1//===- Symbols.h ------------------------------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines various types of Symbols.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLD_ELF_SYMBOLS_H
14#define LLD_ELF_SYMBOLS_H
15
16#include "Config.h"
17#include "lld/Common/LLVM.h"
18#include "lld/Common/Memory.h"
19#include "llvm/ADT/DenseMap.h"
20#include "llvm/Object/ELF.h"
21#include "llvm/Support/Compiler.h"
22#include <tuple>
23
24namespace lld {
25namespace elf {
26class Symbol;
27}
28// Returns a string representation for a symbol for diagnostics.
29std::string toString(const elf::Symbol &);
30
31namespace elf {
32class CommonSymbol;
33class Defined;
34class OutputSection;
35class SectionBase;
36class InputSectionBase;
37class SharedSymbol;
38class Symbol;
39class Undefined;
40class LazyObject;
41class InputFile;
42
43void printTraceSymbol(const Symbol &sym, StringRef name);
44
45enum {
46  NEEDS_GOT = 1 << 0,
47  NEEDS_PLT = 1 << 1,
48  HAS_DIRECT_RELOC = 1 << 2,
49  // True if this symbol needs a canonical PLT entry, or (during
50  // postScanRelocations) a copy relocation.
51  NEEDS_COPY = 1 << 3,
52  NEEDS_TLSDESC = 1 << 4,
53  NEEDS_TLSGD = 1 << 5,
54  NEEDS_TLSGD_TO_IE = 1 << 6,
55  NEEDS_GOT_DTPREL = 1 << 7,
56  NEEDS_TLSIE = 1 << 8,
57};
58
59// Some index properties of a symbol are stored separately in this auxiliary
60// struct to decrease sizeof(SymbolUnion) in the majority of cases.
61struct SymbolAux {
62  uint32_t gotIdx = -1;
63  uint32_t pltIdx = -1;
64  uint32_t tlsDescIdx = -1;
65  uint32_t tlsGdIdx = -1;
66};
67
68LLVM_LIBRARY_VISIBILITY extern SmallVector<SymbolAux, 0> symAux;
69
70// The base class for real symbol classes.
71class Symbol {
72public:
73  enum Kind {
74    PlaceholderKind,
75    DefinedKind,
76    CommonKind,
77    SharedKind,
78    UndefinedKind,
79    LazyObjectKind,
80  };
81
82  Kind kind() const { return static_cast<Kind>(symbolKind); }
83
84  // The file from which this symbol was created.
85  InputFile *file;
86
87  // The default copy constructor is deleted due to atomic flags. Define one for
88  // places where no atomic is needed.
89  Symbol(const Symbol &o) { memcpy(this, &o, sizeof(o)); }
90
91protected:
92  const char *nameData;
93  // 32-bit size saves space.
94  uint32_t nameSize;
95
96public:
97  // The next three fields have the same meaning as the ELF symbol attributes.
98  // type and binding are placed in this order to optimize generating st_info,
99  // which is defined as (binding << 4) + (type & 0xf), on a little-endian
100  // system.
101  uint8_t type : 4; // symbol type
102
103  // Symbol binding. This is not overwritten by replace() to track
104  // changes during resolution. In particular:
105  //  - An undefined weak is still weak when it resolves to a shared library.
106  //  - An undefined weak will not extract archive members, but we have to
107  //    remember it is weak.
108  uint8_t binding : 4;
109
110  uint8_t stOther; // st_other field value
111
112  uint8_t symbolKind;
113
114  // The partition whose dynamic symbol table contains this symbol's definition.
115  uint8_t partition;
116
117  // True if this symbol is preemptible at load time.
118  uint8_t isPreemptible : 1;
119
120  // True if the symbol was used for linking and thus need to be added to the
121  // output file's symbol table. This is true for all symbols except for
122  // unreferenced DSO symbols, lazy (archive) symbols, and bitcode symbols that
123  // are unreferenced except by other bitcode objects.
124  uint8_t isUsedInRegularObj : 1;
125
126  // True if an undefined or shared symbol is used from a live section.
127  //
128  // NOTE: In Writer.cpp the field is used to mark local defined symbols
129  // which are referenced by relocations when -r or --emit-relocs is given.
130  uint8_t used : 1;
131
132  // Used by a Defined symbol with protected or default visibility, to record
133  // whether it is required to be exported into .dynsym. This is set when any of
134  // the following conditions hold:
135  //
136  // - If there is an interposable symbol from a DSO. Note: We also do this for
137  //   STV_PROTECTED symbols which can't be interposed (to match BFD behavior).
