CompiledFunction.java revision 1349:1261d91a9e28
1/*
2 * Copyright (c) 2010, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25package jdk.nashorn.internal.runtime;
26
27import static jdk.nashorn.internal.lookup.Lookup.MH;
28import static jdk.nashorn.internal.runtime.UnwarrantedOptimismException.INVALID_PROGRAM_POINT;
29import static jdk.nashorn.internal.runtime.UnwarrantedOptimismException.isValid;
30import java.lang.invoke.CallSite;
31import java.lang.invoke.MethodHandle;
32import java.lang.invoke.MethodHandles;
33import java.lang.invoke.MethodType;
34import java.lang.invoke.MutableCallSite;
35import java.lang.invoke.SwitchPoint;
36import java.util.ArrayList;
37import java.util.Collection;
38import java.util.Collections;
39import java.util.Iterator;
40import java.util.List;
41import java.util.Map;
42import java.util.TreeMap;
43import java.util.function.Supplier;
44import java.util.logging.Level;
45import jdk.internal.dynalink.linker.GuardedInvocation;
46import jdk.nashorn.internal.codegen.Compiler;
47import jdk.nashorn.internal.codegen.Compiler.CompilationPhases;
48import jdk.nashorn.internal.codegen.TypeMap;
49import jdk.nashorn.internal.codegen.types.ArrayType;
50import jdk.nashorn.internal.codegen.types.Type;
51import jdk.nashorn.internal.ir.FunctionNode;
52import jdk.nashorn.internal.objects.annotations.SpecializedFunction.LinkLogic;
53import jdk.nashorn.internal.runtime.events.RecompilationEvent;
54import jdk.nashorn.internal.runtime.linker.Bootstrap;
55import jdk.nashorn.internal.runtime.logging.DebugLogger;
56
57/**
58 * An version of a JavaScript function, native or JavaScript.
59 * Supports lazily generating a constructor version of the invocation.
60 */
61final class CompiledFunction {
62
63    private static final MethodHandle NEWFILTER = findOwnMH("newFilter", Object.class, Object.class, Object.class);
64    private static final MethodHandle RELINK_COMPOSABLE_INVOKER = findOwnMH("relinkComposableInvoker", void.class, CallSite.class, CompiledFunction.class, boolean.class);
65    private static final MethodHandle HANDLE_REWRITE_EXCEPTION = findOwnMH("handleRewriteException", MethodHandle.class, CompiledFunction.class, OptimismInfo.class, RewriteException.class);
66    private static final MethodHandle RESTOF_INVOKER = MethodHandles.exactInvoker(MethodType.methodType(Object.class, RewriteException.class));
67
68    private final DebugLogger log;
69
70    static final Collection<CompiledFunction> NO_FUNCTIONS = Collections.emptySet();
71
72    /**
73     * The method type may be more specific than the invoker, if. e.g.
74     * the invoker is guarded, and a guard with a generic object only
75     * fallback, while the target is more specific, we still need the
76     * more specific type for sorting
77     */
78    private MethodHandle invoker;
79    private MethodHandle constructor;
80    private OptimismInfo optimismInfo;
81    private final int flags; // from FunctionNode
82    private final MethodType callSiteType;
83
84    private final Specialization specialization;
85
86    CompiledFunction(final MethodHandle invoker) {
87        this(invoker, null, null);
88    }
89
90    static CompiledFunction createBuiltInConstructor(final MethodHandle invoker, final Specialization specialization) {
91        return new CompiledFunction(MH.insertArguments(invoker, 0, false), createConstructorFromInvoker(MH.insertArguments(invoker, 0, true)), specialization);
92    }
93
94    CompiledFunction(final MethodHandle invoker, final MethodHandle constructor, final Specialization specialization) {
95        this(invoker, constructor, 0, null, specialization, DebugLogger.DISABLED_LOGGER);
96    }
97
98    CompiledFunction(final MethodHandle invoker, final MethodHandle constructor, final int flags, final MethodType callSiteType, final Specialization specialization, final DebugLogger log) {
99        this.specialization = specialization;
100        if (specialization != null && specialization.isOptimistic()) {
101            /*
102             * An optimistic builtin with isOptimistic=true works like any optimistic generated function, i.e. it
103             * can throw unwarranted optimism exceptions. As native functions trivially can't have parts of them
104             * regenerated as restof methods, this only works if the methods are atomic/functional in their behavior
105             * and doesn't modify state before an UOE can be thrown. If they aren't, we can reexecute a wider version
106             * of the same builtin in a recompilation handler for FinalScriptFunctionData. There are several
107             * candidate methods in Native* that would benefit from this, but I haven't had time to implement any
108             * of them currently. In order to fit in with the relinking framework, the current thinking is
109             * that the methods still take a program point to fit in with other optimistic functions, but
110             * it is set to "first", which is the beginning of the method. The relinker can tell the difference
111             * between builtin and JavaScript functions. This might change. TODO
112             */
113            this.invoker = MH.insertArguments(invoker, invoker.type().parameterCount() - 1, UnwarrantedOptimismException.FIRST_PROGRAM_POINT);
114            throw new AssertionError("Optimistic (UnwarrantedOptimismException throwing) builtin functions are currently not in use");
115        }
116        this.invoker = invoker;
117        this.constructor = constructor;
118        this.flags = flags;
119        this.callSiteType = callSiteType;
120        this.log = log;
121    }
122
123    CompiledFunction(final MethodHandle invoker, final RecompilableScriptFunctionData functionData,
124            final Map<Integer, Type> invalidatedProgramPoints, final MethodType callSiteType, final int flags) {
125        this(invoker, null, flags, callSiteType, null, functionData.getLogger());
126        if ((flags & FunctionNode.IS_DEOPTIMIZABLE) != 0) {
127            optimismInfo = new OptimismInfo(functionData, invalidatedProgramPoints);
128        } else {
129            optimismInfo = null;
130        }
131    }
132
133    static CompiledFunction createBuiltInConstructor(final MethodHandle invoker) {
134        return new CompiledFunction(MH.insertArguments(invoker, 0, false), createConstructorFromInvoker(MH.insertArguments(invoker, 0, true)), null);
135    }
136
137    boolean isSpecialization() {
138        return specialization != null;
139    }
140
141    boolean hasLinkLogic() {
142        return getLinkLogicClass() != null;
143    }
144
145    Class<? extends LinkLogic> getLinkLogicClass() {
146        if (isSpecialization()) {
147            final Class<? extends LinkLogic> linkLogicClass = specialization.getLinkLogicClass();
148            assert !LinkLogic.isEmpty(linkLogicClass) : "empty link logic classes should have been removed by nasgen";
149            return linkLogicClass;
150        }
151        return null;
152    }
153
154    int getFlags() {
155        return flags;
156    }
157
158    /**
159     * An optimistic specialization is one that can throw UnwarrantedOptimismException.
