1/*	$OpenBSD: uvm_amap.c,v 1.95 2024/05/20 17:03:36 dv Exp $	*/
2/*	$NetBSD: uvm_amap.c,v 1.27 2000/11/25 06:27:59 chs Exp $	*/
3
4/*
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30 * uvm_amap.c: amap operations
31 *
32 * this file contains functions that perform operations on amaps.  see
33 * uvm_amap.h for a brief explanation of the role of amaps in uvm.
34 */
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/malloc.h>
39#include <sys/kernel.h>
40#include <sys/pool.h>
41#include <sys/atomic.h>
42
43#include <uvm/uvm.h>
44#include <uvm/uvm_swap.h>
45
46/*
47 * pools for allocation of vm_amap structures.  note that in order to
48 * avoid an endless loop, the amap pool's allocator cannot allocate
49 * memory from an amap (it currently goes through the kernel uobj, so
50 * we are ok).
51 */
52
53struct pool uvm_amap_pool;
54struct pool uvm_small_amap_pool[UVM_AMAP_CHUNK];
55struct pool uvm_amap_chunk_pool;
56
57LIST_HEAD(, vm_amap) amap_list;
58struct rwlock amap_list_lock = RWLOCK_INITIALIZER("amaplstlk");
59#define amap_lock_list()	rw_enter_write(&amap_list_lock)
60#define amap_unlock_list()	rw_exit_write(&amap_list_lock)
61
62static char amap_small_pool_names[UVM_AMAP_CHUNK][9];
63
64/*
65 * local functions
66 */
67
68static struct vm_amap *amap_alloc1(int, int, int);
69static inline void amap_list_insert(struct vm_amap *);
70static inline void amap_list_remove(struct vm_amap *);
71
72struct vm_amap_chunk *amap_chunk_get(struct vm_amap *, int, int, int);
73void amap_chunk_free(struct vm_amap *, struct vm_amap_chunk *);
74
75/*
76 * if we enable PPREF, then we have a couple of extra functions that
77 * we need to prototype here...
78 */
79
80#ifdef UVM_AMAP_PPREF
81
82#define PPREF_NONE ((int *) -1)	/* not using ppref */
83
84void	amap_pp_adjref(struct vm_amap *, int, vsize_t, int);
85void	amap_pp_establish(struct vm_amap *);
86void	amap_wiperange_chunk(struct vm_amap *, struct vm_amap_chunk *, int,
87	    int);
88void	amap_wiperange(struct vm_amap *, int, int);
89
90#endif	/* UVM_AMAP_PPREF */
91
92static inline void
93amap_list_insert(struct vm_amap *amap)
94{
95	amap_lock_list();
96	LIST_INSERT_HEAD(&amap_list, amap, am_list);
97	amap_unlock_list();
98}
99
100static inline void
101amap_list_remove(struct vm_amap *amap)
102{
103	amap_lock_list();
104	LIST_REMOVE(amap, am_list);
105	amap_unlock_list();
106}
107
108/*
109 * amap_chunk_get: lookup a chunk for slot. if create is non-zero,
110 * the chunk is created if it does not yet exist.
111 *
112 * => returns the chunk on success or NULL on error
113 */
114struct vm_amap_chunk *
115amap_chunk_get(struct vm_amap *amap, int slot, int create, int waitf)
116{
117	int bucket = UVM_AMAP_BUCKET(amap, slot);
118	int baseslot = AMAP_BASE_SLOT(slot);
119	int n;
120	struct vm_amap_chunk *chunk, *newchunk, *pchunk = NULL;
121
122	if (UVM_AMAP_SMALL(amap))
123		return &amap->am_small;
124
125	for (chunk = amap->am_buckets[bucket]; chunk != NULL;
126	    chunk = TAILQ_NEXT(chunk, ac_list)) {
127		if (UVM_AMAP_BUCKET(amap, chunk->ac_baseslot) != bucket)
128			break;
129		if (chunk->ac_baseslot == baseslot)
130			return chunk;
131		pchunk = chunk;
132	}
133	if (!create)
134		return NULL;
135
136	if (amap->am_nslot - baseslot >= UVM_AMAP_CHUNK)
137		n = UVM_AMAP_CHUNK;
138	else
139		n = amap->am_nslot - baseslot;
140
141	newchunk = pool_get(&uvm_amap_chunk_pool, waitf | PR_ZERO);
142	if (newchunk == NULL)
143		return NULL;
144
145	if (pchunk == NULL) {
146		TAILQ_INSERT_TAIL(&amap->am_chunks, newchunk, ac_list);
147		KASSERT(amap->am_buckets[bucket] == NULL);
148		amap->am_buckets[bucket] = newchunk;
149	} else
150		TAILQ_INSERT_AFTER(&amap->am_chunks, pchunk, newchunk,
151		    ac_list);
152
153	amap->am_ncused++;
154	newchunk->ac_baseslot = baseslot;
155	newchunk->ac_nslot = n;
156	return newchunk;
157}
158
159void
160amap_chunk_free(struct vm_amap *amap, struct vm_amap_chunk *chunk)
161{
162	int bucket = UVM_AMAP_BUCKET(amap, chunk->ac_baseslot);
163	struct vm_amap_chunk *nchunk;
164
165	if (UVM_AMAP_SMALL(amap))
166		return;
167
168	nchunk = TAILQ_NEXT(chunk, ac_list);
169	TAILQ_REMOVE(&amap->am_chunks, chunk, ac_list);
170	if (amap->am_buckets[bucket] == chunk) {
171		if (nchunk != NULL &&
172		    UVM_AMAP_BUCKET(amap, nchunk->ac_baseslot) == bucket)
173			amap->am_buckets[bucket] = nchunk;
174		else
175			amap->am_buckets[bucket] = NULL;
176
177	}
178	pool_put(&uvm_amap_chunk_pool, chunk);
179	amap->am_ncused--;
180}
181
182#ifdef UVM_AMAP_PPREF
183/*
184 * what is ppref?   ppref is an _optional_ amap feature which is used
185 * to keep track of reference counts on a per-page basis.  it is enabled
186 * when UVM_AMAP_PPREF is defined.
