1//===- llvm/Analysis/IVDescriptors.cpp - IndVar Descriptors -----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file "describes" induction and recurrence variables.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/Analysis/IVDescriptors.h"
14#include "llvm/Analysis/DemandedBits.h"
15#include "llvm/Analysis/LoopInfo.h"
16#include "llvm/Analysis/ScalarEvolution.h"
17#include "llvm/Analysis/ScalarEvolutionExpressions.h"
18#include "llvm/Analysis/ValueTracking.h"
19#include "llvm/IR/Dominators.h"
20#include "llvm/IR/Instructions.h"
21#include "llvm/IR/Module.h"
22#include "llvm/IR/PatternMatch.h"
23#include "llvm/IR/ValueHandle.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Support/KnownBits.h"
26
27#include <set>
28
29using namespace llvm;
30using namespace llvm::PatternMatch;
31
32#define DEBUG_TYPE "iv-descriptors"
33
34bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
35                                        SmallPtrSetImpl<Instruction *> &Set) {
36  for (const Use &Use : I->operands())
37    if (!Set.count(dyn_cast<Instruction>(Use)))
38      return false;
39  return true;
40}
41
42bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurKind Kind) {
43  switch (Kind) {
44  default:
45    break;
46  case RecurKind::Add:
47  case RecurKind::Mul:
48  case RecurKind::Or:
49  case RecurKind::And:
50  case RecurKind::Xor:
51  case RecurKind::SMax:
52  case RecurKind::SMin:
53  case RecurKind::UMax:
54  case RecurKind::UMin:
55  case RecurKind::SelectICmp:
56  case RecurKind::SelectFCmp:
57    return true;
58  }
59  return false;
60}
61
62bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurKind Kind) {
63  return (Kind != RecurKind::None) && !isIntegerRecurrenceKind(Kind);
64}
65
66/// Determines if Phi may have been type-promoted. If Phi has a single user
67/// that ANDs the Phi with a type mask, return the user. RT is updated to
68/// account for the narrower bit width represented by the mask, and the AND
69/// instruction is added to CI.
70static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT,
71                                   SmallPtrSetImpl<Instruction *> &Visited,
72                                   SmallPtrSetImpl<Instruction *> &CI) {
73  if (!Phi->hasOneUse())
74    return Phi;
75
76  const APInt *M = nullptr;
77  Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
78
79  // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
80  // with a new integer type of the corresponding bit width.
81  if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) {
82    int32_t Bits = (*M + 1).exactLogBase2();
83    if (Bits > 0) {
84      RT = IntegerType::get(Phi->getContext(), Bits);
85      Visited.insert(Phi);
86      CI.insert(J);
87      return J;
88    }
89  }
90  return Phi;
91}
92
93/// Compute the minimal bit width needed to represent a reduction whose exit
94/// instruction is given by Exit.
95static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit,
96                                                     DemandedBits *DB,
97                                                     AssumptionCache *AC,
98                                                     DominatorTree *DT) {
99  bool IsSigned = false;
100  const DataLayout &DL = Exit->getModule()->getDataLayout();
101  uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType());
102
103  if (DB) {
104    // Use the demanded bits analysis to determine the bits that are live out
105    // of the exit instruction, rounding up to the nearest power of two. If the
106    // use of demanded bits results in a smaller bit width, we know the value
107    // must be positive (i.e., IsSigned = false), because if this were not the
108    // case, the sign bit would have been demanded.
109    auto Mask = DB->getDemandedBits(Exit);
110    MaxBitWidth = Mask.getBitWidth() - Mask.countLeadingZeros();
111  }
112
113  if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) {
114    // If demanded bits wasn't able to limit the bit width, we can try to use
115    // value tracking instead. This can be the case, for example, if the value
116    // may be negative.
117    auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT);
118    auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType());
119    MaxBitWidth = NumTypeBits - NumSignBits;
120    KnownBits Bits = computeKnownBits(Exit, DL);
121    if (!Bits.isNonNegative()) {
122      // If the value is not known to be non-negative, we set IsSigned to true,
123      // meaning that we will use sext instructions instead of zext
124      // instructions to restore the original type.
125      IsSigned = true;
126      // Make sure at at least one sign bit is included in the result, so it
127      // will get properly sign-extended.
128      ++MaxBitWidth;
129    }
130  }
131  if (!isPowerOf2_64(MaxBitWidth))
132    MaxBitWidth = NextPowerOf2(MaxBitWidth);
133
134  return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth),
135                        IsSigned);
136}
137
138/// Collect cast instructions that can be ignored in the vectorizer's cost
139/// model, given a reduction exit value and the minimal type in which the
140// reduction can be represented. Also search casts to the recurrence type
141// to find the minimum width used by the recurrence.
142static void collectCastInstrs(Loop *TheLoop, Instruction *Exit,
143                              Type *RecurrenceType,
144                              SmallPtrSetImpl<Instruction *> &Casts,
145                              unsigned &MinWidthCastToRecurTy) {
146
147  SmallVector<Instruction *, 8> Worklist;
148  SmallPtrSet<Instruction *, 8> Visited;
149  Worklist.push_back(Exit);
150  MinWidthCastToRecurTy = -1U;
151
152  while (!Worklist.empty()) {
153    Instruction *Val = Worklist.pop_back_val();
154    Visited.insert(Val);
155    if (auto *Cast = dyn_cast<CastInst>(Val)) {
156      if (Cast->getSrcTy() == RecurrenceType) {
157        // If the source type of a cast instruction is equal to the recurrence
158        // type, it will be eliminated, and should be ignored in the vectorizer
159        // cost model.
160        Casts.insert(Cast);
161        continue;
162      }
163      if (Cast->getDestTy() == RecurrenceType) {
164        // The minimum width used by the recurrence is found by checking for
165        // casts on its operands. The minimum width is used by the vectorizer
166        // when finding the widest type for in-loop reductions without any
167        // loads/stores.
168        MinWidthCastToRecurTy = std::min<unsigned>(
169            MinWidthCastToRecurTy, Cast->getSrcTy()->getScalarSizeInBits());
170        continue;
171      }
172    }
173    // Add all operands to the work list if they are loop-varying values that
174    // we haven't yet visited.
175    for (Value *O : cast<User>(Val)->operands())
176      if (auto *I = dyn_cast<Instruction>(O))
177        if (TheLoop->contains(I) && !Visited.count(I))
178          Worklist.push_back(I);
179  }
180}
181
182// Check if a given Phi node can be recognized as an ordered reduction for
183// vectorizing floating point operations without unsafe math.
184static bool checkOrderedReduction(RecurKind Kind, Instruction *ExactFPMathInst,
185                                  Instruction *Exit, PHINode *Phi) {
186  // Currently only FAdd and FMulAdd are supported.
187  if (Kind != RecurKind::FAdd && Kind != RecurKind::FMulAdd)
188    return false;
189
190  if (Kind == RecurKind::FAdd && Exit->getOpcode() != Instruction::FAdd)
191    return false;
192
193  if (Kind == RecurKind::FMulAdd &&
194      !RecurrenceDescriptor::isFMulAddIntrinsic(Exit))
195    return false;
196
197  // Ensure the exit instruction has only one user other than the reduction PHI
198  if (Exit != ExactFPMathInst || Exit->hasNUsesOrMore(3))
199    return false;
200
201  // The only pattern accepted is the one in which the reduction PHI
202  // is used as one of the operands of the exit instruction
203  auto *Op0 = Exit->getOperand(0);
204  auto *Op1 = Exit->getOperand(1);
205  if (Kind == RecurKind::FAdd && Op0 != Phi && Op1 != Phi)
206    return false;
207  if (Kind == RecurKind::FMulAdd && Exit->getOperand(2) != Phi)
208    return false;
209
210  LLVM_DEBUG(dbgs() << "LV: Found an ordered reduction: Phi: " << *Phi
211                    << ", ExitInst: " << *Exit << "\n");
212
213  return true;
214}
215
216bool RecurrenceDescriptor::AddReductionVar(
217    PHINode *Phi, RecurKind Kind, Loop *TheLoop, FastMathFlags FuncFMF,
218    RecurrenceDescriptor &RedDes, DemandedBits *DB, AssumptionCache *AC,
219    DominatorTree *DT, ScalarEvolution *SE) {
220  if (Phi->getNumIncomingValues() != 2)
221    return false;
222
223  // Reduction variables are only found in the loop header block.
