1//===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// The implementation for the loop memory dependence that was originally
10// developed for the loop vectorizer.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Analysis/LoopAccessAnalysis.h"
15#include "llvm/ADT/APInt.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/DepthFirstIterator.h"
18#include "llvm/ADT/EquivalenceClasses.h"
19#include "llvm/ADT/PointerIntPair.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/SetVector.h"
22#include "llvm/ADT/SmallPtrSet.h"
23#include "llvm/ADT/SmallSet.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/iterator_range.h"
26#include "llvm/Analysis/AliasAnalysis.h"
27#include "llvm/Analysis/AliasSetTracker.h"
28#include "llvm/Analysis/LoopAnalysisManager.h"
29#include "llvm/Analysis/LoopInfo.h"
30#include "llvm/Analysis/LoopIterator.h"
31#include "llvm/Analysis/MemoryLocation.h"
32#include "llvm/Analysis/OptimizationRemarkEmitter.h"
33#include "llvm/Analysis/ScalarEvolution.h"
34#include "llvm/Analysis/ScalarEvolutionExpressions.h"
35#include "llvm/Analysis/TargetLibraryInfo.h"
36#include "llvm/Analysis/ValueTracking.h"
37#include "llvm/Analysis/VectorUtils.h"
38#include "llvm/IR/BasicBlock.h"
39#include "llvm/IR/Constants.h"
40#include "llvm/IR/DataLayout.h"
41#include "llvm/IR/DebugLoc.h"
42#include "llvm/IR/DerivedTypes.h"
43#include "llvm/IR/DiagnosticInfo.h"
44#include "llvm/IR/Dominators.h"
45#include "llvm/IR/Function.h"
46#include "llvm/IR/InstrTypes.h"
47#include "llvm/IR/Instruction.h"
48#include "llvm/IR/Instructions.h"
49#include "llvm/IR/Operator.h"
50#include "llvm/IR/PassManager.h"
51#include "llvm/IR/PatternMatch.h"
52#include "llvm/IR/Type.h"
53#include "llvm/IR/Value.h"
54#include "llvm/IR/ValueHandle.h"
55#include "llvm/InitializePasses.h"
56#include "llvm/Pass.h"
57#include "llvm/Support/Casting.h"
58#include "llvm/Support/CommandLine.h"
59#include "llvm/Support/Debug.h"
60#include "llvm/Support/ErrorHandling.h"
61#include "llvm/Support/raw_ostream.h"
62#include <algorithm>
63#include <cassert>
64#include <cstdint>
65#include <iterator>
66#include <utility>
67#include <vector>
68
69using namespace llvm;
70using namespace llvm::PatternMatch;
71
72#define DEBUG_TYPE "loop-accesses"
73
74static cl::opt<unsigned, true>
75VectorizationFactor("force-vector-width", cl::Hidden,
76                    cl::desc("Sets the SIMD width. Zero is autoselect."),
77                    cl::location(VectorizerParams::VectorizationFactor));
78unsigned VectorizerParams::VectorizationFactor;
79
80static cl::opt<unsigned, true>
81VectorizationInterleave("force-vector-interleave", cl::Hidden,
82                        cl::desc("Sets the vectorization interleave count. "
83                                 "Zero is autoselect."),
84                        cl::location(
85                            VectorizerParams::VectorizationInterleave));
86unsigned VectorizerParams::VectorizationInterleave;
87
88static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
89    "runtime-memory-check-threshold", cl::Hidden,
90    cl::desc("When performing memory disambiguation checks at runtime do not "
91             "generate more than this number of comparisons (default = 8)."),
92    cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
93unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
94
95/// The maximum iterations used to merge memory checks
96static cl::opt<unsigned> MemoryCheckMergeThreshold(
97    "memory-check-merge-threshold", cl::Hidden,
98    cl::desc("Maximum number of comparisons done when trying to merge "
99             "runtime memory checks. (default = 100)"),
100    cl::init(100));
101
102/// Maximum SIMD width.
103const unsigned VectorizerParams::MaxVectorWidth = 64;
104
105/// We collect dependences up to this threshold.
106static cl::opt<unsigned>
107    MaxDependences("max-dependences", cl::Hidden,
108                   cl::desc("Maximum number of dependences collected by "
109                            "loop-access analysis (default = 100)"),
110                   cl::init(100));
111
112/// This enables versioning on the strides of symbolically striding memory
113/// accesses in code like the following.
114///   for (i = 0; i < N; ++i)
115///     A[i * Stride1] += B[i * Stride2] ...
116///
117/// Will be roughly translated to
118///    if (Stride1 == 1 && Stride2 == 1) {
119///      for (i = 0; i < N; i+=4)
120///       A[i:i+3] += ...
121///    } else
122///      ...
123static cl::opt<bool> EnableMemAccessVersioning(
124    "enable-mem-access-versioning", cl::init(true), cl::Hidden,
125    cl::desc("Enable symbolic stride memory access versioning"));
126
127/// Enable store-to-load forwarding conflict detection. This option can
128/// be disabled for correctness testing.
129static cl::opt<bool> EnableForwardingConflictDetection(
130    "store-to-load-forwarding-conflict-detection", cl::Hidden,
131    cl::desc("Enable conflict detection in loop-access analysis"),
132    cl::init(true));
133
134static cl::opt<unsigned> MaxForkedSCEVDepth(
135    "max-forked-scev-depth", cl::Hidden,
136    cl::desc("Maximum recursion depth when finding forked SCEVs (default = 5)"),
137    cl::init(5));
138
139bool VectorizerParams::isInterleaveForced() {
140  return ::VectorizationInterleave.getNumOccurrences() > 0;
141}
142
143Value *llvm::stripIntegerCast(Value *V) {
144  if (auto *CI = dyn_cast<CastInst>(V))
145    if (CI->getOperand(0)->getType()->isIntegerTy())
146      return CI->getOperand(0);
147  return V;
148}
149
150const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
151                                            const ValueToValueMap &PtrToStride,
152                                            Value *Ptr) {
153  const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
154
155  // If there is an entry in the map return the SCEV of the pointer with the
156  // symbolic stride replaced by one.
157  ValueToValueMap::const_iterator SI = PtrToStride.find(Ptr);
158  if (SI == PtrToStride.end())
159    // For a non-symbolic stride, just return the original expression.
160    return OrigSCEV;
161
162  Value *StrideVal = stripIntegerCast(SI->second);
163
164  ScalarEvolution *SE = PSE.getSE();
165  const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
166  const auto *CT =
167    static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));
168
169  PSE.addPredicate(*SE->getEqualPredicate(U, CT));
170  auto *Expr = PSE.getSCEV(Ptr);
171
172  LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV
173	     << " by: " << *Expr << "\n");
174  return Expr;
175}
176
177RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup(
178    unsigned Index, RuntimePointerChecking &RtCheck)
179    : High(RtCheck.Pointers[Index].End), Low(RtCheck.Pointers[Index].Start),
180      AddressSpace(RtCheck.Pointers[Index]
181                       .PointerValue->getType()
182                       ->getPointerAddressSpace()),
183      NeedsFreeze(RtCheck.Pointers[Index].NeedsFreeze) {
184  Members.push_back(Index);
185}
186
187/// Calculate Start and End points of memory access.
188/// Let's assume A is the first access and B is a memory access on N-th loop
189/// iteration. Then B is calculated as:
190///   B = A + Step*N .
191/// Step value may be positive or negative.
192/// N is a calculated back-edge taken count:
193///     N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0
194/// Start and End points are calculated in the following way:
195/// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt,
196/// where SizeOfElt is the size of single memory access in bytes.
197///
198/// There is no conflict when the intervals are disjoint:
199/// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End)
200void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr,
201                                    Type *AccessTy, bool WritePtr,
202                                    unsigned DepSetId, unsigned ASId,
203                                    PredicatedScalarEvolution &PSE,
204                                    bool NeedsFreeze) {
205  ScalarEvolution *SE = PSE.getSE();
206
207  const SCEV *ScStart;
208  const SCEV *ScEnd;
209
210  if (SE->isLoopInvariant(PtrExpr, Lp)) {
211    ScStart = ScEnd = PtrExpr;
212  } else {
213    const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrExpr);
214    assert(AR && "Invalid addrec expression");
215    const SCEV *Ex = PSE.getBackedgeTakenCount();
216
217    ScStart = AR->getStart();
218    ScEnd = AR->evaluateAtIteration(Ex, *SE);
219    const SCEV *Step = AR->getStepRecurrence(*SE);
220
221    // For expressions with negative step, the upper bound is ScStart and the
222    // lower bound is ScEnd.
223    if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
224      if (CStep->getValue()->isNegative())
225        std::swap(ScStart, ScEnd);
226    } else {
227      // Fallback case: the step is not constant, but we can still
228      // get the upper and lower bounds of the interval by using min/max
229      // expressions.
230      ScStart = SE->getUMinExpr(ScStart, ScEnd);
231      ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
232    }
233  }
234  // Add the size of the pointed element to ScEnd.
235  auto &DL = Lp->getHeader()->getModule()->getDataLayout();
236  Type *IdxTy = DL.getIndexType(Ptr->getType());
237  const SCEV *EltSizeSCEV = SE->getStoreSizeOfExpr(IdxTy, AccessTy);
238  ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV);
239
240  Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, PtrExpr,
241                        NeedsFreeze);
242}
243
244void RuntimePointerChecking::tryToCreateDiffCheck(
245    const RuntimeCheckingPtrGroup &CGI, const RuntimeCheckingPtrGroup &CGJ) {
246  if (!CanUseDiffCheck)
247    return;
248
249  // If either group contains multiple different pointers, bail out.
250  // TODO: Support multiple pointers by using the minimum or maximum pointer,
251  // depending on src & sink.
252  if (CGI.Members.size() != 1 || CGJ.Members.size() != 1) {
253    CanUseDiffCheck = false;
254    return;
255  }
256
257  PointerInfo *Src = &Pointers[CGI.Members[0]];
258  PointerInfo *Sink = &Pointers[CGJ.Members[0]];
259
260  // If either pointer is read and written, multiple checks may be needed. Bail
261  // out.
262  if (!DC.getOrderForAccess(Src->PointerValue, !Src->IsWritePtr).empty() ||
263      !DC.getOrderForAccess(Sink->PointerValue, !Sink->IsWritePtr).empty()) {
264    CanUseDiffCheck = false;
265    return;
266  }
267
268  ArrayRef<unsigned> AccSrc =
269      DC.getOrderForAccess(Src->PointerValue, Src->IsWritePtr);
270  ArrayRef<unsigned> AccSink =
271      DC.getOrderForAccess(Sink->PointerValue, Sink->IsWritePtr);
272  // If either pointer is accessed multiple times, there may not be a clear
273  // src/sink relation. Bail out for now.
274  if (AccSrc.size() != 1 || AccSink.size() != 1) {
275    CanUseDiffCheck = false;
276    return;
277  }
278  // If the sink is accessed before src, swap src/sink.
279  if (AccSink[0] < AccSrc[0])
280    std::swap(Src, Sink);
281
282  auto *SrcAR = dyn_cast<SCEVAddRecExpr>(Src->Expr);
283  auto *SinkAR = dyn_cast<SCEVAddRecExpr>(Sink->Expr);
284  if (!SrcAR || !SinkAR || SrcAR->getLoop() != DC.getInnermostLoop() ||
285      SinkAR->getLoop() != DC.getInnermostLoop()) {
286    CanUseDiffCheck = false;
287    return;
288  }
289
290  SmallVector<Instruction *, 4> SrcInsts =
291      DC.getInstructionsForAccess(Src->PointerValue, Src->IsWritePtr);
292  SmallVector<Instruction *, 4> SinkInsts =
293      DC.getInstructionsForAccess(Sink->PointerValue, Sink->IsWritePtr);
294  Type *SrcTy = getLoadStoreType(SrcInsts[0]);
295  Type *DstTy = getLoadStoreType(SinkInsts[0]);
296  if (isa<ScalableVectorType>(SrcTy) || isa<ScalableVectorType>(DstTy)) {
297    CanUseDiffCheck = false;
298    return;
299  }
300  const DataLayout &DL =
301      SinkAR->getLoop()->getHeader()->getModule()->getDataLayout();
302  unsigned AllocSize =
303      std::max(DL.getTypeAllocSize(SrcTy), DL.getTypeAllocSize(DstTy));
304
305  // Only matching constant steps matching the AllocSize are supported at the
306  // moment. This simplifies the difference computation. Can be extended in the
307  // future.
308  auto *Step = dyn_cast<SCEVConstant>(SinkAR->getStepRecurrence(*SE));
309  if (!Step || Step != SrcAR->getStepRecurrence(*SE) ||
310      Step->getAPInt().abs() != AllocSize) {
311    CanUseDiffCheck = false;
312    return;
313  }
314
315  IntegerType *IntTy =
316      IntegerType::get(Src->PointerValue->getContext(),
317                       DL.getPointerSizeInBits(CGI.AddressSpace));
318
319  // When counting down, the dependence distance needs to be swapped.