160     * This is allowed for native methods, as long as they are functional, i.e. don't change
161     * any state between entering and throwing the UOE. Then we can re-execute a wider version
162     * of the method in the continuation. Rest-of method generation for optimistic builtins is
163     * of course not possible, but this approach works and fits into the same relinking
164     * framework
165     *
166     * @return true if optimistic builtin
167     */
168    boolean isOptimistic() {
169        return isSpecialization() ? specialization.isOptimistic() : false;
170    }
171
172    boolean isApplyToCall() {
173        return (flags & FunctionNode.HAS_APPLY_TO_CALL_SPECIALIZATION) != 0;
174    }
175
176    boolean isVarArg() {
177        return isVarArgsType(invoker.type());
178    }
179
180    @Override
181    public String toString() {
182        final StringBuilder sb = new StringBuilder();
183        final Class<? extends LinkLogic> linkLogicClass = getLinkLogicClass();
184
185        sb.append("[invokerType=").
186            append(invoker.type()).
187            append(" ctor=").
188            append(constructor).
189            append(" weight=").
190            append(weight()).
191            append(" linkLogic=").
192            append(linkLogicClass != null ? linkLogicClass.getSimpleName() : "none");
193
194        return sb.toString();
195    }
196
197    boolean needsCallee() {
198        return ScriptFunctionData.needsCallee(invoker);
199    }
200
201    /**
202     * Returns an invoker method handle for this function. Note that the handle is safely composable in
203     * the sense that you can compose it with other handles using any combinators even if you can't affect call site
204     * invalidation. If this compiled function is non-optimistic, then it returns the same value as
205     * {@link #getInvokerOrConstructor(boolean)}. However, if the function is optimistic, then this handle will
206     * incur an overhead as it will add an intermediate internal call site that can relink itself when the function
207     * needs to regenerate its code to always point at the latest generated code version.
208     * @return a guaranteed composable invoker method handle for this function.
209     */
210    MethodHandle createComposableInvoker() {
211        return createComposableInvoker(false);
212    }
213
214    /**
215     * Returns an invoker method handle for this function when invoked as a constructor. Note that the handle should be
216     * considered non-composable in the sense that you can only compose it with other handles using any combinators if
217     * you can ensure that the composition is guarded by {@link #getOptimisticAssumptionsSwitchPoint()} if it's
218     * non-null, and that you can relink the call site it is set into as a target if the switch point is invalidated. In
219     * all other cases, use {@link #createComposableConstructor()}.
220     * @return a direct constructor method handle for this function.
221     */
222    private MethodHandle getConstructor() {
223        if (constructor == null) {
224            constructor = createConstructorFromInvoker(createInvokerForPessimisticCaller());
225        }
226
227        return constructor;
228    }
229
230    /**
231     * Creates a version of the invoker intended for a pessimistic caller (return type is Object, no caller optimistic
232     * program point available).
233     * @return a version of the invoker intended for a pessimistic caller.
234     */
235    private MethodHandle createInvokerForPessimisticCaller() {
236        return createInvoker(Object.class, INVALID_PROGRAM_POINT);
237    }
238
239    /**
240     * Compose a constructor from an invoker.
241     *
242     * @param invoker         invoker
243     * @return the composed constructor
244     */
245    private static MethodHandle createConstructorFromInvoker(final MethodHandle invoker) {
246        final boolean needsCallee = ScriptFunctionData.needsCallee(invoker);
247        // If it was (callee, this, args...), permute it to (this, callee, args...). We're doing this because having
248        // "this" in the first argument position is what allows the elegant folded composition of
249        // (newFilter x constructor x allocator) further down below in the code. Also, ensure the composite constructor
250        // always returns Object.
251        final MethodHandle swapped = needsCallee ? swapCalleeAndThis(invoker) : invoker;
252
253        final MethodHandle returnsObject = MH.asType(swapped, swapped.type().changeReturnType(Object.class));
254
255        final MethodType ctorType = returnsObject.type();
256
257        // Construct a dropping type list for NEWFILTER, but don't include constructor "this" into it, so it's actually
258        // captured as "allocation" parameter of NEWFILTER after we fold the constructor into it.
259        // (this, [callee, ]args...) => ([callee, ]args...)
