1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2004, 2005 Oracle.  All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/kernel.h>
23#include <linux/sched.h>
24#include <linux/jiffies.h>
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/bio.h>
28#include <linux/blkdev.h>
29#include <linux/delay.h>
30#include <linux/file.h>
31#include <linux/kthread.h>
32#include <linux/configfs.h>
33#include <linux/random.h>
34#include <linux/crc32.h>
35#include <linux/time.h>
36
37#include "heartbeat.h"
38#include "tcp.h"
39#include "nodemanager.h"
40#include "quorum.h"
41
42#include "masklog.h"
43
44
45/*
46 * The first heartbeat pass had one global thread that would serialize all hb
47 * callback calls.  This global serializing sem should only be removed once
48 * we've made sure that all callees can deal with being called concurrently
49 * from multiple hb region threads.
50 */
51static DECLARE_RWSEM(o2hb_callback_sem);
52
53/*
54 * multiple hb threads are watching multiple regions.  A node is live
55 * whenever any of the threads sees activity from the node in its region.
56 */
57static DEFINE_SPINLOCK(o2hb_live_lock);
58static struct list_head o2hb_live_slots[O2NM_MAX_NODES];
59static unsigned long o2hb_live_node_bitmap[BITS_TO_LONGS(O2NM_MAX_NODES)];
60static LIST_HEAD(o2hb_node_events);
61static DECLARE_WAIT_QUEUE_HEAD(o2hb_steady_queue);
62
63static LIST_HEAD(o2hb_all_regions);
64
65static struct o2hb_callback {
66	struct list_head list;
67} o2hb_callbacks[O2HB_NUM_CB];
68
69static struct o2hb_callback *hbcall_from_type(enum o2hb_callback_type type);
70
71#define O2HB_DEFAULT_BLOCK_BITS       9
72
73unsigned int o2hb_dead_threshold = O2HB_DEFAULT_DEAD_THRESHOLD;
74
75/* Only sets a new threshold if there are no active regions.
76 *
77 * No locking or otherwise interesting code is required for reading
78 * o2hb_dead_threshold as it can't change once regions are active and
79 * it's not interesting to anyone until then anyway. */
80static void o2hb_dead_threshold_set(unsigned int threshold)
81{
82	if (threshold > O2HB_MIN_DEAD_THRESHOLD) {
83		spin_lock(&o2hb_live_lock);
84		if (list_empty(&o2hb_all_regions))
85			o2hb_dead_threshold = threshold;
86		spin_unlock(&o2hb_live_lock);
87	}
88}
89
90struct o2hb_node_event {
91	struct list_head        hn_item;
92	enum o2hb_callback_type hn_event_type;
93	struct o2nm_node        *hn_node;
94	int                     hn_node_num;
95};
96
97struct o2hb_disk_slot {
98	struct o2hb_disk_heartbeat_block *ds_raw_block;
99	u8			ds_node_num;
100	u64			ds_last_time;
101	u64			ds_last_generation;
102	u16			ds_equal_samples;
103	u16			ds_changed_samples;
104	struct list_head	ds_live_item;
105};
106
107/* each thread owns a region.. when we're asked to tear down the region
108 * we ask the thread to stop, who cleans up the region */
109struct o2hb_region {
110	struct config_item	hr_item;
111
112	struct list_head	hr_all_item;
113	unsigned		hr_unclean_stop:1;
114
115	/* protected by the hr_callback_sem */
116	struct task_struct 	*hr_task;
117
118	unsigned int		hr_blocks;
119	unsigned long long	hr_start_block;
120
121	unsigned int		hr_block_bits;
122	unsigned int		hr_block_bytes;
123
124	unsigned int		hr_slots_per_page;
125	unsigned int		hr_num_pages;
126
127	struct page             **hr_slot_data;
128	struct block_device	*hr_bdev;
129	struct o2hb_disk_slot	*hr_slots;
130
131	/* let the person setting up hb wait for it to return until it
132	 * has reached a 'steady' state.  This will be fixed when we have
133	 * a more complete api that doesn't lead to this sort of fragility. */
134	atomic_t		hr_steady_iterations;
135
136	char			hr_dev_name[BDEVNAME_SIZE];
137
138	unsigned int		hr_timeout_ms;
139
140	/* randomized as the region goes up and down so that a node
141	 * recognizes a node going up and down in one iteration */
142	u64			hr_generation;
143
144	struct delayed_work	hr_write_timeout_work;
145	unsigned long		hr_last_timeout_start;
146
147	/* Used during o2hb_check_slot to hold a copy of the block
148	 * being checked because we temporarily have to zero out the
149	 * crc field. */
150	struct o2hb_disk_heartbeat_block *hr_tmp_block;
151};
152
153struct o2hb_bio_wait_ctxt {
154	atomic_t          wc_num_reqs;
155	struct completion wc_io_complete;
156	int               wc_error;
157};
158
159static void o2hb_write_timeout(struct work_struct *work)
160{
161	struct o2hb_region *reg =
162		container_of(work, struct o2hb_region,
163			     hr_write_timeout_work.work);
164
165	mlog(ML_ERROR, "Heartbeat write timeout to device %s after %u "
166	     "milliseconds\n", reg->hr_dev_name,
167	     jiffies_to_msecs(jiffies - reg->hr_last_timeout_start));
168	o2quo_disk_timeout();
169}
170
171static void o2hb_arm_write_timeout(struct o2hb_region *reg)
172{
173	mlog(0, "Queue write timeout for %u ms\n", O2HB_MAX_WRITE_TIMEOUT_MS);
174
175	cancel_delayed_work(&reg->hr_write_timeout_work);
176	reg->hr_last_timeout_start = jiffies;
177	schedule_delayed_work(&reg->hr_write_timeout_work,
178			      msecs_to_jiffies(O2HB_MAX_WRITE_TIMEOUT_MS));
179}
180
181static void o2hb_disarm_write_timeout(struct o2hb_region *reg)
182{
183	cancel_delayed_work(&reg->hr_write_timeout_work);
184	flush_scheduled_work();
185}
186
187static inline void o2hb_bio_wait_init(struct o2hb_bio_wait_ctxt *wc)
188{
189	atomic_set(&wc->wc_num_reqs, 1);
190	init_completion(&wc->wc_io_complete);
191	wc->wc_error = 0;
192}
193
194/* Used in error paths too */
195static inline void o2hb_bio_wait_dec(struct o2hb_bio_wait_ctxt *wc,
196				     unsigned int num)
197{
198	/* sadly atomic_sub_and_test() isn't available on all platforms.  The
199	 * good news is that the fast path only completes one at a time */
200	while(num--) {
201		if (atomic_dec_and_test(&wc->wc_num_reqs)) {
202			BUG_ON(num > 0);
203			complete(&wc->wc_io_complete);
204		}
205	}
206}
207
208static void o2hb_wait_on_io(struct o2hb_region *reg,
209			    struct o2hb_bio_wait_ctxt *wc)
210{
211	struct address_space *mapping = reg->hr_bdev->bd_inode->i_mapping;
212
213	blk_run_address_space(mapping);
214	o2hb_bio_wait_dec(wc, 1);
215
216	wait_for_completion(&wc->wc_io_complete);
217}
218
219static int o2hb_bio_end_io(struct bio *bio,
220			   unsigned int bytes_done,
221			   int error)
222{
223	struct o2hb_bio_wait_ctxt *wc = bio->bi_private;
224
225	if (error) {
226		mlog(ML_ERROR, "IO Error %d\n", error);
227		wc->wc_error = error;
228	}
229
230	if (bio->bi_size)
231		return 1;
232
233	o2hb_bio_wait_dec(wc, 1);
234	bio_put(bio);
235	return 0;
236}
237
238/* Setup a Bio to cover I/O against num_slots slots starting at
239 * start_slot. */
240static struct bio *o2hb_setup_one_bio(struct o2hb_region *reg,
241				      struct o2hb_bio_wait_ctxt *wc,
242				      unsigned int *current_slot,
243				      unsigned int max_slots)
244{
245	int len, current_page;
246	unsigned int vec_len, vec_start;
247	unsigned int bits = reg->hr_block_bits;
248	unsigned int spp = reg->hr_slots_per_page;
249	unsigned int cs = *current_slot;
250	struct bio *bio;
251	struct page *page;
252