320  if (Step->getValue()->isNegative())
321    std::swap(SinkAR, SrcAR);
322
323  const SCEV *SinkStartInt = SE->getPtrToIntExpr(SinkAR->getStart(), IntTy);
324  const SCEV *SrcStartInt = SE->getPtrToIntExpr(SrcAR->getStart(), IntTy);
325  if (isa<SCEVCouldNotCompute>(SinkStartInt) ||
326      isa<SCEVCouldNotCompute>(SrcStartInt)) {
327    CanUseDiffCheck = false;
328    return;
329  }
330  DiffChecks.emplace_back(SrcStartInt, SinkStartInt, AllocSize,
331                          Src->NeedsFreeze || Sink->NeedsFreeze);
332}
333
334SmallVector<RuntimePointerCheck, 4> RuntimePointerChecking::generateChecks() {
335  SmallVector<RuntimePointerCheck, 4> Checks;
336
337  for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
338    for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
339      const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I];
340      const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J];
341
342      if (needsChecking(CGI, CGJ)) {
343        tryToCreateDiffCheck(CGI, CGJ);
344        Checks.push_back(std::make_pair(&CGI, &CGJ));
345      }
346    }
347  }
348  return Checks;
349}
350
351void RuntimePointerChecking::generateChecks(
352    MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
353  assert(Checks.empty() && "Checks is not empty");
354  groupChecks(DepCands, UseDependencies);
355  Checks = generateChecks();
356}
357
358bool RuntimePointerChecking::needsChecking(
359    const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const {
360  for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
361    for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
362      if (needsChecking(M.Members[I], N.Members[J]))
363        return true;
364  return false;
365}
366
367/// Compare \p I and \p J and return the minimum.
368/// Return nullptr in case we couldn't find an answer.
369static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
370                                   ScalarEvolution *SE) {
371  const SCEV *Diff = SE->getMinusSCEV(J, I);
372  const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
373
374  if (!C)
375    return nullptr;
376  if (C->getValue()->isNegative())
377    return J;
378  return I;
379}
380
381bool RuntimeCheckingPtrGroup::addPointer(unsigned Index,
382                                         RuntimePointerChecking &RtCheck) {
383  return addPointer(
384      Index, RtCheck.Pointers[Index].Start, RtCheck.Pointers[Index].End,
385      RtCheck.Pointers[Index].PointerValue->getType()->getPointerAddressSpace(),
386      RtCheck.Pointers[Index].NeedsFreeze, *RtCheck.SE);
387}
388
389bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, const SCEV *Start,
390                                         const SCEV *End, unsigned AS,
391                                         bool NeedsFreeze,
392                                         ScalarEvolution &SE) {
393  assert(AddressSpace == AS &&
394         "all pointers in a checking group must be in the same address space");
395
396  // Compare the starts and ends with the known minimum and maximum
397  // of this set. We need to know how we compare against the min/max
398  // of the set in order to be able to emit memchecks.
399  const SCEV *Min0 = getMinFromExprs(Start, Low, &SE);
400  if (!Min0)
401    return false;
402
403  const SCEV *Min1 = getMinFromExprs(End, High, &SE);
404  if (!Min1)
405    return false;
406
407  // Update the low bound  expression if we've found a new min value.
408  if (Min0 == Start)
409    Low = Start;
410
411  // Update the high bound expression if we've found a new max value.
412  if (Min1 != End)
413    High = End;
414
415  Members.push_back(Index);
416  this->NeedsFreeze |= NeedsFreeze;
417  return true;
418}
419
420void RuntimePointerChecking::groupChecks(
421    MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
422  // We build the groups from dependency candidates equivalence classes
423  // because:
424  //    - We know that pointers in the same equivalence class share
425  //      the same underlying object and therefore there is a chance
426  //      that we can compare pointers
427  //    - We wouldn't be able to merge two pointers for which we need
428  //      to emit a memcheck. The classes in DepCands are already
429  //      conveniently built such that no two pointers in the same
430  //      class need checking against each other.
431
432  // We use the following (greedy) algorithm to construct the groups
433  // For every pointer in the equivalence class:
434  //   For each existing group:
435  //   - if the difference between this pointer and the min/max bounds
436  //     of the group is a constant, then make the pointer part of the
437  //     group and update the min/max bounds of that group as required.
438
439  CheckingGroups.clear();
440
441  // If we need to check two pointers to the same underlying object
442  // with a non-constant difference, we shouldn't perform any pointer
443  // grouping with those pointers. This is because we can easily get
444  // into cases where the resulting check would return false, even when
445  // the accesses are safe.
446  //
447  // The following example shows this:
448  // for (i = 0; i < 1000; ++i)
449  //   a[5000 + i * m] = a[i] + a[i + 9000]
450  //
451  // Here grouping gives a check of (5000, 5000 + 1000 * m) against
452  // (0, 10000) which is always false. However, if m is 1, there is no
453  // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
454  // us to perform an accurate check in this case.
455  //
456  // The above case requires that we have an UnknownDependence between
457  // accesses to the same underlying object. This cannot happen unless
458  // FoundNonConstantDistanceDependence is set, and therefore UseDependencies
459  // is also false. In this case we will use the fallback path and create
460  // separate checking groups for all pointers.
461
462  // If we don't have the dependency partitions, construct a new
463  // checking pointer group for each pointer. This is also required
464  // for correctness, because in this case we can have checking between
465  // pointers to the same underlying object.
466  if (!UseDependencies) {
467    for (unsigned I = 0; I < Pointers.size(); ++I)
468      CheckingGroups.push_back(RuntimeCheckingPtrGroup(I, *this));
469    return;
470  }
471
472  unsigned TotalComparisons = 0;
473
474  DenseMap<Value *, SmallVector<unsigned>> PositionMap;
475  for (unsigned Index = 0; Index < Pointers.size(); ++Index) {
476    auto Iter = PositionMap.insert({Pointers[Index].PointerValue, {}});
477    Iter.first->second.push_back(Index);
478  }
479
480  // We need to keep track of what pointers we've already seen so we
481  // don't process them twice.
482  SmallSet<unsigned, 2> Seen;
483
484  // Go through all equivalence classes, get the "pointer check groups"
485  // and add them to the overall solution. We use the order in which accesses
486  // appear in 'Pointers' to enforce determinism.
487  for (unsigned I = 0; I < Pointers.size(); ++I) {
488    // We've seen this pointer before, and therefore already processed
489    // its equivalence class.
490    if (Seen.count(I))
491      continue;
492
493    MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
494                                           Pointers[I].IsWritePtr);
495
496    SmallVector<RuntimeCheckingPtrGroup, 2> Groups;
497    auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
498
499    // Because DepCands is constructed by visiting accesses in the order in
500    // which they appear in alias sets (which is deterministic) and the
501    // iteration order within an equivalence class member is only dependent on
502    // the order in which unions and insertions are performed on the
503    // equivalence class, the iteration order is deterministic.
504    for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
505         MI != ME; ++MI) {
506      auto PointerI = PositionMap.find(MI->getPointer());
507      assert(PointerI != PositionMap.end() &&
508             "pointer in equivalence class not found in PositionMap");
509      for (unsigned Pointer : PointerI->second) {
510        bool Merged = false;
511        // Mark this pointer as seen.
512        Seen.insert(Pointer);
513
514        // Go through all the existing sets and see if we can find one
515        // which can include this pointer.
516        for (RuntimeCheckingPtrGroup &Group : Groups) {
517          // Don't perform more than a certain amount of comparisons.
518          // This should limit the cost of grouping the pointers to something
519          // reasonable.  If we do end up hitting this threshold, the algorithm
520          // will create separate groups for all remaining pointers.
521          if (TotalComparisons > MemoryCheckMergeThreshold)
522            break;
523
524          TotalComparisons++;
525
526          if (Group.addPointer(Pointer, *this)) {
527            Merged = true;
528            break;
529          }
530        }
531
532        if (!Merged)
533          // We couldn't add this pointer to any existing set or the threshold
534          // for the number of comparisons has been reached. Create a new group
535          // to hold the current pointer.
536          Groups.push_back(RuntimeCheckingPtrGroup(Pointer, *this));
537      }
538    }
539
540    // We've computed the grouped checks for this partition.
541    // Save the results and continue with the next one.
542    llvm::copy(Groups, std::back_inserter(CheckingGroups));
543  }
544}
545
546bool RuntimePointerChecking::arePointersInSamePartition(
547    const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
548    unsigned PtrIdx2) {
549  return (PtrToPartition[PtrIdx1] != -1 &&
550          PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
551}
552
553bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
554  const PointerInfo &PointerI = Pointers[I];
555  const PointerInfo &PointerJ = Pointers[J];
556
557  // No need to check if two readonly pointers intersect.
558  if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
559    return false;
560
561  // Only need to check pointers between two different dependency sets.
562  if (PointerI.DependencySetId == PointerJ.DependencySetId)
563    return false;
564
565  // Only need to check pointers in the same alias set.
566  if (PointerI.AliasSetId != PointerJ.AliasSetId)
567    return false;
568
569  return true;
570}
571
572void RuntimePointerChecking::printChecks(
573    raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks,
574    unsigned Depth) const {
575  unsigned N = 0;
576  for (const auto &Check : Checks) {
577    const auto &First = Check.first->Members, &Second = Check.second->Members;
578
579    OS.indent(Depth) << "Check " << N++ << ":\n";
580
581    OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
582    for (unsigned K = 0; K < First.size(); ++K)
583      OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
584
585    OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
586    for (unsigned K = 0; K < Second.size(); ++K)
587      OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
588  }
589}
590
591void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
592
593  OS.indent(Depth) << "Run-time memory checks:\n";
594  printChecks(OS, Checks, Depth);
595
596  OS.indent(Depth) << "Grouped accesses:\n";
597  for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
598    const auto &CG = CheckingGroups[I];
599
600    OS.indent(Depth + 2) << "Group " << &CG << ":\n";
601    OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
602                         << ")\n";
603    for (unsigned J = 0; J < CG.Members.size(); ++J) {
604      OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
605                           << "\n";
606    }
607  }
608}
609
610namespace {
611
612/// Analyses memory accesses in a loop.
613///
614/// Checks whether run time pointer checks are needed and builds sets for data
615/// dependence checking.
616class AccessAnalysis {
617public:
618  /// Read or write access location.
619  typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
620  typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
621
622  AccessAnalysis(Loop *TheLoop, AAResults *AA, LoopInfo *LI,
623                 MemoryDepChecker::DepCandidates &DA,
624                 PredicatedScalarEvolution &PSE)
625      : TheLoop(TheLoop), BAA(*AA), AST(BAA), LI(LI), DepCands(DA), PSE(PSE) {
626    // We're analyzing dependences across loop iterations.
627    BAA.enableCrossIterationMode();
628  }
629
630  /// Register a load  and whether it is only read from.
631  void addLoad(MemoryLocation &Loc, Type *AccessTy, bool IsReadOnly) {
632    Value *Ptr = const_cast<Value*>(Loc.Ptr);
633    AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags);
634    Accesses[MemAccessInfo(Ptr, false)].insert(AccessTy);
635    if (IsReadOnly)
636      ReadOnlyPtr.insert(Ptr);
637  }
638
639  /// Register a store.
640  void addStore(MemoryLocation &Loc, Type *AccessTy) {
641    Value *Ptr = const_cast<Value*>(Loc.Ptr);
642    AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags);
643    Accesses[MemAccessInfo(Ptr, true)].insert(AccessTy);
644  }
645
646  /// Check if we can emit a run-time no-alias check for \p Access.
647  ///
648  /// Returns true if we can emit a run-time no alias check for \p Access.
649  /// If we can check this access, this also adds it to a dependence set and
650  /// adds a run-time to check for it to \p RtCheck. If \p Assume is true,
651  /// we will attempt to use additional run-time checks in order to get
652  /// the bounds of the pointer.
653  bool createCheckForAccess(RuntimePointerChecking &RtCheck,
654                            MemAccessInfo Access, Type *AccessTy,
655                            const ValueToValueMap &Strides,
656                            DenseMap<Value *, unsigned> &DepSetId,
657                            Loop *TheLoop, unsigned &RunningDepId,
658                            unsigned ASId, bool ShouldCheckStride, bool Assume);
659
660  /// Check whether we can check the pointers at runtime for
661  /// non-intersection.
662  ///
663  /// Returns true if we need no check or if we do and we can generate them
664  /// (i.e. the pointers have computable bounds).
665  bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
666                       Loop *TheLoop, const ValueToValueMap &Strides,
667                       Value *&UncomputablePtr, bool ShouldCheckWrap = false);
668
669  /// Goes over all memory accesses, checks whether a RT check is needed
670  /// and builds sets of dependent accesses.
671  void buildDependenceSets() {
672    processMemAccesses();
673  }
674
675  /// Initial processing of memory accesses determined that we need to
676  /// perform dependency checking.
677  ///
678  /// Note that this can later be cleared if we retry memcheck analysis without
679  /// dependency checking (i.e. FoundNonConstantDistanceDependence).
680  bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
681
682  /// We decided that no dependence analysis would be used.  Reset the state.
683  void resetDepChecks(MemoryDepChecker &DepChecker) {
684    CheckDeps.clear();
685    DepChecker.clearDependences();
686  }
687
688  MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; }
689
690private:
691  typedef MapVector<MemAccessInfo, SmallSetVector<Type *, 1>> PtrAccessMap;
692
693  /// Go over all memory access and check whether runtime pointer checks
694  /// are needed and build sets of dependency check candidates.
695  void processMemAccesses();
696
697  /// Map of all accesses. Values are the types used to access memory pointed to
698  /// by the pointer.
699  PtrAccessMap Accesses;
700
701  /// The loop being checked.
