RecompilableScriptFunctionData.java revision 1256:b275aac76cdd
1/*
2 * Copyright (c) 2010, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package jdk.nashorn.internal.runtime;
27
28import static jdk.nashorn.internal.lookup.Lookup.MH;
29import java.io.IOException;
30import java.lang.invoke.MethodHandle;
31import java.lang.invoke.MethodHandles;
32import java.lang.invoke.MethodType;
33import java.util.Collection;
34import java.util.Collections;
35import java.util.HashSet;
36import java.util.Map;
37import java.util.Set;
38import java.util.TreeMap;
39import jdk.internal.dynalink.support.NameCodec;
40import jdk.nashorn.internal.codegen.Compiler;
41import jdk.nashorn.internal.codegen.Compiler.CompilationPhases;
42import jdk.nashorn.internal.codegen.CompilerConstants;
43import jdk.nashorn.internal.codegen.FunctionSignature;
44import jdk.nashorn.internal.codegen.Namespace;
45import jdk.nashorn.internal.codegen.OptimisticTypesPersistence;
46import jdk.nashorn.internal.codegen.TypeMap;
47import jdk.nashorn.internal.codegen.types.Type;
48import jdk.nashorn.internal.ir.FunctionNode;
49import jdk.nashorn.internal.ir.LexicalContext;
50import jdk.nashorn.internal.ir.visitor.NodeVisitor;
51import jdk.nashorn.internal.objects.Global;
52import jdk.nashorn.internal.parser.Parser;
53import jdk.nashorn.internal.parser.Token;
54import jdk.nashorn.internal.parser.TokenType;
55import jdk.nashorn.internal.runtime.logging.DebugLogger;
56import jdk.nashorn.internal.runtime.logging.Loggable;
57import jdk.nashorn.internal.runtime.logging.Logger;
58/**
59 * This is a subclass that represents a script function that may be regenerated,
60 * for example with specialization based on call site types, or lazily generated.
61 * The common denominator is that it can get new invokers during its lifespan,
62 * unlike {@code FinalScriptFunctionData}
63 */
64@Logger(name="recompile")
65public final class RecompilableScriptFunctionData extends ScriptFunctionData implements Loggable {
66    /** Prefix used for all recompiled script classes */
67    public static final String RECOMPILATION_PREFIX = "Recompilation$";
68
69    /** Unique function node id for this function node */
70    private final int functionNodeId;
71
72    private final String functionName;
73
74    /** The line number where this function begins. */
75    private final int lineNumber;
76
77    /** Source from which FunctionNode was parsed. */
78    private transient Source source;
79
80    /** Serialized, compressed form of the AST. Used by split functions as they can't be reparsed from source. */
81    private final byte[] serializedAst;
82
83    /** Token of this function within the source. */
84    private final long token;
85
86    /**
87     * Represents the allocation strategy (property map, script object class, and method handle) for when
88     * this function is used as a constructor. Note that majority of functions (those not setting any this.*
89     * properties) will share a single canonical "default strategy" instance.
90     */
91    private final AllocationStrategy allocationStrategy;
92
93    /**
94     * Opaque object representing parser state at the end of the function. Used when reparsing outer function
95     * to help with skipping parsing inner functions.
96     */
97    private final Object endParserState;
98
99    /** Code installer used for all further recompilation/specialization of this ScriptFunction */
100    private transient CodeInstaller<ScriptEnvironment> installer;
101
102    private final Map<Integer, RecompilableScriptFunctionData> nestedFunctions;
103
104    /** Id to parent function if one exists */
105    private RecompilableScriptFunctionData parent;
106
107    /** Copy of the {@link FunctionNode} flags. */
108    private final int functionFlags;
109
110    private static final MethodHandles.Lookup LOOKUP = MethodHandles.lookup();
111
112    private transient DebugLogger log;
113
114    private final Map<String, Integer> externalScopeDepths;
115
116    private final Set<String> internalSymbols;
117
118    private static final int GET_SET_PREFIX_LENGTH = "*et ".length();
119
120    private static final long serialVersionUID = 4914839316174633726L;
121
122    /**
123     * Constructor - public as scripts use it
124     *
125     * @param functionNode        functionNode that represents this function code
126     * @param installer           installer for code regeneration versions of this function
127     * @param allocationStrategy  strategy for the allocation behavior when this function is used as a constructor
128     * @param nestedFunctions     nested function map
129     * @param externalScopeDepths external scope depths
130     * @param internalSymbols     internal symbols to method, defined in its scope
131     * @param serializedAst       a serialized AST representation. Normally only used for split functions.
