CodeGenerator.java revision 1092:569b6de2d343
1/*
2 * Copyright (c) 2010, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package jdk.nashorn.internal.codegen;
27
28import static jdk.nashorn.internal.codegen.ClassEmitter.Flag.PRIVATE;
29import static jdk.nashorn.internal.codegen.ClassEmitter.Flag.STATIC;
30import static jdk.nashorn.internal.codegen.CompilerConstants.ARGUMENTS;
31import static jdk.nashorn.internal.codegen.CompilerConstants.CALLEE;
32import static jdk.nashorn.internal.codegen.CompilerConstants.CREATE_PROGRAM_FUNCTION;
33import static jdk.nashorn.internal.codegen.CompilerConstants.GET_MAP;
34import static jdk.nashorn.internal.codegen.CompilerConstants.GET_STRING;
35import static jdk.nashorn.internal.codegen.CompilerConstants.QUICK_PREFIX;
36import static jdk.nashorn.internal.codegen.CompilerConstants.REGEX_PREFIX;
37import static jdk.nashorn.internal.codegen.CompilerConstants.SCOPE;
38import static jdk.nashorn.internal.codegen.CompilerConstants.SPLIT_PREFIX;
39import static jdk.nashorn.internal.codegen.CompilerConstants.THIS;
40import static jdk.nashorn.internal.codegen.CompilerConstants.VARARGS;
41import static jdk.nashorn.internal.codegen.CompilerConstants.constructorNoLookup;
42import static jdk.nashorn.internal.codegen.CompilerConstants.interfaceCallNoLookup;
43import static jdk.nashorn.internal.codegen.CompilerConstants.methodDescriptor;
44import static jdk.nashorn.internal.codegen.CompilerConstants.staticCallNoLookup;
45import static jdk.nashorn.internal.codegen.CompilerConstants.typeDescriptor;
46import static jdk.nashorn.internal.codegen.CompilerConstants.virtualCallNoLookup;
47import static jdk.nashorn.internal.codegen.ObjectClassGenerator.OBJECT_FIELDS_ONLY;
48import static jdk.nashorn.internal.ir.Symbol.HAS_SLOT;
49import static jdk.nashorn.internal.ir.Symbol.IS_INTERNAL;
50import static jdk.nashorn.internal.runtime.UnwarrantedOptimismException.INVALID_PROGRAM_POINT;
51import static jdk.nashorn.internal.runtime.UnwarrantedOptimismException.isValid;
52import static jdk.nashorn.internal.runtime.linker.NashornCallSiteDescriptor.CALLSITE_APPLY_TO_CALL;
53import static jdk.nashorn.internal.runtime.linker.NashornCallSiteDescriptor.CALLSITE_DECLARE;
54import static jdk.nashorn.internal.runtime.linker.NashornCallSiteDescriptor.CALLSITE_FAST_SCOPE;
55import static jdk.nashorn.internal.runtime.linker.NashornCallSiteDescriptor.CALLSITE_OPTIMISTIC;
56import static jdk.nashorn.internal.runtime.linker.NashornCallSiteDescriptor.CALLSITE_PROGRAM_POINT_SHIFT;
57import static jdk.nashorn.internal.runtime.linker.NashornCallSiteDescriptor.CALLSITE_SCOPE;
58
59import java.io.PrintWriter;
60import java.util.ArrayDeque;
61import java.util.ArrayList;
62import java.util.Arrays;
63import java.util.BitSet;
64import java.util.Collection;
65import java.util.Collections;
66import java.util.Deque;
67import java.util.EnumSet;
68import java.util.HashMap;
69import java.util.HashSet;
70import java.util.Iterator;
71import java.util.LinkedList;
72import java.util.List;
73import java.util.Map;
74import java.util.Set;
75import java.util.TreeMap;
76import java.util.function.Supplier;
77import jdk.nashorn.internal.AssertsEnabled;
78import jdk.nashorn.internal.IntDeque;
79import jdk.nashorn.internal.codegen.ClassEmitter.Flag;
80import jdk.nashorn.internal.codegen.CompilerConstants.Call;
81import jdk.nashorn.internal.codegen.types.ArrayType;
82import jdk.nashorn.internal.codegen.types.Type;
83import jdk.nashorn.internal.ir.AccessNode;
84import jdk.nashorn.internal.ir.BaseNode;
85import jdk.nashorn.internal.ir.BinaryNode;
86import jdk.nashorn.internal.ir.Block;
87import jdk.nashorn.internal.ir.BlockStatement;
88import jdk.nashorn.internal.ir.BreakNode;
89import jdk.nashorn.internal.ir.BreakableNode;
90import jdk.nashorn.internal.ir.CallNode;
91import jdk.nashorn.internal.ir.CaseNode;
92import jdk.nashorn.internal.ir.CatchNode;
93import jdk.nashorn.internal.ir.ContinueNode;
94import jdk.nashorn.internal.ir.EmptyNode;
95import jdk.nashorn.internal.ir.Expression;
96import jdk.nashorn.internal.ir.ExpressionStatement;
97import jdk.nashorn.internal.ir.ForNode;
98import jdk.nashorn.internal.ir.FunctionNode;
99import jdk.nashorn.internal.ir.FunctionNode.CompilationState;
100import jdk.nashorn.internal.ir.GetSplitState;
101import jdk.nashorn.internal.ir.IdentNode;
102import jdk.nashorn.internal.ir.IfNode;
103import jdk.nashorn.internal.ir.IndexNode;
104import jdk.nashorn.internal.ir.JoinPredecessorExpression;
105import jdk.nashorn.internal.ir.JumpStatement;
106import jdk.nashorn.internal.ir.LabelNode;
107import jdk.nashorn.internal.ir.LexicalContext;
108import jdk.nashorn.internal.ir.LexicalContextNode;
109import jdk.nashorn.internal.ir.LiteralNode;
110import jdk.nashorn.internal.ir.LiteralNode.ArrayLiteralNode;
111import jdk.nashorn.internal.ir.LiteralNode.ArrayLiteralNode.ArrayUnit;
112import jdk.nashorn.internal.ir.LiteralNode.PrimitiveLiteralNode;
113import jdk.nashorn.internal.ir.LocalVariableConversion;
114import jdk.nashorn.internal.ir.LoopNode;
115import jdk.nashorn.internal.ir.Node;
116import jdk.nashorn.internal.ir.ObjectNode;
117import jdk.nashorn.internal.ir.Optimistic;
118import jdk.nashorn.internal.ir.PropertyNode;
119import jdk.nashorn.internal.ir.ReturnNode;
120import jdk.nashorn.internal.ir.RuntimeNode;
121import jdk.nashorn.internal.ir.RuntimeNode.Request;
122import jdk.nashorn.internal.ir.SetSplitState;
123import jdk.nashorn.internal.ir.SplitReturn;
124import jdk.nashorn.internal.ir.Statement;
125import jdk.nashorn.internal.ir.SwitchNode;
126import jdk.nashorn.internal.ir.Symbol;
127import jdk.nashorn.internal.ir.TernaryNode;
128import jdk.nashorn.internal.ir.ThrowNode;
129import jdk.nashorn.internal.ir.TryNode;
130import jdk.nashorn.internal.ir.UnaryNode;
131import jdk.nashorn.internal.ir.VarNode;
132import jdk.nashorn.internal.ir.WhileNode;
133import jdk.nashorn.internal.ir.WithNode;
134import jdk.nashorn.internal.ir.visitor.NodeOperatorVisitor;
135import jdk.nashorn.internal.ir.visitor.NodeVisitor;
136import jdk.nashorn.internal.objects.Global;
137import jdk.nashorn.internal.objects.ScriptFunctionImpl;
138import jdk.nashorn.internal.parser.Lexer.RegexToken;
139import jdk.nashorn.internal.parser.TokenType;
140import jdk.nashorn.internal.runtime.Context;
141import jdk.nashorn.internal.runtime.Debug;
142import jdk.nashorn.internal.runtime.ECMAException;
143import jdk.nashorn.internal.runtime.JSType;
144import jdk.nashorn.internal.runtime.OptimisticReturnFilters;
145import jdk.nashorn.internal.runtime.PropertyMap;
146import jdk.nashorn.internal.runtime.RecompilableScriptFunctionData;
147import jdk.nashorn.internal.runtime.RewriteException;
148import jdk.nashorn.internal.runtime.Scope;
149import jdk.nashorn.internal.runtime.ScriptEnvironment;
150import jdk.nashorn.internal.runtime.ScriptFunction;
151import jdk.nashorn.internal.runtime.ScriptObject;
152import jdk.nashorn.internal.runtime.ScriptRuntime;
153import jdk.nashorn.internal.runtime.Source;
154import jdk.nashorn.internal.runtime.Undefined;
155import jdk.nashorn.internal.runtime.UnwarrantedOptimismException;
156import jdk.nashorn.internal.runtime.arrays.ArrayData;
157import jdk.nashorn.internal.runtime.linker.LinkerCallSite;
158import jdk.nashorn.internal.runtime.logging.DebugLogger;
159import jdk.nashorn.internal.runtime.logging.Loggable;
160import jdk.nashorn.internal.runtime.logging.Logger;
161import jdk.nashorn.internal.runtime.options.Options;
162
163/**
164 * This is the lowest tier of the code generator. It takes lowered ASTs emitted
165 * from Lower and emits Java byte code. The byte code emission logic is broken
166 * out into MethodEmitter. MethodEmitter works internally with a type stack, and
167 * keeps track of the contents of the byte code stack. This way we avoid a large
168 * number of special cases on the form
169 * <pre>
170 * if (type == INT) {
171 *     visitInsn(ILOAD, slot);
172 * } else if (type == DOUBLE) {
173 *     visitInsn(DOUBLE, slot);
174 * }
175 * </pre>
176 * This quickly became apparent when the code generator was generalized to work
177 * with all types, and not just numbers or objects.
178 * <p>
179 * The CodeGenerator visits nodes only once, tags them as resolved and emits
180 * bytecode for them.
181 */
182@Logger(name="codegen")
183final class CodeGenerator extends NodeOperatorVisitor<CodeGeneratorLexicalContext> implements Loggable {
184
185    private static final Type SCOPE_TYPE = Type.typeFor(ScriptObject.class);
186
187    private static final String GLOBAL_OBJECT = Type.getInternalName(Global.class);
188
189    private static final String SCRIPTFUNCTION_IMPL_NAME = Type.getInternalName(ScriptFunctionImpl.class);
190    private static final Type   SCRIPTFUNCTION_IMPL_TYPE   = Type.typeFor(ScriptFunction.class);
191
192    private static final Call CREATE_REWRITE_EXCEPTION = CompilerConstants.staticCallNoLookup(RewriteException.class,
193            "create", RewriteException.class, UnwarrantedOptimismException.class, Object[].class, String[].class);
194    private static final Call CREATE_REWRITE_EXCEPTION_REST_OF = CompilerConstants.staticCallNoLookup(RewriteException.class,
195            "create", RewriteException.class, UnwarrantedOptimismException.class, Object[].class, String[].class, int[].class);
196
197    private static final Call ENSURE_INT = CompilerConstants.staticCallNoLookup(OptimisticReturnFilters.class,
198            "ensureInt", int.class, Object.class, int.class);
199    private static final Call ENSURE_LONG = CompilerConstants.staticCallNoLookup(OptimisticReturnFilters.class,
200            "ensureLong", long.class, Object.class, int.class);
201    private static final Call ENSURE_NUMBER = CompilerConstants.staticCallNoLookup(OptimisticReturnFilters.class,
202            "ensureNumber", double.class, Object.class, int.class);
203
204    private static final Class<?> ITERATOR_CLASS = Iterator.class;
205    static {
206        assert ITERATOR_CLASS == CompilerConstants.ITERATOR_PREFIX.type();
207    }
208    private static final Type ITERATOR_TYPE = Type.typeFor(ITERATOR_CLASS);
209    private static final Type EXCEPTION_TYPE = Type.typeFor(CompilerConstants.EXCEPTION_PREFIX.type());
210
211    private static final Integer INT_ZERO = Integer.valueOf(0);
212
213    /** Constant data & installation. The only reason the compiler keeps this is because it is assigned
214     *  by reflection in class installation */
215    private final Compiler compiler;
216
217    /** Is the current code submitted by 'eval' call? */
218    private final boolean evalCode;
219
220    /** Call site flags given to the code generator to be used for all generated call sites */
221    private final int callSiteFlags;
222
223    /** How many regexp fields have been emitted */
224    private int regexFieldCount;
225
226    /** Line number for last statement. If we encounter a new line number, line number bytecode information
227     *  needs to be generated */
228    private int lastLineNumber = -1;
229
230    /** When should we stop caching regexp expressions in fields to limit bytecode size? */
231    private static final int MAX_REGEX_FIELDS = 2 * 1024;
232
233    /** Current method emitter */
234    private MethodEmitter method;
235
236    /** Current compile unit */
237    private CompileUnit unit;
238
239    private final DebugLogger log;
240
241    /** From what size should we use spill instead of fields for JavaScript objects? */
242    private static final int OBJECT_SPILL_THRESHOLD = Options.getIntProperty("nashorn.spill.threshold", 256);
243
244    private final Set<String> emittedMethods = new HashSet<>();
245
246    // Function Id -> ContinuationInfo. Used by compilation of rest-of function only.
247    private final Map<Integer, ContinuationInfo> fnIdToContinuationInfo = new HashMap<>();
248
249    private final Deque<Label> scopeEntryLabels = new ArrayDeque<>();
250
251    private static final Label METHOD_BOUNDARY = new Label("");
252    private final Deque<Label> catchLabels = new ArrayDeque<>();
253    // Number of live locals on entry to (and thus also break from) labeled blocks.
254    private final IntDeque labeledBlockBreakLiveLocals = new IntDeque();
255
256    //is this a rest of compilation
257    private final int[] continuationEntryPoints;
258
259    /**
260     * Constructor.
261     *
262     * @param compiler
263     */
264    CodeGenerator(final Compiler compiler, final int[] continuationEntryPoints) {
265        super(new CodeGeneratorLexicalContext());
266        this.compiler                = compiler;
267        this.evalCode                = compiler.getSource().isEvalCode();
268        this.continuationEntryPoints = continuationEntryPoints;
269        this.callSiteFlags           = compiler.getScriptEnvironment()._callsite_flags;
270        this.log                     = initLogger(compiler.getContext());
271    }
272
273    @Override
274    public DebugLogger getLogger() {
275        return log;
276    }
277
278    @Override
279    public DebugLogger initLogger(final Context context) {
280        return context.getLogger(this.getClass());
281    }
282
283    /**
284     * Gets the call site flags, adding the strict flag if the current function
285     * being generated is in strict mode
286     *
287     * @return the correct flags for a call site in the current function
288     */
289    int getCallSiteFlags() {
290        return lc.getCurrentFunction().getCallSiteFlags() | callSiteFlags;
291    }
292
293    /**
294     * Are we generating code for 'eval' code?
295     * @return true if currently compiled code is 'eval' code.
296     */
297    boolean isEvalCode() {
298        return evalCode;
299    }
300
301    /**
302     * Load an identity node
303     *
304     * @param identNode an identity node to load
305     * @return the method generator used
306     */
307    private MethodEmitter loadIdent(final IdentNode identNode, final TypeBounds resultBounds) {
308        checkTemporalDeadZone(identNode);
309        final Symbol symbol = identNode.getSymbol();
310
311        if (!symbol.isScope()) {
312            final Type type = identNode.getType();
313            if(type == Type.UNDEFINED) {
314                return method.loadUndefined(resultBounds.widest);
315            }
316
317            assert symbol.hasSlot() || symbol.isParam();
318            return method.load(identNode);
319        }
320
321        assert identNode.getSymbol().isScope() : identNode + " is not in scope!";
322        final int flags = CALLSITE_SCOPE | getCallSiteFlags();
323        if (isFastScope(symbol)) {
324            // Only generate shared scope getter for fast-scope symbols so we know we can dial in correct scope.
325            if (symbol.getUseCount() > SharedScopeCall.FAST_SCOPE_GET_THRESHOLD && !isOptimisticOrRestOf()) {
326                method.loadCompilerConstant(SCOPE);
327                // As shared scope vars are only used in non-optimistic compilation, we switch from using TypeBounds to
328                // just a single definitive type, resultBounds.widest.
329                loadSharedScopeVar(resultBounds.widest, symbol, flags);
330            } else {
331                new LoadFastScopeVar(identNode, resultBounds, flags).emit();
332            }
333        } else {
334            //slow scope load, we have no proto depth
335            new LoadScopeVar(identNode, resultBounds, flags).emit();
336        }
337
338        return method;
339    }
340
341    // Any access to LET and CONST variables before their declaration must throw ReferenceError.
342    // This is called the temporal dead zone (TDZ). See https://gist.github.com/rwaldron/f0807a758aa03bcdd58a
343    private void checkTemporalDeadZone(final IdentNode identNode) {
344        if (identNode.isDead()) {
345            method.load(identNode.getSymbol().getName());
346            method.invoke(ScriptRuntime.THROW_REFERENCE_ERROR);
347        }
348    }
349
350    private boolean isRestOf() {
351        return continuationEntryPoints != null;
352    }
353
354    private boolean isOptimisticOrRestOf() {
355        return useOptimisticTypes() || isRestOf();
356    }
357
358    private boolean isCurrentContinuationEntryPoint(final int programPoint) {
359        return isRestOf() && getCurrentContinuationEntryPoint() == programPoint;
360    }
361
362    private int[] getContinuationEntryPoints() {
363        return isRestOf() ? continuationEntryPoints : null;
364    }
365
366    private int getCurrentContinuationEntryPoint() {
367        return isRestOf() ? continuationEntryPoints[0] : INVALID_PROGRAM_POINT;
368    }
369
370    private boolean isContinuationEntryPoint(final int programPoint) {
371        if (isRestOf()) {
372            assert continuationEntryPoints != null;
373            for (final int cep : continuationEntryPoints) {
374                if (cep == programPoint) {
375                    return true;
376                }
377            }
378        }
379        return false;
380    }
381
382    /**
383     * Check if this symbol can be accessed directly with a putfield or getfield or dynamic load
384     *
385     * @param symbol symbol to check for fast scope
386     * @return true if fast scope
387     */
388    private boolean isFastScope(final Symbol symbol) {
389        if (!symbol.isScope()) {
390            return false;
391        }
392
393        if (!lc.inDynamicScope()) {
394            // If there's no with or eval in context, and the symbol is marked as scoped, it is fast scoped. Such a
395            // symbol must either be global, or its defining block must need scope.
396            assert symbol.isGlobal() || lc.getDefiningBlock(symbol).needsScope() : symbol.getName();
397            return true;
398        }
399
400        if (symbol.isGlobal()) {
401            // Shortcut: if there's a with or eval in context, globals can't be fast scoped
402            return false;
403        }
404
405        // Otherwise, check if there's a dynamic scope between use of the symbol and its definition
406        final String name = symbol.getName();
407        boolean previousWasBlock = false;
408        for (final Iterator<LexicalContextNode> it = lc.getAllNodes(); it.hasNext();) {
409            final LexicalContextNode node = it.next();
410            if (node instanceof Block) {
411                // If this block defines the symbol, then we can fast scope the symbol.
412                final Block block = (Block)node;
413                if (block.getExistingSymbol(name) == symbol) {
414                    assert block.needsScope();
415                    return true;
416                }
417                previousWasBlock = true;
418            } else {
419                if (node instanceof WithNode && previousWasBlock || node instanceof FunctionNode && ((FunctionNode)node).needsDynamicScope()) {
420                    // If we hit a scope that can have symbols introduced into it at run time before finding the defining
421                    // block, the symbol can't be fast scoped. A WithNode only counts if we've immediately seen a block
422                    // before - its block. Otherwise, we are currently processing the WithNode's expression, and that's
423                    // obviously not subjected to introducing new symbols.
424                    return false;
425                }
426                previousWasBlock = false;
427            }
428        }
429        // Should've found the symbol defined in a block
430        throw new AssertionError();
431    }
432
433    private MethodEmitter loadSharedScopeVar(final Type valueType, final Symbol symbol, final int flags) {
434        assert !isOptimisticOrRestOf();
435        if (isFastScope(symbol)) {
436            method.load(getScopeProtoDepth(lc.getCurrentBlock(), symbol));
437        } else {
438            method.load(-1);
439        }
440        return lc.getScopeGet(unit, symbol, valueType, flags | CALLSITE_FAST_SCOPE).generateInvoke(method);
441    }
442
443    private class LoadScopeVar extends OptimisticOperation {
444        final IdentNode identNode;
445        private final int flags;
446
447        LoadScopeVar(final IdentNode identNode, final TypeBounds resultBounds, final int flags) {
448            super(identNode, resultBounds);
449            this.identNode = identNode;
450            this.flags = flags;
451        }
452
453        @Override
454        void loadStack() {
455            method.loadCompilerConstant(SCOPE);
456            getProto();
457        }
458
459        void getProto() {
460            //empty
461        }
462
463        @Override
464        void consumeStack() {
465            // If this is either __FILE__, __DIR__, or __LINE__ then load the property initially as Object as we'd convert
466            // it anyway for replaceLocationPropertyPlaceholder.
467            if(identNode.isCompileTimePropertyName()) {
468                method.dynamicGet(Type.OBJECT, identNode.getSymbol().getName(), flags, identNode.isFunction());
469                replaceCompileTimeProperty();
470            } else {
471                dynamicGet(identNode.getSymbol().getName(), flags, identNode.isFunction());
472            }
473        }
474    }
475
476    private class LoadFastScopeVar extends LoadScopeVar {
477        LoadFastScopeVar(final IdentNode identNode, final TypeBounds resultBounds, final int flags) {
478            super(identNode, resultBounds, flags | CALLSITE_FAST_SCOPE);
479        }
480
481        @Override
482        void getProto() {
483            loadFastScopeProto(identNode.getSymbol(), false);
484        }
485    }
486
487    private MethodEmitter storeFastScopeVar(final Symbol symbol, final int flags) {
488        loadFastScopeProto(symbol, true);
489        method.dynamicSet(symbol.getName(), flags | CALLSITE_FAST_SCOPE);
490        return method;
491    }
492
493    private int getScopeProtoDepth(final Block startingBlock, final Symbol symbol) {
494        //walk up the chain from starting block and when we bump into the current function boundary, add the external
495        //information.
496        final FunctionNode fn   = lc.getCurrentFunction();
497        final int externalDepth = compiler.getScriptFunctionData(fn.getId()).getExternalSymbolDepth(symbol.getName());
498
499        //count the number of scopes from this place to the start of the function
500
501        final int internalDepth = FindScopeDepths.findInternalDepth(lc, fn, startingBlock, symbol);
502        final int scopesToStart = FindScopeDepths.findScopesToStart(lc, fn, startingBlock);
503        int depth = 0;
504        if (internalDepth == -1) {
505            depth = scopesToStart + externalDepth;
506        } else {
507            assert internalDepth <= scopesToStart;
508            depth = internalDepth;
509        }
510
511        return depth;
512    }
513
514    private void loadFastScopeProto(final Symbol symbol, final boolean swap) {
515        final int depth = getScopeProtoDepth(lc.getCurrentBlock(), symbol);
516        assert depth != -1 : "Couldn't find scope depth for symbol " + symbol.getName() + " in " + lc.getCurrentFunction();
517        if (depth > 0) {
518            if (swap) {
519                method.swap();
520            }
521            for (int i = 0; i < depth; i++) {
522                method.invoke(ScriptObject.GET_PROTO);
523            }
524            if (swap) {
525                method.swap();
526            }
527        }
528    }
529
530    /**
531     * Generate code that loads this node to the stack, not constraining its type
532     *
533     * @param expr node to load
534     *
535     * @return the method emitter used
536     */
537    private MethodEmitter loadExpressionUnbounded(final Expression expr) {
538        return loadExpression(expr, TypeBounds.UNBOUNDED);
539    }
540
541    private MethodEmitter loadExpressionAsObject(final Expression expr) {
542        return loadExpression(expr, TypeBounds.OBJECT);
543    }
544
545    MethodEmitter loadExpressionAsBoolean(final Expression expr) {
546        return loadExpression(expr, TypeBounds.BOOLEAN);
547    }
548
549    // Test whether conversion from source to target involves a call of ES 9.1 ToPrimitive
550    // with possible side effects from calling an object's toString or valueOf methods.
551    private static boolean noToPrimitiveConversion(final Type source, final Type target) {
552        // Object to boolean conversion does not cause ToPrimitive call
553        return source.isJSPrimitive() || !target.isJSPrimitive() || target.isBoolean();
554    }
555
556    MethodEmitter loadBinaryOperands(final BinaryNode binaryNode) {
557        return loadBinaryOperands(binaryNode.lhs(), binaryNode.rhs(), TypeBounds.UNBOUNDED.notWiderThan(binaryNode.getWidestOperandType()), false, false);
558    }
559
560    private MethodEmitter loadBinaryOperands(final Expression lhs, final Expression rhs, final TypeBounds explicitOperandBounds, final boolean baseAlreadyOnStack, final boolean forceConversionSeparation) {
561        // ECMAScript 5.1 specification (sections 11.5-11.11 and 11.13) prescribes that when evaluating a binary
562        // expression "LEFT op RIGHT", the order of operations must be: LOAD LEFT, LOAD RIGHT, CONVERT LEFT, CONVERT
563        // RIGHT, EXECUTE OP. Unfortunately, doing it in this order defeats potential optimizations that arise when we
564        // can combine a LOAD with a CONVERT operation (e.g. use a dynamic getter with the conversion target type as its
565        // return value). What we do here is reorder LOAD RIGHT and CONVERT LEFT when possible; it is possible only when
566        // we can prove that executing CONVERT LEFT can't have a side effect that changes the value of LOAD RIGHT.
567        // Basically, if we know that either LEFT already is a primitive value, or does not have to be converted to
568        // a primitive value, or RIGHT is an expression that loads without side effects, then we can do the
569        // reordering and collapse LOAD/CONVERT into a single operation; otherwise we need to do the more costly
570        // separate operations to preserve specification semantics.
571
572        // Operands' load type should not be narrower than the narrowest of the individual operand types, nor narrower
573        // than the lower explicit bound, but it should also not be wider than
574        final Type narrowestOperandType = Type.narrowest(Type.widest(lhs.getType(), rhs.getType()), explicitOperandBounds.widest);
575        final TypeBounds operandBounds = explicitOperandBounds.notNarrowerThan(narrowestOperandType);
576        if (noToPrimitiveConversion(lhs.getType(), explicitOperandBounds.widest) || rhs.isLocal()) {
577            // Can reorder. We might still need to separate conversion, but at least we can do it with reordering
578            if (forceConversionSeparation) {
579                // Can reorder, but can't move conversion into the operand as the operation depends on operands
580                // exact types for its overflow guarantees. E.g. with {L}{%I}expr1 {L}* {L}{%I}expr2 we are not allowed
581                // to merge {L}{%I} into {%L}, as that can cause subsequent overflows; test for JDK-8058610 contains
582                // concrete cases where this could happen.