702  const Loop *TheLoop;
703
704  /// List of accesses that need a further dependence check.
705  MemAccessInfoList CheckDeps;
706
707  /// Set of pointers that are read only.
708  SmallPtrSet<Value*, 16> ReadOnlyPtr;
709
710  /// Batched alias analysis results.
711  BatchAAResults BAA;
712
713  /// An alias set tracker to partition the access set by underlying object and
714  //intrinsic property (such as TBAA metadata).
715  AliasSetTracker AST;
716
717  LoopInfo *LI;
718
719  /// Sets of potentially dependent accesses - members of one set share an
720  /// underlying pointer. The set "CheckDeps" identfies which sets really need a
721  /// dependence check.
722  MemoryDepChecker::DepCandidates &DepCands;
723
724  /// Initial processing of memory accesses determined that we may need
725  /// to add memchecks.  Perform the analysis to determine the necessary checks.
726  ///
727  /// Note that, this is different from isDependencyCheckNeeded.  When we retry
728  /// memcheck analysis without dependency checking
729  /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is
730  /// cleared while this remains set if we have potentially dependent accesses.
731  bool IsRTCheckAnalysisNeeded = false;
732
733  /// The SCEV predicate containing all the SCEV-related assumptions.
734  PredicatedScalarEvolution &PSE;
735};
736
737} // end anonymous namespace
738
739/// Check whether a pointer can participate in a runtime bounds check.
740/// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr
741/// by adding run-time checks (overflow checks) if necessary.
742static bool hasComputableBounds(PredicatedScalarEvolution &PSE, Value *Ptr,
743                                const SCEV *PtrScev, Loop *L, bool Assume) {
744  // The bounds for loop-invariant pointer is trivial.
745  if (PSE.getSE()->isLoopInvariant(PtrScev, L))
746    return true;
747
748  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
749
750  if (!AR && Assume)
751    AR = PSE.getAsAddRec(Ptr);
752
753  if (!AR)
754    return false;
755
756  return AR->isAffine();
757}
758
759/// Check whether a pointer address cannot wrap.
760static bool isNoWrap(PredicatedScalarEvolution &PSE,
761                     const ValueToValueMap &Strides, Value *Ptr, Type *AccessTy,
762                     Loop *L) {
763  const SCEV *PtrScev = PSE.getSCEV(Ptr);
764  if (PSE.getSE()->isLoopInvariant(PtrScev, L))
765    return true;
766
767  int64_t Stride = getPtrStride(PSE, AccessTy, Ptr, L, Strides).value_or(0);
768  if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW))
769    return true;
770
771  return false;
772}
773
774static void visitPointers(Value *StartPtr, const Loop &InnermostLoop,
775                          function_ref<void(Value *)> AddPointer) {
776  SmallPtrSet<Value *, 8> Visited;
777  SmallVector<Value *> WorkList;
778  WorkList.push_back(StartPtr);
779
780  while (!WorkList.empty()) {
781    Value *Ptr = WorkList.pop_back_val();
782    if (!Visited.insert(Ptr).second)
783      continue;
784    auto *PN = dyn_cast<PHINode>(Ptr);
785    // SCEV does not look through non-header PHIs inside the loop. Such phis
786    // can be analyzed by adding separate accesses for each incoming pointer
787    // value.
788    if (PN && InnermostLoop.contains(PN->getParent()) &&
789        PN->getParent() != InnermostLoop.getHeader()) {
790      for (const Use &Inc : PN->incoming_values())
791        WorkList.push_back(Inc);
792    } else
793      AddPointer(Ptr);
794  }
795}
796
797// Walk back through the IR for a pointer, looking for a select like the
798// following:
799//
800//  %offset = select i1 %cmp, i64 %a, i64 %b
801//  %addr = getelementptr double, double* %base, i64 %offset
802//  %ld = load double, double* %addr, align 8
803//
804// We won't be able to form a single SCEVAddRecExpr from this since the
805// address for each loop iteration depends on %cmp. We could potentially
806// produce multiple valid SCEVAddRecExprs, though, and check all of them for
807// memory safety/aliasing if needed.
808//
809// If we encounter some IR we don't yet handle, or something obviously fine
810// like a constant, then we just add the SCEV for that term to the list passed
811// in by the caller. If we have a node that may potentially yield a valid
812// SCEVAddRecExpr then we decompose it into parts and build the SCEV terms
813// ourselves before adding to the list.
814static void findForkedSCEVs(
815    ScalarEvolution *SE, const Loop *L, Value *Ptr,
816    SmallVectorImpl<PointerIntPair<const SCEV *, 1, bool>> &ScevList,
817    unsigned Depth) {
818  // If our Value is a SCEVAddRecExpr, loop invariant, not an instruction, or
819  // we've exceeded our limit on recursion, just return whatever we have
820  // regardless of whether it can be used for a forked pointer or not, along
821  // with an indication of whether it might be a poison or undef value.
822  const SCEV *Scev = SE->getSCEV(Ptr);
823  if (isa<SCEVAddRecExpr>(Scev) || L->isLoopInvariant(Ptr) ||
824      !isa<Instruction>(Ptr) || Depth == 0) {
825    ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
826    return;
827  }
828
829  Depth--;
830
831  auto UndefPoisonCheck = [](PointerIntPair<const SCEV *, 1, bool> S) {
832    return get<1>(S);
833  };
834
835  auto GetBinOpExpr = [&SE](unsigned Opcode, const SCEV *L, const SCEV *R) {
836    switch (Opcode) {
837    case Instruction::Add:
838      return SE->getAddExpr(L, R);
839    case Instruction::Sub:
840      return SE->getMinusSCEV(L, R);
841    default:
842      llvm_unreachable("Unexpected binary operator when walking ForkedPtrs");
843    }
844  };
845
846  Instruction *I = cast<Instruction>(Ptr);
847  unsigned Opcode = I->getOpcode();
848  switch (Opcode) {
849  case Instruction::GetElementPtr: {
850    GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
851    Type *SourceTy = GEP->getSourceElementType();
852    // We only handle base + single offset GEPs here for now.
853    // Not dealing with preexisting gathers yet, so no vectors.
854    if (I->getNumOperands() != 2 || SourceTy->isVectorTy()) {
855      ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(GEP));
856      break;
857    }
858    SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> BaseScevs;
859    SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> OffsetScevs;
860    findForkedSCEVs(SE, L, I->getOperand(0), BaseScevs, Depth);
861    findForkedSCEVs(SE, L, I->getOperand(1), OffsetScevs, Depth);
862
863    // See if we need to freeze our fork...
864    bool NeedsFreeze = any_of(BaseScevs, UndefPoisonCheck) ||
865                       any_of(OffsetScevs, UndefPoisonCheck);
866
867    // Check that we only have a single fork, on either the base or the offset.
868    // Copy the SCEV across for the one without a fork in order to generate
869    // the full SCEV for both sides of the GEP.
870    if (OffsetScevs.size() == 2 && BaseScevs.size() == 1)
871      BaseScevs.push_back(BaseScevs[0]);
872    else if (BaseScevs.size() == 2 && OffsetScevs.size() == 1)
873      OffsetScevs.push_back(OffsetScevs[0]);
874    else {
875      ScevList.emplace_back(Scev, NeedsFreeze);
876      break;
877    }
878
879    // Find the pointer type we need to extend to.
880    Type *IntPtrTy = SE->getEffectiveSCEVType(
881        SE->getSCEV(GEP->getPointerOperand())->getType());
882
883    // Find the size of the type being pointed to. We only have a single
884    // index term (guarded above) so we don't need to index into arrays or
885    // structures, just get the size of the scalar value.
886    const SCEV *Size = SE->getSizeOfExpr(IntPtrTy, SourceTy);
887
888    // Scale up the offsets by the size of the type, then add to the bases.
889    const SCEV *Scaled1 = SE->getMulExpr(
890        Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[0]), IntPtrTy));
891    const SCEV *Scaled2 = SE->getMulExpr(
892        Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[1]), IntPtrTy));
893    ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[0]), Scaled1),
894                          NeedsFreeze);
895    ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[1]), Scaled2),
896                          NeedsFreeze);
897    break;
898  }
899  case Instruction::Select: {
900    SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> ChildScevs;
901    // A select means we've found a forked pointer, but we currently only
902    // support a single select per pointer so if there's another behind this
903    // then we just bail out and return the generic SCEV.
904    findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth);
905    findForkedSCEVs(SE, L, I->getOperand(2), ChildScevs, Depth);
906    if (ChildScevs.size() == 2) {
907      ScevList.push_back(ChildScevs[0]);
908      ScevList.push_back(ChildScevs[1]);
909    } else
910      ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
911    break;
912  }
913  case Instruction::Add:
914  case Instruction::Sub: {
915    SmallVector<PointerIntPair<const SCEV *, 1, bool>> LScevs;
916    SmallVector<PointerIntPair<const SCEV *, 1, bool>> RScevs;
917    findForkedSCEVs(SE, L, I->getOperand(0), LScevs, Depth);
918    findForkedSCEVs(SE, L, I->getOperand(1), RScevs, Depth);
919
920    // See if we need to freeze our fork...
921    bool NeedsFreeze =
922        any_of(LScevs, UndefPoisonCheck) || any_of(RScevs, UndefPoisonCheck);
923
924    // Check that we only have a single fork, on either the left or right side.
925    // Copy the SCEV across for the one without a fork in order to generate
926    // the full SCEV for both sides of the BinOp.
927    if (LScevs.size() == 2 && RScevs.size() == 1)
928      RScevs.push_back(RScevs[0]);
929    else if (RScevs.size() == 2 && LScevs.size() == 1)
930      LScevs.push_back(LScevs[0]);
931    else {
932      ScevList.emplace_back(Scev, NeedsFreeze);
933      break;
934    }
935
936    ScevList.emplace_back(
937        GetBinOpExpr(Opcode, get<0>(LScevs[0]), get<0>(RScevs[0])),
938        NeedsFreeze);
939    ScevList.emplace_back(
940        GetBinOpExpr(Opcode, get<0>(LScevs[1]), get<0>(RScevs[1])),
941        NeedsFreeze);
942    break;
943  }
944  default:
945    // Just return the current SCEV if we haven't handled the instruction yet.
946    LLVM_DEBUG(dbgs() << "ForkedPtr unhandled instruction: " << *I << "\n");
947    ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
948    break;
949  }
950}
951
952static SmallVector<PointerIntPair<const SCEV *, 1, bool>>
953findForkedPointer(PredicatedScalarEvolution &PSE,
954                  const ValueToValueMap &StridesMap, Value *Ptr,
955                  const Loop *L) {
956  ScalarEvolution *SE = PSE.getSE();
957  assert(SE->isSCEVable(Ptr->getType()) && "Value is not SCEVable!");
958  SmallVector<PointerIntPair<const SCEV *, 1, bool>> Scevs;
959  findForkedSCEVs(SE, L, Ptr, Scevs, MaxForkedSCEVDepth);
960
961  // For now, we will only accept a forked pointer with two possible SCEVs
962  // that are either SCEVAddRecExprs or loop invariant.
963  if (Scevs.size() == 2 &&
964      (isa<SCEVAddRecExpr>(get<0>(Scevs[0])) ||
965       SE->isLoopInvariant(get<0>(Scevs[0]), L)) &&
966      (isa<SCEVAddRecExpr>(get<0>(Scevs[1])) ||
967       SE->isLoopInvariant(get<0>(Scevs[1]), L))) {
968    LLVM_DEBUG(dbgs() << "LAA: Found forked pointer: " << *Ptr << "\n");
969    LLVM_DEBUG(dbgs() << "\t(1) " << *get<0>(Scevs[0]) << "\n");
970    LLVM_DEBUG(dbgs() << "\t(2) " << *get<0>(Scevs[1]) << "\n");
971    return Scevs;
972  }
973
974  return {{replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr), false}};
975}
976
977bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck,
978                                          MemAccessInfo Access, Type *AccessTy,
979                                          const ValueToValueMap &StridesMap,
980                                          DenseMap<Value *, unsigned> &DepSetId,
981                                          Loop *TheLoop, unsigned &RunningDepId,
982                                          unsigned ASId, bool ShouldCheckWrap,
983                                          bool Assume) {
984  Value *Ptr = Access.getPointer();
985
986  SmallVector<PointerIntPair<const SCEV *, 1, bool>> TranslatedPtrs =
987      findForkedPointer(PSE, StridesMap, Ptr, TheLoop);
988
989  for (auto &P : TranslatedPtrs) {
990    const SCEV *PtrExpr = get<0>(P);
991    if (!hasComputableBounds(PSE, Ptr, PtrExpr, TheLoop, Assume))
992      return false;
993
994    // When we run after a failing dependency check we have to make sure
995    // we don't have wrapping pointers.
996    if (ShouldCheckWrap) {
997      // Skip wrap checking when translating pointers.
998      if (TranslatedPtrs.size() > 1)
999        return false;
1000
1001      if (!isNoWrap(PSE, StridesMap, Ptr, AccessTy, TheLoop)) {
1002        auto *Expr = PSE.getSCEV(Ptr);
1003        if (!Assume || !isa<SCEVAddRecExpr>(Expr))
1004          return false;
1005        PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1006      }
1007    }
1008    // If there's only one option for Ptr, look it up after bounds and wrap
1009    // checking, because assumptions might have been added to PSE.
