1/*	$OpenBSD: uvm_page.c,v 1.177 2024/05/01 12:54:27 mpi Exp $	*/
2/*	$NetBSD: uvm_page.c,v 1.44 2000/11/27 08:40:04 chs Exp $	*/
3
4/*
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * Copyright (c) 1991, 1993, The Regents of the University of California.
7 *
8 * All rights reserved.
9 *
10 * This code is derived from software contributed to Berkeley by
11 * The Mach Operating System project at Carnegie-Mellon University.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
38 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
39 *
40 *
41 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 */
64
65/*
66 * uvm_page.c: page ops.
67 */
68
69#include <sys/param.h>
70#include <sys/systm.h>
71#include <sys/sched.h>
72#include <sys/vnode.h>
73#include <sys/mount.h>
74#include <sys/proc.h>
75#include <sys/smr.h>
76
77#include <uvm/uvm.h>
78
79/*
80 * for object trees
81 */
82RBT_GENERATE(uvm_objtree, vm_page, objt, uvm_pagecmp);
83
84int
85uvm_pagecmp(const struct vm_page *a, const struct vm_page *b)
86{
87	return a->offset < b->offset ? -1 : a->offset > b->offset;
88}
89
90/*
91 * global vars... XXXCDC: move to uvm. structure.
92 */
93/*
94 * physical memory config is stored in vm_physmem.
95 */
96struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
97int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
98
99/*
100 * Some supported CPUs in a given architecture don't support all
101 * of the things necessary to do idle page zero'ing efficiently.
102 * We therefore provide a way to disable it from machdep code here.
103 */
104
105/*
106 * local variables
107 */
108/*
109 * these variables record the values returned by vm_page_bootstrap,
110 * for debugging purposes.  The implementation of uvm_pageboot_alloc
111 * and pmap_startup here also uses them internally.
112 */
113static vaddr_t      virtual_space_start;
114static vaddr_t      virtual_space_end;
115
116/*
117 * local prototypes
118 */
119static void uvm_pageinsert(struct vm_page *);
120static void uvm_pageremove(struct vm_page *);
121int uvm_page_owner_locked_p(struct vm_page *);
122
123/*
124 * inline functions
125 */
126/*
127 * uvm_pageinsert: insert a page in the object
128 *
129 * => caller must lock object
130 * => call should have already set pg's object and offset pointers
131 *    and bumped the version counter
132 */
133static inline void
134uvm_pageinsert(struct vm_page *pg)
135{
136	struct vm_page	*dupe;
137
138	KASSERT(UVM_OBJ_IS_DUMMY(pg->uobject) ||
139	    rw_write_held(pg->uobject->vmobjlock));
140	KASSERT((pg->pg_flags & PG_TABLED) == 0);
141
142	dupe = RBT_INSERT(uvm_objtree, &pg->uobject->memt, pg);
143	/* not allowed to insert over another page */
144	KASSERT(dupe == NULL);
145	atomic_setbits_int(&pg->pg_flags, PG_TABLED);
146	pg->uobject->uo_npages++;
147}
148
149/*
150 * uvm_page_remove: remove page from object
151 *
152 * => caller must lock object
153 */
154static inline void
155uvm_pageremove(struct vm_page *pg)
156{
157	KASSERT(UVM_OBJ_IS_DUMMY(pg->uobject) ||
158	    rw_write_held(pg->uobject->vmobjlock));
159	KASSERT(pg->pg_flags & PG_TABLED);
160
161	RBT_REMOVE(uvm_objtree, &pg->uobject->memt, pg);
162
163	atomic_clearbits_int(&pg->pg_flags, PG_TABLED);
164	pg->uobject->uo_npages--;
165	pg->uobject = NULL;
166	pg->pg_version++;
167}
168
169/*
170 * uvm_page_init: init the page system.   called from uvm_init().
171 *
172 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
173 */
174void
175uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
176{
177	vsize_t freepages, pagecount, n;
178	vm_page_t pagearray, curpg;
179	int lcv, i;
180	paddr_t paddr, pgno;
181	struct vm_physseg *seg;
182
183	/*
184	 * init the page queues and page queue locks
185	 */
186
187	TAILQ_INIT(&uvm.page_active);
188	TAILQ_INIT(&uvm.page_inactive);
189	mtx_init(&uvm.pageqlock, IPL_VM);
190	mtx_init(&uvm.fpageqlock, IPL_VM);
191	uvm_pmr_init();
192
193	/*
194	 * allocate vm_page structures.
195	 */
196
197	/*
198	 * sanity check:
199	 * before calling this function the MD code is expected to register
200	 * some free RAM with the uvm_page_physload() function.   our job
201	 * now is to allocate vm_page structures for this memory.
202	 */
203
204	if (vm_nphysseg == 0)
205		panic("uvm_page_bootstrap: no memory pre-allocated");
206
207	/*
208	 * first calculate the number of free pages...
209	 *
210	 * note that we use start/end rather than avail_start/avail_end.
211	 * this allows us to allocate extra vm_page structures in case we
212	 * want to return some memory to the pool after booting.
213	 */
214
215	freepages = 0;
216	for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++)
217		freepages += (seg->end - seg->start);
218
219	/*
220	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
221	 * use.   for each page of memory we use we need a vm_page structure.
222	 * thus, the total number of pages we can use is the total size of
223	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
224	 * structure.   we add one to freepages as a fudge factor to avoid
225	 * truncation errors (since we can only allocate in terms of whole
226	 * pages).
