Bootstrap.java revision 1197:20c3aef2b4cb
1/*
2 * Copyright (c) 2010, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package jdk.nashorn.internal.runtime.linker;
27
28import static jdk.nashorn.internal.codegen.CompilerConstants.staticCallNoLookup;
29import static jdk.nashorn.internal.runtime.ECMAErrors.typeError;
30
31import java.lang.invoke.CallSite;
32import java.lang.invoke.ConstantCallSite;
33import java.lang.invoke.MethodHandle;
34import java.lang.invoke.MethodHandles;
35import java.lang.invoke.MethodHandles.Lookup;
36import java.lang.invoke.MethodType;
37import jdk.internal.dynalink.CallSiteDescriptor;
38import jdk.internal.dynalink.DynamicLinker;
39import jdk.internal.dynalink.DynamicLinkerFactory;
40import jdk.internal.dynalink.GuardedInvocationFilter;
41import jdk.internal.dynalink.beans.BeansLinker;
42import jdk.internal.dynalink.beans.StaticClass;
43import jdk.internal.dynalink.linker.GuardedInvocation;
44import jdk.internal.dynalink.linker.LinkRequest;
45import jdk.internal.dynalink.linker.LinkerServices;
46import jdk.internal.dynalink.linker.MethodTypeConversionStrategy;
47import jdk.internal.dynalink.support.TypeUtilities;
48import jdk.nashorn.api.scripting.JSObject;
49import jdk.nashorn.internal.codegen.CompilerConstants.Call;
50import jdk.nashorn.internal.codegen.ObjectClassGenerator;
51import jdk.nashorn.internal.lookup.MethodHandleFactory;
52import jdk.nashorn.internal.lookup.MethodHandleFunctionality;
53import jdk.nashorn.internal.objects.ScriptFunctionImpl;
54import jdk.nashorn.internal.runtime.ECMAException;
55import jdk.nashorn.internal.runtime.JSType;
56import jdk.nashorn.internal.runtime.OptimisticReturnFilters;
57import jdk.nashorn.internal.runtime.ScriptFunction;
58import jdk.nashorn.internal.runtime.ScriptRuntime;
59import jdk.nashorn.internal.runtime.options.Options;
60
61/**
62 * This class houses bootstrap method for invokedynamic instructions generated by compiler.
63 */
64public final class Bootstrap {
65    /** Reference to the seed boostrap function */
66    public static final Call BOOTSTRAP = staticCallNoLookup(Bootstrap.class, "bootstrap", CallSite.class, Lookup.class, String.class, MethodType.class, int.class);
67
68    private static final MethodHandleFunctionality MH = MethodHandleFactory.getFunctionality();
69
70    private static final MethodHandle VOID_TO_OBJECT = MH.constant(Object.class, ScriptRuntime.UNDEFINED);
71
72    /**
73     * The default dynalink relink threshold for megamorphisism is 8. In the case
74     * of object fields only, it is fine. However, with dual fields, in order to get
75     * performance on benchmarks with a lot of object instantiation and then field
76     * reassignment, it can take slightly more relinks to become stable with type
77     * changes swapping out an entire proprety map and making a map guard fail.
78     * Therefore the relink threshold is set to 16 for dual fields (now the default).
79     * This doesn't seem to have any other negative performance implication.
80     *
81     * See for example octane.gbemu, run with --log=fields:warning to study
82     * megamorphic behavior
83     */
84    private static final int NASHORN_DEFAULT_UNSTABLE_RELINK_THRESHOLD =
85            ObjectClassGenerator.OBJECT_FIELDS_ONLY ?
86                     8 :
87                    16;
88
89    // do not create me!!