1010    if (TranslatedPtrs.size() == 1)
1011      TranslatedPtrs[0] = {replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr),
1012                           false};
1013  }
1014
1015  for (auto [PtrExpr, NeedsFreeze] : TranslatedPtrs) {
1016    // The id of the dependence set.
1017    unsigned DepId;
1018
1019    if (isDependencyCheckNeeded()) {
1020      Value *Leader = DepCands.getLeaderValue(Access).getPointer();
1021      unsigned &LeaderId = DepSetId[Leader];
1022      if (!LeaderId)
1023        LeaderId = RunningDepId++;
1024      DepId = LeaderId;
1025    } else
1026      // Each access has its own dependence set.
1027      DepId = RunningDepId++;
1028
1029    bool IsWrite = Access.getInt();
1030    RtCheck.insert(TheLoop, Ptr, PtrExpr, AccessTy, IsWrite, DepId, ASId, PSE,
1031                   NeedsFreeze);
1032    LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
1033  }
1034
1035  return true;
1036}
1037
1038bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
1039                                     ScalarEvolution *SE, Loop *TheLoop,
1040                                     const ValueToValueMap &StridesMap,
1041                                     Value *&UncomputablePtr, bool ShouldCheckWrap) {
1042  // Find pointers with computable bounds. We are going to use this information
1043  // to place a runtime bound check.
1044  bool CanDoRT = true;
1045
1046  bool MayNeedRTCheck = false;
1047  if (!IsRTCheckAnalysisNeeded) return true;
1048
1049  bool IsDepCheckNeeded = isDependencyCheckNeeded();
1050
1051  // We assign a consecutive id to access from different alias sets.
1052  // Accesses between different groups doesn't need to be checked.
1053  unsigned ASId = 0;
1054  for (auto &AS : AST) {
1055    int NumReadPtrChecks = 0;
1056    int NumWritePtrChecks = 0;
1057    bool CanDoAliasSetRT = true;
1058    ++ASId;
1059
1060    // We assign consecutive id to access from different dependence sets.
1061    // Accesses within the same set don't need a runtime check.
1062    unsigned RunningDepId = 1;
1063    DenseMap<Value *, unsigned> DepSetId;
1064
1065    SmallVector<std::pair<MemAccessInfo, Type *>, 4> Retries;
1066
1067    // First, count how many write and read accesses are in the alias set. Also
1068    // collect MemAccessInfos for later.
1069    SmallVector<MemAccessInfo, 4> AccessInfos;
1070    for (const auto &A : AS) {
1071      Value *Ptr = A.getValue();
1072      bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
1073
1074      if (IsWrite)
1075        ++NumWritePtrChecks;
1076      else
1077        ++NumReadPtrChecks;
1078      AccessInfos.emplace_back(Ptr, IsWrite);
1079    }
1080
1081    // We do not need runtime checks for this alias set, if there are no writes
1082    // or a single write and no reads.
1083    if (NumWritePtrChecks == 0 ||
1084        (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) {
1085      assert((AS.size() <= 1 ||
1086              all_of(AS,
1087                     [this](auto AC) {
1088                       MemAccessInfo AccessWrite(AC.getValue(), true);
1089                       return DepCands.findValue(AccessWrite) == DepCands.end();
1090                     })) &&
1091             "Can only skip updating CanDoRT below, if all entries in AS "
1092             "are reads or there is at most 1 entry");
1093      continue;
1094    }
1095
1096    for (auto &Access : AccessInfos) {
1097      for (const auto &AccessTy : Accesses[Access]) {
1098        if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap,
1099                                  DepSetId, TheLoop, RunningDepId, ASId,
1100                                  ShouldCheckWrap, false)) {
1101          LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:"
1102                            << *Access.getPointer() << '\n');
1103          Retries.push_back({Access, AccessTy});
1104          CanDoAliasSetRT = false;
1105        }
1106      }
1107    }
1108
1109    // Note that this function computes CanDoRT and MayNeedRTCheck
1110    // independently. For example CanDoRT=false, MayNeedRTCheck=false means that
1111    // we have a pointer for which we couldn't find the bounds but we don't
1112    // actually need to emit any checks so it does not matter.
1113    //
1114    // We need runtime checks for this alias set, if there are at least 2
1115    // dependence sets (in which case RunningDepId > 2) or if we need to re-try
1116    // any bound checks (because in that case the number of dependence sets is
1117    // incomplete).
1118    bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty();
1119
1120    // We need to perform run-time alias checks, but some pointers had bounds
1121    // that couldn't be checked.
1122    if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) {
1123      // Reset the CanDoSetRt flag and retry all accesses that have failed.
1124      // We know that we need these checks, so we can now be more aggressive
1125      // and add further checks if required (overflow checks).
1126      CanDoAliasSetRT = true;
1127      for (auto Retry : Retries) {
1128        MemAccessInfo Access = Retry.first;
1129        Type *AccessTy = Retry.second;
1130        if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap,
1131                                  DepSetId, TheLoop, RunningDepId, ASId,
1132                                  ShouldCheckWrap, /*Assume=*/true)) {
1133          CanDoAliasSetRT = false;
1134          UncomputablePtr = Access.getPointer();
1135          break;
1136        }
1137      }
1138    }
1139
1140    CanDoRT &= CanDoAliasSetRT;
1141    MayNeedRTCheck |= NeedsAliasSetRTCheck;
1142    ++ASId;
1143  }
1144
1145  // If the pointers that we would use for the bounds comparison have different
1146  // address spaces, assume the values aren't directly comparable, so we can't
1147  // use them for the runtime check. We also have to assume they could
1148  // overlap. In the future there should be metadata for whether address spaces
1149  // are disjoint.
1150  unsigned NumPointers = RtCheck.Pointers.size();
1151  for (unsigned i = 0; i < NumPointers; ++i) {
1152    for (unsigned j = i + 1; j < NumPointers; ++j) {
1153      // Only need to check pointers between two different dependency sets.
1154      if (RtCheck.Pointers[i].DependencySetId ==
1155          RtCheck.Pointers[j].DependencySetId)
1156       continue;
1157      // Only need to check pointers in the same alias set.
1158      if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
1159        continue;
1160
1161      Value *PtrI = RtCheck.Pointers[i].PointerValue;
1162      Value *PtrJ = RtCheck.Pointers[j].PointerValue;
1163
1164      unsigned ASi = PtrI->getType()->getPointerAddressSpace();
1165      unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
1166      if (ASi != ASj) {
1167        LLVM_DEBUG(
1168            dbgs() << "LAA: Runtime check would require comparison between"
1169                      " different address spaces\n");
1170        return false;
1171      }
1172    }
1173  }
1174
1175  if (MayNeedRTCheck && CanDoRT)
1176    RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
1177
1178  LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
1179                    << " pointer comparisons.\n");
1180
1181  // If we can do run-time checks, but there are no checks, no runtime checks
1182  // are needed. This can happen when all pointers point to the same underlying
1183  // object for example.
1184  RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck;
1185
1186  bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT;
1187  if (!CanDoRTIfNeeded)
1188    RtCheck.reset();
1189  return CanDoRTIfNeeded;
1190}
1191
1192void AccessAnalysis::processMemAccesses() {
1193  // We process the set twice: first we process read-write pointers, last we
1194  // process read-only pointers. This allows us to skip dependence tests for
1195  // read-only pointers.
1196
1197  LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
1198  LLVM_DEBUG(dbgs() << "  AST: "; AST.dump());
1199  LLVM_DEBUG(dbgs() << "LAA:   Accesses(" << Accesses.size() << "):\n");
1200  LLVM_DEBUG({
1201    for (auto A : Accesses)
1202      dbgs() << "\t" << *A.first.getPointer() << " ("
1203             << (A.first.getInt()
1204                     ? "write"
1205                     : (ReadOnlyPtr.count(A.first.getPointer()) ? "read-only"
1206                                                                : "read"))
1207             << ")\n";
1208  });
1209
1210  // The AliasSetTracker has nicely partitioned our pointers by metadata
1211  // compatibility and potential for underlying-object overlap. As a result, we
1212  // only need to check for potential pointer dependencies within each alias
1213  // set.
1214  for (const auto &AS : AST) {
1215    // Note that both the alias-set tracker and the alias sets themselves used
1216    // linked lists internally and so the iteration order here is deterministic
1217    // (matching the original instruction order within each set).
1218
1219    bool SetHasWrite = false;
1220
1221    // Map of pointers to last access encountered.
1222    typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap;
1223    UnderlyingObjToAccessMap ObjToLastAccess;
1224
1225    // Set of access to check after all writes have been processed.
1226    PtrAccessMap DeferredAccesses;
1227
1228    // Iterate over each alias set twice, once to process read/write pointers,
1229    // and then to process read-only pointers.
1230    for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
1231      bool UseDeferred = SetIteration > 0;
1232      PtrAccessMap &S = UseDeferred ? DeferredAccesses : Accesses;
1233
1234      for (const auto &AV : AS) {
1235        Value *Ptr = AV.getValue();
1236
1237        // For a single memory access in AliasSetTracker, Accesses may contain
1238        // both read and write, and they both need to be handled for CheckDeps.
1239        for (const auto &AC : S) {
1240          if (AC.first.getPointer() != Ptr)
1241            continue;
1242
1243          bool IsWrite = AC.first.getInt();
1244
1245          // If we're using the deferred access set, then it contains only
1246          // reads.
1247          bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
1248          if (UseDeferred && !IsReadOnlyPtr)
1249            continue;
1250          // Otherwise, the pointer must be in the PtrAccessSet, either as a
1251          // read or a write.
1252          assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
1253                  S.count(MemAccessInfo(Ptr, false))) &&
1254                 "Alias-set pointer not in the access set?");
1255
1256          MemAccessInfo Access(Ptr, IsWrite);
1257          DepCands.insert(Access);
1258
1259          // Memorize read-only pointers for later processing and skip them in
1260          // the first round (they need to be checked after we have seen all
1261          // write pointers). Note: we also mark pointer that are not
1262          // consecutive as "read-only" pointers (so that we check
1263          // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
1264          if (!UseDeferred && IsReadOnlyPtr) {
1265            // We only use the pointer keys, the types vector values don't
1266            // matter.
1267            DeferredAccesses.insert({Access, {}});
1268            continue;
1269          }
1270
1271          // If this is a write - check other reads and writes for conflicts. If
1272          // this is a read only check other writes for conflicts (but only if
1273          // there is no other write to the ptr - this is an optimization to
1274          // catch "a[i] = a[i] + " without having to do a dependence check).
1275          if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
1276            CheckDeps.push_back(Access);
1277            IsRTCheckAnalysisNeeded = true;
1278          }
1279
1280          if (IsWrite)
1281            SetHasWrite = true;
1282
1283          // Create sets of pointers connected by a shared alias set and
1284          // underlying object.
1285          typedef SmallVector<const Value *, 16> ValueVector;
1286          ValueVector TempObjects;
1287
1288          getUnderlyingObjects(Ptr, TempObjects, LI);
1289          LLVM_DEBUG(dbgs()
1290                     << "Underlying objects for pointer " << *Ptr << "\n");
1291          for (const Value *UnderlyingObj : TempObjects) {
1292            // nullptr never alias, don't join sets for pointer that have "null"
1293            // in their UnderlyingObjects list.
1294            if (isa<ConstantPointerNull>(UnderlyingObj) &&
1295                !NullPointerIsDefined(
1296                    TheLoop->getHeader()->getParent(),
1297                    UnderlyingObj->getType()->getPointerAddressSpace()))
1298              continue;
1299
1300            UnderlyingObjToAccessMap::iterator Prev =
1301                ObjToLastAccess.find(UnderlyingObj);
1302            if (Prev != ObjToLastAccess.end())
1303              DepCands.unionSets(Access, Prev->second);
1304
1305            ObjToLastAccess[UnderlyingObj] = Access;
1306            LLVM_DEBUG(dbgs() << "  " << *UnderlyingObj << "\n");
1307          }
1308        }
1309      }
1310    }
1311  }
1312}
1313
1314static bool isInBoundsGep(Value *Ptr) {
1315  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
1316    return GEP->isInBounds();
1317  return false;
1318}
1319
1320/// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
1321/// i.e. monotonically increasing/decreasing.
1322static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
1323                           PredicatedScalarEvolution &PSE, const Loop *L) {
1324  // FIXME: This should probably only return true for NUW.
1325  if (AR->getNoWrapFlags(SCEV::NoWrapMask))
1326    return true;
1327
1328  // Scalar evolution does not propagate the non-wrapping flags to values that
1329  // are derived from a non-wrapping induction variable because non-wrapping
1330  // could be flow-sensitive.
1331  //
1332  // Look through the potentially overflowing instruction to try to prove
1333  // non-wrapping for the *specific* value of Ptr.
1334
1335  // The arithmetic implied by an inbounds GEP can't overflow.
1336  auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
1337  if (!GEP || !GEP->isInBounds())
1338    return false;
1339
1340  // Make sure there is only one non-const index and analyze that.
1341  Value *NonConstIndex = nullptr;
1342  for (Value *Index : GEP->indices())
1343    if (!isa<ConstantInt>(Index)) {
1344      if (NonConstIndex)
1345        return false;
1346      NonConstIndex = Index;
1347    }
1348  if (!NonConstIndex)
1349    // The recurrence is on the pointer, ignore for now.
1350    return false;
1351
1352  // The index in GEP is signed.  It is non-wrapping if it's derived from a NSW
1353  // AddRec using a NSW operation.