224  if (Phi->getParent() != TheLoop->getHeader())
225    return false;
226
227  // Obtain the reduction start value from the value that comes from the loop
228  // preheader.
229  Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
230
231  // ExitInstruction is the single value which is used outside the loop.
232  // We only allow for a single reduction value to be used outside the loop.
233  // This includes users of the reduction, variables (which form a cycle
234  // which ends in the phi node).
235  Instruction *ExitInstruction = nullptr;
236
237  // Variable to keep last visited store instruction. By the end of the
238  // algorithm this variable will be either empty or having intermediate
239  // reduction value stored in invariant address.
240  StoreInst *IntermediateStore = nullptr;
241
242  // Indicates that we found a reduction operation in our scan.
243  bool FoundReduxOp = false;
244
245  // We start with the PHI node and scan for all of the users of this
246  // instruction. All users must be instructions that can be used as reduction
247  // variables (such as ADD). We must have a single out-of-block user. The cycle
248  // must include the original PHI.
249  bool FoundStartPHI = false;
250
251  // To recognize min/max patterns formed by a icmp select sequence, we store
252  // the number of instruction we saw from the recognized min/max pattern,
253  //  to make sure we only see exactly the two instructions.
254  unsigned NumCmpSelectPatternInst = 0;
255  InstDesc ReduxDesc(false, nullptr);
256
257  // Data used for determining if the recurrence has been type-promoted.
258  Type *RecurrenceType = Phi->getType();
259  SmallPtrSet<Instruction *, 4> CastInsts;
260  unsigned MinWidthCastToRecurrenceType;
261  Instruction *Start = Phi;
262  bool IsSigned = false;
263
264  SmallPtrSet<Instruction *, 8> VisitedInsts;
265  SmallVector<Instruction *, 8> Worklist;
266
267  // Return early if the recurrence kind does not match the type of Phi. If the
268  // recurrence kind is arithmetic, we attempt to look through AND operations
269  // resulting from the type promotion performed by InstCombine.  Vector
270  // operations are not limited to the legal integer widths, so we may be able
271  // to evaluate the reduction in the narrower width.
272  if (RecurrenceType->isFloatingPointTy()) {
273    if (!isFloatingPointRecurrenceKind(Kind))
274      return false;
275  } else if (RecurrenceType->isIntegerTy()) {
276    if (!isIntegerRecurrenceKind(Kind))
277      return false;
278    if (!isMinMaxRecurrenceKind(Kind))
279      Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
280  } else {
281    // Pointer min/max may exist, but it is not supported as a reduction op.
282    return false;
283  }
284
285  Worklist.push_back(Start);
286  VisitedInsts.insert(Start);
287
288  // Start with all flags set because we will intersect this with the reduction
289  // flags from all the reduction operations.
290  FastMathFlags FMF = FastMathFlags::getFast();
291
292  // The first instruction in the use-def chain of the Phi node that requires
293  // exact floating point operations.
294  Instruction *ExactFPMathInst = nullptr;
295
296  // A value in the reduction can be used:
297  //  - By the reduction:
298  //      - Reduction operation:
299  //        - One use of reduction value (safe).
300  //        - Multiple use of reduction value (not safe).
301  //      - PHI:
302  //        - All uses of the PHI must be the reduction (safe).
303  //        - Otherwise, not safe.
304  //  - By instructions outside of the loop (safe).
305  //      * One value may have several outside users, but all outside
306  //        uses must be of the same value.
307  //  - By store instructions with a loop invariant address (safe with
308  //    the following restrictions):
309  //      * If there are several stores, all must have the same address.
310  //      * Final value should be stored in that loop invariant address.
311  //  - By an instruction that is not part of the reduction (not safe).
312  //    This is either:
313  //      * An instruction type other than PHI or the reduction operation.
314  //      * A PHI in the header other than the initial PHI.
315  while (!Worklist.empty()) {
316    Instruction *Cur = Worklist.pop_back_val();
317
318    // Store instructions are allowed iff it is the store of the reduction
319    // value to the same loop invariant memory location.
320    if (auto *SI = dyn_cast<StoreInst>(Cur)) {
321      if (!SE) {
322        LLVM_DEBUG(dbgs() << "Store instructions are not processed without "
323                          << "Scalar Evolution Analysis\n");
324        return false;
325      }
326
327      const SCEV *PtrScev = SE->getSCEV(SI->getPointerOperand());
328      // Check it is the same address as previous stores
329      if (IntermediateStore) {
330        const SCEV *OtherScev =
331            SE->getSCEV(IntermediateStore->getPointerOperand());
332
333        if (OtherScev != PtrScev) {
334          LLVM_DEBUG(dbgs() << "Storing reduction value to different addresses "
335                            << "inside the loop: " << *SI->getPointerOperand()
336                            << " and "
337                            << *IntermediateStore->getPointerOperand() << '\n');
338          return false;
339        }
340      }
341
342      // Check the pointer is loop invariant
343      if (!SE->isLoopInvariant(PtrScev, TheLoop)) {
344        LLVM_DEBUG(dbgs() << "Storing reduction value to non-uniform address "
345                          << "inside the loop: " << *SI->getPointerOperand()
346                          << '\n');
347        return false;
348      }
349
350      // IntermediateStore is always the last store in the loop.
351      IntermediateStore = SI;
352      continue;
353    }
354
355    // No Users.
356    // If the instruction has no users then this is a broken chain and can't be
357    // a reduction variable.
358    if (Cur->use_empty())
359      return false;
360
361    bool IsAPhi = isa<PHINode>(Cur);
362
363    // A header PHI use other than the original PHI.
364    if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
365      return false;
366
367    // Reductions of instructions such as Div, and Sub is only possible if the
368    // LHS is the reduction variable.
369    if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
370        !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
371        !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
372      return false;
373
374    // Any reduction instruction must be of one of the allowed kinds. We ignore
375    // the starting value (the Phi or an AND instruction if the Phi has been
376    // type-promoted).
377    if (Cur != Start) {
378      ReduxDesc =
379          isRecurrenceInstr(TheLoop, Phi, Cur, Kind, ReduxDesc, FuncFMF);
380      ExactFPMathInst = ExactFPMathInst == nullptr
381                            ? ReduxDesc.getExactFPMathInst()
382                            : ExactFPMathInst;
383      if (!ReduxDesc.isRecurrence())
384        return false;
385      // FIXME: FMF is allowed on phi, but propagation is not handled correctly.
386      if (isa<FPMathOperator>(ReduxDesc.getPatternInst()) && !IsAPhi) {
387        FastMathFlags CurFMF = ReduxDesc.getPatternInst()->getFastMathFlags();
388        if (auto *Sel = dyn_cast<SelectInst>(ReduxDesc.getPatternInst())) {
389          // Accept FMF on either fcmp or select of a min/max idiom.
390          // TODO: This is a hack to work-around the fact that FMF may not be
391          //       assigned/propagated correctly. If that problem is fixed or we
392          //       standardize on fmin/fmax via intrinsics, this can be removed.
393          if (auto *FCmp = dyn_cast<FCmpInst>(Sel->getCondition()))
394            CurFMF |= FCmp->getFastMathFlags();
395        }
396        FMF &= CurFMF;
397      }
398      // Update this reduction kind if we matched a new instruction.
399      // TODO: Can we eliminate the need for a 2nd InstDesc by keeping 'Kind'
400      //       state accurate while processing the worklist?
401      if (ReduxDesc.getRecKind() != RecurKind::None)
402        Kind = ReduxDesc.getRecKind();
403    }
404
405    bool IsASelect = isa<SelectInst>(Cur);
406
407    // A conditional reduction operation must only have 2 or less uses in
408    // VisitedInsts.
409    if (IsASelect && (Kind == RecurKind::FAdd || Kind == RecurKind::FMul) &&
410        hasMultipleUsesOf(Cur, VisitedInsts, 2))
411      return false;
412
413    // A reduction operation must only have one use of the reduction value.
414    if (!IsAPhi && !IsASelect && !isMinMaxRecurrenceKind(Kind) &&
415        !isSelectCmpRecurrenceKind(Kind) &&
416        hasMultipleUsesOf(Cur, VisitedInsts, 1))
417      return false;
418
419    // All inputs to a PHI node must be a reduction value.
