1/*
2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9#include <linux/err.h>
10#include <linux/module.h>
11#include <linux/init.h>
12#include <linux/kernel.h>
13#include <linux/bio.h>
14#include <linux/blkdev.h>
15#include <linux/mempool.h>
16#include <linux/slab.h>
17#include <linux/crypto.h>
18#include <linux/workqueue.h>
19#include <linux/backing-dev.h>
20#include <asm/atomic.h>
21#include <linux/scatterlist.h>
22#include <asm/page.h>
23#include <asm/unaligned.h>
24
25#include "dm.h"
26
27#define DM_MSG_PREFIX "crypt"
28#define MESG_STR(x) x, sizeof(x)
29
30/*
31 * per bio private data
32 */
33struct crypt_io {
34	struct dm_target *target;
35	struct bio *base_bio;
36	struct work_struct work;
37	atomic_t pending;
38	int error;
39	int post_process;
40};
41
42/*
43 * context holding the current state of a multi-part conversion
44 */
45struct convert_context {
46	struct bio *bio_in;
47	struct bio *bio_out;
48	unsigned int offset_in;
49	unsigned int offset_out;
50	unsigned int idx_in;
51	unsigned int idx_out;
52	sector_t sector;
53	int write;
54};
55
56struct crypt_config;
57
58struct crypt_iv_operations {
59	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
60	           const char *opts);
61	void (*dtr)(struct crypt_config *cc);
62	const char *(*status)(struct crypt_config *cc);
63	int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector);
64};
65
66/*
67 * Crypt: maps a linear range of a block device
68 * and encrypts / decrypts at the same time.
69 */
70enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
71struct crypt_config {
72	struct dm_dev *dev;
73	sector_t start;
74
75	/*
76	 * pool for per bio private data and
77	 * for encryption buffer pages
78	 */
79	mempool_t *io_pool;
80	mempool_t *page_pool;
81	struct bio_set *bs;
82
83	/*
84	 * crypto related data
85	 */
86	struct crypt_iv_operations *iv_gen_ops;
87	char *iv_mode;
88	union {
89		struct crypto_cipher *essiv_tfm;
90		int benbi_shift;
91	} iv_gen_private;
92	sector_t iv_offset;
93	unsigned int iv_size;
94
95	char cipher[CRYPTO_MAX_ALG_NAME];
96	char chainmode[CRYPTO_MAX_ALG_NAME];
97	struct crypto_blkcipher *tfm;
98	unsigned long flags;
99	unsigned int key_size;
100	u8 key[0];
101};
102
103#define MIN_IOS        16
104#define MIN_POOL_PAGES 32
105#define MIN_BIO_PAGES  8
106
107static struct kmem_cache *_crypt_io_pool;
108
109static void clone_init(struct crypt_io *, struct bio *);
110
111/*
112 * Different IV generation algorithms:
113 *
114 * plain: the initial vector is the 32-bit little-endian version of the sector
115 *        number, padded with zeros if neccessary.
116 *
117 * essiv: "encrypted sector|salt initial vector", the sector number is
118 *        encrypted with the bulk cipher using a salt as key. The salt
119 *        should be derived from the bulk cipher's key via hashing.
120 *
121 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
122 *        (needed for LRW-32-AES and possible other narrow block modes)
123 *
124 * null: the initial vector is always zero.  Provides compatibility with
125 *       obsolete loop_fish2 devices.  Do not use for new devices.