583                final TypeBounds safeConvertBounds = TypeBounds.UNBOUNDED.notNarrowerThan(narrowestOperandType);
584                loadExpression(lhs, safeConvertBounds, baseAlreadyOnStack);
585                method.convert(operandBounds.within(method.peekType()));
586                loadExpression(rhs, safeConvertBounds, false);
587                method.convert(operandBounds.within(method.peekType()));
588            } else {
589                // Can reorder and move conversion into the operand. Combine load and convert into single operations.
590                loadExpression(lhs, operandBounds, baseAlreadyOnStack);
591                loadExpression(rhs, operandBounds, false);
592            }
593        } else {
594            // Can't reorder. Load and convert separately.
595            final TypeBounds safeConvertBounds = TypeBounds.UNBOUNDED.notNarrowerThan(narrowestOperandType);
596            loadExpression(lhs, safeConvertBounds, baseAlreadyOnStack);
597            final Type lhsType = method.peekType();
598            loadExpression(rhs, safeConvertBounds, false);
599            final Type convertedLhsType = operandBounds.within(method.peekType());
600            if (convertedLhsType != lhsType) {
601                // Do it conditionally, so that if conversion is a no-op we don't introduce a SWAP, SWAP.
602                method.swap().convert(convertedLhsType).swap();
603            }
604            method.convert(operandBounds.within(method.peekType()));
605        }
606        assert Type.generic(method.peekType()) == operandBounds.narrowest;
607        assert Type.generic(method.peekType(1)) == operandBounds.narrowest;
608
609        return method;
610    }
611
612    private static final class TypeBounds {
613        final Type narrowest;
614        final Type widest;
615
616        static final TypeBounds UNBOUNDED = new TypeBounds(Type.UNKNOWN, Type.OBJECT);
617        static final TypeBounds INT = exact(Type.INT);
618        static final TypeBounds OBJECT = exact(Type.OBJECT);
619        static final TypeBounds BOOLEAN = exact(Type.BOOLEAN);
620
621        static TypeBounds exact(final Type type) {
622            return new TypeBounds(type, type);
623        }
624
625        TypeBounds(final Type narrowest, final Type widest) {
626            assert widest    != null && widest    != Type.UNDEFINED && widest != Type.UNKNOWN : widest;
627            assert narrowest != null && narrowest != Type.UNDEFINED : narrowest;
628            assert !narrowest.widerThan(widest) : narrowest + " wider than " + widest;
629            assert !widest.narrowerThan(narrowest);
630            this.narrowest = Type.generic(narrowest);
631            this.widest = Type.generic(widest);
632        }
633
634        TypeBounds notNarrowerThan(final Type type) {
635            return maybeNew(Type.narrowest(Type.widest(narrowest, type), widest), widest);
636        }
637
638        TypeBounds notWiderThan(final Type type) {
639            return maybeNew(Type.narrowest(narrowest, type), Type.narrowest(widest, type));
640        }
641
642        boolean canBeNarrowerThan(final Type type) {
643            return narrowest.narrowerThan(type);
644        }
645
646        TypeBounds maybeNew(final Type newNarrowest, final Type newWidest) {
647            if(newNarrowest == narrowest && newWidest == widest) {
648                return this;
649            }
650            return new TypeBounds(newNarrowest, newWidest);
651        }
652
653        TypeBounds booleanToInt() {
654            return maybeNew(CodeGenerator.booleanToInt(narrowest), CodeGenerator.booleanToInt(widest));
655        }
656
657        TypeBounds objectToNumber() {
658            return maybeNew(CodeGenerator.objectToNumber(narrowest), CodeGenerator.objectToNumber(widest));
659        }
660
661        Type within(final Type type) {
662            if(type.narrowerThan(narrowest)) {
663                return narrowest;
664            }
665            if(type.widerThan(widest)) {
666                return widest;
667            }
668            return type;
669        }
670
671        @Override
672        public String toString() {
673            return "[" + narrowest + ", " + widest + "]";
674        }
675    }
676
677    private static Type booleanToInt(final Type t) {
678        return t == Type.BOOLEAN ? Type.INT : t;
679    }
680
681    private static Type objectToNumber(final Type t) {
682        return t.isObject() ? Type.NUMBER : t;
683    }
684
685    MethodEmitter loadExpressionAsType(final Expression expr, final Type type) {
686        if(type == Type.BOOLEAN) {
687            return loadExpressionAsBoolean(expr);
688        } else if(type == Type.UNDEFINED) {
689            assert expr.getType() == Type.UNDEFINED;
690            return loadExpressionAsObject(expr);
691        }
692        // having no upper bound preserves semantics of optimistic operations in the expression (by not having them
693        // converted early) and then applies explicit conversion afterwards.
694        return loadExpression(expr, TypeBounds.UNBOUNDED.notNarrowerThan(type)).convert(type);
695    }
696
697    private MethodEmitter loadExpression(final Expression expr, final TypeBounds resultBounds) {
698        return loadExpression(expr, resultBounds, false);
699    }
700
701    /**
702     * Emits code for evaluating an expression and leaving its value on top of the stack, narrowing or widening it if
703     * necessary.
704     * @param expr the expression to load
705     * @param resultBounds the incoming type bounds. The value on the top of the stack is guaranteed to not be of narrower
706     * type than the narrowest bound, or wider type than the widest bound after it is loaded.
707     * @param baseAlreadyOnStack true if the base of an access or index node is already on the stack. Used to avoid
708     * double evaluation of bases in self-assignment expressions to access and index nodes. {@code Type.OBJECT} is used
709     * to indicate the widest possible type.
710     * @return the method emitter
711     */
712    private MethodEmitter loadExpression(final Expression expr, final TypeBounds resultBounds, final boolean baseAlreadyOnStack) {
713
714        /*
715         * The load may be of type IdentNode, e.g. "x", AccessNode, e.g. "x.y"
716         * or IndexNode e.g. "x[y]". Both AccessNodes and IndexNodes are
717         * BaseNodes and the logic for loading the base object is reused
718         */
719        final CodeGenerator codegen = this;
720
721        final Node currentDiscard = codegen.lc.getCurrentDiscard();
722        expr.accept(new NodeOperatorVisitor<LexicalContext>(new LexicalContext()) {
723            @Override
724            public boolean enterIdentNode(final IdentNode identNode) {
725                loadIdent(identNode, resultBounds);
726                return false;
727            }
728
729            @Override
730            public boolean enterAccessNode(final AccessNode accessNode) {
731                new OptimisticOperation(accessNode, resultBounds) {
732                    @Override
733                    void loadStack() {
734                        if (!baseAlreadyOnStack) {
735                            loadExpressionAsObject(accessNode.getBase());
736                        }
737                        assert method.peekType().isObject();
738                    }
739                    @Override
740                    void consumeStack() {
741                        final int flags = getCallSiteFlags();
742                        dynamicGet(accessNode.getProperty(), flags, accessNode.isFunction());
743                    }
744                }.emit(baseAlreadyOnStack ? 1 : 0);
745                return false;
746            }
747
748            @Override
749            public boolean enterIndexNode(final IndexNode indexNode) {
750                new OptimisticOperation(indexNode, resultBounds) {
751                    @Override
752                    void loadStack() {
753                        if (!baseAlreadyOnStack) {
754                            loadExpressionAsObject(indexNode.getBase());
755                            loadExpressionUnbounded(indexNode.getIndex());
756                        }
757                    }
758                    @Override
759                    void consumeStack() {
760                        final int flags = getCallSiteFlags();
761                        dynamicGetIndex(flags, indexNode.isFunction());
762                    }
763                }.emit(baseAlreadyOnStack ? 2 : 0);
764                return false;
765            }
766
767            @Override
768            public boolean enterFunctionNode(final FunctionNode functionNode) {
769                // function nodes will always leave a constructed function object on stack, no need to load the symbol
770                // separately as in enterDefault()
771                lc.pop(functionNode);
772                functionNode.accept(codegen);
773                // NOTE: functionNode.accept() will produce a different FunctionNode that we discard. This incidentally
774                // doesn't cause problems as we're never touching FunctionNode again after it's visited here - codegen
775                // is the last element in the compilation pipeline, the AST it produces is not used externally. So, we
776                // re-push the original functionNode.
777                lc.push(functionNode);
778                return false;
779            }
780
781            @Override
782            public boolean enterASSIGN(final BinaryNode binaryNode) {
783                loadASSIGN(binaryNode);
784                return false;
785            }
786
787            @Override
788            public boolean enterASSIGN_ADD(final BinaryNode binaryNode) {
789                loadASSIGN_ADD(binaryNode);
790                return false;
791            }
792
793            @Override
794            public boolean enterASSIGN_BIT_AND(final BinaryNode binaryNode) {
795                loadASSIGN_BIT_AND(binaryNode);
796                return false;
797            }
798
799            @Override
800            public boolean enterASSIGN_BIT_OR(final BinaryNode binaryNode) {
801                loadASSIGN_BIT_OR(binaryNode);
802                return false;
803            }
804
805            @Override
806            public boolean enterASSIGN_BIT_XOR(final BinaryNode binaryNode) {
807                loadASSIGN_BIT_XOR(binaryNode);
808                return false;
809            }
810
811            @Override
812            public boolean enterASSIGN_DIV(final BinaryNode binaryNode) {
813                loadASSIGN_DIV(binaryNode);
814                return false;
815            }
816
817            @Override
818            public boolean enterASSIGN_MOD(final BinaryNode binaryNode) {
819                loadASSIGN_MOD(binaryNode);
820                return false;
821            }
822
823            @Override
824            public boolean enterASSIGN_MUL(final BinaryNode binaryNode) {
825                loadASSIGN_MUL(binaryNode);
826                return false;
827            }
828
829            @Override
830            public boolean enterASSIGN_SAR(final BinaryNode binaryNode) {
831                loadASSIGN_SAR(binaryNode);
832                return false;
833            }
834
835            @Override
836            public boolean enterASSIGN_SHL(final BinaryNode binaryNode) {
837                loadASSIGN_SHL(binaryNode);
838                return false;
839            }
840
841            @Override
842            public boolean enterASSIGN_SHR(final BinaryNode binaryNode) {
843                loadASSIGN_SHR(binaryNode);
844                return false;
845            }
846
847            @Override
848            public boolean enterASSIGN_SUB(final BinaryNode binaryNode) {
849                loadASSIGN_SUB(binaryNode);
850                return false;
851            }
852
853            @Override
854            public boolean enterCallNode(final CallNode callNode) {
855                return loadCallNode(callNode, resultBounds);
856            }
857
858            @Override
859            public boolean enterLiteralNode(final LiteralNode<?> literalNode) {
860                loadLiteral(literalNode, resultBounds);
861                return false;
862            }
863
864            @Override
865            public boolean enterTernaryNode(final TernaryNode ternaryNode) {
866                loadTernaryNode(ternaryNode, resultBounds);
867                return false;
868            }
869
870            @Override
871            public boolean enterADD(final BinaryNode binaryNode) {
872                loadADD(binaryNode, resultBounds);
873                return false;
874            }
875
876            @Override
877            public boolean enterSUB(final UnaryNode unaryNode) {
878                loadSUB(unaryNode, resultBounds);
879                return false;
880            }
881
882            @Override
883            public boolean enterSUB(final BinaryNode binaryNode) {
884                loadSUB(binaryNode, resultBounds);
885                return false;
886            }
887
888            @Override
889            public boolean enterMUL(final BinaryNode binaryNode) {
890                loadMUL(binaryNode, resultBounds);
891                return false;
892            }
893
894            @Override
895            public boolean enterDIV(final BinaryNode binaryNode) {
896                loadDIV(binaryNode, resultBounds);
897                return false;
898            }
899
900            @Override
901            public boolean enterMOD(final BinaryNode binaryNode) {
902                loadMOD(binaryNode, resultBounds);
903                return false;
904            }
905
906            @Override
907            public boolean enterSAR(final BinaryNode binaryNode) {
908                loadSAR(binaryNode);
909                return false;
910            }
911
912            @Override
913            public boolean enterSHL(final BinaryNode binaryNode) {
914                loadSHL(binaryNode);
915                return false;
916            }
917
918            @Override
919            public boolean enterSHR(final BinaryNode binaryNode) {
920                loadSHR(binaryNode);
921                return false;
922            }
923
924            @Override
925            public boolean enterCOMMALEFT(final BinaryNode binaryNode) {
926                loadCOMMALEFT(binaryNode, resultBounds);
927                return false;
928            }
929
930            @Override
931            public boolean enterCOMMARIGHT(final BinaryNode binaryNode) {
932                loadCOMMARIGHT(binaryNode, resultBounds);
933                return false;
934            }
935
936            @Override
937            public boolean enterAND(final BinaryNode binaryNode) {
938                loadAND_OR(binaryNode, resultBounds, true);
939                return false;
940            }
941
942            @Override
943            public boolean enterOR(final BinaryNode binaryNode) {
944                loadAND_OR(binaryNode, resultBounds, false);
945                return false;
946            }
947
948            @Override
949            public boolean enterNOT(final UnaryNode unaryNode) {
950                loadNOT(unaryNode);
951                return false;
952            }
953
954            @Override
955            public boolean enterADD(final UnaryNode unaryNode) {
956                loadADD(unaryNode, resultBounds);
957                return false;
958            }
959
960            @Override
961            public boolean enterBIT_NOT(final UnaryNode unaryNode) {
962                loadBIT_NOT(unaryNode);
963                return false;
964            }
965
966            @Override
967            public boolean enterBIT_AND(final BinaryNode binaryNode) {
968                loadBIT_AND(binaryNode);
969                return false;
970            }
971
972            @Override
973            public boolean enterBIT_OR(final BinaryNode binaryNode) {
974                loadBIT_OR(binaryNode);
975                return false;
976            }
977
978            @Override
979            public boolean enterBIT_XOR(final BinaryNode binaryNode) {
980                loadBIT_XOR(binaryNode);
981                return false;
982            }
983
984            @Override
985            public boolean enterVOID(final UnaryNode unaryNode) {
986                loadVOID(unaryNode, resultBounds);
987                return false;
988            }
989
990            @Override
991            public boolean enterEQ(final BinaryNode binaryNode) {
992                loadCmp(binaryNode, Condition.EQ);
993                return false;
994            }
995
996            @Override
997            public boolean enterEQ_STRICT(final BinaryNode binaryNode) {
998                loadCmp(binaryNode, Condition.EQ);
999                return false;
1000            }
1001
1002            @Override
1003            public boolean enterGE(final BinaryNode binaryNode) {
1004                loadCmp(binaryNode, Condition.GE);
1005                return false;
1006            }
1007
1008            @Override
1009            public boolean enterGT(final BinaryNode binaryNode) {
1010                loadCmp(binaryNode, Condition.GT);
1011                return false;
1012            }
1013
1014            @Override
1015            public boolean enterLE(final BinaryNode binaryNode) {
1016                loadCmp(binaryNode, Condition.LE);
1017                return false;
1018            }
1019
1020            @Override
1021            public boolean enterLT(final BinaryNode binaryNode) {
1022                loadCmp(binaryNode, Condition.LT);
1023                return false;
1024            }
1025
1026            @Override
1027            public boolean enterNE(final BinaryNode binaryNode) {
1028                loadCmp(binaryNode, Condition.NE);
1029                return false;
1030            }
1031
1032            @Override
1033            public boolean enterNE_STRICT(final BinaryNode binaryNode) {
1034                loadCmp(binaryNode, Condition.NE);
1035                return false;
1036            }
1037
1038            @Override
1039            public boolean enterObjectNode(final ObjectNode objectNode) {
1040                loadObjectNode(objectNode);
1041                return false;
1042            }
1043
1044            @Override
1045            public boolean enterRuntimeNode(final RuntimeNode runtimeNode) {
1046                loadRuntimeNode(runtimeNode);
1047                return false;
1048            }
1049
1050            @Override
1051            public boolean enterNEW(final UnaryNode unaryNode) {
1052                loadNEW(unaryNode);
1053                return false;
1054            }
1055
1056            @Override
1057            public boolean enterDECINC(final UnaryNode unaryNode) {
1058                loadDECINC(unaryNode);
1059                return false;
1060            }
1061
1062            @Override
1063            public boolean enterJoinPredecessorExpression(final JoinPredecessorExpression joinExpr) {
1064                loadExpression(joinExpr.getExpression(), resultBounds);
1065                return false;
1066            }
1067
1068            @Override
1069            public boolean enterGetSplitState(final GetSplitState getSplitState) {
1070                method.loadScope();
1071                method.invoke(Scope.GET_SPLIT_STATE);
1072                return false;
1073            }
1074
1075            @Override
1076            public boolean enterDefault(final Node otherNode) {
1077                // Must have handled all expressions that can legally be encountered.
1078                throw new AssertionError(otherNode.getClass().getName());
1079            }
1080        });
1081        if(currentDiscard != expr) {
1082            coerceStackTop(resultBounds);
1083        }
1084        return method;
1085    }
1086
1087    private MethodEmitter coerceStackTop(final TypeBounds typeBounds) {
1088        return method.convert(typeBounds.within(method.peekType()));
1089    }
1090
1091    /**
1092     * Closes any still open entries for this block's local variables in the bytecode local variable table.
1093     *
1094     * @param block block containing symbols.
1095     */
1096    private void closeBlockVariables(final Block block) {
1097        for (final Symbol symbol : block.getSymbols()) {
1098            if (symbol.isBytecodeLocal()) {
1099                method.closeLocalVariable(symbol, block.getBreakLabel());
1100            }
1101        }
1102    }
1103
1104    @Override
1105    public boolean enterBlock(final Block block) {
1106        method.label(block.getEntryLabel());
1107        if(!method.isReachable()) {
1108            return false;
1109        }
1110        if(lc.isFunctionBody() && emittedMethods.contains(lc.getCurrentFunction().getName())) {
1111            return false;
1112        }
1113        initLocals(block);
1114
1115        assert lc.getUsedSlotCount() == method.getFirstTemp();
1116        return true;
1117    }
1118
1119    private boolean useOptimisticTypes() {
1120        return !lc.inSplitNode() && compiler.useOptimisticTypes();
1121    }
1122
1123    @Override
1124    public Node leaveBlock(final Block block) {
1125        popBlockScope(block);
1126        method.beforeJoinPoint(block);
1127
1128        closeBlockVariables(block);
1129        lc.releaseSlots();
1130        assert !method.isReachable() || (lc.isFunctionBody() ? 0 : lc.getUsedSlotCount()) == method.getFirstTemp() :
1131            "reachable="+method.isReachable() +
1132            " isFunctionBody=" + lc.isFunctionBody() +
1133            " usedSlotCount=" + lc.getUsedSlotCount() +
1134            " firstTemp=" + method.getFirstTemp();
1135
1136        return block;
1137    }
1138
1139    private void popBlockScope(final Block block) {
1140        final Label breakLabel = block.getBreakLabel();
1141
1142        if(!block.needsScope() || lc.isFunctionBody()) {
1143            emitBlockBreakLabel(breakLabel);
1144            return;
1145        }
1146
1147        final Label beginTryLabel = scopeEntryLabels.pop();
1148        final Label recoveryLabel = new Label("block_popscope_catch");
1149        emitBlockBreakLabel(breakLabel);
1150        final boolean bodyCanThrow = breakLabel.isAfter(beginTryLabel);
1151        if(bodyCanThrow) {
1152            method._try(beginTryLabel, breakLabel, recoveryLabel);
1153        }
1154
1155        Label afterCatchLabel = null;
1156
1157        if(method.isReachable()) {
1158            popScope();
1159            if(bodyCanThrow) {
1160                afterCatchLabel = new Label("block_after_catch");
1161                method._goto(afterCatchLabel);
1162            }
1163        }
1164
1165        if(bodyCanThrow) {
1166            assert !method.isReachable();
1167            method._catch(recoveryLabel);
1168            popScopeException();
1169            method.athrow();
1170        }
1171        if(afterCatchLabel != null) {
1172            method.label(afterCatchLabel);
1173        }
1174    }
1175
1176    private void emitBlockBreakLabel(final Label breakLabel) {
1177        // TODO: this is totally backwards. Block should not be breakable, LabelNode should be breakable.
1178        final LabelNode labelNode = lc.getCurrentBlockLabelNode();
1179        if(labelNode != null) {
1180            // Only have conversions if we're reachable
1181            assert labelNode.getLocalVariableConversion() == null || method.isReachable();
1182            method.beforeJoinPoint(labelNode);
1183            method.breakLabel(breakLabel, labeledBlockBreakLiveLocals.pop());
1184        } else {
1185            method.label(breakLabel);
1186        }
1187    }
1188
1189    private void popScope() {
1190        popScopes(1);
1191    }
1192
1193    /**
1194     * Pop scope as part of an exception handler. Similar to {@code popScope()} but also takes care of adjusting the
1195     * number of scopes that needs to be popped in case a rest-of continuation handler encounters an exception while
1196     * performing a ToPrimitive conversion.
1197     */
1198    private void popScopeException() {
1199        popScope();
1200        final ContinuationInfo ci = getContinuationInfo();
1201        if(ci != null) {
1202            final Label catchLabel = ci.catchLabel;
1203            if(catchLabel != METHOD_BOUNDARY && catchLabel == catchLabels.peek()) {
1204                ++ci.exceptionScopePops;
1205            }
1206        }
1207    }
1208
1209    private void popScopesUntil(final LexicalContextNode until) {
1210        popScopes(lc.getScopeNestingLevelTo(until));
1211    }
1212
1213    private void popScopes(final int count) {
1214        if(count == 0) {
1215            return;
1216        }
1217        assert count > 0; // together with count == 0 check, asserts nonnegative count
1218        if (!method.hasScope()) {
1219            // We can sometimes invoke this method even if the method has no slot for the scope object. Typical example:
1220            // for(;;) { with({}) { break; } }. WithNode normally creates a scope, but if it uses no identifiers and
1221            // nothing else forces creation of a scope in the method, we just won't have the :scope local variable.
1222            return;
1223        }
1224        method.loadCompilerConstant(SCOPE);
1225        for(int i = 0; i < count; ++i) {
1226            method.invoke(ScriptObject.GET_PROTO);
1227        }
1228        method.storeCompilerConstant(SCOPE);
1229    }
1230
1231    @Override
1232    public boolean enterBreakNode(final BreakNode breakNode) {
1233        return enterJumpStatement(breakNode);
1234    }
1235
1236    private boolean enterJumpStatement(final JumpStatement jump) {
1237        if(!method.isReachable()) {
1238            return false;
1239        }
1240        enterStatement(jump);
1241
1242        method.beforeJoinPoint(jump);
1243        final BreakableNode target = jump.getTarget(lc);
1244        popScopesUntil(target);
1245        final Label targetLabel = jump.getTargetLabel(target);
1246        targetLabel.markAsBreakTarget();
1247        method._goto(targetLabel);
1248
1249        return false;
1250    }
1251
1252    private int loadArgs(final List<Expression> args) {
1253        final int argCount = args.size();
1254        // arg have already been converted to objects here.
1255        if (argCount > LinkerCallSite.ARGLIMIT) {
1256            loadArgsArray(args);
1257            return 1;
1258        }
1259
1260        for (final Expression arg : args) {
1261            assert arg != null;
1262            loadExpressionUnbounded(arg);
1263        }
1264        return argCount;
1265    }
1266
1267    private boolean loadCallNode(final CallNode callNode, final TypeBounds resultBounds) {
1268        lineNumber(callNode.getLineNumber());
1269
1270        final List<Expression> args = callNode.getArgs();
1271        final Expression function = callNode.getFunction();
1272        final Block currentBlock = lc.getCurrentBlock();
1273        final CodeGeneratorLexicalContext codegenLexicalContext = lc;
1274
1275        function.accept(new NodeVisitor<LexicalContext>(new LexicalContext()) {
1276
1277            private MethodEmitter sharedScopeCall(final IdentNode identNode, final int flags) {
1278                final Symbol symbol = identNode.getSymbol();
1279                final boolean isFastScope = isFastScope(symbol);
1280                final int scopeCallFlags = flags | (isFastScope ? CALLSITE_FAST_SCOPE : 0);
1281                new OptimisticOperation(callNode, resultBounds) {
1282                    @Override
1283                    void loadStack() {
1284                        method.loadCompilerConstant(SCOPE);
1285                        if (isFastScope) {
1286                            method.load(getScopeProtoDepth(currentBlock, symbol));
1287                        } else {
1288                            method.load(-1); // Bypass fast-scope code in shared callsite
1289                        }
1290                        loadArgs(args);
1291                    }
1292                    @Override
1293                    void consumeStack() {
1294                        final Type[] paramTypes = method.getTypesFromStack(args.size());
1295                        // We have trouble finding e.g. in Type.typeFor(asm.Type) because it can't see the Context class
1296                        // loader, so we need to weaken reference signatures to Object.
1297                        for(int i = 0; i < paramTypes.length; ++i) {
1298                            paramTypes[i] = Type.generic(paramTypes[i]);
1299                        }
1300                        // As shared scope calls are only used in non-optimistic compilation, we switch from using
1301                        // TypeBounds to just a single definitive type, resultBounds.widest.
1302                        final SharedScopeCall scopeCall = codegenLexicalContext.getScopeCall(unit, symbol,
1303                                identNode.getType(), resultBounds.widest, paramTypes, scopeCallFlags);
1304                        scopeCall.generateInvoke(method);
1305                    }
1306                }.emit();
1307                return method;
1308            }
1309
1310            private void scopeCall(final IdentNode ident, final int flags) {
1311                new OptimisticOperation(callNode, resultBounds) {
1312                    int argsCount;
1313                    @Override
1314                    void loadStack() {
1315                        loadExpressionAsObject(ident); // foo() makes no sense if foo == 3
1316                        // ScriptFunction will see CALLSITE_SCOPE and will bind scope accordingly.
1317                        method.loadUndefined(Type.OBJECT); //the 'this'
1318                        argsCount = loadArgs(args);
1319                    }
1320                    @Override
1321                    void consumeStack() {
1322                        dynamicCall(2 + argsCount, flags);
1323                    }
1324                }.emit();
1325            }
1326
1327            private void evalCall(final IdentNode ident, final int flags) {
1328                final Label invoke_direct_eval  = new Label("invoke_direct_eval");
1329                final Label is_not_eval  = new Label("is_not_eval");
1330                final Label eval_done = new Label("eval_done");
1331
1332                new OptimisticOperation(callNode, resultBounds) {
1333                    int argsCount;
1334                    @Override
1335                    void loadStack() {
1336                        /**
1337                         * We want to load 'eval' to check if it is indeed global builtin eval.
1338                         * If this eval call is inside a 'with' statement, dyn:getMethod|getProp|getElem
1339                         * would be generated if ident is a "isFunction". But, that would result in a
1340                         * bound function from WithObject. We don't want that as bound function as that
1341                         * won't be detected as builtin eval. So, we make ident as "not a function" which
1342                         * results in "dyn:getProp|getElem|getMethod" being generated and so WithObject
1343                         * would return unbounded eval function.