260        final Class<?>[] ctorArgs = ctorType.dropParameterTypes(0, 1).parameterArray();
261
262        // Fold constructor into newFilter that replaces the return value from the constructor with the originally
263        // allocated value when the originally allocated value is a JS primitive (String, Boolean, Number).
264        // (result, this, [callee, ]args...) x (this, [callee, ]args...) => (this, [callee, ]args...)
265        final MethodHandle filtered = MH.foldArguments(MH.dropArguments(NEWFILTER, 2, ctorArgs), returnsObject);
266
267        // allocate() takes a ScriptFunction and returns a newly allocated ScriptObject...
268        if (needsCallee) {
269            // ...we either fold it into the previous composition, if we need both the ScriptFunction callee object and
270            // the newly allocated object in the arguments, so (this, callee, args...) x (callee) => (callee, args...),
271            // or...
272            return MH.foldArguments(filtered, ScriptFunction.ALLOCATE);
273        }
274
275        // ...replace the ScriptFunction argument with the newly allocated object, if it doesn't need the callee
276        // (this, args...) filter (callee) => (callee, args...)
277        return MH.filterArguments(filtered, 0, ScriptFunction.ALLOCATE);
278    }
279
280    /**
281     * Permutes the parameters in the method handle from {@code (callee, this, ...)} to {@code (this, callee, ...)}.
282     * Used when creating a constructor handle.
283     * @param mh a method handle with order of arguments {@code (callee, this, ...)}
284     * @return a method handle with order of arguments {@code (this, callee, ...)}
285     */
286    private static MethodHandle swapCalleeAndThis(final MethodHandle mh) {
287        final MethodType type = mh.type();
288        assert type.parameterType(0) == ScriptFunction.class : type;
289        assert type.parameterType(1) == Object.class : type;
290        final MethodType newType = type.changeParameterType(0, Object.class).changeParameterType(1, ScriptFunction.class);
291        final int[] reorder = new int[type.parameterCount()];
292        reorder[0] = 1;
293        assert reorder[1] == 0;
294        for (int i = 2; i < reorder.length; ++i) {
295            reorder[i] = i;
296        }
297        return MethodHandles.permuteArguments(mh, newType, reorder);
298    }
299
300    /**
301     * Returns an invoker method handle for this function when invoked as a constructor. Note that the handle is safely
302     * composable in the sense that you can compose it with other handles using any combinators even if you can't affect
303     * call site invalidation. If this compiled function is non-optimistic, then it returns the same value as
304     * {@link #getConstructor()}. However, if the function is optimistic, then this handle will incur an overhead as it
305     * will add an intermediate internal call site that can relink itself when the function needs to regenerate its code
306     * to always point at the latest generated code version.
307     * @return a guaranteed composable constructor method handle for this function.
308     */
309    MethodHandle createComposableConstructor() {
310        return createComposableInvoker(true);
311    }
312
313    boolean hasConstructor() {
314        return constructor != null;
315    }
316
317    MethodType type() {
318        return invoker.type();
319    }
320
321    int weight() {
322        return weight(type());
323    }
324
325    private static int weight(final MethodType type) {
326        if (isVarArgsType(type)) {
327            return Integer.MAX_VALUE; //if there is a varargs it should be the heavist and last fallback
328        }
329
330        int weight = Type.typeFor(type.returnType()).getWeight();
331        for (int i = 0 ; i < type.parameterCount() ; i++) {
332            final Class<?> paramType = type.parameterType(i);
333            final int pweight = Type.typeFor(paramType).getWeight() * 2; //params are more important than call types as return values are always specialized
334            weight += pweight;
335        }
336
337        weight += type.parameterCount(); //more params outweigh few parameters
338
339        return weight;
340    }
341
342    static boolean isVarArgsType(final MethodType type) {
343        assert type.parameterCount() >= 1 : type;
344        return type.parameterType(type.parameterCount() - 1) == Object[].class;
345    }
346
347    static boolean moreGenericThan(final MethodType mt0, final MethodType mt1) {
348        return weight(mt0) > weight(mt1);
349    }
350
351    boolean betterThanFinal(final CompiledFunction other, final MethodType callSiteMethodType) {
352        // Prefer anything over nothing, as we can't compile new versions.
