1//==- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation --==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the generic AliasAnalysis interface which is used as the
10// common interface used by all clients and implementations of alias analysis.
11//
12// This file also implements the default version of the AliasAnalysis interface
13// that is to be used when no other implementation is specified.  This does some
14// simple tests that detect obvious cases: two different global pointers cannot
15// alias, a global cannot alias a malloc, two different mallocs cannot alias,
16// etc.
17//
18// This alias analysis implementation really isn't very good for anything, but
19// it is very fast, and makes a nice clean default implementation.  Because it
20// handles lots of little corner cases, other, more complex, alias analysis
21// implementations may choose to rely on this pass to resolve these simple and
22// easy cases.
23//
24//===----------------------------------------------------------------------===//
25
26#include "llvm/Analysis/AliasAnalysis.h"
27#include "llvm/ADT/Statistic.h"
28#include "llvm/Analysis/BasicAliasAnalysis.h"
29#include "llvm/Analysis/CaptureTracking.h"
30#include "llvm/Analysis/GlobalsModRef.h"
31#include "llvm/Analysis/MemoryLocation.h"
32#include "llvm/Analysis/ObjCARCAliasAnalysis.h"
33#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
34#include "llvm/Analysis/ScopedNoAliasAA.h"
35#include "llvm/Analysis/TargetLibraryInfo.h"
36#include "llvm/Analysis/TypeBasedAliasAnalysis.h"
37#include "llvm/Analysis/ValueTracking.h"
38#include "llvm/IR/Argument.h"
39#include "llvm/IR/Attributes.h"
40#include "llvm/IR/BasicBlock.h"
41#include "llvm/IR/Instruction.h"
42#include "llvm/IR/Instructions.h"
43#include "llvm/IR/Type.h"
44#include "llvm/IR/Value.h"
45#include "llvm/InitializePasses.h"
46#include "llvm/Pass.h"
47#include "llvm/Support/AtomicOrdering.h"
48#include "llvm/Support/Casting.h"
49#include "llvm/Support/CommandLine.h"
50#include <algorithm>
51#include <cassert>
52#include <functional>
53#include <iterator>
54
55#define DEBUG_TYPE "aa"
56
57using namespace llvm;
58
59STATISTIC(NumNoAlias,   "Number of NoAlias results");
60STATISTIC(NumMayAlias,  "Number of MayAlias results");
61STATISTIC(NumMustAlias, "Number of MustAlias results");
62
63namespace llvm {
64/// Allow disabling BasicAA from the AA results. This is particularly useful
65/// when testing to isolate a single AA implementation.
66cl::opt<bool> DisableBasicAA("disable-basic-aa", cl::Hidden, cl::init(false));
67} // namespace llvm
68
69#ifndef NDEBUG
70/// Print a trace of alias analysis queries and their results.
71static cl::opt<bool> EnableAATrace("aa-trace", cl::Hidden, cl::init(false));
72#else
73static const bool EnableAATrace = false;
74#endif
75
76AAResults::AAResults(AAResults &&Arg)
77    : TLI(Arg.TLI), AAs(std::move(Arg.AAs)), AADeps(std::move(Arg.AADeps)) {}
78
79AAResults::~AAResults() {}
80
81bool AAResults::invalidate(Function &F, const PreservedAnalyses &PA,
82                           FunctionAnalysisManager::Invalidator &Inv) {
83  // AAResults preserves the AAManager by default, due to the stateless nature
84  // of AliasAnalysis. There is no need to check whether it has been preserved
85  // explicitly. Check if any module dependency was invalidated and caused the
86  // AAManager to be invalidated. Invalidate ourselves in that case.
87  auto PAC = PA.getChecker<AAManager>();
88  if (!PAC.preservedWhenStateless())
89    return true;
90
91  // Check if any of the function dependencies were invalidated, and invalidate
92  // ourselves in that case.
93  for (AnalysisKey *ID : AADeps)
94    if (Inv.invalidate(ID, F, PA))
95      return true;
96
97  // Everything we depend on is still fine, so are we. Nothing to invalidate.