90    private Bootstrap() {
91    }
92
93    private static final DynamicLinker dynamicLinker;
94    static {
95        final DynamicLinkerFactory factory = new DynamicLinkerFactory();
96        final NashornBeansLinker nashornBeansLinker = new NashornBeansLinker();
97        factory.setPrioritizedLinkers(
98            new NashornLinker(),
99            new NashornPrimitiveLinker(),
100            new NashornStaticClassLinker(),
101            new BoundCallableLinker(),
102            new JavaSuperAdapterLinker(),
103            new JSObjectLinker(nashornBeansLinker),
104            new BrowserJSObjectLinker(nashornBeansLinker),
105            new ReflectionCheckLinker());
106        factory.setFallbackLinkers(nashornBeansLinker, new NashornBottomLinker());
107        factory.setSyncOnRelink(true);
108        factory.setPrelinkFilter(new GuardedInvocationFilter() {
109            @Override
110            public GuardedInvocation filter(final GuardedInvocation inv, final LinkRequest request, final LinkerServices linkerServices) {
111                final CallSiteDescriptor desc = request.getCallSiteDescriptor();
112                return OptimisticReturnFilters.filterOptimisticReturnValue(inv, desc).asType(linkerServices, desc.getMethodType());
113            }
114        });
115        factory.setAutoConversionStrategy(new MethodTypeConversionStrategy() {
116            @Override
117            public MethodHandle asType(final MethodHandle target, final MethodType newType) {
118                return unboxReturnType(target, newType);
119            }
120        });
121        factory.setInternalObjectsFilter(NashornBeansLinker.createHiddenObjectFilter());
122        final int relinkThreshold = Options.getIntProperty("nashorn.unstable.relink.threshold", NASHORN_DEFAULT_UNSTABLE_RELINK_THRESHOLD);
123        if (relinkThreshold > -1) {
124            factory.setUnstableRelinkThreshold(relinkThreshold);
125        }
126
127        // Linkers for any additional language runtimes deployed alongside Nashorn will be picked up by the factory.
128        factory.setClassLoader(Bootstrap.class.getClassLoader());
129
130        dynamicLinker = factory.createLinker();
131    }
132
133    /**
134     * Returns if the given object is a "callable"
135     * @param obj object to be checked for callability
136     * @return true if the obj is callable
137     */
138    public static boolean isCallable(final Object obj) {
139        if (obj == ScriptRuntime.UNDEFINED || obj == null) {
140            return false;
141        }
142
143        return obj instanceof ScriptFunction ||
144            isJSObjectFunction(obj) ||
145            BeansLinker.isDynamicMethod(obj) ||
146            obj instanceof BoundCallable ||
147            isFunctionalInterfaceObject(obj) ||
148            obj instanceof StaticClass;
149    }
150
151    /**
152     * Returns true if the given object is a strict callable
153     * @param callable the callable object to be checked for strictness
154     * @return true if the obj is a strict callable, false if it is a non-strict callable.
155     * @throws ECMAException with {@code TypeError} if the object is not a callable.
156     */
157    public static boolean isStrictCallable(final Object callable) {
158        if (callable instanceof ScriptFunction) {
159            return ((ScriptFunction)callable).isStrict();
160        } else if (isJSObjectFunction(callable)) {
161            return ((JSObject)callable).isStrictFunction();
162        } else if (callable instanceof BoundCallable) {
163            return isStrictCallable(((BoundCallable)callable).getCallable());
164        } else if (BeansLinker.isDynamicMethod(callable) || callable instanceof StaticClass) {
165            return false;
166        }
167        throw notFunction(callable);
168    }
169
170    private static ECMAException notFunction(final Object obj) {
171        return typeError("not.a.function", ScriptRuntime.safeToString(obj));
172    }
173
174    private static boolean isJSObjectFunction(final Object obj) {
175        return obj instanceof JSObject && ((JSObject)obj).isFunction();
176    }
177
178    /**
179     * Returns if the given object is a dynalink Dynamic method
180     * @param obj object to be checked
181     * @return true if the obj is a dynamic method
182     */
183    public static boolean isDynamicMethod(final Object obj) {
184        return BeansLinker.isDynamicMethod(obj instanceof BoundCallable ? ((BoundCallable)obj).getCallable() : obj);
185    }
186
187    /**
188     * Returns if the given object is an instance of an interface annotated with
189     * java.lang.FunctionalInterface
190     * @param obj object to be checked
191     * @return true if the obj is an instance of @FunctionalInterface interface
192     */
193    public static boolean isFunctionalInterfaceObject(final Object obj) {
194        return !JSType.isPrimitive(obj) && (NashornBeansLinker.getFunctionalInterfaceMethod(obj.getClass()) != null);
195    }
196
197    /**
198     * Create a call site and link it for Nashorn. This version of the method conforms to the invokedynamic bootstrap
199     * method expected signature and is referenced from Nashorn generated bytecode as the bootstrap method for all
200     * invokedynamic instructions.