138  // - If -shared or --export-dynamic is specified, any symbol in an object
139  //   file/bitcode sets this property, unless suppressed by LTO
140  //   canBeOmittedFromSymbolTable().
141  uint8_t exportDynamic : 1;
142
143  // True if the symbol is in the --dynamic-list file. A Defined symbol with
144  // protected or default visibility with this property is required to be
145  // exported into .dynsym.
146  uint8_t inDynamicList : 1;
147
148  // Used to track if there has been at least one undefined reference to the
149  // symbol. For Undefined and SharedSymbol, the binding may change to STB_WEAK
150  // if the first undefined reference from a non-shared object is weak.
151  uint8_t referenced : 1;
152
153  // Used to track if this symbol will be referenced after wrapping is performed
154  // (i.e. this will be true for foo if __real_foo is referenced, and will be
155  // true for __wrap_foo if foo is referenced).
156  uint8_t referencedAfterWrap : 1;
157
158  // True if this symbol is specified by --trace-symbol option.
159  uint8_t traced : 1;
160
161  // True if the name contains '@'.
162  uint8_t hasVersionSuffix : 1;
163
164  // True if the .gnu.warning.SYMBOL is set for the symbol
165  uint8_t gwarn : 1;
166
167  // Symbol visibility. This is the computed minimum visibility of all
168  // observed non-DSO symbols.
169  uint8_t visibility() const { return stOther & 3; }
170  void setVisibility(uint8_t visibility) {
171    stOther = (stOther & ~3) | visibility;
172  }
173
174  bool includeInDynsym() const;
175  uint8_t computeBinding() const;
176  bool isGlobal() const { return binding == llvm::ELF::STB_GLOBAL; }
177  bool isWeak() const { return binding == llvm::ELF::STB_WEAK; }
178
179  bool isUndefined() const { return symbolKind == UndefinedKind; }
180  bool isCommon() const { return symbolKind == CommonKind; }
181  bool isDefined() const { return symbolKind == DefinedKind; }
182  bool isShared() const { return symbolKind == SharedKind; }
183  bool isPlaceholder() const { return symbolKind == PlaceholderKind; }
184
185  bool isLocal() const { return binding == llvm::ELF::STB_LOCAL; }
186
187  bool isLazy() const { return symbolKind == LazyObjectKind; }
188
189  // True if this is an undefined weak symbol. This only works once
190  // all input files have been added.
191  bool isUndefWeak() const { return isWeak() && isUndefined(); }
192
193  StringRef getName() const { return {nameData, nameSize}; }
194
195  void setName(StringRef s) {
196    nameData = s.data();
197    nameSize = s.size();
198  }
199
200  void parseSymbolVersion();
201
202  // Get the NUL-terminated version suffix ("", "@...", or "@@...").
203  //
204  // For @@, the name has been truncated by insert(). For @, the name has been
205  // truncated by Symbol::parseSymbolVersion().
206  const char *getVersionSuffix() const { return nameData + nameSize; }
207
208  uint32_t getGotIdx() const { return symAux[auxIdx].gotIdx; }
209  uint32_t getPltIdx() const { return symAux[auxIdx].pltIdx; }
210  uint32_t getTlsDescIdx() const { return symAux[auxIdx].tlsDescIdx; }
211  uint32_t getTlsGdIdx() const { return symAux[auxIdx].tlsGdIdx; }
212
213  bool isInGot() const { return getGotIdx() != uint32_t(-1); }
214  bool isInPlt() const { return getPltIdx() != uint32_t(-1); }
215
216  uint64_t getVA(int64_t addend = 0) const;
217
218  uint64_t getGotOffset() const;
219  uint64_t getGotVA() const;
220  uint64_t getGotPltOffset() const;
221  uint64_t getGotPltVA() const;
222  uint64_t getPltVA() const;
223  uint64_t getSize() const;
224  OutputSection *getOutputSection() const;
225
226  // The following two functions are used for symbol resolution.
227  //
228  // You are expected to call mergeProperties for all symbols in input
229  // files so that attributes that are attached to names rather than
230  // indivisual symbol (such as visibility) are merged together.
231  //
232  // Every time you read a new symbol from an input, you are supposed
233  // to call resolve() with the new symbol. That function replaces
234  // "this" object as a result of name resolution if the new symbol is
235  // more appropriate to be included in the output.