227	 */
228
229	pagecount = (((paddr_t)freepages + 1) << PAGE_SHIFT) /
230	    (PAGE_SIZE + sizeof(struct vm_page));
231	pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
232	    sizeof(struct vm_page));
233	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
234
235	/* init the vm_page structures and put them in the correct place. */
236	for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++) {
237		n = seg->end - seg->start;
238		if (n > pagecount) {
239			panic("uvm_page_init: lost %ld page(s) in init",
240			    (long)(n - pagecount));
241			    /* XXXCDC: shouldn't happen? */
242			/* n = pagecount; */
243		}
244
245		/* set up page array pointers */
246		seg->pgs = pagearray;
247		pagearray += n;
248		pagecount -= n;
249		seg->lastpg = seg->pgs + (n - 1);
250
251		/* init and free vm_pages (we've already zeroed them) */
252		pgno = seg->start;
253		paddr = ptoa(pgno);
254		for (i = 0, curpg = seg->pgs; i < n;
255		    i++, curpg++, pgno++, paddr += PAGE_SIZE) {
256			curpg->phys_addr = paddr;
257			VM_MDPAGE_INIT(curpg);
258			if (pgno >= seg->avail_start &&
259			    pgno < seg->avail_end) {
260				uvmexp.npages++;
261			}
262		}
263
264		/* Add pages to free pool. */
265		uvm_pmr_freepages(&seg->pgs[seg->avail_start - seg->start],
266		    seg->avail_end - seg->avail_start);
267	}
268
269	/*
270	 * pass up the values of virtual_space_start and
271	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
272	 * layers of the VM.
273	 */
274
275	*kvm_startp = round_page(virtual_space_start);
276	*kvm_endp = trunc_page(virtual_space_end);
277
278	/* init locks for kernel threads */
279	mtx_init(&uvm.aiodoned_lock, IPL_BIO);
280
281	/*
282	 * init reserve thresholds
283	 * XXXCDC - values may need adjusting
284	 */
285	uvmexp.reserve_pagedaemon = 4;
286	uvmexp.reserve_kernel = 8;
287	uvmexp.anonminpct = 10;
288	uvmexp.vnodeminpct = 10;
289	uvmexp.vtextminpct = 5;
290	uvmexp.anonmin = uvmexp.anonminpct * 256 / 100;
291	uvmexp.vnodemin = uvmexp.vnodeminpct * 256 / 100;
292	uvmexp.vtextmin = uvmexp.vtextminpct * 256 / 100;
293
294	uvm.page_init_done = TRUE;
295}
296
297/*
298 * uvm_setpagesize: set the page size
299 *
300 * => sets page_shift and page_mask from uvmexp.pagesize.
301 */
302void
303uvm_setpagesize(void)
304{
305	if (uvmexp.pagesize == 0)
306		uvmexp.pagesize = DEFAULT_PAGE_SIZE;
307	uvmexp.pagemask = uvmexp.pagesize - 1;
308	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
309		panic("uvm_setpagesize: page size not a power of two");
310	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
311		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
312			break;
313}
314
315/*
316 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
317 */
318vaddr_t
319uvm_pageboot_alloc(vsize_t size)
320{
321#if defined(PMAP_STEAL_MEMORY)
322	vaddr_t addr;
323
324	/*
325	 * defer bootstrap allocation to MD code (it may want to allocate
326	 * from a direct-mapped segment).  pmap_steal_memory should round
327	 * off virtual_space_start/virtual_space_end.
328	 */
329
330	addr = pmap_steal_memory(size, &virtual_space_start,
331	    &virtual_space_end);
332
333	return addr;
334
335#else /* !PMAP_STEAL_MEMORY */
336
337	static boolean_t initialized = FALSE;
338	vaddr_t addr, vaddr;
339	paddr_t paddr;
340
341	/* round to page size */
342	size = round_page(size);
343
344	/* on first call to this function, initialize ourselves. */
345	if (initialized == FALSE) {
346		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
347
348		/* round it the way we like it */
349		virtual_space_start = round_page(virtual_space_start);
350		virtual_space_end = trunc_page(virtual_space_end);
351
352		initialized = TRUE;
353	}
354
355	/* allocate virtual memory for this request */
356	if (virtual_space_start == virtual_space_end ||
357	    (virtual_space_end - virtual_space_start) < size)
358		panic("uvm_pageboot_alloc: out of virtual space");
359
360	addr = virtual_space_start;
361
362#ifdef PMAP_GROWKERNEL
363	/*
364	 * If the kernel pmap can't map the requested space,
365	 * then allocate more resources for it.
366	 */
367	if (uvm_maxkaddr < (addr + size)) {
368		uvm_maxkaddr = pmap_growkernel(addr + size);
369		if (uvm_maxkaddr < (addr + size))
370			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
371	}
372#endif
373
374	virtual_space_start += size;
375
376	/* allocate and mapin physical pages to back new virtual pages */
377	for (vaddr = round_page(addr) ; vaddr < addr + size ;
378	    vaddr += PAGE_SIZE) {
379		if (!uvm_page_physget(&paddr))
380			panic("uvm_pageboot_alloc: out of memory");
381
382		/*
383		 * Note this memory is no longer managed, so using
384		 * pmap_kenter is safe.
385		 */
386		pmap_kenter_pa(vaddr, paddr, PROT_READ | PROT_WRITE);
387	}
388	pmap_update(pmap_kernel());
389	return addr;
390#endif	/* PMAP_STEAL_MEMORY */
391}
392
393#if !defined(PMAP_STEAL_MEMORY)
394/*
395 * uvm_page_physget: "steal" one page from the vm_physmem structure.
396 *
397 * => attempt to allocate it off the end of a segment in which the "avail"
398 *    values match the start/end values.   if we can't do that, then we
399 *    will advance both values (making them equal, and removing some
400 *    vm_page structures from the non-avail area).
401 * => return false if out of memory.