253	/* Testing has shown this allocation to take long enough under
254	 * GFP_KERNEL that the local node can get fenced. It would be
255	 * nicest if we could pre-allocate these bios and avoid this
256	 * all together. */
257	bio = bio_alloc(GFP_ATOMIC, 16);
258	if (!bio) {
259		mlog(ML_ERROR, "Could not alloc slots BIO!\n");
260		bio = ERR_PTR(-ENOMEM);
261		goto bail;
262	}
263
264	/* Must put everything in 512 byte sectors for the bio... */
265	bio->bi_sector = (reg->hr_start_block + cs) << (bits - 9);
266	bio->bi_bdev = reg->hr_bdev;
267	bio->bi_private = wc;
268	bio->bi_end_io = o2hb_bio_end_io;
269
270	vec_start = (cs << bits) % PAGE_CACHE_SIZE;
271	while(cs < max_slots) {
272		current_page = cs / spp;
273		page = reg->hr_slot_data[current_page];
274
275		vec_len = min(PAGE_CACHE_SIZE,
276			      (max_slots-cs) * (PAGE_CACHE_SIZE/spp) );
277
278		mlog(ML_HB_BIO, "page %d, vec_len = %u, vec_start = %u\n",
279		     current_page, vec_len, vec_start);
280
281		len = bio_add_page(bio, page, vec_len, vec_start);
282		if (len != vec_len) break;
283
284		cs += vec_len / (PAGE_CACHE_SIZE/spp);
285		vec_start = 0;
286	}
287
288bail:
289	*current_slot = cs;
290	return bio;
291}
292
293static int o2hb_read_slots(struct o2hb_region *reg,
294			   unsigned int max_slots)
295{
296	unsigned int current_slot=0;
297	int status;
298	struct o2hb_bio_wait_ctxt wc;
299	struct bio *bio;
300
301	o2hb_bio_wait_init(&wc);
302
303	while(current_slot < max_slots) {
304		bio = o2hb_setup_one_bio(reg, &wc, &current_slot, max_slots);
305		if (IS_ERR(bio)) {
306			status = PTR_ERR(bio);
307			mlog_errno(status);
308			goto bail_and_wait;
309		}
310
311		atomic_inc(&wc.wc_num_reqs);
312		submit_bio(READ, bio);
313	}
314
315	status = 0;
316
317bail_and_wait:
318	o2hb_wait_on_io(reg, &wc);
319	if (wc.wc_error && !status)
320		status = wc.wc_error;
321
322	return status;
323}
324
325static int o2hb_issue_node_write(struct o2hb_region *reg,
326				 struct o2hb_bio_wait_ctxt *write_wc)
327{
328	int status;
329	unsigned int slot;
330	struct bio *bio;
331
332	o2hb_bio_wait_init(write_wc);
333
334	slot = o2nm_this_node();
335
336	bio = o2hb_setup_one_bio(reg, write_wc, &slot, slot+1);
337	if (IS_ERR(bio)) {
338		status = PTR_ERR(bio);
339		mlog_errno(status);
340		goto bail;
341	}
342
343	atomic_inc(&write_wc->wc_num_reqs);
344	submit_bio(WRITE, bio);
345
346	status = 0;
347bail:
348	return status;
349}
350
351static u32 o2hb_compute_block_crc_le(struct o2hb_region *reg,
352				     struct o2hb_disk_heartbeat_block *hb_block)
353{
354	__le32 old_cksum;
355	u32 ret;
356
357	/* We want to compute the block crc with a 0 value in the
358	 * hb_cksum field. Save it off here and replace after the
359	 * crc. */
360	old_cksum = hb_block->hb_cksum;
361	hb_block->hb_cksum = 0;
362
363	ret = crc32_le(0, (unsigned char *) hb_block, reg->hr_block_bytes);
364
365	hb_block->hb_cksum = old_cksum;
366
367	return ret;
368}
369
370static void o2hb_dump_slot(struct o2hb_disk_heartbeat_block *hb_block)
371{
372	mlog(ML_ERROR, "Dump slot information: seq = 0x%llx, node = %u, "
373	     "cksum = 0x%x, generation 0x%llx\n",
374	     (long long)le64_to_cpu(hb_block->hb_seq),
375	     hb_block->hb_node, le32_to_cpu(hb_block->hb_cksum),
376	     (long long)le64_to_cpu(hb_block->hb_generation));
377}
378
379static int o2hb_verify_crc(struct o2hb_region *reg,
380			   struct o2hb_disk_heartbeat_block *hb_block)
381{
382	u32 read, computed;
383
384	read = le32_to_cpu(hb_block->hb_cksum);
385	computed = o2hb_compute_block_crc_le(reg, hb_block);
386
387	return read == computed;
388}
389
390/* We want to make sure that nobody is heartbeating on top of us --
391 * this will help detect an invalid configuration. */
392static int o2hb_check_last_timestamp(struct o2hb_region *reg)
393{
394	int node_num, ret;
395	struct o2hb_disk_slot *slot;
396	struct o2hb_disk_heartbeat_block *hb_block;
397
398	node_num = o2nm_this_node();
399
400	ret = 1;
401	slot = &reg->hr_slots[node_num];
402	/* Don't check on our 1st timestamp */
403	if (slot->ds_last_time) {
404		hb_block = slot->ds_raw_block;
405
406		if (le64_to_cpu(hb_block->hb_seq) != slot->ds_last_time)
407			ret = 0;
408	}
409
410	return ret;
411}
412
413static inline void o2hb_prepare_block(struct o2hb_region *reg,
414				      u64 generation)
415{
416	int node_num;
417	u64 cputime;
418	struct o2hb_disk_slot *slot;
419	struct o2hb_disk_heartbeat_block *hb_block;
420
421	node_num = o2nm_this_node();
422	slot = &reg->hr_slots[node_num];
423
424	hb_block = (struct o2hb_disk_heartbeat_block *)slot->ds_raw_block;
425	memset(hb_block, 0, reg->hr_block_bytes);
426	/* TODO: time stuff */
427	cputime = CURRENT_TIME.tv_sec;
428	if (!cputime)
429		cputime = 1;
430
431	hb_block->hb_seq = cpu_to_le64(cputime);
432	hb_block->hb_node = node_num;
433	hb_block->hb_generation = cpu_to_le64(generation);
434	hb_block->hb_dead_ms = cpu_to_le32(o2hb_dead_threshold * O2HB_REGION_TIMEOUT_MS);
435
436	/* This step must always happen last! */
437	hb_block->hb_cksum = cpu_to_le32(o2hb_compute_block_crc_le(reg,
438								   hb_block));
439
440	mlog(ML_HB_BIO, "our node generation = 0x%llx, cksum = 0x%x\n",
441	     (long long)generation,
442	     le32_to_cpu(hb_block->hb_cksum));
443}
444
445static void o2hb_fire_callbacks(struct o2hb_callback *hbcall,
446				struct o2nm_node *node,
447				int idx)
448{
449	struct list_head *iter;
450	struct o2hb_callback_func *f;
451
452	list_for_each(iter, &hbcall->list) {
453		f = list_entry(iter, struct o2hb_callback_func, hc_item);
454		mlog(ML_HEARTBEAT, "calling funcs %p\n", f);
455		(f->hc_func)(node, idx, f->hc_data);
456	}
457}
458
459/* Will run the list in order until we process the passed event */
460static void o2hb_run_event_list(struct o2hb_node_event *queued_event)
461{
462	int empty;
463	struct o2hb_callback *hbcall;
464	struct o2hb_node_event *event;
465
466	spin_lock(&o2hb_live_lock);
467	empty = list_empty(&queued_event->hn_item);
468	spin_unlock(&o2hb_live_lock);
469	if (empty)
470		return;
471
472	/* Holding callback sem assures we don't alter the callback
473	 * lists when doing this, and serializes ourselves with other
474	 * processes wanting callbacks. */
475	down_write(&o2hb_callback_sem);
476
477	spin_lock(&o2hb_live_lock);
478	while (!list_empty(&o2hb_node_events)
479	       && !list_empty(&queued_event->hn_item)) {
480		event = list_entry(o2hb_node_events.next,
481				   struct o2hb_node_event,
482				   hn_item);
483		list_del_init(&event->hn_item);
484		spin_unlock(&o2hb_live_lock);
485
486		mlog(ML_HEARTBEAT, "Node %s event for %d\n",
487		     event->hn_event_type == O2HB_NODE_UP_CB ? "UP" : "DOWN",
488		     event->hn_node_num);
489
490		hbcall = hbcall_from_type(event->hn_event_type);
491
492		/* We should *never* have gotten on to the list with a
493		 * bad type... This isn't something that we should try
494		 * to recover from. */
495		BUG_ON(IS_ERR(hbcall));
496
497		o2hb_fire_callbacks(hbcall, event->hn_node, event->hn_node_num);
498
499		spin_lock(&o2hb_live_lock);
500	}
501	spin_unlock(&o2hb_live_lock);
