Bootstrap.java revision 1245:c55ce3738888
1/*
2 * Copyright (c) 2010, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package jdk.nashorn.internal.runtime.linker;
27
28import static jdk.nashorn.internal.codegen.CompilerConstants.staticCallNoLookup;
29import static jdk.nashorn.internal.runtime.ECMAErrors.typeError;
30
31import java.lang.invoke.CallSite;
32import java.lang.invoke.ConstantCallSite;
33import java.lang.invoke.MethodHandle;
34import java.lang.invoke.MethodHandles;
35import java.lang.invoke.MethodHandles.Lookup;
36import java.lang.invoke.MethodType;
37import jdk.internal.dynalink.CallSiteDescriptor;
38import jdk.internal.dynalink.DynamicLinker;
39import jdk.internal.dynalink.DynamicLinkerFactory;
40import jdk.internal.dynalink.GuardedInvocationFilter;
41import jdk.internal.dynalink.beans.BeansLinker;
42import jdk.internal.dynalink.beans.StaticClass;
43import jdk.internal.dynalink.linker.GuardedInvocation;
44import jdk.internal.dynalink.linker.LinkRequest;
45import jdk.internal.dynalink.linker.LinkerServices;
46import jdk.internal.dynalink.linker.MethodTypeConversionStrategy;
47import jdk.internal.dynalink.support.TypeUtilities;
48import jdk.nashorn.api.scripting.JSObject;
49import jdk.nashorn.internal.codegen.CompilerConstants.Call;
50import jdk.nashorn.internal.codegen.ObjectClassGenerator;
51import jdk.nashorn.internal.lookup.MethodHandleFactory;
52import jdk.nashorn.internal.lookup.MethodHandleFunctionality;
53import jdk.nashorn.internal.objects.ScriptFunctionImpl;
54import jdk.nashorn.internal.runtime.ECMAException;
55import jdk.nashorn.internal.runtime.JSType;
56import jdk.nashorn.internal.runtime.OptimisticReturnFilters;
57import jdk.nashorn.internal.runtime.ScriptFunction;
58import jdk.nashorn.internal.runtime.ScriptRuntime;
59import jdk.nashorn.internal.runtime.options.Options;
60
61/**
62 * This class houses bootstrap method for invokedynamic instructions generated by compiler.
63 */
64public final class Bootstrap {
65    /** Reference to the seed boostrap function */
66    public static final Call BOOTSTRAP = staticCallNoLookup(Bootstrap.class, "bootstrap", CallSite.class, Lookup.class, String.class, MethodType.class, int.class);
67
68    private static final MethodHandleFunctionality MH = MethodHandleFactory.getFunctionality();
69
70    private static final MethodHandle VOID_TO_OBJECT = MH.constant(Object.class, ScriptRuntime.UNDEFINED);
71
72    /**
73     * The default dynalink relink threshold for megamorphisism is 8. In the case
74     * of object fields only, it is fine. However, with dual fields, in order to get
75     * performance on benchmarks with a lot of object instantiation and then field
76     * reassignment, it can take slightly more relinks to become stable with type
77     * changes swapping out an entire property map and making a map guard fail.
78     * Since we need to set this value statically it must work with possibly changing
79     * optimistic types and dual fields settings. A higher value does not seem to have
80     * any other negative performance implication when running with object-only fields,
81     * so we choose a higher value here.
82     *
83     * See for example octane.gbemu, run with --log=fields:warning to study
84     * megamorphic behavior
85     */
86    private static final int NASHORN_DEFAULT_UNSTABLE_RELINK_THRESHOLD = 16;
87
88    // do not create me!!
