH = MethodHandleFactory.getFunctionality();
68
69    private static final MethodHandle VOID_TO_OBJECT = MH.constant(Object.class, ScriptRuntime.UNDEFINED);
70
71    /**
72     * The default dynalink relink threshold for megamorphism is 8. In the case
73     * of object fields only, it is fine. However, with dual fields, in order to get
74     * performance on benchmarks with a lot of object instantiation and then field
75     * reassignment, it can take slightly more relinks to become stable with type
76     * changes swapping out an entire property map and making a map guard fail.
77     * Since we need to set this value statically it must work with possibly changing
78     * optimistic types and dual fields settings. A higher value does not seem to have
79     * any other negative performance implication when running with object-only fields,
80     * so we choose a higher value here.
81     *
82     * See for example octane.gbemu, run with --log=fields:warning to study
83     * megamorphic behavior
84     */
85    private static final int NASHORN_DEFAULT_UNSTABLE_RELINK_THRESHOLD = 16;
86
87    // do not create me!!
88    private Bootstrap() {
89    }
90
91    private static final DynamicLinker dynamicLinker;
92    static {
93        final DynamicLinkerFactory factory = new DynamicLinkerFactory();
94        final NashornBeansLinker nashornBeansLinker = new NashornBeansLinker();
95        factory.setPrioritizedLinkers(
96            new NashornLinker(),
97            new NashornPrimitiveLinker(),
98            new NashornStaticClassLinker(),
99            new BoundCallableLinker(),
100            new JavaSuperAdapterLinker(),
101            new JSObjectLinker(nashornBeansLinker),
102            new BrowserJSObjectLinker(nashornBeansLinker),
103            new ReflectionCheckLinker());
104        factory.setFallbackLinkers(nashornBeansLinker, new NashornBottomLinker());
105        factory.setSyncOnRelink(true);
106        factory.setPrelinkFilter(new GuardedInvocationFilter() {
107            @Override
108            public GuardedInvocation filter(final GuardedInvocation inv, final LinkRequest request, final LinkerServices linkerServices) {
109                final CallSiteDescriptor desc = request.getCallSiteDescriptor();
110                return OptimisticReturnFilters.filterOptimisticReturnValue(inv, desc).asType(linkerServices, desc.getMethodType());
111            }
112        });
113        factory.setAutoConversionStrategy(new MethodTypeConversionStrategy() {
114            @Override
115            public MethodHandle asType(final MethodHandle target, final MethodType newType) {
116                return unboxReturnType(target, newType);
117            }
118        });
119        factory.setInternalObjectsFilter(NashornBeansLinker.createHiddenObjectFilter());
120        final int relinkThreshold = Options.getIntProperty("nashorn.unstable.relink.threshold", NASHORN_DEFAULT_UNSTABLE_RELINK_THRESHOLD);
121        if (relinkThreshold > -1) {
122            factory.setUnstableRelinkThreshold(relinkThreshold);
123        }
124
125        // Linkers for any additional language runtimes deployed alongside Nashorn will be picked up by the factory.
126        factory.setClassLoader(Bootstrap.class.getClassLoader());
127
128        dynamicLinker = factory.createLinker();
129    }
130
131    /**
132     * Returns if the given object is a "callable"
133     * @param obj object to be checked for callability
134     * @return true if the obj is callable
135     */
136    public static boolean isCallable(final Object obj) {
137        if (obj == ScriptRuntime.UNDEFINED || obj == null) {
138            return false;
139        }
140
141        return obj instanceof ScriptFunction ||
142            isJSObjectFunction(obj) ||
143            BeansLinker.isDynamicMethod(obj) ||
144            obj instanceof BoundCallable ||
145            isFunctionalInterfaceObject(obj) ||
146            obj instanceof StaticClass;
147    }
148
149    /**
150     * Returns true if the given object is a strict callable
151     * @param callable the callable object to be checked for strictness
152     * @return true if the obj is a strict callable, false if it is a non-strict callable.
153     * @throws ECMAException with {@code TypeError} if the object is not a callable.