1344                         *
1345                         * Example:
1346                         *
1347                         *  var global = this;
1348                         *  function func() {
1349                         *      with({ eval: global.eval) { eval("var x = 10;") }
1350                         *  }
1351                         */
1352                        loadExpressionAsObject(ident.setIsNotFunction()); // Type.OBJECT as foo() makes no sense if foo == 3
1353                        globalIsEval();
1354                        method.ifeq(is_not_eval);
1355
1356                        // Load up self (scope).
1357                        method.loadCompilerConstant(SCOPE);
1358                        final List<Expression> evalArgs = callNode.getEvalArgs().getArgs();
1359                        // load evaluated code
1360                        loadExpressionAsObject(evalArgs.get(0));
1361                        // load second and subsequent args for side-effect
1362                        final int numArgs = evalArgs.size();
1363                        for (int i = 1; i < numArgs; i++) {
1364                            loadAndDiscard(evalArgs.get(i));
1365                        }
1366                        method._goto(invoke_direct_eval);
1367
1368                        method.label(is_not_eval);
1369                        // load this time but with dyn:getMethod|getProp|getElem
1370                        loadExpressionAsObject(ident); // Type.OBJECT as foo() makes no sense if foo == 3
1371                        // This is some scope 'eval' or global eval replaced by user
1372                        // but not the built-in ECMAScript 'eval' function call
1373                        method.loadNull();
1374                        argsCount = loadArgs(callNode.getArgs());
1375                    }
1376
1377                    @Override
1378                    void consumeStack() {
1379                        // Ordinary call
1380                        dynamicCall(2 + argsCount, flags);
1381                        method._goto(eval_done);
1382
1383                        method.label(invoke_direct_eval);
1384                        // Special/extra 'eval' arguments. These can be loaded late (in consumeStack) as we know none of
1385                        // them can ever be optimistic.
1386                        method.loadCompilerConstant(THIS);
1387                        method.load(callNode.getEvalArgs().getLocation());
1388                        method.load(CodeGenerator.this.lc.getCurrentFunction().isStrict());
1389                        // direct call to Global.directEval
1390                        globalDirectEval();
1391                        convertOptimisticReturnValue();
1392                        coerceStackTop(resultBounds);
1393                    }
1394                }.emit();
1395
1396                method.label(eval_done);
1397            }
1398
1399            @Override
1400            public boolean enterIdentNode(final IdentNode node) {
1401                final Symbol symbol = node.getSymbol();
1402
1403                if (symbol.isScope()) {
1404                    final int flags = getCallSiteFlags() | CALLSITE_SCOPE;
1405                    final int useCount = symbol.getUseCount();
1406
1407                    // Threshold for generating shared scope callsite is lower for fast scope symbols because we know
1408                    // we can dial in the correct scope. However, we also need to enable it for non-fast scopes to
1409                    // support huge scripts like mandreel.js.
1410                    if (callNode.isEval()) {
1411                        evalCall(node, flags);
1412                    } else if (useCount <= SharedScopeCall.FAST_SCOPE_CALL_THRESHOLD
1413                            || !isFastScope(symbol) && useCount <= SharedScopeCall.SLOW_SCOPE_CALL_THRESHOLD
1414                            || CodeGenerator.this.lc.inDynamicScope()
1415                            || isOptimisticOrRestOf()) {
1416                        scopeCall(node, flags);
1417                    } else {
1418                        sharedScopeCall(node, flags);
1419                    }
1420                    assert method.peekType().equals(resultBounds.within(callNode.getType())) : method.peekType() + " != " + resultBounds + "(" + callNode.getType() + ")";
1421                } else {
1422                    enterDefault(node);
1423                }
1424
1425                return false;
1426            }
1427
1428            @Override
1429            public boolean enterAccessNode(final AccessNode node) {
1430                //check if this is an apply to call node. only real applies, that haven't been
1431                //shadowed from their way to the global scope counts
1432
1433                //call nodes have program points.
1434
1435                final int flags = getCallSiteFlags() | (callNode.isApplyToCall() ? CALLSITE_APPLY_TO_CALL : 0);
1436
1437                new OptimisticOperation(callNode, resultBounds) {
1438                    int argCount;
1439                    @Override
1440                    void loadStack() {
1441                        loadExpressionAsObject(node.getBase());
1442                        method.dup();
1443                        // NOTE: not using a nested OptimisticOperation on this dynamicGet, as we expect to get back
1444                        // a callable object. Nobody in their right mind would optimistically type this call site.
1445                        assert !node.isOptimistic();
1446                        method.dynamicGet(node.getType(), node.getProperty(), flags, true);
1447                        method.swap();
1448                        argCount = loadArgs(args);
1449                    }
1450                    @Override
1451                    void consumeStack() {
1452                        dynamicCall(2 + argCount, flags);
1453                    }
1454                }.emit();
1455
1456                return false;
1457            }
1458
1459            @Override
1460            public boolean enterFunctionNode(final FunctionNode origCallee) {
1461                new OptimisticOperation(callNode, resultBounds) {
1462                    FunctionNode callee;
1463                    int argsCount;
1464                    @Override
1465                    void loadStack() {
1466                        callee = (FunctionNode)origCallee.accept(CodeGenerator.this);
1467                        if (callee.isStrict()) { // "this" is undefined
1468                            method.loadUndefined(Type.OBJECT);
1469                        } else { // get global from scope (which is the self)
1470                            globalInstance();
1471                        }
1472                        argsCount = loadArgs(args);
1473                    }
1474
1475                    @Override
1476                    void consumeStack() {
1477                        final int flags = getCallSiteFlags();
1478                        //assert callNodeType.equals(callee.getReturnType()) : callNodeType + " != " + callee.getReturnType();
1479                        dynamicCall(2 + argsCount, flags);
1480                    }
1481                }.emit();
1482                return false;
1483            }
1484
1485            @Override
1486            public boolean enterIndexNode(final IndexNode node) {
1487                new OptimisticOperation(callNode, resultBounds) {
1488                    int argsCount;
1489                    @Override
1490                    void loadStack() {
1491                        loadExpressionAsObject(node.getBase());
1492                        method.dup();
1493                        final Type indexType = node.getIndex().getType();
1494                        if (indexType.isObject() || indexType.isBoolean()) {
1495                            loadExpressionAsObject(node.getIndex()); //TODO boolean
1496                        } else {
1497                            loadExpressionUnbounded(node.getIndex());
1498                        }
1499                        // NOTE: not using a nested OptimisticOperation on this dynamicGetIndex, as we expect to get
1500                        // back a callable object. Nobody in their right mind would optimistically type this call site.
1501                        assert !node.isOptimistic();
1502                        method.dynamicGetIndex(node.getType(), getCallSiteFlags(), true);
1503                        method.swap();
1504                        argsCount = loadArgs(args);
1505                    }
1506                    @Override
1507                    void consumeStack() {
1508                        final int flags = getCallSiteFlags();
1509                        dynamicCall(2 + argsCount, flags);
1510                    }
1511                }.emit();
1512                return false;
1513            }
1514
1515            @Override
1516            protected boolean enterDefault(final Node node) {
1517                new OptimisticOperation(callNode, resultBounds) {
1518                    int argsCount;
1519                    @Override
1520                    void loadStack() {
1521                        // Load up function.
1522                        loadExpressionAsObject(function); //TODO, e.g. booleans can be used as functions
1523                        method.loadUndefined(Type.OBJECT); // ScriptFunction will figure out the correct this when it sees CALLSITE_SCOPE
1524                        argsCount = loadArgs(args);
1525                        }
1526                        @Override
1527                        void consumeStack() {
1528                            final int flags = getCallSiteFlags() | CALLSITE_SCOPE;
1529                            dynamicCall(2 + argsCount, flags);
1530                        }
1531                }.emit();
1532                return false;
1533            }
1534        });
1535
1536        return false;
1537    }
1538
1539    /**
1540     * Returns the flags with optimistic flag and program point removed.
1541     * @param flags the flags that need optimism stripped from them.
1542     * @return flags without optimism
1543     */
1544    static int nonOptimisticFlags(final int flags) {
1545        return flags & ~(CALLSITE_OPTIMISTIC | -1 << CALLSITE_PROGRAM_POINT_SHIFT);
1546    }
1547
1548    @Override
1549    public boolean enterContinueNode(final ContinueNode continueNode) {
1550        return enterJumpStatement(continueNode);
1551    }
1552
1553    @Override
1554    public boolean enterEmptyNode(final EmptyNode emptyNode) {
1555        if(!method.isReachable()) {
1556            return false;
1557        }
1558        enterStatement(emptyNode);
1559
1560        return false;
1561    }
1562
1563    @Override
1564    public boolean enterExpressionStatement(final ExpressionStatement expressionStatement) {
1565        if(!method.isReachable()) {
1566            return false;
1567        }
1568        enterStatement(expressionStatement);
1569
1570        loadAndDiscard(expressionStatement.getExpression());
1571        assert method.getStackSize() == 0;
1572
1573        return false;
1574    }
1575
1576    @Override
1577    public boolean enterBlockStatement(final BlockStatement blockStatement) {
1578        if(!method.isReachable()) {
1579            return false;
1580        }
1581        enterStatement(blockStatement);
1582
1583        blockStatement.getBlock().accept(this);
1584
1585        return false;
1586    }
1587
1588    @Override
1589    public boolean enterForNode(final ForNode forNode) {
1590        if(!method.isReachable()) {
1591            return false;
1592        }
1593        enterStatement(forNode);
1594        if (forNode.isForIn()) {
1595            enterForIn(forNode);
1596        } else {
1597            final Expression init = forNode.getInit();
1598            if (init != null) {
1599                loadAndDiscard(init);
1600            }
1601            enterForOrWhile(forNode, forNode.getModify());
1602        }
1603
1604        return false;
1605    }
1606
1607    private void enterForIn(final ForNode forNode) {
1608        loadExpression(forNode.getModify(), TypeBounds.OBJECT);
1609        method.invoke(forNode.isForEach() ? ScriptRuntime.TO_VALUE_ITERATOR : ScriptRuntime.TO_PROPERTY_ITERATOR);
1610        final Symbol iterSymbol = forNode.getIterator();
1611        final int iterSlot = iterSymbol.getSlot(Type.OBJECT);
1612        method.store(iterSymbol, ITERATOR_TYPE);
1613
1614        method.beforeJoinPoint(forNode);
1615
1616        final Label continueLabel = forNode.getContinueLabel();
1617        final Label breakLabel    = forNode.getBreakLabel();
1618
1619        method.label(continueLabel);
1620        method.load(ITERATOR_TYPE, iterSlot);
1621        method.invoke(interfaceCallNoLookup(ITERATOR_CLASS, "hasNext", boolean.class));
1622        final JoinPredecessorExpression test = forNode.getTest();
1623        final Block body = forNode.getBody();
1624        if(LocalVariableConversion.hasLiveConversion(test)) {
1625            final Label afterConversion = new Label("for_in_after_test_conv");
1626            method.ifne(afterConversion);
1627            method.beforeJoinPoint(test);
1628            method._goto(breakLabel);
1629            method.label(afterConversion);
1630        } else {
1631            method.ifeq(breakLabel);
1632        }
1633
1634        new Store<Expression>(forNode.getInit()) {
1635            @Override
1636            protected void storeNonDiscard() {
1637                // This expression is neither part of a discard, nor needs to be left on the stack after it was
1638                // stored, so we override storeNonDiscard to be a no-op.
1639            }
1640
1641            @Override
1642            protected void evaluate() {
1643                new OptimisticOperation((Optimistic)forNode.getInit(), TypeBounds.UNBOUNDED) {
1644                    @Override
1645                    void loadStack() {
1646                        method.load(ITERATOR_TYPE, iterSlot);
1647                    }
1648
1649                    @Override
1650                    void consumeStack() {
1651                        method.invoke(interfaceCallNoLookup(ITERATOR_CLASS, "next", Object.class));
1652                        convertOptimisticReturnValue();
1653                    }
1654                }.emit();
1655            }
1656        }.store();
1657        body.accept(this);
1658
1659        if(method.isReachable()) {
1660            method._goto(continueLabel);
1661        }
1662        method.label(breakLabel);
1663    }
1664
1665    /**
1666     * Initialize the slots in a frame to undefined.
1667     *
1668     * @param block block with local vars.
1669     */
1670    private void initLocals(final Block block) {
1671        lc.onEnterBlock(block);
1672
1673        final boolean isFunctionBody = lc.isFunctionBody();
1674        final FunctionNode function = lc.getCurrentFunction();
1675        if (isFunctionBody) {
1676            initializeMethodParameters(function);
1677            if(!function.isVarArg()) {
1678                expandParameterSlots(function);
1679            }
1680            if (method.hasScope()) {
1681                if (function.needsParentScope()) {
1682                    method.loadCompilerConstant(CALLEE);
1683                    method.invoke(ScriptFunction.GET_SCOPE);
1684                } else {
1685                    assert function.hasScopeBlock();
1686                    method.loadNull();
1687                }
1688                method.storeCompilerConstant(SCOPE);
1689            }
1690            if (function.needsArguments()) {
1691                initArguments(function);
1692            }
1693        }
1694
1695        /*
1696         * Determine if block needs scope, if not, just do initSymbols for this block.
1697         */
1698        if (block.needsScope()) {
1699            /*
1700             * Determine if function is varargs and consequently variables have to
1701             * be in the scope.
1702             */
1703            final boolean varsInScope = function.allVarsInScope();
1704
1705            // TODO for LET we can do better: if *block* does not contain any eval/with, we don't need its vars in scope.
1706
1707            final boolean hasArguments = function.needsArguments();
1708            final List<MapTuple<Symbol>> tuples = new ArrayList<>();
1709            final Iterator<IdentNode> paramIter = function.getParameters().iterator();
1710            for (final Symbol symbol : block.getSymbols()) {
1711                if (symbol.isInternal() || symbol.isThis()) {
1712                    continue;
1713                }
1714
1715                if (symbol.isVar()) {
1716                    assert !varsInScope || symbol.isScope();
1717                    if (varsInScope || symbol.isScope()) {
1718                        assert symbol.isScope()   : "scope for " + symbol + " should have been set in Lower already " + function.getName();
1719                        assert !symbol.hasSlot()  : "slot for " + symbol + " should have been removed in Lower already" + function.getName();
1720
1721                        //this tuple will not be put fielded, as it has no value, just a symbol
1722                        tuples.add(new MapTuple<Symbol>(symbol.getName(), symbol, null));
1723                    } else {
1724                        assert symbol.hasSlot() || symbol.slotCount() == 0 : symbol + " should have a slot only, no scope";
1725                    }
1726                } else if (symbol.isParam() && (varsInScope || hasArguments || symbol.isScope())) {
1727                    assert symbol.isScope()   : "scope for " + symbol + " should have been set in AssignSymbols already " + function.getName() + " varsInScope="+varsInScope+" hasArguments="+hasArguments+" symbol.isScope()=" + symbol.isScope();
1728                    assert !(hasArguments && symbol.hasSlot())  : "slot for " + symbol + " should have been removed in Lower already " + function.getName();
1729
1730                    final Type   paramType;
1731                    final Symbol paramSymbol;
1732
1733                    if (hasArguments) {
1734                        assert !symbol.hasSlot()  : "slot for " + symbol + " should have been removed in Lower already ";
1735                        paramSymbol = null;
1736                        paramType   = null;
1737                    } else {
1738                        paramSymbol = symbol;
1739                        // NOTE: We're relying on the fact here that Block.symbols is a LinkedHashMap, hence it will
1740                        // return symbols in the order they were defined, and parameters are defined in the same order
1741                        // they appear in the function. That's why we can have a single pass over the parameter list
1742                        // with an iterator, always just scanning forward for the next parameter that matches the symbol
1743                        // name.
1744                        for(;;) {
1745                            final IdentNode nextParam = paramIter.next();
1746                            if(nextParam.getName().equals(symbol.getName())) {
1747                                paramType = nextParam.getType();
1748                                break;
1749                            }
1750                        }
1751                    }
1752
1753                    tuples.add(new MapTuple<Symbol>(symbol.getName(), symbol, paramType, paramSymbol) {
1754                        //this symbol will be put fielded, we can't initialize it as undefined with a known type
1755                        @Override
1756                        public Class<?> getValueType() {
1757                            if (OBJECT_FIELDS_ONLY || value == null || paramType == null) {
1758                                return Object.class;
1759                            }
1760                            return paramType.isBoolean() ? Object.class : paramType.getTypeClass();
1761                        }
1762                    });
1763                }
1764            }
1765
1766            /*
1767             * Create a new object based on the symbols and values, generate
1768             * bootstrap code for object
1769             */
1770            new FieldObjectCreator<Symbol>(this, tuples, true, hasArguments) {
1771                @Override
1772                protected void loadValue(final Symbol value, final Type type) {
1773                    method.load(value, type);
1774                }
1775            }.makeObject(method);
1776            // program function: merge scope into global
1777            if (isFunctionBody && function.isProgram()) {
1778                method.invoke(ScriptRuntime.MERGE_SCOPE);
1779            }
1780
1781            method.storeCompilerConstant(SCOPE);
1782            if(!isFunctionBody) {
1783                // Function body doesn't need a try/catch to restore scope, as it'd be a dead store anyway. Allowing it
1784                // actually causes issues with UnwarrantedOptimismException handlers as ASM will sort this handler to
1785                // the top of the exception handler table, so it'll be triggered instead of the UOE handlers.
1786                final Label scopeEntryLabel = new Label("scope_entry");
1787                scopeEntryLabels.push(scopeEntryLabel);
1788                method.label(scopeEntryLabel);
1789            }
1790        } else if (isFunctionBody && function.isVarArg()) {
1791            // Since we don't have a scope, parameters didn't get assigned array indices by the FieldObjectCreator, so
1792            // we need to assign them separately here.
1793            int nextParam = 0;
1794            for (final IdentNode param : function.getParameters()) {
1795                param.getSymbol().setFieldIndex(nextParam++);
1796            }
1797        }
1798
1799        // Debugging: print symbols? @see --print-symbols flag
1800        printSymbols(block, function, (isFunctionBody ? "Function " : "Block in ") + (function.getIdent() == null ? "<anonymous>" : function.getIdent().getName()));
1801    }
1802
1803    /**
1804     * Incoming method parameters are always declared on method entry; declare them in the local variable table.
1805     * @param function function for which code is being generated.
1806     */
1807    private void initializeMethodParameters(final FunctionNode function) {
1808        final Label functionStart = new Label("fn_start");
1809        method.label(functionStart);
1810        int nextSlot = 0;
1811        if(function.needsCallee()) {
1812            initializeInternalFunctionParameter(CALLEE, function, functionStart, nextSlot++);
1813        }
1814        initializeInternalFunctionParameter(THIS, function, functionStart, nextSlot++);
1815        if(function.isVarArg()) {
1816            initializeInternalFunctionParameter(VARARGS, function, functionStart, nextSlot++);
1817        } else {
1818            for(final IdentNode param: function.getParameters()) {
1819                final Symbol symbol = param.getSymbol();
1820                if(symbol.isBytecodeLocal()) {
1821                    method.initializeMethodParameter(symbol, param.getType(), functionStart);
1822                }
1823            }
1824        }
1825    }
1826
1827    private void initializeInternalFunctionParameter(final CompilerConstants cc, final FunctionNode fn, final Label functionStart, final int slot) {
1828        final Symbol symbol = initializeInternalFunctionOrSplitParameter(cc, fn, functionStart, slot);
1829        // Internal function params (:callee, this, and :varargs) are never expanded to multiple slots
1830        assert symbol.getFirstSlot() == slot;
1831    }
1832
1833    private Symbol initializeInternalFunctionOrSplitParameter(final CompilerConstants cc, final FunctionNode fn, final Label functionStart, final int slot) {
1834        final Symbol symbol = fn.getBody().getExistingSymbol(cc.symbolName());
1835        final Type type = Type.typeFor(cc.type());
1836        method.initializeMethodParameter(symbol, type, functionStart);
1837        method.onLocalStore(type, slot);
1838        return symbol;
1839    }
1840
1841    /**
1842     * Parameters come into the method packed into local variable slots next to each other. Nashorn on the other hand
1843     * can use 1-6 slots for a local variable depending on all the types it needs to store. When this method is invoked,
1844     * the symbols are already allocated such wider slots, but the values are still in tightly packed incoming slots,
1845     * and we need to spread them into their new locations.
1846     * @param function the function for which parameter-spreading code needs to be emitted
1847     */
1848    private void expandParameterSlots(final FunctionNode function) {
1849        final List<IdentNode> parameters = function.getParameters();
1850        // Calculate the total number of incoming parameter slots
1851        int currentIncomingSlot = function.needsCallee() ? 2 : 1;
1852        for(final IdentNode parameter: parameters) {
1853            currentIncomingSlot += parameter.getType().getSlots();
1854        }
1855        // Starting from last parameter going backwards, move the parameter values into their new slots.
1856        for(int i = parameters.size(); i-- > 0;) {
1857            final IdentNode parameter = parameters.get(i);
1858            final Type parameterType = parameter.getType();
1859            final int typeWidth = parameterType.getSlots();
1860            currentIncomingSlot -= typeWidth;
1861            final Symbol symbol = parameter.getSymbol();
1862            final int slotCount = symbol.slotCount();
1863            assert slotCount > 0;
1864            // Scoped parameters must not hold more than one value
1865            assert symbol.isBytecodeLocal() || slotCount == typeWidth;
1866
1867            // Mark it as having its value stored into it by the method invocation.
1868            method.onLocalStore(parameterType, currentIncomingSlot);
1869            if(currentIncomingSlot != symbol.getSlot(parameterType)) {
1870                method.load(parameterType, currentIncomingSlot);
1871                method.store(symbol, parameterType);
1872            }
1873        }
1874    }
1875
1876    private void initArguments(final FunctionNode function) {
1877        method.loadCompilerConstant(VARARGS);
1878        if (function.needsCallee()) {
1879            method.loadCompilerConstant(CALLEE);
1880        } else {
1881            // If function is strict mode, "arguments.callee" is not populated, so we don't necessarily need the
1882            // caller.
1883            assert function.isStrict();
1884            method.loadNull();
1885        }
1886        method.load(function.getParameters().size());
1887        globalAllocateArguments();
1888        method.storeCompilerConstant(ARGUMENTS);
1889    }
1890
1891    private boolean skipFunction(final FunctionNode functionNode) {
1892        final ScriptEnvironment env = compiler.getScriptEnvironment();
1893        final boolean lazy = env._lazy_compilation;
1894        final boolean onDemand = compiler.isOnDemandCompilation();
1895
1896        // If this is on-demand or lazy compilation, don't compile a nested (not topmost) function.
1897        if((onDemand || lazy) && lc.getOutermostFunction() != functionNode) {
1898            return true;
1899        }
1900
1901        // If lazy compiling with optimistic types, don't compile the program eagerly either. It will soon be
1902        // invalidated anyway. In presence of a class cache, this further means that an obsoleted program version
1903        // lingers around. Also, currently loading previously persisted optimistic types information only works if
1904        // we're on-demand compiling a function, so with this strategy the :program method can also have the warmup
1905        // benefit of using previously persisted types.
1906        //
1907        // NOTE that this means the first compiled class will effectively just have a :createProgramFunction method, and
1908        // the RecompilableScriptFunctionData (RSFD) object in its constants array. It won't even have the :program
1909        // method. This is by design. It does mean that we're wasting one compiler execution (and we could minimize this
1910        // by just running it up to scope depth calculation, which creates the RSFDs and then this limited codegen).
1911        // We could emit an initial separate compile unit with the initial version of :program in it to better utilize
1912        // the compilation pipeline, but that would need more invasive changes, as currently the assumption that
1913        // :program is emitted into the first compilation unit of the function lives in many places.
1914        return !onDemand && lazy && env._optimistic_types && functionNode.isProgram();
1915    }
1916
1917    @Override
1918    public boolean enterFunctionNode(final FunctionNode functionNode) {
1919        final int fnId = functionNode.getId();
1920
1921        if (skipFunction(functionNode)) {
1922            // In case we are not generating code for the function, we must create or retrieve the function object and
1923            // load it on the stack here.
1924            newFunctionObject(functionNode, false);
1925            return false;
1926        }
1927
1928        final String fnName = functionNode.getName();
1929
1930        // NOTE: we only emit the method for a function with the given name once. We can have multiple functions with
1931        // the same name as a result of inlining finally blocks. However, in the future -- with type specialization,
1932        // notably -- we might need to check for both name *and* signature. Of course, even that might not be
1933        // sufficient; the function might have a code dependency on the type of the variables in its enclosing scopes,
1934        // and the type of such a variable can be different in catch and finally blocks. So, in the future we will have
1935        // to decide to either generate a unique method for each inlined copy of the function, maybe figure out its
1936        // exact type closure and deduplicate based on that, or just decide that functions in finally blocks aren't
1937        // worth it, and generate one method with most generic type closure.