132     */
133    public RecompilableScriptFunctionData(
134        final FunctionNode functionNode,
135        final CodeInstaller<ScriptEnvironment> installer,
136        final AllocationStrategy allocationStrategy,
137        final Map<Integer, RecompilableScriptFunctionData> nestedFunctions,
138        final Map<String, Integer> externalScopeDepths,
139        final Set<String> internalSymbols,
140        final byte[] serializedAst) {
141
142        super(functionName(functionNode),
143              Math.min(functionNode.getParameters().size(), MAX_ARITY),
144              getDataFlags(functionNode));
145
146        this.functionName        = functionNode.getName();
147        this.lineNumber          = functionNode.getLineNumber();
148        this.functionFlags       = functionNode.getFlags() | (functionNode.needsCallee() ? FunctionNode.NEEDS_CALLEE : 0);
149        this.functionNodeId      = functionNode.getId();
150        this.source              = functionNode.getSource();
151        this.endParserState      = functionNode.getEndParserState();
152        this.token               = tokenFor(functionNode);
153        this.installer           = installer;
154        this.allocationStrategy  = allocationStrategy;
155        this.nestedFunctions     = smallMap(nestedFunctions);
156        this.externalScopeDepths = smallMap(externalScopeDepths);
157        this.internalSymbols     = smallSet(new HashSet<>(internalSymbols));
158
159        for (final RecompilableScriptFunctionData nfn : nestedFunctions.values()) {
160            assert nfn.getParent() == null;
161            nfn.setParent(this);
162        }
163
164        this.serializedAst = serializedAst;
165        createLogger();
166    }
167
168    private static <K, V> Map<K, V> smallMap(final Map<K, V> map) {
169        if (map == null || map.isEmpty()) {
170            return Collections.emptyMap();
171        } else if (map.size() == 1) {
172            final Map.Entry<K, V> entry = map.entrySet().iterator().next();
173            return Collections.singletonMap(entry.getKey(), entry.getValue());
174        } else {
175            return map;
176        }
177    }
178
179    private static <T> Set<T> smallSet(final Set<T> set) {
180        if (set == null || set.isEmpty()) {
181            return Collections.emptySet();
182        } else if (set.size() == 1) {
183            return Collections.singleton(set.iterator().next());
184        } else {
185            return set;
186        }
187    }
188
189    @Override
190    public DebugLogger getLogger() {
191        return log;
192    }
193
194    @Override
195    public DebugLogger initLogger(final Context ctxt) {
196        return ctxt.getLogger(this.getClass());
197    }
198
199    /**
200     * Check if a symbol is internally defined in a function. For example
201     * if "undefined" is internally defined in the outermost program function,
202     * it has not been reassigned or overridden and can be optimized
203     *
204     * @param symbolName symbol name
205     * @return true if symbol is internal to this ScriptFunction
206     */
207
208    public boolean hasInternalSymbol(final String symbolName) {
209        return internalSymbols.contains(symbolName);
210    }
211
212    /**
213     * Return the external symbol table
214     * @param symbolName symbol name
215     * @return the external symbol table with proto depths
216     */
217    public int getExternalSymbolDepth(final String symbolName) {
218        final Integer depth = externalScopeDepths.get(symbolName);
219        return depth == null ? -1 : depth;
220    }
221
222    /**
223     * Returns the names of all external symbols this function uses.
224     * @return the names of all external symbols this function uses.
225     */
226    public Set<String> getExternalSymbolNames() {
227        return Collections.unmodifiableSet(externalScopeDepths.keySet());
228    }
229
230    /**
231     * Returns the opaque object representing the parser state at the end of this function's body, used to
232     * skip parsing this function when reparsing its containing outer function.