187 *
188 * when enabled, an array of ints is allocated for the pprefs.  this
189 * array is allocated only when a partial reference is added to the
190 * map (either by unmapping part of the amap, or gaining a reference
191 * to only a part of an amap).  if the allocation of the array fails
192 * (M_NOWAIT), then we set the array pointer to PPREF_NONE to indicate
193 * that we tried to do ppref's but couldn't alloc the array so just
194 * give up (after all, this is an optional feature!).
195 *
196 * the array is divided into page sized "chunks."   for chunks of length 1,
197 * the chunk reference count plus one is stored in that chunk's slot.
198 * for chunks of length > 1 the first slot contains (the reference count
199 * plus one) * -1.    [the negative value indicates that the length is
200 * greater than one.]   the second slot of the chunk contains the length
201 * of the chunk.   here is an example:
202 *
203 * actual REFS:  2  2  2  2  3  1  1  0  0  0  4  4  0  1  1  1
204 *       ppref: -3  4  x  x  4 -2  2 -1  3  x -5  2  1 -2  3  x
205 *              <----------><-><----><-------><----><-><------->
206 * (x = don't care)
207 *
208 * this allows us to allow one int to contain the ref count for the whole
209 * chunk.    note that the "plus one" part is needed because a reference
210 * count of zero is neither positive or negative (need a way to tell
211 * if we've got one zero or a bunch of them).
212 *
213 * here are some in-line functions to help us.
214 */
215
216/*
217 * pp_getreflen: get the reference and length for a specific offset
218 *
219 * => ppref's amap must be locked
220 */
221static inline void
222pp_getreflen(int *ppref, int offset, int *refp, int *lenp)
223{
224
225	if (ppref[offset] > 0) {		/* chunk size must be 1 */
226		*refp = ppref[offset] - 1;	/* don't forget to adjust */
227		*lenp = 1;
228	} else {
229		*refp = (ppref[offset] * -1) - 1;
230		*lenp = ppref[offset+1];
231	}
232}
233
234/*
235 * pp_setreflen: set the reference and length for a specific offset
236 *
237 * => ppref's amap must be locked
238 */
239static inline void
240pp_setreflen(int *ppref, int offset, int ref, int len)
241{
242	if (len == 1) {
243		ppref[offset] = ref + 1;
244	} else {
245		ppref[offset] = (ref + 1) * -1;
246		ppref[offset+1] = len;
247	}
248}
249#endif /* UVM_AMAP_PPREF */
250
251/*
252 * amap_init: called at boot time to init global amap data structures
253 */
254
255void
256amap_init(void)
257{
258	int i;
259	size_t size;
260
261	/* Initialize the vm_amap pool. */
262	pool_init(&uvm_amap_pool, sizeof(struct vm_amap),
263	    0, IPL_MPFLOOR, PR_WAITOK, "amappl", NULL);
264	pool_sethiwat(&uvm_amap_pool, 4096);
265
266	/* initialize small amap pools */
267	for (i = 0; i < nitems(uvm_small_amap_pool); i++) {
268		snprintf(amap_small_pool_names[i],
269		    sizeof(amap_small_pool_names[0]), "amappl%d", i + 1);
270		size = offsetof(struct vm_amap, am_small.ac_anon) +
271		    (i + 1) * sizeof(struct vm_anon *);
272		pool_init(&uvm_small_amap_pool[i], size, 0, IPL_MPFLOOR,
273		    PR_WAITOK, amap_small_pool_names[i], NULL);
274	}
275
276	pool_init(&uvm_amap_chunk_pool, sizeof(struct vm_amap_chunk) +
277	    UVM_AMAP_CHUNK * sizeof(struct vm_anon *),
278	    0, IPL_MPFLOOR, PR_WAITOK, "amapchunkpl", NULL);
279	pool_sethiwat(&uvm_amap_chunk_pool, 4096);
280}
281
282/*
283 * amap_alloc1: allocate an amap, but do not initialise the overlay.
284 *
285 * => Note: lock is not set.
286 */
287static inline struct vm_amap *
288amap_alloc1(int slots, int waitf, int lazyalloc)
289{
290	struct vm_amap *amap;
291	struct vm_amap_chunk *chunk, *tmp;
292	int chunks, log_chunks, chunkperbucket = 1, hashshift = 0;
293	int buckets, i, n;
294	int pwaitf = (waitf & M_WAITOK) ? PR_WAITOK : PR_NOWAIT;
295
296	KASSERT(slots > 0);
297
298	/*
299	 * Cast to unsigned so that rounding up cannot cause integer overflow
300	 * if slots is large.
301	 */
302	chunks = roundup((unsigned int)slots, UVM_AMAP_CHUNK) / UVM_AMAP_CHUNK;
303
304	if (lazyalloc) {
305		/*
306		 * Basically, the amap is a hash map where the number of
307		 * buckets is fixed. We select the number of buckets using the
308		 * following strategy:
309		 *
310		 * 1. The maximal number of entries to search in a bucket upon
311		 * a collision should be less than or equal to
312		 * log2(slots / UVM_AMAP_CHUNK). This is the worst-case number
313		 * of lookups we would have if we could chunk the amap. The
314		 * log2(n) comes from the fact that amaps are chunked by
315		 * splitting up their vm_map_entries and organizing those
316		 * in a binary search tree.
317		 *
318		 * 2. The maximal number of entries in a bucket must be a
319		 * power of two.
320		 *
321		 * The maximal number of entries per bucket is used to hash
322		 * a slot to a bucket.
323		 *
324		 * In the future, this strategy could be refined to make it
325		 * even harder/impossible that the total amount of KVA needed
326		 * for the hash buckets of all amaps to exceed the maximal
327		 * amount of KVA memory reserved for amaps.