1938        if (!emittedMethods.contains(fnName)) {
1939            log.info("=== BEGIN ", fnName);
1940
1941            assert functionNode.getCompileUnit() != null : "no compile unit for " + fnName + " " + Debug.id(functionNode);
1942            unit = lc.pushCompileUnit(functionNode.getCompileUnit());
1943            assert lc.hasCompileUnits();
1944
1945            final ClassEmitter classEmitter = unit.getClassEmitter();
1946            pushMethodEmitter(isRestOf() ? classEmitter.restOfMethod(functionNode) : classEmitter.method(functionNode));
1947            method.setPreventUndefinedLoad();
1948            if(useOptimisticTypes()) {
1949                lc.pushUnwarrantedOptimismHandlers();
1950            }
1951
1952            // new method - reset last line number
1953            lastLineNumber = -1;
1954
1955            method.begin();
1956
1957            if (isRestOf()) {
1958                final ContinuationInfo ci = new ContinuationInfo();
1959                fnIdToContinuationInfo.put(fnId, ci);
1960                method.gotoLoopStart(ci.getHandlerLabel());
1961            }
1962        }
1963
1964        return true;
1965    }
1966
1967    private void pushMethodEmitter(final MethodEmitter newMethod) {
1968        method = lc.pushMethodEmitter(newMethod);
1969        catchLabels.push(METHOD_BOUNDARY);
1970    }
1971
1972    private void popMethodEmitter() {
1973        method = lc.popMethodEmitter(method);
1974        assert catchLabels.peek() == METHOD_BOUNDARY;
1975        catchLabels.pop();
1976    }
1977
1978    @Override
1979    public Node leaveFunctionNode(final FunctionNode functionNode) {
1980        try {
1981            final boolean markOptimistic;
1982            if (emittedMethods.add(functionNode.getName())) {
1983                markOptimistic = generateUnwarrantedOptimismExceptionHandlers(functionNode);
1984                generateContinuationHandler();
1985                method.end(); // wrap up this method
1986                unit   = lc.popCompileUnit(functionNode.getCompileUnit());
1987                popMethodEmitter();
1988                log.info("=== END ", functionNode.getName());
1989            } else {
1990                markOptimistic = false;
1991            }
1992
1993            FunctionNode newFunctionNode = functionNode.setState(lc, CompilationState.BYTECODE_GENERATED);
1994            if (markOptimistic) {
1995                newFunctionNode = newFunctionNode.setFlag(lc, FunctionNode.IS_DEOPTIMIZABLE);
1996            }
1997
1998            newFunctionObject(newFunctionNode, true);
1999            return newFunctionNode;
2000        } catch (final Throwable t) {
2001            Context.printStackTrace(t);
2002            final VerifyError e = new VerifyError("Code generation bug in \"" + functionNode.getName() + "\": likely stack misaligned: " + t + " " + functionNode.getSource().getName());
2003            e.initCause(t);
2004            throw e;
2005        }
2006    }
2007
2008    @Override
2009    public boolean enterIfNode(final IfNode ifNode) {
2010        if(!method.isReachable()) {
2011            return false;
2012        }
2013        enterStatement(ifNode);
2014
2015        final Expression test = ifNode.getTest();
2016        final Block pass = ifNode.getPass();
2017        final Block fail = ifNode.getFail();
2018        final boolean hasFailConversion = LocalVariableConversion.hasLiveConversion(ifNode);
2019
2020        final Label failLabel  = new Label("if_fail");
2021        final Label afterLabel = (fail == null && !hasFailConversion) ? null : new Label("if_done");
2022
2023        emitBranch(test, failLabel, false);
2024
2025        pass.accept(this);
2026        if(method.isReachable() && afterLabel != null) {
2027            method._goto(afterLabel); //don't fallthru to fail block
2028        }
2029        method.label(failLabel);
2030
2031        if (fail != null) {
2032            fail.accept(this);
2033        } else if(hasFailConversion) {
2034            method.beforeJoinPoint(ifNode);
2035        }
2036
2037        if(afterLabel != null) {
2038            method.label(afterLabel);
2039        }
2040
2041        return false;
2042    }
2043
2044    private void emitBranch(final Expression test, final Label label, final boolean jumpWhenTrue) {
2045        new BranchOptimizer(this, method).execute(test, label, jumpWhenTrue);
2046    }
2047
2048    private void enterStatement(final Statement statement) {
2049        lineNumber(statement);
2050    }
2051
2052    private void lineNumber(final Statement statement) {
2053        lineNumber(statement.getLineNumber());
2054    }
2055
2056    private void lineNumber(final int lineNumber) {
2057        if (lineNumber != lastLineNumber && lineNumber != Node.NO_LINE_NUMBER) {
2058            method.lineNumber(lineNumber);
2059            lastLineNumber = lineNumber;
2060        }
2061    }
2062
2063    int getLastLineNumber() {
2064        return lastLineNumber;
2065    }
2066
2067    /**
2068     * Load a list of nodes as an array of a specific type
2069     * The array will contain the visited nodes.
2070     *
2071     * @param arrayLiteralNode the array of contents
2072     * @param arrayType        the type of the array, e.g. ARRAY_NUMBER or ARRAY_OBJECT
2073     *
2074     * @return the method generator that was used
2075     */
2076    private MethodEmitter loadArray(final ArrayLiteralNode arrayLiteralNode, final ArrayType arrayType) {
2077        assert arrayType == Type.INT_ARRAY || arrayType == Type.LONG_ARRAY || arrayType == Type.NUMBER_ARRAY || arrayType == Type.OBJECT_ARRAY;
2078
2079        final Expression[]    nodes    = arrayLiteralNode.getValue();
2080        final Object          presets  = arrayLiteralNode.getPresets();
2081        final int[]           postsets = arrayLiteralNode.getPostsets();
2082        final Class<?>        type     = arrayType.getTypeClass();
2083        final List<ArrayUnit> units    = arrayLiteralNode.getUnits();
2084
2085        loadConstant(presets);
2086
2087        final Type elementType = arrayType.getElementType();
2088
2089        if (units != null) {
2090            final MethodEmitter savedMethod     = method;
2091            final FunctionNode  currentFunction = lc.getCurrentFunction();
2092
2093            for (final ArrayUnit arrayUnit : units) {
2094                unit = lc.pushCompileUnit(arrayUnit.getCompileUnit());
2095
2096                final String className = unit.getUnitClassName();
2097                assert unit != null;
2098                final String name      = currentFunction.uniqueName(SPLIT_PREFIX.symbolName());
2099                final String signature = methodDescriptor(type, ScriptFunction.class, Object.class, ScriptObject.class, type);
2100
2101                pushMethodEmitter(unit.getClassEmitter().method(EnumSet.of(Flag.PUBLIC, Flag.STATIC), name, signature));
2102
2103                method.setFunctionNode(currentFunction);
2104                method.begin();
2105
2106                defineCommonSplitMethodParameters();
2107                defineSplitMethodParameter(CompilerConstants.SPLIT_ARRAY_ARG.slot(), arrayType);
2108
2109                // NOTE: when this is no longer needed, SplitIntoFunctions will no longer have to add IS_SPLIT
2110                // to synthetic functions, and FunctionNode.needsCallee() will no longer need to test for isSplit().
2111                final int arraySlot = fixScopeSlot(currentFunction, 3);
2112
2113                lc.enterSplitNode();
2114
2115                for (int i = arrayUnit.getLo(); i < arrayUnit.getHi(); i++) {
2116                    method.load(arrayType, arraySlot);
2117                    storeElement(nodes, elementType, postsets[i]);
2118                }
2119
2120                method.load(arrayType, arraySlot);
2121                method._return();
2122                lc.exitSplitNode();
2123                method.end();
2124                lc.releaseSlots();
2125                popMethodEmitter();
2126
2127                assert method == savedMethod;
2128                method.loadCompilerConstant(CALLEE);
2129                method.swap();
2130                method.loadCompilerConstant(THIS);
2131                method.swap();
2132                method.loadCompilerConstant(SCOPE);
2133                method.swap();
2134                method.invokestatic(className, name, signature);
2135
2136                unit = lc.popCompileUnit(unit);
2137            }
2138
2139            return method;
2140        }
2141
2142        if(postsets.length > 0) {
2143            final int arraySlot = method.getUsedSlotsWithLiveTemporaries();
2144            method.storeTemp(arrayType, arraySlot);
2145            for (final int postset : postsets) {
2146                method.load(arrayType, arraySlot);
2147                storeElement(nodes, elementType, postset);
2148            }
2149            method.load(arrayType, arraySlot);
2150        }
2151        return method;
2152    }
2153
2154    private void storeElement(final Expression[] nodes, final Type elementType, final int index) {
2155        method.load(index);
2156
2157        final Expression element = nodes[index];
2158
2159        if (element == null) {
2160            method.loadEmpty(elementType);
2161        } else {
2162            loadExpressionAsType(element, elementType);
2163        }
2164
2165        method.arraystore();
2166    }
2167
2168    private MethodEmitter loadArgsArray(final List<Expression> args) {
2169        final Object[] array = new Object[args.size()];
2170        loadConstant(array);
2171
2172        for (int i = 0; i < args.size(); i++) {
2173            method.dup();
2174            method.load(i);
2175            loadExpression(args.get(i), TypeBounds.OBJECT); // variable arity methods always take objects
2176            method.arraystore();
2177        }
2178
2179        return method;
2180    }
2181
2182    /**
2183     * Load a constant from the constant array. This is only public to be callable from the objects
2184     * subpackage. Do not call directly.
2185     *
2186     * @param string string to load
2187     */
2188    void loadConstant(final String string) {
2189        final String       unitClassName = unit.getUnitClassName();
2190        final ClassEmitter classEmitter  = unit.getClassEmitter();
2191        final int          index         = compiler.getConstantData().add(string);
2192
2193        method.load(index);
2194        method.invokestatic(unitClassName, GET_STRING.symbolName(), methodDescriptor(String.class, int.class));
2195        classEmitter.needGetConstantMethod(String.class);
2196    }
2197
2198    /**
2199     * Load a constant from the constant array. This is only public to be callable from the objects
2200     * subpackage. Do not call directly.
2201     *
2202     * @param object object to load
2203     */
2204    void loadConstant(final Object object) {
2205        loadConstant(object, unit, method);
2206    }
2207
2208    private void loadConstant(final Object object, final CompileUnit compileUnit, final MethodEmitter methodEmitter) {
2209        final String       unitClassName = compileUnit.getUnitClassName();
2210        final ClassEmitter classEmitter  = compileUnit.getClassEmitter();
2211        final int          index         = compiler.getConstantData().add(object);
2212        final Class<?>     cls           = object.getClass();
2213
2214        if (cls == PropertyMap.class) {
2215            methodEmitter.load(index);
2216            methodEmitter.invokestatic(unitClassName, GET_MAP.symbolName(), methodDescriptor(PropertyMap.class, int.class));
2217            classEmitter.needGetConstantMethod(PropertyMap.class);
2218        } else if (cls.isArray()) {
2219            methodEmitter.load(index);
2220            final String methodName = ClassEmitter.getArrayMethodName(cls);
2221            methodEmitter.invokestatic(unitClassName, methodName, methodDescriptor(cls, int.class));
2222            classEmitter.needGetConstantMethod(cls);
2223        } else {
2224            methodEmitter.loadConstants().load(index).arrayload();
2225            if (object instanceof ArrayData) {
2226                // avoid cast to non-public ArrayData subclass
2227                methodEmitter.checkcast(ArrayData.class);
2228                methodEmitter.invoke(virtualCallNoLookup(ArrayData.class, "copy", ArrayData.class));
2229            } else if (cls != Object.class) {
2230                methodEmitter.checkcast(cls);
2231            }
2232        }
2233    }
2234
2235    // literal values
2236    private void loadLiteral(final LiteralNode<?> node, final TypeBounds resultBounds) {
2237        final Object value = node.getValue();
2238
2239        if (value == null) {
2240            method.loadNull();
2241        } else if (value instanceof Undefined) {
2242            method.loadUndefined(resultBounds.within(Type.OBJECT));
2243        } else if (value instanceof String) {
2244            final String string = (String)value;
2245
2246            if (string.length() > MethodEmitter.LARGE_STRING_THRESHOLD / 3) { // 3 == max bytes per encoded char
2247                loadConstant(string);
2248            } else {
2249                method.load(string);
2250            }
2251        } else if (value instanceof RegexToken) {
2252            loadRegex((RegexToken)value);
2253        } else if (value instanceof Boolean) {
2254            method.load((Boolean)value);
2255        } else if (value instanceof Integer) {
2256            if(!resultBounds.canBeNarrowerThan(Type.OBJECT)) {
2257                method.load((Integer)value);
2258                method.convert(Type.OBJECT);
2259            } else if(!resultBounds.canBeNarrowerThan(Type.NUMBER)) {
2260                method.load(((Integer)value).doubleValue());
2261            } else if(!resultBounds.canBeNarrowerThan(Type.LONG)) {
2262                method.load(((Integer)value).longValue());
2263            } else {
2264                method.load((Integer)value);
2265            }
2266        } else if (value instanceof Long) {
2267            if(!resultBounds.canBeNarrowerThan(Type.OBJECT)) {
2268                method.load((Long)value);
2269                method.convert(Type.OBJECT);
2270            } else if(!resultBounds.canBeNarrowerThan(Type.NUMBER)) {
2271                method.load(((Long)value).doubleValue());
2272            } else {
2273                method.load((Long)value);
2274            }
2275        } else if (value instanceof Double) {
2276            if(!resultBounds.canBeNarrowerThan(Type.OBJECT)) {
2277                method.load((Double)value);
2278                method.convert(Type.OBJECT);
2279            } else {
2280                method.load((Double)value);
2281            }
2282        } else if (node instanceof ArrayLiteralNode) {
2283            final ArrayLiteralNode arrayLiteral = (ArrayLiteralNode)node;
2284            final ArrayType atype = arrayLiteral.getArrayType();
2285            loadArray(arrayLiteral, atype);
2286            globalAllocateArray(atype);
2287        } else {
2288            throw new UnsupportedOperationException("Unknown literal for " + node.getClass() + " " + value.getClass() + " " + value);
2289        }
2290    }
2291
2292    private MethodEmitter loadRegexToken(final RegexToken value) {
2293        method.load(value.getExpression());
2294        method.load(value.getOptions());
2295        return globalNewRegExp();
2296    }
2297
2298    private MethodEmitter loadRegex(final RegexToken regexToken) {
2299        if (regexFieldCount > MAX_REGEX_FIELDS) {
2300            return loadRegexToken(regexToken);
2301        }
2302        // emit field
2303        final String       regexName    = lc.getCurrentFunction().uniqueName(REGEX_PREFIX.symbolName());
2304        final ClassEmitter classEmitter = unit.getClassEmitter();
2305
2306        classEmitter.field(EnumSet.of(PRIVATE, STATIC), regexName, Object.class);
2307        regexFieldCount++;
2308
2309        // get field, if null create new regex, finally clone regex object
2310        method.getStatic(unit.getUnitClassName(), regexName, typeDescriptor(Object.class));
2311        method.dup();
2312        final Label cachedLabel = new Label("cached");
2313        method.ifnonnull(cachedLabel);
2314
2315        method.pop();
2316        loadRegexToken(regexToken);
2317        method.dup();
2318        method.putStatic(unit.getUnitClassName(), regexName, typeDescriptor(Object.class));
2319
2320        method.label(cachedLabel);
2321        globalRegExpCopy();
2322
2323        return method;
2324    }
2325
2326    /**
2327     * Check if a property value contains a particular program point
2328     * @param value value
2329     * @param pp    program point
2330     * @return true if it's there.
2331     */
2332    private static boolean propertyValueContains(final Expression value, final int pp) {
2333        return new Supplier<Boolean>() {
2334            boolean contains;
2335
2336            @Override
2337            public Boolean get() {
2338                value.accept(new NodeVisitor<LexicalContext>(new LexicalContext()) {
2339                    @Override
2340                    public boolean enterFunctionNode(final FunctionNode functionNode) {
2341                        return false;
2342                    }
2343
2344                    @Override
2345                    public boolean enterObjectNode(final ObjectNode objectNode) {
2346                        return false;
2347                    }
2348
2349                    @Override
2350                    public boolean enterDefault(final Node node) {
2351                        if (contains) {
2352                            return false;
2353                        }
2354                        if (node instanceof Optimistic && ((Optimistic)node).getProgramPoint() == pp) {
2355                            contains = true;
2356                            return false;
2357                        }
2358                        return true;
2359                    }
2360                });
2361
2362                return contains;
2363            }
2364        }.get();
2365    }
2366
2367    private void loadObjectNode(final ObjectNode objectNode) {
2368        final List<PropertyNode> elements = objectNode.getElements();
2369
2370        final List<MapTuple<Expression>> tuples = new ArrayList<>();
2371        final List<PropertyNode> gettersSetters = new ArrayList<>();
2372        final int ccp = getCurrentContinuationEntryPoint();
2373
2374        Expression protoNode = null;
2375        boolean restOfProperty = false;
2376
2377        for (final PropertyNode propertyNode : elements) {
2378            final Expression value = propertyNode.getValue();
2379            final String key = propertyNode.getKeyName();
2380            // Just use a pseudo-symbol. We just need something non null; use the name and zero flags.
2381            final Symbol symbol = value == null ? null : new Symbol(key, 0);
2382
2383            if (value == null) {
2384                gettersSetters.add(propertyNode);
2385            } else if (propertyNode.getKey() instanceof IdentNode &&
2386                       key.equals(ScriptObject.PROTO_PROPERTY_NAME)) {
2387                // ES6 draft compliant __proto__ inside object literal
2388                // Identifier key and name is __proto__
2389                protoNode = value;
2390                continue;
2391            }
2392
2393            restOfProperty |=
2394                value != null &&
2395                isValid(ccp) &&
2396                propertyValueContains(value, ccp);
2397
2398            //for literals, a value of null means object type, i.e. the value null or getter setter function
2399            //(I think)
2400            final Class<?> valueType = (OBJECT_FIELDS_ONLY || value == null || value.getType().isBoolean()) ? Object.class : value.getType().getTypeClass();
2401            tuples.add(new MapTuple<Expression>(key, symbol, Type.typeFor(valueType), value) {
2402                @Override
2403                public Class<?> getValueType() {
2404                    return type.getTypeClass();
2405                }
2406            });
2407        }
2408
2409        final ObjectCreator<?> oc;
2410        if (elements.size() > OBJECT_SPILL_THRESHOLD) {
2411            oc = new SpillObjectCreator(this, tuples);
2412        } else {
2413            oc = new FieldObjectCreator<Expression>(this, tuples) {
2414                @Override
2415                protected void loadValue(final Expression node, final Type type) {
2416                    loadExpressionAsType(node, type);
2417                }};
2418        }
2419        oc.makeObject(method);
2420
2421        //if this is a rest of method and our continuation point was found as one of the values
2422        //in the properties above, we need to reset the map to oc.getMap() in the continuation
2423        //handler
2424        if (restOfProperty) {
2425            final ContinuationInfo ci = getContinuationInfo();
2426            // Can be set at most once for a single rest-of method
2427            assert ci.getObjectLiteralMap() == null;
2428            ci.setObjectLiteralMap(oc.getMap());
2429            ci.setObjectLiteralStackDepth(method.getStackSize());
2430        }
2431
2432        method.dup();
2433        if (protoNode != null) {
2434            loadExpressionAsObject(protoNode);
2435            // take care of { __proto__: 34 } or some such!
2436            method.convert(Type.OBJECT);
2437            method.invoke(ScriptObject.SET_PROTO_FROM_LITERAL);
2438        } else {
2439            method.invoke(ScriptObject.SET_GLOBAL_OBJECT_PROTO);
2440        }
2441
2442        for (final PropertyNode propertyNode : gettersSetters) {
2443            final FunctionNode getter = propertyNode.getGetter();
2444            final FunctionNode setter = propertyNode.getSetter();
2445
2446            assert getter != null || setter != null;
2447
2448            method.dup().loadKey(propertyNode.getKey());
2449            if (getter == null) {
2450                method.loadNull();
2451            } else {
2452                getter.accept(this);
2453            }
2454
2455            if (setter == null) {
2456                method.loadNull();
2457            } else {
2458                setter.accept(this);
2459            }
2460
2461            method.invoke(ScriptObject.SET_USER_ACCESSORS);
2462        }
2463    }
2464
2465    @Override
2466    public boolean enterReturnNode(final ReturnNode returnNode) {
2467        if(!method.isReachable()) {
2468            return false;
2469        }
2470        enterStatement(returnNode);
2471
2472        method.registerReturn();
2473
2474        final Type returnType = lc.getCurrentFunction().getReturnType();
2475
2476        final Expression expression = returnNode.getExpression();
2477        if (expression != null) {
2478            loadExpressionUnbounded(expression);
2479        } else {
2480            method.loadUndefined(returnType);
2481        }
2482
2483        method._return(returnType);
2484
2485        return false;
2486    }
2487
2488    private boolean undefinedCheck(final RuntimeNode runtimeNode, final List<Expression> args) {
2489        final Request request = runtimeNode.getRequest();
2490
2491        if (!Request.isUndefinedCheck(request)) {
2492            return false;
2493        }
2494
2495        final Expression lhs = args.get(0);
2496        final Expression rhs = args.get(1);
2497
2498        final Symbol lhsSymbol = lhs instanceof IdentNode ? ((IdentNode)lhs).getSymbol() : null;
2499        final Symbol rhsSymbol = rhs instanceof IdentNode ? ((IdentNode)rhs).getSymbol() : null;
2500        // One must be a "undefined" identifier, otherwise we can't get here
2501        assert lhsSymbol != null || rhsSymbol != null;
2502
2503        final Symbol undefinedSymbol;
2504        if (isUndefinedSymbol(lhsSymbol)) {
2505            undefinedSymbol = lhsSymbol;
2506        } else {
2507            assert isUndefinedSymbol(rhsSymbol);
2508            undefinedSymbol = rhsSymbol;
2509        }
2510
2511        assert undefinedSymbol != null; //remove warning
2512        if (!undefinedSymbol.isScope()) {
2513            return false; //disallow undefined as local var or parameter
2514        }
2515
2516        if (lhsSymbol == undefinedSymbol && lhs.getType().isPrimitive()) {
2517            //we load the undefined first. never mind, because this will deoptimize anyway
2518            return false;
2519        }
2520
2521        if(isDeoptimizedExpression(lhs)) {
2522            // This is actually related to "lhs.getType().isPrimitive()" above: any expression being deoptimized in
2523            // the current chain of rest-of compilations used to have a type narrower than Object (so it was primitive).
2524            // We must not perform undefined check specialization for them, as then we'd violate the basic rule of
2525            // "Thou shalt not alter the stack shape between a deoptimized method and any of its (transitive) rest-ofs."
2526            return false;
2527        }
2528
2529        //make sure that undefined has not been overridden or scoped as a local var
2530        //between us and global
2531        if (!compiler.isGlobalSymbol(lc.getCurrentFunction(), "undefined")) {
2532            return false;
2533        }
2534
2535        final boolean isUndefinedCheck = request == Request.IS_UNDEFINED;
2536        final Expression expr = undefinedSymbol == lhsSymbol ? rhs : lhs;
2537        if (expr.getType().isPrimitive()) {
2538            loadAndDiscard(expr); //throw away lhs, but it still needs to be evaluated for side effects, even if not in scope, as it can be optimistic
2539            method.load(!isUndefinedCheck);
2540        } else {
2541            final Label checkTrue  = new Label("ud_check_true");
2542            final Label end        = new Label("end");
2543            loadExpressionAsObject(expr);
2544            method.loadUndefined(Type.OBJECT);
2545            method.if_acmpeq(checkTrue);
2546            method.load(!isUndefinedCheck);
2547            method._goto(end);
2548            method.label(checkTrue);
2549            method.load(isUndefinedCheck);
2550            method.label(end);
2551        }
2552
2553        return true;
2554    }
2555
2556    private static boolean isUndefinedSymbol(final Symbol symbol) {
2557        return symbol != null && "undefined".equals(symbol.getName());
2558    }
2559
2560    private static boolean isNullLiteral(final Node node) {
2561        return node instanceof LiteralNode<?> && ((LiteralNode<?>) node).isNull();
2562    }
2563
2564    private boolean nullCheck(final RuntimeNode runtimeNode, final List<Expression> args) {
2565        final Request request = runtimeNode.getRequest();
2566
2567        if (!Request.isEQ(request) && !Request.isNE(request)) {
2568            return false;
2569        }
2570
2571        assert args.size() == 2 : "EQ or NE or TYPEOF need two args";
2572
2573        Expression lhs = args.get(0);
2574        Expression rhs = args.get(1);
2575
2576        if (isNullLiteral(lhs)) {
2577            final Expression tmp = lhs;
2578            lhs = rhs;
2579            rhs = tmp;
2580        }
2581
2582        if (!isNullLiteral(rhs)) {
2583            return false;
2584        }
2585
2586        if (!lhs.getType().isObject()) {
2587            return false;
2588        }
2589
2590        if(isDeoptimizedExpression(lhs)) {
2591            // This is actually related to "!lhs.getType().isObject()" above: any expression being deoptimized in
2592            // the current chain of rest-of compilations used to have a type narrower than Object. We must not
2593            // perform null check specialization for them, as then we'd no longer be loading aconst_null on stack
2594            // and thus violate the basic rule of "Thou shalt not alter the stack shape between a deoptimized
2595            // method and any of its (transitive) rest-ofs."
2596            // NOTE also that if we had a representation for well-known constants (e.g. null, 0, 1, -1, etc.) in
2597            // Label$Stack.localLoads then this wouldn't be an issue, as we would never (somewhat ridiculously)
2598            // allocate a temporary local to hold the result of aconst_null before attempting an optimistic
2599            // operation.
2600            return false;
2601        }
2602
2603        // this is a null literal check, so if there is implicit coercion
2604        // involved like {D}x=null, we will fail - this is very rare
2605        final Label trueLabel  = new Label("trueLabel");
2606        final Label falseLabel = new Label("falseLabel");
2607        final Label endLabel   = new Label("end");
2608
2609        loadExpressionUnbounded(lhs);    //lhs
2610        final Label popLabel;
2611        if (!Request.isStrict(request)) {
2612            method.dup(); //lhs lhs
2613            popLabel = new Label("pop");
2614        } else {
2615            popLabel = null;
2616        }
2617
2618        if (Request.isEQ(request)) {
2619            method.ifnull(!Request.isStrict(request) ? popLabel : trueLabel);
2620            if (!Request.isStrict(request)) {
2621                method.loadUndefined(Type.OBJECT);
2622                method.if_acmpeq(trueLabel);
2623            }
2624            method.label(falseLabel);
2625            method.load(false);
2626            method._goto(endLabel);
2627            if (!Request.isStrict(request)) {
2628                method.label(popLabel);
2629                method.pop();
2630            }
2631            method.label(trueLabel);
2632            method.load(true);
2633            method.label(endLabel);
2634        } else if (Request.isNE(request)) {
2635            method.ifnull(!Request.isStrict(request) ? popLabel : falseLabel);
2636            if (!Request.isStrict(request)) {
2637                method.loadUndefined(Type.OBJECT);
2638                method.if_acmpeq(falseLabel);
2639            }
2640            method.label(trueLabel);
2641            method.load(true);
2642            method._goto(endLabel);
2643            if (!Request.isStrict(request)) {
2644                method.label(popLabel);
2645                method.pop();
2646            }
2647            method.label(falseLabel);
2648            method.load(false);
2649            method.label(endLabel);
2650        }
2651
2652        assert runtimeNode.getType().isBoolean();
2653        method.convert(runtimeNode.getType());
2654
2655        return true;
2656    }
2657
2658    /**
2659     * Was this expression or any of its subexpressions deoptimized in the current recompilation chain of rest-of methods?
2660     * @param rootExpr the expression being tested
2661     * @return true if the expression or any of its subexpressions was deoptimized in the current recompilation chain.