89    private Bootstrap() {
90    }
91
92    private static final DynamicLinker dynamicLinker;
93    static {
94        final DynamicLinkerFactory factory = new DynamicLinkerFactory();
95        final NashornBeansLinker nashornBeansLinker = new NashornBeansLinker();
96        factory.setPrioritizedLinkers(
97            new NashornLinker(),
98            new NashornPrimitiveLinker(),
99            new NashornStaticClassLinker(),
100            new BoundCallableLinker(),
101            new JavaSuperAdapterLinker(),
102            new JSObjectLinker(nashornBeansLinker),
103            new BrowserJSObjectLinker(nashornBeansLinker),
104            new ReflectionCheckLinker());
105        factory.setFallbackLinkers(nashornBeansLinker, new NashornBottomLinker());
106        factory.setSyncOnRelink(true);
107        factory.setPrelinkFilter(new GuardedInvocationFilter() {
108            @Override
109            public GuardedInvocation filter(final GuardedInvocation inv, final LinkRequest request, final LinkerServices linkerServices) {
110                final CallSiteDescriptor desc = request.getCallSiteDescriptor();
111                return OptimisticReturnFilters.filterOptimisticReturnValue(inv, desc).asType(linkerServices, desc.getMethodType());
112            }
113        });
114        factory.setAutoConversionStrategy(new MethodTypeConversionStrategy() {
115            @Override
116            public MethodHandle asType(final MethodHandle target, final MethodType newType) {
117                return unboxReturnType(target, newType);
118            }
119        });
120        factory.setInternalObjectsFilter(NashornBeansLinker.createHiddenObjectFilter());
121        final int relinkThreshold = Options.getIntProperty("nashorn.unstable.relink.threshold", NASHORN_DEFAULT_UNSTABLE_RELINK_THRESHOLD);
122        if (relinkThreshold > -1) {
123            factory.setUnstableRelinkThreshold(relinkThreshold);
124        }
125
126        // Linkers for any additional language runtimes deployed alongside Nashorn will be picked up by the factory.
127        factory.setClassLoader(Bootstrap.class.getClassLoader());
128
129        dynamicLinker = factory.createLinker();
130    }
131
132    /**
133     * Returns if the given object is a "callable"
134     * @param obj object to be checked for callability
135     * @return true if the obj is callable
136     */
137    public static boolean isCallable(final Object obj) {
138        if (obj == ScriptRuntime.UNDEFINED || obj == null) {
139            return false;
140        }
141
142        return obj instanceof ScriptFunction ||
143            isJSObjectFunction(obj) ||
144            BeansLinker.isDynamicMethod(obj) ||
145            obj instanceof BoundCallable ||
146            isFunctionalInterfaceObject(obj) ||
147            obj instanceof StaticClass;
148    }
149
150    /**
151     * Returns true if the given object is a strict callable
152     * @param callable the callable object to be checked for strictness
153     * @return true if the obj is a strict callable, false if it is a non-strict callable.
154     * @throws ECMAException with {@code TypeError} if the object is not a callable.
155     */
156    public static boolean isStrictCallable(final Object callable) {
157        if (callable instanceof ScriptFunction) {
158            return ((ScriptFunction)callable).isStrict();
159        } else if (isJSObjectFunction(callable)) {
160            return ((JSObject)callable).isStrictFunction();
161        } else if (callable instanceof BoundCallable) {
162            return isStrictCallable(((BoundCallable)callable).getCallable());
163        } else if (BeansLinker.isDynamicMethod(callable) || callable instanceof StaticClass) {
164            return false;
165        }
166        throw notFunction(callable);
167    }
168
169    private static ECMAException notFunction(final Object obj) {
170        return typeError("not.a.function", ScriptRuntime.safeToString(obj));
171    }
172
173    private static boolean isJSObjectFunction(final Object obj) {
174        return obj instanceof JSObject && ((JSObject)obj).isFunction();
175    }
176
177    /**
178     * Returns if the given object is a dynalink Dynamic method
179     * @param obj object to be checked
180     * @return true if the obj is a dynamic method
181     */
182    public static boolean isDynamicMethod(final Object obj) {
183        return BeansLinker.isDynamicMethod(obj instanceof BoundCallable ? ((BoundCallable)obj).getCallable() : obj);
184    }
185
186    /**
187     * Returns if the given object is an instance of an interface annotated with
188     * java.lang.FunctionalInterface
189     * @param obj object to be checked
190     * @return true if the obj is an instance of @FunctionalInterface interface
191     */
192    public static boolean isFunctionalInterfaceObject(final Object obj) {
193        return !JSType.isPrimitive(obj) && (NashornBeansLinker.getFunctionalInterfaceMethod(obj.getClass()) != null);
194    }
195
196    /**
197     * Create a call site and link it for Nashorn. This version of the method conforms to the invokedynamic bootstrap
198     * method expected signature and is referenced from Nashorn generated bytecode as the bootstrap method for all
199     * invokedynamic instructions.