420    if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
421      return false;
422
423    if ((isIntMinMaxRecurrenceKind(Kind) || Kind == RecurKind::SelectICmp) &&
424        (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
425      ++NumCmpSelectPatternInst;
426    if ((isFPMinMaxRecurrenceKind(Kind) || Kind == RecurKind::SelectFCmp) &&
427        (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
428      ++NumCmpSelectPatternInst;
429
430    // Check  whether we found a reduction operator.
431    FoundReduxOp |= !IsAPhi && Cur != Start;
432
433    // Process users of current instruction. Push non-PHI nodes after PHI nodes
434    // onto the stack. This way we are going to have seen all inputs to PHI
435    // nodes once we get to them.
436    SmallVector<Instruction *, 8> NonPHIs;
437    SmallVector<Instruction *, 8> PHIs;
438    for (User *U : Cur->users()) {
439      Instruction *UI = cast<Instruction>(U);
440
441      // If the user is a call to llvm.fmuladd then the instruction can only be
442      // the final operand.
443      if (isFMulAddIntrinsic(UI))
444        if (Cur == UI->getOperand(0) || Cur == UI->getOperand(1))
445          return false;
446
447      // Check if we found the exit user.
448      BasicBlock *Parent = UI->getParent();
449      if (!TheLoop->contains(Parent)) {
450        // If we already know this instruction is used externally, move on to
451        // the next user.
452        if (ExitInstruction == Cur)
453          continue;
454
455        // Exit if you find multiple values used outside or if the header phi
456        // node is being used. In this case the user uses the value of the
457        // previous iteration, in which case we would loose "VF-1" iterations of
458        // the reduction operation if we vectorize.
459        if (ExitInstruction != nullptr || Cur == Phi)
460          return false;
461
462        // The instruction used by an outside user must be the last instruction
463        // before we feed back to the reduction phi. Otherwise, we loose VF-1
464        // operations on the value.
465        if (!is_contained(Phi->operands(), Cur))
466          return false;
467
468        ExitInstruction = Cur;
469        continue;
470      }
471
472      // Process instructions only once (termination). Each reduction cycle
473      // value must only be used once, except by phi nodes and min/max
474      // reductions which are represented as a cmp followed by a select.
475      InstDesc IgnoredVal(false, nullptr);
476      if (VisitedInsts.insert(UI).second) {
477        if (isa<PHINode>(UI)) {
478          PHIs.push_back(UI);
479        } else {
480          StoreInst *SI = dyn_cast<StoreInst>(UI);
481          if (SI && SI->getPointerOperand() == Cur) {
482            // Reduction variable chain can only be stored somewhere but it
483            // can't be used as an address.
484            return false;
485          }
486          NonPHIs.push_back(UI);
487        }
488      } else if (!isa<PHINode>(UI) &&
489                 ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
490                   !isa<SelectInst>(UI)) ||
491                  (!isConditionalRdxPattern(Kind, UI).isRecurrence() &&
492                   !isSelectCmpPattern(TheLoop, Phi, UI, IgnoredVal)
493                        .isRecurrence() &&
494                   !isMinMaxPattern(UI, Kind, IgnoredVal).isRecurrence())))
495        return false;
496
497      // Remember that we completed the cycle.
498      if (UI == Phi)
499        FoundStartPHI = true;
500    }
501    Worklist.append(PHIs.begin(), PHIs.end());
502    Worklist.append(NonPHIs.begin(), NonPHIs.end());
503  }
504
505  // This means we have seen one but not the other instruction of the
506  // pattern or more than just a select and cmp. Zero implies that we saw a
507  // llvm.min/max intrinsic, which is always OK.
508  if (isMinMaxRecurrenceKind(Kind) && NumCmpSelectPatternInst != 2 &&
509      NumCmpSelectPatternInst != 0)
510    return false;
511
512  if (isSelectCmpRecurrenceKind(Kind) && NumCmpSelectPatternInst != 1)
513    return false;
514
515  if (IntermediateStore) {
516    // Check that stored value goes to the phi node again. This way we make sure
517    // that the value stored in IntermediateStore is indeed the final reduction
518    // value.
519    if (!is_contained(Phi->operands(), IntermediateStore->getValueOperand())) {
520      LLVM_DEBUG(dbgs() << "Not a final reduction value stored: "
521                        << *IntermediateStore << '\n');
522      return false;
523    }
524
525    // If there is an exit instruction it's value should be stored in
526    // IntermediateStore
527    if (ExitInstruction &&
528        IntermediateStore->getValueOperand() != ExitInstruction) {
529      LLVM_DEBUG(dbgs() << "Last store Instruction of reduction value does not "
530                           "store last calculated value of the reduction: "
531                        << *IntermediateStore << '\n');
532      return false;
533    }
534
535    // If all uses are inside the loop (intermediate stores), then the
536    // reduction value after the loop will be the one used in the last store.
537    if (!ExitInstruction)
538      ExitInstruction = cast<Instruction>(IntermediateStore->getValueOperand());
539  }
540
541  if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
542    return false;
543
544  const bool IsOrdered =
545      checkOrderedReduction(Kind, ExactFPMathInst, ExitInstruction, Phi);
546
547  if (Start != Phi) {
548    // If the starting value is not the same as the phi node, we speculatively
549    // looked through an 'and' instruction when evaluating a potential
550    // arithmetic reduction to determine if it may have been type-promoted.
551    //
552    // We now compute the minimal bit width that is required to represent the
553    // reduction. If this is the same width that was indicated by the 'and', we
554    // can represent the reduction in the smaller type. The 'and' instruction
555    // will be eliminated since it will essentially be a cast instruction that
556    // can be ignore in the cost model. If we compute a different type than we
557    // did when evaluating the 'and', the 'and' will not be eliminated, and we
558    // will end up with different kinds of operations in the recurrence
559    // expression (e.g., IntegerAND, IntegerADD). We give up if this is
560    // the case.
561    //
562    // The vectorizer relies on InstCombine to perform the actual
563    // type-shrinking. It does this by inserting instructions to truncate the
564    // exit value of the reduction to the width indicated by RecurrenceType and
565    // then extend this value back to the original width. If IsSigned is false,
566    // a 'zext' instruction will be generated; otherwise, a 'sext' will be
567    // used.
568    //
569    // TODO: We should not rely on InstCombine to rewrite the reduction in the
570    //       smaller type. We should just generate a correctly typed expression
571    //       to begin with.
572    Type *ComputedType;
573    std::tie(ComputedType, IsSigned) =
574        computeRecurrenceType(ExitInstruction, DB, AC, DT);
575    if (ComputedType != RecurrenceType)
576      return false;
577  }
578
579  // Collect cast instructions and the minimum width used by the recurrence.
580  // If the starting value is not the same as the phi node and the computed
581  // recurrence type is equal to the recurrence type, the recurrence expression
582  // will be represented in a narrower or wider type. If there are any cast
583  // instructions that will be unnecessary, collect them in CastsFromRecurTy.
584  // Note that the 'and' instruction was already included in this list.
585  //
586  // TODO: A better way to represent this may be to tag in some way all the
587  //       instructions that are a part of the reduction. The vectorizer cost
588  //       model could then apply the recurrence type to these instructions,
589  //       without needing a white list of instructions to ignore.
590  //       This may also be useful for the inloop reductions, if it can be
591  //       kept simple enough.
592  collectCastInstrs(TheLoop, ExitInstruction, RecurrenceType, CastInsts,
593                    MinWidthCastToRecurrenceType);
594
595  // We found a reduction var if we have reached the original phi node and we
596  // only have a single instruction with out-of-loop users.
597
598  // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
599  // is saved as part of the RecurrenceDescriptor.
600
601  // Save the description of this reduction variable.
602  RecurrenceDescriptor RD(RdxStart, ExitInstruction, IntermediateStore, Kind,
603                          FMF, ExactFPMathInst, RecurrenceType, IsSigned,
604                          IsOrdered, CastInsts, MinWidthCastToRecurrenceType);
605  RedDes = RD;
606
607  return true;
608}
609
610// We are looking for loops that do something like this:
611//   int r = 0;
612//   for (int i = 0; i < n; i++) {
613//     if (src[i] > 3)
614//       r = 3;
615//   }
616// where the reduction value (r) only has two states, in this example 0 or 3.