201     * @param lookup MethodHandle lookup. Ignored as Nashorn only uses public lookup.
202     * @param opDesc Dynalink dynamic operation descriptor.
203     * @param type   Method type.
204     * @param flags  flags for call type, trace/profile etc.
205     * @return CallSite with MethodHandle to appropriate method or null if not found.
206     */
207    public static CallSite bootstrap(final Lookup lookup, final String opDesc, final MethodType type, final int flags) {
208        return dynamicLinker.link(LinkerCallSite.newLinkerCallSite(lookup, opDesc, type, flags));
209    }
210
211    /**
212     * Boostrapper for math calls that may overflow
213     * @param lookup         lookup
214     * @param name           name of operation
215     * @param type           method type
216     * @param programPoint   program point to bind to callsite
217     *
218     * @return callsite for a math instrinic node
219     */
220    public static CallSite mathBootstrap(final MethodHandles.Lookup lookup, final String name, final MethodType type, final int programPoint) {
221        final MethodHandle mh;
222        switch (name) {
223        case "iadd":
224            mh = JSType.ADD_EXACT.methodHandle();
225            break;
226        case "isub":
227            mh = JSType.SUB_EXACT.methodHandle();
228            break;
229        case "imul":
230            mh = JSType.MUL_EXACT.methodHandle();
231            break;
232        case "idiv":
233            mh = JSType.DIV_EXACT.methodHandle();
234            break;
235        case "irem":
236            mh = JSType.REM_EXACT.methodHandle();
237            break;
238        case "ineg":
239            mh = JSType.NEGATE_EXACT.methodHandle();
240            break;
241        case "ladd":
242            mh = JSType.ADD_EXACT_LONG.methodHandle();
243            break;
244        case "lsub":
245            mh = JSType.SUB_EXACT_LONG.methodHandle();
246            break;
247        case "lmul":
248            mh = JSType.MUL_EXACT_LONG.methodHandle();
249            break;
250        case "ldiv":
251            mh = JSType.DIV_EXACT_LONG.methodHandle();
252            break;
253        case "lrem":
254            mh = JSType.REM_EXACT_LONG.methodHandle();
255            break;
256        case "lneg":
257            mh = JSType.NEGATE_EXACT_LONG.methodHandle();
258            break;
259        default:
260            throw new AssertionError("unsupported math intrinsic");
261        }
262        return new ConstantCallSite(MH.insertArguments(mh, mh.type().parameterCount() - 1, programPoint));
263    }
264
265    /**
266     * Returns a dynamic invoker for a specified dynamic operation using the public lookup. You can use this method to
267     * create a method handle that when invoked acts completely as if it were a Nashorn-linked call site. An overview of
268     * available dynamic operations can be found in the
269     * <a href="https://github.com/szegedi/dynalink/wiki/User-Guide-0.6">Dynalink User Guide</a>, but we'll show few
270     * examples here:
271     * <ul>
272     *   <li>Get a named property with fixed name:
273     *     <pre>
274     * MethodHandle getColor = Boostrap.createDynamicInvoker("dyn:getProp:color", Object.class, Object.class);
275     * Object obj = ...; // somehow obtain the object
276     * Object color = getColor.invokeExact(obj);
277     *     </pre>
278     *   </li>
279     *   <li>Get a named property with variable name:
280     *     <pre>
281     * MethodHandle getProperty = Boostrap.createDynamicInvoker("dyn:getElem", Object.class, Object.class, String.class);
282     * Object obj = ...; // somehow obtain the object
283     * Object color = getProperty.invokeExact(obj, "color");
284     * Object shape = getProperty.invokeExact(obj, "shape");
285     * MethodHandle getNumProperty = Boostrap.createDynamicInvoker("dyn:getElem", Object.class, Object.class, int.class);
286     * Object elem42 = getNumProperty.invokeExact(obj, 42);
287     *     </pre>
288     *   </li>
289     *   <li>Set a named property with fixed name:
290     *     <pre>
291     * MethodHandle setColor = Boostrap.createDynamicInvoker("dyn:setProp:color", void.class, Object.class, Object.class);
292     * Object obj = ...; // somehow obtain the object
293     * setColor.invokeExact(obj, Color.BLUE);