200     * @param lookup MethodHandle lookup. Ignored as Nashorn only uses public lookup.
201     * @param opDesc Dynalink dynamic operation descriptor.
202     * @param type   Method type.
203     * @param flags  flags for call type, trace/profile etc.
204     * @return CallSite with MethodHandle to appropriate method or null if not found.
205     */
206    public static CallSite bootstrap(final Lookup lookup, final String opDesc, final MethodType type, final int flags) {
207        return dynamicLinker.link(LinkerCallSite.newLinkerCallSite(lookup, opDesc, type, flags));
208    }
209
210    /**
211     * Boostrapper for math calls that may overflow
212     * @param lookup         lookup
213     * @param name           name of operation
214     * @param type           method type
215     * @param programPoint   program point to bind to callsite
216     *
217     * @return callsite for a math instrinic node
218     */
219    public static CallSite mathBootstrap(final MethodHandles.Lookup lookup, final String name, final MethodType type, final int programPoint) {
220        final MethodHandle mh;
221        switch (name) {
222        case "iadd":
223            mh = JSType.ADD_EXACT.methodHandle();
224            break;
225        case "isub":
226            mh = JSType.SUB_EXACT.methodHandle();
227            break;
228        case "imul":
229            mh = JSType.MUL_EXACT.methodHandle();
230            break;
231        case "idiv":
232            mh = JSType.DIV_EXACT.methodHandle();
233            break;
234        case "irem":
235            mh = JSType.REM_EXACT.methodHandle();
236            break;
237        case "ineg":
238            mh = JSType.NEGATE_EXACT.methodHandle();
239            break;
240        case "ladd":
241            mh = JSType.ADD_EXACT_LONG.methodHandle();
242            break;
243        case "lsub":
244            mh = JSType.SUB_EXACT_LONG.methodHandle();
245            break;
246        case "lmul":
247            mh = JSType.MUL_EXACT_LONG.methodHandle();
248            break;
249        case "ldiv":
250            mh = JSType.DIV_EXACT_LONG.methodHandle();
251            break;
252        case "lrem":
253            mh = JSType.REM_EXACT_LONG.methodHandle();
254            break;
255        case "lneg":
256            mh = JSType.NEGATE_EXACT_LONG.methodHandle();
257            break;
258        default:
259            throw new AssertionError("unsupported math intrinsic");
260        }
261        return new ConstantCallSite(MH.insertArguments(mh, mh.type().parameterCount() - 1, programPoint));
262    }
263
264    /**
265     * Returns a dynamic invoker for a specified dynamic operation using the public lookup. You can use this method to
266     * create a method handle that when invoked acts completely as if it were a Nashorn-linked call site. An overview of
267     * available dynamic operations can be found in the
268     * <a href="https://github.com/szegedi/dynalink/wiki/User-Guide-0.6">Dynalink User Guide</a>, but we'll show few
269     * examples here:
270     * <ul>
271     *   <li>Get a named property with fixed name:
272     *     <pre>
273     * MethodHandle getColor = Boostrap.createDynamicInvoker("dyn:getProp:color", Object.class, Object.class);
274     * Object obj = ...; // somehow obtain the object
275     * Object color = getColor.invokeExact(obj);
276     *     </pre>
277     *   </li>
278     *   <li>Get a named property with variable name:
279     *     <pre>
280     * MethodHandle getProperty = Boostrap.createDynamicInvoker("dyn:getElem", Object.class, Object.class, String.class);
281     * Object obj = ...; // somehow obtain the object
282     * Object color = getProperty.invokeExact(obj, "color");
283     * Object shape = getProperty.invokeExact(obj, "shape");
284     * MethodHandle getNumProperty = Boostrap.createDynamicInvoker("dyn:getElem", Object.class, Object.class, int.class);
285     * Object elem42 = getNumProperty.invokeExact(obj, 42);
286     *     </pre>
287     *   </li>
288     *   <li>Set a named property with fixed name:
289     *     <pre>
290     * MethodHandle setColor = Boostrap.createDynamicInvoker("dyn:setProp:color", void.class, Object.class, Object.class);
291     * Object obj = ...; // somehow obtain the object
292     * setColor.invokeExact(obj, Color.BLUE);