502
503	up_write(&o2hb_callback_sem);
504}
505
506static void o2hb_queue_node_event(struct o2hb_node_event *event,
507				  enum o2hb_callback_type type,
508				  struct o2nm_node *node,
509				  int node_num)
510{
511	assert_spin_locked(&o2hb_live_lock);
512
513	event->hn_event_type = type;
514	event->hn_node = node;
515	event->hn_node_num = node_num;
516
517	mlog(ML_HEARTBEAT, "Queue node %s event for node %d\n",
518	     type == O2HB_NODE_UP_CB ? "UP" : "DOWN", node_num);
519
520	list_add_tail(&event->hn_item, &o2hb_node_events);
521}
522
523static void o2hb_shutdown_slot(struct o2hb_disk_slot *slot)
524{
525	struct o2hb_node_event event =
526		{ .hn_item = LIST_HEAD_INIT(event.hn_item), };
527	struct o2nm_node *node;
528
529	node = o2nm_get_node_by_num(slot->ds_node_num);
530	if (!node)
531		return;
532
533	spin_lock(&o2hb_live_lock);
534	if (!list_empty(&slot->ds_live_item)) {
535		mlog(ML_HEARTBEAT, "Shutdown, node %d leaves region\n",
536		     slot->ds_node_num);
537
538		list_del_init(&slot->ds_live_item);
539
540		if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
541			clear_bit(slot->ds_node_num, o2hb_live_node_bitmap);
542
543			o2hb_queue_node_event(&event, O2HB_NODE_DOWN_CB, node,
544					      slot->ds_node_num);
545		}
546	}
547	spin_unlock(&o2hb_live_lock);
548
549	o2hb_run_event_list(&event);
550
551	o2nm_node_put(node);
552}
553
554static int o2hb_check_slot(struct o2hb_region *reg,
555			   struct o2hb_disk_slot *slot)
556{
557	int changed = 0, gen_changed = 0;
558	struct o2hb_node_event event =
559		{ .hn_item = LIST_HEAD_INIT(event.hn_item), };
560	struct o2nm_node *node;
561	struct o2hb_disk_heartbeat_block *hb_block = reg->hr_tmp_block;
562	u64 cputime;
563	unsigned int dead_ms = o2hb_dead_threshold * O2HB_REGION_TIMEOUT_MS;
564	unsigned int slot_dead_ms;
565
566	memcpy(hb_block, slot->ds_raw_block, reg->hr_block_bytes);
567
568	/* Is this correct? Do we assume that the node doesn't exist
569	 * if we're not configured for him? */
570	node = o2nm_get_node_by_num(slot->ds_node_num);
571	if (!node)
572		return 0;
573
574	if (!o2hb_verify_crc(reg, hb_block)) {
575		/* all paths from here will drop o2hb_live_lock for
576		 * us. */
577		spin_lock(&o2hb_live_lock);
578
579		/* Don't print an error on the console in this case -
580		 * a freshly formatted heartbeat area will not have a
581		 * crc set on it. */
582		if (list_empty(&slot->ds_live_item))
583			goto out;
584
585		/* The node is live but pushed out a bad crc. We
586		 * consider it a transient miss but don't populate any
587		 * other values as they may be junk. */
588		mlog(ML_ERROR, "Node %d has written a bad crc to %s\n",
589		     slot->ds_node_num, reg->hr_dev_name);
590		o2hb_dump_slot(hb_block);
591
592		slot->ds_equal_samples++;
593		goto fire_callbacks;
594	}
595
596	/* we don't care if these wrap.. the state transitions below
597	 * clear at the right places */
598	cputime = le64_to_cpu(hb_block->hb_seq);
599	if (slot->ds_last_time != cputime)
600		slot->ds_changed_samples++;
601	else
602		slot->ds_equal_samples++;
603	slot->ds_last_time = cputime;
604
605	/* The node changed heartbeat generations. We assume this to
606	 * mean it dropped off but came back before we timed out. We
607	 * want to consider it down for the time being but don't want
608	 * to lose any changed_samples state we might build up to
609	 * considering it live again. */
610	if (slot->ds_last_generation != le64_to_cpu(hb_block->hb_generation)) {
611		gen_changed = 1;
612		slot->ds_equal_samples = 0;
613		mlog(ML_HEARTBEAT, "Node %d changed generation (0x%llx "
614		     "to 0x%llx)\n", slot->ds_node_num,
615		     (long long)slot->ds_last_generation,
616		     (long long)le64_to_cpu(hb_block->hb_generation));
617	}
618
619	slot->ds_last_generation = le64_to_cpu(hb_block->hb_generation);
620
621	mlog(ML_HEARTBEAT, "Slot %d gen 0x%llx cksum 0x%x "
622	     "seq %llu last %llu changed %u equal %u\n",
623	     slot->ds_node_num, (long long)slot->ds_last_generation,
624	     le32_to_cpu(hb_block->hb_cksum),
625	     (unsigned long long)le64_to_cpu(hb_block->hb_seq),
626	     (unsigned long long)slot->ds_last_time, slot->ds_changed_samples,
627	     slot->ds_equal_samples);
628
629	spin_lock(&o2hb_live_lock);
630
631fire_callbacks:
632	/* dead nodes only come to life after some number of
633	 * changes at any time during their dead time */
634	if (list_empty(&slot->ds_live_item) &&
635	    slot->ds_changed_samples >= O2HB_LIVE_THRESHOLD) {
636		mlog(ML_HEARTBEAT, "Node %d (id 0x%llx) joined my region\n",
637		     slot->ds_node_num, (long long)slot->ds_last_generation);
638
639		/* first on the list generates a callback */
640		if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
641			set_bit(slot->ds_node_num, o2hb_live_node_bitmap);
642
643			o2hb_queue_node_event(&event, O2HB_NODE_UP_CB, node,
644					      slot->ds_node_num);
645
646			changed = 1;
647		}
648
649		list_add_tail(&slot->ds_live_item,
650			      &o2hb_live_slots[slot->ds_node_num]);
651
652		slot->ds_equal_samples = 0;
653
654		/* We want to be sure that all nodes agree on the
655		 * number of milliseconds before a node will be
656		 * considered dead. The self-fencing timeout is
657		 * computed from this value, and a discrepancy might
658		 * result in heartbeat calling a node dead when it
659		 * hasn't self-fenced yet. */
660		slot_dead_ms = le32_to_cpu(hb_block->hb_dead_ms);
661		if (slot_dead_ms && slot_dead_ms != dead_ms) {
662			/* TODO: Perhaps we can fail the region here. */
663			mlog(ML_ERROR, "Node %d on device %s has a dead count "
664			     "of %u ms, but our count is %u ms.\n"
665			     "Please double check your configuration values "
666			     "for 'O2CB_HEARTBEAT_THRESHOLD'\n",
667			     slot->ds_node_num, reg->hr_dev_name, slot_dead_ms,
668			     dead_ms);
669		}
670		goto out;
671	}
672
673	/* if the list is dead, we're done.. */
674	if (list_empty(&slot->ds_live_item))
675		goto out;
676
677	/* live nodes only go dead after enough consequtive missed
678	 * samples..  reset the missed counter whenever we see
679	 * activity */
680	if (slot->ds_equal_samples >= o2hb_dead_threshold || gen_changed) {
681		mlog(ML_HEARTBEAT, "Node %d left my region\n",
682		     slot->ds_node_num);
683
684		/* last off the live_slot generates a callback */
685		list_del_init(&slot->ds_live_item);
686		if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
687			clear_bit(slot->ds_node_num, o2hb_live_node_bitmap);
688
689			o2hb_queue_node_event(&event, O2HB_NODE_DOWN_CB, node,
690					      slot->ds_node_num);
691
692			changed = 1;
693		}
694
695		/* We don't clear this because the node is still
696		 * actually writing new blocks. */
697		if (!gen_changed)
698			slot->ds_changed_samples = 0;
699		goto out;
700	}
701	if (slot->ds_changed_samples) {
702		slot->ds_changed_samples = 0;
703		slot->ds_equal_samples = 0;
704	}
705out:
706	spin_unlock(&o2hb_live_lock);
707
708	o2hb_run_event_list(&event);
709
710	o2nm_node_put(node);
711	return changed;
712}
713