126 *
127 * plumb: unimplemented, see:
128 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
129 */
130
131static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
132{
133	memset(iv, 0, cc->iv_size);
134	*(u32 *)iv = cpu_to_le32(sector & 0xffffffff);
135
136	return 0;
137}
138
139static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
140	                      const char *opts)
141{
142	struct crypto_cipher *essiv_tfm;
143	struct crypto_hash *hash_tfm;
144	struct hash_desc desc;
145	struct scatterlist sg;
146	unsigned int saltsize;
147	u8 *salt;
148	int err;
149
150	if (opts == NULL) {
151		ti->error = "Digest algorithm missing for ESSIV mode";
152		return -EINVAL;
153	}
154
155	/* Hash the cipher key with the given hash algorithm */
156	hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
157	if (IS_ERR(hash_tfm)) {
158		ti->error = "Error initializing ESSIV hash";
159		return PTR_ERR(hash_tfm);
160	}
161
162	saltsize = crypto_hash_digestsize(hash_tfm);
163	salt = kmalloc(saltsize, GFP_KERNEL);
164	if (salt == NULL) {
165		ti->error = "Error kmallocing salt storage in ESSIV";
166		crypto_free_hash(hash_tfm);
167		return -ENOMEM;
168	}
169
170	sg_set_buf(&sg, cc->key, cc->key_size);
171	desc.tfm = hash_tfm;
172	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
173	err = crypto_hash_digest(&desc, &sg, cc->key_size, salt);
174	crypto_free_hash(hash_tfm);
175
176	if (err) {
177		ti->error = "Error calculating hash in ESSIV";
178		return err;
179	}
180
181	/* Setup the essiv_tfm with the given salt */
182	essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
183	if (IS_ERR(essiv_tfm)) {
184		ti->error = "Error allocating crypto tfm for ESSIV";
185		kfree(salt);
186		return PTR_ERR(essiv_tfm);
187	}
188	if (crypto_cipher_blocksize(essiv_tfm) !=
189	    crypto_blkcipher_ivsize(cc->tfm)) {
190		ti->error = "Block size of ESSIV cipher does "
191			        "not match IV size of block cipher";
192		crypto_free_cipher(essiv_tfm);
193		kfree(salt);
194		return -EINVAL;
195	}
196	err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
197	if (err) {
198		ti->error = "Failed to set key for ESSIV cipher";
199		crypto_free_cipher(essiv_tfm);
200		kfree(salt);
201		return err;
202	}
203	kfree(salt);
204
205	cc->iv_gen_private.essiv_tfm = essiv_tfm;
206	return 0;
207}
208
209static void crypt_iv_essiv_dtr(struct crypt_config *cc)
210{
211	crypto_free_cipher(cc->iv_gen_private.essiv_tfm);
212	cc->iv_gen_private.essiv_tfm = NULL;
213}
214
215static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
216{
217	memset(iv, 0, cc->iv_size);
218	*(u64 *)iv = cpu_to_le64(sector);
219	crypto_cipher_encrypt_one(cc->iv_gen_private.essiv_tfm, iv, iv);
220	return 0;
221}
222
223static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
224			      const char *opts)
225{
226	unsigned int bs = crypto_blkcipher_blocksize(cc->tfm);
227	int log = ilog2(bs);
228
229	/* we need to calculate how far we must shift the sector count
230	 * to get the cipher block count, we use this shift in _gen */
231
232	if (1 << log != bs) {
233		ti->error = "cypher blocksize is not a power of 2";
234		return -EINVAL;
235	}
236
237	if (log > 9) {
238		ti->error = "cypher blocksize is > 512";
239		return -EINVAL;
240	}
241
242	cc->iv_gen_private.benbi_shift = 9 - log;
243
244	return 0;
245}
246
247static void crypt_iv_benbi_dtr(struct crypt_config *cc)
248{
249}
250
251static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
252{
253	__be64 val;
254