328		 */
329		for (log_chunks = 1; (chunks >> log_chunks) > 0; log_chunks++)
330			continue;
331
332		chunkperbucket = 1 << hashshift;
333		while (chunkperbucket + 1 < log_chunks) {
334			hashshift++;
335			chunkperbucket = 1 << hashshift;
336		}
337	}
338
339	if (slots > UVM_AMAP_CHUNK)
340		amap = pool_get(&uvm_amap_pool, pwaitf);
341	else
342		amap = pool_get(&uvm_small_amap_pool[slots - 1],
343		    pwaitf | PR_ZERO);
344	if (amap == NULL)
345		return NULL;
346
347	amap->am_lock = NULL;
348	amap->am_ref = 1;
349	amap->am_flags = 0;
350#ifdef UVM_AMAP_PPREF
351	amap->am_ppref = NULL;
352#endif
353	amap->am_nslot = slots;
354	amap->am_nused = 0;
355
356	if (UVM_AMAP_SMALL(amap)) {
357		amap->am_small.ac_nslot = slots;
358		return amap;
359	}
360
361	amap->am_ncused = 0;
362	TAILQ_INIT(&amap->am_chunks);
363	amap->am_hashshift = hashshift;
364	amap->am_buckets = NULL;
365
366	buckets = howmany(chunks, chunkperbucket);
367	amap->am_buckets = mallocarray(buckets, sizeof(*amap->am_buckets),
368	    M_UVMAMAP, waitf | (lazyalloc ? M_ZERO : 0));
369	if (amap->am_buckets == NULL)
370		goto fail1;
371	amap->am_nbuckets = buckets;
372
373	if (!lazyalloc) {
374		for (i = 0; i < buckets; i++) {
375			if (i == buckets - 1) {
376				n = slots % UVM_AMAP_CHUNK;
377				if (n == 0)
378					n = UVM_AMAP_CHUNK;
379			} else
380				n = UVM_AMAP_CHUNK;
381
382			chunk = pool_get(&uvm_amap_chunk_pool,
383			    PR_ZERO | pwaitf);
384			if (chunk == NULL)
385				goto fail1;
386
387			amap->am_buckets[i] = chunk;
388			amap->am_ncused++;
389			chunk->ac_baseslot = i * UVM_AMAP_CHUNK;
390			chunk->ac_nslot = n;
391			TAILQ_INSERT_TAIL(&amap->am_chunks, chunk, ac_list);
392		}
393	}
394
395	return amap;
396
397fail1:
398	free(amap->am_buckets, M_UVMAMAP, buckets * sizeof(*amap->am_buckets));
399	TAILQ_FOREACH_SAFE(chunk, &amap->am_chunks, ac_list, tmp)
400		pool_put(&uvm_amap_chunk_pool, chunk);
401	pool_put(&uvm_amap_pool, amap);
402	return NULL;
403}
404
405static void
406amap_lock_alloc(struct vm_amap *amap)
407{
408	rw_obj_alloc(&amap->am_lock, "amaplk");
409}
410
411/*
412 * amap_alloc: allocate an amap to manage "sz" bytes of anonymous VM
413 *
414 * => caller should ensure sz is a multiple of PAGE_SIZE
415 * => reference count to new amap is set to one
416 * => new amap is returned unlocked
417 */
418struct vm_amap *
419amap_alloc(vaddr_t sz, int waitf, int lazyalloc)
420{
421	struct vm_amap *amap;
422	size_t slots;
423
424	AMAP_B2SLOT(slots, sz);		/* load slots */
425	if (slots > INT_MAX)
426		return NULL;
427
428	amap = amap_alloc1(slots, waitf, lazyalloc);
429	if (amap != NULL) {
430		amap_lock_alloc(amap);
431		amap_list_insert(amap);
432	}
433
434	return amap;
435}
436
437
438/*
439 * amap_free: free an amap
440 *
441 * => the amap must be unlocked
442 * => the amap should have a zero reference count and be empty
443 */
444void
445amap_free(struct vm_amap *amap)
446{
447	struct vm_amap_chunk *chunk, *tmp;
448
449	KASSERT(amap->am_ref == 0 && amap->am_nused == 0);
450	KASSERT((amap->am_flags & AMAP_SWAPOFF) == 0);
451
452	if (amap->am_lock != NULL) {
453		KASSERT(!rw_write_held(amap->am_lock));
454		rw_obj_free(amap->am_lock);
455	}
456
457#ifdef UVM_AMAP_PPREF
458	if (amap->am_ppref && amap->am_ppref != PPREF_NONE)
459		free(amap->am_ppref, M_UVMAMAP, amap->am_nslot * sizeof(int));
460#endif
461
462	if (UVM_AMAP_SMALL(amap))
463		pool_put(&uvm_small_amap_pool[amap->am_nslot - 1], amap);
464	else {
465		TAILQ_FOREACH_SAFE(chunk, &amap->am_chunks, ac_list, tmp)
466		    pool_put(&uvm_amap_chunk_pool, chunk);
467		free(amap->am_buckets, M_UVMAMAP,
468		    amap->am_nbuckets * sizeof(*amap->am_buckets));
469		pool_put(&uvm_amap_pool, amap);
470	}
471}
472
473/*
474 * amap_wipeout: wipeout all anon's in an amap; then free the amap!
475 *
476 * => Called from amap_unref(), when reference count drops to zero.
477 * => amap must be locked.
478 */
479void
480amap_wipeout(struct vm_amap *amap)
481{
482	int slot;
483	struct vm_anon *anon;
484	struct vm_amap_chunk *chunk;
485
486	KASSERT(rw_write_held(amap->am_lock));
487	KASSERT(amap->am_ref == 0);
488
489	if (__predict_false((amap->am_flags & AMAP_SWAPOFF) != 0)) {
490		/*
491		 * Note: amap_swap_off() will call us again.
492		 */
493		amap_unlock(amap);
494		return;
495	}
496
497	amap_list_remove(amap);
498
499	AMAP_CHUNK_FOREACH(chunk, amap) {
500		int i, refs, map = chunk->ac_usedmap;
501
502		for (i = ffs(map); i != 0; i = ffs(map)) {
503			slot = i - 1;
504			map ^= 1 << slot;
505			anon = chunk->ac_anon[slot];
506
507			if (anon == NULL || anon->an_ref == 0)
508				panic("amap_wipeout: corrupt amap");
509			KASSERT(anon->an_lock == amap->am_lock);
510
511			/*
512			 * Drop the reference.
513			 */
514			refs = --anon->an_ref;
515			if (refs == 0) {
516				uvm_anfree(anon);
517			}
518		}
519	}
520
521	/*
522	 * Finally, destroy the amap.