1354  if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
1355    if (OBO->hasNoSignedWrap() &&
1356        // Assume constant for other the operand so that the AddRec can be
1357        // easily found.
1358        isa<ConstantInt>(OBO->getOperand(1))) {
1359      auto *OpScev = PSE.getSCEV(OBO->getOperand(0));
1360
1361      if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
1362        return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
1363    }
1364
1365  return false;
1366}
1367
1368/// Check whether the access through \p Ptr has a constant stride.
1369std::optional<int64_t> llvm::getPtrStride(PredicatedScalarEvolution &PSE,
1370                                          Type *AccessTy, Value *Ptr,
1371                                          const Loop *Lp,
1372                                          const ValueToValueMap &StridesMap,
1373                                          bool Assume, bool ShouldCheckWrap) {
1374  Type *Ty = Ptr->getType();
1375  assert(Ty->isPointerTy() && "Unexpected non-ptr");
1376
1377  if (isa<ScalableVectorType>(AccessTy)) {
1378    LLVM_DEBUG(dbgs() << "LAA: Bad stride - Scalable object: " << *AccessTy
1379                      << "\n");
1380    return std::nullopt;
1381  }
1382
1383  const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
1384
1385  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
1386  if (Assume && !AR)
1387    AR = PSE.getAsAddRec(Ptr);
1388
1389  if (!AR) {
1390    LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
1391                      << " SCEV: " << *PtrScev << "\n");
1392    return std::nullopt;
1393  }
1394
1395  // The access function must stride over the innermost loop.
1396  if (Lp != AR->getLoop()) {
1397    LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop "
1398                      << *Ptr << " SCEV: " << *AR << "\n");
1399    return std::nullopt;
1400  }
1401
1402  // The address calculation must not wrap. Otherwise, a dependence could be
1403  // inverted.
1404  // An inbounds getelementptr that is a AddRec with a unit stride
1405  // cannot wrap per definition. The unit stride requirement is checked later.
1406  // An getelementptr without an inbounds attribute and unit stride would have
1407  // to access the pointer value "0" which is undefined behavior in address
1408  // space 0, therefore we can also vectorize this case.
1409  unsigned AddrSpace = Ty->getPointerAddressSpace();
1410  bool IsInBoundsGEP = isInBoundsGep(Ptr);
1411  bool IsNoWrapAddRec = !ShouldCheckWrap ||
1412    PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) ||
1413    isNoWrapAddRec(Ptr, AR, PSE, Lp);
1414  if (!IsNoWrapAddRec && !IsInBoundsGEP &&
1415      NullPointerIsDefined(Lp->getHeader()->getParent(), AddrSpace)) {
1416    if (Assume) {
1417      PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1418      IsNoWrapAddRec = true;
1419      LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n"
1420                        << "LAA:   Pointer: " << *Ptr << "\n"
1421                        << "LAA:   SCEV: " << *AR << "\n"
1422                        << "LAA:   Added an overflow assumption\n");
1423    } else {
1424      LLVM_DEBUG(
1425          dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
1426                 << *Ptr << " SCEV: " << *AR << "\n");
1427      return std::nullopt;
1428    }
1429  }
1430
1431  // Check the step is constant.
1432  const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
1433
1434  // Calculate the pointer stride and check if it is constant.
1435  const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
1436  if (!C) {
1437    LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr
1438                      << " SCEV: " << *AR << "\n");
1439    return std::nullopt;
1440  }
1441
1442  auto &DL = Lp->getHeader()->getModule()->getDataLayout();
1443  TypeSize AllocSize = DL.getTypeAllocSize(AccessTy);
1444  int64_t Size = AllocSize.getFixedValue();
1445  const APInt &APStepVal = C->getAPInt();
1446
1447  // Huge step value - give up.
1448  if (APStepVal.getBitWidth() > 64)
1449    return std::nullopt;
1450
1451  int64_t StepVal = APStepVal.getSExtValue();
1452
1453  // Strided access.
1454  int64_t Stride = StepVal / Size;
1455  int64_t Rem = StepVal % Size;
1456  if (Rem)
1457    return std::nullopt;
1458
1459  // If the SCEV could wrap but we have an inbounds gep with a unit stride we
1460  // know we can't "wrap around the address space". In case of address space
1461  // zero we know that this won't happen without triggering undefined behavior.
1462  if (!IsNoWrapAddRec && Stride != 1 && Stride != -1 &&
1463      (IsInBoundsGEP || !NullPointerIsDefined(Lp->getHeader()->getParent(),
1464                                              AddrSpace))) {
1465    if (Assume) {
1466      // We can avoid this case by adding a run-time check.
1467      LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either "
1468                        << "inbounds or in address space 0 may wrap:\n"
1469                        << "LAA:   Pointer: " << *Ptr << "\n"
1470                        << "LAA:   SCEV: " << *AR << "\n"
1471                        << "LAA:   Added an overflow assumption\n");
1472      PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1473    } else
1474      return std::nullopt;
1475  }
1476
1477  return Stride;
1478}
1479
1480std::optional<int> llvm::getPointersDiff(Type *ElemTyA, Value *PtrA,
1481                                         Type *ElemTyB, Value *PtrB,
1482                                         const DataLayout &DL,
1483                                         ScalarEvolution &SE, bool StrictCheck,
1484                                         bool CheckType) {
1485  assert(PtrA && PtrB && "Expected non-nullptr pointers.");
1486  assert(cast<PointerType>(PtrA->getType())
1487             ->isOpaqueOrPointeeTypeMatches(ElemTyA) && "Wrong PtrA type");
1488  assert(cast<PointerType>(PtrB->getType())
1489             ->isOpaqueOrPointeeTypeMatches(ElemTyB) && "Wrong PtrB type");
1490
1491  // Make sure that A and B are different pointers.
1492  if (PtrA == PtrB)
1493    return 0;
1494
1495  // Make sure that the element types are the same if required.
1496  if (CheckType && ElemTyA != ElemTyB)
1497    return std::nullopt;
1498
1499  unsigned ASA = PtrA->getType()->getPointerAddressSpace();
1500  unsigned ASB = PtrB->getType()->getPointerAddressSpace();
1501
1502  // Check that the address spaces match.
1503  if (ASA != ASB)
1504    return std::nullopt;
1505  unsigned IdxWidth = DL.getIndexSizeInBits(ASA);
1506
1507  APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0);
1508  Value *PtrA1 = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1509  Value *PtrB1 = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1510
1511  int Val;
1512  if (PtrA1 == PtrB1) {
1513    // Retrieve the address space again as pointer stripping now tracks through
1514    // `addrspacecast`.
1515    ASA = cast<PointerType>(PtrA1->getType())->getAddressSpace();
1516    ASB = cast<PointerType>(PtrB1->getType())->getAddressSpace();
1517    // Check that the address spaces match and that the pointers are valid.
1518    if (ASA != ASB)
1519      return std::nullopt;
1520
1521    IdxWidth = DL.getIndexSizeInBits(ASA);
1522    OffsetA = OffsetA.sextOrTrunc(IdxWidth);
1523    OffsetB = OffsetB.sextOrTrunc(IdxWidth);
1524
1525    OffsetB -= OffsetA;
1526    Val = OffsetB.getSExtValue();
1527  } else {
1528    // Otherwise compute the distance with SCEV between the base pointers.
1529    const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1530    const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1531    const auto *Diff =
1532        dyn_cast<SCEVConstant>(SE.getMinusSCEV(PtrSCEVB, PtrSCEVA));
1533    if (!Diff)
1534      return std::nullopt;
1535    Val = Diff->getAPInt().getSExtValue();
1536  }
1537  int Size = DL.getTypeStoreSize(ElemTyA);
1538  int Dist = Val / Size;
1539
1540  // Ensure that the calculated distance matches the type-based one after all
1541  // the bitcasts removal in the provided pointers.
1542  if (!StrictCheck || Dist * Size == Val)
1543    return Dist;
1544  return std::nullopt;
1545}
1546
1547bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy,
1548                           const DataLayout &DL, ScalarEvolution &SE,
1549                           SmallVectorImpl<unsigned> &SortedIndices) {
1550  assert(llvm::all_of(
1551             VL, [](const Value *V) { return V->getType()->isPointerTy(); }) &&
1552         "Expected list of pointer operands.");
1553  // Walk over the pointers, and map each of them to an offset relative to
1554  // first pointer in the array.
1555  Value *Ptr0 = VL[0];
1556
1557  using DistOrdPair = std::pair<int64_t, int>;
1558  auto Compare = llvm::less_first();
1559  std::set<DistOrdPair, decltype(Compare)> Offsets(Compare);
1560  Offsets.emplace(0, 0);
1561  int Cnt = 1;
1562  bool IsConsecutive = true;
1563  for (auto *Ptr : VL.drop_front()) {
1564    std::optional<int> Diff = getPointersDiff(ElemTy, Ptr0, ElemTy, Ptr, DL, SE,
1565                                              /*StrictCheck=*/true);
1566    if (!Diff)
1567      return false;
1568
1569    // Check if the pointer with the same offset is found.
1570    int64_t Offset = *Diff;
1571    auto Res = Offsets.emplace(Offset, Cnt);
1572    if (!Res.second)
1573      return false;
1574    // Consecutive order if the inserted element is the last one.
1575    IsConsecutive = IsConsecutive && std::next(Res.first) == Offsets.end();
1576    ++Cnt;
1577  }
1578  SortedIndices.clear();
1579  if (!IsConsecutive) {
1580    // Fill SortedIndices array only if it is non-consecutive.
1581    SortedIndices.resize(VL.size());
1582    Cnt = 0;
1583    for (const std::pair<int64_t, int> &Pair : Offsets) {
1584      SortedIndices[Cnt] = Pair.second;
1585      ++Cnt;
1586    }
1587  }
1588  return true;
1589}
1590
1591/// Returns true if the memory operations \p A and \p B are consecutive.
1592bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
1593                               ScalarEvolution &SE, bool CheckType) {
1594  Value *PtrA = getLoadStorePointerOperand(A);
1595  Value *PtrB = getLoadStorePointerOperand(B);
1596  if (!PtrA || !PtrB)
1597    return false;
1598  Type *ElemTyA = getLoadStoreType(A);
1599  Type *ElemTyB = getLoadStoreType(B);
1600  std::optional<int> Diff =
1601      getPointersDiff(ElemTyA, PtrA, ElemTyB, PtrB, DL, SE,
1602                      /*StrictCheck=*/true, CheckType);
1603  return Diff && *Diff == 1;
1604}
1605
1606void MemoryDepChecker::addAccess(StoreInst *SI) {
1607  visitPointers(SI->getPointerOperand(), *InnermostLoop,
1608                [this, SI](Value *Ptr) {
1609                  Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
1610                  InstMap.push_back(SI);
1611                  ++AccessIdx;
1612                });
1613}
1614
1615void MemoryDepChecker::addAccess(LoadInst *LI) {
1616  visitPointers(LI->getPointerOperand(), *InnermostLoop,
1617                [this, LI](Value *Ptr) {
1618                  Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
1619                  InstMap.push_back(LI);
1620                  ++AccessIdx;
1621                });
1622}
1623
1624MemoryDepChecker::VectorizationSafetyStatus
1625MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
1626  switch (Type) {
1627  case NoDep:
1628  case Forward:
1629  case BackwardVectorizable:
1630    return VectorizationSafetyStatus::Safe;
1631
1632  case Unknown:
1633    return VectorizationSafetyStatus::PossiblySafeWithRtChecks;
1634  case ForwardButPreventsForwarding:
1635  case Backward:
1636  case BackwardVectorizableButPreventsForwarding:
1637    return VectorizationSafetyStatus::Unsafe;
1638  }
1639  llvm_unreachable("unexpected DepType!");
1640}
1641
1642bool MemoryDepChecker::Dependence::isBackward() const {
1643  switch (Type) {
1644  case NoDep:
1645  case Forward:
1646  case ForwardButPreventsForwarding:
1647  case Unknown:
1648    return false;
1649
1650  case BackwardVectorizable:
1651  case Backward:
1652  case BackwardVectorizableButPreventsForwarding:
1653    return true;
1654  }
1655  llvm_unreachable("unexpected DepType!");
1656}
1657
1658bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1659  return isBackward() || Type == Unknown;
1660}
1661
1662bool MemoryDepChecker::Dependence::isForward() const {
1663  switch (Type) {
1664  case Forward:
1665  case ForwardButPreventsForwarding:
1666    return true;
1667
1668  case NoDep:
1669  case Unknown:
1670  case BackwardVectorizable:
1671  case Backward:
1672  case BackwardVectorizableButPreventsForwarding:
1673    return false;
1674  }
1675  llvm_unreachable("unexpected DepType!");
1676}
1677
1678bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
1679                                                    uint64_t TypeByteSize) {
1680  // If loads occur at a distance that is not a multiple of a feasible vector
1681  // factor store-load forwarding does not take place.
1682  // Positive dependences might cause troubles because vectorizing them might
1683  // prevent store-load forwarding making vectorized code run a lot slower.
1684  //   a[i] = a[i-3] ^ a[i-8];
1685  //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1686  //   hence on your typical architecture store-load forwarding does not take
1687  //   place. Vectorizing in such cases does not make sense.
1688  // Store-load forwarding distance.
1689
1690  // After this many iterations store-to-load forwarding conflicts should not
1691  // cause any slowdowns.