2662     */
2663    private boolean isDeoptimizedExpression(final Expression rootExpr) {
2664        if(!isRestOf()) {
2665            return false;
2666        }
2667        return new Supplier<Boolean>() {
2668            boolean contains;
2669            @Override
2670            public Boolean get() {
2671                rootExpr.accept(new NodeVisitor<LexicalContext>(new LexicalContext()) {
2672                    @Override
2673                    public boolean enterFunctionNode(final FunctionNode functionNode) {
2674                        return false;
2675                    }
2676                    @Override
2677                    public boolean enterDefault(final Node node) {
2678                        if(!contains && node instanceof Optimistic) {
2679                            final int pp = ((Optimistic)node).getProgramPoint();
2680                            contains = isValid(pp) && isContinuationEntryPoint(pp);
2681                        }
2682                        return !contains;
2683                    }
2684                });
2685                return contains;
2686            }
2687        }.get();
2688    }
2689
2690    private void loadRuntimeNode(final RuntimeNode runtimeNode) {
2691        final List<Expression> args = new ArrayList<>(runtimeNode.getArgs());
2692        if (nullCheck(runtimeNode, args)) {
2693           return;
2694        } else if(undefinedCheck(runtimeNode, args)) {
2695            return;
2696        }
2697        // Revert a false undefined check to a strict equality check
2698        final RuntimeNode newRuntimeNode;
2699        final Request request = runtimeNode.getRequest();
2700        if (Request.isUndefinedCheck(request)) {
2701            newRuntimeNode = runtimeNode.setRequest(request == Request.IS_UNDEFINED ? Request.EQ_STRICT : Request.NE_STRICT);
2702        } else {
2703            newRuntimeNode = runtimeNode;
2704        }
2705
2706        new OptimisticOperation(newRuntimeNode, TypeBounds.UNBOUNDED) {
2707            @Override
2708            void loadStack() {
2709                for (final Expression arg : args) {
2710                    loadExpression(arg, TypeBounds.OBJECT);
2711                }
2712            }
2713            @Override
2714            void consumeStack() {
2715                method.invokestatic(
2716                        CompilerConstants.className(ScriptRuntime.class),
2717                        newRuntimeNode.getRequest().toString(),
2718                        new FunctionSignature(
2719                            false,
2720                            false,
2721                            newRuntimeNode.getType(),
2722                            args.size()).toString());
2723            }
2724        }.emit();
2725
2726        method.convert(newRuntimeNode.getType());
2727    }
2728
2729    private void defineCommonSplitMethodParameters() {
2730        defineSplitMethodParameter(0, CALLEE);
2731        defineSplitMethodParameter(1, THIS);
2732        defineSplitMethodParameter(2, SCOPE);
2733    }
2734
2735    private void defineSplitMethodParameter(final int slot, final CompilerConstants cc) {
2736        defineSplitMethodParameter(slot, Type.typeFor(cc.type()));
2737    }
2738
2739    private void defineSplitMethodParameter(final int slot, final Type type) {
2740        method.defineBlockLocalVariable(slot, slot + type.getSlots());
2741        method.onLocalStore(type, slot);
2742    }
2743
2744    private int fixScopeSlot(final FunctionNode functionNode, final int extraSlot) {
2745        // TODO hack to move the scope to the expected slot (needed because split methods reuse the same slots as the root method)
2746        final int actualScopeSlot = functionNode.compilerConstant(SCOPE).getSlot(SCOPE_TYPE);
2747        final int defaultScopeSlot = SCOPE.slot();
2748        int newExtraSlot = extraSlot;
2749        if (actualScopeSlot != defaultScopeSlot) {
2750            if (actualScopeSlot == extraSlot) {
2751                newExtraSlot = extraSlot + 1;
2752                method.defineBlockLocalVariable(newExtraSlot, newExtraSlot + 1);
2753                method.load(Type.OBJECT, extraSlot);
2754                method.storeHidden(Type.OBJECT, newExtraSlot);
2755            } else {
2756                method.defineBlockLocalVariable(actualScopeSlot, actualScopeSlot + 1);
2757            }
2758            method.load(SCOPE_TYPE, defaultScopeSlot);
2759            method.storeCompilerConstant(SCOPE);
2760        }
2761        return newExtraSlot;
2762    }
2763
2764    @Override
2765    public boolean enterSplitReturn(final SplitReturn splitReturn) {
2766        if (method.isReachable()) {
2767            method.loadUndefined(lc.getCurrentFunction().getReturnType())._return();
2768        }
2769        return false;
2770    }
2771
2772    @Override
2773    public boolean enterSetSplitState(final SetSplitState setSplitState) {
2774        if (method.isReachable()) {
2775            method.setSplitState(setSplitState.getState());
2776        }
2777        return false;
2778    }
2779
2780    @Override
2781    public boolean enterSwitchNode(final SwitchNode switchNode) {
2782        if(!method.isReachable()) {
2783            return false;
2784        }
2785        enterStatement(switchNode);
2786
2787        final Expression     expression  = switchNode.getExpression();
2788        final List<CaseNode> cases       = switchNode.getCases();
2789
2790        if (cases.isEmpty()) {
2791            // still evaluate expression for side-effects.
2792            loadAndDiscard(expression);
2793            return false;
2794        }
2795
2796        final CaseNode defaultCase       = switchNode.getDefaultCase();
2797        final Label    breakLabel        = switchNode.getBreakLabel();
2798        final int      liveLocalsOnBreak = method.getUsedSlotsWithLiveTemporaries();
2799
2800        if (defaultCase != null && cases.size() == 1) {
2801            // default case only
2802            assert cases.get(0) == defaultCase;
2803            loadAndDiscard(expression);
2804            defaultCase.getBody().accept(this);
2805            method.breakLabel(breakLabel, liveLocalsOnBreak);
2806            return false;
2807        }
2808
2809        // NOTE: it can still change in the tableswitch/lookupswitch case if there's no default case
2810        // but we need to add a synthetic default case for local variable conversions
2811        Label defaultLabel = defaultCase != null ? defaultCase.getEntry() : breakLabel;
2812        final boolean hasSkipConversion = LocalVariableConversion.hasLiveConversion(switchNode);
2813
2814        if (switchNode.isInteger()) {
2815            // Tree for sorting values.
2816            final TreeMap<Integer, Label> tree = new TreeMap<>();
2817
2818            // Build up sorted tree.
2819            for (final CaseNode caseNode : cases) {
2820                final Node test = caseNode.getTest();
2821
2822                if (test != null) {
2823                    final Integer value = (Integer)((LiteralNode<?>)test).getValue();
2824                    final Label   entry = caseNode.getEntry();
2825
2826                    // Take first duplicate.
2827                    if (!tree.containsKey(value)) {
2828                        tree.put(value, entry);
2829                    }
2830                }
2831            }
2832
2833            // Copy values and labels to arrays.
2834            final int       size   = tree.size();
2835            final Integer[] values = tree.keySet().toArray(new Integer[size]);
2836            final Label[]   labels = tree.values().toArray(new Label[size]);
2837
2838            // Discern low, high and range.
2839            final int lo    = values[0];
2840            final int hi    = values[size - 1];
2841            final long range = (long)hi - (long)lo + 1;
2842
2843            // Find an unused value for default.
2844            int deflt = Integer.MIN_VALUE;
2845            for (final int value : values) {
2846                if (deflt == value) {
2847                    deflt++;
2848                } else if (deflt < value) {
2849                    break;
2850                }
2851            }
2852
2853            // Load switch expression.
2854            loadExpressionUnbounded(expression);
2855            final Type type = expression.getType();
2856
2857            // If expression not int see if we can convert, if not use deflt to trigger default.
2858            if (!type.isInteger()) {
2859                method.load(deflt);
2860                final Class<?> exprClass = type.getTypeClass();
2861                method.invoke(staticCallNoLookup(ScriptRuntime.class, "switchTagAsInt", int.class, exprClass.isPrimitive()? exprClass : Object.class, int.class));
2862            }
2863
2864            if(hasSkipConversion) {
2865                assert defaultLabel == breakLabel;
2866                defaultLabel = new Label("switch_skip");
2867            }
2868            // TABLESWITCH needs (range + 3) 32-bit values; LOOKUPSWITCH needs ((size * 2) + 2). Choose the one with
2869            // smaller representation, favor TABLESWITCH when they're equal size.
2870            if (range + 1 <= (size * 2) && range <= Integer.MAX_VALUE) {
2871                final Label[] table = new Label[(int)range];
2872                Arrays.fill(table, defaultLabel);
2873                for (int i = 0; i < size; i++) {
2874                    final int value = values[i];
2875                    table[value - lo] = labels[i];
2876                }
2877
2878                method.tableswitch(lo, hi, defaultLabel, table);
2879            } else {
2880                final int[] ints = new int[size];
2881                for (int i = 0; i < size; i++) {
2882                    ints[i] = values[i];
2883                }
2884
2885                method.lookupswitch(defaultLabel, ints, labels);
2886            }
2887            // This is a synthetic "default case" used in absence of actual default case, created if we need to apply
2888            // local variable conversions if neither case is taken.
2889            if(hasSkipConversion) {
2890                method.label(defaultLabel);
2891                method.beforeJoinPoint(switchNode);
2892                method._goto(breakLabel);
2893            }
2894        } else {
2895            final Symbol tagSymbol = switchNode.getTag();
2896            // TODO: we could have non-object tag
2897            final int tagSlot = tagSymbol.getSlot(Type.OBJECT);
2898            loadExpressionAsObject(expression);
2899            method.store(tagSymbol, Type.OBJECT);
2900
2901            for (final CaseNode caseNode : cases) {
2902                final Expression test = caseNode.getTest();
2903
2904                if (test != null) {
2905                    method.load(Type.OBJECT, tagSlot);
2906                    loadExpressionAsObject(test);
2907                    method.invoke(ScriptRuntime.EQ_STRICT);
2908                    method.ifne(caseNode.getEntry());
2909                }
2910            }
2911
2912            if (defaultCase != null) {
2913                method._goto(defaultLabel);
2914            } else {
2915                method.beforeJoinPoint(switchNode);
2916                method._goto(breakLabel);
2917            }
2918        }
2919
2920        // First case is only reachable through jump
2921        assert !method.isReachable();
2922
2923        for (final CaseNode caseNode : cases) {
2924            final Label fallThroughLabel;
2925            if(caseNode.getLocalVariableConversion() != null && method.isReachable()) {
2926                fallThroughLabel = new Label("fallthrough");
2927                method._goto(fallThroughLabel);
2928            } else {
2929                fallThroughLabel = null;
2930            }
2931            method.label(caseNode.getEntry());
2932            method.beforeJoinPoint(caseNode);
2933            if(fallThroughLabel != null) {
2934                method.label(fallThroughLabel);
2935            }
2936            caseNode.getBody().accept(this);
2937        }
2938
2939        method.breakLabel(breakLabel, liveLocalsOnBreak);
2940
2941        return false;
2942    }
2943
2944    @Override
2945    public boolean enterThrowNode(final ThrowNode throwNode) {
2946        if(!method.isReachable()) {
2947            return false;
2948        }
2949        enterStatement(throwNode);
2950
2951        if (throwNode.isSyntheticRethrow()) {
2952            method.beforeJoinPoint(throwNode);
2953
2954            //do not wrap whatever this is in an ecma exception, just rethrow it
2955            final IdentNode exceptionExpr = (IdentNode)throwNode.getExpression();
2956            final Symbol exceptionSymbol = exceptionExpr.getSymbol();
2957            method.load(exceptionSymbol, EXCEPTION_TYPE);
2958            method.checkcast(EXCEPTION_TYPE.getTypeClass());
2959            method.athrow();
2960            return false;
2961        }
2962
2963        final Source     source     = getCurrentSource();
2964        final Expression expression = throwNode.getExpression();
2965        final int        position   = throwNode.position();
2966        final int        line       = throwNode.getLineNumber();
2967        final int        column     = source.getColumn(position);
2968
2969        // NOTE: we first evaluate the expression, and only after it was evaluated do we create the new ECMAException
2970        // object and then somewhat cumbersomely move it beneath the evaluated expression on the stack. The reason for
2971        // this is that if expression is optimistic (or contains an optimistic subexpression), we'd potentially access
2972        // the not-yet-<init>ialized object on the stack from the UnwarrantedOptimismException handler, and bytecode
2973        // verifier forbids that.
2974        loadExpressionAsObject(expression);
2975
2976        method.load(source.getName());
2977        method.load(line);
2978        method.load(column);
2979        method.invoke(ECMAException.CREATE);
2980
2981        method.beforeJoinPoint(throwNode);
2982        method.athrow();
2983
2984        return false;
2985    }
2986
2987    private Source getCurrentSource() {
2988        return lc.getCurrentFunction().getSource();
2989    }
2990
2991    @Override
2992    public boolean enterTryNode(final TryNode tryNode) {
2993        if(!method.isReachable()) {
2994            return false;
2995        }
2996        enterStatement(tryNode);
2997
2998        final Block       body        = tryNode.getBody();
2999        final List<Block> catchBlocks = tryNode.getCatchBlocks();
3000        final Symbol      vmException = tryNode.getException();
3001        final Label       entry       = new Label("try");
3002        final Label       recovery    = new Label("catch");
3003        final Label       exit        = new Label("end_try");
3004        final Label       skip        = new Label("skip");
3005
3006        method.canThrow(recovery);
3007        // Effect any conversions that might be observed at the entry of the catch node before entering the try node.
3008        // This is because even the first instruction in the try block must be presumed to be able to transfer control
3009        // to the catch block. Note that this doesn't kill the original values; in this regard it works a lot like
3010        // conversions of assignments within the try block.
3011        method.beforeTry(tryNode, recovery);
3012        method.label(entry);
3013        catchLabels.push(recovery);
3014        try {
3015            body.accept(this);
3016        } finally {
3017            assert catchLabels.peek() == recovery;
3018            catchLabels.pop();
3019        }
3020
3021        method.label(exit);
3022        final boolean bodyCanThrow = exit.isAfter(entry);
3023        if(!bodyCanThrow) {
3024            // The body can't throw an exception; don't even bother emitting the catch handlers, they're all dead code.
3025            return false;
3026        }
3027
3028        method._try(entry, exit, recovery, Throwable.class);
3029
3030        if (method.isReachable()) {
3031            method._goto(skip);
3032        }
3033        method._catch(recovery);
3034        method.store(vmException, EXCEPTION_TYPE);
3035
3036        final int catchBlockCount = catchBlocks.size();
3037        final Label afterCatch = new Label("after_catch");
3038        for (int i = 0; i < catchBlockCount; i++) {
3039            assert method.isReachable();
3040            final Block catchBlock = catchBlocks.get(i);
3041
3042            // Because of the peculiarities of the flow control, we need to use an explicit push/enterBlock/leaveBlock
3043            // here.
3044            lc.push(catchBlock);
3045            enterBlock(catchBlock);
3046
3047            final CatchNode  catchNode          = (CatchNode)catchBlocks.get(i).getStatements().get(0);
3048            final IdentNode  exception          = catchNode.getException();
3049            final Expression exceptionCondition = catchNode.getExceptionCondition();
3050            final Block      catchBody          = catchNode.getBody();
3051
3052            new Store<IdentNode>(exception) {
3053                @Override
3054                protected void storeNonDiscard() {
3055                    // This expression is neither part of a discard, nor needs to be left on the stack after it was
3056                    // stored, so we override storeNonDiscard to be a no-op.
3057                }
3058
3059                @Override
3060                protected void evaluate() {
3061                    if (catchNode.isSyntheticRethrow()) {
3062                        method.load(vmException, EXCEPTION_TYPE);
3063                        return;
3064                    }
3065                    /*
3066                     * If caught object is an instance of ECMAException, then
3067                     * bind obj.thrown to the script catch var. Or else bind the
3068                     * caught object itself to the script catch var.
3069                     */
3070                    final Label notEcmaException = new Label("no_ecma_exception");
3071                    method.load(vmException, EXCEPTION_TYPE).dup()._instanceof(ECMAException.class).ifeq(notEcmaException);
3072                    method.checkcast(ECMAException.class); //TODO is this necessary?
3073                    method.getField(ECMAException.THROWN);
3074                    method.label(notEcmaException);
3075                }
3076            }.store();
3077
3078            final boolean isConditionalCatch = exceptionCondition != null;
3079            final Label nextCatch;
3080            if (isConditionalCatch) {
3081                loadExpressionAsBoolean(exceptionCondition);
3082                nextCatch = new Label("next_catch");
3083                method.ifeq(nextCatch);
3084            } else {
3085                nextCatch = null;
3086            }
3087
3088            catchBody.accept(this);
3089            leaveBlock(catchBlock);
3090            lc.pop(catchBlock);
3091            if(method.isReachable()) {
3092                method._goto(afterCatch);
3093            }
3094            if(nextCatch != null) {
3095                method.label(nextCatch);
3096            }
3097        }
3098
3099        assert !method.isReachable();
3100        // afterCatch could be the same as skip, except that we need to establish that the vmException is dead.
3101        method.label(afterCatch);
3102        if(method.isReachable()) {
3103            method.markDeadLocalVariable(vmException);
3104        }
3105        method.label(skip);
3106
3107        // Finally body is always inlined elsewhere so it doesn't need to be emitted
3108        return false;
3109    }
3110
3111    @Override
3112    public boolean enterVarNode(final VarNode varNode) {
3113        if(!method.isReachable()) {
3114            return false;
3115        }
3116        final Expression init = varNode.getInit();
3117        final IdentNode identNode = varNode.getName();
3118        final Symbol identSymbol = identNode.getSymbol();
3119        assert identSymbol != null : "variable node " + varNode + " requires a name with a symbol";
3120        final boolean needsScope = identSymbol.isScope();
3121
3122        if (init == null) {
3123            if (needsScope && varNode.isBlockScoped()) {
3124                // block scoped variables need a DECLARE flag to signal end of temporal dead zone (TDZ)
3125                method.loadCompilerConstant(SCOPE);
3126                method.loadUndefined(Type.OBJECT);
3127                final int flags = CALLSITE_SCOPE | getCallSiteFlags() | (varNode.isBlockScoped() ? CALLSITE_DECLARE : 0);
3128                assert isFastScope(identSymbol);
3129                storeFastScopeVar(identSymbol, flags);
3130            }
3131            return false;
3132        }
3133
3134        enterStatement(varNode);
3135        assert method != null;
3136
3137        if (needsScope) {
3138            method.loadCompilerConstant(SCOPE);
3139        }
3140
3141        if (needsScope) {
3142            loadExpressionUnbounded(init);
3143            // block scoped variables need a DECLARE flag to signal end of temporal dead zone (TDZ)
3144            final int flags = CALLSITE_SCOPE | getCallSiteFlags() | (varNode.isBlockScoped() ? CALLSITE_DECLARE : 0);
3145            if (isFastScope(identSymbol)) {
3146                storeFastScopeVar(identSymbol, flags);
3147            } else {
3148                method.dynamicSet(identNode.getName(), flags);
3149            }
3150        } else {
3151            final Type identType = identNode.getType();
3152            if(identType == Type.UNDEFINED) {
3153                // The symbol must not be slotted; the initializer is either itself undefined (explicit assignment of
3154                // undefined to undefined), or the left hand side is a dead variable.
3155                assert !identNode.getSymbol().isScope();
3156                assert init.getType() == Type.UNDEFINED || identNode.getSymbol().slotCount() == 0;
3157                loadAndDiscard(init);
3158                return false;
3159            }
3160            loadExpressionAsType(init, identType);
3161            storeIdentWithCatchConversion(identNode, identType);
3162        }
3163
3164        return false;
3165    }
3166
3167    private void storeIdentWithCatchConversion(final IdentNode identNode, final Type type) {
3168        // Assignments happening in try/catch blocks need to ensure that they also store a possibly wider typed value
3169        // that will be live at the exit from the try block
3170        final LocalVariableConversion conversion = identNode.getLocalVariableConversion();
3171        final Symbol symbol = identNode.getSymbol();
3172        if(conversion != null && conversion.isLive()) {
3173            assert symbol == conversion.getSymbol();
3174            assert symbol.isBytecodeLocal();
3175            // Only a single conversion from the target type to the join type is expected.
3176            assert conversion.getNext() == null;
3177            assert conversion.getFrom() == type;
3178            // We must propagate potential type change to the catch block
3179            final Label catchLabel = catchLabels.peek();
3180            assert catchLabel != METHOD_BOUNDARY; // ident conversion only exists in try blocks
3181            assert catchLabel.isReachable();
3182            final Type joinType = conversion.getTo();
3183            final Label.Stack catchStack = catchLabel.getStack();
3184            final int joinSlot = symbol.getSlot(joinType);
3185            // With nested try/catch blocks (incl. synthetic ones for finally), we can have a supposed conversion for
3186            // the exception symbol in the nested catch, but it isn't live in the outer catch block, so prevent doing
3187            // conversions for it. E.g. in "try { try { ... } catch(e) { e = 1; } } catch(e2) { ... }", we must not
3188            // introduce an I->O conversion on "e = 1" assignment as "e" is not live in "catch(e2)".
3189            if(catchStack.getUsedSlotsWithLiveTemporaries() > joinSlot) {
3190                method.dup();
3191                method.convert(joinType);
3192                method.store(symbol, joinType);
3193                catchLabel.getStack().onLocalStore(joinType, joinSlot, true);
3194                method.canThrow(catchLabel);
3195                // Store but keep the previous store live too.
3196                method.store(symbol, type, false);
3197                return;
3198            }
3199        }
3200
3201        method.store(symbol, type, true);
3202    }
3203
3204    @Override
3205    public boolean enterWhileNode(final WhileNode whileNode) {
3206        if(!method.isReachable()) {
3207            return false;
3208        }
3209        if(whileNode.isDoWhile()) {
3210            enterDoWhile(whileNode);
3211        } else {
3212            enterStatement(whileNode);
3213            enterForOrWhile(whileNode, null);
3214        }
3215        return false;
3216    }
3217
3218    private void enterForOrWhile(final LoopNode loopNode, final JoinPredecessorExpression modify) {
3219        // NOTE: the usual pattern for compiling test-first loops is "GOTO test; body; test; IFNE body". We use the less
3220        // conventional "test; IFEQ break; body; GOTO test; break;". It has one extra unconditional GOTO in each repeat
3221        // of the loop, but it's not a problem for modern JIT compilers. We do this because our local variable type
3222        // tracking is unfortunately not really prepared for out-of-order execution, e.g. compiling the following
3223        // contrived but legal JavaScript code snippet would fail because the test changes the type of "i" from object
3224        // to double: var i = {valueOf: function() { return 1} }; while(--i >= 0) { ... }
3225        // Instead of adding more complexity to the local variable type tracking, we instead choose to emit this
3226        // different code shape.
3227        final int liveLocalsOnBreak = method.getUsedSlotsWithLiveTemporaries();
3228        final JoinPredecessorExpression test = loopNode.getTest();
3229        if(Expression.isAlwaysFalse(test)) {
3230            loadAndDiscard(test);
3231            return;
3232        }
3233
3234        method.beforeJoinPoint(loopNode);
3235
3236        final Label continueLabel = loopNode.getContinueLabel();
3237        final Label repeatLabel = modify != null ? new Label("for_repeat") : continueLabel;
3238        method.label(repeatLabel);
3239        final int liveLocalsOnContinue = method.getUsedSlotsWithLiveTemporaries();
3240
3241        final Block   body                  = loopNode.getBody();
3242        final Label   breakLabel            = loopNode.getBreakLabel();
3243        final boolean testHasLiveConversion = test != null && LocalVariableConversion.hasLiveConversion(test);
3244
3245        if(Expression.isAlwaysTrue(test)) {
3246            if(test != null) {
3247                loadAndDiscard(test);
3248                if(testHasLiveConversion) {
3249                    method.beforeJoinPoint(test);
3250                }
3251            }
3252        } else if (test != null) {
3253            if (testHasLiveConversion) {
3254                emitBranch(test.getExpression(), body.getEntryLabel(), true);
3255                method.beforeJoinPoint(test);
3256                method._goto(breakLabel);
3257            } else {
3258                emitBranch(test.getExpression(), breakLabel, false);
3259            }
3260        }
3261
3262        body.accept(this);
3263        if(repeatLabel != continueLabel) {
3264            emitContinueLabel(continueLabel, liveLocalsOnContinue);
3265        }
3266
3267        if(method.isReachable()) {
3268            if(modify != null) {
3269                lineNumber(loopNode);
3270                loadAndDiscard(modify);
3271                method.beforeJoinPoint(modify);
3272            }
3273            method._goto(repeatLabel);
3274        }
3275
3276        method.breakLabel(breakLabel, liveLocalsOnBreak);
3277    }
3278
3279    private void emitContinueLabel(final Label continueLabel, final int liveLocals) {
3280        final boolean reachable = method.isReachable();
3281        method.breakLabel(continueLabel, liveLocals);
3282        // If we reach here only through a continue statement (e.g. body does not exit normally) then the
3283        // continueLabel can have extra non-temp symbols (e.g. exception from a try/catch contained in the body). We
3284        // must make sure those are thrown away.
3285        if(!reachable) {
3286            method.undefineLocalVariables(lc.getUsedSlotCount(), false);
3287        }
3288    }
3289
3290    private void enterDoWhile(final WhileNode whileNode) {
3291        final int liveLocalsOnContinueOrBreak = method.getUsedSlotsWithLiveTemporaries();
3292        method.beforeJoinPoint(whileNode);
3293
3294        final Block body = whileNode.getBody();
3295        body.accept(this);
3296
3297        emitContinueLabel(whileNode.getContinueLabel(), liveLocalsOnContinueOrBreak);
3298        if(method.isReachable()) {
3299            lineNumber(whileNode);
3300            final JoinPredecessorExpression test = whileNode.getTest();
3301            final Label bodyEntryLabel = body.getEntryLabel();
3302            final boolean testHasLiveConversion = LocalVariableConversion.hasLiveConversion(test);
3303            if(Expression.isAlwaysFalse(test)) {
3304                loadAndDiscard(test);
3305                if(testHasLiveConversion) {
3306                    method.beforeJoinPoint(test);
3307                }
3308            } else if(testHasLiveConversion) {
3309                // If we have conversions after the test in do-while, they need to be effected on both branches.
3310                final Label beforeExit = new Label("do_while_preexit");
3311                emitBranch(test.getExpression(), beforeExit, false);
3312                method.beforeJoinPoint(test);
3313                method._goto(bodyEntryLabel);
3314                method.label(beforeExit);
3315                method.beforeJoinPoint(test);
3316            } else {
3317                emitBranch(test.getExpression(), bodyEntryLabel, true);
3318            }
3319        }
3320        method.breakLabel(whileNode.getBreakLabel(), liveLocalsOnContinueOrBreak);
3321    }
3322
3323
3324    @Override
3325    public boolean enterWithNode(final WithNode withNode) {
3326        if(!method.isReachable()) {
3327            return false;
3328        }
3329        enterStatement(withNode);
3330        final Expression expression = withNode.getExpression();
3331        final Block      body       = withNode.getBody();
3332
3333        // It is possible to have a "pathological" case where the with block does not reference *any* identifiers. It's
3334        // pointless, but legal. In that case, if nothing else in the method forced the assignment of a slot to the
3335        // scope object, its' possible that it won't have a slot assigned. In this case we'll only evaluate expression
3336        // for its side effect and visit the body, and not bother opening and closing a WithObject.
3337        final boolean hasScope = method.hasScope();
3338
3339        if (hasScope) {
3340            method.loadCompilerConstant(SCOPE);
3341        }
3342
3343        loadExpressionAsObject(expression);
3344
3345        final Label tryLabel;
3346        if (hasScope) {
3347            // Construct a WithObject if we have a scope
3348            method.invoke(ScriptRuntime.OPEN_WITH);
3349            method.storeCompilerConstant(SCOPE);
3350            tryLabel = new Label("with_try");
3351            method.label(tryLabel);
3352        } else {
3353            // We just loaded the expression for its side effect and to check
3354            // for null or undefined value.