233     * @return the object representing the end parser state
234     */
235    public Object getEndParserState() {
236        return endParserState;
237    }
238
239    /**
240     * Get the parent of this RecompilableScriptFunctionData. If we are
241     * a nested function, we have a parent. Note that "null" return value
242     * can also mean that we have a parent but it is unknown, so this can
243     * only be used for conservative assumptions.
244     * @return parent data, or null if non exists and also null IF UNKNOWN.
245     */
246    public RecompilableScriptFunctionData getParent() {
247       return parent;
248    }
249
250    void setParent(final RecompilableScriptFunctionData parent) {
251        this.parent = parent;
252    }
253
254    @Override
255    String toSource() {
256        if (source != null && token != 0) {
257            return source.getString(Token.descPosition(token), Token.descLength(token));
258        }
259
260        return "function " + (name == null ? "" : name) + "() { [native code] }";
261    }
262
263    /**
264     * Initialize transient fields on deserialized instances
265     *
266     * @param src source
267     * @param inst code installer
268     */
269    public void initTransients(final Source src, final CodeInstaller<ScriptEnvironment> inst) {
270        if (this.source == null && this.installer == null) {
271            this.source    = src;
272            this.installer = inst;
273        } else if (this.source != src || !this.installer.isCompatibleWith(inst)) {
274            // Existing values must be same as those passed as parameters
275            throw new IllegalArgumentException();
276        }
277    }
278
279    @Override
280    public String toString() {
281        return super.toString() + '@' + functionNodeId;
282    }
283
284    @Override
285    public String toStringVerbose() {
286        final StringBuilder sb = new StringBuilder();
287
288        sb.append("fnId=").append(functionNodeId).append(' ');
289
290        if (source != null) {
291            sb.append(source.getName())
292                .append(':')
293                .append(lineNumber)
294                .append(' ');
295        }
296
297        return sb.toString() + super.toString();
298    }
299
300    @Override
301    public String getFunctionName() {
302        return functionName;
303    }
304
305    @Override
306    public boolean inDynamicContext() {
307        return getFunctionFlag(FunctionNode.IN_DYNAMIC_CONTEXT);
308    }
309
310    private static String functionName(final FunctionNode fn) {
311        if (fn.isAnonymous()) {
312            return "";
313        }
314        final FunctionNode.Kind kind = fn.getKind();
315        if (kind == FunctionNode.Kind.GETTER || kind == FunctionNode.Kind.SETTER) {
316            final String name = NameCodec.decode(fn.getIdent().getName());
317            return name.substring(GET_SET_PREFIX_LENGTH);
318        }
319        return fn.getIdent().getName();
320    }
321
322    private static long tokenFor(final FunctionNode fn) {
323        final int  position  = Token.descPosition(fn.getFirstToken());
324        final long lastToken = Token.withDelimiter(fn.getLastToken());
325        // EOL uses length field to store the line number
326        final int  length    = Token.descPosition(lastToken) - position + (Token.descType(lastToken) == TokenType.EOL ? 0 : Token.descLength(lastToken));
327
328        return Token.toDesc(TokenType.FUNCTION, position, length);
329    }
330
331    private static int getDataFlags(final FunctionNode functionNode) {
332        int flags = IS_CONSTRUCTOR;
333        if (functionNode.isStrict()) {
334            flags |= IS_STRICT;
335        }
336        if (functionNode.needsCallee()) {
337            flags |= NEEDS_CALLEE;
338        }
339        if (functionNode.usesThis() || functionNode.hasEval()) {
340            flags |= USES_THIS;
341        }
342        if (functionNode.isVarArg()) {
343            flags |= IS_VARIABLE_ARITY;
344        }
345        return flags;
346    }
347
348    @Override
349    PropertyMap getAllocatorMap() {
350        return allocationStrategy.getAllocatorMap();
351    }
352
353    @Override
354    ScriptObject allocate(final PropertyMap map) {
355        return allocationStrategy.allocate(map);
356    }
357
358    boolean isSerialized() {
359        return serializedAst != null;
360    }
361
362    FunctionNode reparse() {
363        if (isSerialized()) {
364            return deserialize();
365        }
366
367        final int descPosition = Token.descPosition(token);
368        final Context context = Context.getContextTrusted();
369        final Parser parser = new Parser(
370            context.getEnv(),
371            source,
372            new Context.ThrowErrorManager(),
373            isStrict(),
374            // source starts at line 0, so even though lineNumber is the correct declaration line, back off
375            // one to make it exclusive
376            lineNumber - 1,
377            context.getLogger(Parser.class));
378
379        if (getFunctionFlag(FunctionNode.IS_ANONYMOUS)) {
380            parser.setFunctionName(functionName);
381        }
382        parser.setReparsedFunction(this);
383
384        final FunctionNode program = parser.parse(CompilerConstants.PROGRAM.symbolName(), descPosition,
385                Token.descLength(token), true);
386        // Parser generates a program AST even if we're recompiling a single function, so when we are only
387        // recompiling a single function, extract it from the program.