1692  const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
1693  // Maximum vector factor.
1694  uint64_t MaxVFWithoutSLForwardIssues = std::min(
1695      VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes);
1696
1697  // Compute the smallest VF at which the store and load would be misaligned.
1698  for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
1699       VF *= 2) {
1700    // If the number of vector iteration between the store and the load are
1701    // small we could incur conflicts.
1702    if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
1703      MaxVFWithoutSLForwardIssues = (VF >> 1);
1704      break;
1705    }
1706  }
1707
1708  if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
1709    LLVM_DEBUG(
1710        dbgs() << "LAA: Distance " << Distance
1711               << " that could cause a store-load forwarding conflict\n");
1712    return true;
1713  }
1714
1715  if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
1716      MaxVFWithoutSLForwardIssues !=
1717          VectorizerParams::MaxVectorWidth * TypeByteSize)
1718    MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
1719  return false;
1720}
1721
1722void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) {
1723  if (Status < S)
1724    Status = S;
1725}
1726
1727/// Given a dependence-distance \p Dist between two
1728/// memory accesses, that have the same stride whose absolute value is given
1729/// in \p Stride, and that have the same type size \p TypeByteSize,
1730/// in a loop whose takenCount is \p BackedgeTakenCount, check if it is
1731/// possible to prove statically that the dependence distance is larger
1732/// than the range that the accesses will travel through the execution of
1733/// the loop. If so, return true; false otherwise. This is useful for
1734/// example in loops such as the following (PR31098):
1735///     for (i = 0; i < D; ++i) {
1736///                = out[i];
1737///       out[i+D] =
1738///     }
1739static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE,
1740                                     const SCEV &BackedgeTakenCount,
1741                                     const SCEV &Dist, uint64_t Stride,
1742                                     uint64_t TypeByteSize) {
1743
1744  // If we can prove that
1745  //      (**) |Dist| > BackedgeTakenCount * Step
1746  // where Step is the absolute stride of the memory accesses in bytes,
1747  // then there is no dependence.
1748  //
1749  // Rationale:
1750  // We basically want to check if the absolute distance (|Dist/Step|)
1751  // is >= the loop iteration count (or > BackedgeTakenCount).
1752  // This is equivalent to the Strong SIV Test (Practical Dependence Testing,
1753  // Section 4.2.1); Note, that for vectorization it is sufficient to prove
1754  // that the dependence distance is >= VF; This is checked elsewhere.
1755  // But in some cases we can prune dependence distances early, and
1756  // even before selecting the VF, and without a runtime test, by comparing
1757  // the distance against the loop iteration count. Since the vectorized code
1758  // will be executed only if LoopCount >= VF, proving distance >= LoopCount
1759  // also guarantees that distance >= VF.
1760  //
1761  const uint64_t ByteStride = Stride * TypeByteSize;
1762  const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride);
1763  const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step);
1764
1765  const SCEV *CastedDist = &Dist;
1766  const SCEV *CastedProduct = Product;
1767  uint64_t DistTypeSizeBits = DL.getTypeSizeInBits(Dist.getType());
1768  uint64_t ProductTypeSizeBits = DL.getTypeSizeInBits(Product->getType());
1769
1770  // The dependence distance can be positive/negative, so we sign extend Dist;
1771  // The multiplication of the absolute stride in bytes and the
1772  // backedgeTakenCount is non-negative, so we zero extend Product.
1773  if (DistTypeSizeBits > ProductTypeSizeBits)
1774    CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType());
1775  else
1776    CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType());
1777
1778  // Is  Dist - (BackedgeTakenCount * Step) > 0 ?
1779  // (If so, then we have proven (**) because |Dist| >= Dist)
1780  const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct);
1781  if (SE.isKnownPositive(Minus))
1782    return true;
1783
1784  // Second try: Is  -Dist - (BackedgeTakenCount * Step) > 0 ?
1785  // (If so, then we have proven (**) because |Dist| >= -1*Dist)
1786  const SCEV *NegDist = SE.getNegativeSCEV(CastedDist);
1787  Minus = SE.getMinusSCEV(NegDist, CastedProduct);
1788  if (SE.isKnownPositive(Minus))
1789    return true;
1790
1791  return false;
1792}
1793
1794/// Check the dependence for two accesses with the same stride \p Stride.
1795/// \p Distance is the positive distance and \p TypeByteSize is type size in
1796/// bytes.
1797///
1798/// \returns true if they are independent.
1799static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride,
1800                                          uint64_t TypeByteSize) {
1801  assert(Stride > 1 && "The stride must be greater than 1");
1802  assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1803  assert(Distance > 0 && "The distance must be non-zero");
1804
1805  // Skip if the distance is not multiple of type byte size.
1806  if (Distance % TypeByteSize)
1807    return false;
1808
1809  uint64_t ScaledDist = Distance / TypeByteSize;
1810
1811  // No dependence if the scaled distance is not multiple of the stride.
1812  // E.g.
1813  //      for (i = 0; i < 1024 ; i += 4)
1814  //        A[i+2] = A[i] + 1;
1815  //
1816  // Two accesses in memory (scaled distance is 2, stride is 4):
1817  //     | A[0] |      |      |      | A[4] |      |      |      |
1818  //     |      |      | A[2] |      |      |      | A[6] |      |
1819  //
1820  // E.g.
1821  //      for (i = 0; i < 1024 ; i += 3)
1822  //        A[i+4] = A[i] + 1;
1823  //
1824  // Two accesses in memory (scaled distance is 4, stride is 3):
1825  //     | A[0] |      |      | A[3] |      |      | A[6] |      |      |
1826  //     |      |      |      |      | A[4] |      |      | A[7] |      |
1827  return ScaledDist % Stride;
1828}
1829
1830MemoryDepChecker::Dependence::DepType
1831MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
1832                              const MemAccessInfo &B, unsigned BIdx,
1833                              const ValueToValueMap &Strides) {
1834  assert (AIdx < BIdx && "Must pass arguments in program order");
1835
1836  auto [APtr, AIsWrite] = A;
1837  auto [BPtr, BIsWrite] = B;
1838  Type *ATy = getLoadStoreType(InstMap[AIdx]);
1839  Type *BTy = getLoadStoreType(InstMap[BIdx]);
1840
1841  // Two reads are independent.
1842  if (!AIsWrite && !BIsWrite)
1843    return Dependence::NoDep;
1844
1845  // We cannot check pointers in different address spaces.
1846  if (APtr->getType()->getPointerAddressSpace() !=
1847      BPtr->getType()->getPointerAddressSpace())
1848    return Dependence::Unknown;
1849
1850  int64_t StrideAPtr =
1851    getPtrStride(PSE, ATy, APtr, InnermostLoop, Strides, true).value_or(0);
1852  int64_t StrideBPtr =
1853    getPtrStride(PSE, BTy, BPtr, InnermostLoop, Strides, true).value_or(0);
1854
1855  const SCEV *Src = PSE.getSCEV(APtr);
1856  const SCEV *Sink = PSE.getSCEV(BPtr);
1857
1858  // If the induction step is negative we have to invert source and sink of the
1859  // dependence.
1860  if (StrideAPtr < 0) {
1861    std::swap(APtr, BPtr);
1862    std::swap(ATy, BTy);
1863    std::swap(Src, Sink);
1864    std::swap(AIsWrite, BIsWrite);
1865    std::swap(AIdx, BIdx);
1866    std::swap(StrideAPtr, StrideBPtr);
1867  }
1868
1869  ScalarEvolution &SE = *PSE.getSE();
1870  const SCEV *Dist = SE.getMinusSCEV(Sink, Src);
1871
1872  LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
1873                    << "(Induction step: " << StrideAPtr << ")\n");
1874  LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
1875                    << *InstMap[BIdx] << ": " << *Dist << "\n");
1876
1877  // Need accesses with constant stride. We don't want to vectorize
1878  // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
1879  // the address space.
1880  if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
1881    LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n");
1882    return Dependence::Unknown;
1883  }
1884
1885  auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
1886  uint64_t TypeByteSize = DL.getTypeAllocSize(ATy);
1887  bool HasSameSize =
1888      DL.getTypeStoreSizeInBits(ATy) == DL.getTypeStoreSizeInBits(BTy);
1889  uint64_t Stride = std::abs(StrideAPtr);
1890
1891  if (!isa<SCEVCouldNotCompute>(Dist) && HasSameSize &&
1892      isSafeDependenceDistance(DL, SE, *(PSE.getBackedgeTakenCount()), *Dist,
1893                               Stride, TypeByteSize))
1894    return Dependence::NoDep;
1895
1896  const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
1897  if (!C) {
1898    LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
1899    FoundNonConstantDistanceDependence = true;
1900    return Dependence::Unknown;
1901  }
1902
1903  const APInt &Val = C->getAPInt();
1904  int64_t Distance = Val.getSExtValue();
1905
1906  // Attempt to prove strided accesses independent.
1907  if (std::abs(Distance) > 0 && Stride > 1 && HasSameSize &&
1908      areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) {
1909    LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
1910    return Dependence::NoDep;
1911  }
1912
1913  // Negative distances are not plausible dependencies.
1914  if (Val.isNegative()) {
1915    bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
1916    if (IsTrueDataDependence && EnableForwardingConflictDetection &&
1917        (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
1918         !HasSameSize)) {
1919      LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
1920      return Dependence::ForwardButPreventsForwarding;
1921    }
1922
1923    LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n");
1924    return Dependence::Forward;
1925  }
1926
1927  // Write to the same location with the same size.
1928  if (Val == 0) {
1929    if (HasSameSize)
1930      return Dependence::Forward;
1931    LLVM_DEBUG(
1932        dbgs() << "LAA: Zero dependence difference but different type sizes\n");
1933    return Dependence::Unknown;
1934  }
1935
1936  assert(Val.isStrictlyPositive() && "Expect a positive value");
1937
1938  if (!HasSameSize) {
1939    LLVM_DEBUG(dbgs() << "LAA: ReadWrite-Write positive dependency with "
1940                         "different type sizes\n");
1941    return Dependence::Unknown;
1942  }
1943
1944  // Bail out early if passed-in parameters make vectorization not feasible.
1945  unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
1946                           VectorizerParams::VectorizationFactor : 1);
1947  unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
1948                           VectorizerParams::VectorizationInterleave : 1);
1949  // The minimum number of iterations for a vectorized/unrolled version.
1950  unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
1951
1952  // It's not vectorizable if the distance is smaller than the minimum distance
1953  // needed for a vectroized/unrolled version. Vectorizing one iteration in
1954  // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1955  // TypeByteSize (No need to plus the last gap distance).
1956  //
1957  // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1958  //      foo(int *A) {
1959  //        int *B = (int *)((char *)A + 14);
1960  //        for (i = 0 ; i < 1024 ; i += 2)
1961  //          B[i] = A[i] + 1;
1962  //      }
1963  //
1964  // Two accesses in memory (stride is 2):
1965  //     | A[0] |      | A[2] |      | A[4] |      | A[6] |      |
1966  //                              | B[0] |      | B[2] |      | B[4] |
1967  //
1968  // Distance needs for vectorizing iterations except the last iteration:
1969  // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1970  // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1971  //
1972  // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1973  // 12, which is less than distance.
1974  //
1975  // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1976  // the minimum distance needed is 28, which is greater than distance. It is
1977  // not safe to do vectorization.
1978  uint64_t MinDistanceNeeded =
1979      TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
1980  if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) {
1981    LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance "
1982                      << Distance << '\n');
1983    return Dependence::Backward;
1984  }
1985
1986  // Unsafe if the minimum distance needed is greater than max safe distance.
1987  if (MinDistanceNeeded > MaxSafeDepDistBytes) {
1988    LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least "
1989                      << MinDistanceNeeded << " size in bytes\n");
1990    return Dependence::Backward;
1991  }
1992
1993  // Positive distance bigger than max vectorization factor.
1994  // FIXME: Should use max factor instead of max distance in bytes, which could
1995  // not handle different types.
1996  // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1997  //      void foo (int *A, char *B) {
1998  //        for (unsigned i = 0; i < 1024; i++) {
1999  //          A[i+2] = A[i] + 1;
2000  //          B[i+2] = B[i] + 1;
2001  //        }
2002  //      }
2003  //
2004  // This case is currently unsafe according to the max safe distance. If we
2005  // analyze the two accesses on array B, the max safe dependence distance
2006  // is 2. Then we analyze the accesses on array A, the minimum distance needed
2007  // is 8, which is less than 2 and forbidden vectorization, But actually
2008  // both A and B could be vectorized by 2 iterations.
2009  MaxSafeDepDistBytes =
2010      std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes);
2011
2012  bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
2013  if (IsTrueDataDependence && EnableForwardingConflictDetection &&
2014      couldPreventStoreLoadForward(Distance, TypeByteSize))
2015    return Dependence::BackwardVectorizableButPreventsForwarding;
2016
2017  uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride);
2018  LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
2019                    << " with max VF = " << MaxVF << '\n');
2020  uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
2021  MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits);
2022  return Dependence::BackwardVectorizable;
2023}
2024
2025bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
2026                                   MemAccessInfoList &CheckDeps,
2027                                   const ValueToValueMap &Strides) {
2028
2029  MaxSafeDepDistBytes = -1;
2030  SmallPtrSet<MemAccessInfo, 8> Visited;
2031  for (MemAccessInfo CurAccess : CheckDeps) {
2032    if (Visited.count(CurAccess))
2033      continue;
2034
2035    // Get the relevant memory access set.