523	 */
524	amap->am_ref = 0;	/* ... was one */
525	amap->am_nused = 0;
526	amap_unlock(amap);
527	amap_free(amap);
528}
529
530/*
531 * amap_copy: ensure that a map entry's "needs_copy" flag is false
532 *	by copying the amap if necessary.
533 *
534 * => an entry with a null amap pointer will get a new (blank) one.
535 * => the map that the map entry belongs to must be locked by caller.
536 * => the amap currently attached to "entry" (if any) must be unlocked.
537 * => if canchunk is true, then we may clip the entry into a chunk
538 * => "startva" and "endva" are used only if canchunk is true.  they are
539 *     used to limit chunking (e.g. if you have a large space that you
540 *     know you are going to need to allocate amaps for, there is no point
541 *     in allowing that to be chunked)
542 */
543
544void
545amap_copy(struct vm_map *map, struct vm_map_entry *entry, int waitf,
546    boolean_t canchunk, vaddr_t startva, vaddr_t endva)
547{
548	struct vm_amap *amap, *srcamap;
549	int slots, lcv, lazyalloc = 0;
550	vaddr_t chunksize;
551	int i, j, k, n, srcslot;
552	struct vm_amap_chunk *chunk = NULL, *srcchunk = NULL;
553	struct vm_anon *anon;
554
555	KASSERT(map != kernel_map);		/* we use sleeping locks */
556
557	/*
558	 * Is there an amap to copy?  If not, create one.
559	 */
560	if (entry->aref.ar_amap == NULL) {
561		/*
562		 * Check to see if we have a large amap that we can
563		 * chunk.  We align startva/endva to chunk-sized
564		 * boundaries and then clip to them.
565		 *
566		 * If we cannot chunk the amap, allocate it in a way
567		 * that makes it grow or shrink dynamically with
568		 * the number of slots.
569		 */
570		if (atop(entry->end - entry->start) >= UVM_AMAP_LARGE) {
571			if (canchunk) {
572				/* convert slots to bytes */
573				chunksize = UVM_AMAP_CHUNK << PAGE_SHIFT;
574				startva = (startva / chunksize) * chunksize;
575				endva = roundup(endva, chunksize);
576				UVM_MAP_CLIP_START(map, entry, startva);
577				/* watch out for endva wrap-around! */
578				if (endva >= startva)
579					UVM_MAP_CLIP_END(map, entry, endva);
580			} else
581				lazyalloc = 1;
582		}
583
584		entry->aref.ar_pageoff = 0;
585		entry->aref.ar_amap = amap_alloc(entry->end - entry->start,
586		    waitf, lazyalloc);
587		if (entry->aref.ar_amap != NULL)
588			entry->etype &= ~UVM_ET_NEEDSCOPY;
589		return;
590	}
591
592	/*
593	 * First check and see if we are the only map entry referencing
594	 * he amap we currently have.  If so, then just take it over instead
595	 * of copying it.  Note that we are reading am_ref without lock held
596	 * as the value can only be one if we have the only reference
597	 * to the amap (via our locked map).  If the value is greater than
598	 * one, then allocate amap and re-check the value.
599	 */
600	if (entry->aref.ar_amap->am_ref == 1) {
601		entry->etype &= ~UVM_ET_NEEDSCOPY;
602		return;
603	}
604
605	/*
606	 * Allocate a new amap (note: not initialised, etc).
607	 */
608	AMAP_B2SLOT(slots, entry->end - entry->start);
609	if (!UVM_AMAP_SMALL(entry->aref.ar_amap) &&
610	    entry->aref.ar_amap->am_hashshift != 0)
611		lazyalloc = 1;
612	amap = amap_alloc1(slots, waitf, lazyalloc);
613	if (amap == NULL)
614		return;
615	srcamap = entry->aref.ar_amap;
616
617	/*
618	 * Make the new amap share the source amap's lock, and then lock
619	 * both.
620	 */
621	amap->am_lock = srcamap->am_lock;
622	rw_obj_hold(amap->am_lock);
623
624	amap_lock(srcamap);
625
626	/*
627	 * Re-check the reference count with the lock held.  If it has
628	 * dropped to one - we can take over the existing map.
629	 */
630	if (srcamap->am_ref == 1) {
631		/* Just take over the existing amap. */
632		entry->etype &= ~UVM_ET_NEEDSCOPY;
633		amap_unlock(srcamap);
634		/* Destroy the new (unused) amap. */
635		amap->am_ref--;
636		amap_free(amap);
637		return;
638	}
639
640	/*
641	 * Copy the slots.
642	 */
643	for (lcv = 0; lcv < slots; lcv += n) {
644		srcslot = entry->aref.ar_pageoff + lcv;
645		i = UVM_AMAP_SLOTIDX(lcv);
646		j = UVM_AMAP_SLOTIDX(srcslot);
647		n = UVM_AMAP_CHUNK;
648		if (i > j)
649			n -= i;
650		else
651			n -= j;
652		if (lcv + n > slots)
653			n = slots - lcv;
654
655		srcchunk = amap_chunk_get(srcamap, srcslot, 0, PR_NOWAIT);
656		if (srcchunk == NULL)
657			continue;
658
659		chunk = amap_chunk_get(amap, lcv, 1, PR_NOWAIT);
660		if (chunk == NULL) {
661			amap_unlock(srcamap);
662			/* Destroy the new amap. */
663			amap->am_ref--;
664			amap_free(amap);
665			return;
666		}
667
668		for (k = 0; k < n; i++, j++, k++) {
669			chunk->ac_anon[i] = anon = srcchunk->ac_anon[j];
670			if (anon == NULL)
671				continue;
672
673			KASSERT(anon->an_lock == srcamap->am_lock);
674			KASSERT(anon->an_ref > 0);
675			chunk->ac_usedmap |= (1 << i);
676			anon->an_ref++;
677			amap->am_nused++;
678		}
679	}
680
681	/*
682	 * Drop our reference to the old amap (srcamap) and unlock.
683	 * Since the reference count on srcamap is greater than one,
684	 * (we checked above), it cannot drop to zero while it is locked.