236  //
237  // For example, if "this" is an undefined symbol and a new symbol is
238  // a defined symbol, "this" is replaced with the new symbol.
239  void mergeProperties(const Symbol &other);
240  void resolve(const Undefined &other);
241  void resolve(const CommonSymbol &other);
242  void resolve(const Defined &other);
243  void resolve(const LazyObject &other);
244  void resolve(const SharedSymbol &other);
245
246  // If this is a lazy symbol, extract an input file and add the symbol
247  // in the file to the symbol table. Calling this function on
248  // non-lazy object causes a runtime error.
249  void extract() const;
250
251  void checkDuplicate(const Defined &other) const;
252
253private:
254  bool shouldReplace(const Defined &other) const;
255
256protected:
257  Symbol(Kind k, InputFile *file, StringRef name, uint8_t binding,
258         uint8_t stOther, uint8_t type)
259      : file(file), nameData(name.data()), nameSize(name.size()), type(type),
260        binding(binding), stOther(stOther), symbolKind(k),
261        exportDynamic(false), gwarn(false) {}
262
263  void overwrite(Symbol &sym, Kind k) const {
264    if (sym.traced)
265      printTraceSymbol(*this, sym.getName());
266    sym.file = file;
267    sym.type = type;
268    sym.binding = binding;
269    sym.stOther = (stOther & ~3) | sym.visibility();
270    sym.symbolKind = k;
271  }
272
273public:
274  // True if this symbol is in the Iplt sub-section of the Plt and the Igot
275  // sub-section of the .got.plt or .got.
276  uint8_t isInIplt : 1;
277
278  // True if this symbol needs a GOT entry and its GOT entry is actually in
279  // Igot. This will be true only for certain non-preemptible ifuncs.
280  uint8_t gotInIgot : 1;
281
282  // True if defined relative to a section discarded by ICF.
283  uint8_t folded : 1;
284
285  // True if a call to this symbol needs to be followed by a restore of the
286  // PPC64 toc pointer.
287  uint8_t needsTocRestore : 1;
288
289  // True if this symbol is defined by a symbol assignment or wrapped by --wrap.
290  //
291  // LTO shouldn't inline the symbol because it doesn't know the final content
292  // of the symbol.
293  uint8_t scriptDefined : 1;
294
295  // True if defined in a DSO as protected visibility.
296  uint8_t dsoProtected : 1;
297
298  // True if targeted by a range extension thunk.
299  uint8_t thunkAccessed : 1;
300
301  // Temporary flags used to communicate which symbol entries need PLT and GOT
302  // entries during postScanRelocations();
303  std::atomic<uint16_t> flags;
304
305  // A symAux index used to access GOT/PLT entry indexes. This is allocated in
306  // postScanRelocations().
307  uint32_t auxIdx;
308  uint32_t dynsymIndex;
309
310  // This field is a index to the symbol's version definition.
311  uint16_t verdefIndex;
312
313  // Version definition index.
314  uint16_t versionId;
315
316  void setFlags(uint16_t bits) {
317    flags.fetch_or(bits, std::memory_order_relaxed);
318  }
319  bool hasFlag(uint16_t bit) const {
320    assert(bit && (bit & (bit - 1)) == 0 && "bit must be a power of 2");
321    return flags.load(std::memory_order_relaxed) & bit;
322  }
323
324  bool needsDynReloc() const {
325    return flags.load(std::memory_order_relaxed) &
326           (NEEDS_COPY | NEEDS_GOT | NEEDS_PLT | NEEDS_TLSDESC | NEEDS_TLSGD |
327            NEEDS_TLSGD_TO_IE | NEEDS_GOT_DTPREL | NEEDS_TLSIE);
328  }
329  void allocateAux() {
330    assert(auxIdx == 0);
331    auxIdx = symAux.size();
332    symAux.emplace_back();
333  }
334
335  bool isSection() const { return type == llvm::ELF::STT_SECTION; }
336  bool isTls() const { return type == llvm::ELF::STT_TLS; }
337  bool isFunc() const { return type == llvm::ELF::STT_FUNC; }
338  bool isGnuIFunc() const { return type == llvm::ELF::STT_GNU_IFUNC; }
339  bool isObject() const { return type == llvm::ELF::STT_OBJECT; }
340  bool isFile() const { return type == llvm::ELF::STT_FILE; }
341};
342
343// Represents a symbol that is defined in the current output file.