617// The generated LLVM IR for this type of loop will be like this:
618//   for.body:
619//     %r = phi i32 [ %spec.select, %for.body ], [ 0, %entry ]
620//     ...
621//     %cmp = icmp sgt i32 %5, 3
622//     %spec.select = select i1 %cmp, i32 3, i32 %r
623//     ...
624// In general we can support vectorization of loops where 'r' flips between
625// any two non-constants, provided they are loop invariant. The only thing
626// we actually care about at the end of the loop is whether or not any lane
627// in the selected vector is different from the start value. The final
628// across-vector reduction after the loop simply involves choosing the start
629// value if nothing changed (0 in the example above) or the other selected
630// value (3 in the example above).
631RecurrenceDescriptor::InstDesc
632RecurrenceDescriptor::isSelectCmpPattern(Loop *Loop, PHINode *OrigPhi,
633                                         Instruction *I, InstDesc &Prev) {
634  // We must handle the select(cmp(),x,y) as a single instruction. Advance to
635  // the select.
636  CmpInst::Predicate Pred;
637  if (match(I, m_OneUse(m_Cmp(Pred, m_Value(), m_Value())))) {
638    if (auto *Select = dyn_cast<SelectInst>(*I->user_begin()))
639      return InstDesc(Select, Prev.getRecKind());
640  }
641
642  // Only match select with single use cmp condition.
643  if (!match(I, m_Select(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), m_Value(),
644                         m_Value())))
645    return InstDesc(false, I);
646
647  SelectInst *SI = cast<SelectInst>(I);
648  Value *NonPhi = nullptr;
649
650  if (OrigPhi == dyn_cast<PHINode>(SI->getTrueValue()))
651    NonPhi = SI->getFalseValue();
652  else if (OrigPhi == dyn_cast<PHINode>(SI->getFalseValue()))
653    NonPhi = SI->getTrueValue();
654  else
655    return InstDesc(false, I);
656
657  // We are looking for selects of the form:
658  //   select(cmp(), phi, loop_invariant) or
659  //   select(cmp(), loop_invariant, phi)
660  if (!Loop->isLoopInvariant(NonPhi))
661    return InstDesc(false, I);
662
663  return InstDesc(I, isa<ICmpInst>(I->getOperand(0)) ? RecurKind::SelectICmp
664                                                     : RecurKind::SelectFCmp);
665}
666
667RecurrenceDescriptor::InstDesc
668RecurrenceDescriptor::isMinMaxPattern(Instruction *I, RecurKind Kind,
669                                      const InstDesc &Prev) {
670  assert((isa<CmpInst>(I) || isa<SelectInst>(I) || isa<CallInst>(I)) &&
671         "Expected a cmp or select or call instruction");
672  if (!isMinMaxRecurrenceKind(Kind))
673    return InstDesc(false, I);
674
675  // We must handle the select(cmp()) as a single instruction. Advance to the
676  // select.
677  CmpInst::Predicate Pred;
678  if (match(I, m_OneUse(m_Cmp(Pred, m_Value(), m_Value())))) {
679    if (auto *Select = dyn_cast<SelectInst>(*I->user_begin()))
680      return InstDesc(Select, Prev.getRecKind());
681  }
682
683  // Only match select with single use cmp condition, or a min/max intrinsic.
684  if (!isa<IntrinsicInst>(I) &&
685      !match(I, m_Select(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), m_Value(),
686                         m_Value())))
687    return InstDesc(false, I);
688
689  // Look for a min/max pattern.
690  if (match(I, m_UMin(m_Value(), m_Value())))
691    return InstDesc(Kind == RecurKind::UMin, I);
692  if (match(I, m_UMax(m_Value(), m_Value())))
693    return InstDesc(Kind == RecurKind::UMax, I);
694  if (match(I, m_SMax(m_Value(), m_Value())))
695    return InstDesc(Kind == RecurKind::SMax, I);
696  if (match(I, m_SMin(m_Value(), m_Value())))
697    return InstDesc(Kind == RecurKind::SMin, I);
698  if (match(I, m_OrdFMin(m_Value(), m_Value())))
699    return InstDesc(Kind == RecurKind::FMin, I);
700  if (match(I, m_OrdFMax(m_Value(), m_Value())))
701    return InstDesc(Kind == RecurKind::FMax, I);
702  if (match(I, m_UnordFMin(m_Value(), m_Value())))
703    return InstDesc(Kind == RecurKind::FMin, I);
704  if (match(I, m_UnordFMax(m_Value(), m_Value())))
705    return InstDesc(Kind == RecurKind::FMax, I);
706  if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value())))
707    return InstDesc(Kind == RecurKind::FMin, I);
708  if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value())))
709    return InstDesc(Kind == RecurKind::FMax, I);
710
711  return InstDesc(false, I);
712}
713
714/// Returns true if the select instruction has users in the compare-and-add
715/// reduction pattern below. The select instruction argument is the last one
716/// in the sequence.
717///
718/// %sum.1 = phi ...
719/// ...
720/// %cmp = fcmp pred %0, %CFP
721/// %add = fadd %0, %sum.1
722/// %sum.2 = select %cmp, %add, %sum.1
723RecurrenceDescriptor::InstDesc
724RecurrenceDescriptor::isConditionalRdxPattern(RecurKind Kind, Instruction *I) {
725  SelectInst *SI = dyn_cast<SelectInst>(I);
726  if (!SI)
727    return InstDesc(false, I);
728
729  CmpInst *CI = dyn_cast<CmpInst>(SI->getCondition());
730  // Only handle single use cases for now.
731  if (!CI || !CI->hasOneUse())
732    return InstDesc(false, I);
733
734  Value *TrueVal = SI->getTrueValue();
735  Value *FalseVal = SI->getFalseValue();
736  // Handle only when either of operands of select instruction is a PHI
737  // node for now.
738  if ((isa<PHINode>(*TrueVal) && isa<PHINode>(*FalseVal)) ||
739      (!isa<PHINode>(*TrueVal) && !isa<PHINode>(*FalseVal)))
740    return InstDesc(false, I);
741
742  Instruction *I1 =
743      isa<PHINode>(*TrueVal) ? dyn_cast<Instruction>(FalseVal)
744                             : dyn_cast<Instruction>(TrueVal);
745  if (!I1 || !I1->isBinaryOp())
746    return InstDesc(false, I);
747
748  Value *Op1, *Op2;
749  if ((m_FAdd(m_Value(Op1), m_Value(Op2)).match(I1)  ||
750       m_FSub(m_Value(Op1), m_Value(Op2)).match(I1)) &&
751      I1->isFast())
752    return InstDesc(Kind == RecurKind::FAdd, SI);
753
754  if (m_FMul(m_Value(Op1), m_Value(Op2)).match(I1) && (I1->isFast()))
755    return InstDesc(Kind == RecurKind::FMul, SI);
756
757  return InstDesc(false, I);
758}
759
760RecurrenceDescriptor::InstDesc
761RecurrenceDescriptor::isRecurrenceInstr(Loop *L, PHINode *OrigPhi,
762                                        Instruction *I, RecurKind Kind,
763                                        InstDesc &Prev, FastMathFlags FuncFMF) {
764  assert(Prev.getRecKind() == RecurKind::None || Prev.getRecKind() == Kind);
765  switch (I->getOpcode()) {
766  default:
767    return InstDesc(false, I);
768  case Instruction::PHI:
769    return InstDesc(I, Prev.getRecKind(), Prev.getExactFPMathInst());
770  case Instruction::Sub:
771  case Instruction::Add:
772    return InstDesc(Kind == RecurKind::Add, I);
773  case Instruction::Mul:
774    return InstDesc(Kind == RecurKind::Mul, I);
775  case Instruction::And:
776    return InstDesc(Kind == RecurKind::And, I);
777  case Instruction::Or:
778    return InstDesc(Kind == RecurKind::Or, I);
779  case Instruction::Xor:
780    return InstDesc(Kind == RecurKind::Xor, I);
781  case Instruction::FDiv:
782  case Instruction::FMul:
783    return InstDesc(Kind == RecurKind::FMul, I,
784                    I->hasAllowReassoc() ? nullptr : I);
785  case Instruction::FSub:
786  case Instruction::FAdd:
787    return InstDesc(Kind == RecurKind::FAdd, I,
788                    I->hasAllowReassoc() ? nullptr : I);
789  case Instruction::Select:
790    if (Kind == RecurKind::FAdd || Kind == RecurKind::FMul)
791      return isConditionalRdxPattern(Kind, I);
792    [[fallthrough]];
793  case Instruction::FCmp:
794  case Instruction::ICmp:
795  case Instruction::Call:
796    if (isSelectCmpRecurrenceKind(Kind))
797      return isSelectCmpPattern(L, OrigPhi, I, Prev);
798    if (isIntMinMaxRecurrenceKind(Kind) ||
799        (((FuncFMF.noNaNs() && FuncFMF.noSignedZeros()) ||
800          (isa<FPMathOperator>(I) && I->hasNoNaNs() &&
801           I->hasNoSignedZeros())) &&
802         isFPMinMaxRecurrenceKind(Kind)))
803      return isMinMaxPattern(I, Kind, Prev);
804    else if (isFMulAddIntrinsic(I))
805      return InstDesc(Kind == RecurKind::FMulAdd, I,
806                      I->hasAllowReassoc() ? nullptr : I);
807    return InstDesc(false, I);
808  }
809}
810
811bool RecurrenceDescriptor::hasMultipleUsesOf(
812    Instruction *I, SmallPtrSetImpl<Instruction *> &Insts,
813    unsigned MaxNumUses) {
814  unsigned NumUses = 0;
815  for (const Use &U : I->operands()) {
816    if (Insts.count(dyn_cast<Instruction>(U)))
817      ++NumUses;
818    if (NumUses > MaxNumUses)
819      return true;
820  }
821
822  return false;
823}
824
825bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
826                                          RecurrenceDescriptor &RedDes,
827                                          DemandedBits *DB, AssumptionCache *AC,
828                                          DominatorTree *DT,
829                                          ScalarEvolution *SE) {
830  BasicBlock *Header = TheLoop->getHeader();
831  Function &F = *Header->getParent();
832  FastMathFlags FMF;
833  FMF.setNoNaNs(
834      F.getFnAttribute("no-nans-fp-math").getValueAsBool());
835  FMF.setNoSignedZeros(
836      F.getFnAttribute("no-signed-zeros-fp-math").getValueAsBool());
837
838  if (AddReductionVar(Phi, RecurKind::Add, TheLoop, FMF, RedDes, DB, AC, DT,
839                      SE)) {
840    LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
841    return true;
842  }
843  if (AddReductionVar(Phi, RecurKind::Mul, TheLoop, FMF, RedDes, DB, AC, DT,
844                      SE)) {
845    LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
846    return true;
847  }
848  if (AddReductionVar(Phi, RecurKind::Or, TheLoop, FMF, RedDes, DB, AC, DT,
849                      SE)) {
850    LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
851    return true;
852  }
853  if (AddReductionVar(Phi, RecurKind::And, TheLoop, FMF, RedDes, DB, AC, DT,
854                      SE)) {
855    LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
856    return true;
857  }
858  if (AddReductionVar(Phi, RecurKind::Xor, TheLoop, FMF, RedDes, DB, AC, DT,
859                      SE)) {
860    LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
861    return true;
862  }
863  if (AddReductionVar(Phi, RecurKind::SMax, TheLoop, FMF, RedDes, DB, AC, DT,
864                      SE)) {
865    LLVM_DEBUG(dbgs() << "Found a SMAX reduction PHI." << *Phi << "\n");
866    return true;
867  }
868  if (AddReductionVar(Phi, RecurKind::SMin, TheLoop, FMF, RedDes, DB, AC, DT,
869                      SE)) {
870    LLVM_DEBUG(dbgs() << "Found a SMIN reduction PHI." << *Phi << "\n");
871    return true;
872  }
873  if (AddReductionVar(Phi, RecurKind::UMax, TheLoop, FMF, RedDes, DB, AC, DT,
874                      SE)) {
875    LLVM_DEBUG(dbgs() << "Found a UMAX reduction PHI." << *Phi << "\n");
876    return true;
877  }
878  if (AddReductionVar(Phi, RecurKind::UMin, TheLoop, FMF, RedDes, DB, AC, DT,
879                      SE)) {
880    LLVM_DEBUG(dbgs() << "Found a UMIN reduction PHI." << *Phi << "\n");
881    return true;
882  }
883  if (AddReductionVar(Phi, RecurKind::SelectICmp, TheLoop, FMF, RedDes, DB, AC,
884                      DT, SE)) {
885    LLVM_DEBUG(dbgs() << "Found an integer conditional select reduction PHI."
886                      << *Phi << "\n");
887    return true;
888  }
889  if (AddReductionVar(Phi, RecurKind::FMul, TheLoop, FMF, RedDes, DB, AC, DT,
890                      SE)) {
891    LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
892    return true;
893  }
894  if (AddReductionVar(Phi, RecurKind::FAdd, TheLoop, FMF, RedDes, DB, AC, DT,
895                      SE)) {
896    LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
897    return true;
898  }
899  if (AddReductionVar(Phi, RecurKind::FMax, TheLoop, FMF, RedDes, DB, AC, DT,
900                      SE)) {
901    LLVM_DEBUG(dbgs() << "Found a float MAX reduction PHI." << *Phi << "\n");
902    return true;
903  }
904  if (AddReductionVar(Phi, RecurKind::FMin, TheLoop, FMF, RedDes, DB, AC, DT,
905                      SE)) {
906    LLVM_DEBUG(dbgs() << "Found a float MIN reduction PHI." << *Phi << "\n");
907    return true;
908  }
909  if (AddReductionVar(Phi, RecurKind::SelectFCmp, TheLoop, FMF, RedDes, DB, AC,
910                      DT, SE)) {
911    LLVM_DEBUG(dbgs() << "Found a float conditional select reduction PHI."
912                      << " PHI." << *Phi << "\n");
913    return true;
914  }
915  if (AddReductionVar(Phi, RecurKind::FMulAdd, TheLoop, FMF, RedDes, DB, AC, DT,
916                      SE)) {
917    LLVM_DEBUG(dbgs() << "Found an FMulAdd reduction PHI." << *Phi << "\n");
918    return true;
919  }
920  // Not a reduction of known type.
921  return false;
922}
923
924bool RecurrenceDescriptor::isFixedOrderRecurrence(
925    PHINode *Phi, Loop *TheLoop,
926    MapVector<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) {
927
928  // Ensure the phi node is in the loop header and has two incoming values.
929  if (Phi->getParent() != TheLoop->getHeader() ||
930      Phi->getNumIncomingValues() != 2)
931    return false;
932
933  // Ensure the loop has a preheader and a single latch block. The loop
934  // vectorizer will need the latch to set up the next iteration of the loop.
935  auto *Preheader = TheLoop->getLoopPreheader();
936  auto *Latch = TheLoop->getLoopLatch();
937  if (!Preheader || !Latch)
938    return false;
939
940  // Ensure the phi node's incoming blocks are the loop preheader and latch.
941  if (Phi->getBasicBlockIndex(Preheader) < 0 ||
942      Phi->getBasicBlockIndex(Latch) < 0)
943    return false;
944
945  // Get the previous value. The previous value comes from the latch edge while
946  // the initial value comes from the preheader edge.
947  auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
948
949  // If Previous is a phi in the header, go through incoming values from the
950  // latch until we find a non-phi value. Use this as the new Previous, all uses
951  // in the header will be dominated by the original phi, but need to be moved
952  // after the non-phi previous value.
953  SmallPtrSet<PHINode *, 4> SeenPhis;
954  while (auto *PrevPhi = dyn_cast_or_null<PHINode>(Previous)) {
955    if (PrevPhi->getParent() != Phi->getParent())
956      return false;
957    if (!SeenPhis.insert(PrevPhi).second)
958      return false;
959    Previous = dyn_cast<Instruction>(PrevPhi->getIncomingValueForBlock(Latch));
960  }
961
962  if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) ||
963      SinkAfter.count(Previous)) // Cannot rely on dominance due to motion.
964    return false;
965
966  // Ensure every user of the phi node (recursively) is dominated by the
967  // previous value. The dominance requirement ensures the loop vectorizer will
968  // not need to vectorize the initial value prior to the first iteration of the
969  // loop.
970  // TODO: Consider extending this sinking to handle memory instructions.
971
972  // We optimistically assume we can sink all users after Previous. Keep a set
973  // of instructions to sink after Previous ordered by dominance in the common
974  // basic block. It will be applied to SinkAfter if all users can be sunk.