98  return false;
99}
100
101//===----------------------------------------------------------------------===//
102// Default chaining methods
103//===----------------------------------------------------------------------===//
104
105AliasResult AAResults::alias(const MemoryLocation &LocA,
106                             const MemoryLocation &LocB) {
107  SimpleAAQueryInfo AAQIP(*this);
108  return alias(LocA, LocB, AAQIP, nullptr);
109}
110
111AliasResult AAResults::alias(const MemoryLocation &LocA,
112                             const MemoryLocation &LocB, AAQueryInfo &AAQI,
113                             const Instruction *CtxI) {
114  AliasResult Result = AliasResult::MayAlias;
115
116  if (EnableAATrace) {
117    for (unsigned I = 0; I < AAQI.Depth; ++I)
118      dbgs() << "  ";
119    dbgs() << "Start " << *LocA.Ptr << " @ " << LocA.Size << ", "
120           << *LocB.Ptr << " @ " << LocB.Size << "\n";
121  }
122
123  AAQI.Depth++;
124  for (const auto &AA : AAs) {
125    Result = AA->alias(LocA, LocB, AAQI, CtxI);
126    if (Result != AliasResult::MayAlias)
127      break;
128  }
129  AAQI.Depth--;
130
131  if (EnableAATrace) {
132    for (unsigned I = 0; I < AAQI.Depth; ++I)
133      dbgs() << "  ";
134    dbgs() << "End " << *LocA.Ptr << " @ " << LocA.Size << ", "
135           << *LocB.Ptr << " @ " << LocB.Size << " = " << Result << "\n";
136  }
137
138  if (AAQI.Depth == 0) {
139    if (Result == AliasResult::NoAlias)
140      ++NumNoAlias;
141    else if (Result == AliasResult::MustAlias)
142      ++NumMustAlias;
143    else
144      ++NumMayAlias;
145  }
146  return Result;
147}
148
149ModRefInfo AAResults::getModRefInfoMask(const MemoryLocation &Loc,
150                                        bool IgnoreLocals) {
151  SimpleAAQueryInfo AAQIP(*this);
152  return getModRefInfoMask(Loc, AAQIP, IgnoreLocals);
153}
154
155ModRefInfo AAResults::getModRefInfoMask(const MemoryLocation &Loc,
156                                        AAQueryInfo &AAQI, bool IgnoreLocals) {
157  ModRefInfo Result = ModRefInfo::ModRef;
158
159  for (const auto &AA : AAs) {
160    Result &= AA->getModRefInfoMask(Loc, AAQI, IgnoreLocals);
161
162    // Early-exit the moment we reach the bottom of the lattice.
163    if (isNoModRef(Result))
164      return ModRefInfo::NoModRef;
165  }
166
167  return Result;
168}
169
170ModRefInfo AAResults::getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
171  ModRefInfo Result = ModRefInfo::ModRef;
172
173  for (const auto &AA : AAs) {
174    Result &= AA->getArgModRefInfo(Call, ArgIdx);
175
176    // Early-exit the moment we reach the bottom of the lattice.
177    if (isNoModRef(Result))
178      return ModRefInfo::NoModRef;
179  }
180
181  return Result;
182}
183
184ModRefInfo AAResults::getModRefInfo(const Instruction *I,
185                                    const CallBase *Call2) {
186  SimpleAAQueryInfo AAQIP(*this);
187  return getModRefInfo(I, Call2, AAQIP);
188}
189
190ModRefInfo AAResults::getModRefInfo(const Instruction *I, const CallBase *Call2,
191                                    AAQueryInfo &AAQI) {
192  // We may have two calls.
193  if (const auto *Call1 = dyn_cast<CallBase>(I)) {
194    // Check if the two calls modify the same memory.
195    return getModRefInfo(Call1, Call2, AAQI);
196  }
197  // If this is a fence, just return ModRef.
198  if (I->isFenceLike())
199    return ModRefInfo::ModRef;
200  // Otherwise, check if the call modifies or references the
201  // location this memory access defines.  The best we can say
202  // is that if the call references what this instruction
203  // defines, it must be clobbered by this location.
204  const MemoryLocation DefLoc = MemoryLocation::get(I);
205  ModRefInfo MR = getModRefInfo(Call2, DefLoc, AAQI);
206  if (isModOrRefSet(MR))
207    return ModRefInfo::ModRef;
208  return ModRefInfo::NoModRef;
209}
210
211ModRefInfo AAResults::getModRefInfo(const CallBase *Call,
212                                    const MemoryLocation &Loc,
213                                    AAQueryInfo &AAQI) {
214  ModRefInfo Result = ModRefInfo::ModRef;
215
216  for (const auto &AA : AAs) {
217    Result &= AA->getModRefInfo(Call, Loc, AAQI);
218
219    // Early-exit the moment we reach the bottom of the lattice.
220    if (isNoModRef(Result))
221      return ModRefInfo::NoModRef;
222  }
223
224  // Try to refine the mod-ref info further using other API entry points to the
225  // aggregate set of AA results.
226
227  // We can completely ignore inaccessible memory here, because MemoryLocations
228  // can only reference accessible memory.