388        return (isProgram() ? program : extractFunctionFromScript(program)).setName(null, functionName);
389    }
390
391    private FunctionNode deserialize() {
392        final ScriptEnvironment env = installer.getOwner();
393        final Timing timing = env._timing;
394        final long t1 = System.nanoTime();
395        try {
396            return AstDeserializer.deserialize(serializedAst).initializeDeserialized(source, new Namespace(env.getNamespace()));
397        } finally {
398            timing.accumulateTime("'Deserialize'", System.nanoTime() - t1);
399        }
400    }
401
402    private boolean getFunctionFlag(final int flag) {
403        return (functionFlags & flag) != 0;
404    }
405
406    private boolean isProgram() {
407        return getFunctionFlag(FunctionNode.IS_PROGRAM);
408    }
409
410    TypeMap typeMap(final MethodType fnCallSiteType) {
411        if (fnCallSiteType == null) {
412            return null;
413        }
414
415        if (CompiledFunction.isVarArgsType(fnCallSiteType)) {
416            return null;
417        }
418
419        return new TypeMap(functionNodeId, explicitParams(fnCallSiteType), needsCallee());
420    }
421
422    private static ScriptObject newLocals(final ScriptObject runtimeScope) {
423        final ScriptObject locals = Global.newEmptyInstance();
424        locals.setProto(runtimeScope);
425        return locals;
426    }
427
428    private Compiler getCompiler(final FunctionNode fn, final MethodType actualCallSiteType, final ScriptObject runtimeScope) {
429        return getCompiler(fn, actualCallSiteType, newLocals(runtimeScope), null, null);
430    }
431
432    /**
433     * Returns a code installer for installing new code. If we're using either optimistic typing or loader-per-compile,
434     * then asks for a code installer with a new class loader; otherwise just uses the current installer. We use
435     * a new class loader with optimistic typing so that deoptimized code can get reclaimed by GC.
436     * @return a code installer for installing new code.
437     */
438    private CodeInstaller<ScriptEnvironment> getInstallerForNewCode() {
439        final ScriptEnvironment env = installer.getOwner();
440        return env._optimistic_types || env._loader_per_compile ? installer.withNewLoader() : installer;
441    }
442
443    Compiler getCompiler(final FunctionNode functionNode, final MethodType actualCallSiteType,
444            final ScriptObject runtimeScope, final Map<Integer, Type> invalidatedProgramPoints,
445            final int[] continuationEntryPoints) {
446        final TypeMap typeMap = typeMap(actualCallSiteType);
447        final Type[] paramTypes = typeMap == null ? null : typeMap.getParameterTypes(functionNodeId);
448        final Object typeInformationFile = OptimisticTypesPersistence.getLocationDescriptor(source, functionNodeId, paramTypes);
449        final Context context = Context.getContextTrusted();
450        return new Compiler(
451                context,
452                context.getEnv(),
453                getInstallerForNewCode(),
454                functionNode.getSource(),  // source
455                context.getErrorManager(),
456                isStrict() | functionNode.isStrict(), // is strict
457                true,       // is on demand
458                this,       // compiledFunction, i.e. this RecompilableScriptFunctionData
459                typeMap,    // type map
460                getEffectiveInvalidatedProgramPoints(invalidatedProgramPoints, typeInformationFile), // invalidated program points
461                typeInformationFile,
462                continuationEntryPoints, // continuation entry points
463                runtimeScope); // runtime scope
464    }
465
466    /**
467     * If the function being compiled already has its own invalidated program points map, use it. Otherwise, attempt to
468     * load invalidated program points map from the persistent type info cache.