975  auto CompareByComesBefore = [](const Instruction *A, const Instruction *B) {
976    return A->comesBefore(B);
977  };
978  std::set<Instruction *, decltype(CompareByComesBefore)> InstrsToSink(
979      CompareByComesBefore);
980
981  BasicBlock *PhiBB = Phi->getParent();
982  SmallVector<Instruction *, 8> WorkList;
983  auto TryToPushSinkCandidate = [&](Instruction *SinkCandidate) {
984    // Already sunk SinkCandidate.
985    if (SinkCandidate->getParent() == PhiBB &&
986        InstrsToSink.find(SinkCandidate) != InstrsToSink.end())
987      return true;
988
989    // Cyclic dependence.
990    if (Previous == SinkCandidate)
991      return false;
992
993    if (DT->dominates(Previous,
994                      SinkCandidate)) // We already are good w/o sinking.
995      return true;
996
997    if (SinkCandidate->getParent() != PhiBB ||
998        SinkCandidate->mayHaveSideEffects() ||
999        SinkCandidate->mayReadFromMemory() || SinkCandidate->isTerminator())
1000      return false;
1001
1002    // Avoid sinking an instruction multiple times (if multiple operands are
1003    // fixed order recurrences) by sinking once - after the latest 'previous'
1004    // instruction.
1005    auto It = SinkAfter.find(SinkCandidate);
1006    if (It != SinkAfter.end()) {
1007      auto *OtherPrev = It->second;
1008      // Find the earliest entry in the 'sink-after' chain. The last entry in
1009      // the chain is the original 'Previous' for a recurrence handled earlier.
1010      auto EarlierIt = SinkAfter.find(OtherPrev);
1011      while (EarlierIt != SinkAfter.end()) {
1012        Instruction *EarlierInst = EarlierIt->second;
1013        EarlierIt = SinkAfter.find(EarlierInst);
1014        // Bail out if order has not been preserved.
1015        if (EarlierIt != SinkAfter.end() &&
1016            !DT->dominates(EarlierInst, OtherPrev))
1017          return false;
1018        OtherPrev = EarlierInst;
1019      }
1020      // Bail out if order has not been preserved.
1021      if (OtherPrev != It->second && !DT->dominates(It->second, OtherPrev))
1022        return false;
1023
1024      // SinkCandidate is already being sunk after an instruction after
1025      // Previous. Nothing left to do.
1026      if (DT->dominates(Previous, OtherPrev) || Previous == OtherPrev)
1027        return true;
1028
1029      // If there are other instructions to be sunk after SinkCandidate, remove
1030      // and re-insert SinkCandidate can break those instructions. Bail out for
1031      // simplicity.
1032      if (any_of(SinkAfter,
1033          [SinkCandidate](const std::pair<Instruction *, Instruction *> &P) {
1034            return P.second == SinkCandidate;
1035          }))
1036        return false;
1037
1038      // Otherwise, Previous comes after OtherPrev and SinkCandidate needs to be
1039      // re-sunk to Previous, instead of sinking to OtherPrev. Remove
1040      // SinkCandidate from SinkAfter to ensure it's insert position is updated.
1041      SinkAfter.erase(SinkCandidate);
1042    }
1043
1044    // If we reach a PHI node that is not dominated by Previous, we reached a
1045    // header PHI. No need for sinking.
1046    if (isa<PHINode>(SinkCandidate))
1047      return true;
1048
1049    // Sink User tentatively and check its users
1050    InstrsToSink.insert(SinkCandidate);
1051    WorkList.push_back(SinkCandidate);
1052    return true;
1053  };
1054
1055  WorkList.push_back(Phi);
1056  // Try to recursively sink instructions and their users after Previous.
1057  while (!WorkList.empty()) {
1058    Instruction *Current = WorkList.pop_back_val();
1059    for (User *User : Current->users()) {
1060      if (!TryToPushSinkCandidate(cast<Instruction>(User)))
1061        return false;
1062    }
1063  }
1064
1065  // We can sink all users of Phi. Update the mapping.
1066  for (Instruction *I : InstrsToSink) {
1067    SinkAfter[I] = Previous;
1068    Previous = I;
1069  }
1070  return true;
1071}
1072
1073/// This function returns the identity element (or neutral element) for
1074/// the operation K.
1075Value *RecurrenceDescriptor::getRecurrenceIdentity(RecurKind K, Type *Tp,
1076                                                   FastMathFlags FMF) const {
1077  switch (K) {
1078  case RecurKind::Xor:
1079  case RecurKind::Add:
1080  case RecurKind::Or:
1081    // Adding, Xoring, Oring zero to a number does not change it.
1082    return ConstantInt::get(Tp, 0);
1083  case RecurKind::Mul:
1084    // Multiplying a number by 1 does not change it.
1085    return ConstantInt::get(Tp, 1);
1086  case RecurKind::And:
1087    // AND-ing a number with an all-1 value does not change it.
1088    return ConstantInt::get(Tp, -1, true);
1089  case RecurKind::FMul:
1090    // Multiplying a number by 1 does not change it.
1091    return ConstantFP::get(Tp, 1.0L);
1092  case RecurKind::FMulAdd:
1093  case RecurKind::FAdd:
1094    // Adding zero to a number does not change it.
1095    // FIXME: Ideally we should not need to check FMF for FAdd and should always
1096    // use -0.0. However, this will currently result in mixed vectors of 0.0/-0.0.
1097    // Instead, we should ensure that 1) the FMF from FAdd are propagated to the PHI
1098    // nodes where possible, and 2) PHIs with the nsz flag + -0.0 use 0.0. This would
1099    // mean we can then remove the check for noSignedZeros() below (see D98963).
1100    if (FMF.noSignedZeros())
1101      return ConstantFP::get(Tp, 0.0L);
1102    return ConstantFP::get(Tp, -0.0L);
1103  case RecurKind::UMin:
1104    return ConstantInt::get(Tp, -1);
1105  case RecurKind::UMax:
1106    return ConstantInt::get(Tp, 0);
1107  case RecurKind::SMin:
1108    return ConstantInt::get(Tp,
1109                            APInt::getSignedMaxValue(Tp->getIntegerBitWidth()));
1110  case RecurKind::SMax:
1111    return ConstantInt::get(Tp,
1112                            APInt::getSignedMinValue(Tp->getIntegerBitWidth()));
1113  case RecurKind::FMin:
1114    assert((FMF.noNaNs() && FMF.noSignedZeros()) &&
1115           "nnan, nsz is expected to be set for FP min reduction.");
1116    return ConstantFP::getInfinity(Tp, false /*Negative*/);
1117  case RecurKind::FMax:
1118    assert((FMF.noNaNs() && FMF.noSignedZeros()) &&
1119           "nnan, nsz is expected to be set for FP max reduction.");
1120    return ConstantFP::getInfinity(Tp, true /*Negative*/);
1121  case RecurKind::SelectICmp:
1122  case RecurKind::SelectFCmp:
1123    return getRecurrenceStartValue();
1124    break;
1125  default:
1126    llvm_unreachable("Unknown recurrence kind");
1127  }
1128}
1129
1130unsigned RecurrenceDescriptor::getOpcode(RecurKind Kind) {
1131  switch (Kind) {
1132  case RecurKind::Add:
1133    return Instruction::Add;
1134  case RecurKind::Mul:
1135    return Instruction::Mul;
1136  case RecurKind::Or:
1137    return Instruction::Or;
1138  case RecurKind::And:
1139    return Instruction::And;
1140  case RecurKind::Xor:
1141    return Instruction::Xor;
1142  case RecurKind::FMul:
1143    return Instruction::FMul;
1144  case RecurKind::FMulAdd:
1145  case RecurKind::FAdd:
1146    return Instruction::FAdd;
1147  case RecurKind::SMax:
1148  case RecurKind::SMin:
1149  case RecurKind::UMax:
1150  case RecurKind::UMin:
1151  case RecurKind::SelectICmp:
1152    return Instruction::ICmp;
1153  case RecurKind::FMax:
1154  case RecurKind::FMin:
1155  case RecurKind::SelectFCmp:
1156    return Instruction::FCmp;
1157  default:
1158    llvm_unreachable("Unknown recurrence operation");
1159  }
1160}
1161
1162SmallVector<Instruction *, 4>
1163RecurrenceDescriptor::getReductionOpChain(PHINode *Phi, Loop *L) const {
1164  SmallVector<Instruction *, 4> ReductionOperations;
1165  unsigned RedOp = getOpcode(Kind);
1166
1167  // Search down from the Phi to the LoopExitInstr, looking for instructions
1168  // with a single user of the correct type for the reduction.