294     *     </pre>
295     *   </li>
296     *   <li>Set a property with variable name:
297     *     <pre>
298     * MethodHandle setProperty = Boostrap.createDynamicInvoker("dyn:setElem", void.class, Object.class, String.class, Object.class);
299     * Object obj = ...; // somehow obtain the object
300     * setProperty.invokeExact(obj, "color", Color.BLUE);
301     * setProperty.invokeExact(obj, "shape", Shape.CIRCLE);
302     *     </pre>
303     *   </li>
304     *   <li>Call a function on an object; two-step variant. This is the actual variant used by Nashorn-generated code:
305     *     <pre>
306     * MethodHandle findFooFunction = Boostrap.createDynamicInvoker("dyn:getMethod:foo", Object.class, Object.class);
307     * Object obj = ...; // somehow obtain the object
308     * Object foo_fn = findFooFunction.invokeExact(obj);
309     * MethodHandle callFunctionWithTwoArgs = Boostrap.createDynamicInvoker("dyn:call", Object.class, Object.class, Object.class, Object.class, Object.class);
310     * // Note: "call" operation takes a function, then a "this" value, then the arguments:
311     * Object foo_retval = callFunctionWithTwoArgs.invokeExact(foo_fn, obj, arg1, arg2);
312     *     </pre>
313     *   </li>
314     *   <li>Call a function on an object; single-step variant. Although Nashorn doesn't use this variant and never
315     *   emits any INVOKEDYNAMIC instructions with {@code dyn:getMethod}, it still supports this standard Dynalink
316     *   operation:
317     *     <pre>
318     * MethodHandle callFunctionFooWithTwoArgs = Boostrap.createDynamicInvoker("dyn:callMethod:foo", Object.class, Object.class, Object.class, Object.class);
319     * Object obj = ...; // somehow obtain the object
320     * Object foo_retval = callFunctionFooWithTwoArgs.invokeExact(obj, arg1, arg2);
321     *     </pre>
322     *   </li>
323     * </ul>
324     * Few additional remarks:
325     * <ul>
326     * <li>Just as Nashorn works with any Java object, the invokers returned from this method can also be applied to
327     * arbitrary Java objects in addition to Nashorn JavaScript objects.</li>
328     * <li>For invoking a named function on an object, you can also use the {@link InvokeByName} convenience class.</li>
329     * <li>For Nashorn objects {@code getElem}, {@code getProp}, and {@code getMethod} are handled almost identically,
330     * since JavaScript doesn't distinguish between different kinds of properties on an object. Either can be used with
331     * fixed property name or a variable property name. The only significant difference is handling of missing
332     * properties: {@code getMethod} for a missing member will link to a potential invocation of
333     * {@code __noSuchMethod__} on the object, {@code getProp} for a missing member will link to a potential invocation
334     * of {@code __noSuchProperty__}, while {@code getElem} for a missing member will link to an empty getter.</li>
335     * <li>In similar vein, {@code setElem} and {@code setProp} are handled identically on Nashorn objects.</li>
336     * <li>There's no rule that the variable property identifier has to be a {@code String} for {@code getProp/setProp}
337     * and {@code int} for {@code getElem/setElem}. You can declare their type to be {@code int}, {@code double},
338     * {@code Object}, and so on regardless of the kind of the operation.</li>
339     * <li>You can be as specific in parameter types as you want. E.g. if you know that the receiver of the operation
340     * will always be {@code ScriptObject}, you can pass {@code ScriptObject.class} as its parameter type. If you happen
341     * to link to a method that expects different types, (you can use these invokers on POJOs too, after all, and end up
342     * linking with their methods that have strongly-typed signatures), all necessary conversions allowed by either Java
343     * or JavaScript will be applied: if invoked methods specify either primitive or wrapped Java numeric types, or
344     * {@code String} or {@code boolean/Boolean}, then the parameters might be subjected to standard ECMAScript
345     * {@code ToNumber}, {@code ToString}, and {@code ToBoolean} conversion, respectively. Less obviously, if the
346     * expected parameter type is a SAM type, and you pass a JavaScript function, a proxy object implementing the SAM