2036    EquivalenceClasses<MemAccessInfo>::iterator I =
2037      AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
2038
2039    // Check accesses within this set.
2040    EquivalenceClasses<MemAccessInfo>::member_iterator AI =
2041        AccessSets.member_begin(I);
2042    EquivalenceClasses<MemAccessInfo>::member_iterator AE =
2043        AccessSets.member_end();
2044
2045    // Check every access pair.
2046    while (AI != AE) {
2047      Visited.insert(*AI);
2048      bool AIIsWrite = AI->getInt();
2049      // Check loads only against next equivalent class, but stores also against
2050      // other stores in the same equivalence class - to the same address.
2051      EquivalenceClasses<MemAccessInfo>::member_iterator OI =
2052          (AIIsWrite ? AI : std::next(AI));
2053      while (OI != AE) {
2054        // Check every accessing instruction pair in program order.
2055        for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
2056             I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
2057          // Scan all accesses of another equivalence class, but only the next
2058          // accesses of the same equivalent class.
2059          for (std::vector<unsigned>::iterator
2060                   I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()),
2061                   I2E = (OI == AI ? I1E : Accesses[*OI].end());
2062               I2 != I2E; ++I2) {
2063            auto A = std::make_pair(&*AI, *I1);
2064            auto B = std::make_pair(&*OI, *I2);
2065
2066            assert(*I1 != *I2);
2067            if (*I1 > *I2)
2068              std::swap(A, B);
2069
2070            Dependence::DepType Type =
2071                isDependent(*A.first, A.second, *B.first, B.second, Strides);
2072            mergeInStatus(Dependence::isSafeForVectorization(Type));
2073
2074            // Gather dependences unless we accumulated MaxDependences
2075            // dependences.  In that case return as soon as we find the first
2076            // unsafe dependence.  This puts a limit on this quadratic
2077            // algorithm.
2078            if (RecordDependences) {
2079              if (Type != Dependence::NoDep)
2080                Dependences.push_back(Dependence(A.second, B.second, Type));
2081
2082              if (Dependences.size() >= MaxDependences) {
2083                RecordDependences = false;
2084                Dependences.clear();
2085                LLVM_DEBUG(dbgs()
2086                           << "Too many dependences, stopped recording\n");
2087              }
2088            }
2089            if (!RecordDependences && !isSafeForVectorization())
2090              return false;
2091          }
2092        ++OI;
2093      }
2094      AI++;
2095    }
2096  }
2097
2098  LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
2099  return isSafeForVectorization();
2100}
2101
2102SmallVector<Instruction *, 4>
2103MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
2104  MemAccessInfo Access(Ptr, isWrite);
2105  auto &IndexVector = Accesses.find(Access)->second;
2106
2107  SmallVector<Instruction *, 4> Insts;
2108  transform(IndexVector,
2109                 std::back_inserter(Insts),
2110                 [&](unsigned Idx) { return this->InstMap[Idx]; });
2111  return Insts;
2112}
2113
2114const char *MemoryDepChecker::Dependence::DepName[] = {
2115    "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
2116    "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
2117
2118void MemoryDepChecker::Dependence::print(
2119    raw_ostream &OS, unsigned Depth,
2120    const SmallVectorImpl<Instruction *> &Instrs) const {
2121  OS.indent(Depth) << DepName[Type] << ":\n";
2122  OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
2123  OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
2124}
2125
2126bool LoopAccessInfo::canAnalyzeLoop() {
2127  // We need to have a loop header.
2128  LLVM_DEBUG(dbgs() << "LAA: Found a loop in "
2129                    << TheLoop->getHeader()->getParent()->getName() << ": "
2130                    << TheLoop->getHeader()->getName() << '\n');
2131
2132  // We can only analyze innermost loops.
2133  if (!TheLoop->isInnermost()) {
2134    LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
2135    recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
2136    return false;
2137  }
2138
2139  // We must have a single backedge.
2140  if (TheLoop->getNumBackEdges() != 1) {
2141    LLVM_DEBUG(
2142        dbgs() << "LAA: loop control flow is not understood by analyzer\n");
2143    recordAnalysis("CFGNotUnderstood")
2144        << "loop control flow is not understood by analyzer";
2145    return false;
2146  }
2147
2148  // ScalarEvolution needs to be able to find the exit count.
2149  const SCEV *ExitCount = PSE->getBackedgeTakenCount();
2150  if (isa<SCEVCouldNotCompute>(ExitCount)) {
2151    recordAnalysis("CantComputeNumberOfIterations")
2152        << "could not determine number of loop iterations";
2153    LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
2154    return false;
2155  }
2156
2157  return true;
2158}
2159
2160void LoopAccessInfo::analyzeLoop(AAResults *AA, LoopInfo *LI,
2161                                 const TargetLibraryInfo *TLI,
2162                                 DominatorTree *DT) {
2163  // Holds the Load and Store instructions.
2164  SmallVector<LoadInst *, 16> Loads;
2165  SmallVector<StoreInst *, 16> Stores;
2166
2167  // Holds all the different accesses in the loop.
2168  unsigned NumReads = 0;
2169  unsigned NumReadWrites = 0;
2170
2171  bool HasComplexMemInst = false;
2172
2173  // A runtime check is only legal to insert if there are no convergent calls.
2174  HasConvergentOp = false;
2175
2176  PtrRtChecking->Pointers.clear();
2177  PtrRtChecking->Need = false;
2178
2179  const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
2180
2181  const bool EnableMemAccessVersioningOfLoop =
2182      EnableMemAccessVersioning &&
2183      !TheLoop->getHeader()->getParent()->hasOptSize();
2184
2185  // Traverse blocks in fixed RPOT order, regardless of their storage in the
2186  // loop info, as it may be arbitrary.
2187  LoopBlocksRPO RPOT(TheLoop);
2188  RPOT.perform(LI);
2189  for (BasicBlock *BB : RPOT) {
2190    // Scan the BB and collect legal loads and stores. Also detect any
2191    // convergent instructions.
2192    for (Instruction &I : *BB) {
2193      if (auto *Call = dyn_cast<CallBase>(&I)) {
2194        if (Call->isConvergent())
2195          HasConvergentOp = true;
2196      }
2197
2198      // With both a non-vectorizable memory instruction and a convergent
2199      // operation, found in this loop, no reason to continue the search.
2200      if (HasComplexMemInst && HasConvergentOp) {
2201        CanVecMem = false;
2202        return;
2203      }
2204
2205      // Avoid hitting recordAnalysis multiple times.
2206      if (HasComplexMemInst)
2207        continue;
2208
2209      // If this is a load, save it. If this instruction can read from memory
2210      // but is not a load, then we quit. Notice that we don't handle function
2211      // calls that read or write.
2212      if (I.mayReadFromMemory()) {
2213        // Many math library functions read the rounding mode. We will only
2214        // vectorize a loop if it contains known function calls that don't set
2215        // the flag. Therefore, it is safe to ignore this read from memory.
2216        auto *Call = dyn_cast<CallInst>(&I);
2217        if (Call && getVectorIntrinsicIDForCall(Call, TLI))
2218          continue;
2219
2220        // If the function has an explicit vectorized counterpart, we can safely
2221        // assume that it can be vectorized.
2222        if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
2223            !VFDatabase::getMappings(*Call).empty())
2224          continue;
2225
2226        auto *Ld = dyn_cast<LoadInst>(&I);
2227        if (!Ld) {
2228          recordAnalysis("CantVectorizeInstruction", Ld)
2229            << "instruction cannot be vectorized";
2230          HasComplexMemInst = true;
2231          continue;
2232        }
2233        if (!Ld->isSimple() && !IsAnnotatedParallel) {
2234          recordAnalysis("NonSimpleLoad", Ld)
2235              << "read with atomic ordering or volatile read";
2236          LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
2237          HasComplexMemInst = true;
2238          continue;
2239        }
2240        NumLoads++;
2241        Loads.push_back(Ld);
2242        DepChecker->addAccess(Ld);
2243        if (EnableMemAccessVersioningOfLoop)
2244          collectStridedAccess(Ld);
2245        continue;
2246      }
2247
2248      // Save 'store' instructions. Abort if other instructions write to memory.
2249      if (I.mayWriteToMemory()) {
2250        auto *St = dyn_cast<StoreInst>(&I);
2251        if (!St) {
2252          recordAnalysis("CantVectorizeInstruction", St)
2253              << "instruction cannot be vectorized";
2254          HasComplexMemInst = true;
2255          continue;
2256        }
2257        if (!St->isSimple() && !IsAnnotatedParallel) {
2258          recordAnalysis("NonSimpleStore", St)
2259              << "write with atomic ordering or volatile write";
2260          LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
2261          HasComplexMemInst = true;
2262          continue;
2263        }
2264        NumStores++;
2265        Stores.push_back(St);
2266        DepChecker->addAccess(St);
2267        if (EnableMemAccessVersioningOfLoop)
2268          collectStridedAccess(St);
2269      }
2270    } // Next instr.
2271  } // Next block.
2272
2273  if (HasComplexMemInst) {
2274    CanVecMem = false;
2275    return;
2276  }
2277
2278  // Now we have two lists that hold the loads and the stores.
2279  // Next, we find the pointers that they use.
2280
2281  // Check if we see any stores. If there are no stores, then we don't
2282  // care if the pointers are *restrict*.
2283  if (!Stores.size()) {
2284    LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
2285    CanVecMem = true;
2286    return;
2287  }
2288
2289  MemoryDepChecker::DepCandidates DependentAccesses;
2290  AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE);
2291
2292  // Holds the analyzed pointers. We don't want to call getUnderlyingObjects
2293  // multiple times on the same object. If the ptr is accessed twice, once
2294  // for read and once for write, it will only appear once (on the write
2295  // list). This is okay, since we are going to check for conflicts between
2296  // writes and between reads and writes, but not between reads and reads.
2297  SmallSet<std::pair<Value *, Type *>, 16> Seen;
2298
2299  // Record uniform store addresses to identify if we have multiple stores
2300  // to the same address.
2301  SmallPtrSet<Value *, 16> UniformStores;
2302
2303  for (StoreInst *ST : Stores) {
2304    Value *Ptr = ST->getPointerOperand();
2305
2306    if (isUniform(Ptr)) {
2307      // Record store instructions to loop invariant addresses
2308      StoresToInvariantAddresses.push_back(ST);
2309      HasDependenceInvolvingLoopInvariantAddress |=
2310          !UniformStores.insert(Ptr).second;
2311    }
2312
2313    // If we did *not* see this pointer before, insert it to  the read-write
2314    // list. At this phase it is only a 'write' list.
2315    Type *AccessTy = getLoadStoreType(ST);
2316    if (Seen.insert({Ptr, AccessTy}).second) {
2317      ++NumReadWrites;
2318
2319      MemoryLocation Loc = MemoryLocation::get(ST);
2320      // The TBAA metadata could have a control dependency on the predication
2321      // condition, so we cannot rely on it when determining whether or not we
2322      // need runtime pointer checks.
2323      if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
2324        Loc.AATags.TBAA = nullptr;
2325
2326      visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop,
2327                    [&Accesses, AccessTy, Loc](Value *Ptr) {
2328                      MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2329                      Accesses.addStore(NewLoc, AccessTy);
2330                    });
2331    }
2332  }
2333
2334  if (IsAnnotatedParallel) {
2335    LLVM_DEBUG(
2336        dbgs() << "LAA: A loop annotated parallel, ignore memory dependency "
2337               << "checks.\n");
2338    CanVecMem = true;
2339    return;
2340  }
2341
2342  for (LoadInst *LD : Loads) {
2343    Value *Ptr = LD->getPointerOperand();
2344    // If we did *not* see this pointer before, insert it to the
2345    // read list. If we *did* see it before, then it is already in
2346    // the read-write list. This allows us to vectorize expressions
2347    // such as A[i] += x;  Because the address of A[i] is a read-write
2348    // pointer. This only works if the index of A[i] is consecutive.
2349    // If the address of i is unknown (for example A[B[i]]) then we may
2350    // read a few words, modify, and write a few words, and some of the
2351    // words may be written to the same address.
2352    bool IsReadOnlyPtr = false;
2353    Type *AccessTy = getLoadStoreType(LD);
2354    if (Seen.insert({Ptr, AccessTy}).second ||
2355        !getPtrStride(*PSE, LD->getType(), Ptr, TheLoop, SymbolicStrides).value_or(0)) {
2356      ++NumReads;
2357      IsReadOnlyPtr = true;
2358    }
2359
2360    // See if there is an unsafe dependency between a load to a uniform address and
2361    // store to the same uniform address.
2362    if (UniformStores.count(Ptr)) {
2363      LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform "
2364                           "load and uniform store to the same address!\n");
2365      HasDependenceInvolvingLoopInvariantAddress = true;
2366    }
2367
2368    MemoryLocation Loc = MemoryLocation::get(LD);
2369    // The TBAA metadata could have a control dependency on the predication
2370    // condition, so we cannot rely on it when determining whether or not we
2371    // need runtime pointer checks.