1169
1170  // Note that we check that the type of the operand is correct for each item in
1171  // the chain, including the last (the loop exit value). This can come up from
1172  // sub, which would otherwise be treated as an add reduction. MinMax also need
1173  // to check for a pair of icmp/select, for which we use getNextInstruction and
1174  // isCorrectOpcode functions to step the right number of instruction, and
1175  // check the icmp/select pair.
1176  // FIXME: We also do not attempt to look through Select's yet, which might
1177  // be part of the reduction chain, or attempt to looks through And's to find a
1178  // smaller bitwidth. Subs are also currently not allowed (which are usually
1179  // treated as part of a add reduction) as they are expected to generally be
1180  // more expensive than out-of-loop reductions, and need to be costed more
1181  // carefully.
1182  unsigned ExpectedUses = 1;
1183  if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp)
1184    ExpectedUses = 2;
1185
1186  auto getNextInstruction = [&](Instruction *Cur) -> Instruction * {
1187    for (auto *User : Cur->users()) {
1188      Instruction *UI = cast<Instruction>(User);
1189      if (isa<PHINode>(UI))
1190        continue;
1191      if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) {
1192        // We are expecting a icmp/select pair, which we go to the next select
1193        // instruction if we can. We already know that Cur has 2 uses.
1194        if (isa<SelectInst>(UI))
1195          return UI;
1196        continue;
1197      }
1198      return UI;
1199    }
1200    return nullptr;
1201  };
1202  auto isCorrectOpcode = [&](Instruction *Cur) {
1203    if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) {
1204      Value *LHS, *RHS;
1205      return SelectPatternResult::isMinOrMax(
1206          matchSelectPattern(Cur, LHS, RHS).Flavor);
1207    }
1208    // Recognize a call to the llvm.fmuladd intrinsic.
1209    if (isFMulAddIntrinsic(Cur))
1210      return true;
1211
1212    return Cur->getOpcode() == RedOp;
1213  };
1214
1215  // Attempt to look through Phis which are part of the reduction chain
1216  unsigned ExtraPhiUses = 0;
1217  Instruction *RdxInstr = LoopExitInstr;
1218  if (auto ExitPhi = dyn_cast<PHINode>(LoopExitInstr)) {
1219    if (ExitPhi->getNumIncomingValues() != 2)
1220      return {};
1221
1222    Instruction *Inc0 = dyn_cast<Instruction>(ExitPhi->getIncomingValue(0));
1223    Instruction *Inc1 = dyn_cast<Instruction>(ExitPhi->getIncomingValue(1));
1224
1225    Instruction *Chain = nullptr;
1226    if (Inc0 == Phi)
1227      Chain = Inc1;
1228    else if (Inc1 == Phi)
1229      Chain = Inc0;
1230    else
1231      return {};
1232
1233    RdxInstr = Chain;
1234    ExtraPhiUses = 1;
1235  }
1236
1237  // The loop exit instruction we check first (as a quick test) but add last. We
1238  // check the opcode is correct (and dont allow them to be Subs) and that they
1239  // have expected to have the expected number of uses. They will have one use
1240  // from the phi and one from a LCSSA value, no matter the type.
1241  if (!isCorrectOpcode(RdxInstr) || !LoopExitInstr->hasNUses(2))
1242    return {};
1243
1244  // Check that the Phi has one (or two for min/max) uses, plus an extra use
1245  // for conditional reductions.
1246  if (!Phi->hasNUses(ExpectedUses + ExtraPhiUses))
1247    return {};
1248
1249  Instruction *Cur = getNextInstruction(Phi);
1250
1251  // Each other instruction in the chain should have the expected number of uses
1252  // and be the correct opcode.
1253  while (Cur != RdxInstr) {
1254    if (!Cur || !isCorrectOpcode(Cur) || !Cur->hasNUses(ExpectedUses))
1255      return {};
1256
1257    ReductionOperations.push_back(Cur);
1258    Cur = getNextInstruction(Cur);
1259  }
1260
1261  ReductionOperations.push_back(Cur);
1262  return ReductionOperations;
1263}
1264
1265InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
1266                                         const SCEV *Step, BinaryOperator *BOp,
1267                                         Type *ElementType,
1268                                         SmallVectorImpl<Instruction *> *Casts)
1269    : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp),
1270      ElementType(ElementType) {
1271  assert(IK != IK_NoInduction && "Not an induction");
1272
1273  // Start value type should match the induction kind and the value
1274  // itself should not be null.
1275  assert(StartValue && "StartValue is null");
1276  assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
1277         "StartValue is not a pointer for pointer induction");
1278  assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
1279         "StartValue is not an integer for integer induction");
1280
1281  // Check the Step Value. It should be non-zero integer value.
1282  assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
1283         "Step value is zero");
1284
1285  assert((IK != IK_PtrInduction || getConstIntStepValue()) &&
1286         "Step value should be constant for pointer induction");
1287  assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
1288         "StepValue is not an integer");
1289
1290  assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
1291         "StepValue is not FP for FpInduction");
1292  assert((IK != IK_FpInduction ||
1293          (InductionBinOp &&
1294           (InductionBinOp->getOpcode() == Instruction::FAdd ||
1295            InductionBinOp->getOpcode() == Instruction::FSub))) &&
1296         "Binary opcode should be specified for FP induction");
1297
1298  if (IK == IK_PtrInduction)
1299    assert(ElementType && "Pointer induction must have element type");
1300  else
1301    assert(!ElementType && "Non-pointer induction cannot have element type");
1302
1303  if (Casts) {
1304    for (auto &Inst : *Casts) {
1305      RedundantCasts.push_back(Inst);
1306    }
1307  }
1308}
1309
1310ConstantInt *InductionDescriptor::getConstIntStepValue() const {
1311  if (isa<SCEVConstant>(Step))
1312    return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
1313  return nullptr;
1314}
1315
1316bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
1317                                           ScalarEvolution *SE,
1318                                           InductionDescriptor &D) {
1319
1320  // Here we only handle FP induction variables.
1321  assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");
1322
1323  if (TheLoop->getHeader() != Phi->getParent())
1324    return false;
1325
1326  // The loop may have multiple entrances or multiple exits; we can analyze
1327  // this phi if it has a unique entry value and a unique backedge value.
1328  if (Phi->getNumIncomingValues() != 2)
1329    return false;
1330  Value *BEValue = nullptr, *StartValue = nullptr;
1331  if (TheLoop->contains(Phi->getIncomingBlock(0))) {
1332    BEValue = Phi->getIncomingValue(0);
1333    StartValue = Phi->getIncomingValue(1);
1334  } else {
1335    assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
1336           "Unexpected Phi node in the loop");
1337    BEValue = Phi->getIncomingValue(1);
1338    StartValue = Phi->getIncomingValue(0);
1339  }
1340
1341  BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
1342  if (!BOp)
1343    return false;
1344
1345  Value *Addend = nullptr;
1346  if (BOp->getOpcode() == Instruction::FAdd) {
1347    if (BOp->getOperand(0) == Phi)
1348      Addend = BOp->getOperand(1);
1349    else if (BOp->getOperand(1) == Phi)
1350      Addend = BOp->getOperand(0);
1351  } else if (BOp->getOpcode() == Instruction::FSub)
1352    if (BOp->getOperand(0) == Phi)
1353      Addend = BOp->getOperand(1);
1354
1355  if (!Addend)
1356    return false;
1357
1358  // The addend should be loop invariant
1359  if (auto *I = dyn_cast<Instruction>(Addend))
1360    if (TheLoop->contains(I))
1361      return false;
1362
1363  // FP Step has unknown SCEV
1364  const SCEV *Step = SE->getUnknown(Addend);
1365  D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
1366  return true;
1367}
1368
1369/// This function is called when we suspect that the update-chain of a phi node
1370/// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts,
1371/// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime
1372/// predicate P under which the SCEV expression for the phi can be the
1373/// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the
1374/// cast instructions that are involved in the update-chain of this induction.