229  auto ME = getMemoryEffects(Call, AAQI)
230                .getWithoutLoc(MemoryEffects::InaccessibleMem);
231  if (ME.doesNotAccessMemory())
232    return ModRefInfo::NoModRef;
233
234  ModRefInfo ArgMR = ME.getModRef(MemoryEffects::ArgMem);
235  ModRefInfo OtherMR = ME.getWithoutLoc(MemoryEffects::ArgMem).getModRef();
236  if ((ArgMR | OtherMR) != OtherMR) {
237    // Refine the modref info for argument memory. We only bother to do this
238    // if ArgMR is not a subset of OtherMR, otherwise this won't have an impact
239    // on the final result.
240    ModRefInfo AllArgsMask = ModRefInfo::NoModRef;
241    for (const auto &I : llvm::enumerate(Call->args())) {
242      const Value *Arg = I.value();
243      if (!Arg->getType()->isPointerTy())
244        continue;
245      unsigned ArgIdx = I.index();
246      MemoryLocation ArgLoc = MemoryLocation::getForArgument(Call, ArgIdx, TLI);
247      AliasResult ArgAlias = alias(ArgLoc, Loc, AAQI, Call);
248      if (ArgAlias != AliasResult::NoAlias)
249        AllArgsMask |= getArgModRefInfo(Call, ArgIdx);
250    }
251    ArgMR &= AllArgsMask;
252  }
253
254  Result &= ArgMR | OtherMR;
255
256  // Apply the ModRef mask. This ensures that if Loc is a constant memory
257  // location, we take into account the fact that the call definitely could not
258  // modify the memory location.
259  if (!isNoModRef(Result))
260    Result &= getModRefInfoMask(Loc);
261
262  return Result;
263}
264
265ModRefInfo AAResults::getModRefInfo(const CallBase *Call1,
266                                    const CallBase *Call2, AAQueryInfo &AAQI) {
267  ModRefInfo Result = ModRefInfo::ModRef;
268
269  for (const auto &AA : AAs) {
270    Result &= AA->getModRefInfo(Call1, Call2, AAQI);
271
272    // Early-exit the moment we reach the bottom of the lattice.
273    if (isNoModRef(Result))
274      return ModRefInfo::NoModRef;
275  }
276
277  // Try to refine the mod-ref info further using other API entry points to the
278  // aggregate set of AA results.
279
280  // If Call1 or Call2 are readnone, they don't interact.
281  auto Call1B = getMemoryEffects(Call1, AAQI);
282  if (Call1B.doesNotAccessMemory())
283    return ModRefInfo::NoModRef;
284
285  auto Call2B = getMemoryEffects(Call2, AAQI);
286  if (Call2B.doesNotAccessMemory())
287    return ModRefInfo::NoModRef;
288
289  // If they both only read from memory, there is no dependence.
290  if (Call1B.onlyReadsMemory() && Call2B.onlyReadsMemory())
291    return ModRefInfo::NoModRef;
292
293  // If Call1 only reads memory, the only dependence on Call2 can be
294  // from Call1 reading memory written by Call2.
295  if (Call1B.onlyReadsMemory())
296    Result &= ModRefInfo::Ref;
297  else if (Call1B.onlyWritesMemory())
298    Result &= ModRefInfo::Mod;
299
300  // If Call2 only access memory through arguments, accumulate the mod/ref
301  // information from Call1's references to the memory referenced by
302  // Call2's arguments.
303  if (Call2B.onlyAccessesArgPointees()) {
304    if (!Call2B.doesAccessArgPointees())
305      return ModRefInfo::NoModRef;
306    ModRefInfo R = ModRefInfo::NoModRef;
307    for (auto I = Call2->arg_begin(), E = Call2->arg_end(); I != E; ++I) {
308      const Value *Arg = *I;
309      if (!Arg->getType()->isPointerTy())
310        continue;
311      unsigned Call2ArgIdx = std::distance(Call2->arg_begin(), I);
312      auto Call2ArgLoc =
313          MemoryLocation::getForArgument(Call2, Call2ArgIdx, TLI);
314
315      // ArgModRefC2 indicates what Call2 might do to Call2ArgLoc, and the
316      // dependence of Call1 on that location is the inverse:
317      // - If Call2 modifies location, dependence exists if Call1 reads or
318      //   writes.
319      // - If Call2 only reads location, dependence exists if Call1 writes.
320      ModRefInfo ArgModRefC2 = getArgModRefInfo(Call2, Call2ArgIdx);
321      ModRefInfo ArgMask = ModRefInfo::NoModRef;
322      if (isModSet(ArgModRefC2))
323        ArgMask = ModRefInfo::ModRef;
324      else if (isRefSet(ArgModRefC2))
325        ArgMask = ModRefInfo::Mod;
326
327      // ModRefC1 indicates what Call1 might do to Call2ArgLoc, and we use
328      // above ArgMask to update dependence info.