255	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
256
257	val = cpu_to_be64(((u64)sector << cc->iv_gen_private.benbi_shift) + 1);
258	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
259
260	return 0;
261}
262
263static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
264{
265	memset(iv, 0, cc->iv_size);
266
267	return 0;
268}
269
270static struct crypt_iv_operations crypt_iv_plain_ops = {
271	.generator = crypt_iv_plain_gen
272};
273
274static struct crypt_iv_operations crypt_iv_essiv_ops = {
275	.ctr       = crypt_iv_essiv_ctr,
276	.dtr       = crypt_iv_essiv_dtr,
277	.generator = crypt_iv_essiv_gen
278};
279
280static struct crypt_iv_operations crypt_iv_benbi_ops = {
281	.ctr	   = crypt_iv_benbi_ctr,
282	.dtr	   = crypt_iv_benbi_dtr,
283	.generator = crypt_iv_benbi_gen
284};
285
286static struct crypt_iv_operations crypt_iv_null_ops = {
287	.generator = crypt_iv_null_gen
288};
289
290static int
291crypt_convert_scatterlist(struct crypt_config *cc, struct scatterlist *out,
292                          struct scatterlist *in, unsigned int length,
293                          int write, sector_t sector)
294{
295	u8 iv[cc->iv_size] __attribute__ ((aligned(__alignof__(u64))));
296	struct blkcipher_desc desc = {
297		.tfm = cc->tfm,
298		.info = iv,
299		.flags = CRYPTO_TFM_REQ_MAY_SLEEP,
300	};
301	int r;
302
303	if (cc->iv_gen_ops) {
304		r = cc->iv_gen_ops->generator(cc, iv, sector);
305		if (r < 0)
306			return r;
307
308		if (write)
309			r = crypto_blkcipher_encrypt_iv(&desc, out, in, length);
310		else
311			r = crypto_blkcipher_decrypt_iv(&desc, out, in, length);
312	} else {
313		if (write)
314			r = crypto_blkcipher_encrypt(&desc, out, in, length);
315		else
316			r = crypto_blkcipher_decrypt(&desc, out, in, length);
317	}
318
319	return r;
320}
321
322static void
323crypt_convert_init(struct crypt_config *cc, struct convert_context *ctx,
324                   struct bio *bio_out, struct bio *bio_in,
325                   sector_t sector, int write)
326{
327	ctx->bio_in = bio_in;
328	ctx->bio_out = bio_out;
329	ctx->offset_in = 0;
330	ctx->offset_out = 0;
331	ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
332	ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
333	ctx->sector = sector + cc->iv_offset;
334	ctx->write = write;
335}
336
337/*
338 * Encrypt / decrypt data from one bio to another one (can be the same one)
339 */
340static int crypt_convert(struct crypt_config *cc,
341                         struct convert_context *ctx)
342{
343	int r = 0;
344
345	while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
346	      ctx->idx_out < ctx->bio_out->bi_vcnt) {
347		struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
348		struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
349		struct scatterlist sg_in = {
350			.page = bv_in->bv_page,
351			.offset = bv_in->bv_offset + ctx->offset_in,
352			.length = 1 << SECTOR_SHIFT
353		};
354		struct scatterlist sg_out = {
355			.page = bv_out->bv_page,
356			.offset = bv_out->bv_offset + ctx->offset_out,
357			.length = 1 << SECTOR_SHIFT
358		};
359
360		ctx->offset_in += sg_in.length;
361		if (ctx->offset_in >= bv_in->bv_len) {
362			ctx->offset_in = 0;
363			ctx->idx_in++;
364		}
365
366		ctx->offset_out += sg_out.length;
367		if (ctx->offset_out >= bv_out->bv_len) {
368			ctx->offset_out = 0;
369			ctx->idx_out++;
370		}
371
372		r = crypt_convert_scatterlist(cc, &sg_out, &sg_in, sg_in.length,
373		                              ctx->write, ctx->sector);