353        if (other == null) {
354            return true;
355        }
356        return betterThanFinal(this, other, callSiteMethodType);
357    }
358
359    private static boolean betterThanFinal(final CompiledFunction cf, final CompiledFunction other, final MethodType callSiteMethodType) {
360        final MethodType thisMethodType  = cf.type();
361        final MethodType otherMethodType = other.type();
362        final int thisParamCount = getParamCount(thisMethodType);
363        final int otherParamCount = getParamCount(otherMethodType);
364        final int callSiteRawParamCount = getParamCount(callSiteMethodType);
365        final boolean csVarArg = callSiteRawParamCount == Integer.MAX_VALUE;
366        // Subtract 1 for callee for non-vararg call sites
367        final int callSiteParamCount = csVarArg ? callSiteRawParamCount : callSiteRawParamCount - 1;
368
369        // Prefer the function that discards less parameters
370        final int thisDiscardsParams = Math.max(callSiteParamCount - thisParamCount, 0);
371        final int otherDiscardsParams = Math.max(callSiteParamCount - otherParamCount, 0);
372        if(thisDiscardsParams < otherDiscardsParams) {
373            return true;
374        }
375        if(thisDiscardsParams > otherDiscardsParams) {
376            return false;
377        }
378
379        final boolean thisVarArg = thisParamCount == Integer.MAX_VALUE;
380        final boolean otherVarArg = otherParamCount == Integer.MAX_VALUE;
381        if(!(thisVarArg && otherVarArg && csVarArg)) {
382            // At least one of them isn't vararg
383            final Type[] thisType = toTypeWithoutCallee(thisMethodType, 0); // Never has callee
384            final Type[] otherType = toTypeWithoutCallee(otherMethodType, 0); // Never has callee
385            final Type[] callSiteType = toTypeWithoutCallee(callSiteMethodType, 1); // Always has callee
386
387            int narrowWeightDelta = 0;
388            int widenWeightDelta = 0;
389            final int minParamsCount = Math.min(Math.min(thisParamCount, otherParamCount), callSiteParamCount);
390            for(int i = 0; i < minParamsCount; ++i) {
391                final int callSiteParamWeight = getParamType(i, callSiteType, csVarArg).getWeight();
392                // Delta is negative for narrowing, positive for widening
393                final int thisParamWeightDelta = getParamType(i, thisType, thisVarArg).getWeight() - callSiteParamWeight;
394                final int otherParamWeightDelta = getParamType(i, otherType, otherVarArg).getWeight() - callSiteParamWeight;
395                // Only count absolute values of narrowings
396                narrowWeightDelta += Math.max(-thisParamWeightDelta, 0) - Math.max(-otherParamWeightDelta, 0);
397                // Only count absolute values of widenings
398                widenWeightDelta += Math.max(thisParamWeightDelta, 0) - Math.max(otherParamWeightDelta, 0);
399            }
400
401            // If both functions accept more arguments than what is passed at the call site, account for ability
402            // to receive Undefined un-narrowed in the remaining arguments.
403            if(!thisVarArg) {
404                for(int i = callSiteParamCount; i < thisParamCount; ++i) {
405                    narrowWeightDelta += Math.max(Type.OBJECT.getWeight() - thisType[i].getWeight(), 0);
406                }
407            }
408            if(!otherVarArg) {
409                for(int i = callSiteParamCount; i < otherParamCount; ++i) {
410                    narrowWeightDelta -= Math.max(Type.OBJECT.getWeight() - otherType[i].getWeight(), 0);
411                }
412            }
413
414            // Prefer function that narrows less
415            if(narrowWeightDelta < 0) {
416                return true;
417            }
418            if(narrowWeightDelta > 0) {
419                return false;
420            }
421
422            // Prefer function that widens less
423            if(widenWeightDelta < 0) {
424                return true;
425            }
426            if(widenWeightDelta > 0) {
427                return false;
428            }
429        }
430
431        // Prefer the function that exactly matches the arity of the call site.
432        if(thisParamCount == callSiteParamCount && otherParamCount != callSiteParamCount) {
433            return true;
434        }
435        if(thisParamCount != callSiteParamCount && otherParamCount == callSiteParamCount) {
436            return false;
437        }
438
439        // Otherwise, neither function matches arity exactly. We also know that at this point, they both can receive
440        // more arguments than call site, otherwise we would've already chosen the one that discards less parameters.
441        // Note that variable arity methods are preferred, as they actually match the call site arity better, since they
442        // really have arbitrary arity.
443        if(thisVarArg) {
444            if(!otherVarArg) {
445                return true; //
446            }
447        } else if(otherVarArg) {
448            return false;
449        }
450
451        // Neither is variable arity; chose the one that has less extra parameters.
452        final int fnParamDelta = thisParamCount - otherParamCount;
453        if(fnParamDelta < 0) {
454            return true;
455        }
456        if(fnParamDelta > 0) {
457            return false;
458        }
459
460        final int callSiteRetWeight = Type.typeFor(callSiteMethodType.returnType()).getWeight();
461        // Delta is negative for narrower return type, positive for wider return type
462        final int thisRetWeightDelta = Type.typeFor(thisMethodType.returnType()).getWeight() - callSiteRetWeight;
463        final int otherRetWeightDelta = Type.typeFor(otherMethodType.returnType()).getWeight() - callSiteRetWeight;
464
465        // Prefer function that returns a less wide return type
466        final int widenRetDelta = Math.max(thisRetWeightDelta, 0) - Math.max(otherRetWeightDelta, 0);
467        if(widenRetDelta < 0) {
468            return true;
469        }
470        if(widenRetDelta > 0) {
471            return false;
472        }
473
474        // Prefer function that returns a less narrow return type
475        final int narrowRetDelta = Math.max(-thisRetWeightDelta, 0) - Math.max(-otherRetWeightDelta, 0);
476        if(narrowRetDelta < 0) {
477            return true;
478        }
479        if(narrowRetDelta > 0) {
480            return false;
481        }
482
483        //if they are equal, pick the specialized one first
484        if (cf.isSpecialization() != other.isSpecialization()) {
485            return cf.isSpecialization(); //always pick the specialized version if we can
486        }
487
488        if (cf.isSpecialization() && other.isSpecialization()) {
489            return cf.getLinkLogicClass() != null; //pick link logic specialization above generic specializations
490        }
491
492        // Signatures are identical
493        throw new AssertionError(thisMethodType + " identically applicable to " + otherMethodType + " for " + callSiteMethodType);
494    }
495
496    private static Type[] toTypeWithoutCallee(final MethodType type, final int thisIndex) {
497        final int paramCount = type.parameterCount();
498        final Type[] t = new Type[paramCount - thisIndex];
499        for(int i = thisIndex; i < paramCount; ++i) {
500            t[i - thisIndex] = Type.typeFor(type.parameterType(i));
501        }
502        return t;
503    }
504
505    private static Type getParamType(final int i, final Type[] paramTypes, final boolean isVarArg) {
506        final int fixParamCount = paramTypes.length - (isVarArg ? 1 : 0);
507        if(i < fixParamCount) {
508            return paramTypes[i];
509        }
510        assert isVarArg;
511        return ((ArrayType)paramTypes[paramTypes.length - 1]).getElementType();
512    }
513
514    boolean matchesCallSite(final MethodType other, final boolean pickVarArg) {
515        if (other.equals(this.callSiteType)) {
516            return true;
517        }
518        final MethodType type  = type();
519        final int fnParamCount = getParamCount(type);
520        final boolean isVarArg = fnParamCount == Integer.MAX_VALUE;
521        if (isVarArg) {
522            return pickVarArg;
523        }
524
525        final int csParamCount = getParamCount(other);
526        final boolean csIsVarArg = csParamCount == Integer.MAX_VALUE;
527        final int thisThisIndex = needsCallee() ? 1 : 0; // Index of "this" parameter in this function's type
528
529        final int fnParamCountNoCallee = fnParamCount - thisThisIndex;
530        final int minParams = Math.min(csParamCount - 1, fnParamCountNoCallee); // callSiteType always has callee, so subtract 1
531        // We must match all incoming parameters, including "this". "this" will usually be Object, but there
532        // are exceptions, e.g. when calling functions with primitive "this" in strict mode or through call/apply.