1375/// A caller that adds the required runtime predicate can be free to drop these
1376/// cast instructions, and compute the phi using \p AR (instead of some scev
1377/// expression with casts).
1378///
1379/// For example, without a predicate the scev expression can take the following
1380/// form:
1381///      (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy)
1382///
1383/// It corresponds to the following IR sequence:
1384/// %for.body:
1385///   %x = phi i64 [ 0, %ph ], [ %add, %for.body ]
1386///   %casted_phi = "ExtTrunc i64 %x"
1387///   %add = add i64 %casted_phi, %step
1388///
1389/// where %x is given in \p PN,
1390/// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate,
1391/// and the IR sequence that "ExtTrunc i64 %x" represents can take one of
1392/// several forms, for example, such as:
1393///   ExtTrunc1:    %casted_phi = and  %x, 2^n-1
1394/// or:
1395///   ExtTrunc2:    %t = shl %x, m
1396///                 %casted_phi = ashr %t, m
1397///
1398/// If we are able to find such sequence, we return the instructions
1399/// we found, namely %casted_phi and the instructions on its use-def chain up
1400/// to the phi (not including the phi).
1401static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE,
1402                                    const SCEVUnknown *PhiScev,
1403                                    const SCEVAddRecExpr *AR,
1404                                    SmallVectorImpl<Instruction *> &CastInsts) {
1405
1406  assert(CastInsts.empty() && "CastInsts is expected to be empty.");
1407  auto *PN = cast<PHINode>(PhiScev->getValue());
1408  assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression");
1409  const Loop *L = AR->getLoop();
1410
1411  // Find any cast instructions that participate in the def-use chain of
1412  // PhiScev in the loop.
1413  // FORNOW/TODO: We currently expect the def-use chain to include only
1414  // two-operand instructions, where one of the operands is an invariant.
1415  // createAddRecFromPHIWithCasts() currently does not support anything more
1416  // involved than that, so we keep the search simple. This can be
1417  // extended/generalized as needed.
1418
1419  auto getDef = [&](const Value *Val) -> Value * {
1420    const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val);
1421    if (!BinOp)
1422      return nullptr;
1423    Value *Op0 = BinOp->getOperand(0);
1424    Value *Op1 = BinOp->getOperand(1);
1425    Value *Def = nullptr;
1426    if (L->isLoopInvariant(Op0))
1427      Def = Op1;
1428    else if (L->isLoopInvariant(Op1))
1429      Def = Op0;
1430    return Def;
1431  };
1432
1433  // Look for the instruction that defines the induction via the
1434  // loop backedge.
1435  BasicBlock *Latch = L->getLoopLatch();
1436  if (!Latch)
1437    return false;
1438  Value *Val = PN->getIncomingValueForBlock(Latch);
1439  if (!Val)
1440    return false;
1441
1442  // Follow the def-use chain until the induction phi is reached.
1443  // If on the way we encounter a Value that has the same SCEV Expr as the
1444  // phi node, we can consider the instructions we visit from that point
1445  // as part of the cast-sequence that can be ignored.
1446  bool InCastSequence = false;
1447  auto *Inst = dyn_cast<Instruction>(Val);
1448  while (Val != PN) {
1449    // If we encountered a phi node other than PN, or if we left the loop,
1450    // we bail out.
1451    if (!Inst || !L->contains(Inst)) {
1452      return false;
1453    }
1454    auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val));
1455    if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR))
1456      InCastSequence = true;
1457    if (InCastSequence) {
1458      // Only the last instruction in the cast sequence is expected to have
1459      // uses outside the induction def-use chain.
1460      if (!CastInsts.empty())
1461        if (!Inst->hasOneUse())
1462          return false;
1463      CastInsts.push_back(Inst);
1464    }
1465    Val = getDef(Val);
1466    if (!Val)
1467      return false;
1468    Inst = dyn_cast<Instruction>(Val);
1469  }
1470
1471  return InCastSequence;
1472}
1473
1474bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
1475                                         PredicatedScalarEvolution &PSE,
1476                                         InductionDescriptor &D, bool Assume) {
1477  Type *PhiTy = Phi->getType();
1478
1479  // Handle integer and pointer inductions variables.
1480  // Now we handle also FP induction but not trying to make a
1481  // recurrent expression from the PHI node in-place.
1482
1483  if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && !PhiTy->isFloatTy() &&
1484      !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
1485    return false;
1486
1487  if (PhiTy->isFloatingPointTy())
1488    return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
1489
1490  const SCEV *PhiScev = PSE.getSCEV(Phi);
1491  const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1492
1493  // We need this expression to be an AddRecExpr.
1494  if (Assume && !AR)
1495    AR = PSE.getAsAddRec(Phi);
1496
1497  if (!AR) {
1498    LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1499    return false;
1500  }
1501
1502  // Record any Cast instructions that participate in the induction update
1503  const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev);
1504  // If we started from an UnknownSCEV, and managed to build an addRecurrence
1505  // only after enabling Assume with PSCEV, this means we may have encountered
1506  // cast instructions that required adding a runtime check in order to
1507  // guarantee the correctness of the AddRecurrence respresentation of the
1508  // induction.
1509  if (PhiScev != AR && SymbolicPhi) {
1510    SmallVector<Instruction *, 2> Casts;
1511    if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts))
1512      return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts);
1513  }
1514
1515  return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
1516}
1517
1518bool InductionDescriptor::isInductionPHI(
1519    PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE,
1520    InductionDescriptor &D, const SCEV *Expr,
1521    SmallVectorImpl<Instruction *> *CastsToIgnore) {
1522  Type *PhiTy = Phi->getType();
1523  // We only handle integer and pointer inductions variables.
1524  if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
1525    return false;
1526
1527  // Check that the PHI is consecutive.
1528  const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
1529  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1530
1531  if (!AR) {
1532    LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1533    return false;
1534  }
1535
1536  if (AR->getLoop() != TheLoop) {
1537    // FIXME: We should treat this as a uniform. Unfortunately, we
1538    // don't currently know how to handled uniform PHIs.
1539    LLVM_DEBUG(
1540        dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
1541    return false;
1542  }
1543
1544  Value *StartValue =
1545      Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
1546
1547  BasicBlock *Latch = AR->getLoop()->getLoopLatch();
1548  if (!Latch)
1549    return false;
1550
1551  const SCEV *Step = AR->getStepRecurrence(*SE);
1552  // Calculate the pointer stride and check if it is consecutive.
1553  // The stride may be a constant or a loop invariant integer value.
1554  const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
1555  if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
1556    return false;
1557
1558  if (PhiTy->isIntegerTy()) {
1559    BinaryOperator *BOp =
1560        dyn_cast<BinaryOperator>(Phi->getIncomingValueForBlock(Latch));
1561    D = InductionDescriptor(StartValue, IK_IntInduction, Step, BOp,
1562                            /* ElementType */ nullptr, CastsToIgnore);
1563    return true;
1564  }
1565
1566  assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
1567  // Pointer induction should be a constant.
1568  if (!ConstStep)
1569    return false;
1570
1571  // Always use i8 element type for opaque pointer inductions.
1572  PointerType *PtrTy = cast<PointerType>(PhiTy);
1573  Type *ElementType = PtrTy->isOpaque()
1574                          ? Type::getInt8Ty(PtrTy->getContext())
1575                          : PtrTy->getNonOpaquePointerElementType();
1576  if (!ElementType->isSized())
1577    return false;
1578
1579  ConstantInt *CV = ConstStep->getValue();
1580  const DataLayout &DL = Phi->getModule()->getDataLayout();
1581  TypeSize TySize = DL.getTypeAllocSize(ElementType);
1582  // TODO: We could potentially support this for scalable vectors if we can
1583  // prove at compile time that the constant step is always a multiple of
1584  // the scalable type.
1585  if (TySize.isZero() || TySize.isScalable())
1586    return false;
1587
1588  int64_t Size = static_cast<int64_t>(TySize.getFixedValue());
1589  int64_t CVSize = CV->getSExtValue();
1590  if (CVSize % Size)
1591    return false;
1592  auto *StepValue =
1593      SE->getConstant(CV->getType(), CVSize / Size, true /* signed */);
1594  D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue,
1595                          /* BinOp */ nullptr, ElementType);
1596  return true;
1597}
1598