293     *     </pre>
294     *   </li>
295     *   <li>Set a property with variable name:
296     *     <pre>
297     * MethodHandle setProperty = Boostrap.createDynamicInvoker("dyn:setElem", void.class, Object.class, String.class, Object.class);
298     * Object obj = ...; // somehow obtain the object
299     * setProperty.invokeExact(obj, "color", Color.BLUE);
300     * setProperty.invokeExact(obj, "shape", Shape.CIRCLE);
301     *     </pre>
302     *   </li>
303     *   <li>Call a function on an object; two-step variant. This is the actual variant used by Nashorn-generated code:
304     *     <pre>
305     * MethodHandle findFooFunction = Boostrap.createDynamicInvoker("dyn:getMethod:foo", Object.class, Object.class);
306     * Object obj = ...; // somehow obtain the object
307     * Object foo_fn = findFooFunction.invokeExact(obj);
308     * MethodHandle callFunctionWithTwoArgs = Boostrap.createDynamicInvoker("dyn:call", Object.class, Object.class, Object.class, Object.class, Object.class);
309     * // Note: "call" operation takes a function, then a "this" value, then the arguments:
310     * Object foo_retval = callFunctionWithTwoArgs.invokeExact(foo_fn, obj, arg1, arg2);
311     *     </pre>
312     *   </li>
313     *   <li>Call a function on an object; single-step variant. Although Nashorn doesn't use this variant and never
314     *   emits any INVOKEDYNAMIC instructions with {@code dyn:getMethod}, it still supports this standard Dynalink
315     *   operation:
316     *     <pre>
317     * MethodHandle callFunctionFooWithTwoArgs = Boostrap.createDynamicInvoker("dyn:callMethod:foo", Object.class, Object.class, Object.class, Object.class);
318     * Object obj = ...; // somehow obtain the object
319     * Object foo_retval = callFunctionFooWithTwoArgs.invokeExact(obj, arg1, arg2);
320     *     </pre>
321     *   </li>
322     * </ul>
323     * Few additional remarks:
324     * <ul>
325     * <li>Just as Nashorn works with any Java object, the invokers returned from this method can also be applied to
326     * arbitrary Java objects in addition to Nashorn JavaScript objects.</li>
327     * <li>For invoking a named function on an object, you can also use the {@link InvokeByName} convenience class.</li>
328     * <li>For Nashorn objects {@code getElem}, {@code getProp}, and {@code getMethod} are handled almost identically,
329     * since JavaScript doesn't distinguish between different kinds of properties on an object. Either can be used with
330     * fixed property name or a variable property name. The only significant difference is handling of missing
331     * properties: {@code getMethod} for a missing member will link to a potential invocation of
332     * {@code __noSuchMethod__} on the object, {@code getProp} for a missing member will link to a potential invocation
333     * of {@code __noSuchProperty__}, while {@code getElem} for a missing member will link to an empty getter.</li>
334     * <li>In similar vein, {@code setElem} and {@code setProp} are handled identically on Nashorn objects.</li>
335     * <li>There's no rule that the variable property identifier has to be a {@code String} for {@code getProp/setProp}
336     * and {@code int} for {@code getElem/setElem}. You can declare their type to be {@code int}, {@code double},
337     * {@code Object}, and so on regardless of the kind of the operation.</li>
338     * <li>You can be as specific in parameter types as you want. E.g. if you know that the receiver of the operation
339     * will always be {@code ScriptObject}, you can pass {@code ScriptObject.class} as its parameter type. If you happen
340     * to link to a method that expects different types, (you can use these invokers on POJOs too, after all, and end up
341     * linking with their methods that have strongly-typed signatures), all necessary conversions allowed by either Java
342     * or JavaScript will be applied: if invoked methods specify either primitive or wrapped Java numeric types, or
343     * {@code String} or {@code boolean/Boolean}, then the parameters might be subjected to standard ECMAScript
344     * {@code ToNumber}, {@code ToString}, and {@code ToBoolean} conversion, respectively. Less obviously, if the
345     * expected parameter type is a SAM type, and you pass a JavaScript function, a proxy object implementing the SAM