329      ArgMask &= getModRefInfo(Call1, Call2ArgLoc, AAQI);
330
331      R = (R | ArgMask) & Result;
332      if (R == Result)
333        break;
334    }
335
336    return R;
337  }
338
339  // If Call1 only accesses memory through arguments, check if Call2 references
340  // any of the memory referenced by Call1's arguments. If not, return NoModRef.
341  if (Call1B.onlyAccessesArgPointees()) {
342    if (!Call1B.doesAccessArgPointees())
343      return ModRefInfo::NoModRef;
344    ModRefInfo R = ModRefInfo::NoModRef;
345    for (auto I = Call1->arg_begin(), E = Call1->arg_end(); I != E; ++I) {
346      const Value *Arg = *I;
347      if (!Arg->getType()->isPointerTy())
348        continue;
349      unsigned Call1ArgIdx = std::distance(Call1->arg_begin(), I);
350      auto Call1ArgLoc =
351          MemoryLocation::getForArgument(Call1, Call1ArgIdx, TLI);
352
353      // ArgModRefC1 indicates what Call1 might do to Call1ArgLoc; if Call1
354      // might Mod Call1ArgLoc, then we care about either a Mod or a Ref by
355      // Call2. If Call1 might Ref, then we care only about a Mod by Call2.
356      ModRefInfo ArgModRefC1 = getArgModRefInfo(Call1, Call1ArgIdx);
357      ModRefInfo ModRefC2 = getModRefInfo(Call2, Call1ArgLoc, AAQI);
358      if ((isModSet(ArgModRefC1) && isModOrRefSet(ModRefC2)) ||
359          (isRefSet(ArgModRefC1) && isModSet(ModRefC2)))
360        R = (R | ArgModRefC1) & Result;
361
362      if (R == Result)
363        break;
364    }
365
366    return R;
367  }
368
369  return Result;
370}
371
372MemoryEffects AAResults::getMemoryEffects(const CallBase *Call,
373                                          AAQueryInfo &AAQI) {
374  MemoryEffects Result = MemoryEffects::unknown();
375
376  for (const auto &AA : AAs) {
377    Result &= AA->getMemoryEffects(Call, AAQI);
378
379    // Early-exit the moment we reach the bottom of the lattice.
380    if (Result.doesNotAccessMemory())
381      return Result;
382  }
383
384  return Result;
385}
386
387MemoryEffects AAResults::getMemoryEffects(const CallBase *Call) {
388  SimpleAAQueryInfo AAQI(*this);
389  return getMemoryEffects(Call, AAQI);
390}
391
392MemoryEffects AAResults::getMemoryEffects(const Function *F) {
393  MemoryEffects Result = MemoryEffects::unknown();
394
395  for (const auto &AA : AAs) {
396    Result &= AA->getMemoryEffects(F);
397
398    // Early-exit the moment we reach the bottom of the lattice.
399    if (Result.doesNotAccessMemory())
400      return Result;
401  }
402
403  return Result;
404}
405
406raw_ostream &llvm::operator<<(raw_ostream &OS, AliasResult AR) {
407  switch (AR) {
408  case AliasResult::NoAlias:
409    OS << "NoAlias";
410    break;
411  case AliasResult::MustAlias:
412    OS << "MustAlias";
413    break;
414  case AliasResult::MayAlias:
415    OS << "MayAlias";
416    break;
417  case AliasResult::PartialAlias:
418    OS << "PartialAlias";
419    if (AR.hasOffset())
420      OS << " (off " << AR.getOffset() << ")";
421    break;
422  }
423  return OS;
424}
425
426raw_ostream &llvm::operator<<(raw_ostream &OS, ModRefInfo MR) {
427  switch (MR) {
428  case ModRefInfo::NoModRef:
429    OS << "NoModRef";
430    break;
431  case ModRefInfo::Ref:
432    OS << "Ref";
433    break;
434  case ModRefInfo::Mod:
435    OS << "Mod";
436    break;
437  case ModRefInfo::ModRef:
438    OS << "ModRef";
439    break;
440  }
441  return OS;
442}
443
444raw_ostream &llvm::operator<<(raw_ostream &OS, MemoryEffects ME) {
445  for (MemoryEffects::Location Loc : MemoryEffects::locations()) {
446    switch (Loc) {
447    case MemoryEffects::ArgMem:
448      OS << "ArgMem: ";
449      break;
450    case MemoryEffects::InaccessibleMem:
451      OS << "InaccessibleMem: ";
452      break;
453    case MemoryEffects::Other:
454      OS << "Other: ";
455      break;
456    }
457    OS << ME.getModRef(Loc) << ", ";
458  }
459  return OS;
460}
461
462//===----------------------------------------------------------------------===//
463// Helper method implementation
464//===----------------------------------------------------------------------===//
465
466ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
467                                    const MemoryLocation &Loc,
468                                    AAQueryInfo &AAQI) {
469  // Be conservative in the face of atomic.