154     */
155    public static boolean isStrictCallable(final Object callable) {
156        if (callable instanceof ScriptFunction) {
157            return ((ScriptFunction)callable).isStrict();
158        } else if (isJSObjectFunction(callable)) {
159            return ((JSObject)callable).isStrictFunction();
160        } else if (callable instanceof BoundCallable) {
161            return isStrictCallable(((BoundCallable)callable).getCallable());
162        } else if (BeansLinker.isDynamicMethod(callable) || callable instanceof StaticClass) {
163            return false;
164        }
165        throw notFunction(callable);
166    }
167
168    private static ECMAException notFunction(final Object obj) {
169        return typeError("not.a.function", ScriptRuntime.safeToString(obj));
170    }
171
172    private static boolean isJSObjectFunction(final Object obj) {
173        return obj instanceof JSObject && ((JSObject)obj).isFunction();
174    }
175
176    /**
177     * Returns if the given object is a dynalink Dynamic method
178     * @param obj object to be checked
179     * @return true if the obj is a dynamic method
180     */
181    public static boolean isDynamicMethod(final Object obj) {
182        return BeansLinker.isDynamicMethod(obj instanceof BoundCallable ? ((BoundCallable)obj).getCallable() : obj);
183    }
184
185    /**
186     * Returns if the given object is an instance of an interface annotated with
187     * java.lang.FunctionalInterface
188     * @param obj object to be checked
189     * @return true if the obj is an instance of @FunctionalInterface interface
190     */
191    public static boolean isFunctionalInterfaceObject(final Object obj) {
192        return !JSType.isPrimitive(obj) && (NashornBeansLinker.getFunctionalInterfaceMethodName(obj.getClass()) != null);
193    }
194
195    /**
196     * Create a call site and link it for Nashorn. This version of the method conforms to the invokedynamic bootstrap
197     * method expected signature and is referenced from Nashorn generated bytecode as the bootstrap method for all
198     * invokedynamic instructions.
199     * @param lookup MethodHandle lookup. Ignored as Nashorn only uses public lookup.
200     * @param opDesc Dynalink dynamic operation descriptor.
201     * @param type   Method type.
202     * @param flags  flags for call type, trace/profile etc.
203     * @return CallSite with MethodHandle to appropriate method or null if not found.
204     */
205    public static CallSite bootstrap(final Lookup lookup, final String opDesc, final MethodType type, final int flags) {
206        return dynamicLinker.link(LinkerCallSite.newLinkerCallSite(lookup, opDesc, type, flags));
207    }
208
209    /**
210     * Boostrapper for math calls that may overflow
211     * @param lookup         lookup
212     * @param name           name of operation
213     * @param type           method type
214     * @param programPoint   program point to bind to callsite
215     *
216     * @return callsite for a math intrinsic node
217     */
218    public static CallSite mathBootstrap(final MethodHandles.Lookup lookup, final String name, final MethodType type, final int programPoint) {
219        final MethodHandle mh;
220        switch (name) {
221        case "iadd":
222            mh = JSType.ADD_EXACT.methodHandle();
223            break;
224        case "isub":
225            mh = JSType.SUB_EXACT.methodHandle();
226            break;
227        case "imul":
228            mh = JSType.MUL_EXACT.methodHandle();
229            break;
230        case "idiv":
231            mh = JSType.DIV_EXACT.methodHandle();
232            break;
233        case "irem":
234            mh = JSType.REM_EXACT.methodHandle();
235            break;
236        case "ineg":
237            mh = JSType.NEGATE_EXACT.methodHandle();
238            break;
239        case "ladd":
240            mh = JSType.ADD_EXACT_LONG.methodHandle();
241            break;
242        case "lsub":
243            mh = JSType.SUB_EXACT_LONG.methodHandle();
244            break;
245        case "lmul":
246            mh = JSType.MUL_EXACT_LONG.methodHandle();
247            break;
248        case "ldiv":
249            mh = JSType.DIV_EXACT_LONG.methodHandle();
250            break;
251        case "lrem":
252            mh = JSType.REM_EXACT_LONG.methodHandle();
253            break;
254        case "lneg":
255            mh = JSType.NEGATE_EXACT_LONG.methodHandle();
256            break;
257        default:
258            throw new AssertionError("unsupported math intrinsic");
259        }
260        return new ConstantCallSite(MH.insertArguments(mh, mh.type().parameterCount() - 1, programPoint));
261    }
262
263    /**