685	 */
686	srcamap->am_ref--;
687	KASSERT(srcamap->am_ref > 0);
688
689	if (srcamap->am_ref == 1 && (srcamap->am_flags & AMAP_SHARED) != 0)
690		srcamap->am_flags &= ~AMAP_SHARED;   /* clear shared flag */
691#ifdef UVM_AMAP_PPREF
692	if (srcamap->am_ppref && srcamap->am_ppref != PPREF_NONE) {
693		amap_pp_adjref(srcamap, entry->aref.ar_pageoff,
694		    (entry->end - entry->start) >> PAGE_SHIFT, -1);
695	}
696#endif
697
698	/*
699	 * If we referenced any anons, then share the source amap's lock.
700	 * Otherwise, we have nothing in common, so allocate a new one.
701	 */
702	KASSERT(amap->am_lock == srcamap->am_lock);
703	if (amap->am_nused == 0) {
704		rw_obj_free(amap->am_lock);
705		amap->am_lock = NULL;
706	}
707	amap_unlock(srcamap);
708
709	if (amap->am_lock == NULL)
710		amap_lock_alloc(amap);
711
712	/*
713	 * Install new amap.
714	 */
715	entry->aref.ar_pageoff = 0;
716	entry->aref.ar_amap = amap;
717	entry->etype &= ~UVM_ET_NEEDSCOPY;
718
719	amap_list_insert(amap);
720}
721
722/*
723 * amap_cow_now: resolve all copy-on-write faults in an amap now for fork(2)
724 *
725 *	called during fork(2) when the parent process has a wired map
726 *	entry.   in that case we want to avoid write-protecting pages
727 *	in the parent's map (e.g. like what you'd do for a COW page)
728 *	so we resolve the COW here.
729 *
730 * => assume parent's entry was wired, thus all pages are resident.
731 * => the parent and child vm_map must both be locked.
732 * => caller passes child's map/entry in to us
733 * => XXXCDC: out of memory should cause fork to fail, but there is
734 *	currently no easy way to do this (needs fix)
735 */
736
737void
738amap_cow_now(struct vm_map *map, struct vm_map_entry *entry)
739{
740	struct vm_amap *amap = entry->aref.ar_amap;
741	int slot;
742	struct vm_anon *anon, *nanon;
743	struct vm_page *pg, *npg;
744	struct vm_amap_chunk *chunk;
745
746	/*
747	 * note that if we unlock the amap then we must ReStart the "lcv" for
748	 * loop because some other process could reorder the anon's in the
749	 * am_anon[] array on us while the lock is dropped.
750	 */
751ReStart:
752	amap_lock(amap);
753	AMAP_CHUNK_FOREACH(chunk, amap) {
754		int i, map = chunk->ac_usedmap;
755
756		for (i = ffs(map); i != 0; i = ffs(map)) {
757			slot = i - 1;
758			map ^= 1 << slot;
759			anon = chunk->ac_anon[slot];
760			pg = anon->an_page;
761			KASSERT(anon->an_lock == amap->am_lock);
762
763			/*
764			 * The old page must be resident since the parent is
765			 * wired.
766			 */
767			KASSERT(pg != NULL);
768
769			/*
770			 * if the anon ref count is one, we are safe (the child
771			 * has exclusive access to the page).
772			 */
773			if (anon->an_ref <= 1)
774				continue;
775
776			/*
777			 * If the page is busy, then we have to unlock, wait for
778			 * it and then restart.
779			 */
780			if (pg->pg_flags & PG_BUSY) {
781				uvm_pagewait(pg, amap->am_lock, "cownow");
782				goto ReStart;
783			}
784
785			/*
786			 * Perform a copy-on-write.
787			 * First - get a new anon and a page.
788			 */
789			nanon = uvm_analloc();
790			if (nanon != NULL) {
791				/* the new anon will share the amap's lock */
792				nanon->an_lock = amap->am_lock;
793				npg = uvm_pagealloc(NULL, 0, nanon, 0);
794			} else
795				npg = NULL;	/* XXX: quiet gcc warning */
796
797			if (nanon == NULL || npg == NULL) {
798				/* out of memory */
799				amap_unlock(amap);
800				if (nanon != NULL) {
801					nanon->an_lock = NULL;
802					nanon->an_ref--;
803					KASSERT(nanon->an_ref == 0);
804					uvm_anfree(nanon);
805				}
806				uvm_wait("cownowpage");
807				goto ReStart;
808			}
809
810			/*
811			 * Copy the data and replace anon with the new one.
812			 * Also, setup its lock (share the with amap's lock).
813			 */
814			uvm_pagecopy(pg, npg);
815			anon->an_ref--;
816			KASSERT(anon->an_ref > 0);
817			chunk->ac_anon[slot] = nanon;
818
819			/*
820			 * Drop PG_BUSY on new page.  Since its owner was write
821			 * locked all this time - it cannot be PG_RELEASED or
822			 * PG_WANTED.
823			 */
824			atomic_clearbits_int(&npg->pg_flags, PG_BUSY|PG_FAKE);
825			UVM_PAGE_OWN(npg, NULL);
826			uvm_lock_pageq();
827			uvm_pageactivate(npg);
828			uvm_unlock_pageq();
829		}
830	}
831	amap_unlock(amap);
832}
833
834/*
835 * amap_splitref: split a single reference into two separate references
836 *
837 * => called from uvm_map's clip routines
838 * => origref's map should be locked
839 * => origref->ar_amap should be unlocked (we will lock)
840 */
841void
842amap_splitref(struct vm_aref *origref, struct vm_aref *splitref, vaddr_t offset)
843{
844	struct vm_amap *amap = origref->ar_amap;
845	int leftslots;
846
847	KASSERT(splitref->ar_amap == amap);
848	AMAP_B2SLOT(leftslots, offset);
849	if (leftslots == 0)
850		panic("amap_splitref: split at zero offset");
851
852	amap_lock(amap);
853
854	if (amap->am_nslot - origref->ar_pageoff - leftslots <= 0)
855		panic("amap_splitref: map size check failed");
856
857#ifdef UVM_AMAP_PPREF
858	/* Establish ppref before we add a duplicate reference to the amap. */
859	if (amap->am_ppref == NULL)
860		amap_pp_establish(amap);
861#endif
862
863	/* Note: not a share reference. */
864	amap->am_ref++;
865	splitref->ar_amap = amap;
866	splitref->ar_pageoff = origref->ar_pageoff + leftslots;
867	amap_unlock(amap);
868}
869
870#ifdef UVM_AMAP_PPREF
871
872/*
873 * amap_pp_establish: add a ppref array to an amap, if possible.