469     * @param invalidatedProgramPoints the function's current invalidated program points map. Null if the function
470     * doesn't have it.
471     * @param typeInformationFile the object describing the location of the persisted type information.
472     * @return either the existing map, or a loaded map from the persistent type info cache, or a new empty map if
473     * neither an existing map or a persistent cached type info is available.
474     */
475    @SuppressWarnings("unused")
476    private static Map<Integer, Type> getEffectiveInvalidatedProgramPoints(
477            final Map<Integer, Type> invalidatedProgramPoints, final Object typeInformationFile) {
478        if(invalidatedProgramPoints != null) {
479            return invalidatedProgramPoints;
480        }
481        final Map<Integer, Type> loadedProgramPoints = OptimisticTypesPersistence.load(typeInformationFile);
482        return loadedProgramPoints != null ? loadedProgramPoints : new TreeMap<Integer, Type>();
483    }
484
485    private FunctionInitializer compileTypeSpecialization(final MethodType actualCallSiteType, final ScriptObject runtimeScope, final boolean persist) {
486        // We're creating an empty script object for holding local variables. AssignSymbols will populate it with
487        // explicit Undefined values for undefined local variables (see AssignSymbols#defineSymbol() and
488        // CompilationEnvironment#declareLocalSymbol()).
489
490        if (log.isEnabled()) {
491            log.info("Parameter type specialization of '", functionName, "' signature: ", actualCallSiteType);
492        }
493
494        final boolean persistentCache = usePersistentCodeCache() && persist;
495        String cacheKey = null;
496        if (persistentCache) {
497            final TypeMap typeMap = typeMap(actualCallSiteType);
498            final Type[] paramTypes = typeMap == null ? null : typeMap.getParameterTypes(functionNodeId);
499            cacheKey = CodeStore.getCacheKey(functionNodeId, paramTypes);
500            final CodeInstaller<ScriptEnvironment> newInstaller = getInstallerForNewCode();
501            final StoredScript script = newInstaller.loadScript(source, cacheKey);
502
503            if (script != null) {
504                Compiler.updateCompilationId(script.getCompilationId());
505                return script.installFunction(this, newInstaller);
506            }
507        }
508
509        final FunctionNode fn = reparse();
510        final Compiler compiler = getCompiler(fn, actualCallSiteType, runtimeScope);
511        final FunctionNode compiledFn = compiler.compile(fn,
512                isSerialized() ? CompilationPhases.COMPILE_ALL_SERIALIZED : CompilationPhases.COMPILE_ALL);
513
514        if (persist && !compiledFn.getFlag(FunctionNode.HAS_APPLY_TO_CALL_SPECIALIZATION)) {
515            compiler.persistClassInfo(cacheKey, compiledFn);
516        }
517        return new FunctionInitializer(compiledFn, compiler.getInvalidatedProgramPoints());
518    }
519
520    boolean usePersistentCodeCache() {
521        final ScriptEnvironment env = installer.getOwner();
522        return env._persistent_cache && env._optimistic_types;
523    }
524
525    private MethodType explicitParams(final MethodType callSiteType) {
526        if (CompiledFunction.isVarArgsType(callSiteType)) {
527            return null;
528        }
529
530        final MethodType noCalleeThisType = callSiteType.dropParameterTypes(0, 2); // (callee, this) is always in call site type
531        final int callSiteParamCount = noCalleeThisType.parameterCount();
532
533        // Widen parameters of reference types to Object as we currently don't care for specialization among reference
534        // types. E.g. call site saying (ScriptFunction, Object, String) should still link to (ScriptFunction, Object, Object)
535        final Class<?>[] paramTypes = noCalleeThisType.parameterArray();
536        boolean changed = false;
537        for (int i = 0; i < paramTypes.length; ++i) {
538            final Class<?> paramType = paramTypes[i];
539            if (!(paramType.isPrimitive() || paramType == Object.class)) {
540                paramTypes[i] = Object.class;
541                changed = true;
542            }
543        }
544        final MethodType generalized = changed ? MethodType.methodType(noCalleeThisType.returnType(), paramTypes) : noCalleeThisType;
