1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994, 1995 Waldorf GmbH
7 * Copyright (C) 1994 - 2000, 06 Ralf Baechle
8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9 * Copyright (C) 2004, 2005  MIPS Technologies, Inc.  All rights reserved.
10 *	Author:	Maciej W. Rozycki <macro@mips.com>
11 */
12#ifndef _ASM_IO_H
13#define _ASM_IO_H
14
15#include <linux/compiler.h>
16#include <linux/kernel.h>
17#include <linux/types.h>
18
19#include <asm/addrspace.h>
20#include <asm/byteorder.h>
21#include <asm/cpu.h>
22#include <asm/cpu-features.h>
23#include <asm-generic/iomap.h>
24#include <asm/page.h>
25#include <asm/pgtable-bits.h>
26#include <asm/processor.h>
27#include <asm/string.h>
28
29#include <ioremap.h>
30#include <mangle-port.h>
31
32/*
33 * Slowdown I/O port space accesses for antique hardware.
34 */
35#undef CONF_SLOWDOWN_IO
36
37/*
38 * Raw operations are never swapped in software.  OTOH values that raw
39 * operations are working on may or may not have been swapped by the bus
40 * hardware.  An example use would be for flash memory that's used for
41 * execute in place.
42 */
43# define __raw_ioswabb(a,x)	(x)
44# define __raw_ioswabw(a,x)	(x)
45# define __raw_ioswabl(a,x)	(x)
46# define __raw_ioswabq(a,x)	(x)
47# define ____raw_ioswabq(a,x)	(x)
48
49/* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */
50
51#define IO_SPACE_LIMIT 0xffff
52
53/*
54 * On MIPS I/O ports are memory mapped, so we access them using normal
55 * load/store instructions. mips_io_port_base is the virtual address to
56 * which all ports are being mapped.  For sake of efficiency some code
57 * assumes that this is an address that can be loaded with a single lui
58 * instruction, so the lower 16 bits must be zero.  Should be true on
59 * on any sane architecture; generic code does not use this assumption.
60 */
61extern const unsigned long mips_io_port_base;
62
63/*
64 * Gcc will generate code to load the value of mips_io_port_base after each
65 * function call which may be fairly wasteful in some cases.  So we don't
66 * play quite by the book.  We tell gcc mips_io_port_base is a long variable
67 * which solves the code generation issue.  Now we need to violate the
68 * aliasing rules a little to make initialization possible and finally we
69 * will need the barrier() to fight side effects of the aliasing chat.
70 * This trickery will eventually collapse under gcc's optimizer.  Oh well.
71 */
72static inline void set_io_port_base(unsigned long base)
73{
74	* (unsigned long *) &mips_io_port_base = base;
75	barrier();
76}
77
78/*
79 * Thanks to James van Artsdalen for a better timing-fix than
80 * the two short jumps: using outb's to a nonexistent port seems
81 * to guarantee better timings even on fast machines.
82 *
83 * On the other hand, I'd like to be sure of a non-existent port:
84 * I feel a bit unsafe about using 0x80 (should be safe, though)
85 *
86 *		Linus
87 *
88 */
89
90#define __SLOW_DOWN_IO \
91	__asm__ __volatile__( \
92		"sb\t$0,0x80(%0)" \
93		: : "r" (mips_io_port_base));
94
95#ifdef CONF_SLOWDOWN_IO
96#ifdef REALLY_SLOW_IO
97#define SLOW_DOWN_IO { __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; }
98#else
99#define SLOW_DOWN_IO __SLOW_DOWN_IO
100#endif
101#else
102#define SLOW_DOWN_IO
103#endif
104
105/*
106 *     virt_to_phys    -       map virtual addresses to physical
107 *     @address: address to remap
108 *
109 *     The returned physical address is the physical (CPU) mapping for
110 *     the memory address given. It is only valid to use this function on
111 *     addresses directly mapped or allocated via kmalloc.