374		if (r < 0)
375			break;
376
377		ctx->sector++;
378	}
379
380	return r;
381}
382
383 static void dm_crypt_bio_destructor(struct bio *bio)
384 {
385	struct crypt_io *io = bio->bi_private;
386	struct crypt_config *cc = io->target->private;
387
388	bio_free(bio, cc->bs);
389 }
390
391/*
392 * Generate a new unfragmented bio with the given size
393 * This should never violate the device limitations
394 * May return a smaller bio when running out of pages
395 */
396static struct bio *crypt_alloc_buffer(struct crypt_io *io, unsigned int size)
397{
398	struct crypt_config *cc = io->target->private;
399	struct bio *clone;
400	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
401	gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
402	unsigned int i;
403
404	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
405	if (!clone)
406		return NULL;
407
408	clone_init(io, clone);
409
410	for (i = 0; i < nr_iovecs; i++) {
411		struct bio_vec *bv = bio_iovec_idx(clone, i);
412
413		bv->bv_page = mempool_alloc(cc->page_pool, gfp_mask);
414		if (!bv->bv_page)
415			break;
416
417		/*
418		 * if additional pages cannot be allocated without waiting,
419		 * return a partially allocated bio, the caller will then try
420		 * to allocate additional bios while submitting this partial bio
421		 */
422		if (i == (MIN_BIO_PAGES - 1))
423			gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
424
425		bv->bv_offset = 0;
426		if (size > PAGE_SIZE)
427			bv->bv_len = PAGE_SIZE;
428		else
429			bv->bv_len = size;
430
431		clone->bi_size += bv->bv_len;
432		clone->bi_vcnt++;
433		size -= bv->bv_len;
434	}
435
436	if (!clone->bi_size) {
437		bio_put(clone);
438		return NULL;
439	}
440
441	return clone;
442}
443
444static void crypt_free_buffer_pages(struct crypt_config *cc,
445                                    struct bio *clone, unsigned int bytes)
446{
447	unsigned int i, start, end;
448	struct bio_vec *bv;
449
450	/*
451	 * This is ugly, but Jens Axboe thinks that using bi_idx in the
452	 * endio function is too dangerous at the moment, so I calculate the
453	 * correct position using bi_vcnt and bi_size.
454	 * The bv_offset and bv_len fields might already be modified but we
455	 * know that we always allocated whole pages.
456	 * A fix to the bi_idx issue in the kernel is in the works, so
457	 * we will hopefully be able to revert to the cleaner solution soon.
458	 */
459	i = clone->bi_vcnt - 1;
460	bv = bio_iovec_idx(clone, i);
461	end = (i << PAGE_SHIFT) + (bv->bv_offset + bv->bv_len) - clone->bi_size;
462	start = end - bytes;
463
464	start >>= PAGE_SHIFT;
465	if (!clone->bi_size)
466		end = clone->bi_vcnt;
467	else
468		end >>= PAGE_SHIFT;
469
470	for (i = start; i < end; i++) {
471		bv = bio_iovec_idx(clone, i);
472		BUG_ON(!bv->bv_page);
473		mempool_free(bv->bv_page, cc->page_pool);
474		bv->bv_page = NULL;
475	}
476}
477
478/*
479 * One of the bios was finished. Check for completion of
480 * the whole request and correctly clean up the buffer.
481 */
482static void dec_pending(struct crypt_io *io, int error)
483{
484	struct crypt_config *cc = (struct crypt_config *) io->target->private;
485
486	if (error < 0)
487		io->error = error;
488
489	if (!atomic_dec_and_test(&io->pending))
490		return;
491
492	bio_endio(io->base_bio, io->base_bio->bi_size, io->error);
493
494	mempool_free(io, cc->io_pool);
495}
496
497/*
498 * kcryptd:
499 *
500 * Needed because it would be very unwise to do decryption in an
501 * interrupt context.