714/* This could be faster if we just implmented a find_last_bit, but I
715 * don't think the circumstances warrant it. */
716static int o2hb_highest_node(unsigned long *nodes,
717			     int numbits)
718{
719	int highest, node;
720
721	highest = numbits;
722	node = -1;
723	while ((node = find_next_bit(nodes, numbits, node + 1)) != -1) {
724		if (node >= numbits)
725			break;
726
727		highest = node;
728	}
729
730	return highest;
731}
732
733static int o2hb_do_disk_heartbeat(struct o2hb_region *reg)
734{
735	int i, ret, highest_node, change = 0;
736	unsigned long configured_nodes[BITS_TO_LONGS(O2NM_MAX_NODES)];
737	struct o2hb_bio_wait_ctxt write_wc;
738
739	ret = o2nm_configured_node_map(configured_nodes,
740				       sizeof(configured_nodes));
741	if (ret) {
742		mlog_errno(ret);
743		return ret;
744	}
745
746	highest_node = o2hb_highest_node(configured_nodes, O2NM_MAX_NODES);
747	if (highest_node >= O2NM_MAX_NODES) {
748		mlog(ML_NOTICE, "ocfs2_heartbeat: no configured nodes found!\n");
749		return -EINVAL;
750	}
751
752	/* No sense in reading the slots of nodes that don't exist
753	 * yet. Of course, if the node definitions have holes in them
754	 * then we're reading an empty slot anyway... Consider this
755	 * best-effort. */
756	ret = o2hb_read_slots(reg, highest_node + 1);
757	if (ret < 0) {
758		mlog_errno(ret);
759		return ret;
760	}
761
762	/* With an up to date view of the slots, we can check that no
763	 * other node has been improperly configured to heartbeat in
764	 * our slot. */
765	if (!o2hb_check_last_timestamp(reg))
766		mlog(ML_ERROR, "Device \"%s\": another node is heartbeating "
767		     "in our slot!\n", reg->hr_dev_name);
768
769	/* fill in the proper info for our next heartbeat */
770	o2hb_prepare_block(reg, reg->hr_generation);
771
772	/* And fire off the write. Note that we don't wait on this I/O
773	 * until later. */
774	ret = o2hb_issue_node_write(reg, &write_wc);
775	if (ret < 0) {
776		mlog_errno(ret);
777		return ret;
778	}
779
780	i = -1;
781	while((i = find_next_bit(configured_nodes, O2NM_MAX_NODES, i + 1)) < O2NM_MAX_NODES) {
782
783		change |= o2hb_check_slot(reg, &reg->hr_slots[i]);
784	}
785
786	/*
787	 * We have to be sure we've advertised ourselves on disk
788	 * before we can go to steady state.  This ensures that
789	 * people we find in our steady state have seen us.
790	 */
791	o2hb_wait_on_io(reg, &write_wc);
792	if (write_wc.wc_error) {
793		/* Do not re-arm the write timeout on I/O error - we
794		 * can't be sure that the new block ever made it to
795		 * disk */
796		mlog(ML_ERROR, "Write error %d on device \"%s\"\n",
797		     write_wc.wc_error, reg->hr_dev_name);
798		return write_wc.wc_error;
799	}
800
801	o2hb_arm_write_timeout(reg);
802
803	/* let the person who launched us know when things are steady */
804	if (!change && (atomic_read(&reg->hr_steady_iterations) != 0)) {
805		if (atomic_dec_and_test(&reg->hr_steady_iterations))
806			wake_up(&o2hb_steady_queue);
807	}
808
809	return 0;
810}
811
812/* Subtract b from a, storing the result in a. a *must* have a larger
813 * value than b. */
814static void o2hb_tv_subtract(struct timeval *a,
815			     struct timeval *b)
816{
817	/* just return 0 when a is after b */
818	if (a->tv_sec < b->tv_sec ||
819	    (a->tv_sec == b->tv_sec && a->tv_usec < b->tv_usec)) {
820		a->tv_sec = 0;
821		a->tv_usec = 0;
822		return;
823	}
824
825	a->tv_sec -= b->tv_sec;
826	a->tv_usec -= b->tv_usec;
827	while ( a->tv_usec < 0 ) {
828		a->tv_sec--;
829		a->tv_usec += 1000000;
830	}
831}
832
833static unsigned int o2hb_elapsed_msecs(struct timeval *start,
834				       struct timeval *end)
835{
836	struct timeval res = *end;
837
838	o2hb_tv_subtract(&res, start);
839
840	return res.tv_sec * 1000 + res.tv_usec / 1000;
841}
842
843/*
844 * we ride the region ref that the region dir holds.  before the region
845 * dir is removed and drops it ref it will wait to tear down this
846 * thread.
847 */
848static int o2hb_thread(void *data)
849{
850	int i, ret;
851	struct o2hb_region *reg = data;
852	struct o2hb_bio_wait_ctxt write_wc;
853	struct timeval before_hb, after_hb;
854	unsigned int elapsed_msec;
855
856	mlog(ML_HEARTBEAT|ML_KTHREAD, "hb thread running\n");
857
858	set_user_nice(current, -20);
859
860	while (!kthread_should_stop() && !reg->hr_unclean_stop) {
861		/* We track the time spent inside
862		 * o2hb_do_disk_heartbeat so that we avoid more then
863		 * hr_timeout_ms between disk writes. On busy systems
864		 * this should result in a heartbeat which is less
865		 * likely to time itself out. */
866		do_gettimeofday(&before_hb);
867
868		i = 0;
869		do {
870			ret = o2hb_do_disk_heartbeat(reg);
871		} while (ret && ++i < 2);
872
873		do_gettimeofday(&after_hb);
874		elapsed_msec = o2hb_elapsed_msecs(&before_hb, &after_hb);
875
876		mlog(0, "start = %lu.%lu, end = %lu.%lu, msec = %u\n",
877		     before_hb.tv_sec, (unsigned long) before_hb.tv_usec,
878		     after_hb.tv_sec, (unsigned long) after_hb.tv_usec,
879		     elapsed_msec);
880
881		if (elapsed_msec < reg->hr_timeout_ms) {
882			/* the kthread api has blocked signals for us so no
883			 * need to record the return value. */
884			msleep_interruptible(reg->hr_timeout_ms - elapsed_msec);
885		}
886	}
887
888	o2hb_disarm_write_timeout(reg);
889
890	/* unclean stop is only used in very bad situation */
891	for(i = 0; !reg->hr_unclean_stop && i < reg->hr_blocks; i++)
892		o2hb_shutdown_slot(&reg->hr_slots[i]);
893
894	o2hb_prepare_block(reg, 0);
895	ret = o2hb_issue_node_write(reg, &write_wc);
896	if (ret == 0) {
897		o2hb_wait_on_io(reg, &write_wc);
898	} else {
899		mlog_errno(ret);
900	}
901
902	mlog(ML_HEARTBEAT|ML_KTHREAD, "hb thread exiting\n");
903
904	return 0;
905}
906
907void o2hb_init(void)
908{
909	int i;
910
911	for (i = 0; i < ARRAY_SIZE(o2hb_callbacks); i++)
912		INIT_LIST_HEAD(&o2hb_callbacks[i].list);
913
914	for (i = 0; i < ARRAY_SIZE(o2hb_live_slots); i++)
915		INIT_LIST_HEAD(&o2hb_live_slots[i]);
916
917	INIT_LIST_HEAD(&o2hb_node_events);
918
919	memset(o2hb_live_node_bitmap, 0, sizeof(o2hb_live_node_bitmap));
920}
921
922/* if we're already in a callback then we're already serialized by the sem */
923static void o2hb_fill_node_map_from_callback(unsigned long *map,
924					     unsigned bytes)
925{
926	BUG_ON(bytes < (BITS_TO_LONGS(O2NM_MAX_NODES) * sizeof(unsigned long)));
927
928	memcpy(map, &o2hb_live_node_bitmap, bytes);
929}
930
931/*
932 * get a map of all nodes that are heartbeating in any regions
933 */
934void o2hb_fill_node_map(unsigned long *map, unsigned bytes)
935{
936	/* callers want to serialize this map and callbacks so that they
937	 * can trust that they don't miss nodes coming to the party */
938	down_read(&o2hb_callback_sem);
939	spin_lock(&o2hb_live_lock);
940	o2hb_fill_node_map_from_callback(map, bytes);
941	spin_unlock(&o2hb_live_lock);
942	up_read(&o2hb_callback_sem);
943}
944EXPORT_SYMBOL_GPL(o2hb_fill_node_map);
945
946/*
947 * heartbeat configfs bits.  The heartbeat set is a default set under
948 * the cluster set in nodemanager.c.