344class Defined : public Symbol {
345public:
346  Defined(InputFile *file, StringRef name, uint8_t binding, uint8_t stOther,
347          uint8_t type, uint64_t value, uint64_t size, SectionBase *section)
348      : Symbol(DefinedKind, file, name, binding, stOther, type), value(value),
349        size(size), section(section) {
350    exportDynamic = config->exportDynamic;
351  }
352  void overwrite(Symbol &sym) const {
353    Symbol::overwrite(sym, DefinedKind);
354    sym.verdefIndex = -1;
355    auto &s = static_cast<Defined &>(sym);
356    s.value = value;
357    s.size = size;
358    s.section = section;
359  }
360
361  static bool classof(const Symbol *s) { return s->isDefined(); }
362
363  uint64_t value;
364  uint64_t size;
365  SectionBase *section;
366};
367
368// Represents a common symbol.
369//
370// On Unix, it is traditionally allowed to write variable definitions
371// without initialization expressions (such as "int foo;") to header
372// files. Such definition is called "tentative definition".
373//
374// Using tentative definition is usually considered a bad practice
375// because you should write only declarations (such as "extern int
376// foo;") to header files. Nevertheless, the linker and the compiler
377// have to do something to support bad code by allowing duplicate
378// definitions for this particular case.
379//
380// Common symbols represent variable definitions without initializations.
381// The compiler creates common symbols when it sees variable definitions
382// without initialization (you can suppress this behavior and let the
383// compiler create a regular defined symbol by -fno-common).
384//
385// The linker allows common symbols to be replaced by regular defined
386// symbols. If there are remaining common symbols after name resolution is
387// complete, they are converted to regular defined symbols in a .bss
388// section. (Therefore, the later passes don't see any CommonSymbols.)
389class CommonSymbol : public Symbol {
390public:
391  CommonSymbol(InputFile *file, StringRef name, uint8_t binding,
392               uint8_t stOther, uint8_t type, uint64_t alignment, uint64_t size)
393      : Symbol(CommonKind, file, name, binding, stOther, type),
394        alignment(alignment), size(size) {
395    exportDynamic = config->exportDynamic;
396  }
397  void overwrite(Symbol &sym) const {
398    Symbol::overwrite(sym, CommonKind);
399    auto &s = static_cast<CommonSymbol &>(sym);
400    s.alignment = alignment;
401    s.size = size;
402  }
403
404  static bool classof(const Symbol *s) { return s->isCommon(); }
405
406  uint32_t alignment;
407  uint64_t size;
408};
409
410class Undefined : public Symbol {
411public:
412  Undefined(InputFile *file, StringRef name, uint8_t binding, uint8_t stOther,
413            uint8_t type, uint32_t discardedSecIdx = 0)
414      : Symbol(UndefinedKind, file, name, binding, stOther, type),
415        discardedSecIdx(discardedSecIdx) {}
416  void overwrite(Symbol &sym) const {
417    Symbol::overwrite(sym, UndefinedKind);
418    auto &s = static_cast<Undefined &>(sym);
419    s.discardedSecIdx = discardedSecIdx;
420    s.nonPrevailing = nonPrevailing;
421  }
422
423  static bool classof(const Symbol *s) { return s->kind() == UndefinedKind; }
424
425  // The section index if in a discarded section, 0 otherwise.
426  uint32_t discardedSecIdx;
427  bool nonPrevailing = false;
428};
429
430class SharedSymbol : public Symbol {
431public:
432  static bool classof(const Symbol *s) { return s->kind() == SharedKind; }
433
434  SharedSymbol(InputFile &file, StringRef name, uint8_t binding,
435               uint8_t stOther, uint8_t type, uint64_t value, uint64_t size,
436               uint32_t alignment)
437      : Symbol(SharedKind, &file, name, binding, stOther, type), value(value),
438        size(size), alignment(alignment) {
439    exportDynamic = true;
440    dsoProtected = visibility() == llvm::ELF::STV_PROTECTED;
441    // GNU ifunc is a mechanism to allow user-supplied functions to
442    // resolve PLT slot values at load-time. This is contrary to the
443    // regular symbol resolution scheme in which symbols are resolved just
444    // by name. Using this hook, you can program how symbols are solved
445    // for you program. For example, you can make "memcpy" to be resolved
446    // to a SSE-enabled version of memcpy only when a machine running the
447    // program supports the SSE instruction set.
448    //
449    // Naturally, such symbols should always be called through their PLT
450    // slots. What GNU ifunc symbols point to are resolver functions, and
451    // calling them directly doesn't make sense (unless you are writing a
452    // loader).