533        for(int i = 0; i < minParams; ++i) {
534            final Type fnType = Type.typeFor(type.parameterType(i + thisThisIndex));
535            final Type csType = csIsVarArg ? Type.OBJECT : Type.typeFor(other.parameterType(i + 1));
536            if(!fnType.isEquivalentTo(csType)) {
537                return false;
538            }
539        }
540
541        // Must match any undefined parameters to Object type.
542        for(int i = minParams; i < fnParamCountNoCallee; ++i) {
543            if(!Type.typeFor(type.parameterType(i + thisThisIndex)).isEquivalentTo(Type.OBJECT)) {
544                return false;
545            }
546        }
547
548        return true;
549    }
550
551    private static int getParamCount(final MethodType type) {
552        final int paramCount = type.parameterCount();
553        return type.parameterType(paramCount - 1).isArray() ? Integer.MAX_VALUE : paramCount;
554    }
555
556    private boolean canBeDeoptimized() {
557        return optimismInfo != null;
558    }
559
560    private MethodHandle createComposableInvoker(final boolean isConstructor) {
561        final MethodHandle handle = getInvokerOrConstructor(isConstructor);
562
563        // If compiled function is not optimistic, it can't ever change its invoker/constructor, so just return them
564        // directly.
565        if(!canBeDeoptimized()) {
566            return handle;
567        }
568
569        // Otherwise, we need a new level of indirection; need to introduce a mutable call site that can relink itslef
570        // to the compiled function's changed target whenever the optimistic assumptions are invalidated.
571        final CallSite cs = new MutableCallSite(handle.type());
572        relinkComposableInvoker(cs, this, isConstructor);
573        return cs.dynamicInvoker();
574    }
575
576    private static class HandleAndAssumptions {
577        final MethodHandle handle;
578        final SwitchPoint assumptions;
579
580        HandleAndAssumptions(final MethodHandle handle, final SwitchPoint assumptions) {
581            this.handle = handle;
582            this.assumptions = assumptions;
583        }
584
585        GuardedInvocation createInvocation() {
586            return new GuardedInvocation(handle, assumptions);
587        }
588    }
589
590    /**
591     * Returns a pair of an invocation created with a passed-in supplier and a non-invalidated switch point for
592     * optimistic assumptions (or null for the switch point if the function can not be deoptimized). While the method
593     * makes a best effort to return a non-invalidated switch point (compensating for possible deoptimizing
594     * recompilation happening on another thread) it is still possible that by the time this method returns the
595     * switchpoint has been invalidated by a {@code RewriteException} triggered on another thread for this function.
596     * This is not a problem, though, as these switch points are always used to produce call sites that fall back to
597     * relinking when they are invalidated, and in this case the execution will end up here again. What this method
598     * basically does is minimize such busy-loop relinking while the function is being recompiled on a different thread.
599     * @param invocationSupplier the supplier that constructs the actual invocation method handle; should use the
600     * {@code CompiledFunction} method itself in some capacity.
601     * @return a tuple object containing the method handle as created by the supplier and an optimistic assumptions
602     * switch point that is guaranteed to not have been invalidated before the call to this method (or null if the
603     * function can't be further deoptimized).
604     */
605    private synchronized HandleAndAssumptions getValidOptimisticInvocation(final Supplier<MethodHandle> invocationSupplier) {
606        for(;;) {
607            final MethodHandle handle = invocationSupplier.get();
608            final SwitchPoint assumptions = canBeDeoptimized() ? optimismInfo.optimisticAssumptions : null;
609            if(assumptions != null && assumptions.hasBeenInvalidated()) {
610                // We can be in a situation where one thread is in the middle of a deoptimizing compilation when we hit
611                // this and thus, it has invalidated the old switch point, but hasn't created the new one yet. Note that
612                // the behavior of invalidating the old switch point before recompilation, and only creating the new one
613                // after recompilation is by design. If we didn't wait here for the recompilation to complete, we would
614                // be busy looping through the fallback path of the invalidated switch point, relinking the call site
615                // again with the same invalidated switch point, invoking the fallback, etc. stealing CPU cycles from
616                // the recompilation task we're dependent on. This can still happen if the switch point gets invalidated
617                // after we grabbed it here, in which case we'll indeed do one busy relink immediately.