402 */
403
404boolean_t
405uvm_page_physget(paddr_t *paddrp)
406{
407	int lcv;
408	struct vm_physseg *seg;
409
410	/* pass 1: try allocating from a matching end */
411#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) || \
412	(VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
413	for (lcv = vm_nphysseg - 1, seg = vm_physmem + lcv; lcv >= 0;
414	    lcv--, seg--)
415#else
416	for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++)
417#endif
418	{
419		if (uvm.page_init_done == TRUE)
420			panic("uvm_page_physget: called _after_ bootstrap");
421
422		/* try from front */
423		if (seg->avail_start == seg->start &&
424		    seg->avail_start < seg->avail_end) {
425			*paddrp = ptoa(seg->avail_start);
426			seg->avail_start++;
427			seg->start++;
428			/* nothing left?   nuke it */
429			if (seg->avail_start == seg->end) {
430				if (vm_nphysseg == 1)
431				    panic("uvm_page_physget: out of memory!");
432				vm_nphysseg--;
433				for (; lcv < vm_nphysseg; lcv++, seg++)
434					/* structure copy */
435					seg[0] = seg[1];
436			}
437			return TRUE;
438		}
439
440		/* try from rear */
441		if (seg->avail_end == seg->end &&
442		    seg->avail_start < seg->avail_end) {
443			*paddrp = ptoa(seg->avail_end - 1);
444			seg->avail_end--;
445			seg->end--;
446			/* nothing left?   nuke it */
447			if (seg->avail_end == seg->start) {
448				if (vm_nphysseg == 1)
449				    panic("uvm_page_physget: out of memory!");
450				vm_nphysseg--;
451				for (; lcv < vm_nphysseg ; lcv++, seg++)
452					/* structure copy */
453					seg[0] = seg[1];
454			}
455			return TRUE;
456		}
457	}
458
459	/* pass2: forget about matching ends, just allocate something */
460#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) || \
461	(VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
462	for (lcv = vm_nphysseg - 1, seg = vm_physmem + lcv; lcv >= 0;
463	    lcv--, seg--)
464#else
465	for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++)
466#endif
467	{
468
469		/* any room in this bank? */
470		if (seg->avail_start >= seg->avail_end)
471			continue;  /* nope */
472
473		*paddrp = ptoa(seg->avail_start);
474		seg->avail_start++;
475		/* truncate! */
476		seg->start = seg->avail_start;
477
478		/* nothing left?   nuke it */
479		if (seg->avail_start == seg->end) {
480			if (vm_nphysseg == 1)
481				panic("uvm_page_physget: out of memory!");
482			vm_nphysseg--;
483			for (; lcv < vm_nphysseg ; lcv++, seg++)
484				/* structure copy */
485				seg[0] = seg[1];
486		}
487		return TRUE;
488	}
489
490	return FALSE;        /* whoops! */
491}
492
493#endif /* PMAP_STEAL_MEMORY */
494
495/*
496 * uvm_page_physload: load physical memory into VM system
497 *
498 * => all args are PFs
499 * => all pages in start/end get vm_page structures
500 * => areas marked by avail_start/avail_end get added to the free page pool
501 * => we are limited to VM_PHYSSEG_MAX physical memory segments
502 */
503
504void
505uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
506    paddr_t avail_end, int flags)
507{
508	int preload, lcv;
509	psize_t npages;
510	struct vm_page *pgs;
511	struct vm_physseg *ps, *seg;
512
513#ifdef DIAGNOSTIC
514	if (uvmexp.pagesize == 0)
515		panic("uvm_page_physload: page size not set!");
516
517	if (start >= end)
518		panic("uvm_page_physload: start >= end");
519#endif
520
521	/* do we have room? */
522	if (vm_nphysseg == VM_PHYSSEG_MAX) {
523		printf("uvm_page_physload: unable to load physical memory "
524		    "segment\n");
525		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
526		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
527		printf("\tincrease VM_PHYSSEG_MAX\n");
528		return;
529	}
530
531	/*
532	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
533	 * called yet, so malloc is not available).
534	 */
535	for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg; lcv++, seg++) {
536		if (seg->pgs)
537			break;
538	}
539	preload = (lcv == vm_nphysseg);
540
541	/* if VM is already running, attempt to malloc() vm_page structures */
542	if (!preload) {
543		/*
544		 * XXXCDC: need some sort of lockout for this case
545		 * right now it is only used by devices so it should be alright.