545
546        if (callSiteParamCount < getArity()) {
547            return generalized.appendParameterTypes(Collections.<Class<?>>nCopies(getArity() - callSiteParamCount, Object.class));
548        }
549        return generalized;
550    }
551
552    private FunctionNode extractFunctionFromScript(final FunctionNode script) {
553        final Set<FunctionNode> fns = new HashSet<>();
554        script.getBody().accept(new NodeVisitor<LexicalContext>(new LexicalContext()) {
555            @Override
556            public boolean enterFunctionNode(final FunctionNode fn) {
557                fns.add(fn);
558                return false;
559            }
560        });
561        assert fns.size() == 1 : "got back more than one method in recompilation";
562        final FunctionNode f = fns.iterator().next();
563        assert f.getId() == functionNodeId;
564        if (!getFunctionFlag(FunctionNode.IS_DECLARED) && f.isDeclared()) {
565            return f.clearFlag(null, FunctionNode.IS_DECLARED);
566        }
567        return f;
568    }
569
570    private void logLookup(final boolean shouldLog, final MethodType targetType) {
571        if (shouldLog && log.isEnabled()) {
572            log.info("Looking up ", DebugLogger.quote(functionName), " type=", targetType);
573        }
574    }
575
576    private MethodHandle lookup(final FunctionInitializer fnInit, final boolean shouldLog) {
577        final MethodType type = fnInit.getMethodType();
578        logLookup(shouldLog, type);
579        return lookupCodeMethod(fnInit.getCode(), type);
580    }
581
582    MethodHandle lookup(final FunctionNode fn) {
583        final MethodType type = new FunctionSignature(fn).getMethodType();
584        logLookup(true, type);
585        return lookupCodeMethod(fn.getCompileUnit().getCode(), type);
586    }
587
588    MethodHandle lookupCodeMethod(final Class<?> codeClass, final MethodType targetType) {
589        return MH.findStatic(LOOKUP, codeClass, functionName, targetType);
590    }
591
592    /**
593     * Initializes this function data with the eagerly generated version of the code. This method can only be invoked
594     * by the compiler internals in Nashorn and is public for implementation reasons only. Attempting to invoke it
595     * externally will result in an exception.
596     *
597     * @param functionNode FunctionNode for this data
598     */
599    public void initializeCode(final FunctionNode functionNode) {
600        // Since the method is public, we double-check that we aren't invoked with an inappropriate compile unit.
601        if (!code.isEmpty() || functionNode.getId() != functionNodeId || !functionNode.getCompileUnit().isInitializing(this, functionNode)) {
602            throw new IllegalStateException(name);
603        }
604        addCode(lookup(functionNode), null, null, functionNode.getFlags());
605    }
606
607    /**
608     * Initializes this function with the given function code initializer.
609     * @param initializer function code initializer
610     */
611    void initializeCode(final FunctionInitializer initializer) {
612        addCode(lookup(initializer, true), null, null, initializer.getFlags());
613    }
614
615    private CompiledFunction addCode(final MethodHandle target, final Map<Integer, Type> invalidatedProgramPoints,
616                                     final MethodType callSiteType, final int fnFlags) {
617        final CompiledFunction cfn = new CompiledFunction(target, this, invalidatedProgramPoints, callSiteType, fnFlags);
618        code.add(cfn);
619        return cfn;
620    }
621
622    /**
623     * Add code with specific call site type. It will adapt the type of the looked up method handle to fit the call site
624     * type. This is necessary because even if we request a specialization that takes an "int" parameter, we might end
625     * up getting one that takes a "double" etc. because of internal function logic causes widening (e.g. assignment of
626     * a wider value to the parameter variable). However, we use the method handle type for matching subsequent lookups
627     * for the same specialization, so we must adapt the handle to the expected type.
628     * @param fnInit the function
629     * @param callSiteType the call site type
630     * @return the compiled function object, with its type matching that of the call site type.