502 */
503static struct workqueue_struct *_kcryptd_workqueue;
504static void kcryptd_do_work(struct work_struct *work);
505
506static void kcryptd_queue_io(struct crypt_io *io)
507{
508	INIT_WORK(&io->work, kcryptd_do_work);
509	queue_work(_kcryptd_workqueue, &io->work);
510}
511
512static int crypt_endio(struct bio *clone, unsigned int done, int error)
513{
514	struct crypt_io *io = clone->bi_private;
515	struct crypt_config *cc = io->target->private;
516	unsigned read_io = bio_data_dir(clone) == READ;
517
518	/*
519	 * free the processed pages, even if
520	 * it's only a partially completed write
521	 */
522	if (!read_io)
523		crypt_free_buffer_pages(cc, clone, done);
524
525	/* keep going - not finished yet */
526	if (unlikely(clone->bi_size))
527		return 1;
528
529	if (!read_io)
530		goto out;
531
532	if (unlikely(!bio_flagged(clone, BIO_UPTODATE))) {
533		error = -EIO;
534		goto out;
535	}
536
537	bio_put(clone);
538	io->post_process = 1;
539	kcryptd_queue_io(io);
540	return 0;
541
542out:
543	bio_put(clone);
544	dec_pending(io, error);
545	return error;
546}
547
548static void clone_init(struct crypt_io *io, struct bio *clone)
549{
550	struct crypt_config *cc = io->target->private;
551
552	clone->bi_private = io;
553	clone->bi_end_io  = crypt_endio;
554	clone->bi_bdev    = cc->dev->bdev;
555	clone->bi_rw      = io->base_bio->bi_rw;
556	clone->bi_destructor = dm_crypt_bio_destructor;
557}
558
559static void process_read(struct crypt_io *io)
560{
561	struct crypt_config *cc = io->target->private;
562	struct bio *base_bio = io->base_bio;
563	struct bio *clone;
564	sector_t sector = base_bio->bi_sector - io->target->begin;
565
566	atomic_inc(&io->pending);
567
568	/*
569	 * The block layer might modify the bvec array, so always
570	 * copy the required bvecs because we need the original
571	 * one in order to decrypt the whole bio data *afterwards*.
572	 */
573	clone = bio_alloc_bioset(GFP_NOIO, bio_segments(base_bio), cc->bs);
574	if (unlikely(!clone)) {
575		dec_pending(io, -ENOMEM);
576		return;
577	}
578
579	clone_init(io, clone);
580	clone->bi_idx = 0;
581	clone->bi_vcnt = bio_segments(base_bio);
582	clone->bi_size = base_bio->bi_size;
583	clone->bi_sector = cc->start + sector;
584	memcpy(clone->bi_io_vec, bio_iovec(base_bio),
585	       sizeof(struct bio_vec) * clone->bi_vcnt);
586
587	generic_make_request(clone);
588}
589
590static void process_write(struct crypt_io *io)
591{
592	struct crypt_config *cc = io->target->private;
593	struct bio *base_bio = io->base_bio;
594	struct bio *clone;
595	struct convert_context ctx;
596	unsigned remaining = base_bio->bi_size;
597	sector_t sector = base_bio->bi_sector - io->target->begin;
598
599	atomic_inc(&io->pending);
600
601	crypt_convert_init(cc, &ctx, NULL, base_bio, sector, 1);
602
603	/*
604	 * The allocated buffers can be smaller than the whole bio,
605	 * so repeat the whole process until all the data can be handled.