546		 */
547 		paddr_t paddr;
548
549 		npages = end - start;  /* # of pages */
550
551		pgs = km_alloc(round_page(npages * sizeof(*pgs)),
552		    &kv_any, &kp_zero, &kd_waitok);
553		if (pgs == NULL) {
554			printf("uvm_page_physload: can not malloc vm_page "
555			    "structs for segment\n");
556			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
557			return;
558		}
559		/* init phys_addr and free pages, XXX uvmexp.npages */
560		for (lcv = 0, paddr = ptoa(start); lcv < npages;
561		    lcv++, paddr += PAGE_SIZE) {
562			pgs[lcv].phys_addr = paddr;
563			VM_MDPAGE_INIT(&pgs[lcv]);
564			if (atop(paddr) >= avail_start &&
565			    atop(paddr) < avail_end) {
566				if (flags & PHYSLOAD_DEVICE) {
567					atomic_setbits_int(&pgs[lcv].pg_flags,
568					    PG_DEV);
569					pgs[lcv].wire_count = 1;
570				} else {
571#if defined(VM_PHYSSEG_NOADD)
572		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
573#endif
574				}
575			}
576		}
577
578		/* Add pages to free pool. */
579		if ((flags & PHYSLOAD_DEVICE) == 0) {
580			uvm_pmr_freepages(&pgs[avail_start - start],
581			    avail_end - avail_start);
582		}
583
584		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
585	} else {
586		/* gcc complains if these don't get init'd */
587		pgs = NULL;
588		npages = 0;
589
590	}
591
592	/* now insert us in the proper place in vm_physmem[] */
593#if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
594	/* random: put it at the end (easy!) */
595	ps = &vm_physmem[vm_nphysseg];
596#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
597	{
598		int x;
599		/* sort by address for binary search */
600		for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg; lcv++, seg++)
601			if (start < seg->start)
602				break;
603		ps = seg;
604		/* move back other entries, if necessary ... */
605		for (x = vm_nphysseg, seg = vm_physmem + x - 1; x > lcv;
606		    x--, seg--)
607			/* structure copy */
608			seg[1] = seg[0];
609	}
610#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
611	{
612		int x;
613		/* sort by largest segment first */
614		for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg; lcv++, seg++)
615			if ((end - start) >
616			    (seg->end - seg->start))
617				break;
618		ps = &vm_physmem[lcv];
619		/* move back other entries, if necessary ... */
620		for (x = vm_nphysseg, seg = vm_physmem + x - 1; x > lcv;
621		    x--, seg--)
622			/* structure copy */
623			seg[1] = seg[0];
624	}
625#else
626	panic("uvm_page_physload: unknown physseg strategy selected!");
627#endif
628
629	ps->start = start;
630	ps->end = end;
631	ps->avail_start = avail_start;
632	ps->avail_end = avail_end;
633	if (preload) {
634		ps->pgs = NULL;
635	} else {
636		ps->pgs = pgs;
637		ps->lastpg = pgs + npages - 1;
638	}
639	vm_nphysseg++;
640
641	return;
642}
643
644#ifdef DDB /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
645
646void uvm_page_physdump(void); /* SHUT UP GCC */
647
648/* call from DDB */
649void
650uvm_page_physdump(void)
651{
652	int lcv;
653	struct vm_physseg *seg;
654
655	printf("uvm_page_physdump: physical memory config [segs=%d of %d]:\n",
656	    vm_nphysseg, VM_PHYSSEG_MAX);
657	for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++)
658		printf("0x%llx->0x%llx [0x%llx->0x%llx]\n",
659		    (long long)seg->start,
660		    (long long)seg->end,
661		    (long long)seg->avail_start,
662		    (long long)seg->avail_end);
663	printf("STRATEGY = ");
664	switch (VM_PHYSSEG_STRAT) {
665	case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
666	case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
667	case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
668	default: printf("<<UNKNOWN>>!!!!\n");
669	}
670}
671#endif
672
673void
674uvm_shutdown(void)
675{
676#ifdef UVM_SWAP_ENCRYPT
677	uvm_swap_finicrypt_all();
678#endif
679	smr_flush();
680}
681
682/*
683 * Perform insert of a given page in the specified anon of obj.
684 * This is basically, uvm_pagealloc, but with the page already given.
685 */
686void
687uvm_pagealloc_pg(struct vm_page *pg, struct uvm_object *obj, voff_t off,
688    struct vm_anon *anon)
689{
690	int	flags;
691
692	KASSERT(obj == NULL || anon == NULL);
693	KASSERT(anon == NULL || off == 0);
694	KASSERT(off == trunc_page(off));
695	KASSERT(obj == NULL || UVM_OBJ_IS_DUMMY(obj) ||
696	    rw_write_held(obj->vmobjlock));
697	KASSERT(anon == NULL || anon->an_lock == NULL ||
698	    rw_write_held(anon->an_lock));
699
700	flags = PG_BUSY | PG_FAKE;
701	pg->offset = off;
702	pg->uobject = obj;
703	pg->uanon = anon;
704	KASSERT(uvm_page_owner_locked_p(pg));
705	if (anon) {
706		anon->an_page = pg;
707		flags |= PQ_ANON;
708	} else if (obj)
709		uvm_pageinsert(pg);
710	atomic_setbits_int(&pg->pg_flags, flags);
711#if defined(UVM_PAGE_TRKOWN)
712	pg->owner_tag = NULL;
713#endif
714	UVM_PAGE_OWN(pg, "new alloc");
715}
716
717/*
718 * uvm_pglistalloc: allocate a list of pages
719 *
720 * => allocated pages are placed at the tail of rlist.  rlist is
721 *    assumed to be properly initialized by caller.
722 * => returns 0 on success or errno on failure
723 * => doesn't take into account clean non-busy pages on inactive list
724 *	that could be used(?)
725 * => params:
726 *	size		the size of the allocation, rounded to page size.
727 *	low		the low address of the allowed allocation range.
728 *	high		the high address of the allowed allocation range.
729 *	alignment	memory must be aligned to this power-of-two boundary.
730 *	boundary	no segment in the allocation may cross this
731 *			power-of-two boundary (relative to zero).
732 * => flags:
733 *	UVM_PLA_NOWAIT	fail if allocation fails
734 *	UVM_PLA_WAITOK	wait for memory to become avail
735 *	UVM_PLA_ZERO	return zeroed memory
736 */
737int
738uvm_pglistalloc(psize_t size, paddr_t low, paddr_t high, paddr_t alignment,
739    paddr_t boundary, struct pglist *rlist, int nsegs, int flags)
740{
741	KASSERT((alignment & (alignment - 1)) == 0);
742	KASSERT((boundary & (boundary - 1)) == 0);
743	KASSERT(!(flags & UVM_PLA_WAITOK) ^ !(flags & UVM_PLA_NOWAIT));
744
745	if (size == 0)
746		return EINVAL;
747	size = atop(round_page(size));
748
749	/*
750	 * XXX uvm_pglistalloc is currently only used for kernel
751	 * objects. Unlike the checks in uvm_pagealloc, below, here
752	 * we are always allowed to use the kernel reserve.