470  if (isStrongerThan(L->getOrdering(), AtomicOrdering::Unordered))
471    return ModRefInfo::ModRef;
472
473  // If the load address doesn't alias the given address, it doesn't read
474  // or write the specified memory.
475  if (Loc.Ptr) {
476    AliasResult AR = alias(MemoryLocation::get(L), Loc, AAQI, L);
477    if (AR == AliasResult::NoAlias)
478      return ModRefInfo::NoModRef;
479  }
480  // Otherwise, a load just reads.
481  return ModRefInfo::Ref;
482}
483
484ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
485                                    const MemoryLocation &Loc,
486                                    AAQueryInfo &AAQI) {
487  // Be conservative in the face of atomic.
488  if (isStrongerThan(S->getOrdering(), AtomicOrdering::Unordered))
489    return ModRefInfo::ModRef;
490
491  if (Loc.Ptr) {
492    AliasResult AR = alias(MemoryLocation::get(S), Loc, AAQI, S);
493    // If the store address cannot alias the pointer in question, then the
494    // specified memory cannot be modified by the store.
495    if (AR == AliasResult::NoAlias)
496      return ModRefInfo::NoModRef;
497
498    // Examine the ModRef mask. If Mod isn't present, then return NoModRef.
499    // This ensures that if Loc is a constant memory location, we take into
500    // account the fact that the store definitely could not modify the memory
501    // location.
502    if (!isModSet(getModRefInfoMask(Loc)))
503      return ModRefInfo::NoModRef;
504  }
505
506  // Otherwise, a store just writes.
507  return ModRefInfo::Mod;
508}
509
510ModRefInfo AAResults::getModRefInfo(const FenceInst *S,
511                                    const MemoryLocation &Loc,
512                                    AAQueryInfo &AAQI) {
513  // All we know about a fence instruction is what we get from the ModRef
514  // mask: if Loc is a constant memory location, the fence definitely could
515  // not modify it.
516  if (Loc.Ptr)
517    return getModRefInfoMask(Loc);
518  return ModRefInfo::ModRef;
519}
520
521ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
522                                    const MemoryLocation &Loc,
523                                    AAQueryInfo &AAQI) {
524  if (Loc.Ptr) {
525    AliasResult AR = alias(MemoryLocation::get(V), Loc, AAQI, V);
526    // If the va_arg address cannot alias the pointer in question, then the
527    // specified memory cannot be accessed by the va_arg.
528    if (AR == AliasResult::NoAlias)
529      return ModRefInfo::NoModRef;
530
531    // If the pointer is a pointer to invariant memory, then it could not have
532    // been modified by this va_arg.
533    return getModRefInfoMask(Loc, AAQI);
534  }
535
536  // Otherwise, a va_arg reads and writes.
537  return ModRefInfo::ModRef;
538}
539
540ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad,
541                                    const MemoryLocation &Loc,
542                                    AAQueryInfo &AAQI) {
543  if (Loc.Ptr) {
544    // If the pointer is a pointer to invariant memory,
545    // then it could not have been modified by this catchpad.
546    return getModRefInfoMask(Loc, AAQI);
547  }
548
549  // Otherwise, a catchpad reads and writes.
550  return ModRefInfo::ModRef;
551}
552
553ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet,
554                                    const MemoryLocation &Loc,
555                                    AAQueryInfo &AAQI) {
556  if (Loc.Ptr) {
557    // If the pointer is a pointer to invariant memory,
558    // then it could not have been modified by this catchpad.
559    return getModRefInfoMask(Loc, AAQI);
560  }
561
562  // Otherwise, a catchret reads and writes.
563  return ModRefInfo::ModRef;
564}
565
566ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
567                                    const MemoryLocation &Loc,
568                                    AAQueryInfo &AAQI) {
569  // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
570  if (isStrongerThanMonotonic(CX->getSuccessOrdering()))
571    return ModRefInfo::ModRef;
572
573  if (Loc.Ptr) {
574    AliasResult AR = alias(MemoryLocation::get(CX), Loc, AAQI, CX);
575    // If the cmpxchg address does not alias the location, it does not access
576    // it.