631     */
632    private CompiledFunction addCode(final FunctionInitializer fnInit, final MethodType callSiteType) {
633        if (isVariableArity()) {
634            return addCode(lookup(fnInit, true), fnInit.getInvalidatedProgramPoints(), callSiteType, fnInit.getFlags());
635        }
636
637        final MethodHandle handle = lookup(fnInit, true);
638        final MethodType fromType = handle.type();
639        MethodType toType = needsCallee(fromType) ? callSiteType.changeParameterType(0, ScriptFunction.class) : callSiteType.dropParameterTypes(0, 1);
640        toType = toType.changeReturnType(fromType.returnType());
641
642        final int toCount = toType.parameterCount();
643        final int fromCount = fromType.parameterCount();
644        final int minCount = Math.min(fromCount, toCount);
645        for(int i = 0; i < minCount; ++i) {
646            final Class<?> fromParam = fromType.parameterType(i);
647            final Class<?>   toParam =   toType.parameterType(i);
648            // If method has an Object parameter, but call site had String, preserve it as Object. No need to narrow it
649            // artificially. Note that this is related to how CompiledFunction.matchesCallSite() works, specifically
650            // the fact that various reference types compare to equal (see "fnType.isEquivalentTo(csType)" there).
651            if (fromParam != toParam && !fromParam.isPrimitive() && !toParam.isPrimitive()) {
652                assert fromParam.isAssignableFrom(toParam);
653                toType = toType.changeParameterType(i, fromParam);
654            }
655        }
656        if (fromCount > toCount) {
657            toType = toType.appendParameterTypes(fromType.parameterList().subList(toCount, fromCount));
658        } else if (fromCount < toCount) {
659            toType = toType.dropParameterTypes(fromCount, toCount);
660        }
661
662        return addCode(lookup(fnInit, false).asType(toType), fnInit.getInvalidatedProgramPoints(), callSiteType, fnInit.getFlags());
663    }
664
665    /**
666     * Returns the return type of a function specialization for particular parameter types.<br>
667     * <b>Be aware that the way this is implemented, it forces full materialization (compilation and installation) of
668     * code for that specialization.</b>
669     * @param callSiteType the parameter types at the call site. It must include the mandatory {@code callee} and
670     * {@code this} parameters, so it needs to start with at least {@code ScriptFunction.class} and
671     * {@code Object.class} class. Since the return type of the function is calculated from the code itself, it is
672     * irrelevant and should be set to {@code Object.class}.
673     * @param runtimeScope a current runtime scope. Can be null but when it's present it will be used as a source of
674     * current runtime values that can improve the compiler's type speculations (and thus reduce the need for later
675     * recompilations) if the specialization is not already present and thus needs to be freshly compiled.
676     * @return the return type of the function specialization.
677     */
678    public Class<?> getReturnType(final MethodType callSiteType, final ScriptObject runtimeScope) {
679        return getBest(callSiteType, runtimeScope, CompiledFunction.NO_FUNCTIONS).type().returnType();
680    }
681
682    @Override
683    synchronized CompiledFunction getBest(final MethodType callSiteType, final ScriptObject runtimeScope, final Collection<CompiledFunction> forbidden) {
684        CompiledFunction existingBest = super.getBest(callSiteType, runtimeScope, forbidden);
685        if (existingBest == null) {
686            existingBest = addCode(compileTypeSpecialization(callSiteType, runtimeScope, true), callSiteType);
687        }
688
689        assert existingBest != null;
690        //we are calling a vararg method with real args
691        boolean varArgWithRealArgs = existingBest.isVarArg() && !CompiledFunction.isVarArgsType(callSiteType);
692
693        //if the best one is an apply to call, it has to match the callsite exactly
694        //or we need to regenerate
695        if (existingBest.isApplyToCall()) {
696            final CompiledFunction best = lookupExactApplyToCall(callSiteType);
697            if (best != null) {
698                return best;
699            }
700            varArgWithRealArgs = true;
701        }
702
703        if (varArgWithRealArgs) {
704            // special case: we had an apply to call, but we failed to make it fit.