753	 */
754	flags |= UVM_PLA_USERESERVE;
755
756	if ((high & PAGE_MASK) != PAGE_MASK) {
757		printf("uvm_pglistalloc: Upper boundary 0x%lx "
758		    "not on pagemask.\n", (unsigned long)high);
759	}
760
761	/*
762	 * Our allocations are always page granularity, so our alignment
763	 * must be, too.
764	 */
765	if (alignment < PAGE_SIZE)
766		alignment = PAGE_SIZE;
767
768	low = atop(roundup(low, alignment));
769	/*
770	 * high + 1 may result in overflow, in which case high becomes 0x0,
771	 * which is the 'don't care' value.
772	 * The only requirement in that case is that low is also 0x0, or the
773	 * low<high assert will fail.
774	 */
775	high = atop(high + 1);
776	alignment = atop(alignment);
777	if (boundary < PAGE_SIZE && boundary != 0)
778		boundary = PAGE_SIZE;
779	boundary = atop(boundary);
780
781	return uvm_pmr_getpages(size, low, high, alignment, boundary, nsegs,
782	    flags, rlist);
783}
784
785/*
786 * uvm_pglistfree: free a list of pages
787 *
788 * => pages should already be unmapped
789 */
790void
791uvm_pglistfree(struct pglist *list)
792{
793	uvm_pmr_freepageq(list);
794}
795
796/*
797 * interface used by the buffer cache to allocate a buffer at a time.
798 * The pages are allocated wired in DMA accessible memory
799 */
800int
801uvm_pagealloc_multi(struct uvm_object *obj, voff_t off, vsize_t size,
802    int flags)
803{
804	struct pglist    plist;
805	struct vm_page  *pg;
806	int              i, r;
807
808	KASSERT(UVM_OBJ_IS_BUFCACHE(obj));
809	KERNEL_ASSERT_LOCKED();
810
811	TAILQ_INIT(&plist);
812	r = uvm_pglistalloc(size, dma_constraint.ucr_low,
813	    dma_constraint.ucr_high, 0, 0, &plist, atop(round_page(size)),
814	    flags);
815	if (r == 0) {
816		i = 0;
817		while ((pg = TAILQ_FIRST(&plist)) != NULL) {
818			pg->wire_count = 1;
819			atomic_setbits_int(&pg->pg_flags, PG_CLEAN | PG_FAKE);
820			KASSERT((pg->pg_flags & PG_DEV) == 0);
821			TAILQ_REMOVE(&plist, pg, pageq);
822			uvm_pagealloc_pg(pg, obj, off + ptoa(i++), NULL);
823		}
824	}
825	return r;
826}
827
828/*
829 * interface used by the buffer cache to reallocate a buffer at a time.
830 * The pages are reallocated wired outside the DMA accessible region.
831 *
832 */
833int
834uvm_pagerealloc_multi(struct uvm_object *obj, voff_t off, vsize_t size,
835    int flags, struct uvm_constraint_range *where)
836{
837	struct pglist    plist;
838	struct vm_page  *pg, *tpg;
839	int              i, r;
840	voff_t		offset;
841
842	KASSERT(UVM_OBJ_IS_BUFCACHE(obj));
843	KERNEL_ASSERT_LOCKED();
844
845	TAILQ_INIT(&plist);
846	if (size == 0)
847		panic("size 0 uvm_pagerealloc");
848	r = uvm_pglistalloc(size, where->ucr_low, where->ucr_high, 0,
849	    0, &plist, atop(round_page(size)), flags);
850	if (r == 0) {
851		i = 0;
852		while((pg = TAILQ_FIRST(&plist)) != NULL) {
853			offset = off + ptoa(i++);
854			tpg = uvm_pagelookup(obj, offset);
855			KASSERT(tpg != NULL);
856			pg->wire_count = 1;
857			atomic_setbits_int(&pg->pg_flags, PG_CLEAN | PG_FAKE);
858			KASSERT((pg->pg_flags & PG_DEV) == 0);
859			TAILQ_REMOVE(&plist, pg, pageq);
860			uvm_pagecopy(tpg, pg);
861			KASSERT(tpg->wire_count == 1);
862			tpg->wire_count = 0;
863			uvm_lock_pageq();
864			uvm_pagefree(tpg);
865			uvm_unlock_pageq();
866			uvm_pagealloc_pg(pg, obj, offset, NULL);
867		}
868	}
869	return r;
870}
871
872/*
873 * uvm_pagealloc: allocate vm_page from a particular free list.
874 *
875 * => return null if no pages free
876 * => wake up pagedaemon if number of free pages drops below low water mark
877 * => only one of obj or anon can be non-null
878 * => caller must activate/deactivate page if it is not wired.
879 */
880struct vm_page *
881uvm_pagealloc(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
882    int flags)
883{
884	struct vm_page *pg = NULL;
885	int pmr_flags;
886
887	KASSERT(obj == NULL || anon == NULL);
888	KASSERT(anon == NULL || off == 0);
889	KASSERT(off == trunc_page(off));
890	KASSERT(obj == NULL || UVM_OBJ_IS_DUMMY(obj) ||
891	    rw_write_held(obj->vmobjlock));
892	KASSERT(anon == NULL || anon->an_lock == NULL ||
893	    rw_write_held(anon->an_lock));
894
895	pmr_flags = UVM_PLA_NOWAIT;
896
897	/*
898	 * We're allowed to use the kernel reserve if the page is
899	 * being allocated to a kernel object.