577    if (AR == AliasResult::NoAlias)
578      return ModRefInfo::NoModRef;
579  }
580
581  return ModRefInfo::ModRef;
582}
583
584ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
585                                    const MemoryLocation &Loc,
586                                    AAQueryInfo &AAQI) {
587  // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
588  if (isStrongerThanMonotonic(RMW->getOrdering()))
589    return ModRefInfo::ModRef;
590
591  if (Loc.Ptr) {
592    AliasResult AR = alias(MemoryLocation::get(RMW), Loc, AAQI, RMW);
593    // If the atomicrmw address does not alias the location, it does not access
594    // it.
595    if (AR == AliasResult::NoAlias)
596      return ModRefInfo::NoModRef;
597  }
598
599  return ModRefInfo::ModRef;
600}
601
602ModRefInfo AAResults::getModRefInfo(const Instruction *I,
603                                    const std::optional<MemoryLocation> &OptLoc,
604                                    AAQueryInfo &AAQIP) {
605  if (OptLoc == std::nullopt) {
606    if (const auto *Call = dyn_cast<CallBase>(I))
607      return getMemoryEffects(Call, AAQIP).getModRef();
608  }
609
610  const MemoryLocation &Loc = OptLoc.value_or(MemoryLocation());
611
612  switch (I->getOpcode()) {
613  case Instruction::VAArg:
614    return getModRefInfo((const VAArgInst *)I, Loc, AAQIP);
615  case Instruction::Load:
616    return getModRefInfo((const LoadInst *)I, Loc, AAQIP);
617  case Instruction::Store:
618    return getModRefInfo((const StoreInst *)I, Loc, AAQIP);
619  case Instruction::Fence:
620    return getModRefInfo((const FenceInst *)I, Loc, AAQIP);
621  case Instruction::AtomicCmpXchg:
622    return getModRefInfo((const AtomicCmpXchgInst *)I, Loc, AAQIP);
623  case Instruction::AtomicRMW:
624    return getModRefInfo((const AtomicRMWInst *)I, Loc, AAQIP);
625  case Instruction::Call:
626  case Instruction::CallBr:
627  case Instruction::Invoke:
628    return getModRefInfo((const CallBase *)I, Loc, AAQIP);
629  case Instruction::CatchPad:
630    return getModRefInfo((const CatchPadInst *)I, Loc, AAQIP);
631  case Instruction::CatchRet:
632    return getModRefInfo((const CatchReturnInst *)I, Loc, AAQIP);
633  default:
634    assert(!I->mayReadOrWriteMemory() &&
635           "Unhandled memory access instruction!");
636    return ModRefInfo::NoModRef;
637  }
638}
639
640/// Return information about whether a particular call site modifies
641/// or reads the specified memory location \p MemLoc before instruction \p I
642/// in a BasicBlock.
643/// FIXME: this is really just shoring-up a deficiency in alias analysis.
644/// BasicAA isn't willing to spend linear time determining whether an alloca
645/// was captured before or after this particular call, while we are. However,
646/// with a smarter AA in place, this test is just wasting compile time.
647ModRefInfo AAResults::callCapturesBefore(const Instruction *I,
648                                         const MemoryLocation &MemLoc,
649                                         DominatorTree *DT,
650                                         AAQueryInfo &AAQI) {
651  if (!DT)
652    return ModRefInfo::ModRef;
653
654  const Value *Object = getUnderlyingObject(MemLoc.Ptr);
655  if (!isIdentifiedFunctionLocal(Object))
656    return ModRefInfo::ModRef;
657
658  const auto *Call = dyn_cast<CallBase>(I);
659  if (!Call || Call == Object)
660    return ModRefInfo::ModRef;
661
662  if (PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true,
663                                 /* StoreCaptures */ true, I, DT,
664                                 /* include Object */ true))
665    return ModRefInfo::ModRef;
666
667  unsigned ArgNo = 0;
668  ModRefInfo R = ModRefInfo::NoModRef;
669  // Set flag only if no May found and all operands processed.
670  for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
671       CI != CE; ++CI, ++ArgNo) {
672    // Only look at the no-capture or byval pointer arguments.  If this
673    // pointer were passed to arguments that were neither of these, then it
674    // couldn't be no-capture.
675    if (!(*CI)->getType()->isPointerTy() ||
676        (!Call->doesNotCapture(ArgNo) && ArgNo < Call->arg_size() &&
677         !Call->isByValArgument(ArgNo)))
678      continue;
679
680    AliasResult AR =
681        alias(MemoryLocation::getBeforeOrAfter(*CI),
682              MemoryLocation::getBeforeOrAfter(Object), AAQI, Call);
683    // If this is a no-capture pointer argument, see if we can tell that it
684    // is impossible to alias the pointer we're checking.  If not, we have to
685    // assume that the call could touch the pointer, even though it doesn't
686    // escape.