347     * type and delegating to the function will be passed. Linkage can often be optimized when linkers have more
348     * specific type information than "everything can be an object".</li>
349     * <li>You can also be as specific in return types as you want. For return types any necessary type conversion
350     * available in either Java or JavaScript will be automatically applied, similar to the process described for
351     * parameters, only in reverse direction:  if you specify any either primitive or wrapped Java numeric type, or
352     * {@code String} or {@code boolean/Boolean}, then the return values will be subjected to standard ECMAScript
353     * {@code ToNumber}, {@code ToString}, and {@code ToBoolean} conversion, respectively. Less obviously, if the return
354     * type is a SAM type, and the return value is a JavaScript function, a proxy object implementing the SAM type and
355     * delegating to the function will be returned.</li>
356     * </ul>
357     * @param opDesc Dynalink dynamic operation descriptor.
358     * @param rtype the return type for the operation
359     * @param ptypes the parameter types for the operation
360     * @return MethodHandle for invoking the operation.
361     */
362    public static MethodHandle createDynamicInvoker(final String opDesc, final Class<?> rtype, final Class<?>... ptypes) {
363        return createDynamicInvoker(opDesc, MethodType.methodType(rtype, ptypes));
364    }
365
366    /**
367     * Returns a dynamic invoker for a specified dynamic operation using the public lookup. Similar to
368     * {@link #createDynamicInvoker(String, Class, Class...)} but with an additional parameter to
369     * set the call site flags of the dynamic invoker.
370     * @param opDesc Dynalink dynamic operation descriptor.
371     * @param flags the call site flags for the operation
372     * @param rtype the return type for the operation
373     * @param ptypes the parameter types for the operation
374     * @return MethodHandle for invoking the operation.
375     */
376    public static MethodHandle createDynamicInvoker(final String opDesc, final int flags, final Class<?> rtype, final Class<?>... ptypes) {
377        return bootstrap(MethodHandles.publicLookup(), opDesc, MethodType.methodType(rtype, ptypes), flags).dynamicInvoker();
378    }
379
380    /**
381     * Returns a dynamic invoker for a specified dynamic operation using the public lookup. Similar to
382     * {@link #createDynamicInvoker(String, Class, Class...)} but with return and parameter types composed into a
383     * method type in the signature. See the discussion of that method for details.
384     * @param opDesc Dynalink dynamic operation descriptor.
385     * @param type the method type for the operation
386     * @return MethodHandle for invoking the operation.
387     */
388    public static MethodHandle createDynamicInvoker(final String opDesc, final MethodType type) {
389        return bootstrap(MethodHandles.publicLookup(), opDesc, type, 0).dynamicInvoker();
390    }
391
392    /**
393     * Binds any object Nashorn can use as a [[Callable]] to a receiver and optionally arguments.
394     * @param callable the callable to bind
395     * @param boundThis the bound "this" value.
396     * @param boundArgs the bound arguments. Can be either null or empty array to signify no arguments are bound.
397     * @return a bound callable.
398     * @throws ECMAException with {@code TypeError} if the object is not a callable.
399     */
400    public static Object bindCallable(final Object callable, final Object boundThis, final Object[] boundArgs) {
401        if (callable instanceof ScriptFunctionImpl) {
402            return ((ScriptFunctionImpl)callable).makeBoundFunction(boundThis, boundArgs);
403        } else if (callable instanceof BoundCallable) {
404            return ((BoundCallable)callable).bind(boundArgs);
405        } else if (isCallable(callable)) {
406            return new BoundCallable(callable, boundThis, boundArgs);
407        }
408        throw notFunction(callable);
409    }
410
411    /**
412     * Creates a super-adapter for an adapter, that is, an adapter to the adapter that allows invocation of superclass
413     * methods on it.