606	 */
607	while (remaining) {
608		clone = crypt_alloc_buffer(io, remaining);
609		if (unlikely(!clone)) {
610			dec_pending(io, -ENOMEM);
611			return;
612		}
613
614		ctx.bio_out = clone;
615		ctx.idx_out = 0;
616
617		if (unlikely(crypt_convert(cc, &ctx) < 0)) {
618			crypt_free_buffer_pages(cc, clone, clone->bi_size);
619			bio_put(clone);
620			dec_pending(io, -EIO);
621			return;
622		}
623
624		/* crypt_convert should have filled the clone bio */
625		BUG_ON(ctx.idx_out < clone->bi_vcnt);
626
627		clone->bi_sector = cc->start + sector;
628		remaining -= clone->bi_size;
629		sector += bio_sectors(clone);
630
631		/* Grab another reference to the io struct
632		 * before we kick off the request */
633		if (remaining)
634			atomic_inc(&io->pending);
635
636		generic_make_request(clone);
637
638		/* Do not reference clone after this - it
639		 * may be gone already. */
640
641		/* out of memory -> run queues */
642		if (remaining)
643			congestion_wait(WRITE, HZ/100);
644	}
645}
646
647static void process_read_endio(struct crypt_io *io)
648{
649	struct crypt_config *cc = io->target->private;
650	struct convert_context ctx;
651
652	crypt_convert_init(cc, &ctx, io->base_bio, io->base_bio,
653			   io->base_bio->bi_sector - io->target->begin, 0);
654
655	dec_pending(io, crypt_convert(cc, &ctx));
656}
657
658static void kcryptd_do_work(struct work_struct *work)
659{
660	struct crypt_io *io = container_of(work, struct crypt_io, work);
661
662	if (io->post_process)
663		process_read_endio(io);
664	else if (bio_data_dir(io->base_bio) == READ)
665		process_read(io);
666	else
667		process_write(io);
668}
669
670/*
671 * Decode key from its hex representation
672 */
673static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
674{
675	char buffer[3];
676	char *endp;
677	unsigned int i;
678
679	buffer[2] = '\0';
680
681	for (i = 0; i < size; i++) {
682		buffer[0] = *hex++;
683		buffer[1] = *hex++;
684
685		key[i] = (u8)simple_strtoul(buffer, &endp, 16);
686
687		if (endp != &buffer[2])
688			return -EINVAL;
689	}
690
691	if (*hex != '\0')
692		return -EINVAL;
693
694	return 0;
695}
696
697/*
698 * Encode key into its hex representation
699 */
700static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
701{
702	unsigned int i;
703
704	for (i = 0; i < size; i++) {
705		sprintf(hex, "%02x", *key);
706		hex += 2;
707		key++;
708	}
709}
710
711static int crypt_set_key(struct crypt_config *cc, char *key)
712{
713	unsigned key_size = strlen(key) >> 1;
714
715	if (cc->key_size && cc->key_size != key_size)
716		return -EINVAL;
717
718	cc->key_size = key_size; /* initial settings */
719
720	if ((!key_size && strcmp(key, "-")) ||
721	    (key_size && crypt_decode_key(cc->key, key, key_size) < 0))
722		return -EINVAL;
723
724	set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
725
726	return 0;
727}
728
729static int crypt_wipe_key(struct crypt_config *cc)
730{
731	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
732	memset(&cc->key, 0, cc->key_size * sizeof(u8));
733	return 0;
734}
735
736/*
737 * Construct an encryption mapping:
738 * <cipher> <key> <iv_offset> <dev_path> <start>
739 */
740static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
741{
742	struct crypt_config *cc;
743	struct crypto_blkcipher *tfm;
744	char *tmp;
745	char *cipher;
746	char *chainmode;
747	char *ivmode;
748	char *ivopts;
749	unsigned int key_size;
750	unsigned long long tmpll;
751
752	if (argc != 5) {
753		ti->error = "Not enough arguments";
754		return -EINVAL;
755	}
756
757	tmp = argv[0];
758	cipher = strsep(&tmp, "-");
759	chainmode = strsep(&tmp, "-");
760	ivopts = strsep(&tmp, "-");
761	ivmode = strsep(&ivopts, ":");
762
763	if (tmp)
764		DMWARN("Unexpected additional cipher options");
765
766	key_size = strlen(argv[1]) >> 1;
767
768 	cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
769	if (cc == NULL) {
770		ti->error =
771			"Cannot allocate transparent encryption context";
772		return -ENOMEM;
773	}
774
775 	if (crypt_set_key(cc, argv[1])) {
776		ti->error = "Error decoding key";
777		goto bad1;
778	}
779
780	/* Compatiblity mode for old dm-crypt cipher strings */
781	if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) {
782		chainmode = "cbc";
783		ivmode = "plain";
784	}
785
786	if (strcmp(chainmode, "ecb") && !ivmode) {
787		ti->error = "This chaining mode requires an IV mechanism";
788		goto bad1;
789	}
790
791	if (snprintf(cc->cipher, CRYPTO_MAX_ALG_NAME, "%s(%s)", chainmode,
792		     cipher) >= CRYPTO_MAX_ALG_NAME) {
793		ti->error = "Chain mode + cipher name is too long";
794		goto bad1;
795	}
796
797	tfm = crypto_alloc_blkcipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
798	if (IS_ERR(tfm)) {
799		ti->error = "Error allocating crypto tfm";
800		goto bad1;
801	}
802
803	strcpy(cc->cipher, cipher);
804	strcpy(cc->chainmode, chainmode);
805	cc->tfm = tfm;
806
807	/*
808	 * Choose ivmode. Valid modes: "plain", "essiv:<esshash>", "benbi".