900	 */
901	if ((flags & UVM_PGA_USERESERVE) ||
902	    (obj != NULL && UVM_OBJ_IS_KERN_OBJECT(obj)))
903	    	pmr_flags |= UVM_PLA_USERESERVE;
904
905	if (flags & UVM_PGA_ZERO)
906		pmr_flags |= UVM_PLA_ZERO;
907
908	pg = uvm_pmr_cache_get(pmr_flags);
909	if (pg == NULL)
910		return NULL;
911	uvm_pagealloc_pg(pg, obj, off, anon);
912	KASSERT((pg->pg_flags & PG_DEV) == 0);
913	if (flags & UVM_PGA_ZERO)
914		atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
915	else
916		atomic_setbits_int(&pg->pg_flags, PG_CLEAN);
917
918	return pg;
919}
920
921/*
922 * uvm_pagerealloc: reallocate a page from one object to another
923 */
924
925void
926uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
927{
928
929	/* remove it from the old object */
930	if (pg->uobject) {
931		uvm_pageremove(pg);
932	}
933
934	/* put it in the new object */
935	if (newobj) {
936		pg->uobject = newobj;
937		pg->offset = newoff;
938		pg->pg_version++;
939		uvm_pageinsert(pg);
940	}
941}
942
943/*
944 * uvm_pageclean: clean page
945 *
946 * => erase page's identity (i.e. remove from object)
947 * => caller must lock page queues if `pg' is managed
948 * => assumes all valid mappings of pg are gone
949 */
950void
951uvm_pageclean(struct vm_page *pg)
952{
953	u_int flags_to_clear = 0;
954
955	if ((pg->pg_flags & (PG_TABLED|PQ_ACTIVE|PQ_INACTIVE)) &&
956	    (pg->uobject == NULL || !UVM_OBJ_IS_PMAP(pg->uobject)))
957		MUTEX_ASSERT_LOCKED(&uvm.pageqlock);
958
959#ifdef DEBUG
960	if (pg->uobject == (void *)0xdeadbeef &&
961	    pg->uanon == (void *)0xdeadbeef) {
962		panic("uvm_pagefree: freeing free page %p", pg);
963	}
964#endif
965
966	KASSERT((pg->pg_flags & PG_DEV) == 0);
967	KASSERT(pg->uobject == NULL || UVM_OBJ_IS_DUMMY(pg->uobject) ||
968	    rw_write_held(pg->uobject->vmobjlock));
969	KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
970	    rw_write_held(pg->uanon->an_lock));
971
972	/*
973	 * if the page was an object page (and thus "TABLED"), remove it
974	 * from the object.
975	 */
976	if (pg->pg_flags & PG_TABLED)
977		uvm_pageremove(pg);
978
979	/*
980	 * now remove the page from the queues
981	 */
982	uvm_pagedequeue(pg);
983
984	/*
985	 * if the page was wired, unwire it now.
986	 */
987	if (pg->wire_count) {
988		pg->wire_count = 0;
989		uvmexp.wired--;
990	}
991	if (pg->uanon) {
992		pg->uanon->an_page = NULL;
993		pg->uanon = NULL;
994	}
995
996	/* Clean page state bits. */
997	flags_to_clear |= PQ_ANON|PQ_AOBJ|PQ_ENCRYPT|PG_ZERO|PG_FAKE|PG_BUSY|
998	    PG_RELEASED|PG_CLEAN|PG_CLEANCHK;
999	atomic_clearbits_int(&pg->pg_flags, flags_to_clear);
1000
1001#ifdef DEBUG
1002	pg->uobject = (void *)0xdeadbeef;
1003	pg->offset = 0xdeadbeef;
1004	pg->uanon = (void *)0xdeadbeef;
1005#endif
1006}
1007
1008/*
1009 * uvm_pagefree: free page
1010 *
1011 * => erase page's identity (i.e. remove from object)
1012 * => put page on free list
1013 * => caller must lock page queues if `pg' is managed
1014 * => assumes all valid mappings of pg are gone
1015 */
1016void
1017uvm_pagefree(struct vm_page *pg)
1018{
1019	uvm_pageclean(pg);
1020	uvm_pmr_cache_put(pg);
1021}
1022
1023/*
1024 * uvm_page_unbusy: unbusy an array of pages.
1025 *
1026 * => pages must either all belong to the same object, or all belong to anons.
1027 * => if pages are object-owned, object must be locked.
1028 * => if pages are anon-owned, anons must have 0 refcount.
1029 * => caller must make sure that anon-owned pages are not PG_RELEASED.
1030 */
1031void
1032uvm_page_unbusy(struct vm_page **pgs, int npgs)
1033{
1034	struct vm_page *pg;
1035	int i;
1036
1037	for (i = 0; i < npgs; i++) {
1038		pg = pgs[i];
1039
1040		if (pg == NULL || pg == PGO_DONTCARE) {
1041			continue;
1042		}
1043
1044		KASSERT(uvm_page_owner_locked_p(pg));
1045		KASSERT(pg->pg_flags & PG_BUSY);
1046
1047		if (pg->pg_flags & PG_WANTED) {
1048			wakeup(pg);
1049		}
1050		if (pg->pg_flags & PG_RELEASED) {
1051			KASSERT(pg->uobject != NULL ||
1052			    (pg->uanon != NULL && pg->uanon->an_ref > 0));
1053			atomic_clearbits_int(&pg->pg_flags, PG_RELEASED);
1054			pmap_page_protect(pg, PROT_NONE);
1055			uvm_pagefree(pg);
1056		} else {
1057			KASSERT((pg->pg_flags & PG_FAKE) == 0);
1058			atomic_clearbits_int(&pg->pg_flags, PG_WANTED|PG_BUSY);
1059			UVM_PAGE_OWN(pg, NULL);
1060		}
1061	}
1062}
1063
1064/*
1065 * uvm_pagewait: wait for a busy page
1066 *
1067 * => page must be known PG_BUSY
1068 * => object must be locked
1069 * => object will be unlocked on return
1070 */
1071void
1072uvm_pagewait(struct vm_page *pg, struct rwlock *lock, const char *wmesg)
1073{
1074	KASSERT(rw_lock_held(lock));
1075	KASSERT((pg->pg_flags & PG_BUSY) != 0);
1076
1077	atomic_setbits_int(&pg->pg_flags, PG_WANTED);
1078	rwsleep_nsec(pg, lock, PVM | PNORELOCK, wmesg, INFSLP);
1079}
1080
1081#if defined(UVM_PAGE_TRKOWN)
1082/*
1083 * uvm_page_own: set or release page ownership
1084 *
1085 * => this is a debugging function that keeps track of who sets PG_BUSY
1086 *	and where they do it.   it can be used to track down problems
1087 *	such a thread setting "PG_BUSY" and never releasing it.