264     * Returns a dynamic invoker for a specified dynamic operation using the public lookup. You can use this method to
265     * create a method handle that when invoked acts completely as if it were a Nashorn-linked call site. An overview of
266     * available dynamic operations can be found in the
267     * <a href="https://github.com/szegedi/dynalink/wiki/User-Guide-0.6">Dynalink User Guide</a>, but we'll show few
268     * examples here:
269     * <ul>
270     *   <li>Get a named property with fixed name:
271     *     <pre>
272     * MethodHandle getColor = Boostrap.createDynamicInvoker("dyn:getProp:color", Object.class, Object.class);
273     * Object obj = ...; // somehow obtain the object
274     * Object color = getColor.invokeExact(obj);
275     *     </pre>
276     *   </li>
277     *   <li>Get a named property with variable name:
278     *     <pre>
279     * MethodHandle getProperty = Boostrap.createDynamicInvoker("dyn:getElem", Object.class, Object.class, String.class);
280     * Object obj = ...; // somehow obtain the object
281     * Object color = getProperty.invokeExact(obj, "color");
282     * Object shape = getProperty.invokeExact(obj, "shape");
283     * MethodHandle getNumProperty = Boostrap.createDynamicInvoker("dyn:getElem", Object.class, Object.class, int.class);
284     * Object elem42 = getNumProperty.invokeExact(obj, 42);
285     *     </pre>
286     *   </li>
287     *   <li>Set a named property with fixed name:
288     *     <pre>
289     * MethodHandle setColor = Boostrap.createDynamicInvoker("dyn:setProp:color", void.class, Object.class, Object.class);
290     * Object obj = ...; // somehow obtain the object
291     * setColor.invokeExact(obj, Color.BLUE);
292     *     </pre>
293     *   </li>
294     *   <li>Set a property with variable name:
295     *     <pre>
296     * MethodHandle setProperty = Boostrap.createDynamicInvoker("dyn:setElem", void.class, Object.class, String.class, Object.class);
297     * Object obj = ...; // somehow obtain the object
298     * setProperty.invokeExact(obj, "color", Color.BLUE);
299     * setProperty.invokeExact(obj, "shape", Shape.CIRCLE);
300     *     </pre>
301     *   </li>
302     *   <li>Call a function on an object; two-step variant. This is the actual variant used by Nashorn-generated code:
303     *     <pre>
304     * MethodHandle findFooFunction = Boostrap.createDynamicInvoker("dyn:getMethod:foo", Object.class, Object.class);
305     * Object obj = ...; // somehow obtain the object
306     * Object foo_fn = findFooFunction.invokeExact(obj);
307     * MethodHandle callFunctionWithTwoArgs = Boostrap.createDynamicInvoker("dyn:call", Object.class, Object.class, Object.class, Object.class, Object.class);
308     * // Note: "call" operation takes a function, then a "this" value, then the arguments:
309     * Object foo_retval = callFunctionWithTwoArgs.invokeExact(foo_fn, obj, arg1, arg2);
310     *     </pre>
311     *   </li>
312     *   <li>Call a function on an object; single-step variant. Although Nashorn doesn't use this variant and never
313     *   emits any INVOKEDYNAMIC instructions with {@code dyn:getMethod}, it still supports this standard Dynalink
314     *   operation:
315     *     <pre>
316     * MethodHandle callFunctionFooWithTwoArgs = Boostrap.createDynamicInvoker("dyn:callMethod:foo", Object.class, Object.class, Object.class, Object.class);
317     * Object obj = ...; // somehow obtain the object
318     * Object foo_retval = callFunctionFooWithTwoArgs.invokeExact(obj, arg1, arg2);
319     *     </pre>
320     *   </li>
321     * </ul>
322     * Few additional remarks:
323     * <ul>
324     * <li>Just as Nashorn works with any Java object, the invokers returned from this method can also be applied to
325     * arbitrary Java objects in addition to Nashorn JavaScript objects.</li>
326     * <li>For invoking a named function on an object, you can also use the {@link InvokeByName} convenience class.</li>
327     * <li>For Nashorn objects {@code getElem}, {@code getProp}, and {@code getMethod} are handled almost identically,
328     * since JavaScript doesn't distinguish between different kinds of properties on an object. Either can be used with
329     * fixed property name or a variable property name. The only significant difference is handling of missing
330     * properties: {@code getMethod} for a missing member will link to a potential invocation of
331     * {@code __noSuchMethod__} on the object, {@code getProp} for a missing member will link to a potential invocation
332     * of {@code __noSuchProperty__}, while {@code getElem} for a missing member will link to an empty getter.</li>
333     * <li>In similar vein, {@code setElem} and {@code setProp} are handled identically on Nashorn objects.</li>