618                try {
619                    wait();
620                } catch (final InterruptedException e) {
621                    // Intentionally ignored. There's nothing meaningful we can do if we're interrupted
622                }
623            } else {
624                return new HandleAndAssumptions(handle, assumptions);
625            }
626        }
627    }
628
629    private static void relinkComposableInvoker(final CallSite cs, final CompiledFunction inv, final boolean constructor) {
630        final HandleAndAssumptions handleAndAssumptions = inv.getValidOptimisticInvocation(new Supplier<MethodHandle>() {
631            @Override
632            public MethodHandle get() {
633                return inv.getInvokerOrConstructor(constructor);
634            }
635        });
636        final MethodHandle handle = handleAndAssumptions.handle;
637        final SwitchPoint assumptions = handleAndAssumptions.assumptions;
638        final MethodHandle target;
639        if(assumptions == null) {
640            target = handle;
641        } else {
642            final MethodHandle relink = MethodHandles.insertArguments(RELINK_COMPOSABLE_INVOKER, 0, cs, inv, constructor);
643            target = assumptions.guardWithTest(handle, MethodHandles.foldArguments(cs.dynamicInvoker(), relink));
644        }
645        cs.setTarget(target.asType(cs.type()));
646    }
647
648    private MethodHandle getInvokerOrConstructor(final boolean selectCtor) {
649        return selectCtor ? getConstructor() : createInvokerForPessimisticCaller();
650    }
651
652    /**
653     * Returns a guarded invocation for this function when not invoked as a constructor. The guarded invocation has no
654     * guard but it potentially has an optimistic assumptions switch point. As such, it will probably not be used as a
655     * final guarded invocation, but rather as a holder for an invocation handle and switch point to be decomposed and
656     * reassembled into a different final invocation by the user of this method. Any recompositions should take care to
657     * continue to use the switch point. If that is not possible, use {@link #createComposableInvoker()} instead.
658     * @return a guarded invocation for an ordinary (non-constructor) invocation of this function.
659     */
660    GuardedInvocation createFunctionInvocation(final Class<?> callSiteReturnType, final int callerProgramPoint) {
661        return getValidOptimisticInvocation(new Supplier<MethodHandle>() {
662            @Override
663            public MethodHandle get() {
664                return createInvoker(callSiteReturnType, callerProgramPoint);
665            }
666        }).createInvocation();
667    }
668
669    /**
670     * Returns a guarded invocation for this function when invoked as a constructor. The guarded invocation has no guard
671     * but it potentially has an optimistic assumptions switch point. As such, it will probably not be used as a final
672     * guarded invocation, but rather as a holder for an invocation handle and switch point to be decomposed and
673     * reassembled into a different final invocation by the user of this method. Any recompositions should take care to
674     * continue to use the switch point. If that is not possible, use {@link #createComposableConstructor()} instead.
675     * @return a guarded invocation for invocation of this function as a constructor.
676     */
677    GuardedInvocation createConstructorInvocation() {
678        return getValidOptimisticInvocation(new Supplier<MethodHandle>() {
679            @Override
680            public MethodHandle get() {
681                return getConstructor();
682            }
683        }).createInvocation();
684    }
685
686    private MethodHandle createInvoker(final Class<?> callSiteReturnType, final int callerProgramPoint) {
687        final boolean isOptimistic = canBeDeoptimized();
688        MethodHandle handleRewriteException = isOptimistic ? createRewriteExceptionHandler() : null;
689
690        MethodHandle inv = invoker;
691        if(isValid(callerProgramPoint)) {
692            inv = OptimisticReturnFilters.filterOptimisticReturnValue(inv, callSiteReturnType, callerProgramPoint);
693            inv = changeReturnType(inv, callSiteReturnType);
694            if(callSiteReturnType.isPrimitive() && handleRewriteException != null) {
695                // because handleRewriteException always returns Object
696                handleRewriteException = OptimisticReturnFilters.filterOptimisticReturnValue(handleRewriteException,
697                        callSiteReturnType, callerProgramPoint);
698            }
699        } else if(isOptimistic) {
700            // Required so that rewrite exception has the same return type. It'd be okay to do it even if we weren't
701            // optimistic, but it isn't necessary as the linker upstream will eventually convert the return type.
702            inv = changeReturnType(inv, callSiteReturnType);
703        }
704
705        if(isOptimistic) {
706            assert handleRewriteException != null;
707            final MethodHandle typedHandleRewriteException = changeReturnType(handleRewriteException, inv.type().returnType());
708            return MH.catchException(inv, RewriteException.class, typedHandleRewriteException);
709        }
710        return inv;
711    }
712
713    private MethodHandle createRewriteExceptionHandler() {
714        return MH.foldArguments(RESTOF_INVOKER, MH.insertArguments(HANDLE_REWRITE_EXCEPTION, 0, this, optimismInfo));
715    }
716
717    private static MethodHandle changeReturnType(final MethodHandle mh, final Class<?> newReturnType) {
718        return Bootstrap.getLinkerServices().asType(mh, mh.type().changeReturnType(newReturnType));
719    }
720
721    @SuppressWarnings("unused")
722    private static MethodHandle handleRewriteException(final CompiledFunction function, final OptimismInfo oldOptimismInfo, final RewriteException re) {
723        return function.handleRewriteException(oldOptimismInfo, re);
724    }
725
726    /**
727     * Debug function for printing out all invalidated program points and their
728     * invalidation mapping to next type
729     * @param ipp
730     * @return string describing the ipp map
731     */
732    private static List<String> toStringInvalidations(final Map<Integer, Type> ipp) {
733        if (ipp == null) {
734            return Collections.emptyList();
735        }
736
737        final List<String> list = new ArrayList<>();
738
739        for (final Iterator<Map.Entry<Integer, Type>> iter = ipp.entrySet().iterator(); iter.hasNext(); ) {
740            final Map.Entry<Integer, Type> entry = iter.next();
741            final char bct = entry.getValue().getBytecodeStackType();
742            final String type;
743
744            switch (entry.getValue().getBytecodeStackType()) {
745            case 'A':
746                type = "object";
747                break;
748            case 'I':
749                type = "int";
750                break;
751            case 'J':
752                type = "long";
753                break;
754            case 'D':
755                type = "double";
756                break;
757            default:
758                type = String.valueOf(bct);
759                break;
760            }
761
762            final StringBuilder sb = new StringBuilder();
763            sb.append('[').