809	 * See comments at iv code
810	 */
811
812	if (ivmode == NULL)
813		cc->iv_gen_ops = NULL;
814	else if (strcmp(ivmode, "plain") == 0)
815		cc->iv_gen_ops = &crypt_iv_plain_ops;
816	else if (strcmp(ivmode, "essiv") == 0)
817		cc->iv_gen_ops = &crypt_iv_essiv_ops;
818	else if (strcmp(ivmode, "benbi") == 0)
819		cc->iv_gen_ops = &crypt_iv_benbi_ops;
820	else if (strcmp(ivmode, "null") == 0)
821		cc->iv_gen_ops = &crypt_iv_null_ops;
822	else {
823		ti->error = "Invalid IV mode";
824		goto bad2;
825	}
826
827	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr &&
828	    cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0)
829		goto bad2;
830
831	cc->iv_size = crypto_blkcipher_ivsize(tfm);
832	if (cc->iv_size)
833		/* at least a 64 bit sector number should fit in our buffer */
834		cc->iv_size = max(cc->iv_size,
835		                  (unsigned int)(sizeof(u64) / sizeof(u8)));
836	else {
837		if (cc->iv_gen_ops) {
838			DMWARN("Selected cipher does not support IVs");
839			if (cc->iv_gen_ops->dtr)
840				cc->iv_gen_ops->dtr(cc);
841			cc->iv_gen_ops = NULL;
842		}
843	}
844
845	cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
846	if (!cc->io_pool) {
847		ti->error = "Cannot allocate crypt io mempool";
848		goto bad3;
849	}
850
851	cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
852	if (!cc->page_pool) {
853		ti->error = "Cannot allocate page mempool";
854		goto bad4;
855	}
856
857	cc->bs = bioset_create(MIN_IOS, MIN_IOS);
858	if (!cc->bs) {
859		ti->error = "Cannot allocate crypt bioset";
860		goto bad_bs;
861	}
862
863	if (crypto_blkcipher_setkey(tfm, cc->key, key_size) < 0) {
864		ti->error = "Error setting key";
865		goto bad5;
866	}
867
868	if (sscanf(argv[2], "%llu", &tmpll) != 1) {
869		ti->error = "Invalid iv_offset sector";
870		goto bad5;
871	}
872	cc->iv_offset = tmpll;
873
874	if (sscanf(argv[4], "%llu", &tmpll) != 1) {
875		ti->error = "Invalid device sector";
876		goto bad5;
877	}
878	cc->start = tmpll;
879
880	if (dm_get_device(ti, argv[3], cc->start, ti->len,
881	                  dm_table_get_mode(ti->table), &cc->dev)) {
882		ti->error = "Device lookup failed";
883		goto bad5;
884	}
885
886	if (ivmode && cc->iv_gen_ops) {
887		if (ivopts)
888			*(ivopts - 1) = ':';
889		cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL);
890		if (!cc->iv_mode) {
891			ti->error = "Error kmallocing iv_mode string";
892			goto bad5;
893		}
894		strcpy(cc->iv_mode, ivmode);
895	} else
896		cc->iv_mode = NULL;
897
898	ti->private = cc;
899	return 0;
900
901bad5:
902	bioset_free(cc->bs);
903bad_bs:
904	mempool_destroy(cc->page_pool);
905bad4:
906	mempool_destroy(cc->io_pool);
907bad3:
908	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
909		cc->iv_gen_ops->dtr(cc);
910bad2:
911	crypto_free_blkcipher(tfm);
912bad1:
913	/* Must zero key material before freeing */