874 *
875 * => amap should be locked by caller* => amap should be locked by caller
876 */
877void
878amap_pp_establish(struct vm_amap *amap)
879{
880
881	KASSERT(rw_write_held(amap->am_lock));
882	amap->am_ppref = mallocarray(amap->am_nslot, sizeof(int),
883	    M_UVMAMAP, M_NOWAIT|M_ZERO);
884
885	if (amap->am_ppref == NULL) {
886		/* Failure - just do not use ppref. */
887		amap->am_ppref = PPREF_NONE;
888		return;
889	}
890
891	pp_setreflen(amap->am_ppref, 0, amap->am_ref, amap->am_nslot);
892}
893
894/*
895 * amap_pp_adjref: adjust reference count to a part of an amap using the
896 * per-page reference count array.
897 *
898 * => caller must check that ppref != PPREF_NONE before calling.
899 * => map and amap must be locked.
900 */
901void
902amap_pp_adjref(struct vm_amap *amap, int curslot, vsize_t slotlen, int adjval)
903{
904 	int stopslot, *ppref, lcv, prevlcv;
905 	int ref, len, prevref, prevlen;
906
907	KASSERT(rw_write_held(amap->am_lock));
908
909	stopslot = curslot + slotlen;
910	ppref = amap->am_ppref;
911 	prevlcv = 0;
912
913	/*
914	 * Advance to the correct place in the array, fragment if needed.
915	 */
916	for (lcv = 0 ; lcv < curslot ; lcv += len) {
917		pp_getreflen(ppref, lcv, &ref, &len);
918		if (lcv + len > curslot) {     /* goes past start? */
919			pp_setreflen(ppref, lcv, ref, curslot - lcv);
920			pp_setreflen(ppref, curslot, ref, len - (curslot -lcv));
921			len = curslot - lcv;   /* new length of entry @ lcv */
922		}
923		prevlcv = lcv;
924	}
925	if (lcv != 0)
926		pp_getreflen(ppref, prevlcv, &prevref, &prevlen);
927	else {
928		/*
929		 * Ensure that the "prevref == ref" test below always
930		 * fails, since we are starting from the beginning of
931		 * the ppref array; that is, there is no previous chunk.
932		 */
933		prevref = -1;
934		prevlen = 0;
935	}
936
937	/*
938	 * Now adjust reference counts in range.  Merge the first
939	 * changed entry with the last unchanged entry if possible.
940	 */
941	if (lcv != curslot)
942		panic("amap_pp_adjref: overshot target");
943
944	for (/* lcv already set */; lcv < stopslot ; lcv += len) {
945		pp_getreflen(ppref, lcv, &ref, &len);
946		if (lcv + len > stopslot) {     /* goes past end? */
947			pp_setreflen(ppref, lcv, ref, stopslot - lcv);
948			pp_setreflen(ppref, stopslot, ref,
949			    len - (stopslot - lcv));
950			len = stopslot - lcv;
951		}
952		ref += adjval;
953		if (ref < 0)
954			panic("amap_pp_adjref: negative reference count");
955		if (lcv == prevlcv + prevlen && ref == prevref) {
956			pp_setreflen(ppref, prevlcv, ref, prevlen + len);
957		} else {
958			pp_setreflen(ppref, lcv, ref, len);
959		}
960		if (ref == 0)
961			amap_wiperange(amap, lcv, len);
962	}
963
964}
965
966void
967amap_wiperange_chunk(struct vm_amap *amap, struct vm_amap_chunk *chunk,
968    int slotoff, int slots)
969{
970	int curslot, i, map;
971	int startbase, endbase;
972	struct vm_anon *anon;
973
974	startbase = AMAP_BASE_SLOT(slotoff);
975	endbase = AMAP_BASE_SLOT(slotoff + slots - 1);
976
977	map = chunk->ac_usedmap;
978	if (startbase == chunk->ac_baseslot)
979		map &= ~((1 << (slotoff - startbase)) - 1);
980	if (endbase == chunk->ac_baseslot)
981		map &= (1 << (slotoff + slots - endbase)) - 1;
982
983	for (i = ffs(map); i != 0; i = ffs(map)) {
984		int refs;
985
986		curslot = i - 1;
987		map ^= 1 << curslot;
988		chunk->ac_usedmap ^= 1 << curslot;
989		anon = chunk->ac_anon[curslot];
990		KASSERT(anon->an_lock == amap->am_lock);
991
992		/* remove it from the amap */
993		chunk->ac_anon[curslot] = NULL;
994
995		amap->am_nused--;
996
997		/* drop anon reference count */
998		refs = --anon->an_ref;
999		if (refs == 0) {
1000			uvm_anfree(anon);
1001		}
1002
1003		/*
1004		 * done with this anon, next ...!
1005		 */
1006
1007	}	/* end of 'for' loop */
1008}
1009
1010/*
1011 * amap_wiperange: wipe out a range of an amap.
1012 * Note: different from amap_wipeout because the amap is kept intact.
1013 *
1014 * => Both map and amap must be locked by caller.
1015 */
1016void
1017amap_wiperange(struct vm_amap *amap, int slotoff, int slots)
1018{
1019	int bucket, startbucket, endbucket;
1020	struct vm_amap_chunk *chunk, *nchunk;
1021
1022	KASSERT(rw_write_held(amap->am_lock));
1023
1024	startbucket = UVM_AMAP_BUCKET(amap, slotoff);
1025	endbucket = UVM_AMAP_BUCKET(amap, slotoff + slots - 1);
1026
1027	/*
1028	 * We can either traverse the amap by am_chunks or by am_buckets.
1029	 * Determine which way is less expensive.