112 *
113 *     This function does not give bus mappings for DMA transfers. In
114 *     almost all conceivable cases a device driver should not be using
115 *     this function
116 */
117static inline unsigned long virt_to_phys(volatile const void *address)
118{
119	return (unsigned long)address - PAGE_OFFSET + PHYS_OFFSET;
120}
121
122/*
123 *     phys_to_virt    -       map physical address to virtual
124 *     @address: address to remap
125 *
126 *     The returned virtual address is a current CPU mapping for
127 *     the memory address given. It is only valid to use this function on
128 *     addresses that have a kernel mapping
129 *
130 *     This function does not handle bus mappings for DMA transfers. In
131 *     almost all conceivable cases a device driver should not be using
132 *     this function
133 */
134static inline void * phys_to_virt(unsigned long address)
135{
136	return (void *)(address + PAGE_OFFSET - PHYS_OFFSET);
137}
138
139/*
140 * ISA I/O bus memory addresses are 1:1 with the physical address.
141 */
142static inline unsigned long isa_virt_to_bus(volatile void * address)
143{
144	return (unsigned long)address - PAGE_OFFSET;
145}
146
147static inline void * isa_bus_to_virt(unsigned long address)
148{
149	return (void *)(address + PAGE_OFFSET);
150}
151
152#define isa_page_to_bus page_to_phys
153
154/*
155 * However PCI ones are not necessarily 1:1 and therefore these interfaces
156 * are forbidden in portable PCI drivers.
157 *
158 * Allow them for x86 for legacy drivers, though.
159 */
160#define virt_to_bus virt_to_phys
161#define bus_to_virt phys_to_virt
162
163/*
164 * isa_slot_offset is the address where E(ISA) busaddress 0 is mapped
165 * for the processor.  This implies the assumption that there is only
166 * one of these busses.
167 */
168extern unsigned long isa_slot_offset;
169
170/*
171 * Change "struct page" to physical address.
172 */
173#define page_to_phys(page)	((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
174
175extern void __iomem * __ioremap(phys_t offset, phys_t size, unsigned long flags);
176extern void __iounmap(const volatile void __iomem *addr);
177
178static inline void __iomem * __ioremap_mode(phys_t offset, unsigned long size,
179	unsigned long flags)
180{
181#define __IS_LOW512(addr) (!((phys_t)(addr) & (phys_t) ~0x1fffffffULL))
182
183	if (cpu_has_64bit_addresses) {
184		u64 base = UNCAC_BASE;
185
186		/*
187		 * R10000 supports a 2 bit uncached attribute therefore
188		 * UNCAC_BASE may not equal IO_BASE.
189		 */
190		if (flags == _CACHE_UNCACHED)
191			base = (u64) IO_BASE;
192		return (void __iomem *) (unsigned long) (base + offset);
193	} else if (__builtin_constant_p(offset) &&
194		   __builtin_constant_p(size) && __builtin_constant_p(flags)) {
195		phys_t phys_addr, last_addr;
196
197		phys_addr = fixup_bigphys_addr(offset, size);
198
199		/* Don't allow wraparound or zero size. */
200		last_addr = phys_addr + size - 1;
201		if (!size || last_addr < phys_addr)
202			return NULL;
203
204		/*
205		 * Map uncached objects in the low 512MB of address
206		 * space using KSEG1.
207		 */
208		if (__IS_LOW512(phys_addr) && __IS_LOW512(last_addr) &&
209		    flags == _CACHE_UNCACHED)
210			return (void __iomem *)CKSEG1ADDR(phys_addr);
211	}
212
213	return __ioremap(offset, size, flags);
214
215#undef __IS_LOW512
216}
217
218/*
219 * ioremap     -   map bus memory into CPU space
220 * @offset:    bus address of the memory
221 * @size:      size of the resource to map
222 *
223 * ioremap performs a platform specific sequence of operations to
224 * make bus memory CPU accessible via the readb/readw/readl/writeb/
225 * writew/writel functions and the other mmio helpers. The returned
226 * address is not guaranteed to be usable directly as a virtual
227 * address.
228 */
229#define ioremap(offset, size)						\
230	__ioremap_mode((offset), (size), _CACHE_UNCACHED)
231
232/*
233 * ioremap_nocache     -   map bus memory into CPU space
234 * @offset:    bus address of the memory
235 * @size:      size of the resource to map
236 *
237 * ioremap_nocache performs a platform specific sequence of operations to
238 * make bus memory CPU accessible via the readb/readw/readl/writeb/
239 * writew/writel functions and the other mmio helpers. The returned
240 * address is not guaranteed to be usable directly as a virtual
241 * address.