949 */
950
951static struct o2hb_region *to_o2hb_region(struct config_item *item)
952{
953	return item ? container_of(item, struct o2hb_region, hr_item) : NULL;
954}
955
956/* drop_item only drops its ref after killing the thread, nothing should
957 * be using the region anymore.  this has to clean up any state that
958 * attributes might have built up. */
959static void o2hb_region_release(struct config_item *item)
960{
961	int i;
962	struct page *page;
963	struct o2hb_region *reg = to_o2hb_region(item);
964
965	if (reg->hr_tmp_block)
966		kfree(reg->hr_tmp_block);
967
968	if (reg->hr_slot_data) {
969		for (i = 0; i < reg->hr_num_pages; i++) {
970			page = reg->hr_slot_data[i];
971			if (page)
972				__free_page(page);
973		}
974		kfree(reg->hr_slot_data);
975	}
976
977	if (reg->hr_bdev)
978		blkdev_put(reg->hr_bdev);
979
980	if (reg->hr_slots)
981		kfree(reg->hr_slots);
982
983	spin_lock(&o2hb_live_lock);
984	list_del(&reg->hr_all_item);
985	spin_unlock(&o2hb_live_lock);
986
987	kfree(reg);
988}
989
990static int o2hb_read_block_input(struct o2hb_region *reg,
991				 const char *page,
992				 size_t count,
993				 unsigned long *ret_bytes,
994				 unsigned int *ret_bits)
995{
996	unsigned long bytes;
997	char *p = (char *)page;
998
999	bytes = simple_strtoul(p, &p, 0);
1000	if (!p || (*p && (*p != '\n')))
1001		return -EINVAL;
1002
1003	/* Heartbeat and fs min / max block sizes are the same. */
1004	if (bytes > 4096 || bytes < 512)
1005		return -ERANGE;
1006	if (hweight16(bytes) != 1)
1007		return -EINVAL;
1008
1009	if (ret_bytes)
1010		*ret_bytes = bytes;
1011	if (ret_bits)
1012		*ret_bits = ffs(bytes) - 1;
1013
1014	return 0;
1015}
1016
1017static ssize_t o2hb_region_block_bytes_read(struct o2hb_region *reg,
1018					    char *page)
1019{
1020	return sprintf(page, "%u\n", reg->hr_block_bytes);
1021}
1022
1023static ssize_t o2hb_region_block_bytes_write(struct o2hb_region *reg,
1024					     const char *page,
1025					     size_t count)
1026{
1027	int status;
1028	unsigned long block_bytes;
1029	unsigned int block_bits;
1030
1031	if (reg->hr_bdev)
1032		return -EINVAL;
1033
1034	status = o2hb_read_block_input(reg, page, count,
1035				       &block_bytes, &block_bits);
1036	if (status)
1037		return status;
1038
1039	reg->hr_block_bytes = (unsigned int)block_bytes;
1040	reg->hr_block_bits = block_bits;
1041
1042	return count;
1043}
1044
1045static ssize_t o2hb_region_start_block_read(struct o2hb_region *reg,
1046					    char *page)
1047{
1048	return sprintf(page, "%llu\n", reg->hr_start_block);
1049}
1050
1051static ssize_t o2hb_region_start_block_write(struct o2hb_region *reg,
1052					     const char *page,
1053					     size_t count)
1054{
1055	unsigned long long tmp;
1056	char *p = (char *)page;
1057
1058	if (reg->hr_bdev)
1059		return -EINVAL;
1060
1061	tmp = simple_strtoull(p, &p, 0);
1062	if (!p || (*p && (*p != '\n')))
1063		return -EINVAL;
1064
1065	reg->hr_start_block = tmp;
1066
1067	return count;
1068}
1069
1070static ssize_t o2hb_region_blocks_read(struct o2hb_region *reg,
1071				       char *page)
1072{
1073	return sprintf(page, "%d\n", reg->hr_blocks);
1074}
1075
1076static ssize_t o2hb_region_blocks_write(struct o2hb_region *reg,
1077					const char *page,
1078					size_t count)
1079{
1080	unsigned long tmp;
1081	char *p = (char *)page;
1082
1083	if (reg->hr_bdev)
1084		return -EINVAL;
1085
1086	tmp = simple_strtoul(p, &p, 0);
1087	if (!p || (*p && (*p != '\n')))
1088		return -EINVAL;
1089
1090	if (tmp > O2NM_MAX_NODES || tmp == 0)
1091		return -ERANGE;
1092
1093	reg->hr_blocks = (unsigned int)tmp;
1094
1095	return count;
1096}
1097
1098static ssize_t o2hb_region_dev_read(struct o2hb_region *reg,
1099				    char *page)
1100{
1101	unsigned int ret = 0;
1102
1103	if (reg->hr_bdev)
1104		ret = sprintf(page, "%s\n", reg->hr_dev_name);
1105
1106	return ret;
1107}
1108
1109static void o2hb_init_region_params(struct o2hb_region *reg)
1110{
1111	reg->hr_slots_per_page = PAGE_CACHE_SIZE >> reg->hr_block_bits;
1112	reg->hr_timeout_ms = O2HB_REGION_TIMEOUT_MS;
1113
1114	mlog(ML_HEARTBEAT, "hr_start_block = %llu, hr_blocks = %u\n",
1115	     reg->hr_start_block, reg->hr_blocks);
1116	mlog(ML_HEARTBEAT, "hr_block_bytes = %u, hr_block_bits = %u\n",
1117	     reg->hr_block_bytes, reg->hr_block_bits);
1118	mlog(ML_HEARTBEAT, "hr_timeout_ms = %u\n", reg->hr_timeout_ms);
1119	mlog(ML_HEARTBEAT, "dead threshold = %u\n", o2hb_dead_threshold);
1120}
1121
1122static int o2hb_map_slot_data(struct o2hb_region *reg)
1123{
1124	int i, j;
1125	unsigned int last_slot;
1126	unsigned int spp = reg->hr_slots_per_page;
1127	struct page *page;
1128	char *raw;
1129	struct o2hb_disk_slot *slot;
1130
1131	reg->hr_tmp_block = kmalloc(reg->hr_block_bytes, GFP_KERNEL);
1132	if (reg->hr_tmp_block == NULL) {
1133		mlog_errno(-ENOMEM);
1134		return -ENOMEM;
1135	}
1136