1088 * => if "tag" is NULL then we are releasing page ownership
1089 */
1090void
1091uvm_page_own(struct vm_page *pg, char *tag)
1092{
1093	/* gain ownership? */
1094	if (tag) {
1095		if (pg->owner_tag) {
1096			printf("uvm_page_own: page %p already owned "
1097			    "by thread %d [%s]\n", pg,
1098			     pg->owner, pg->owner_tag);
1099			panic("uvm_page_own");
1100		}
1101		pg->owner = (curproc) ? curproc->p_tid :  (pid_t) -1;
1102		pg->owner_tag = tag;
1103		return;
1104	}
1105
1106	/* drop ownership */
1107	if (pg->owner_tag == NULL) {
1108		printf("uvm_page_own: dropping ownership of an non-owned "
1109		    "page (%p)\n", pg);
1110		panic("uvm_page_own");
1111	}
1112	pg->owner_tag = NULL;
1113	return;
1114}
1115#endif
1116
1117/*
1118 * when VM_PHYSSEG_MAX is 1, we can simplify these functions
1119 */
1120
1121#if VM_PHYSSEG_MAX > 1
1122/*
1123 * vm_physseg_find: find vm_physseg structure that belongs to a PA
1124 */
1125int
1126vm_physseg_find(paddr_t pframe, int *offp)
1127{
1128	struct vm_physseg *seg;
1129
1130#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
1131	/* binary search for it */
1132	int	start, len, try;
1133
1134	/*
1135	 * if try is too large (thus target is less than try) we reduce
1136	 * the length to trunc(len/2) [i.e. everything smaller than "try"]
1137	 *
1138	 * if the try is too small (thus target is greater than try) then
1139	 * we set the new start to be (try + 1).   this means we need to
1140	 * reduce the length to (round(len/2) - 1).
1141	 *
1142	 * note "adjust" below which takes advantage of the fact that
1143	 *  (round(len/2) - 1) == trunc((len - 1) / 2)
1144	 * for any value of len we may have
1145	 */
1146
1147	for (start = 0, len = vm_nphysseg ; len != 0 ; len = len / 2) {
1148		try = start + (len / 2);	/* try in the middle */
1149		seg = vm_physmem + try;
1150
1151		/* start past our try? */
1152		if (pframe >= seg->start) {
1153			/* was try correct? */
1154			if (pframe < seg->end) {
1155				if (offp)
1156					*offp = pframe - seg->start;
1157				return try;            /* got it */
1158			}
1159			start = try + 1;	/* next time, start here */
1160			len--;			/* "adjust" */
1161		} else {
1162			/*
1163			 * pframe before try, just reduce length of
1164			 * region, done in "for" loop
1165			 */
1166		}
1167	}
1168	return -1;
1169
1170#else
1171	/* linear search for it */
1172	int	lcv;
1173
1174	for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++) {
1175		if (pframe >= seg->start && pframe < seg->end) {
1176			if (offp)
1177				*offp = pframe - seg->start;
1178			return lcv;		   /* got it */
1179		}
1180	}
1181	return -1;
1182
1183#endif
1184}
1185
1186/*
1187 * PHYS_TO_VM_PAGE: find vm_page for a PA.   used by MI code to get vm_pages
1188 * back from an I/O mapping (ugh!).   used in some MD code as well.
1189 */
1190struct vm_page *
1191PHYS_TO_VM_PAGE(paddr_t pa)
1192{
1193	paddr_t pf = atop(pa);
1194	int	off;
1195	int	psi;
1196
1197	psi = vm_physseg_find(pf, &off);
1198
1199	return (psi == -1) ? NULL : &vm_physmem[psi].pgs[off];
1200}
1201#endif /* VM_PHYSSEG_MAX > 1 */
1202
1203/*
1204 * uvm_pagelookup: look up a page
1205 */
1206struct vm_page *
1207uvm_pagelookup(struct uvm_object *obj, voff_t off)
1208{
1209	/* XXX if stack is too much, handroll */
1210	struct vm_page p, *pg;
1211
1212	p.offset = off;
1213	pg = RBT_FIND(uvm_objtree, &obj->memt, &p);
1214
1215	KASSERT(pg == NULL || obj->uo_npages != 0);
1216	KASSERT(pg == NULL || (pg->pg_flags & PG_RELEASED) == 0 ||
1217	    (pg->pg_flags & PG_BUSY) != 0);
1218	return (pg);
1219}
1220
1221/*
1222 * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
1223 *
1224 * => caller must lock page queues
1225 */
1226void
1227uvm_pagewire(struct vm_page *pg)
1228{
1229	KASSERT(uvm_page_owner_locked_p(pg));
1230	MUTEX_ASSERT_LOCKED(&uvm.pageqlock);
1231
1232	if (pg->wire_count == 0) {
1233		uvm_pagedequeue(pg);
1234		uvmexp.wired++;
1235	}
1236	pg->wire_count++;
1237}
1238
1239/*
1240 * uvm_pageunwire: unwire the page.