242 *
243 * This version of ioremap ensures that the memory is marked uncachable
244 * on the CPU as well as honouring existing caching rules from things like
245 * the PCI bus. Note that there are other caches and buffers on many
246 * busses. In paticular driver authors should read up on PCI writes
247 *
248 * It's useful if some control registers are in such an area and
249 * write combining or read caching is not desirable:
250 */
251#define ioremap_nocache(offset, size)					\
252	__ioremap_mode((offset), (size), _CACHE_UNCACHED)
253
254/*
255 * ioremap_cachable -   map bus memory into CPU space
256 * @offset:         bus address of the memory
257 * @size:           size of the resource to map
258 *
259 * ioremap_nocache performs a platform specific sequence of operations to
260 * make bus memory CPU accessible via the readb/readw/readl/writeb/
261 * writew/writel functions and the other mmio helpers. The returned
262 * address is not guaranteed to be usable directly as a virtual
263 * address.
264 *
265 * This version of ioremap ensures that the memory is marked cachable by
266 * the CPU.  Also enables full write-combining.  Useful for some
267 * memory-like regions on I/O busses.
268 */
269#define ioremap_cachable(offset, size)					\
270	__ioremap_mode((offset), (size), PAGE_CACHABLE_DEFAULT)
271
272/*
273 * These two are MIPS specific ioremap variant.  ioremap_cacheable_cow
274 * requests a cachable mapping, ioremap_uncached_accelerated requests a
275 * mapping using the uncached accelerated mode which isn't supported on
276 * all processors.
277 */
278#define ioremap_cacheable_cow(offset, size)				\
279	__ioremap_mode((offset), (size), _CACHE_CACHABLE_COW)
280#define ioremap_uncached_accelerated(offset, size)			\
281	__ioremap_mode((offset), (size), _CACHE_UNCACHED_ACCELERATED)
282
283static inline void iounmap(const volatile void __iomem *addr)
284{
285#define __IS_KSEG1(addr) (((unsigned long)(addr) & ~0x1fffffffUL) == CKSEG1)
286
287	if (cpu_has_64bit_addresses ||
288	    (__builtin_constant_p(addr) && __IS_KSEG1(addr)))
289		return;
290
291	__iounmap(addr);
292
293#undef __IS_KSEG1
294}
295
296#define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, irq)			\
297									\
298static inline void pfx##write##bwlq(type val,				\
299				    volatile void __iomem *mem)		\
300{									\
301	volatile type *__mem;						\
302	type __val;							\
303									\
304	__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem));	\
305									\
306	__val = pfx##ioswab##bwlq(__mem, val);				\
307									\
308	if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long))	\
309		*__mem = __val;						\
310	else if (cpu_has_64bits) {					\
311		unsigned long __flags;					\
312		type __tmp;						\
313									\
314		if (irq)						\
315			local_irq_save(__flags);			\
316		__asm__ __volatile__(					\
317			".set	mips3"		"\t\t# __writeq""\n\t"	\
318			"dsll32	%L0, %L0, 0"			"\n\t"	\
319			"dsrl32	%L0, %L0, 0"			"\n\t"	\
320			"dsll32	%M0, %M0, 0"			"\n\t"	\
321			"or	%L0, %L0, %M0"			"\n\t"	\
322			"sd	%L0, %2"			"\n\t"	\
323			".set	mips0"				"\n"	\
324			: "=r" (__tmp)					\
325			: "0" (__val), "m" (*__mem));			\
326		if (irq)						\
327			local_irq_restore(__flags);			\
328	} else								\
329		BUG();							\
330}									\
331									\
332static inline type pfx##read##bwlq(const volatile void __iomem *mem)	\
333{									\
334	volatile type *__mem;						\
335	type __val;							\
336									\
337	__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem));	\
338									\
339	if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long))	\
340		__val = *__mem;						\
341	else if (cpu_has_64bits) {					\
342		unsigned long __flags;					\
343									\
344		if (irq)						\
345			local_irq_save(__flags);			\
346		__asm__ __volatile__(					\
347			".set	mips3"		"\t\t# __readq"	"\n\t"	\
348			"ld	%L0, %1"			"\n\t"	\
349			"dsra32	%M0, %L0, 0"			"\n\t"	\