334     * <li>There's no rule that the variable property identifier has to be a {@code String} for {@code getProp/setProp}
335     * and {@code int} for {@code getElem/setElem}. You can declare their type to be {@code int}, {@code double},
336     * {@code Object}, and so on regardless of the kind of the operation.</li>
337     * <li>You can be as specific in parameter types as you want. E.g. if you know that the receiver of the operation
338     * will always be {@code ScriptObject}, you can pass {@code ScriptObject.class} as its parameter type. If you happen
339     * to link to a method that expects different types, (you can use these invokers on POJOs too, after all, and end up
340     * linking with their methods that have strongly-typed signatures), all necessary conversions allowed by either Java
341     * or JavaScript will be applied: if invoked methods specify either primitive or wrapped Java numeric types, or
342     * {@code String} or {@code boolean/Boolean}, then the parameters might be subjected to standard ECMAScript
343     * {@code ToNumber}, {@code ToString}, and {@code ToBoolean} conversion, respectively. Less obviously, if the
344     * expected parameter type is a SAM type, and you pass a JavaScript function, a proxy object implementing the SAM
345     * type and delegating to the function will be passed. Linkage can often be optimized when linkers have more
346     * specific type information than "everything can be an object".</li>
347     * <li>You can also be as specific in return types as you want. For return types any necessary type conversion
348     * available in either Java or JavaScript will be automatically applied, similar to the process described for
349     * parameters, only in reverse direction:  if you specify any either primitive or wrapped Java numeric type, or
350     * {@code String} or {@code boolean/Boolean}, then the return values will be subjected to standard ECMAScript
351     * {@code ToNumber}, {@code ToString}, and {@code ToBoolean} conversion, respectively. Less obviously, if the return
352     * type is a SAM type, and the return value is a JavaScript function, a proxy object implementing the SAM type and
353     * delegating to the function will be returned.</li>
354     * </ul>
355     * @param opDesc Dynalink dynamic operation descriptor.
356     * @param rtype the return type for the operation
357     * @param ptypes the parameter types for the operation
358     * @return MethodHandle for invoking the operation.
359     */
360    public static MethodHandle createDynamicInvoker(final String opDesc, final Class<?> rtype, final Class<?>... ptypes) {
361        return createDynamicInvoker(opDesc, MethodType.methodType(rtype, ptypes));
362    }
363
364    /**
365     * Returns a dynamic invoker for a specified dynamic operation using the public lookup. Similar to
366     * {@link #createDynamicInvoker(String, Class, Class...)} but with an additional parameter to
367     * set the call site flags of the dynamic invoker.
368     * @param opDesc Dynalink dynamic operation descriptor.
369     * @param flags the call site flags for the operation
370     * @param rtype the return type for the operation
371     * @param ptypes the parameter types for the operation
372     * @return MethodHandle for invoking the operation.
373     */
374    public static MethodHandle createDynamicInvoker(final String opDesc, final int flags, final Class<?> rtype, final Class<?>... ptypes) {
375        return bootstrap(MethodHandles.publicLookup(), opDesc, MethodType.methodType(rtype, ptypes), flags).dynamicInvoker();
376    }
377
378    /**
379     * Returns a dynamic invoker for a specified dynamic operation using the public lookup. Similar to
380     * {@link #createDynamicInvoker(String, Class, Class...)} but with return and parameter types composed into a
381     * method type in the signature. See the discussion of that method for details.
382     * @param opDesc Dynalink dynamic operation descriptor.
383     * @param type the method type for the operation
384     * @return MethodHandle for invoking the operation.
385     */
386    public static MethodHandle createDynamicInvoker(final String opDesc, final MethodType type) {
387        return bootstrap(MethodHandles.publicLookup(), opDesc, type, 0).dynamicInvoker();
388    }
389
390    /**
391     * Binds any object Nashorn can use as a [[Callable]] to a receiver and optionally arguments.
392     * @param callable the callable to bind
393     * @param boundThis the bound "this" value.
394     * @param boundArgs the bound arguments. Can be either null or empty array to signify no arguments are bound.
395     * @return a bound callable.
396     * @throws ECMAException with {@code TypeError} if the object is not a callable.