3355            globalCheckObjectCoercible();
3356            tryLabel = null;
3357        }
3358
3359        // Always process body
3360        body.accept(this);
3361
3362        if (hasScope) {
3363            // Ensure we always close the WithObject
3364            final Label endLabel   = new Label("with_end");
3365            final Label catchLabel = new Label("with_catch");
3366            final Label exitLabel  = new Label("with_exit");
3367
3368            method.label(endLabel);
3369            // Somewhat conservatively presume that if the body is not empty, it can throw an exception. In any case,
3370            // we must prevent trying to emit a try-catch for empty range, as it causes a verification error.
3371            final boolean bodyCanThrow = endLabel.isAfter(tryLabel);
3372            if(bodyCanThrow) {
3373                method._try(tryLabel, endLabel, catchLabel);
3374            }
3375
3376            final boolean reachable = method.isReachable();
3377            if(reachable) {
3378                popScope();
3379                if(bodyCanThrow) {
3380                    method._goto(exitLabel);
3381                }
3382            }
3383
3384            if(bodyCanThrow) {
3385                method._catch(catchLabel);
3386                popScopeException();
3387                method.athrow();
3388                if(reachable) {
3389                    method.label(exitLabel);
3390                }
3391            }
3392        }
3393        return false;
3394    }
3395
3396    private void loadADD(final UnaryNode unaryNode, final TypeBounds resultBounds) {
3397        loadExpression(unaryNode.getExpression(), resultBounds.booleanToInt().notWiderThan(Type.NUMBER));
3398        if(method.peekType() == Type.BOOLEAN) {
3399            // It's a no-op in bytecode, but we must make sure it is treated as an int for purposes of type signatures
3400            method.convert(Type.INT);
3401        }
3402    }
3403
3404    private void loadBIT_NOT(final UnaryNode unaryNode) {
3405        loadExpression(unaryNode.getExpression(), TypeBounds.INT).load(-1).xor();
3406    }
3407
3408    private void loadDECINC(final UnaryNode unaryNode) {
3409        final Expression operand     = unaryNode.getExpression();
3410        final Type       type        = unaryNode.getType();
3411        final TypeBounds typeBounds  = new TypeBounds(type, Type.NUMBER);
3412        final TokenType  tokenType   = unaryNode.tokenType();
3413        final boolean    isPostfix   = tokenType == TokenType.DECPOSTFIX || tokenType == TokenType.INCPOSTFIX;
3414        final boolean    isIncrement = tokenType == TokenType.INCPREFIX || tokenType == TokenType.INCPOSTFIX;
3415
3416        assert !type.isObject();
3417
3418        new SelfModifyingStore<UnaryNode>(unaryNode, operand) {
3419
3420            private void loadRhs() {
3421                loadExpression(operand, typeBounds, true);
3422            }
3423
3424            @Override
3425            protected void evaluate() {
3426                if(isPostfix) {
3427                    loadRhs();
3428                } else {
3429                    new OptimisticOperation(unaryNode, typeBounds) {
3430                        @Override
3431                        void loadStack() {
3432                            loadRhs();
3433                            loadMinusOne();
3434                        }
3435                        @Override
3436                        void consumeStack() {
3437                            doDecInc(getProgramPoint());
3438                        }
3439                    }.emit(getOptimisticIgnoreCountForSelfModifyingExpression(operand));
3440                }
3441            }
3442
3443            @Override
3444            protected void storeNonDiscard() {
3445                super.storeNonDiscard();
3446                if (isPostfix) {
3447                    new OptimisticOperation(unaryNode, typeBounds) {
3448                        @Override
3449                        void loadStack() {
3450                            loadMinusOne();
3451                        }
3452                        @Override
3453                        void consumeStack() {
3454                            doDecInc(getProgramPoint());
3455                        }
3456                    }.emit(1); // 1 for non-incremented result on the top of the stack pushed in evaluate()
3457                }
3458            }
3459
3460            private void loadMinusOne() {
3461                if (type.isInteger()) {
3462                    method.load(isIncrement ? 1 : -1);
3463                } else if (type.isLong()) {
3464                    method.load(isIncrement ? 1L : -1L);
3465                } else {
3466                    method.load(isIncrement ? 1.0 : -1.0);
3467                }
3468            }
3469
3470            private void doDecInc(final int programPoint) {
3471                method.add(programPoint);
3472            }
3473        }.store();
3474    }
3475
3476    private static int getOptimisticIgnoreCountForSelfModifyingExpression(final Expression target) {
3477        return target instanceof AccessNode ? 1 : target instanceof IndexNode ? 2 : 0;
3478    }
3479
3480    private void loadAndDiscard(final Expression expr) {
3481        // TODO: move checks for discarding to actual expression load code (e.g. as we do with void). That way we might
3482        // be able to eliminate even more checks.
3483        if(expr instanceof PrimitiveLiteralNode | isLocalVariable(expr)) {
3484            assert lc.getCurrentDiscard() != expr;
3485            // Don't bother evaluating expressions without side effects. Typical usage is "void 0" for reliably generating
3486            // undefined.
3487            return;
3488        }
3489
3490        lc.pushDiscard(expr);
3491        loadExpression(expr, TypeBounds.UNBOUNDED);
3492        if (lc.getCurrentDiscard() == expr) {
3493            assert !expr.isAssignment();
3494            // NOTE: if we had a way to load with type void, we could avoid popping
3495            method.pop();
3496            lc.popDiscard();
3497        }
3498    }
3499
3500    private void loadNEW(final UnaryNode unaryNode) {
3501        final CallNode callNode = (CallNode)unaryNode.getExpression();
3502        final List<Expression> args   = callNode.getArgs();
3503
3504        // Load function reference.
3505        loadExpressionAsObject(callNode.getFunction()); // must detect type error
3506
3507        method.dynamicNew(1 + loadArgs(args), getCallSiteFlags());
3508    }
3509
3510    private void loadNOT(final UnaryNode unaryNode) {
3511        final Expression expr = unaryNode.getExpression();
3512        if(expr instanceof UnaryNode && expr.isTokenType(TokenType.NOT)) {
3513            // !!x is idiomatic boolean cast in JavaScript
3514            loadExpressionAsBoolean(((UnaryNode)expr).getExpression());
3515        } else {
3516            final Label trueLabel  = new Label("true");
3517            final Label afterLabel = new Label("after");
3518
3519            emitBranch(expr, trueLabel, true);
3520            method.load(true);
3521            method._goto(afterLabel);
3522            method.label(trueLabel);
3523            method.load(false);
3524            method.label(afterLabel);
3525        }
3526    }
3527
3528    private void loadSUB(final UnaryNode unaryNode, final TypeBounds resultBounds) {
3529        final Type type = unaryNode.getType();
3530        assert type.isNumeric();
3531        final TypeBounds numericBounds = resultBounds.booleanToInt();
3532        new OptimisticOperation(unaryNode, numericBounds) {
3533            @Override
3534            void loadStack() {
3535                final Expression expr = unaryNode.getExpression();
3536                loadExpression(expr, numericBounds.notWiderThan(Type.NUMBER));
3537            }
3538            @Override
3539            void consumeStack() {
3540                // Must do an explicit conversion to the operation's type when it's double so that we correctly handle
3541                // negation of an int 0 to a double -0. With this, we get the correct negation of a local variable after
3542                // it deoptimized, e.g. "iload_2; i2d; dneg". Without this, we get "iload_2; ineg; i2d".
3543                if(type.isNumber()) {
3544                    method.convert(type);
3545                }
3546                method.neg(getProgramPoint());
3547            }
3548        }.emit();
3549    }
3550
3551    public void loadVOID(final UnaryNode unaryNode, final TypeBounds resultBounds) {
3552        loadAndDiscard(unaryNode.getExpression());
3553        if(lc.getCurrentDiscard() == unaryNode) {
3554            lc.popDiscard();
3555        } else {
3556            method.loadUndefined(resultBounds.widest);
3557        }
3558    }
3559
3560    public void loadADD(final BinaryNode binaryNode, final TypeBounds resultBounds) {
3561        new OptimisticOperation(binaryNode, resultBounds) {
3562            @Override
3563            void loadStack() {
3564                final TypeBounds operandBounds;
3565                final boolean isOptimistic = isValid(getProgramPoint());
3566                boolean forceConversionSeparation = false;
3567                if(isOptimistic) {
3568                    operandBounds = new TypeBounds(binaryNode.getType(), Type.OBJECT);
3569                } else {
3570                    // Non-optimistic, non-FP +. Allow it to overflow.
3571                    operandBounds = new TypeBounds(Type.narrowest(binaryNode.getWidestOperandType(), resultBounds.widest),
3572                            Type.OBJECT);
3573                    forceConversionSeparation = binaryNode.getWidestOperationType().narrowerThan(resultBounds.widest);
3574                }
3575                loadBinaryOperands(binaryNode.lhs(), binaryNode.rhs(), operandBounds, false, forceConversionSeparation);
3576            }
3577
3578            @Override
3579            void consumeStack() {
3580                method.add(getProgramPoint());
3581            }
3582        }.emit();
3583    }
3584
3585    private void loadAND_OR(final BinaryNode binaryNode, final TypeBounds resultBounds, final boolean isAnd) {
3586        final Type narrowestOperandType = Type.widestReturnType(binaryNode.lhs().getType(), binaryNode.rhs().getType());
3587
3588        final Label skip = new Label("skip");
3589        if(narrowestOperandType == Type.BOOLEAN) {
3590            // optimize all-boolean logical expressions
3591            final Label onTrue = new Label("andor_true");
3592            emitBranch(binaryNode, onTrue, true);
3593            method.load(false);
3594            method._goto(skip);
3595            method.label(onTrue);
3596            method.load(true);
3597            method.label(skip);
3598            return;
3599        }
3600
3601        final TypeBounds outBounds = resultBounds.notNarrowerThan(narrowestOperandType);
3602        final JoinPredecessorExpression lhs = (JoinPredecessorExpression)binaryNode.lhs();
3603        final boolean lhsConvert = LocalVariableConversion.hasLiveConversion(lhs);
3604        final Label evalRhs = lhsConvert ? new Label("eval_rhs") : null;
3605
3606        loadExpression(lhs, outBounds).dup().convert(Type.BOOLEAN);
3607        if (isAnd) {
3608            if(lhsConvert) {
3609                method.ifne(evalRhs);
3610            } else {
3611                method.ifeq(skip);
3612            }
3613        } else if(lhsConvert) {
3614            method.ifeq(evalRhs);
3615        } else {
3616            method.ifne(skip);
3617        }
3618
3619        if(lhsConvert) {
3620            method.beforeJoinPoint(lhs);
3621            method._goto(skip);
3622            method.label(evalRhs);
3623        }
3624
3625        method.pop();
3626        final JoinPredecessorExpression rhs = (JoinPredecessorExpression)binaryNode.rhs();
3627        loadExpression(rhs, outBounds);
3628        method.beforeJoinPoint(rhs);
3629        method.label(skip);
3630    }
3631
3632    private static boolean isLocalVariable(final Expression lhs) {
3633        return lhs instanceof IdentNode && isLocalVariable((IdentNode)lhs);
3634    }
3635
3636    private static boolean isLocalVariable(final IdentNode lhs) {
3637        return lhs.getSymbol().isBytecodeLocal();
3638    }
3639
3640    // NOTE: does not use resultBounds as the assignment is driven by the type of the RHS
3641    private void loadASSIGN(final BinaryNode binaryNode) {
3642        final Expression lhs = binaryNode.lhs();
3643        final Expression rhs = binaryNode.rhs();
3644
3645        final Type rhsType = rhs.getType();
3646        // Detect dead assignments
3647        if(lhs instanceof IdentNode) {
3648            final Symbol symbol = ((IdentNode)lhs).getSymbol();
3649            if(!symbol.isScope() && !symbol.hasSlotFor(rhsType) && lc.getCurrentDiscard() == binaryNode) {
3650                loadAndDiscard(rhs);
3651                lc.popDiscard();
3652                method.markDeadLocalVariable(symbol);
3653                return;
3654            }
3655        }
3656
3657        new Store<BinaryNode>(binaryNode, lhs) {
3658            @Override
3659            protected void evaluate() {
3660                // NOTE: we're loading with "at least as wide as" so optimistic operations on the right hand side
3661                // remain optimistic, and then explicitly convert to the required type if needed.
3662                loadExpressionAsType(rhs, rhsType);
3663            }
3664        }.store();
3665    }
3666
3667    /**
3668     * Binary self-assignment that can be optimistic: +=, -=, *=, and /=.
3669     */
3670    private abstract class BinaryOptimisticSelfAssignment extends SelfModifyingStore<BinaryNode> {
3671
3672        /**
3673         * Constructor
3674         *
3675         * @param node the assign op node
3676         */
3677        BinaryOptimisticSelfAssignment(final BinaryNode node) {
3678            super(node, node.lhs());
3679        }
3680
3681        protected abstract void op(OptimisticOperation oo);
3682
3683        @Override
3684        protected void evaluate() {
3685            final Expression lhs = assignNode.lhs();
3686            final Expression rhs = assignNode.rhs();
3687            final Type widestOperationType = assignNode.getWidestOperationType();
3688            final Type widest = assignNode.isTokenType(TokenType.ASSIGN_ADD) ? Type.OBJECT : widestOperationType;
3689            final TypeBounds bounds = new TypeBounds(assignNode.getType(), widest);
3690            new OptimisticOperation(assignNode, bounds) {
3691                @Override
3692                void loadStack() {
3693                    final boolean forceConversionSeparation;
3694                    if (isValid(getProgramPoint()) || widestOperationType == Type.NUMBER) {
3695                        forceConversionSeparation = false;
3696                    } else {
3697                        final Type operandType = Type.widest(booleanToInt(objectToNumber(lhs.getType())), booleanToInt(objectToNumber(rhs.getType())));
3698                        forceConversionSeparation = operandType.narrowerThan(widestOperationType);
3699                    }
3700                    loadBinaryOperands(lhs, rhs, bounds, true, forceConversionSeparation);
3701                }
3702                @Override
3703                void consumeStack() {
3704                    op(this);
3705                }
3706            }.emit(getOptimisticIgnoreCountForSelfModifyingExpression(lhs));
3707            method.convert(assignNode.getType());
3708        }
3709    }
3710
3711    /**
3712     * Non-optimistic binary self-assignment operation. Basically, everything except +=, -=, *=, and /=.
3713     */
3714    private abstract class BinarySelfAssignment extends SelfModifyingStore<BinaryNode> {
3715        BinarySelfAssignment(final BinaryNode node) {
3716            super(node, node.lhs());
3717        }
3718
3719        protected abstract void op();
3720
3721        @Override
3722        protected void evaluate() {
3723            loadBinaryOperands(assignNode.lhs(), assignNode.rhs(), TypeBounds.UNBOUNDED.notWiderThan(assignNode.getWidestOperandType()), true, false);
3724            op();
3725        }
3726    }
3727
3728    private void loadASSIGN_ADD(final BinaryNode binaryNode) {
3729        new BinaryOptimisticSelfAssignment(binaryNode) {
3730            @Override
3731            protected void op(final OptimisticOperation oo) {
3732                assert !(binaryNode.getType().isObject() && oo.isOptimistic);
3733                method.add(oo.getProgramPoint());
3734            }
3735        }.store();
3736    }
3737
3738    private void loadASSIGN_BIT_AND(final BinaryNode binaryNode) {
3739        new BinarySelfAssignment(binaryNode) {
3740            @Override
3741            protected void op() {
3742                method.and();
3743            }
3744        }.store();
3745    }
3746
3747    private void loadASSIGN_BIT_OR(final BinaryNode binaryNode) {
3748        new BinarySelfAssignment(binaryNode) {
3749            @Override
3750            protected void op() {
3751                method.or();
3752            }
3753        }.store();
3754    }
3755
3756    private void loadASSIGN_BIT_XOR(final BinaryNode binaryNode) {
3757        new BinarySelfAssignment(binaryNode) {
3758            @Override
3759            protected void op() {
3760                method.xor();
3761            }
3762        }.store();
3763    }
3764
3765    private void loadASSIGN_DIV(final BinaryNode binaryNode) {
3766        new BinaryOptimisticSelfAssignment(binaryNode) {
3767            @Override
3768            protected void op(final OptimisticOperation oo) {
3769                method.div(oo.getProgramPoint());
3770            }
3771        }.store();
3772    }
3773
3774    private void loadASSIGN_MOD(final BinaryNode binaryNode) {
3775        new BinaryOptimisticSelfAssignment(binaryNode) {
3776            @Override
3777            protected void op(final OptimisticOperation oo) {
3778                method.rem(oo.getProgramPoint());
3779            }
3780        }.store();
3781    }
3782
3783    private void loadASSIGN_MUL(final BinaryNode binaryNode) {
3784        new BinaryOptimisticSelfAssignment(binaryNode) {
3785            @Override
3786            protected void op(final OptimisticOperation oo) {
3787                method.mul(oo.getProgramPoint());
3788            }
3789        }.store();
3790    }
3791
3792    private void loadASSIGN_SAR(final BinaryNode binaryNode) {
3793        new BinarySelfAssignment(binaryNode) {
3794            @Override
3795            protected void op() {
3796                method.sar();
3797            }
3798        }.store();
3799    }
3800
3801    private void loadASSIGN_SHL(final BinaryNode binaryNode) {
3802        new BinarySelfAssignment(binaryNode) {
3803            @Override
3804            protected void op() {
3805                method.shl();
3806            }
3807        }.store();
3808    }
3809
3810    private void loadASSIGN_SHR(final BinaryNode binaryNode) {
3811        new BinarySelfAssignment(binaryNode) {
3812            @Override
3813            protected void op() {
3814                doSHR();
3815            }
3816
3817        }.store();
3818    }
3819
3820    private void doSHR() {
3821        // TODO: make SHR optimistic
3822        method.shr();
3823        toUint();
3824    }
3825
3826    private void toUint() {
3827        JSType.TO_UINT32_I.invoke(method);
3828    }
3829
3830    private void loadASSIGN_SUB(final BinaryNode binaryNode) {
3831        new BinaryOptimisticSelfAssignment(binaryNode) {
3832            @Override
3833            protected void op(final OptimisticOperation oo) {
3834                method.sub(oo.getProgramPoint());
3835            }
3836        }.store();
3837    }
3838
3839    /**
3840     * Helper class for binary arithmetic ops
3841     */
3842    private abstract class BinaryArith {
3843        protected abstract void op(int programPoint);
3844
3845        protected void evaluate(final BinaryNode node, final TypeBounds resultBounds) {
3846            final TypeBounds numericBounds = resultBounds.booleanToInt().objectToNumber();
3847            new OptimisticOperation(node, numericBounds) {
3848                @Override
3849                void loadStack() {
3850                    final TypeBounds operandBounds;
3851                    boolean forceConversionSeparation = false;
3852                    if(numericBounds.narrowest == Type.NUMBER) {
3853                        // Result should be double always. Propagate it into the operands so we don't have lots of I2D
3854                        // and L2D after operand evaluation.
3855                        assert numericBounds.widest == Type.NUMBER;
3856                        operandBounds = numericBounds;
3857                    } else {
3858                        final boolean isOptimistic = isValid(getProgramPoint());
3859                        if(isOptimistic || node.isTokenType(TokenType.DIV) || node.isTokenType(TokenType.MOD)) {
3860                            operandBounds = new TypeBounds(node.getType(), Type.NUMBER);
3861                        } else {
3862                            // Non-optimistic, non-FP subtraction or multiplication. Allow them to overflow.
3863                            operandBounds = new TypeBounds(Type.narrowest(node.getWidestOperandType(),
3864                                    numericBounds.widest), Type.NUMBER);
3865                            forceConversionSeparation = node.getWidestOperationType().narrowerThan(numericBounds.widest);
3866                        }
3867                    }
3868                    loadBinaryOperands(node.lhs(), node.rhs(), operandBounds, false, forceConversionSeparation);
3869                }
3870
3871                @Override
3872                void consumeStack() {
3873                    op(getProgramPoint());
3874                }
3875            }.emit();
3876        }
3877    }
3878
3879    private void loadBIT_AND(final BinaryNode binaryNode) {
3880        loadBinaryOperands(binaryNode);
3881        method.and();
3882    }
3883
3884    private void loadBIT_OR(final BinaryNode binaryNode) {
3885        // Optimize x|0 to (int)x
3886        if (isRhsZero(binaryNode)) {
3887            loadExpressionAsType(binaryNode.lhs(), Type.INT);
3888        } else {
3889            loadBinaryOperands(binaryNode);
3890            method.or();
3891        }
3892    }
3893
3894    private static boolean isRhsZero(final BinaryNode binaryNode) {
3895        final Expression rhs = binaryNode.rhs();
3896        return rhs instanceof LiteralNode && INT_ZERO.equals(((LiteralNode<?>)rhs).getValue());
3897    }
3898
3899    private void loadBIT_XOR(final BinaryNode binaryNode) {
3900        loadBinaryOperands(binaryNode);
3901        method.xor();
3902    }
3903
3904    private void loadCOMMARIGHT(final BinaryNode binaryNode, final TypeBounds resultBounds) {
3905        loadAndDiscard(binaryNode.lhs());
3906        loadExpression(binaryNode.rhs(), resultBounds);
3907    }
3908
3909    private void loadCOMMALEFT(final BinaryNode binaryNode, final TypeBounds resultBounds) {
3910        loadExpression(binaryNode.lhs(), resultBounds);
3911        loadAndDiscard(binaryNode.rhs());
3912    }
3913
3914    private void loadDIV(final BinaryNode binaryNode, final TypeBounds resultBounds) {
3915        new BinaryArith() {
3916            @Override
3917            protected void op(final int programPoint) {
3918                method.div(programPoint);
3919            }
3920        }.evaluate(binaryNode, resultBounds);
3921    }
3922
3923    private void loadCmp(final BinaryNode binaryNode, final Condition cond) {
3924        assert comparisonOperandsArePrimitive(binaryNode) : binaryNode;
3925        loadBinaryOperands(binaryNode);
3926
3927        final Label trueLabel  = new Label("trueLabel");
3928        final Label afterLabel = new Label("skip");
3929
3930        method.conditionalJump(cond, trueLabel);
3931
3932        method.load(Boolean.FALSE);
3933        method._goto(afterLabel);
3934        method.label(trueLabel);
3935        method.load(Boolean.TRUE);
3936        method.label(afterLabel);
3937    }
3938
3939    private static boolean comparisonOperandsArePrimitive(final BinaryNode binaryNode) {
3940        final Type widest = Type.widest(binaryNode.lhs().getType(), binaryNode.rhs().getType());
3941        return widest.isNumeric() || widest.isBoolean();
3942    }
3943
3944    private void loadMOD(final BinaryNode binaryNode, final TypeBounds resultBounds) {
3945        new BinaryArith() {
3946            @Override
3947            protected void op(final int programPoint) {
3948                method.rem(programPoint);
3949            }
3950        }.evaluate(binaryNode, resultBounds);
3951    }
3952
3953    private void loadMUL(final BinaryNode binaryNode, final TypeBounds resultBounds) {
3954        new BinaryArith() {
3955            @Override
3956            protected void op(final int programPoint) {
3957                method.mul(programPoint);
3958            }
3959        }.evaluate(binaryNode, resultBounds);
3960    }
3961
3962    private void loadSAR(final BinaryNode binaryNode) {
3963        loadBinaryOperands(binaryNode);
3964        method.sar();
3965    }
3966
3967    private void loadSHL(final BinaryNode binaryNode) {
3968        loadBinaryOperands(binaryNode);
3969        method.shl();
3970    }
3971
3972    private void loadSHR(final BinaryNode binaryNode) {
3973        // Optimize x >>> 0 to (uint)x
3974        if (isRhsZero(binaryNode)) {
3975            loadExpressionAsType(binaryNode.lhs(), Type.INT);
3976            toUint();
3977        } else {
3978            loadBinaryOperands(binaryNode);
3979            doSHR();
3980        }
3981    }
3982
3983    private void loadSUB(final BinaryNode binaryNode, final TypeBounds resultBounds) {
3984        new BinaryArith() {
3985            @Override
3986            protected void op(final int programPoint) {
3987                method.sub(programPoint);
3988            }
3989        }.evaluate(binaryNode, resultBounds);
3990    }
3991
3992    @Override
3993    public boolean enterLabelNode(final LabelNode labelNode) {
3994        labeledBlockBreakLiveLocals.push(lc.getUsedSlotCount());
3995        return true;
3996    }
3997
3998    @Override
3999    protected boolean enterDefault(final Node node) {
4000        throw new AssertionError("Code generator entered node of type " + node.getClass().getName());
4001    }
4002
4003    private void loadTernaryNode(final TernaryNode ternaryNode, final TypeBounds resultBounds) {
4004        final Expression test = ternaryNode.getTest();
4005        final JoinPredecessorExpression trueExpr  = ternaryNode.getTrueExpression();
4006        final JoinPredecessorExpression falseExpr = ternaryNode.getFalseExpression();
4007
4008        final Label falseLabel = new Label("ternary_false");
4009        final Label exitLabel  = new Label("ternary_exit");
4010
4011        final Type outNarrowest = Type.narrowest(resultBounds.widest, Type.generic(Type.widestReturnType(trueExpr.getType(), falseExpr.getType())));
4012        final TypeBounds outBounds = resultBounds.notNarrowerThan(outNarrowest);
4013
4014        emitBranch(test, falseLabel, false);
4015
4016        loadExpression(trueExpr.getExpression(), outBounds);
4017        assert Type.generic(method.peekType()) == outBounds.narrowest;
4018        method.beforeJoinPoint(trueExpr);
4019        method._goto(exitLabel);
4020        method.label(falseLabel);
4021        loadExpression(falseExpr.getExpression(), outBounds);
4022        assert Type.generic(method.peekType()) == outBounds.narrowest;
4023        method.beforeJoinPoint(falseExpr);
4024        method.label(exitLabel);
4025    }
4026
4027    /**
4028     * Generate all shared scope calls generated during codegen.