1137	reg->hr_slots = kcalloc(reg->hr_blocks,
1138				sizeof(struct o2hb_disk_slot), GFP_KERNEL);
1139	if (reg->hr_slots == NULL) {
1140		mlog_errno(-ENOMEM);
1141		return -ENOMEM;
1142	}
1143
1144	for(i = 0; i < reg->hr_blocks; i++) {
1145		slot = &reg->hr_slots[i];
1146		slot->ds_node_num = i;
1147		INIT_LIST_HEAD(&slot->ds_live_item);
1148		slot->ds_raw_block = NULL;
1149	}
1150
1151	reg->hr_num_pages = (reg->hr_blocks + spp - 1) / spp;
1152	mlog(ML_HEARTBEAT, "Going to require %u pages to cover %u blocks "
1153			   "at %u blocks per page\n",
1154	     reg->hr_num_pages, reg->hr_blocks, spp);
1155
1156	reg->hr_slot_data = kcalloc(reg->hr_num_pages, sizeof(struct page *),
1157				    GFP_KERNEL);
1158	if (!reg->hr_slot_data) {
1159		mlog_errno(-ENOMEM);
1160		return -ENOMEM;
1161	}
1162
1163	for(i = 0; i < reg->hr_num_pages; i++) {
1164		page = alloc_page(GFP_KERNEL);
1165		if (!page) {
1166			mlog_errno(-ENOMEM);
1167			return -ENOMEM;
1168		}
1169
1170		reg->hr_slot_data[i] = page;
1171
1172		last_slot = i * spp;
1173		raw = page_address(page);
1174		for (j = 0;
1175		     (j < spp) && ((j + last_slot) < reg->hr_blocks);
1176		     j++) {
1177			BUG_ON((j + last_slot) >= reg->hr_blocks);
1178
1179			slot = &reg->hr_slots[j + last_slot];
1180			slot->ds_raw_block =
1181				(struct o2hb_disk_heartbeat_block *) raw;
1182
1183			raw += reg->hr_block_bytes;
1184		}
1185	}
1186
1187	return 0;
1188}
1189
1190/* Read in all the slots available and populate the tracking
1191 * structures so that we can start with a baseline idea of what's
1192 * there. */
1193static int o2hb_populate_slot_data(struct o2hb_region *reg)
1194{
1195	int ret, i;
1196	struct o2hb_disk_slot *slot;
1197	struct o2hb_disk_heartbeat_block *hb_block;
1198
1199	mlog_entry_void();
1200
1201	ret = o2hb_read_slots(reg, reg->hr_blocks);
1202	if (ret) {
1203		mlog_errno(ret);
1204		goto out;
1205	}
1206
1207	/* We only want to get an idea of the values initially in each
1208	 * slot, so we do no verification - o2hb_check_slot will
1209	 * actually determine if each configured slot is valid and
1210	 * whether any values have changed. */
1211	for(i = 0; i < reg->hr_blocks; i++) {
1212		slot = &reg->hr_slots[i];
1213		hb_block = (struct o2hb_disk_heartbeat_block *) slot->ds_raw_block;
1214
1215		/* Only fill the values that o2hb_check_slot uses to
1216		 * determine changing slots */
1217		slot->ds_last_time = le64_to_cpu(hb_block->hb_seq);
1218		slot->ds_last_generation = le64_to_cpu(hb_block->hb_generation);
1219	}
1220
1221out:
1222	mlog_exit(ret);
1223	return ret;
1224}
1225
1226/* this is acting as commit; we set up all of hr_bdev and hr_task or nothing */
1227static ssize_t o2hb_region_dev_write(struct o2hb_region *reg,
1228				     const char *page,
1229				     size_t count)
1230{
1231	struct task_struct *hb_task;
1232	long fd;
1233	int sectsize;
1234	char *p = (char *)page;
1235	struct file *filp = NULL;
1236	struct inode *inode = NULL;
1237	ssize_t ret = -EINVAL;
1238
1239	if (reg->hr_bdev)
1240		goto out;
1241
1242	/* We can't heartbeat without having had our node number
1243	 * configured yet. */
1244	if (o2nm_this_node() == O2NM_MAX_NODES)
1245		goto out;
1246
1247	fd = simple_strtol(p, &p, 0);
1248	if (!p || (*p && (*p != '\n')))
1249		goto out;
1250
1251	if (fd < 0 || fd >= INT_MAX)
1252		goto out;
1253
1254	filp = fget(fd);
1255	if (filp == NULL)
1256		goto out;
1257
1258	if (reg->hr_blocks == 0 || reg->hr_start_block == 0 ||
1259	    reg->hr_block_bytes == 0)
1260		goto out;
1261
1262	inode = igrab(filp->f_mapping->host);
1263	if (inode == NULL)
1264		goto out;
1265
1266	if (!S_ISBLK(inode->i_mode))
1267		goto out;
1268
1269	reg->hr_bdev = I_BDEV(filp->f_mapping->host);
1270	ret = blkdev_get(reg->hr_bdev, FMODE_WRITE | FMODE_READ, 0);
1271	if (ret) {
1272		reg->hr_bdev = NULL;
1273		goto out;
1274	}
1275	inode = NULL;
1276
1277	bdevname(reg->hr_bdev, reg->hr_dev_name);
1278
1279	sectsize = bdev_hardsect_size(reg->hr_bdev);
1280	if (sectsize != reg->hr_block_bytes) {
1281		mlog(ML_ERROR,
1282		     "blocksize %u incorrect for device, expected %d",
1283		     reg->hr_block_bytes, sectsize);
1284		ret = -EINVAL;
1285		goto out;
1286	}
1287
1288	o2hb_init_region_params(reg);
1289
1290	/* Generation of zero is invalid */
1291	do {
1292		get_random_bytes(&reg->hr_generation,
1293				 sizeof(reg->hr_generation));
1294	} while (reg->hr_generation == 0);
1295
1296	ret = o2hb_map_slot_data(reg);
1297	if (ret) {
1298		mlog_errno(ret);
1299		goto out;
1300	}
1301
1302	ret = o2hb_populate_slot_data(reg);
1303	if (ret) {
1304		mlog_errno(ret);
1305		goto out;
1306	}
1307
1308	INIT_DELAYED_WORK(&reg->hr_write_timeout_work, o2hb_write_timeout);
1309
1310	/*
1311	 * A node is considered live after it has beat LIVE_THRESHOLD
1312	 * times.  We're not steady until we've given them a chance
1313	 * _after_ our first read.