764                    append("program point: ").
765                    append(entry.getKey()).
766                    append(" -> ").
767                    append(type).
768                    append(']');
769
770            list.add(sb.toString());
771        }
772
773        return list;
774    }
775
776    private void logRecompile(final String reason, final FunctionNode fn, final MethodType type, final Map<Integer, Type> ipp) {
777        if (log.isEnabled()) {
778            log.info(reason, DebugLogger.quote(fn.getName()), " signature: ", type);
779            log.indent();
780            for (final String str : toStringInvalidations(ipp)) {
781                log.fine(str);
782            }
783            log.unindent();
784        }
785    }
786
787    /**
788     * Handles a {@link RewriteException} raised during the execution of this function by recompiling (if needed) the
789     * function with an optimistic assumption invalidated at the program point indicated by the exception, and then
790     * executing a rest-of method to complete the execution with the deoptimized version.
791     * @param oldOptInfo the optimism info of this function. We must store it explicitly as a bound argument in the
792     * method handle, otherwise it could be null for handling a rewrite exception in an outer invocation of a recursive
793     * function when recursive invocations of the function have completely deoptimized it.
794     * @param re the rewrite exception that was raised
795     * @return the method handle for the rest-of method, for folding composition.
796     */
797    private synchronized MethodHandle handleRewriteException(final OptimismInfo oldOptInfo, final RewriteException re) {
798        if (log.isEnabled()) {
799            log.info(
800                    new RecompilationEvent(
801                        Level.INFO,
802                        re,
803                        re.getReturnValueNonDestructive()),
804                    "caught RewriteException ",
805                    re.getMessageShort());
806            log.indent();
807        }
808
809        final MethodType type = type();
810
811        // Compiler needs a call site type as its input, which always has a callee parameter, so we must add it if
812        // this function doesn't have a callee parameter.
813        final MethodType ct = type.parameterType(0) == ScriptFunction.class ?
814                type :
815                type.insertParameterTypes(0, ScriptFunction.class);
816        final OptimismInfo currentOptInfo = optimismInfo;
817        final boolean shouldRecompile = currentOptInfo != null && currentOptInfo.requestRecompile(re);
818
819        // Effective optimism info, for subsequent use. We'll normally try to use the current (latest) one, but if it
820        // isn't available, we'll use the old one bound into the call site.
821        final OptimismInfo effectiveOptInfo = currentOptInfo != null ? currentOptInfo : oldOptInfo;
822        FunctionNode fn = effectiveOptInfo.reparse();
823        final boolean serialized = effectiveOptInfo.isSerialized();
824        final Compiler compiler = effectiveOptInfo.getCompiler(fn, ct, re); //set to non rest-of
825
826        if (!shouldRecompile) {
827            // It didn't necessarily recompile, e.g. for an outer invocation of a recursive function if we already
828            // recompiled a deoptimized version for an inner invocation.
829            // We still need to do the rest of from the beginning
830            logRecompile("Rest-of compilation [STANDALONE] ", fn, ct, effectiveOptInfo.invalidatedProgramPoints);
831            return restOfHandle(effectiveOptInfo, compiler.compile(fn, serialized ? CompilationPhases.COMPILE_SERIALIZED_RESTOF : CompilationPhases.COMPILE_ALL_RESTOF), currentOptInfo != null);
832        }
833
834        logRecompile("Deoptimizing recompilation (up to bytecode) ", fn, ct, effectiveOptInfo.invalidatedProgramPoints);
835        fn = compiler.compile(fn, serialized ? CompilationPhases.RECOMPILE_SERIALIZED_UPTO_BYTECODE : CompilationPhases.COMPILE_UPTO_BYTECODE);
836        log.fine("Reusable IR generated");
837
838        // compile the rest of the function, and install it
839        log.info("Generating and installing bytecode from reusable IR...");
840        logRecompile("Rest-of compilation [CODE PIPELINE REUSE] ", fn, ct, effectiveOptInfo.invalidatedProgramPoints);
841        final FunctionNode normalFn = compiler.compile(fn, CompilationPhases.GENERATE_BYTECODE_AND_INSTALL);
842
843        if (effectiveOptInfo.data.usePersistentCodeCache()) {
844            final RecompilableScriptFunctionData data = effectiveOptInfo.data;
845            final int functionNodeId = data.getFunctionNodeId();
846            final TypeMap typeMap = data.typeMap(ct);
847            final Type[] paramTypes = typeMap == null ? null : typeMap.getParameterTypes(functionNodeId);
848            final String cacheKey = CodeStore.getCacheKey(functionNodeId, paramTypes);
849            compiler.persistClassInfo(cacheKey, normalFn);
850        }
851
852        final boolean canBeDeoptimized = normalFn.canBeDeoptimized();
853
854        if (log.isEnabled()) {
855            log.unindent();
856            log.info("Done.");
857
858            log.info("Recompiled '", fn.getName(), "' (", Debug.id(this), ") ", canBeDeoptimized ? "can still be deoptimized." : " is completely deoptimized.");
859            log.finest("Looking up invoker...");
860        }
861
862        final MethodHandle newInvoker = effectiveOptInfo.data.lookup(fn);
863        invoker     = newInvoker.asType(type.changeReturnType(newInvoker.type().returnType()));
864        constructor = null; // Will be regenerated when needed
865
866        log.info("Done: ", invoker);
867        final MethodHandle restOf = restOfHandle(effectiveOptInfo, compiler.compile(fn, CompilationPhases.GENERATE_BYTECODE_AND_INSTALL_RESTOF), canBeDeoptimized);
868
869        // Note that we only adjust the switch point after we set the invoker/constructor. This is important.