453    //
454    // For DSO symbols, we always call them through PLT slots anyway.
455    // So there's no difference between GNU ifunc and regular function
456    // symbols if they are in DSOs. So we can handle GNU_IFUNC as FUNC.
457    if (this->type == llvm::ELF::STT_GNU_IFUNC)
458      this->type = llvm::ELF::STT_FUNC;
459  }
460  void overwrite(Symbol &sym) const {
461    Symbol::overwrite(sym, SharedKind);
462    auto &s = static_cast<SharedSymbol &>(sym);
463    s.dsoProtected = dsoProtected;
464    s.value = value;
465    s.size = size;
466    s.alignment = alignment;
467  }
468
469  uint64_t value; // st_value
470  uint64_t size;  // st_size
471  uint32_t alignment;
472};
473
474// LazyObject symbols represent symbols in object files between --start-lib and
475// --end-lib options. LLD also handles traditional archives as if all the files
476// in the archive are surrounded by --start-lib and --end-lib.
477//
478// A special complication is the handling of weak undefined symbols. They should
479// not load a file, but we have to remember we have seen both the weak undefined
480// and the lazy. We represent that with a lazy symbol with a weak binding. This
481// means that code looking for undefined symbols normally also has to take lazy
482// symbols into consideration.
483class LazyObject : public Symbol {
484public:
485  LazyObject(InputFile &file)
486      : Symbol(LazyObjectKind, &file, {}, llvm::ELF::STB_GLOBAL,
487               llvm::ELF::STV_DEFAULT, llvm::ELF::STT_NOTYPE) {}
488  void overwrite(Symbol &sym) const { Symbol::overwrite(sym, LazyObjectKind); }
489
490  static bool classof(const Symbol *s) { return s->kind() == LazyObjectKind; }
491};
492
493// Some linker-generated symbols need to be created as
494// Defined symbols.
495struct ElfSym {
496  // __bss_start
497  static Defined *bss;
498
499  // __data_start
500  static Defined *data;
501
502  // etext and _etext
503  static Defined *etext1;
504  static Defined *etext2;
505
506  // edata and _edata
507  static Defined *edata1;
508  static Defined *edata2;
509
510  // end and _end
511  static Defined *end1;
512  static Defined *end2;
513
514  // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention to
515  // be at some offset from the base of the .got section, usually 0 or
516  // the end of the .got.
517  static Defined *globalOffsetTable;
518
519  // _gp, _gp_disp and __gnu_local_gp symbols. Only for MIPS.
520  static Defined *mipsGp;
521  static Defined *mipsGpDisp;
522  static Defined *mipsLocalGp;
523
524  // __rel{,a}_iplt_{start,end} symbols.
525  static Defined *relaIpltStart;
526  static Defined *relaIpltEnd;
527
528  // _TLS_MODULE_BASE_ on targets that support TLSDESC.
529  static Defined *tlsModuleBase;
530};
531
532// A buffer class that is large enough to hold any Symbol-derived
533// object. We allocate memory using this class and instantiate a symbol
534// using the placement new.
535
536// It is important to keep the size of SymbolUnion small for performance and
537// memory usage reasons. 64 bytes is a soft limit based on the size of Defined
538// on a 64-bit system. This is enforced by a static_assert in Symbols.cpp.
539union SymbolUnion {
540  alignas(Defined) char a[sizeof(Defined)];
541  alignas(CommonSymbol) char b[sizeof(CommonSymbol)];
542  alignas(Undefined) char c[sizeof(Undefined)];
543  alignas(SharedSymbol) char d[sizeof(SharedSymbol)];
544  alignas(LazyObject) char e[sizeof(LazyObject)];
545};
546
547template <typename... T> Defined *makeDefined(T &&...args) {
548  auto *sym = getSpecificAllocSingleton<SymbolUnion>().Allocate();
549  memset(sym, 0, sizeof(Symbol));
550  auto &s = *new (reinterpret_cast<Defined *>(sym)) Defined(std::forward<T>(args)...);
551  return &s;
552}
553
554void reportDuplicate(const Symbol &sym, const InputFile *newFile,
555                     InputSectionBase *errSec, uint64_t errOffset);
556void maybeWarnUnorderableSymbol(const Symbol *sym);
557bool computeIsPreemptible(const Symbol &sym);
558
559extern llvm::DenseMap<StringRef, StringRef> gnuWarnings;
560
561} // namespace elf
562} // namespace lld
563
564#endif
565