346     * type and delegating to the function will be passed. Linkage can often be optimized when linkers have more
347     * specific type information than "everything can be an object".</li>
348     * <li>You can also be as specific in return types as you want. For return types any necessary type conversion
349     * available in either Java or JavaScript will be automatically applied, similar to the process described for
350     * parameters, only in reverse direction:  if you specify any either primitive or wrapped Java numeric type, or
351     * {@code String} or {@code boolean/Boolean}, then the return values will be subjected to standard ECMAScript
352     * {@code ToNumber}, {@code ToString}, and {@code ToBoolean} conversion, respectively. Less obviously, if the return
353     * type is a SAM type, and the return value is a JavaScript function, a proxy object implementing the SAM type and
354     * delegating to the function will be returned.</li>
355     * </ul>
356     * @param opDesc Dynalink dynamic operation descriptor.
357     * @param rtype the return type for the operation
358     * @param ptypes the parameter types for the operation
359     * @return MethodHandle for invoking the operation.
360     */
361    public static MethodHandle createDynamicInvoker(final String opDesc, final Class<?> rtype, final Class<?>... ptypes) {
362        return createDynamicInvoker(opDesc, MethodType.methodType(rtype, ptypes));
363    }
364
365    /**
366     * Returns a dynamic invoker for a specified dynamic operation using the public lookup. Similar to
367     * {@link #createDynamicInvoker(String, Class, Class...)} but with an additional parameter to
368     * set the call site flags of the dynamic invoker.
369     * @param opDesc Dynalink dynamic operation descriptor.
370     * @param flags the call site flags for the operation
371     * @param rtype the return type for the operation
372     * @param ptypes the parameter types for the operation
373     * @return MethodHandle for invoking the operation.
374     */
375    public static MethodHandle createDynamicInvoker(final String opDesc, final int flags, final Class<?> rtype, final Class<?>... ptypes) {
376        return bootstrap(MethodHandles.publicLookup(), opDesc, MethodType.methodType(rtype, ptypes), flags).dynamicInvoker();
377    }
378
379    /**
380     * Returns a dynamic invoker for a specified dynamic operation using the public lookup. Similar to
381     * {@link #createDynamicInvoker(String, Class, Class...)} but with return and parameter types composed into a
382     * method type in the signature. See the discussion of that method for details.
383     * @param opDesc Dynalink dynamic operation descriptor.
384     * @param type the method type for the operation
385     * @return MethodHandle for invoking the operation.
386     */
387    public static MethodHandle createDynamicInvoker(final String opDesc, final MethodType type) {
388        return bootstrap(MethodHandles.publicLookup(), opDesc, type, 0).dynamicInvoker();
389    }
390
391    /**
392     * Binds any object Nashorn can use as a [[Callable]] to a receiver and optionally arguments.
393     * @param callable the callable to bind
394     * @param boundThis the bound "this" value.
395     * @param boundArgs the bound arguments. Can be either null or empty array to signify no arguments are bound.
396     * @return a bound callable.
397     * @throws ECMAException with {@code TypeError} if the object is not a callable.
398     */
399    public static Object bindCallable(final Object callable, final Object boundThis, final Object[] boundArgs) {
400        if (callable instanceof ScriptFunctionImpl) {
401            return ((ScriptFunctionImpl)callable).makeBoundFunction(boundThis, boundArgs);
402        } else if (callable instanceof BoundCallable) {
403            return ((BoundCallable)callable).bind(boundArgs);
404        } else if (isCallable(callable)) {
405            return new BoundCallable(callable, boundThis, boundArgs);
406        }
407        throw notFunction(callable);
408    }
409
410    /**
411     * Creates a super-adapter for an adapter, that is, an adapter to the adapter that allows invocation of superclass
412     * methods on it.