687    if (AR == AliasResult::NoAlias)
688      continue;
689    if (Call->doesNotAccessMemory(ArgNo))
690      continue;
691    if (Call->onlyReadsMemory(ArgNo)) {
692      R = ModRefInfo::Ref;
693      continue;
694    }
695    return ModRefInfo::ModRef;
696  }
697  return R;
698}
699
700/// canBasicBlockModify - Return true if it is possible for execution of the
701/// specified basic block to modify the location Loc.
702///
703bool AAResults::canBasicBlockModify(const BasicBlock &BB,
704                                    const MemoryLocation &Loc) {
705  return canInstructionRangeModRef(BB.front(), BB.back(), Loc, ModRefInfo::Mod);
706}
707
708/// canInstructionRangeModRef - Return true if it is possible for the
709/// execution of the specified instructions to mod\ref (according to the
710/// mode) the location Loc. The instructions to consider are all
711/// of the instructions in the range of [I1,I2] INCLUSIVE.
712/// I1 and I2 must be in the same basic block.
713bool AAResults::canInstructionRangeModRef(const Instruction &I1,
714                                          const Instruction &I2,
715                                          const MemoryLocation &Loc,
716                                          const ModRefInfo Mode) {
717  assert(I1.getParent() == I2.getParent() &&
718         "Instructions not in same basic block!");
719  BasicBlock::const_iterator I = I1.getIterator();
720  BasicBlock::const_iterator E = I2.getIterator();
721  ++E;  // Convert from inclusive to exclusive range.
722
723  for (; I != E; ++I) // Check every instruction in range
724    if (isModOrRefSet(getModRefInfo(&*I, Loc) & Mode))
725      return true;
726  return false;
727}
728
729// Provide a definition for the root virtual destructor.
730AAResults::Concept::~Concept() = default;
731
732// Provide a definition for the static object used to identify passes.
733AnalysisKey AAManager::Key;
734
735ExternalAAWrapperPass::ExternalAAWrapperPass() : ImmutablePass(ID) {
736  initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
737}
738
739ExternalAAWrapperPass::ExternalAAWrapperPass(CallbackT CB)
740    : ImmutablePass(ID), CB(std::move(CB)) {
741  initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
742}
743
744char ExternalAAWrapperPass::ID = 0;
745
746INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis",
747                false, true)
748
749ImmutablePass *
750llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) {
751  return new ExternalAAWrapperPass(std::move(Callback));
752}
753
754AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) {
755  initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
756}
757
758char AAResultsWrapperPass::ID = 0;
759
760INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa",
761                      "Function Alias Analysis Results", false, true)
762INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
763INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass)
764INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
765INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
766INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass)
767INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass)
768INITIALIZE_PASS_END(AAResultsWrapperPass, "aa",
769                    "Function Alias Analysis Results", false, true)
770
771FunctionPass *llvm::createAAResultsWrapperPass() {
772  return new AAResultsWrapperPass();
773}
774
775/// Run the wrapper pass to rebuild an aggregation over known AA passes.
776///
777/// This is the legacy pass manager's interface to the new-style AA results
778/// aggregation object. Because this is somewhat shoe-horned into the legacy
779/// pass manager, we hard code all the specific alias analyses available into
780/// it. While the particular set enabled is configured via commandline flags,
781/// adding a new alias analysis to LLVM will require adding support for it to
782/// this list.
783bool AAResultsWrapperPass::runOnFunction(Function &F) {
784  // NB! This *must* be reset before adding new AA results to the new
785  // AAResults object because in the legacy pass manager, each instance
786  // of these will refer to the *same* immutable analyses, registering and
787  // unregistering themselves with them. We need to carefully tear down the
788  // previous object first, in this case replacing it with an empty one, before
789  // registering new results.
790  AAR.reset(
791      new AAResults(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F)));
792
793  // BasicAA is always available for function analyses. Also, we add it first
794  // so that it can trump TBAA results when it proves MustAlias.
795  // FIXME: TBAA should have an explicit mode to support this and then we
796  // should reconsider the ordering here.
797  if (!DisableBasicAA)
798    AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult());
799
800  // Populate the results with the currently available AAs.
801  if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
802    AAR->addAAResult(WrapperPass->getResult());
803  if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
804    AAR->addAAResult(WrapperPass->getResult());
805  if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>())
806    AAR->addAAResult(WrapperPass->getResult());
807  if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>())
808    AAR->addAAResult(WrapperPass->getResult());
809
810  // If available, run an external AA providing callback over the results as
811  // well.
812  if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>())
813    if (WrapperPass->CB)
814      WrapperPass->CB(*this, F, *AAR);
815
816  // Analyses don't mutate the IR, so return false.