350			"sll	%L0, %L0, 0"			"\n\t"	\
351			".set	mips0"				"\n"	\
352			: "=r" (__val)					\
353			: "m" (*__mem));				\
354		if (irq)						\
355			local_irq_restore(__flags);			\
356	} else {							\
357		__val = 0;						\
358		BUG();							\
359	}								\
360									\
361	return pfx##ioswab##bwlq(__mem, __val);				\
362}
363
364#define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, p, slow)			\
365									\
366static inline void pfx##out##bwlq##p(type val, unsigned long port)	\
367{									\
368	volatile type *__addr;						\
369	type __val;							\
370									\
371	__addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
372									\
373	__val = pfx##ioswab##bwlq(__addr, val);				\
374									\
375	/* Really, we want this to be atomic */				\
376	BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long));		\
377									\
378	*__addr = __val;						\
379	slow;								\
380}									\
381									\
382static inline type pfx##in##bwlq##p(unsigned long port)			\
383{									\
384	volatile type *__addr;						\
385	type __val;							\
386									\
387	__addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
388									\
389	BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long));		\
390									\
391	__val = *__addr;						\
392	slow;								\
393									\
394	return pfx##ioswab##bwlq(__addr, __val);			\
395}
396
397#define __BUILD_MEMORY_PFX(bus, bwlq, type)				\
398									\
399__BUILD_MEMORY_SINGLE(bus, bwlq, type, 1)
400
401#define BUILDIO_MEM(bwlq, type)						\
402									\
403__BUILD_MEMORY_PFX(__raw_, bwlq, type)					\
404__BUILD_MEMORY_PFX(, bwlq, type)					\
405__BUILD_MEMORY_PFX(__mem_, bwlq, type)					\
406
407BUILDIO_MEM(b, u8)
408BUILDIO_MEM(w, u16)
409BUILDIO_MEM(l, u32)
410BUILDIO_MEM(q, u64)
411
412#define __BUILD_IOPORT_PFX(bus, bwlq, type)				\
413	__BUILD_IOPORT_SINGLE(bus, bwlq, type, ,)			\
414	__BUILD_IOPORT_SINGLE(bus, bwlq, type, _p, SLOW_DOWN_IO)
415
416#define BUILDIO_IOPORT(bwlq, type)					\
417	__BUILD_IOPORT_PFX(, bwlq, type)				\
418	__BUILD_IOPORT_PFX(__mem_, bwlq, type)
419
420BUILDIO_IOPORT(b, u8)
421BUILDIO_IOPORT(w, u16)
422BUILDIO_IOPORT(l, u32)
423#ifdef CONFIG_64BIT
424BUILDIO_IOPORT(q, u64)
425#endif
426
427#define __BUILDIO(bwlq, type)						\
428									\
429__BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 0)
430
431__BUILDIO(q, u64)
432
433#define readb_relaxed			readb
434#define readw_relaxed			readw
435#define readl_relaxed			readl
436#define readq_relaxed			readq
437
438/*
439 * Some code tests for these symbols
440 */
441#define readq				readq
442#define writeq				writeq
443
444#define __BUILD_MEMORY_STRING(bwlq, type)				\
445									\
446static inline void writes##bwlq(volatile void __iomem *mem,		\
447				const void *addr, unsigned int count)	\
448{									\
449	const volatile type *__addr = addr;				\
450									\
451	while (count--) {						\
452		__mem_write##bwlq(*__addr, mem);			\
453		__addr++;						\
454	}								\
455}									\
456									\
457static inline void reads##bwlq(volatile void __iomem *mem, void *addr,	\
458			       unsigned int count)			\
459{									\
460	volatile type *__addr = addr;					\
461									\
462	while (count--) {						\
463		*__addr = __mem_read##bwlq(mem);			\
464		__addr++;						\
465	}								\
466}
467
468#define __BUILD_IOPORT_STRING(bwlq, type)				\
469									\
470static inline void outs##bwlq(unsigned long port, const void *addr,	\
471			      unsigned int count)			\
472{									\
473	const volatile type *__addr = addr;				\
474									\
475	while (count--) {						\
476		__mem_out##bwlq(*__addr, port);				\
477		__addr++;						\
478	}								\
479}									\
480									\
481static inline void ins##bwlq(unsigned long port, void *addr,		\
482			     unsigned int count)			\
483{									\
484	volatile type *__addr = addr;					\
485									\
486	while (count--) {						\