414     * @param adapter the original adapter
415     * @return a new adapter that can be used to invoke super methods on the original adapter.
416     */
417    public static Object createSuperAdapter(final Object adapter) {
418        return new JavaSuperAdapter(adapter);
419    }
420
421    /**
422     * If the given class is a reflection-specific class (anything in {@code java.lang.reflect} and
423     * {@code java.lang.invoke} package, as well a {@link Class} and any subclass of {@link ClassLoader}) and there is
424     * a security manager in the system, then it checks the {@code nashorn.JavaReflection} {@code RuntimePermission}.
425     * @param clazz the class being tested
426     * @param isStatic is access checked for static members (or instance members)
427     */
428    public static void checkReflectionAccess(final Class<?> clazz, final boolean isStatic) {
429        ReflectionCheckLinker.checkReflectionAccess(clazz, isStatic);
430    }
431
432    /**
433     * Returns the Nashorn's internally used dynamic linker's services object. Note that in code that is processing a
434     * linking request, you will normally use the {@code LinkerServices} object passed by whatever top-level linker
435     * invoked the linking (if the call site is in Nashorn-generated code, you'll get this object anyway). You should
436     * only resort to retrieving a linker services object using this method when you need some linker services (e.g.
437     * type converter method handles) outside of a code path that is linking a call site.
438     * @return Nashorn's internal dynamic linker's services object.
439     */
440    public static LinkerServices getLinkerServices() {
441        return dynamicLinker.getLinkerServices();
442    }
443
444    /**
445     * Takes a guarded invocation, and ensures its method and guard conform to the type of the call descriptor, using
446     * all type conversions allowed by the linker's services. This method is used by Nashorn's linkers as a last step
447     * before returning guarded invocations. Most of the code used to produce the guarded invocations does not make an
448     * effort to coordinate types of the methods, and so a final type adjustment before a guarded invocation is returned
449     * to the aggregating linker is the responsibility of the linkers themselves.
450     * @param inv the guarded invocation that needs to be type-converted. Can be null.
451     * @param linkerServices the linker services object providing the type conversions.
452     * @param desc the call site descriptor to whose method type the invocation needs to conform.
453     * @return the type-converted guarded invocation. If input is null, null is returned. If the input invocation
454     * already conforms to the requested type, it is returned unchanged.
455     */
456    static GuardedInvocation asTypeSafeReturn(final GuardedInvocation inv, final LinkerServices linkerServices, final CallSiteDescriptor desc) {
457        return inv == null ? null : inv.asTypeSafeReturn(linkerServices, desc.getMethodType());
458    }
459
460    /**
461     * Adapts the return type of the method handle with {@code explicitCastArguments} when it is an unboxing
462     * conversion. This will ensure that nulls are unwrapped to false or 0.
463     * @param target the target method handle
464     * @param newType the desired new type. Note that this method does not adapt the method handle completely to the
465     * new type, it only adapts the return type; this is allowed as per
466     * {@link DynamicLinkerFactory#setAutoConversionStrategy(MethodTypeConversionStrategy)}, which is what this method
467     * is used for.
468     * @return the method handle with adapted return type, if it required an unboxing conversion.
469     */
470    private static MethodHandle unboxReturnType(final MethodHandle target, final MethodType newType) {
471        final MethodType targetType = target.type();
472        final Class<?> oldReturnType = targetType.returnType();
473        final Class<?> newReturnType = newType.returnType();
474        if (TypeUtilities.isWrapperType(oldReturnType)) {
475            if (newReturnType.isPrimitive()) {
476                // The contract of setAutoConversionStrategy is such that the difference between newType and targetType
477                // can only be JLS method invocation conversions.
478                assert TypeUtilities.isMethodInvocationConvertible(oldReturnType, newReturnType);
479                return MethodHandles.explicitCastArguments(target, targetType.changeReturnType(newReturnType));
480            }
481        } else if (oldReturnType == void.class && newReturnType == Object.class) {
482            return MethodHandles.filterReturnValue(target, VOID_TO_OBJECT);
483        }
484        return target;
485    }
486}
487