2372    if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
2373      Loc.AATags.TBAA = nullptr;
2374
2375    visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop,
2376                  [&Accesses, AccessTy, Loc, IsReadOnlyPtr](Value *Ptr) {
2377                    MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2378                    Accesses.addLoad(NewLoc, AccessTy, IsReadOnlyPtr);
2379                  });
2380  }
2381
2382  // If we write (or read-write) to a single destination and there are no
2383  // other reads in this loop then is it safe to vectorize.
2384  if (NumReadWrites == 1 && NumReads == 0) {
2385    LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
2386    CanVecMem = true;
2387    return;
2388  }
2389
2390  // Build dependence sets and check whether we need a runtime pointer bounds
2391  // check.
2392  Accesses.buildDependenceSets();
2393
2394  // Find pointers with computable bounds. We are going to use this information
2395  // to place a runtime bound check.
2396  Value *UncomputablePtr = nullptr;
2397  bool CanDoRTIfNeeded =
2398      Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), TheLoop,
2399                               SymbolicStrides, UncomputablePtr, false);
2400  if (!CanDoRTIfNeeded) {
2401    auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr);
2402    recordAnalysis("CantIdentifyArrayBounds", I)
2403        << "cannot identify array bounds";
2404    LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
2405                      << "the array bounds.\n");
2406    CanVecMem = false;
2407    return;
2408  }
2409
2410  LLVM_DEBUG(
2411    dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n");
2412
2413  CanVecMem = true;
2414  if (Accesses.isDependencyCheckNeeded()) {
2415    LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
2416    CanVecMem = DepChecker->areDepsSafe(
2417        DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides);
2418    MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes();
2419
2420    if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) {
2421      LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
2422
2423      // Clear the dependency checks. We assume they are not needed.
2424      Accesses.resetDepChecks(*DepChecker);
2425
2426      PtrRtChecking->reset();
2427      PtrRtChecking->Need = true;
2428
2429      auto *SE = PSE->getSE();
2430      UncomputablePtr = nullptr;
2431      CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(
2432          *PtrRtChecking, SE, TheLoop, SymbolicStrides, UncomputablePtr, true);
2433
2434      // Check that we found the bounds for the pointer.
2435      if (!CanDoRTIfNeeded) {
2436        auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr);
2437        recordAnalysis("CantCheckMemDepsAtRunTime", I)
2438            << "cannot check memory dependencies at runtime";
2439        LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
2440        CanVecMem = false;
2441        return;
2442      }
2443
2444      CanVecMem = true;
2445    }
2446  }
2447
2448  if (HasConvergentOp) {
2449    recordAnalysis("CantInsertRuntimeCheckWithConvergent")
2450      << "cannot add control dependency to convergent operation";
2451    LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check "
2452                         "would be needed with a convergent operation\n");
2453    CanVecMem = false;
2454    return;
2455  }
2456
2457  if (CanVecMem)
2458    LLVM_DEBUG(
2459        dbgs() << "LAA: No unsafe dependent memory operations in loop.  We"
2460               << (PtrRtChecking->Need ? "" : " don't")
2461               << " need runtime memory checks.\n");
2462  else
2463    emitUnsafeDependenceRemark();
2464}
2465
2466void LoopAccessInfo::emitUnsafeDependenceRemark() {
2467  auto Deps = getDepChecker().getDependences();
2468  if (!Deps)
2469    return;
2470  auto Found = llvm::find_if(*Deps, [](const MemoryDepChecker::Dependence &D) {
2471    return MemoryDepChecker::Dependence::isSafeForVectorization(D.Type) !=
2472           MemoryDepChecker::VectorizationSafetyStatus::Safe;
2473  });
2474  if (Found == Deps->end())
2475    return;
2476  MemoryDepChecker::Dependence Dep = *Found;
2477
2478  LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
2479
2480  // Emit remark for first unsafe dependence
2481  OptimizationRemarkAnalysis &R =
2482      recordAnalysis("UnsafeDep", Dep.getDestination(*this))
2483      << "unsafe dependent memory operations in loop. Use "
2484         "#pragma loop distribute(enable) to allow loop distribution "
2485         "to attempt to isolate the offending operations into a separate "
2486         "loop";
2487
2488  switch (Dep.Type) {
2489  case MemoryDepChecker::Dependence::NoDep:
2490  case MemoryDepChecker::Dependence::Forward:
2491  case MemoryDepChecker::Dependence::BackwardVectorizable:
2492    llvm_unreachable("Unexpected dependence");
2493  case MemoryDepChecker::Dependence::Backward:
2494    R << "\nBackward loop carried data dependence.";
2495    break;
2496  case MemoryDepChecker::Dependence::ForwardButPreventsForwarding:
2497    R << "\nForward loop carried data dependence that prevents "
2498         "store-to-load forwarding.";
2499    break;
2500  case MemoryDepChecker::Dependence::BackwardVectorizableButPreventsForwarding:
2501    R << "\nBackward loop carried data dependence that prevents "
2502         "store-to-load forwarding.";
2503    break;
2504  case MemoryDepChecker::Dependence::Unknown:
2505    R << "\nUnknown data dependence.";
2506    break;
2507  }
2508
2509  if (Instruction *I = Dep.getSource(*this)) {
2510    DebugLoc SourceLoc = I->getDebugLoc();
2511    if (auto *DD = dyn_cast_or_null<Instruction>(getPointerOperand(I)))
2512      SourceLoc = DD->getDebugLoc();
2513    if (SourceLoc)
2514      R << " Memory location is the same as accessed at "
2515        << ore::NV("Location", SourceLoc);
2516  }
2517}
2518
2519bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
2520                                           DominatorTree *DT)  {
2521  assert(TheLoop->contains(BB) && "Unknown block used");
2522
2523  // Blocks that do not dominate the latch need predication.
2524  BasicBlock* Latch = TheLoop->getLoopLatch();
2525  return !DT->dominates(BB, Latch);
2526}
2527
2528OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName,
2529                                                           Instruction *I) {
2530  assert(!Report && "Multiple reports generated");
2531
2532  Value *CodeRegion = TheLoop->getHeader();
2533  DebugLoc DL = TheLoop->getStartLoc();
2534
2535  if (I) {
2536    CodeRegion = I->getParent();
2537    // If there is no debug location attached to the instruction, revert back to
2538    // using the loop's.
2539    if (I->getDebugLoc())
2540      DL = I->getDebugLoc();
2541  }
2542
2543  Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL,
2544                                                   CodeRegion);
2545  return *Report;
2546}
2547
2548bool LoopAccessInfo::isUniform(Value *V) const {
2549  auto *SE = PSE->getSE();
2550  // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is
2551  // never considered uniform.
2552  // TODO: Is this really what we want? Even without FP SCEV, we may want some
2553  // trivially loop-invariant FP values to be considered uniform.
2554  if (!SE->isSCEVable(V->getType()))
2555    return false;
2556  return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
2557}
2558
2559void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
2560  Value *Ptr = getLoadStorePointerOperand(MemAccess);
2561  if (!Ptr)
2562    return;
2563
2564  Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
2565  if (!Stride)
2566    return;
2567
2568  LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for "
2569                       "versioning:");
2570  LLVM_DEBUG(dbgs() << "  Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
2571
2572  // Avoid adding the "Stride == 1" predicate when we know that
2573  // Stride >= Trip-Count. Such a predicate will effectively optimize a single
2574  // or zero iteration loop, as Trip-Count <= Stride == 1.
2575  //
2576  // TODO: We are currently not making a very informed decision on when it is
2577  // beneficial to apply stride versioning. It might make more sense that the
2578  // users of this analysis (such as the vectorizer) will trigger it, based on
2579  // their specific cost considerations; For example, in cases where stride
2580  // versioning does  not help resolving memory accesses/dependences, the
2581  // vectorizer should evaluate the cost of the runtime test, and the benefit
2582  // of various possible stride specializations, considering the alternatives
2583  // of using gather/scatters (if available).
2584
2585  const SCEV *StrideExpr = PSE->getSCEV(Stride);
2586  const SCEV *BETakenCount = PSE->getBackedgeTakenCount();
2587
2588  // Match the types so we can compare the stride and the BETakenCount.
2589  // The Stride can be positive/negative, so we sign extend Stride;
2590  // The backedgeTakenCount is non-negative, so we zero extend BETakenCount.
2591  const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
2592  uint64_t StrideTypeSizeBits = DL.getTypeSizeInBits(StrideExpr->getType());
2593  uint64_t BETypeSizeBits = DL.getTypeSizeInBits(BETakenCount->getType());
2594  const SCEV *CastedStride = StrideExpr;
2595  const SCEV *CastedBECount = BETakenCount;
2596  ScalarEvolution *SE = PSE->getSE();
2597  if (BETypeSizeBits >= StrideTypeSizeBits)
2598    CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType());
2599  else
2600    CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType());
2601  const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount);
2602  // Since TripCount == BackEdgeTakenCount + 1, checking:
2603  // "Stride >= TripCount" is equivalent to checking:
2604  // Stride - BETakenCount > 0
2605  if (SE->isKnownPositive(StrideMinusBETaken)) {
2606    LLVM_DEBUG(
2607        dbgs() << "LAA: Stride>=TripCount; No point in versioning as the "
2608                  "Stride==1 predicate will imply that the loop executes "
2609                  "at most once.\n");
2610    return;
2611  }
2612  LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.\n");
2613
2614  SymbolicStrides[Ptr] = Stride;
2615  StrideSet.insert(Stride);
2616}
2617
2618LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
2619                               const TargetLibraryInfo *TLI, AAResults *AA,
2620                               DominatorTree *DT, LoopInfo *LI)
2621    : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)),
2622      PtrRtChecking(nullptr),
2623      DepChecker(std::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L) {
2624  PtrRtChecking = std::make_unique<RuntimePointerChecking>(*DepChecker, SE);
2625  if (canAnalyzeLoop()) {
2626    analyzeLoop(AA, LI, TLI, DT);
2627  }
2628}
2629
2630void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
2631  if (CanVecMem) {
2632    OS.indent(Depth) << "Memory dependences are safe";
2633    if (MaxSafeDepDistBytes != -1ULL)
2634      OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes
2635         << " bytes";
2636    if (PtrRtChecking->Need)
2637      OS << " with run-time checks";
2638    OS << "\n";
2639  }
2640
2641  if (HasConvergentOp)
2642    OS.indent(Depth) << "Has convergent operation in loop\n";
2643
2644  if (Report)
2645    OS.indent(Depth) << "Report: " << Report->getMsg() << "\n";
2646
2647  if (auto *Dependences = DepChecker->getDependences()) {
2648    OS.indent(Depth) << "Dependences:\n";
2649    for (const auto &Dep : *Dependences) {
2650      Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
2651      OS << "\n";
2652    }
2653  } else
2654    OS.indent(Depth) << "Too many dependences, not recorded\n";
2655
2656  // List the pair of accesses need run-time checks to prove independence.
2657  PtrRtChecking->print(OS, Depth);
2658  OS << "\n";
2659
2660  OS.indent(Depth) << "Non vectorizable stores to invariant address were "
2661                   << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ")
2662                   << "found in loop.\n";
2663
2664  OS.indent(Depth) << "SCEV assumptions:\n";
2665  PSE->getPredicate().print(OS, Depth);
2666
2667  OS << "\n";
2668
2669  OS.indent(Depth) << "Expressions re-written:\n";
2670  PSE->print(OS, Depth);
2671}
2672
2673const LoopAccessInfo &LoopAccessInfoManager::getInfo(Loop &L) {
2674  auto I = LoopAccessInfoMap.insert({&L, nullptr});
2675
2676  if (I.second)
2677    I.first->second =
2678        std::make_unique<LoopAccessInfo>(&L, &SE, TLI, &AA, &DT, &LI);
2679
2680  return *I.first->second;
2681}
2682
2683LoopAccessLegacyAnalysis::LoopAccessLegacyAnalysis() : FunctionPass(ID) {
2684  initializeLoopAccessLegacyAnalysisPass(*PassRegistry::getPassRegistry());
2685}
2686
2687bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) {
2688  auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2689  auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2690  auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2691  auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2692  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2693  auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2694  LAIs = std::make_unique<LoopAccessInfoManager>(SE, AA, DT, LI, TLI);
2695  return false;
2696}
2697
2698void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
2699  AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
2700  AU.addRequiredTransitive<AAResultsWrapperPass>();
2701  AU.addRequiredTransitive<DominatorTreeWrapperPass>();
2702  AU.addRequiredTransitive<LoopInfoWrapperPass>();
2703
2704  AU.setPreservesAll();
2705}
2706
2707LoopAccessInfoManager LoopAccessAnalysis::run(Function &F,
2708                                              FunctionAnalysisManager &AM) {
2709  return LoopAccessInfoManager(
2710      AM.getResult<ScalarEvolutionAnalysis>(F), AM.getResult<AAManager>(F),
2711      AM.getResult<DominatorTreeAnalysis>(F), AM.getResult<LoopAnalysis>(F),
2712      &AM.getResult<TargetLibraryAnalysis>(F));
2713}
2714
2715char LoopAccessLegacyAnalysis::ID = 0;
2716static const char laa_name[] = "Loop Access Analysis";
2717#define LAA_NAME "loop-accesses"
2718
2719INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
2720INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
2721INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
2722INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2723INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
2724INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
2725
2726AnalysisKey LoopAccessAnalysis::Key;
2727
2728namespace llvm {
2729
2730  Pass *createLAAPass() {
2731    return new LoopAccessLegacyAnalysis();
2732  }
2733
2734} // end namespace llvm
2735