1030	 */
1031	if (UVM_AMAP_SMALL(amap))
1032		amap_wiperange_chunk(amap, &amap->am_small, slotoff, slots);
1033	else if (endbucket + 1 - startbucket >= amap->am_ncused) {
1034		TAILQ_FOREACH_SAFE(chunk, &amap->am_chunks, ac_list, nchunk) {
1035			if (chunk->ac_baseslot + chunk->ac_nslot <= slotoff)
1036				continue;
1037			if (chunk->ac_baseslot >= slotoff + slots)
1038				continue;
1039
1040			amap_wiperange_chunk(amap, chunk, slotoff, slots);
1041			if (chunk->ac_usedmap == 0)
1042				amap_chunk_free(amap, chunk);
1043		}
1044	} else {
1045		for (bucket = startbucket; bucket <= endbucket; bucket++) {
1046			for (chunk = amap->am_buckets[bucket]; chunk != NULL;
1047			    chunk = nchunk) {
1048				nchunk = TAILQ_NEXT(chunk, ac_list);
1049
1050				if (UVM_AMAP_BUCKET(amap, chunk->ac_baseslot) !=
1051				    bucket)
1052					break;
1053				if (chunk->ac_baseslot + chunk->ac_nslot <=
1054				    slotoff)
1055					continue;
1056				if (chunk->ac_baseslot >= slotoff + slots)
1057					continue;
1058
1059				amap_wiperange_chunk(amap, chunk, slotoff,
1060				    slots);
1061				if (chunk->ac_usedmap == 0)
1062					amap_chunk_free(amap, chunk);
1063			}
1064		}
1065	}
1066}
1067
1068#endif
1069
1070/*
1071 * amap_swap_off: pagein anonymous pages in amaps and drop swap slots.
1072 *
1073 * => note that we don't always traverse all anons.
1074 *    eg. amaps being wiped out, released anons.
1075 * => return TRUE if failed.
1076 */
1077
1078boolean_t
1079amap_swap_off(int startslot, int endslot)
1080{
1081	struct vm_amap *am;
1082	struct vm_amap *am_next;
1083	struct vm_amap marker;
1084	boolean_t rv = FALSE;
1085
1086	amap_lock_list();
1087	for (am = LIST_FIRST(&amap_list); am != NULL && !rv; am = am_next) {
1088		int i, map;
1089		struct vm_amap_chunk *chunk;
1090
1091		amap_lock(am);
1092		if (am->am_nused == 0) {
1093			amap_unlock(am);
1094			am_next = LIST_NEXT(am, am_list);
1095			continue;
1096		}
1097
1098		LIST_INSERT_AFTER(am, &marker, am_list);
1099		amap_unlock_list();
1100
1101again:
1102		AMAP_CHUNK_FOREACH(chunk, am) {
1103			map = chunk->ac_usedmap;
1104
1105			for (i = ffs(map); i != 0; i = ffs(map)) {
1106				int swslot;
1107				int slot = i - 1;
1108				struct vm_anon *anon;
1109
1110				map ^= 1 << slot;
1111				anon = chunk->ac_anon[slot];
1112
1113				swslot = anon->an_swslot;
1114				if (swslot < startslot || endslot <= swslot) {
1115					continue;
1116				}
1117
1118				am->am_flags |= AMAP_SWAPOFF;
1119
1120				rv = uvm_anon_pagein(am, anon);
1121				amap_lock(am);
1122
1123				am->am_flags &= ~AMAP_SWAPOFF;
1124				if (amap_refs(am) == 0) {
1125					amap_wipeout(am);
1126					am = NULL;
1127					goto nextamap;
1128				}
1129				if (rv)
1130					goto nextamap;
1131				goto again;
1132			}
1133		}
1134nextamap:
1135		if (am != NULL)
1136			amap_unlock(am);
1137		amap_lock_list();
1138		am_next = LIST_NEXT(&marker, am_list);
1139		LIST_REMOVE(&marker, am_list);
1140	}
1141	amap_unlock_list();
1142
1143	return rv;
1144}
1145
1146/*
1147 * amap_lookup: look up a page in an amap.
1148 *
1149 * => amap should be locked by caller.
1150 */
1151struct vm_anon *
1152amap_lookup(struct vm_aref *aref, vaddr_t offset)
1153{
1154	int slot;
1155	struct vm_amap *amap = aref->ar_amap;
1156	struct vm_amap_chunk *chunk;
1157
1158	AMAP_B2SLOT(slot, offset);
1159	slot += aref->ar_pageoff;
1160	KASSERT(slot < amap->am_nslot);
1161
1162	chunk = amap_chunk_get(amap, slot, 0, PR_NOWAIT);
1163	if (chunk == NULL)
1164		return NULL;
1165
1166	return chunk->ac_anon[UVM_AMAP_SLOTIDX(slot)];
1167}
1168
1169/*
1170 * amap_lookups: look up a range of pages in an amap.
1171 *
1172 * => amap should be locked by caller.
1173 * => XXXCDC: this interface is biased toward array-based amaps.  fix.
1174 */
1175void
1176amap_lookups(struct vm_aref *aref, vaddr_t offset,
1177    struct vm_anon **anons, int npages)
1178{
1179	int i, lcv, n, slot;
1180	struct vm_amap *amap = aref->ar_amap;
1181	struct vm_amap_chunk *chunk = NULL;
1182
1183	AMAP_B2SLOT(slot, offset);
1184	slot += aref->ar_pageoff;
1185
1186	KASSERT((slot + (npages - 1)) < amap->am_nslot);
1187
1188	for (i = 0, lcv = slot; lcv < slot + npages; i += n, lcv += n) {
1189		n = UVM_AMAP_CHUNK - UVM_AMAP_SLOTIDX(lcv);
1190		if (lcv + n > slot + npages)
1191			n = slot + npages - lcv;
1192
1193		chunk = amap_chunk_get(amap, lcv, 0, PR_NOWAIT);
1194		if (chunk == NULL)
1195			memset(&anons[i], 0, n * sizeof(*anons));
1196		else
1197			memcpy(&anons[i],
1198			    &chunk->ac_anon[UVM_AMAP_SLOTIDX(lcv)],
1199			    n * sizeof(*anons));
1200	}
1201}
1202
1203/*
1204 * amap_populate: ensure that the amap can store an anon for the page at
1205 * offset. This function can sleep until memory to store the anon is
1206 * available.