413     * @param adapter the original adapter
414     * @return a new adapter that can be used to invoke super methods on the original adapter.
415     */
416    public static Object createSuperAdapter(final Object adapter) {
417        return new JavaSuperAdapter(adapter);
418    }
419
420    /**
421     * If the given class is a reflection-specific class (anything in {@code java.lang.reflect} and
422     * {@code java.lang.invoke} package, as well a {@link Class} and any subclass of {@link ClassLoader}) and there is
423     * a security manager in the system, then it checks the {@code nashorn.JavaReflection} {@code RuntimePermission}.
424     * @param clazz the class being tested
425     * @param isStatic is access checked for static members (or instance members)
426     */
427    public static void checkReflectionAccess(final Class<?> clazz, final boolean isStatic) {
428        ReflectionCheckLinker.checkReflectionAccess(clazz, isStatic);
429    }
430
431    /**
432     * Returns the Nashorn's internally used dynamic linker's services object. Note that in code that is processing a
433     * linking request, you will normally use the {@code LinkerServices} object passed by whatever top-level linker
434     * invoked the linking (if the call site is in Nashorn-generated code, you'll get this object anyway). You should
435     * only resort to retrieving a linker services object using this method when you need some linker services (e.g.
436     * type converter method handles) outside of a code path that is linking a call site.
437     * @return Nashorn's internal dynamic linker's services object.
438     */
439    public static LinkerServices getLinkerServices() {
440        return dynamicLinker.getLinkerServices();
441    }
442
443    /**
444     * Takes a guarded invocation, and ensures its method and guard conform to the type of the call descriptor, using
445     * all type conversions allowed by the linker's services. This method is used by Nashorn's linkers as a last step
446     * before returning guarded invocations. Most of the code used to produce the guarded invocations does not make an
447     * effort to coordinate types of the methods, and so a final type adjustment before a guarded invocation is returned
448     * to the aggregating linker is the responsibility of the linkers themselves.
449     * @param inv the guarded invocation that needs to be type-converted. Can be null.
450     * @param linkerServices the linker services object providing the type conversions.
451     * @param desc the call site descriptor to whose method type the invocation needs to conform.
452     * @return the type-converted guarded invocation. If input is null, null is returned. If the input invocation
453     * already conforms to the requested type, it is returned unchanged.
454     */
455    static GuardedInvocation asTypeSafeReturn(final GuardedInvocation inv, final LinkerServices linkerServices, final CallSiteDescriptor desc) {
456        return inv == null ? null : inv.asTypeSafeReturn(linkerServices, desc.getMethodType());
457    }
458
459    /**
460     * Adapts the return type of the method handle with {@code explicitCastArguments} when it is an unboxing
461     * conversion. This will ensure that nulls are unwrapped to false or 0.
462     * @param target the target method handle
463     * @param newType the desired new type. Note that this method does not adapt the method handle completely to the
464     * new type, it only adapts the return type; this is allowed as per
465     * {@link DynamicLinkerFactory#setAutoConversionStrategy(MethodTypeConversionStrategy)}, which is what this method
466     * is used for.
467     * @return the method handle with adapted return type, if it required an unboxing conversion.
468     */
469    private static MethodHandle unboxReturnType(final MethodHandle target, final MethodType newType) {
470        final MethodType targetType = target.type();
471        final Class<?> oldReturnType = targetType.returnType();
472        final Class<?> newReturnType = newType.returnType();
473        if (TypeUtilities.isWrapperType(oldReturnType)) {
474            if (newReturnType.isPrimitive()) {
475                // The contract of setAutoConversionStrategy is such that the difference between newType and targetType
476                // can only be JLS method invocation conversions.
477                assert TypeUtilities.isMethodInvocationConvertible(oldReturnType, newReturnType);
478                return MethodHandles.explicitCastArguments(target, targetType.changeReturnType(newReturnType));
479            }
480        } else if (oldReturnType == void.class && newReturnType == Object.class) {
481            return MethodHandles.filterReturnValue(target, VOID_TO_OBJECT);
482        }
483        return target;
484    }
485}
486