1314	 */
1315	atomic_set(&reg->hr_steady_iterations, O2HB_LIVE_THRESHOLD + 1);
1316
1317	hb_task = kthread_run(o2hb_thread, reg, "o2hb-%s",
1318			      reg->hr_item.ci_name);
1319	if (IS_ERR(hb_task)) {
1320		ret = PTR_ERR(hb_task);
1321		mlog_errno(ret);
1322		goto out;
1323	}
1324
1325	spin_lock(&o2hb_live_lock);
1326	reg->hr_task = hb_task;
1327	spin_unlock(&o2hb_live_lock);
1328
1329	ret = wait_event_interruptible(o2hb_steady_queue,
1330				atomic_read(&reg->hr_steady_iterations) == 0);
1331	if (ret) {
1332		spin_lock(&o2hb_live_lock);
1333		hb_task = reg->hr_task;
1334		reg->hr_task = NULL;
1335		spin_unlock(&o2hb_live_lock);
1336
1337		if (hb_task)
1338			kthread_stop(hb_task);
1339		goto out;
1340	}
1341
1342	ret = count;
1343out:
1344	if (filp)
1345		fput(filp);
1346	if (inode)
1347		iput(inode);
1348	if (ret < 0) {
1349		if (reg->hr_bdev) {
1350			blkdev_put(reg->hr_bdev);
1351			reg->hr_bdev = NULL;
1352		}
1353	}
1354	return ret;
1355}
1356
1357static ssize_t o2hb_region_pid_read(struct o2hb_region *reg,
1358                                      char *page)
1359{
1360	pid_t pid = 0;
1361
1362	spin_lock(&o2hb_live_lock);
1363	if (reg->hr_task)
1364		pid = reg->hr_task->pid;
1365	spin_unlock(&o2hb_live_lock);
1366
1367	if (!pid)
1368		return 0;
1369
1370	return sprintf(page, "%u\n", pid);
1371}
1372
1373struct o2hb_region_attribute {
1374	struct configfs_attribute attr;
1375	ssize_t (*show)(struct o2hb_region *, char *);
1376	ssize_t (*store)(struct o2hb_region *, const char *, size_t);
1377};
1378
1379static struct o2hb_region_attribute o2hb_region_attr_block_bytes = {
1380	.attr	= { .ca_owner = THIS_MODULE,
1381		    .ca_name = "block_bytes",
1382		    .ca_mode = S_IRUGO | S_IWUSR },
1383	.show	= o2hb_region_block_bytes_read,
1384	.store	= o2hb_region_block_bytes_write,
1385};
1386
1387static struct o2hb_region_attribute o2hb_region_attr_start_block = {
1388	.attr	= { .ca_owner = THIS_MODULE,
1389		    .ca_name = "start_block",
1390		    .ca_mode = S_IRUGO | S_IWUSR },
1391	.show	= o2hb_region_start_block_read,
1392	.store	= o2hb_region_start_block_write,
1393};
1394
1395static struct o2hb_region_attribute o2hb_region_attr_blocks = {
1396	.attr	= { .ca_owner = THIS_MODULE,
1397		    .ca_name = "blocks",
1398		    .ca_mode = S_IRUGO | S_IWUSR },
1399	.show	= o2hb_region_blocks_read,
1400	.store	= o2hb_region_blocks_write,
1401};
1402
1403static struct o2hb_region_attribute o2hb_region_attr_dev = {
1404	.attr	= { .ca_owner = THIS_MODULE,
1405		    .ca_name = "dev",
1406		    .ca_mode = S_IRUGO | S_IWUSR },
1407	.show	= o2hb_region_dev_read,
1408	.store	= o2hb_region_dev_write,
1409};
1410
1411static struct o2hb_region_attribute o2hb_region_attr_pid = {
1412       .attr   = { .ca_owner = THIS_MODULE,
1413                   .ca_name = "pid",
1414                   .ca_mode = S_IRUGO | S_IRUSR },
1415       .show   = o2hb_region_pid_read,
1416};
1417
1418static struct configfs_attribute *o2hb_region_attrs[] = {
1419	&o2hb_region_attr_block_bytes.attr,
1420	&o2hb_region_attr_start_block.attr,
1421	&o2hb_region_attr_blocks.attr,
1422	&o2hb_region_attr_dev.attr,
1423	&o2hb_region_attr_pid.attr,
1424	NULL,
1425};
1426
1427static ssize_t o2hb_region_show(struct config_item *item,
1428				struct configfs_attribute *attr,
1429				char *page)
1430{
1431	struct o2hb_region *reg = to_o2hb_region(item);
1432	struct o2hb_region_attribute *o2hb_region_attr =
1433		container_of(attr, struct o2hb_region_attribute, attr);
1434	ssize_t ret = 0;
1435
1436	if (o2hb_region_attr->show)
1437		ret = o2hb_region_attr->show(reg, page);
1438	return ret;
1439}
1440
1441static ssize_t o2hb_region_store(struct config_item *item,
1442				 struct configfs_attribute *attr,
1443				 const char *page, size_t count)
1444{
1445	struct o2hb_region *reg = to_o2hb_region(item);
1446	struct o2hb_region_attribute *o2hb_region_attr =
1447		container_of(attr, struct o2hb_region_attribute, attr);
1448	ssize_t ret = -EINVAL;
1449
1450	if (o2hb_region_attr->store)
1451		ret = o2hb_region_attr->store(reg, page, count);
1452	return ret;
1453}
1454
1455static struct configfs_item_operations o2hb_region_item_ops = {
1456	.release		= o2hb_region_release,
1457	.show_attribute		= o2hb_region_show,
1458	.store_attribute	= o2hb_region_store,
1459};
1460
1461static struct config_item_type o2hb_region_type = {
1462	.ct_item_ops	= &o2hb_region_item_ops,
1463	.ct_attrs	= o2hb_region_attrs,
1464	.ct_owner	= THIS_MODULE,
1465};
1466
1467/* heartbeat set */
1468
1469struct o2hb_heartbeat_group {
1470	struct config_group hs_group;
1471	/* some stuff? */
1472};
1473
1474static struct o2hb_heartbeat_group *to_o2hb_heartbeat_group(struct config_group *group)
1475{
1476	return group ?
1477		container_of(group, struct o2hb_heartbeat_group, hs_group)
1478		: NULL;
1479}
1480
1481static struct config_item *o2hb_heartbeat_group_make_item(struct config_group *group,
1482							  const char *name)
1483{
1484	struct o2hb_region *reg = NULL;
1485	struct config_item *ret = NULL;
1486
1487	reg = kzalloc(sizeof(struct o2hb_region), GFP_KERNEL);
1488	if (reg == NULL)
1489		goto out; /* ENOMEM */
1490
1491	config_item_init_type_name(&reg->hr_item, name, &o2hb_region_type);
1492
1493	ret = &reg->hr_item;
1494
1495	spin_lock(&o2hb_live_lock);
1496	list_add_tail(&reg->hr_all_item, &o2hb_all_regions);
1497	spin_unlock(&o2hb_live_lock);
1498out:
1499	if (ret == NULL)
1500		kfree(reg);
1501
1502	return ret;
1503}
1504
1505static void o2hb_heartbeat_group_drop_item(struct config_group *group,
1506					   struct config_item *item)
1507{
1508	struct task_struct *hb_task;
1509	struct o2hb_region *reg = to_o2hb_region(item);
1510
1511	/* stop the thread when the user removes the region dir */
1512	spin_lock(&o2hb_live_lock);
1513	hb_task = reg->hr_task;
1514	reg->hr_task = NULL;
1515	spin_unlock(&o2hb_live_lock);
1516
1517	if (hb_task)
1518		kthread_stop(hb_task);
1519
1520	config_item_put(item);
1521}
1522
1523struct o2hb_heartbeat_group_attribute {
1524	struct configfs_attribute attr;
1525	ssize_t (*show)(struct o2hb_heartbeat_group *, char *);
1526	ssize_t (*store)(struct o2hb_heartbeat_group *, const char *, size_t);
1527};
1528
1529static ssize_t o2hb_heartbeat_group_show(struct config_item *item,
1530					 struct configfs_attribute *attr,
1531					 char *page)
1532{
1533	struct o2hb_heartbeat_group *reg = to_o2hb_heartbeat_group(to_config_group(item));
1534	struct o2hb_heartbeat_group_attribute *o2hb_heartbeat_group_attr =
1535		container_of(attr, struct o2hb_heartbeat_group_attribute, attr);
1536	ssize_t ret = 0;
1537
1538	if (o2hb_heartbeat_group_attr->show)
1539		ret = o2hb_heartbeat_group_attr->show(reg, page);
1540	return ret;
1541}
1542
1543static ssize_t o2hb_heartbeat_group_store(struct config_item *item,
1544					  struct configfs_attribute *attr,
1545					  const char *page, size_t count)
1546{
1547	struct o2hb_heartbeat_group *reg = to_o2hb_heartbeat_group(to_config_group(item));