1207 */
1208void
1209amap_populate(struct vm_aref *aref, vaddr_t offset)
1210{
1211	int slot;
1212	struct vm_amap *amap = aref->ar_amap;
1213	struct vm_amap_chunk *chunk;
1214
1215	AMAP_B2SLOT(slot, offset);
1216	slot += aref->ar_pageoff;
1217	KASSERT(slot < amap->am_nslot);
1218
1219	chunk = amap_chunk_get(amap, slot, 1, PR_WAITOK);
1220	KASSERT(chunk != NULL);
1221}
1222
1223/*
1224 * amap_add: add (or replace) a page to an amap.
1225 *
1226 * => amap should be locked by caller.
1227 * => anon must have the lock associated with this amap.
1228 */
1229int
1230amap_add(struct vm_aref *aref, vaddr_t offset, struct vm_anon *anon,
1231    boolean_t replace)
1232{
1233	int slot;
1234	struct vm_amap *amap = aref->ar_amap;
1235	struct vm_amap_chunk *chunk;
1236
1237	AMAP_B2SLOT(slot, offset);
1238	slot += aref->ar_pageoff;
1239	KASSERT(slot < amap->am_nslot);
1240
1241	chunk = amap_chunk_get(amap, slot, 1, PR_NOWAIT);
1242	if (chunk == NULL)
1243		return 1;
1244
1245	slot = UVM_AMAP_SLOTIDX(slot);
1246	if (replace) {
1247		struct vm_anon *oanon  = chunk->ac_anon[slot];
1248
1249		KASSERT(oanon != NULL);
1250		if (oanon->an_page && (amap->am_flags & AMAP_SHARED) != 0) {
1251			pmap_page_protect(oanon->an_page, PROT_NONE);
1252			/*
1253			 * XXX: suppose page is supposed to be wired somewhere?
1254			 */
1255		}
1256	} else {   /* !replace */
1257		if (chunk->ac_anon[slot] != NULL)
1258			panic("amap_add: slot in use");
1259
1260		chunk->ac_usedmap |= 1 << slot;
1261		amap->am_nused++;
1262	}
1263	chunk->ac_anon[slot] = anon;
1264
1265	return 0;
1266}
1267
1268/*
1269 * amap_unadd: remove a page from an amap.
1270 *
1271 * => amap should be locked by caller.
1272 */
1273void
1274amap_unadd(struct vm_aref *aref, vaddr_t offset)
1275{
1276	struct vm_amap *amap = aref->ar_amap;
1277	struct vm_amap_chunk *chunk;
1278	int slot;
1279
1280	KASSERT(rw_write_held(amap->am_lock));
1281
1282	AMAP_B2SLOT(slot, offset);
1283	slot += aref->ar_pageoff;
1284	KASSERT(slot < amap->am_nslot);
1285	chunk = amap_chunk_get(amap, slot, 0, PR_NOWAIT);
1286	KASSERT(chunk != NULL);
1287
1288	slot = UVM_AMAP_SLOTIDX(slot);
1289	KASSERT(chunk->ac_anon[slot] != NULL);
1290
1291	chunk->ac_anon[slot] = NULL;
1292	chunk->ac_usedmap &= ~(1 << slot);
1293	amap->am_nused--;
1294
1295	if (chunk->ac_usedmap == 0)
1296		amap_chunk_free(amap, chunk);
1297}
1298
1299/*
1300 * amap_adjref_anons: adjust the reference count(s) on amap and its anons.
1301 */
1302static void
1303amap_adjref_anons(struct vm_amap *amap, vaddr_t offset, vsize_t len,
1304    int refv, boolean_t all)
1305{
1306#ifdef UVM_AMAP_PPREF
1307	KASSERT(rw_write_held(amap->am_lock));
1308
1309	/*
1310	 * We must establish the ppref array before changing am_ref
1311	 * so that the ppref values match the current amap refcount.
1312	 */
1313	if (amap->am_ppref == NULL && !all && len != amap->am_nslot) {
1314		amap_pp_establish(amap);
1315	}
1316#endif
1317
1318	amap->am_ref += refv;
1319
1320#ifdef UVM_AMAP_PPREF
1321	if (amap->am_ppref && amap->am_ppref != PPREF_NONE) {
1322		if (all) {
1323			amap_pp_adjref(amap, 0, amap->am_nslot, refv);
1324		} else {
1325			amap_pp_adjref(amap, offset, len, refv);
1326		}
1327	}
1328#endif
1329	amap_unlock(amap);
1330}
1331
1332/*
1333 * amap_ref: gain a reference to an amap.
1334 *
1335 * => amap must not be locked (we will lock).
1336 * => "offset" and "len" are in units of pages.
1337 * => Called at fork time to gain the child's reference.
1338 */
1339void
1340amap_ref(struct vm_amap *amap, vaddr_t offset, vsize_t len, int flags)
1341{
1342	amap_lock(amap);
1343	if (flags & AMAP_SHARED)
1344		amap->am_flags |= AMAP_SHARED;
1345	amap_adjref_anons(amap, offset, len, 1, (flags & AMAP_REFALL) != 0);
1346}
1347
1348/*
1349 * amap_unref: remove a reference to an amap.
1350 *
1351 * => All pmap-level references to this amap must be already removed.
1352 * => Called from uvm_unmap_detach(); entry is already removed from the map.
1353 * => We will lock amap, so it must be unlocked.
1354 */
1355void
1356amap_unref(struct vm_amap *amap, vaddr_t offset, vsize_t len, boolean_t all)
1357{
1358	amap_lock(amap);
1359
1360	KASSERT(amap->am_ref > 0);
1361
1362	if (amap->am_ref == 1) {
1363		/*
1364		 * If the last reference - wipeout and destroy the amap.
1365		 */
1366		amap->am_ref--;
1367		amap_wipeout(amap);
1368		return;
1369	}
1370
1371	/*
1372	 * Otherwise, drop the reference count(s) on anons.
1373	 */
1374	if (amap->am_ref == 2 && (amap->am_flags & AMAP_SHARED) != 0) {
1375		amap->am_flags &= ~AMAP_SHARED;
1376	}
1377	amap_adjref_anons(amap, offset, len, -1, all);
1378}
1379