397     */
398    public static Object bindCallable(final Object callable, final Object boundThis, final Object[] boundArgs) {
399        if (callable instanceof ScriptFunctionImpl) {
400            return ((ScriptFunctionImpl)callable).makeBoundFunction(boundThis, boundArgs);
401        } else if (callable instanceof BoundCallable) {
402            return ((BoundCallable)callable).bind(boundArgs);
403        } else if (isCallable(callable)) {
404            return new BoundCallable(callable, boundThis, boundArgs);
405        }
406        throw notFunction(callable);
407    }
408
409    /**
410     * Creates a super-adapter for an adapter, that is, an adapter to the adapter that allows invocation of superclass
411     * methods on it.
412     * @param adapter the original adapter
413     * @return a new adapter that can be used to invoke super methods on the original adapter.
414     */
415    public static Object createSuperAdapter(final Object adapter) {
416        return new JavaSuperAdapter(adapter);
417    }
418
419    /**
420     * If the given class is a reflection-specific class (anything in {@code java.lang.reflect} and
421     * {@code java.lang.invoke} package, as well a {@link Class} and any subclass of {@link ClassLoader}) and there is
422     * a security manager in the system, then it checks the {@code nashorn.JavaReflection} {@code RuntimePermission}.
423     * @param clazz the class being tested
424     * @param isStatic is access checked for static members (or instance members)
425     */
426    public static void checkReflectionAccess(final Class<?> clazz, final boolean isStatic) {
427        ReflectionCheckLinker.checkReflectionAccess(clazz, isStatic);
428    }
429
430    /**
431     * Returns the Nashorn's internally used dynamic linker's services object. Note that in code that is processing a
432     * linking request, you will normally use the {@code LinkerServices} object passed by whatever top-level linker
433     * invoked the linking (if the call site is in Nashorn-generated code, you'll get this object anyway). You should
434     * only resort to retrieving a linker services object using this method when you need some linker services (e.g.
435     * type converter method handles) outside of a code path that is linking a call site.
436     * @return Nashorn's internal dynamic linker's services object.
437     */
438    public static LinkerServices getLinkerServices() {
439        return dynamicLinker.getLinkerServices();
440    }
441
442    /**
443     * Takes a guarded invocation, and ensures its method and guard conform to the type of the call descriptor, using
444     * all type conversions allowed by the linker's services. This method is used by Nashorn's linkers as a last step
445     * before returning guarded invocations. Most of the code used to produce the guarded invocations does not make an
446     * effort to coordinate types of the methods, and so a final type adjustment before a guarded invocation is returned
447     * to the aggregating linker is the responsibility of the linkers themselves.
448     * @param inv the guarded invocation that needs to be type-converted. Can be null.
449     * @param linkerServices the linker services object providing the type conversions.
450     * @param desc the call site descriptor to whose method type the invocation needs to conform.
451     * @return the type-converted guarded invocation. If input is null, null is returned. If the input invocation
452     * already conforms to the requested type, it is returned unchanged.
453     */
454    static GuardedInvocation asTypeSafeReturn(final GuardedInvocation inv, final LinkerServices linkerServices, final CallSiteDescriptor desc) {
455        return inv == null ? null : inv.asTypeSafeReturn(linkerServices, desc.getMethodType());
456    }
457
458    /**
459     * Adapts the return type of the method handle with {@code explicitCastArguments} when it is an unboxing
460     * conversion. This will ensure that nulls are unwrapped to false or 0.
461     * @param target the target method handle
462     * @param newType the desired new type. Note that this method does not adapt the method handle completely to the
463     * new type, it only adapts the return type; this is allowed as per
464     * {@link DynamicLinkerFactory#setAutoConversionStrategy(MethodTypeConversionStrategy)}, which is what this method
465     * is used for.
466     * @return the method handle with adapted return type, if it required an unboxing conversion.
467     */
468    private static MethodHandle unboxReturnType(final MethodHandle target, final MethodType newType) {
469        final MethodType targetType = target.type();
470        final Class<?> oldReturnType = targetType.returnType();
471        final Class<?> newReturnType = newType.returnType();
472        if (TypeUtilities.isWrapperType(oldReturnType)) {
473            if (newReturnType.isPrimitive()) {
474                // The contract of setAutoConversionStrategy is such that the difference between newType and targetType
475                // can only be JLS method invocation conversions.
476                assert TypeUtilities.isMethodInvocationConvertible(oldReturnType, newReturnType);
477                return MethodHandles.explicitCastArguments(target, targetType.changeReturnType(newReturnType));
478            }
479        } else if (oldReturnType == void.class && newReturnType == Object.class) {
480            return MethodHandles.filterReturnValue(target, VOID_TO_OBJECT);
481        }
482        return target;
483    }
484}
485