487		*__addr = __mem_in##bwlq(port);				\
488		__addr++;						\
489	}								\
490}
491
492#define BUILDSTRING(bwlq, type)						\
493									\
494__BUILD_MEMORY_STRING(bwlq, type)					\
495__BUILD_IOPORT_STRING(bwlq, type)
496
497BUILDSTRING(b, u8)
498BUILDSTRING(w, u16)
499BUILDSTRING(l, u32)
500#ifdef CONFIG_64BIT
501BUILDSTRING(q, u64)
502#endif
503
504
505/* Depends on MIPS II instruction set */
506#define mmiowb() asm volatile ("sync" ::: "memory")
507
508static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count)
509{
510	memset((void __force *) addr, val, count);
511}
512static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count)
513{
514	memcpy(dst, (void __force *) src, count);
515}
516static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count)
517{
518	memcpy((void __force *) dst, src, count);
519}
520
521/*
522 * ISA space is 'always mapped' on currently supported MIPS systems, no need
523 * to explicitly ioremap() it. The fact that the ISA IO space is mapped
524 * to PAGE_OFFSET is pure coincidence - it does not mean ISA values
525 * are physical addresses. The following constant pointer can be
526 * used as the IO-area pointer (it can be iounmapped as well, so the
527 * analogy with PCI is quite large):
528 */
529#define __ISA_IO_base ((char *)(isa_slot_offset))
530
531/*
532 * The caches on some architectures aren't dma-coherent and have need to
533 * handle this in software.  There are three types of operations that
534 * can be applied to dma buffers.
535 *
536 *  - dma_cache_wback_inv(start, size) makes caches and coherent by
537 *    writing the content of the caches back to memory, if necessary.
538 *    The function also invalidates the affected part of the caches as
539 *    necessary before DMA transfers from outside to memory.
540 *  - dma_cache_wback(start, size) makes caches and coherent by
541 *    writing the content of the caches back to memory, if necessary.
542 *    The function also invalidates the affected part of the caches as
543 *    necessary before DMA transfers from outside to memory.
544 *  - dma_cache_inv(start, size) invalidates the affected parts of the
545 *    caches.  Dirty lines of the caches may be written back or simply
546 *    be discarded.  This operation is necessary before dma operations
547 *    to the memory.
548 */
549#ifdef CONFIG_DMA_NONCOHERENT
550
551extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size);
552extern void (*_dma_cache_wback)(unsigned long start, unsigned long size);
553extern void (*_dma_cache_inv)(unsigned long start, unsigned long size);
554
555#define dma_cache_wback_inv(start, size)	_dma_cache_wback_inv(start,size)
556#define dma_cache_wback(start, size)		_dma_cache_wback(start,size)
557#define dma_cache_inv(start, size)		_dma_cache_inv(start,size)
558
559#else /* Sane hardware */
560
561#define dma_cache_wback_inv(start,size)	\
562	do { (void) (start); (void) (size); } while (0)
563#define dma_cache_wback(start,size)	\
564	do { (void) (start); (void) (size); } while (0)
565#define dma_cache_inv(start,size)	\
566	do { (void) (start); (void) (size); } while (0)
567
568#endif /* CONFIG_DMA_NONCOHERENT */
569
570/*
571 * Read a 32-bit register that requires a 64-bit read cycle on the bus.
572 * Avoid interrupt mucking, just adjust the address for 4-byte access.
573 * Assume the addresses are 8-byte aligned.
574 */
575#ifdef __MIPSEB__
576#define __CSR_32_ADJUST 4
577#else
578#define __CSR_32_ADJUST 0
579#endif
580
581#define csr_out32(v,a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v))
582#define csr_in32(a)    (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST))
583
584/*
585 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
586 * access
587 */
588#define xlate_dev_mem_ptr(p)	__va(p)
589
590/*
591 * Convert a virtual cached pointer to an uncached pointer
592 */
593#define xlate_dev_kmem_ptr(p)	p
594
595#endif /* _ASM_IO_H */
596