870        if (canBeDeoptimized) {
871            effectiveOptInfo.newOptimisticAssumptions(); // Otherwise, set a new switch point.
872        } else {
873            optimismInfo = null; // If we got to a point where we no longer have optimistic assumptions, let the optimism info go.
874        }
875        notifyAll();
876
877        return restOf;
878    }
879
880    private MethodHandle restOfHandle(final OptimismInfo info, final FunctionNode restOfFunction, final boolean canBeDeoptimized) {
881        assert info != null;
882        assert restOfFunction.getCompileUnit().getUnitClassName().contains("restOf");
883        final MethodHandle restOf =
884                changeReturnType(
885                        info.data.lookupCodeMethod(
886                                restOfFunction.getCompileUnit().getCode(),
887                                MH.type(restOfFunction.getReturnType().getTypeClass(),
888                                        RewriteException.class)),
889                        Object.class);
890
891        if (!canBeDeoptimized) {
892            return restOf;
893        }
894
895        // If rest-of is itself optimistic, we must make sure that we can repeat a deoptimization if it, too hits an exception.
896        return MH.catchException(restOf, RewriteException.class, createRewriteExceptionHandler());
897
898    }
899
900    private static class OptimismInfo {
901        // TODO: this is pointing to its owning ScriptFunctionData. Re-evaluate if that's okay.
902        private final RecompilableScriptFunctionData data;
903        private final Map<Integer, Type> invalidatedProgramPoints;
904        private SwitchPoint optimisticAssumptions;
905        private final DebugLogger log;
906
907        OptimismInfo(final RecompilableScriptFunctionData data, final Map<Integer, Type> invalidatedProgramPoints) {
908            this.data = data;
909            this.log  = data.getLogger();
910            this.invalidatedProgramPoints = invalidatedProgramPoints == null ? new TreeMap<>() : invalidatedProgramPoints;
911            newOptimisticAssumptions();
912        }
913
914        private void newOptimisticAssumptions() {
915            optimisticAssumptions = new SwitchPoint();
916        }
917
918        boolean requestRecompile(final RewriteException e) {
919            final Type retType            = e.getReturnType();
920            final Type previousFailedType = invalidatedProgramPoints.put(e.getProgramPoint(), retType);
921
922            if (previousFailedType != null && !previousFailedType.narrowerThan(retType)) {
923                final StackTraceElement[] stack      = e.getStackTrace();
924                final String              functionId = stack.length == 0 ?
925                        data.getName() :
926                        stack[0].getClassName() + "." + stack[0].getMethodName();
927
928                log.info("RewriteException for an already invalidated program point ", e.getProgramPoint(), " in ", functionId, ". This is okay for a recursive function invocation, but a bug otherwise.");
929
930                return false;
931            }
932
933            SwitchPoint.invalidateAll(new SwitchPoint[] { optimisticAssumptions });
934
935            return true;
936        }
937
938        Compiler getCompiler(final FunctionNode fn, final MethodType actualCallSiteType, final RewriteException e) {
939            return data.getCompiler(fn, actualCallSiteType, e.getRuntimeScope(), invalidatedProgramPoints, getEntryPoints(e));
940        }
941
942        private static int[] getEntryPoints(final RewriteException e) {
943            final int[] prevEntryPoints = e.getPreviousContinuationEntryPoints();
944            final int[] entryPoints;
945            if (prevEntryPoints == null) {
946                entryPoints = new int[1];
947            } else {
948                final int l = prevEntryPoints.length;
949                entryPoints = new int[l + 1];
950                System.arraycopy(prevEntryPoints, 0, entryPoints, 1, l);
951            }
952            entryPoints[0] = e.getProgramPoint();
953            return entryPoints;
954        }
955
956        FunctionNode reparse() {
957            return data.reparse();
958        }
959
960        boolean isSerialized() {
961            return data.isSerialized();
962        }
963    }
964
965    @SuppressWarnings("unused")
966    private static Object newFilter(final Object result, final Object allocation) {
967        return (result instanceof ScriptObject || !JSType.isPrimitive(result))? result : allocation;
968    }
969
970    private static MethodHandle findOwnMH(final String name, final Class<?> rtype, final Class<?>... types) {
971        return MH.findStatic(MethodHandles.lookup(), CompiledFunction.class, name, MH.type(rtype, types));
972    }
973}
974