1548	struct o2hb_heartbeat_group_attribute *o2hb_heartbeat_group_attr =
1549		container_of(attr, struct o2hb_heartbeat_group_attribute, attr);
1550	ssize_t ret = -EINVAL;
1551
1552	if (o2hb_heartbeat_group_attr->store)
1553		ret = o2hb_heartbeat_group_attr->store(reg, page, count);
1554	return ret;
1555}
1556
1557static ssize_t o2hb_heartbeat_group_threshold_show(struct o2hb_heartbeat_group *group,
1558						     char *page)
1559{
1560	return sprintf(page, "%u\n", o2hb_dead_threshold);
1561}
1562
1563static ssize_t o2hb_heartbeat_group_threshold_store(struct o2hb_heartbeat_group *group,
1564						    const char *page,
1565						    size_t count)
1566{
1567	unsigned long tmp;
1568	char *p = (char *)page;
1569
1570	tmp = simple_strtoul(p, &p, 10);
1571	if (!p || (*p && (*p != '\n')))
1572                return -EINVAL;
1573
1574	/* this will validate ranges for us. */
1575	o2hb_dead_threshold_set((unsigned int) tmp);
1576
1577	return count;
1578}
1579
1580static struct o2hb_heartbeat_group_attribute o2hb_heartbeat_group_attr_threshold = {
1581	.attr	= { .ca_owner = THIS_MODULE,
1582		    .ca_name = "dead_threshold",
1583		    .ca_mode = S_IRUGO | S_IWUSR },
1584	.show	= o2hb_heartbeat_group_threshold_show,
1585	.store	= o2hb_heartbeat_group_threshold_store,
1586};
1587
1588static struct configfs_attribute *o2hb_heartbeat_group_attrs[] = {
1589	&o2hb_heartbeat_group_attr_threshold.attr,
1590	NULL,
1591};
1592
1593static struct configfs_item_operations o2hb_hearbeat_group_item_ops = {
1594	.show_attribute		= o2hb_heartbeat_group_show,
1595	.store_attribute	= o2hb_heartbeat_group_store,
1596};
1597
1598static struct configfs_group_operations o2hb_heartbeat_group_group_ops = {
1599	.make_item	= o2hb_heartbeat_group_make_item,
1600	.drop_item	= o2hb_heartbeat_group_drop_item,
1601};
1602
1603static struct config_item_type o2hb_heartbeat_group_type = {
1604	.ct_group_ops	= &o2hb_heartbeat_group_group_ops,
1605	.ct_item_ops	= &o2hb_hearbeat_group_item_ops,
1606	.ct_attrs	= o2hb_heartbeat_group_attrs,
1607	.ct_owner	= THIS_MODULE,
1608};
1609
1610/* this is just here to avoid touching group in heartbeat.h which the
1611 * entire damn world #includes */
1612struct config_group *o2hb_alloc_hb_set(void)
1613{
1614	struct o2hb_heartbeat_group *hs = NULL;
1615	struct config_group *ret = NULL;
1616
1617	hs = kzalloc(sizeof(struct o2hb_heartbeat_group), GFP_KERNEL);
1618	if (hs == NULL)
1619		goto out;
1620
1621	config_group_init_type_name(&hs->hs_group, "heartbeat",
1622				    &o2hb_heartbeat_group_type);
1623
1624	ret = &hs->hs_group;
1625out:
1626	if (ret == NULL)
1627		kfree(hs);
1628	return ret;
1629}
1630
1631void o2hb_free_hb_set(struct config_group *group)
1632{
1633	struct o2hb_heartbeat_group *hs = to_o2hb_heartbeat_group(group);
1634	kfree(hs);
1635}
1636
1637/* hb callback registration and issueing */
1638
1639static struct o2hb_callback *hbcall_from_type(enum o2hb_callback_type type)
1640{
1641	if (type == O2HB_NUM_CB)
1642		return ERR_PTR(-EINVAL);
1643
1644	return &o2hb_callbacks[type];
1645}
1646
1647void o2hb_setup_callback(struct o2hb_callback_func *hc,
1648			 enum o2hb_callback_type type,
1649			 o2hb_cb_func *func,
1650			 void *data,
1651			 int priority)
1652{
1653	INIT_LIST_HEAD(&hc->hc_item);
1654	hc->hc_func = func;
1655	hc->hc_data = data;
1656	hc->hc_priority = priority;
1657	hc->hc_type = type;
1658	hc->hc_magic = O2HB_CB_MAGIC;
1659}
1660EXPORT_SYMBOL_GPL(o2hb_setup_callback);
1661
1662int o2hb_register_callback(struct o2hb_callback_func *hc)
1663{
1664	struct o2hb_callback_func *tmp;
1665	struct list_head *iter;
1666	struct o2hb_callback *hbcall;
1667	int ret;
1668
1669	BUG_ON(hc->hc_magic != O2HB_CB_MAGIC);
1670	BUG_ON(!list_empty(&hc->hc_item));
1671
1672	hbcall = hbcall_from_type(hc->hc_type);
1673	if (IS_ERR(hbcall)) {
1674		ret = PTR_ERR(hbcall);
1675		goto out;
1676	}
1677
1678	down_write(&o2hb_callback_sem);
1679
1680	list_for_each(iter, &hbcall->list) {
1681		tmp = list_entry(iter, struct o2hb_callback_func, hc_item);
1682		if (hc->hc_priority < tmp->hc_priority) {
1683			list_add_tail(&hc->hc_item, iter);
1684			break;
1685		}
1686	}
1687	if (list_empty(&hc->hc_item))
1688		list_add_tail(&hc->hc_item, &hbcall->list);
1689
1690	up_write(&o2hb_callback_sem);
1691	ret = 0;
1692out:
1693	mlog(ML_HEARTBEAT, "returning %d on behalf of %p for funcs %p\n",
1694	     ret, __builtin_return_address(0), hc);
1695	return ret;
1696}
1697EXPORT_SYMBOL_GPL(o2hb_register_callback);
1698
1699void o2hb_unregister_callback(struct o2hb_callback_func *hc)
1700{
1701	BUG_ON(hc->hc_magic != O2HB_CB_MAGIC);
1702
1703	mlog(ML_HEARTBEAT, "on behalf of %p for funcs %p\n",
1704	     __builtin_return_address(0), hc);
1705
1706	if (list_empty(&hc->hc_item))
1707		return;
1708
1709	down_write(&o2hb_callback_sem);
1710
1711	list_del_init(&hc->hc_item);
1712
1713	up_write(&o2hb_callback_sem);
1714}
1715EXPORT_SYMBOL_GPL(o2hb_unregister_callback);
1716
1717int o2hb_check_node_heartbeating(u8 node_num)
1718{
1719	unsigned long testing_map[BITS_TO_LONGS(O2NM_MAX_NODES)];
1720
1721	o2hb_fill_node_map(testing_map, sizeof(testing_map));
1722	if (!test_bit(node_num, testing_map)) {
1723		mlog(ML_HEARTBEAT,
1724		     "node (%u) does not have heartbeating enabled.\n",
1725		     node_num);
1726		return 0;
1727	}
1728
1729	return 1;
1730}
1731EXPORT_SYMBOL_GPL(o2hb_check_node_heartbeating);
1732
1733int o2hb_check_node_heartbeating_from_callback(u8 node_num)
1734{
1735	unsigned long testing_map[BITS_TO_LONGS(O2NM_MAX_NODES)];
1736
1737	o2hb_fill_node_map_from_callback(testing_map, sizeof(testing_map));
1738	if (!test_bit(node_num, testing_map)) {
1739		mlog(ML_HEARTBEAT,
1740		     "node (%u) does not have heartbeating enabled.\n",
1741		     node_num);
1742		return 0;
1743	}
1744
1745	return 1;
1746}
1747EXPORT_SYMBOL_GPL(o2hb_check_node_heartbeating_from_callback);
1748
1749/* Makes sure our local node is configured with a node number, and is
1750 * heartbeating. */
1751int o2hb_check_local_node_heartbeating(void)
1752{
1753	u8 node_num;
1754
1755	/* if this node was set then we have networking */
1756	node_num = o2nm_this_node();
1757	if (node_num == O2NM_MAX_NODES) {
1758		mlog(ML_HEARTBEAT, "this node has not been configured.\n");
1759		return 0;
1760	}
1761
1762	return o2hb_check_node_heartbeating(node_num);
1763}
1764EXPORT_SYMBOL_GPL(o2hb_check_local_node_heartbeating);
1765
1766/*
1767 * this is just a hack until we get the plumbing which flips file systems
1768 * read only and drops the hb ref instead of killing the node dead.
1769 */
1770void o2hb_stop_all_regions(void)
1771{
1772	struct o2hb_region *reg;
1773
1774	mlog(ML_ERROR, "stopping heartbeat on all active regions.\n");
1775
1776	spin_lock(&o2hb_live_lock);
1777
1778	list_for_each_entry(reg, &o2hb_all_regions, hr_all_item)
1779		reg->hr_unclean_stop = 1;
1780
1781	spin_unlock(&o2hb_live_lock);
1782}
1783EXPORT_SYMBOL_GPL(o2hb_stop_all_regions);
1784