705            // Try to generate a specialized one for this callsite. It may
706            // be another apply to call specialization, or it may not, but whatever
707            // it is, it is a specialization that is guaranteed to fit
708            final FunctionInitializer fnInit = compileTypeSpecialization(callSiteType, runtimeScope, false);
709            existingBest = addCode(fnInit, callSiteType);
710        }
711
712        return existingBest;
713    }
714
715    @Override
716    boolean isRecompilable() {
717        return true;
718    }
719
720    @Override
721    public boolean needsCallee() {
722        return getFunctionFlag(FunctionNode.NEEDS_CALLEE);
723    }
724
725    /**
726     * Returns the {@link FunctionNode} flags associated with this function data.
727     * @return the {@link FunctionNode} flags associated with this function data.
728     */
729    public int getFunctionFlags() {
730        return functionFlags;
731    }
732
733    @Override
734    MethodType getGenericType() {
735        // 2 is for (callee, this)
736        if (isVariableArity()) {
737            return MethodType.genericMethodType(2, true);
738        }
739        return MethodType.genericMethodType(2 + getArity());
740    }
741
742    /**
743     * Return the function node id.
744     * @return the function node id
745     */
746    public int getFunctionNodeId() {
747        return functionNodeId;
748    }
749
750    /**
751     * Get the source for the script
752     * @return source
753     */
754    public Source getSource() {
755        return source;
756    }
757
758    /**
759     * Return a script function data based on a function id, either this function if
760     * the id matches or a nested function based on functionId. This goes down into
761     * nested functions until all leaves are exhausted.
762     *
763     * @param functionId function id
764     * @return script function data or null if invalid id
765     */
766    public RecompilableScriptFunctionData getScriptFunctionData(final int functionId) {
767        if (functionId == functionNodeId) {
768            return this;
769        }
770        RecompilableScriptFunctionData data;
771
772        data = nestedFunctions == null ? null : nestedFunctions.get(functionId);
773        if (data != null) {
774            return data;
775        }
776        for (final RecompilableScriptFunctionData ndata : nestedFunctions.values()) {
777            data = ndata.getScriptFunctionData(functionId);
778            if (data != null) {
779                return data;
780            }
781        }
782        return null;
783    }
784
785    /**
786     * Check whether a certain name is a global symbol, i.e. only exists as defined
787     * in outermost scope and not shadowed by being parameter or assignment in inner
788     * scopes
789     *
790     * @param functionNode function node to check
791     * @param symbolName symbol name
792     * @return true if global symbol
793     */
794    public boolean isGlobalSymbol(final FunctionNode functionNode, final String symbolName) {
795        RecompilableScriptFunctionData data = getScriptFunctionData(functionNode.getId());
796        assert data != null;
797
798        do {
799            if (data.hasInternalSymbol(symbolName)) {
800                return false;
801            }
802            data = data.getParent();
803        } while(data != null);
804
805        return true;
806    }
807
808    /**
809     * Restores the {@link #getFunctionFlags()} flags to a function node. During on-demand compilation, we might need
810     * to restore flags to a function node that was otherwise not subjected to a full compile pipeline (e.g. its parse
811     * was skipped, or it's a nested function of a deserialized function.
812     * @param lc current lexical context
813     * @param fn the function node to restore flags onto
814     * @return the transformed function node
815     */
816    public FunctionNode restoreFlags(final LexicalContext lc, final FunctionNode fn) {
817        assert fn.getId() == functionNodeId;
818        FunctionNode newFn = fn.setFlags(lc, functionFlags);
819        // This compensates for missing markEval() in case the function contains an inner function
820        // that contains eval(), that now we didn't discover since we skipped the inner function.
821        if (newFn.hasNestedEval()) {
822            assert newFn.hasScopeBlock();
823            newFn = newFn.setBody(lc, newFn.getBody().setNeedsScope(null));
824        }
825        return newFn;
826    }
827
828    private void readObject(final java.io.ObjectInputStream in) throws IOException, ClassNotFoundException {
829        in.defaultReadObject();
830        createLogger();
831    }
832
833    private void createLogger() {
834        log = initLogger(Context.getContextTrusted());
835    }
836}
837