4029     */
4030    void generateScopeCalls() {
4031        for (final SharedScopeCall scopeAccess : lc.getScopeCalls()) {
4032            scopeAccess.generateScopeCall();
4033        }
4034    }
4035
4036    /**
4037     * Debug code used to print symbols
4038     *
4039     * @param block the block we are in
4040     * @param function the function we are in
4041     * @param ident identifier for block or function where applicable
4042     */
4043    private void printSymbols(final Block block, final FunctionNode function, final String ident) {
4044        if (compiler.getScriptEnvironment()._print_symbols || function.getFlag(FunctionNode.IS_PRINT_SYMBOLS)) {
4045            final PrintWriter out = compiler.getScriptEnvironment().getErr();
4046            out.println("[BLOCK in '" + ident + "']");
4047            if (!block.printSymbols(out)) {
4048                out.println("<no symbols>");
4049            }
4050            out.println();
4051        }
4052    }
4053
4054
4055    /**
4056     * The difference between a store and a self modifying store is that
4057     * the latter may load part of the target on the stack, e.g. the base
4058     * of an AccessNode or the base and index of an IndexNode. These are used
4059     * both as target and as an extra source. Previously it was problematic
4060     * for self modifying stores if the target/lhs didn't belong to one
4061     * of three trivial categories: IdentNode, AcessNodes, IndexNodes. In that
4062     * case it was evaluated and tagged as "resolved", which meant at the second
4063     * time the lhs of this store was read (e.g. in a = a (second) + b for a += b,
4064     * it would be evaluated to a nop in the scope and cause stack underflow
4065     *
4066     * see NASHORN-703
4067     *
4068     * @param <T>
4069     */
4070    private abstract class SelfModifyingStore<T extends Expression> extends Store<T> {
4071        protected SelfModifyingStore(final T assignNode, final Expression target) {
4072            super(assignNode, target);
4073        }
4074
4075        @Override
4076        protected boolean isSelfModifying() {
4077            return true;
4078        }
4079    }
4080
4081    /**
4082     * Helper class to generate stores
4083     */
4084    private abstract class Store<T extends Expression> {
4085
4086        /** An assignment node, e.g. x += y */
4087        protected final T assignNode;
4088
4089        /** The target node to store to, e.g. x */
4090        private final Expression target;
4091
4092        /** How deep on the stack do the arguments go if this generates an indy call */
4093        private int depth;
4094
4095        /** If we have too many arguments, we need temporary storage, this is stored in 'quick' */
4096        private IdentNode quick;
4097
4098        /**
4099         * Constructor
4100         *
4101         * @param assignNode the node representing the whole assignment
4102         * @param target     the target node of the assignment (destination)
4103         */
4104        protected Store(final T assignNode, final Expression target) {
4105            this.assignNode = assignNode;
4106            this.target = target;
4107        }
4108
4109        /**
4110         * Constructor
4111         *
4112         * @param assignNode the node representing the whole assignment
4113         */
4114        protected Store(final T assignNode) {
4115            this(assignNode, assignNode);
4116        }
4117
4118        /**
4119         * Is this a self modifying store operation, e.g. *= or ++
4120         * @return true if self modifying store
4121         */
4122        protected boolean isSelfModifying() {
4123            return false;
4124        }
4125
4126        private void prologue() {
4127            /**
4128             * This loads the parts of the target, e.g base and index. they are kept
4129             * on the stack throughout the store and used at the end to execute it
4130             */
4131
4132            target.accept(new NodeVisitor<LexicalContext>(new LexicalContext()) {
4133                @Override
4134                public boolean enterIdentNode(final IdentNode node) {
4135                    if (node.getSymbol().isScope()) {
4136                        method.loadCompilerConstant(SCOPE);
4137                        depth += Type.SCOPE.getSlots();
4138                        assert depth == 1;
4139                    }
4140                    return false;
4141                }
4142
4143                private void enterBaseNode() {
4144                    assert target instanceof BaseNode : "error - base node " + target + " must be instanceof BaseNode";
4145                    final BaseNode   baseNode = (BaseNode)target;
4146                    final Expression base     = baseNode.getBase();
4147
4148                    loadExpressionAsObject(base);
4149                    depth += Type.OBJECT.getSlots();
4150                    assert depth == 1;
4151
4152                    if (isSelfModifying()) {
4153                        method.dup();
4154                    }
4155                }
4156
4157                @Override
4158                public boolean enterAccessNode(final AccessNode node) {
4159                    enterBaseNode();
4160                    return false;
4161                }
4162
4163                @Override
4164                public boolean enterIndexNode(final IndexNode node) {
4165                    enterBaseNode();
4166
4167                    final Expression index = node.getIndex();
4168                    if (!index.getType().isNumeric()) {
4169                        // could be boolean here as well
4170                        loadExpressionAsObject(index);
4171                    } else {
4172                        loadExpressionUnbounded(index);
4173                    }
4174                    depth += index.getType().getSlots();
4175
4176                    if (isSelfModifying()) {
4177                        //convert "base base index" to "base index base index"
4178                        method.dup(1);
4179                    }
4180
4181                    return false;
4182                }
4183
4184            });
4185        }
4186
4187        /**
4188         * Generates an extra local variable, always using the same slot, one that is available after the end of the
4189         * frame.
4190         *
4191         * @param type the type of the variable
4192         *
4193         * @return the quick variable
4194         */
4195        private IdentNode quickLocalVariable(final Type type) {
4196            final String name = lc.getCurrentFunction().uniqueName(QUICK_PREFIX.symbolName());
4197            final Symbol symbol = new Symbol(name, IS_INTERNAL | HAS_SLOT);
4198            symbol.setHasSlotFor(type);
4199            symbol.setFirstSlot(lc.quickSlot(type));
4200
4201            final IdentNode quickIdent = IdentNode.createInternalIdentifier(symbol).setType(type);
4202
4203            return quickIdent;
4204        }
4205
4206        // store the result that "lives on" after the op, e.g. "i" in i++ postfix.
4207        protected void storeNonDiscard() {
4208            if (lc.getCurrentDiscard() == assignNode) {
4209                assert assignNode.isAssignment();
4210                lc.popDiscard();
4211                return;
4212            }
4213
4214            if (method.dup(depth) == null) {
4215                method.dup();
4216                final Type quickType = method.peekType();
4217                this.quick = quickLocalVariable(quickType);
4218                final Symbol quickSymbol = quick.getSymbol();
4219                method.storeTemp(quickType, quickSymbol.getFirstSlot());
4220            }
4221        }
4222
4223        private void epilogue() {
4224            /**
4225             * Take the original target args from the stack and use them
4226             * together with the value to be stored to emit the store code
4227             *
4228             * The case that targetSymbol is in scope (!hasSlot) and we actually
4229             * need to do a conversion on non-equivalent types exists, but is
4230             * very rare. See for example test/script/basic/access-specializer.js
4231             */
4232            target.accept(new NodeVisitor<LexicalContext>(new LexicalContext()) {
4233                @Override
4234                protected boolean enterDefault(final Node node) {
4235                    throw new AssertionError("Unexpected node " + node + " in store epilogue");
4236                }
4237
4238                @Override
4239                public boolean enterIdentNode(final IdentNode node) {
4240                    final Symbol symbol = node.getSymbol();
4241                    assert symbol != null;
4242                    if (symbol.isScope()) {
4243                        final int flags = CALLSITE_SCOPE | getCallSiteFlags();
4244                        if (isFastScope(symbol)) {
4245                            storeFastScopeVar(symbol, flags);
4246                        } else {
4247                            method.dynamicSet(node.getName(), flags);
4248                        }
4249                    } else {
4250                        final Type storeType = assignNode.getType();
4251                        if (symbol.hasSlotFor(storeType)) {
4252                            // Only emit a convert for a store known to be live; converts for dead stores can
4253                            // give us an unnecessary ClassCastException.
4254                            method.convert(storeType);
4255                        }
4256                        storeIdentWithCatchConversion(node, storeType);
4257                    }
4258                    return false;
4259
4260                }
4261
4262                @Override
4263                public boolean enterAccessNode(final AccessNode node) {
4264                    method.dynamicSet(node.getProperty(), getCallSiteFlags());
4265                    return false;
4266                }
4267
4268                @Override
4269                public boolean enterIndexNode(final IndexNode node) {
4270                    method.dynamicSetIndex(getCallSiteFlags());
4271                    return false;
4272                }
4273            });
4274
4275
4276            // whatever is on the stack now is the final answer
4277        }
4278
4279        protected abstract void evaluate();
4280
4281        void store() {
4282            if (target instanceof IdentNode) {
4283                checkTemporalDeadZone((IdentNode)target);
4284            }
4285            prologue();
4286            evaluate(); // leaves an operation of whatever the operationType was on the stack
4287            storeNonDiscard();
4288            epilogue();
4289            if (quick != null) {
4290                method.load(quick);
4291            }
4292        }
4293    }
4294
4295    private void newFunctionObject(final FunctionNode functionNode, final boolean addInitializer) {
4296        assert lc.peek() == functionNode;
4297
4298        final RecompilableScriptFunctionData data = compiler.getScriptFunctionData(functionNode.getId());
4299
4300        if (functionNode.isProgram() && !compiler.isOnDemandCompilation()) {
4301            final CompileUnit fnUnit = functionNode.getCompileUnit();
4302            final MethodEmitter createFunction = fnUnit.getClassEmitter().method(
4303                    EnumSet.of(Flag.PUBLIC, Flag.STATIC), CREATE_PROGRAM_FUNCTION.symbolName(),
4304                    ScriptFunction.class, ScriptObject.class);
4305            createFunction.begin();
4306            createFunction._new(SCRIPTFUNCTION_IMPL_NAME, SCRIPTFUNCTION_IMPL_TYPE).dup();
4307            loadConstant(data, fnUnit, createFunction);
4308            createFunction.load(SCOPE_TYPE, 0);
4309            createFunction.invoke(constructorNoLookup(SCRIPTFUNCTION_IMPL_NAME, RecompilableScriptFunctionData.class, ScriptObject.class));
4310            createFunction._return();
4311            createFunction.end();
4312        }
4313
4314        if (addInitializer && !compiler.isOnDemandCompilation()) {
4315            compiler.addFunctionInitializer(data, functionNode);
4316        }
4317
4318        // We don't emit a ScriptFunction on stack for the outermost compiled function (as there's no code being
4319        // generated in its outer context that'd need it as a callee).
4320        if (lc.getOutermostFunction() == functionNode) {
4321            return;
4322        }
4323
4324        method._new(SCRIPTFUNCTION_IMPL_NAME, SCRIPTFUNCTION_IMPL_TYPE).dup();
4325        loadConstant(data);
4326
4327        if (functionNode.needsParentScope()) {
4328            method.loadCompilerConstant(SCOPE);
4329        } else {
4330            method.loadNull();
4331        }
4332        method.invoke(constructorNoLookup(SCRIPTFUNCTION_IMPL_NAME, RecompilableScriptFunctionData.class, ScriptObject.class));
4333    }
4334
4335    // calls on Global class.
4336    private MethodEmitter globalInstance() {
4337        return method.invokestatic(GLOBAL_OBJECT, "instance", "()L" + GLOBAL_OBJECT + ';');
4338    }
4339
4340    private MethodEmitter globalAllocateArguments() {
4341        return method.invokestatic(GLOBAL_OBJECT, "allocateArguments", methodDescriptor(ScriptObject.class, Object[].class, Object.class, int.class));
4342    }
4343
4344    private MethodEmitter globalNewRegExp() {
4345        return method.invokestatic(GLOBAL_OBJECT, "newRegExp", methodDescriptor(Object.class, String.class, String.class));
4346    }
4347
4348    private MethodEmitter globalRegExpCopy() {
4349        return method.invokestatic(GLOBAL_OBJECT, "regExpCopy", methodDescriptor(Object.class, Object.class));
4350    }
4351
4352    private MethodEmitter globalAllocateArray(final ArrayType type) {
4353        //make sure the native array is treated as an array type
4354        return method.invokestatic(GLOBAL_OBJECT, "allocate", "(" + type.getDescriptor() + ")Ljdk/nashorn/internal/objects/NativeArray;");
4355    }
4356
4357    private MethodEmitter globalIsEval() {
4358        return method.invokestatic(GLOBAL_OBJECT, "isEval", methodDescriptor(boolean.class, Object.class));
4359    }
4360
4361    private MethodEmitter globalReplaceLocationPropertyPlaceholder() {
4362        return method.invokestatic(GLOBAL_OBJECT, "replaceLocationPropertyPlaceholder", methodDescriptor(Object.class, Object.class, Object.class));
4363    }
4364
4365    private MethodEmitter globalCheckObjectCoercible() {
4366        return method.invokestatic(GLOBAL_OBJECT, "checkObjectCoercible", methodDescriptor(void.class, Object.class));
4367    }
4368
4369    private MethodEmitter globalDirectEval() {
4370        return method.invokestatic(GLOBAL_OBJECT, "directEval",
4371                methodDescriptor(Object.class, Object.class, Object.class, Object.class, Object.class, boolean.class));
4372    }
4373
4374    private abstract class OptimisticOperation {
4375        private final boolean isOptimistic;
4376        // expression and optimistic are the same reference
4377        private final Expression expression;
4378        private final Optimistic optimistic;
4379        private final TypeBounds resultBounds;
4380
4381        OptimisticOperation(final Optimistic optimistic, final TypeBounds resultBounds) {
4382            this.optimistic = optimistic;
4383            this.expression = (Expression)optimistic;
4384            this.resultBounds = resultBounds;
4385            this.isOptimistic = isOptimistic(optimistic) && useOptimisticTypes() &&
4386                    // Operation is only effectively optimistic if its type, after being coerced into the result bounds
4387                    // is narrower than the upper bound.
4388                    resultBounds.within(Type.generic(((Expression)optimistic).getType())).narrowerThan(resultBounds.widest);
4389        }
4390
4391        MethodEmitter emit() {
4392            return emit(0);
4393        }
4394
4395        MethodEmitter emit(final int ignoredArgCount) {
4396            final int     programPoint                  = optimistic.getProgramPoint();
4397            final boolean optimisticOrContinuation      = isOptimistic || isContinuationEntryPoint(programPoint);
4398            final boolean currentContinuationEntryPoint = isCurrentContinuationEntryPoint(programPoint);
4399            final int     stackSizeOnEntry              = method.getStackSize() - ignoredArgCount;
4400
4401            // First store the values on the stack opportunistically into local variables. Doing it before loadStack()
4402            // allows us to not have to pop/load any arguments that are pushed onto it by loadStack() in the second
4403            // storeStack().
4404            storeStack(ignoredArgCount, optimisticOrContinuation);
4405
4406            // Now, load the stack
4407            loadStack();
4408
4409            // Now store the values on the stack ultimately into local variables. In vast majority of cases, this is
4410            // (aside from creating the local types map) a no-op, as the first opportunistic stack store will already
4411            // store all variables. However, there can be operations in the loadStack() that invalidate some of the
4412            // stack stores, e.g. in "x[i] = x[++i]", "++i" will invalidate the already stored value for "i". In such
4413            // unfortunate cases this second storeStack() will restore the invariant that everything on the stack is
4414            // stored into a local variable, although at the cost of doing a store/load on the loaded arguments as well.
4415            final int liveLocalsCount = storeStack(method.getStackSize() - stackSizeOnEntry, optimisticOrContinuation);
4416            assert optimisticOrContinuation == (liveLocalsCount != -1);
4417
4418            final Label beginTry;
4419            final Label catchLabel;
4420            final Label afterConsumeStack = isOptimistic || currentContinuationEntryPoint ? new Label("after_consume_stack") : null;
4421            if(isOptimistic) {
4422                beginTry = new Label("try_optimistic");
4423                final String catchLabelName = (afterConsumeStack == null ? "" : afterConsumeStack.toString()) + "_handler";
4424                catchLabel = new Label(catchLabelName);
4425                method.label(beginTry);
4426            } else {
4427                beginTry = catchLabel = null;
4428            }
4429
4430            consumeStack();
4431
4432            if(isOptimistic) {
4433                method._try(beginTry, afterConsumeStack, catchLabel, UnwarrantedOptimismException.class);
4434            }
4435
4436            if(isOptimistic || currentContinuationEntryPoint) {
4437                method.label(afterConsumeStack);
4438
4439                final int[] localLoads = method.getLocalLoadsOnStack(0, stackSizeOnEntry);
4440                assert everyStackValueIsLocalLoad(localLoads) : Arrays.toString(localLoads) + ", " + stackSizeOnEntry + ", " + ignoredArgCount;
4441                final List<Type> localTypesList = method.getLocalVariableTypes();
4442                final int usedLocals = method.getUsedSlotsWithLiveTemporaries();
4443                final List<Type> localTypes = method.getWidestLiveLocals(localTypesList.subList(0, usedLocals));
4444                assert everyLocalLoadIsValid(localLoads, usedLocals) : Arrays.toString(localLoads) + " ~ " + localTypes;
4445
4446                if(isOptimistic) {
4447                    addUnwarrantedOptimismHandlerLabel(localTypes, catchLabel);
4448                }
4449                if(currentContinuationEntryPoint) {
4450                    final ContinuationInfo ci = getContinuationInfo();
4451                    assert ci != null : "no continuation info found for " + lc.getCurrentFunction();
4452                    assert !ci.hasTargetLabel(); // No duplicate program points
4453                    ci.setTargetLabel(afterConsumeStack);
4454                    ci.getHandlerLabel().markAsOptimisticContinuationHandlerFor(afterConsumeStack);
4455                    // Can't rely on targetLabel.stack.localVariableTypes.length, as it can be higher due to effectively
4456                    // dead local variables.
4457                    ci.lvarCount = localTypes.size();
4458                    ci.setStackStoreSpec(localLoads);
4459                    ci.setStackTypes(Arrays.copyOf(method.getTypesFromStack(method.getStackSize()), stackSizeOnEntry));
4460                    assert ci.getStackStoreSpec().length == ci.getStackTypes().length;
4461                    ci.setReturnValueType(method.peekType());
4462                    ci.lineNumber = getLastLineNumber();
4463                    ci.catchLabel = catchLabels.peek();
4464                }
4465            }
4466            return method;
4467        }
4468
4469        /**
4470         * Stores the current contents of the stack into local variables so they are not lost before invoking something that
4471         * can result in an {@code UnwarantedOptimizationException}.
4472         * @param ignoreArgCount the number of topmost arguments on stack to ignore when deciding on the shape of the catch
4473         * block. Those are used in the situations when we could not place the call to {@code storeStack} early enough
4474         * (before emitting code for pushing the arguments that the optimistic call will pop). This is admittedly a
4475         * deficiency in the design of the code generator when it deals with self-assignments and we should probably look
4476         * into fixing it.
4477         * @return types of the significant local variables after the stack was stored (types for local variables used
4478         * for temporary storage of ignored arguments are not returned).
4479         * @param optimisticOrContinuation if false, this method should not execute
4480         * a label for a catch block for the {@code UnwarantedOptimizationException}, suitable for capturing the
4481         * currently live local variables, tailored to their types.
4482         */
4483        private int storeStack(final int ignoreArgCount, final boolean optimisticOrContinuation) {
4484            if(!optimisticOrContinuation) {
4485                return -1; // NOTE: correct value to return is lc.getUsedSlotCount(), but it wouldn't be used anyway
4486            }
4487
4488            final int stackSize = method.getStackSize();
4489            final Type[] stackTypes = method.getTypesFromStack(stackSize);
4490            final int[] localLoadsOnStack = method.getLocalLoadsOnStack(0, stackSize);
4491            final int usedSlots = method.getUsedSlotsWithLiveTemporaries();
4492
4493            final int firstIgnored = stackSize - ignoreArgCount;
4494            // Find the first value on the stack (from the bottom) that is not a load from a local variable.
4495            int firstNonLoad = 0;
4496            while(firstNonLoad < firstIgnored && localLoadsOnStack[firstNonLoad] != Label.Stack.NON_LOAD) {
4497                firstNonLoad++;
4498            }
4499
4500            // Only do the store/load if first non-load is not an ignored argument. Otherwise, do nothing and return
4501            // the number of used slots as the number of live local variables.
4502            if(firstNonLoad >= firstIgnored) {
4503                return usedSlots;
4504            }
4505
4506            // Find the number of new temporary local variables that we need; it's the number of values on the stack that
4507            // are not direct loads of existing local variables.
4508            int tempSlotsNeeded = 0;
4509            for(int i = firstNonLoad; i < stackSize; ++i) {
4510                if(localLoadsOnStack[i] == Label.Stack.NON_LOAD) {
4511                    tempSlotsNeeded += stackTypes[i].getSlots();
4512                }
4513            }
4514
4515            // Ensure all values on the stack that weren't directly loaded from a local variable are stored in a local
4516            // variable. We're starting from highest local variable index, so that in case ignoreArgCount > 0 the ignored
4517            // ones end up at the end of the local variable table.
4518            int lastTempSlot = usedSlots + tempSlotsNeeded;
4519            int ignoreSlotCount = 0;
4520            for(int i = stackSize; i -- > firstNonLoad;) {
4521                final int loadSlot = localLoadsOnStack[i];
4522                if(loadSlot == Label.Stack.NON_LOAD) {
4523                    final Type type = stackTypes[i];
4524                    final int slots = type.getSlots();
4525                    lastTempSlot -= slots;
4526                    if(i >= firstIgnored) {
4527                        ignoreSlotCount += slots;
4528                    }
4529                    method.storeTemp(type, lastTempSlot);
4530                } else {
4531                    method.pop();
4532                }
4533            }
4534            assert lastTempSlot == usedSlots; // used all temporary locals
4535
4536            final List<Type> localTypesList = method.getLocalVariableTypes();
4537
4538            // Load values back on stack.
4539            for(int i = firstNonLoad; i < stackSize; ++i) {
4540                final int loadSlot = localLoadsOnStack[i];
4541                final Type stackType = stackTypes[i];
4542                final boolean isLoad = loadSlot != Label.Stack.NON_LOAD;
4543                final int lvarSlot = isLoad ? loadSlot : lastTempSlot;
4544                final Type lvarType = localTypesList.get(lvarSlot);
4545                method.load(lvarType, lvarSlot);
4546                if(isLoad) {
4547                    // Conversion operators (I2L etc.) preserve "load"-ness of the value despite the fact that, in the
4548                    // strict sense they are creating a derived value from the loaded value. This special behavior of
4549                    // on-stack conversion operators is necessary to accommodate for differences in local variable types
4550                    // after deoptimization; having a conversion operator throw away "load"-ness would create different
4551                    // local variable table shapes between optimism-failed code and its deoptimized rest-of method).
4552                    // After we load the value back, we need to redo the conversion to the stack type if stack type is
4553                    // different.
4554                    // NOTE: this would only strictly be necessary for widening conversions (I2L, L2D, I2D), and not for
4555                    // narrowing ones (L2I, D2L, D2I) as only widening conversions are the ones that can get eliminated
4556                    // in a deoptimized method, as their original input argument got widened. Maybe experiment with
4557                    // throwing away "load"-ness for narrowing conversions in MethodEmitter.convert()?
4558                    method.convert(stackType);
4559                } else {
4560                    // temporary stores never needs a convert, as their type is always the same as the stack type.
4561                    assert lvarType == stackType;
4562                    lastTempSlot += lvarType.getSlots();
4563                }
4564            }
4565            // used all temporaries
4566            assert lastTempSlot == usedSlots + tempSlotsNeeded;
4567
4568            return lastTempSlot - ignoreSlotCount;
4569        }
4570
4571        private void addUnwarrantedOptimismHandlerLabel(final List<Type> localTypes, final Label label) {
4572            final String lvarTypesDescriptor = getLvarTypesDescriptor(localTypes);
4573            final Map<String, Collection<Label>> unwarrantedOptimismHandlers = lc.getUnwarrantedOptimismHandlers();
4574            Collection<Label> labels = unwarrantedOptimismHandlers.get(lvarTypesDescriptor);
4575            if(labels == null) {
4576                labels = new LinkedList<>();
4577                unwarrantedOptimismHandlers.put(lvarTypesDescriptor, labels);
4578            }
4579            method.markLabelAsOptimisticCatchHandler(label, localTypes.size());
4580            labels.add(label);
4581        }
4582
4583        abstract void loadStack();
4584
4585        // Make sure that whatever indy call site you emit from this method uses {@code getCallSiteFlagsOptimistic(node)}
4586        // or otherwise ensure optimistic flag is correctly set in the call site, otherwise it doesn't make much sense
4587        // to use OptimisticExpression for emitting it.
4588        abstract void consumeStack();
4589
4590        /**
4591         * Emits the correct dynamic getter code. Normally just delegates to method emitter, except when the target
4592         * expression is optimistic, and the desired type is narrower than the optimistic type. In that case, it'll emit a
4593         * dynamic getter with its original optimistic type, and explicitly insert a narrowing conversion. This way we can
4594         * preserve the optimism of the values even if they're subsequently immediately coerced into a narrower type. This
4595         * is beneficial because in this case we can still presume that since the original getter was optimistic, the
4596         * conversion has no side effects.
4597         * @param name the name of the property being get
4598         * @param flags call site flags
4599         * @param isMethod whether we're preferrably retrieving a function
4600         * @return the current method emitter
4601         */
4602        MethodEmitter dynamicGet(final String name, final int flags, final boolean isMethod) {
4603            if(isOptimistic) {
4604                return method.dynamicGet(getOptimisticCoercedType(), name, getOptimisticFlags(flags), isMethod);
4605            }
4606            return method.dynamicGet(resultBounds.within(expression.getType()), name, nonOptimisticFlags(flags), isMethod);
4607        }
4608
4609        MethodEmitter dynamicGetIndex(final int flags, final boolean isMethod) {
4610            if(isOptimistic) {
4611                return method.dynamicGetIndex(getOptimisticCoercedType(), getOptimisticFlags(flags), isMethod);
4612            }
4613            return method.dynamicGetIndex(resultBounds.within(expression.getType()), nonOptimisticFlags(flags), isMethod);
4614        }
4615
4616        MethodEmitter dynamicCall(final int argCount, final int flags) {
4617            if (isOptimistic) {
4618                return method.dynamicCall(getOptimisticCoercedType(), argCount, getOptimisticFlags(flags));
4619            }
4620            return method.dynamicCall(resultBounds.within(expression.getType()), argCount, nonOptimisticFlags(flags));
4621        }
4622
4623        int getOptimisticFlags(final int flags) {
4624            return flags | CALLSITE_OPTIMISTIC | (optimistic.getProgramPoint() << CALLSITE_PROGRAM_POINT_SHIFT); //encode program point in high bits
4625        }
4626
4627        int getProgramPoint() {
4628            return isOptimistic ? optimistic.getProgramPoint() : INVALID_PROGRAM_POINT;
4629        }
4630
4631        void convertOptimisticReturnValue() {
4632            if (isOptimistic) {
4633                final Type optimisticType = getOptimisticCoercedType();
4634                if(!optimisticType.isObject()) {
4635                    method.load(optimistic.getProgramPoint());
4636                    if(optimisticType.isInteger()) {
4637                        method.invoke(ENSURE_INT);
4638                    } else if(optimisticType.isLong()) {
4639                        method.invoke(ENSURE_LONG);
4640                    } else if(optimisticType.isNumber()) {
4641                        method.invoke(ENSURE_NUMBER);
4642                    } else {
4643                        throw new AssertionError(optimisticType);
4644                    }
4645                }
4646            }
4647        }
4648
4649        void replaceCompileTimeProperty() {
4650            final IdentNode identNode = (IdentNode)expression;
4651            final String name = identNode.getSymbol().getName();
4652            if (CompilerConstants.__FILE__.name().equals(name)) {
4653                replaceCompileTimeProperty(getCurrentSource().getName());
4654            } else if (CompilerConstants.__DIR__.name().equals(name)) {
4655                replaceCompileTimeProperty(getCurrentSource().getBase());
4656            } else if (CompilerConstants.__LINE__.name().equals(name)) {
4657                replaceCompileTimeProperty(getCurrentSource().getLine(identNode.position()));
4658            }
4659        }
4660
4661        /**
4662         * When an ident with name __FILE__, __DIR__, or __LINE__ is loaded, we'll try to look it up as any other
4663         * identifier. However, if it gets all the way up to the Global object, it will send back a special value that
4664         * represents a placeholder for these compile-time location properties. This method will generate code that loads
4665         * the value of the compile-time location property and then invokes a method in Global that will replace the
4666         * placeholder with the value. Effectively, if the symbol for these properties is defined anywhere in the lexical
4667         * scope, they take precedence, but if they aren't, then they resolve to the compile-time location property.