817  return false;
818}
819
820void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
821  AU.setPreservesAll();
822  AU.addRequiredTransitive<BasicAAWrapperPass>();
823  AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
824
825  // We also need to mark all the alias analysis passes we will potentially
826  // probe in runOnFunction as used here to ensure the legacy pass manager
827  // preserves them. This hard coding of lists of alias analyses is specific to
828  // the legacy pass manager.
829  AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
830  AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
831  AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
832  AU.addUsedIfAvailable<SCEVAAWrapperPass>();
833  AU.addUsedIfAvailable<ExternalAAWrapperPass>();
834}
835
836AAManager::Result AAManager::run(Function &F, FunctionAnalysisManager &AM) {
837  Result R(AM.getResult<TargetLibraryAnalysis>(F));
838  for (auto &Getter : ResultGetters)
839    (*Getter)(F, AM, R);
840  return R;
841}
842
843AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F,
844                                        BasicAAResult &BAR) {
845  AAResults AAR(P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F));
846
847  // Add in our explicitly constructed BasicAA results.
848  if (!DisableBasicAA)
849    AAR.addAAResult(BAR);
850
851  // Populate the results with the other currently available AAs.
852  if (auto *WrapperPass =
853          P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
854    AAR.addAAResult(WrapperPass->getResult());
855  if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
856    AAR.addAAResult(WrapperPass->getResult());
857  if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>())
858    AAR.addAAResult(WrapperPass->getResult());
859  if (auto *WrapperPass = P.getAnalysisIfAvailable<ExternalAAWrapperPass>())
860    if (WrapperPass->CB)
861      WrapperPass->CB(P, F, AAR);
862
863  return AAR;
864}
865
866bool llvm::isNoAliasCall(const Value *V) {
867  if (const auto *Call = dyn_cast<CallBase>(V))
868    return Call->hasRetAttr(Attribute::NoAlias);
869  return false;
870}
871
872static bool isNoAliasOrByValArgument(const Value *V) {
873  if (const Argument *A = dyn_cast<Argument>(V))
874    return A->hasNoAliasAttr() || A->hasByValAttr();
875  return false;
876}
877
878bool llvm::isIdentifiedObject(const Value *V) {
879  if (isa<AllocaInst>(V))
880    return true;
881  if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
882    return true;
883  if (isNoAliasCall(V))
884    return true;
885  if (isNoAliasOrByValArgument(V))
886    return true;
887  return false;
888}
889
890bool llvm::isIdentifiedFunctionLocal(const Value *V) {
891  return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasOrByValArgument(V);
892}
893
894bool llvm::isEscapeSource(const Value *V) {
895  if (auto *CB = dyn_cast<CallBase>(V))
896    return !isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(CB,
897                                                                        true);
898
899  // The load case works because isNonEscapingLocalObject considers all
900  // stores to be escapes (it passes true for the StoreCaptures argument
901  // to PointerMayBeCaptured).
902  if (isa<LoadInst>(V))
903    return true;
904
905  // The inttoptr case works because isNonEscapingLocalObject considers all
906  // means of converting or equating a pointer to an int (ptrtoint, ptr store
907  // which could be followed by an integer load, ptr<->int compare) as
908  // escaping, and objects located at well-known addresses via platform-specific
909  // means cannot be considered non-escaping local objects.
910  if (isa<IntToPtrInst>(V))
911    return true;
912
913  return false;
914}
915
916bool llvm::isNotVisibleOnUnwind(const Value *Object,
917                                bool &RequiresNoCaptureBeforeUnwind) {
918  RequiresNoCaptureBeforeUnwind = false;
919
920  // Alloca goes out of scope on unwind.
921  if (isa<AllocaInst>(Object))
922    return true;
923
924  // Byval goes out of scope on unwind.
925  if (auto *A = dyn_cast<Argument>(Object))
926    return A->hasByValAttr();
927
928  // A noalias return is not accessible from any other code. If the pointer
929  // does not escape prior to the unwind, then the caller cannot access the
930  // memory either.
931  if (isNoAliasCall(Object)) {
932    RequiresNoCaptureBeforeUnwind = true;
933    return true;
934  }
935
936  return false;
937}
938
939void llvm::getAAResultsAnalysisUsage(AnalysisUsage &AU) {
940  // This function needs to be in sync with llvm::createLegacyPMAAResults -- if
941  // more alias analyses are added to llvm::createLegacyPMAAResults, they need
942  // to be added here also.
943  AU.addRequired<TargetLibraryInfoWrapperPass>();
944  AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
945  AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
946  AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
947  AU.addUsedIfAvailable<ExternalAAWrapperPass>();
948}
949