1241 *
1242 * => activate if wire count goes to zero.
1243 * => caller must lock page queues
1244 */
1245void
1246uvm_pageunwire(struct vm_page *pg)
1247{
1248	KASSERT(uvm_page_owner_locked_p(pg));
1249	MUTEX_ASSERT_LOCKED(&uvm.pageqlock);
1250
1251	pg->wire_count--;
1252	if (pg->wire_count == 0) {
1253		uvm_pageactivate(pg);
1254		uvmexp.wired--;
1255	}
1256}
1257
1258/*
1259 * uvm_pagedeactivate: deactivate page -- no pmaps have access to page
1260 *
1261 * => caller must lock page queues
1262 * => caller must check to make sure page is not wired
1263 * => object that page belongs to must be locked (so we can adjust pg->flags)
1264 */
1265void
1266uvm_pagedeactivate(struct vm_page *pg)
1267{
1268	KASSERT(uvm_page_owner_locked_p(pg));
1269	MUTEX_ASSERT_LOCKED(&uvm.pageqlock);
1270
1271	if (pg->pg_flags & PQ_ACTIVE) {
1272		TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1273		atomic_clearbits_int(&pg->pg_flags, PQ_ACTIVE);
1274		uvmexp.active--;
1275	}
1276	if ((pg->pg_flags & PQ_INACTIVE) == 0) {
1277		KASSERT(pg->wire_count == 0);
1278		TAILQ_INSERT_TAIL(&uvm.page_inactive, pg, pageq);
1279		atomic_setbits_int(&pg->pg_flags, PQ_INACTIVE);
1280		uvmexp.inactive++;
1281		pmap_clear_reference(pg);
1282		/*
1283		 * update the "clean" bit.  this isn't 100%
1284		 * accurate, and doesn't have to be.  we'll
1285		 * re-sync it after we zap all mappings when
1286		 * scanning the inactive list.
1287		 */
1288		if ((pg->pg_flags & PG_CLEAN) != 0 &&
1289		    pmap_is_modified(pg))
1290			atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1291	}
1292}
1293
1294/*
1295 * uvm_pageactivate: activate page
1296 *
1297 * => caller must lock page queues
1298 */
1299void
1300uvm_pageactivate(struct vm_page *pg)
1301{
1302	KASSERT(uvm_page_owner_locked_p(pg));
1303	MUTEX_ASSERT_LOCKED(&uvm.pageqlock);
1304
1305	uvm_pagedequeue(pg);
1306	if (pg->wire_count == 0) {
1307		TAILQ_INSERT_TAIL(&uvm.page_active, pg, pageq);
1308		atomic_setbits_int(&pg->pg_flags, PQ_ACTIVE);
1309		uvmexp.active++;
1310
1311	}
1312}
1313
1314/*
1315 * uvm_pagedequeue: remove a page from any paging queue
1316 */
1317void
1318uvm_pagedequeue(struct vm_page *pg)
1319{
1320	if (pg->pg_flags & PQ_ACTIVE) {
1321		TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1322		atomic_clearbits_int(&pg->pg_flags, PQ_ACTIVE);
1323		uvmexp.active--;
1324	}
1325	if (pg->pg_flags & PQ_INACTIVE) {
1326		TAILQ_REMOVE(&uvm.page_inactive, pg, pageq);
1327		atomic_clearbits_int(&pg->pg_flags, PQ_INACTIVE);
1328		uvmexp.inactive--;
1329	}
1330}
1331/*
1332 * uvm_pagezero: zero fill a page
1333 */
1334void
1335uvm_pagezero(struct vm_page *pg)
1336{
1337	atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1338	pmap_zero_page(pg);
1339}
1340
1341/*
1342 * uvm_pagecopy: copy a page
1343 */
1344void
1345uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
1346{
1347	atomic_clearbits_int(&dst->pg_flags, PG_CLEAN);
1348	pmap_copy_page(src, dst);
1349}
1350
1351/*
1352 * uvm_page_owner_locked_p: return true if object associated with page is
1353 * locked.  this is a weak check for runtime assertions only.
1354 */
1355int
1356uvm_page_owner_locked_p(struct vm_page *pg)
1357{
1358	if (pg->uobject != NULL) {
1359		if (UVM_OBJ_IS_DUMMY(pg->uobject))
1360			return 1;
1361		return rw_write_held(pg->uobject->vmobjlock);
1362	}
1363	if (pg->uanon != NULL) {
1364		return rw_write_held(pg->uanon->an_lock);
1365	}
1366	return 1;
1367}
1368
1369/*
1370 * uvm_pagecount: count the number of physical pages in the address range.
1371 */
1372psize_t
1373uvm_pagecount(struct uvm_constraint_range* constraint)
1374{
1375	int lcv;
1376	psize_t sz;
1377	paddr_t low, high;
1378	paddr_t ps_low, ps_high;
1379
1380	/* Algorithm uses page numbers. */
1381	low = atop(constraint->ucr_low);
1382	high = atop(constraint->ucr_high);
1383
1384	sz = 0;
1385	for (lcv = 0; lcv < vm_nphysseg; lcv++) {
1386		ps_low = MAX(low, vm_physmem[lcv].avail_start);
1387		ps_high = MIN(high, vm_physmem[lcv].avail_end);
1388		if (ps_low < ps_high)
1389			sz += ps_high - ps_low;
1390	}
1391	return sz;
1392}
1393