4668         * @param propertyValue the actual value of the property
4669         */
4670        private void replaceCompileTimeProperty(final Object propertyValue) {
4671            assert method.peekType().isObject();
4672            if(propertyValue instanceof String || propertyValue == null) {
4673                method.load((String)propertyValue);
4674            } else if(propertyValue instanceof Integer) {
4675                method.load(((Integer)propertyValue).intValue());
4676                method.convert(Type.OBJECT);
4677            } else {
4678                throw new AssertionError();
4679            }
4680            globalReplaceLocationPropertyPlaceholder();
4681            convertOptimisticReturnValue();
4682        }
4683
4684        /**
4685         * Returns the type that should be used as the return type of the dynamic invocation that is emitted as the code
4686         * for the current optimistic operation. If the type bounds is exact boolean or narrower than the expression's
4687         * optimistic type, then the optimistic type is returned, otherwise the coercing type. Effectively, this method
4688         * allows for moving the coercion into the optimistic type when it won't adversely affect the optimistic
4689         * evaluation semantics, and for preserving the optimistic type and doing a separate coercion when it would
4690         * affect it.
4691         * @return
4692         */
4693        private Type getOptimisticCoercedType() {
4694            final Type optimisticType = expression.getType();
4695            assert resultBounds.widest.widerThan(optimisticType);
4696            final Type narrowest = resultBounds.narrowest;
4697
4698            if(narrowest.isBoolean() || narrowest.narrowerThan(optimisticType)) {
4699                assert !optimisticType.isObject();
4700                return optimisticType;
4701            }
4702            assert !narrowest.isObject();
4703            return narrowest;
4704        }
4705    }
4706
4707    private static boolean isOptimistic(final Optimistic optimistic) {
4708        if(!optimistic.canBeOptimistic()) {
4709            return false;
4710        }
4711        final Expression expr = (Expression)optimistic;
4712        return expr.getType().narrowerThan(expr.getWidestOperationType());
4713    }
4714
4715    private static boolean everyLocalLoadIsValid(final int[] loads, final int localCount) {
4716        for (final int load : loads) {
4717            if(load < 0 || load >= localCount) {
4718                return false;
4719            }
4720        }
4721        return true;
4722    }
4723
4724    private static boolean everyStackValueIsLocalLoad(final int[] loads) {
4725        for (final int load : loads) {
4726            if(load == Label.Stack.NON_LOAD) {
4727                return false;
4728            }
4729        }
4730        return true;
4731    }
4732
4733    private String getLvarTypesDescriptor(final List<Type> localVarTypes) {
4734        final int count = localVarTypes.size();
4735        final StringBuilder desc = new StringBuilder(count);
4736        for(int i = 0; i < count;) {
4737            i += appendType(desc, localVarTypes.get(i));
4738        }
4739        return method.markSymbolBoundariesInLvarTypesDescriptor(desc.toString());
4740    }
4741
4742    private static int appendType(final StringBuilder b, final Type t) {
4743        b.append(t.getBytecodeStackType());
4744        return t.getSlots();
4745    }
4746
4747    private static int countSymbolsInLvarTypeDescriptor(final String lvarTypeDescriptor) {
4748        int count = 0;
4749        for(int i = 0; i < lvarTypeDescriptor.length(); ++i) {
4750            if(Character.isUpperCase(lvarTypeDescriptor.charAt(i))) {
4751                ++count;
4752            }
4753        }
4754        return count;
4755
4756    }
4757    /**
4758     * Generates all the required {@code UnwarrantedOptimismException} handlers for the current function. The employed
4759     * strategy strives to maximize code reuse. Every handler constructs an array to hold the local variables, then
4760     * fills in some trailing part of the local variables (those for which it has a unique suffix in the descriptor),
4761     * then jumps to a handler for a prefix that's shared with other handlers. A handler that fills up locals up to
4762     * position 0 will not jump to a prefix handler (as it has no prefix), but instead end with constructing and
4763     * throwing a {@code RewriteException}. Since we lexicographically sort the entries, we only need to check every
4764     * entry to its immediately preceding one for longest matching prefix.
4765     * @return true if there is at least one exception handler
4766     */
4767    private boolean generateUnwarrantedOptimismExceptionHandlers(final FunctionNode fn) {
4768        if(!useOptimisticTypes()) {
4769            return false;
4770        }
4771
4772        // Take the mapping of lvarSpecs -> labels, and turn them into a descending lexicographically sorted list of
4773        // handler specifications.
4774        final Map<String, Collection<Label>> unwarrantedOptimismHandlers = lc.popUnwarrantedOptimismHandlers();
4775        if(unwarrantedOptimismHandlers.isEmpty()) {
4776            return false;
4777        }
4778
4779        method.lineNumber(0);
4780
4781        final List<OptimismExceptionHandlerSpec> handlerSpecs = new ArrayList<>(unwarrantedOptimismHandlers.size() * 4/3);
4782        for(final String spec: unwarrantedOptimismHandlers.keySet()) {
4783            handlerSpecs.add(new OptimismExceptionHandlerSpec(spec, true));
4784        }
4785        Collections.sort(handlerSpecs, Collections.reverseOrder());
4786
4787        // Map of local variable specifications to labels for populating the array for that local variable spec.
4788        final Map<String, Label> delegationLabels = new HashMap<>();
4789
4790        // Do everything in a single pass over the handlerSpecs list. Note that the list can actually grow as we're
4791        // passing through it as we might add new prefix handlers into it, so can't hoist size() outside of the loop.
4792        for(int handlerIndex = 0; handlerIndex < handlerSpecs.size(); ++handlerIndex) {
4793            final OptimismExceptionHandlerSpec spec = handlerSpecs.get(handlerIndex);
4794            final String lvarSpec = spec.lvarSpec;
4795            if(spec.catchTarget) {
4796                assert !method.isReachable();
4797                // Start a catch block and assign the labels for this lvarSpec with it.
4798                method._catch(unwarrantedOptimismHandlers.get(lvarSpec));
4799                // This spec is a catch target, so emit array creation code. The length of the array is the number of
4800                // symbols - the number of uppercase characters.
4801                method.load(countSymbolsInLvarTypeDescriptor(lvarSpec));
4802                method.newarray(Type.OBJECT_ARRAY);
4803            }
4804            if(spec.delegationTarget) {
4805                // If another handler can delegate to this handler as its prefix, then put a jump target here for the
4806                // shared code (after the array creation code, which is never shared).
4807                method.label(delegationLabels.get(lvarSpec)); // label must exist
4808            }
4809
4810            final boolean lastHandler = handlerIndex == handlerSpecs.size() - 1;
4811
4812            int lvarIndex;
4813            final int firstArrayIndex;
4814            final int firstLvarIndex;
4815            Label delegationLabel;
4816            final String commonLvarSpec;
4817            if(lastHandler) {
4818                // Last handler block, doesn't delegate to anything.
4819                lvarIndex = 0;
4820                firstLvarIndex = 0;
4821                firstArrayIndex = 0;
4822                delegationLabel = null;
4823                commonLvarSpec = null;
4824            } else {
4825                // Not yet the last handler block, will definitely delegate to another handler; let's figure out which
4826                // one. It can be an already declared handler further down the list, or it might need to declare a new
4827                // prefix handler.
4828
4829                // Since we're lexicographically ordered, the common prefix handler is defined by the common prefix of
4830                // this handler and the next handler on the list.
4831                final int nextHandlerIndex = handlerIndex + 1;
4832                final String nextLvarSpec = handlerSpecs.get(nextHandlerIndex).lvarSpec;
4833                commonLvarSpec = commonPrefix(lvarSpec, nextLvarSpec);
4834                // We don't chop symbols in half
4835                assert Character.isUpperCase(commonLvarSpec.charAt(commonLvarSpec.length() - 1));
4836
4837                // Let's find if we already have a declaration for such handler, or we need to insert it.
4838                {
4839                    boolean addNewHandler = true;
4840                    int commonHandlerIndex = nextHandlerIndex;
4841                    for(; commonHandlerIndex < handlerSpecs.size(); ++commonHandlerIndex) {
4842                        final OptimismExceptionHandlerSpec forwardHandlerSpec = handlerSpecs.get(commonHandlerIndex);
4843                        final String forwardLvarSpec = forwardHandlerSpec.lvarSpec;
4844                        if(forwardLvarSpec.equals(commonLvarSpec)) {
4845                            // We already have a handler for the common prefix.
4846                            addNewHandler = false;
4847                            // Make sure we mark it as a delegation target.
4848                            forwardHandlerSpec.delegationTarget = true;
4849                            break;
4850                        } else if(!forwardLvarSpec.startsWith(commonLvarSpec)) {
4851                            break;
4852                        }
4853                    }
4854                    if(addNewHandler) {
4855                        // We need to insert a common prefix handler. Note handlers created with catchTarget == false
4856                        // will automatically have delegationTarget == true (because that's the only reason for their
4857                        // existence).
4858                        handlerSpecs.add(commonHandlerIndex, new OptimismExceptionHandlerSpec(commonLvarSpec, false));
4859                    }
4860                }
4861
4862                firstArrayIndex = countSymbolsInLvarTypeDescriptor(commonLvarSpec);
4863                lvarIndex = 0;
4864                for(int j = 0; j < commonLvarSpec.length(); ++j) {
4865                    lvarIndex += CodeGeneratorLexicalContext.getTypeForSlotDescriptor(commonLvarSpec.charAt(j)).getSlots();
4866                }
4867                firstLvarIndex = lvarIndex;
4868
4869                // Create a delegation label if not already present
4870                delegationLabel = delegationLabels.get(commonLvarSpec);
4871                if(delegationLabel == null) {
4872                    // uo_pa == "unwarranted optimism, populate array"
4873                    delegationLabel = new Label("uo_pa_" + commonLvarSpec);
4874                    delegationLabels.put(commonLvarSpec, delegationLabel);
4875                }
4876            }
4877
4878            // Load local variables handled by this handler on stack
4879            int args = 0;
4880            boolean symbolHadValue = false;
4881            for(int typeIndex = commonLvarSpec == null ? 0 : commonLvarSpec.length(); typeIndex < lvarSpec.length(); ++typeIndex) {
4882                final char typeDesc = lvarSpec.charAt(typeIndex);
4883                final Type lvarType = CodeGeneratorLexicalContext.getTypeForSlotDescriptor(typeDesc);
4884                if (!lvarType.isUnknown()) {
4885                    method.load(lvarType, lvarIndex);
4886                    symbolHadValue = true;
4887                    args++;
4888                } else if(typeDesc == 'U' && !symbolHadValue) {
4889                    // Symbol boundary with undefined last value. Check if all previous values for this symbol were also
4890                    // undefined; if so, emit one explicit Undefined. This serves to ensure that we're emiting exactly
4891                    // one value for every symbol that uses local slots. While we could in theory ignore symbols that
4892                    // are undefined (in other words, dead) at the point where this exception was thrown, unfortunately
4893                    // we can't do it in practice. The reason for this is that currently our liveness analysis is
4894                    // coarse (it can determine whether a symbol has not been read with a particular type anywhere in
4895                    // the function being compiled, but that's it), and a symbol being promoted to Object due to a
4896                    // deoptimization will suddenly show up as "live for Object type", and previously dead U->O
4897                    // conversions on loop entries will suddenly become alive in the deoptimized method which will then
4898                    // expect a value for that slot in its continuation handler. If we had precise liveness analysis, we
4899                    // could go back to excluding known dead symbols from the payload of the RewriteException.
4900                    if(method.peekType() == Type.UNDEFINED) {
4901                        method.dup();
4902                    } else {
4903                        method.loadUndefined(Type.OBJECT);
4904                    }
4905                    args++;
4906                }
4907                if(Character.isUpperCase(typeDesc)) {
4908                    // Reached symbol boundary; reset flag for the next symbol.
4909                    symbolHadValue = false;
4910                }
4911                lvarIndex += lvarType.getSlots();
4912            }
4913            assert args > 0;
4914            // Delegate actual storing into array to an array populator utility method.
4915            //on the stack:
4916            // object array to be populated
4917            // start index
4918            // a lot of types
4919            method.dynamicArrayPopulatorCall(args + 1, firstArrayIndex);
4920            if(delegationLabel != null) {
4921                // We cascade to a prefix handler to fill out the rest of the local variables and throw the
4922                // RewriteException.
4923                assert !lastHandler;
4924                assert commonLvarSpec != null;
4925                // Must undefine the local variables that we have already processed for the sake of correct join on the
4926                // delegate label
4927                method.undefineLocalVariables(firstLvarIndex, true);
4928                final OptimismExceptionHandlerSpec nextSpec = handlerSpecs.get(handlerIndex + 1);
4929                // If the delegate immediately follows, and it's not a catch target (so it doesn't have array setup
4930                // code) don't bother emitting a jump, as we'd just jump to the next instruction.
4931                if(!nextSpec.lvarSpec.equals(commonLvarSpec) || nextSpec.catchTarget) {
4932                    method._goto(delegationLabel);
4933                }
4934            } else {
4935                assert lastHandler;
4936                // Nothing to delegate to, so this handler must create and throw the RewriteException.
4937                // At this point we have the UnwarrantedOptimismException and the Object[] with local variables on
4938                // stack. We need to create a RewriteException, push two references to it below the constructor
4939                // arguments, invoke the constructor, and throw the exception.
4940                loadConstant(getByteCodeSymbolNames(fn));
4941                if (isRestOf()) {
4942                    loadConstant(getContinuationEntryPoints());
4943                    method.invoke(CREATE_REWRITE_EXCEPTION_REST_OF);
4944                } else {
4945                    method.invoke(CREATE_REWRITE_EXCEPTION);
4946                }
4947                method.athrow();
4948            }
4949        }
4950        return true;
4951    }
4952
4953    private static String[] getByteCodeSymbolNames(final FunctionNode fn) {
4954        // Only names of local variables on the function level are captured. This information is used to reduce
4955        // deoptimizations, so as much as we can capture will help. We rely on the fact that function wide variables are
4956        // all live all the time, so the array passed to rewrite exception contains one element for every slotted symbol
4957        // here.
4958        final List<String> names = new ArrayList<>();
4959        for (final Symbol symbol: fn.getBody().getSymbols()) {
4960            if (symbol.hasSlot()) {
4961                if (symbol.isScope()) {
4962                    // slot + scope can only be true for parameters
4963                    assert symbol.isParam();
4964                    names.add(null);
4965                } else {
4966                    names.add(symbol.getName());
4967                }
4968            }
4969        }
4970        return names.toArray(new String[names.size()]);
4971    }
4972
4973    private static String commonPrefix(final String s1, final String s2) {
4974        final int l1 = s1.length();
4975        final int l = Math.min(l1, s2.length());
4976        int lms = -1; // last matching symbol
4977        for(int i = 0; i < l; ++i) {
4978            final char c1 = s1.charAt(i);
4979            if(c1 != s2.charAt(i)) {
4980                return s1.substring(0, lms + 1);
4981            } else if(Character.isUpperCase(c1)) {
4982                lms = i;
4983            }
4984        }
4985        return l == l1 ? s1 : s2;
4986    }
4987
4988    private static class OptimismExceptionHandlerSpec implements Comparable<OptimismExceptionHandlerSpec> {
4989        private final String lvarSpec;
4990        private final boolean catchTarget;
4991        private boolean delegationTarget;
4992
4993        OptimismExceptionHandlerSpec(final String lvarSpec, final boolean catchTarget) {
4994            this.lvarSpec = lvarSpec;
4995            this.catchTarget = catchTarget;
4996            if(!catchTarget) {
4997                delegationTarget = true;
4998            }
4999        }
5000
5001        @Override
5002        public int compareTo(final OptimismExceptionHandlerSpec o) {
5003            return lvarSpec.compareTo(o.lvarSpec);
5004        }
5005
5006        @Override
5007        public String toString() {
5008            final StringBuilder b = new StringBuilder(64).append("[HandlerSpec ").append(lvarSpec);
5009            if(catchTarget) {
5010                b.append(", catchTarget");
5011            }
5012            if(delegationTarget) {
5013                b.append(", delegationTarget");
5014            }
5015            return b.append("]").toString();
5016        }
5017    }
5018
5019    private static class ContinuationInfo {
5020        private final Label handlerLabel;
5021        private Label targetLabel; // Label for the target instruction.
5022        int lvarCount;
5023        // Indices of local variables that need to be loaded on the stack when this node completes
5024        private int[] stackStoreSpec;
5025        // Types of values loaded on the stack
5026        private Type[] stackTypes;
5027        // If non-null, this node should perform the requisite type conversion
5028        private Type returnValueType;
5029        // If we are in the middle of an object literal initialization, we need to update the map
5030        private PropertyMap objectLiteralMap;
5031        // Object literal stack depth for object literal - not necessarly top if property is a tree
5032        private int objectLiteralStackDepth = -1;
5033        // The line number at the continuation point
5034        private int lineNumber;
5035        // The active catch label, in case the continuation point is in a try/catch block
5036        private Label catchLabel;
5037        // The number of scopes that need to be popped before control is transferred to the catch label.
5038        private int exceptionScopePops;
5039
5040        ContinuationInfo() {
5041            this.handlerLabel = new Label("continuation_handler");
5042        }
5043
5044        Label getHandlerLabel() {
5045            return handlerLabel;
5046        }
5047
5048        boolean hasTargetLabel() {
5049            return targetLabel != null;
5050        }
5051
5052        Label getTargetLabel() {
5053            return targetLabel;
5054        }
5055
5056        void setTargetLabel(final Label targetLabel) {
5057            this.targetLabel = targetLabel;
5058        }
5059
5060        int[] getStackStoreSpec() {
5061            return stackStoreSpec.clone();
5062        }
5063
5064        void setStackStoreSpec(final int[] stackStoreSpec) {
5065            this.stackStoreSpec = stackStoreSpec;
5066        }
5067
5068        Type[] getStackTypes() {
5069            return stackTypes.clone();
5070        }
5071
5072        void setStackTypes(final Type[] stackTypes) {
5073            this.stackTypes = stackTypes;
5074        }
5075
5076        Type getReturnValueType() {
5077            return returnValueType;
5078        }
5079
5080        void setReturnValueType(final Type returnValueType) {
5081            this.returnValueType = returnValueType;
5082        }
5083
5084        int getObjectLiteralStackDepth() {
5085            return objectLiteralStackDepth;
5086        }
5087
5088        void setObjectLiteralStackDepth(final int objectLiteralStackDepth) {
5089            this.objectLiteralStackDepth = objectLiteralStackDepth;
5090        }
5091
5092        PropertyMap getObjectLiteralMap() {
5093            return objectLiteralMap;
5094        }
5095
5096        void setObjectLiteralMap(final PropertyMap objectLiteralMap) {
5097            this.objectLiteralMap = objectLiteralMap;
5098        }
5099
5100        @Override
5101        public String toString() {
5102             return "[localVariableTypes=" + targetLabel.getStack().getLocalVariableTypesCopy() + ", stackStoreSpec=" +
5103                     Arrays.toString(stackStoreSpec) + ", returnValueType=" + returnValueType + "]";
5104        }
5105    }
5106
5107    private ContinuationInfo getContinuationInfo() {
5108        return fnIdToContinuationInfo.get(lc.getCurrentFunction().getId());
5109    }
5110
5111    private void generateContinuationHandler() {
5112        if (!isRestOf()) {
5113            return;
5114        }
5115
5116        final ContinuationInfo ci = getContinuationInfo();
5117        method.label(ci.getHandlerLabel());
5118
5119        // There should never be an exception thrown from the continuation handler, but in case there is (meaning,
5120        // Nashorn has a bug), then line number 0 will be an indication of where it came from (line numbers are Uint16).
5121        method.lineNumber(0);
5122
5123        final Label.Stack stack = ci.getTargetLabel().getStack();
5124        final List<Type> lvarTypes = stack.getLocalVariableTypesCopy();
5125        final BitSet symbolBoundary = stack.getSymbolBoundaryCopy();
5126        final int lvarCount = ci.lvarCount;
5127
5128        final Type rewriteExceptionType = Type.typeFor(RewriteException.class);
5129        // Store the RewriteException into an unused local variable slot.
5130        method.load(rewriteExceptionType, 0);
5131        method.storeTemp(rewriteExceptionType, lvarCount);
5132        // Get local variable array
5133        method.load(rewriteExceptionType, 0);
5134        method.invoke(RewriteException.GET_BYTECODE_SLOTS);
5135        // Store local variables. Note that deoptimization might introduce new value types for existing local variables,
5136        // so we must use both liveLocals and symbolBoundary, as in some cases (when the continuation is inside of a try
5137        // block) we need to store the incoming value into multiple slots. The optimism exception handlers will have
5138        // exactly one array element for every symbol that uses bytecode storage. If in the originating method the value
5139        // was undefined, there will be an explicit Undefined value in the array.
5140        int arrayIndex = 0;
5141        for(int lvarIndex = 0; lvarIndex < lvarCount;) {
5142            final Type lvarType = lvarTypes.get(lvarIndex);
5143            if(!lvarType.isUnknown()) {
5144                method.dup();
5145                method.load(arrayIndex).arrayload();
5146                final Class<?> typeClass = lvarType.getTypeClass();
5147                // Deoptimization in array initializers can cause arrays to undergo component type widening
5148                if(typeClass == long[].class) {
5149                    method.load(rewriteExceptionType, lvarCount);
5150                    method.invoke(RewriteException.TO_LONG_ARRAY);
5151                } else if(typeClass == double[].class) {
5152                    method.load(rewriteExceptionType, lvarCount);
5153                    method.invoke(RewriteException.TO_DOUBLE_ARRAY);
5154                } else if(typeClass == Object[].class) {
5155                    method.load(rewriteExceptionType, lvarCount);
5156                    method.invoke(RewriteException.TO_OBJECT_ARRAY);
5157                } else {
5158                    if(!(typeClass.isPrimitive() || typeClass == Object.class)) {
5159                        // NOTE: this can only happen with dead stores. E.g. for the program "1; []; f();" in which the
5160                        // call to f() will deoptimize the call site, but it'll expect :return to have the type
5161                        // NativeArray. However, in the more optimal version, :return's only live type is int, therefore
5162                        // "{O}:return = []" is a dead store, and the variable will be sent into the continuation as
5163                        // Undefined, however NativeArray can't hold Undefined instance.
5164                        method.loadType(Type.getInternalName(typeClass));
5165                        method.invoke(RewriteException.INSTANCE_OR_NULL);
5166                    }
5167                    method.convert(lvarType);
5168                }
5169                method.storeHidden(lvarType, lvarIndex, false);
5170            }
5171            final int nextLvarIndex = lvarIndex + lvarType.getSlots();
5172            if(symbolBoundary.get(nextLvarIndex - 1)) {
5173                ++arrayIndex;
5174            }
5175            lvarIndex = nextLvarIndex;
5176        }
5177        if (AssertsEnabled.assertsEnabled()) {
5178            method.load(arrayIndex);
5179            method.invoke(RewriteException.ASSERT_ARRAY_LENGTH);
5180        } else {
5181            method.pop();
5182        }
5183
5184        final int[]   stackStoreSpec = ci.getStackStoreSpec();
5185        final Type[]  stackTypes     = ci.getStackTypes();
5186        final boolean isStackEmpty   = stackStoreSpec.length == 0;
5187        boolean replacedObjectLiteralMap = false;
5188        if(!isStackEmpty) {
5189            // Load arguments on the stack
5190            final int objectLiteralStackDepth = ci.getObjectLiteralStackDepth();
5191            for(int i = 0; i < stackStoreSpec.length; ++i) {
5192                final int slot = stackStoreSpec[i];
5193                method.load(lvarTypes.get(slot), slot);
5194                method.convert(stackTypes[i]);
5195                // stack: s0=object literal being initialized
5196                // change map of s0 so that the property we are initilizing when we failed
5197                // is now ci.returnValueType
5198                if (i == objectLiteralStackDepth) {
5199                    method.dup();
5200                    assert ci.getObjectLiteralMap() != null;
5201                    assert ScriptObject.class.isAssignableFrom(method.peekType().getTypeClass()) : method.peekType().getTypeClass() + " is not a script object";
5202                    loadConstant(ci.getObjectLiteralMap());
5203                    method.invoke(ScriptObject.SET_MAP);
5204                    replacedObjectLiteralMap = true;
5205                }
5206            }
5207        }
5208        // Must have emitted the code for replacing the map of an object literal if we have a set object literal stack depth
5209        assert ci.getObjectLiteralStackDepth() == -1 || replacedObjectLiteralMap;
5210        // Load RewriteException back.
5211        method.load(rewriteExceptionType, lvarCount);
5212        // Get rid of the stored reference
5213        method.loadNull();
5214        method.storeHidden(Type.OBJECT, lvarCount);
5215        // Mark it dead
5216        method.markDeadSlots(lvarCount, Type.OBJECT.getSlots());
5217
5218        // Load return value on the stack
5219        method.invoke(RewriteException.GET_RETURN_VALUE);
5220
5221        final Type returnValueType = ci.getReturnValueType();
5222
5223        // Set up an exception handler for primitive type conversion of return value if needed
5224        boolean needsCatch = false;
5225        final Label targetCatchLabel = ci.catchLabel;
5226        Label _try = null;
5227        if(returnValueType.isPrimitive()) {
5228            // If the conversion throws an exception, we want to report the line number of the continuation point.
5229            method.lineNumber(ci.lineNumber);
5230
5231            if(targetCatchLabel != METHOD_BOUNDARY) {
5232                _try = new Label("");
5233                method.label(_try);
5234                needsCatch = true;
5235            }
5236        }
5237
5238        // Convert return value
5239        method.convert(returnValueType);
5240
5241        final int scopePopCount = needsCatch ? ci.exceptionScopePops : 0;
5242
5243        // Declare a try/catch for the conversion. If no scopes need to be popped until the target catch block, just
5244        // jump into it. Otherwise, we'll need to create a scope-popping catch block below.
5245        final Label catchLabel = scopePopCount > 0 ? new Label("") : targetCatchLabel;
5246        if(needsCatch) {
5247            final Label _end_try = new Label("");
5248            method.label(_end_try);
5249            method._try(_try, _end_try, catchLabel);
5250        }
5251
5252        // Jump to continuation point
5253        method._goto(ci.getTargetLabel());
5254
5255        // Make a scope-popping exception delegate if needed
5256        if(catchLabel != targetCatchLabel) {
5257            method.lineNumber(0);
5258            assert scopePopCount > 0;
5259            method._catch(catchLabel);
5260            popScopes(scopePopCount);
5261            method.uncheckedGoto(targetCatchLabel);
5262        }
5263    }
5264}
5265