914	memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
915	kfree(cc);
916	return -EINVAL;
917}
918
919static void crypt_dtr(struct dm_target *ti)
920{
921	struct crypt_config *cc = (struct crypt_config *) ti->private;
922
923	bioset_free(cc->bs);
924	mempool_destroy(cc->page_pool);
925	mempool_destroy(cc->io_pool);
926
927	kfree(cc->iv_mode);
928	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
929		cc->iv_gen_ops->dtr(cc);
930	crypto_free_blkcipher(cc->tfm);
931	dm_put_device(ti, cc->dev);
932
933	/* Must zero key material before freeing */
934	memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
935	kfree(cc);
936}
937
938static int crypt_map(struct dm_target *ti, struct bio *bio,
939		     union map_info *map_context)
940{
941	struct crypt_config *cc = ti->private;
942	struct crypt_io *io;
943
944	if (bio_barrier(bio))
945		return -EOPNOTSUPP;
946
947	io = mempool_alloc(cc->io_pool, GFP_NOIO);
948	io->target = ti;
949	io->base_bio = bio;
950	io->error = io->post_process = 0;
951	atomic_set(&io->pending, 0);
952	kcryptd_queue_io(io);
953
954	return DM_MAPIO_SUBMITTED;
955}
956
957static int crypt_status(struct dm_target *ti, status_type_t type,
958			char *result, unsigned int maxlen)
959{
960	struct crypt_config *cc = (struct crypt_config *) ti->private;
961	unsigned int sz = 0;
962
963	switch (type) {
964	case STATUSTYPE_INFO:
965		result[0] = '\0';
966		break;
967
968	case STATUSTYPE_TABLE:
969		if (cc->iv_mode)
970			DMEMIT("%s-%s-%s ", cc->cipher, cc->chainmode,
971			       cc->iv_mode);
972		else
973			DMEMIT("%s-%s ", cc->cipher, cc->chainmode);
974
975		if (cc->key_size > 0) {
976			if ((maxlen - sz) < ((cc->key_size << 1) + 1))
977				return -ENOMEM;
978
979			crypt_encode_key(result + sz, cc->key, cc->key_size);
980			sz += cc->key_size << 1;
981		} else {
982			if (sz >= maxlen)
983				return -ENOMEM;
984			result[sz++] = '-';
985		}
986
987		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
988				cc->dev->name, (unsigned long long)cc->start);
989		break;
990	}
991	return 0;
992}
993
994static void crypt_postsuspend(struct dm_target *ti)
995{
996	struct crypt_config *cc = ti->private;
997
998	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
999}
1000
1001static int crypt_preresume(struct dm_target *ti)
1002{
1003	struct crypt_config *cc = ti->private;
1004
1005	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1006		DMERR("aborting resume - crypt key is not set.");
1007		return -EAGAIN;
1008	}
1009
1010	return 0;
1011}
1012
1013static void crypt_resume(struct dm_target *ti)
1014{
1015	struct crypt_config *cc = ti->private;
1016
1017	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1018}
1019
1020/* Message interface
1021 *	key set <key>
1022 *	key wipe
1023 */
1024static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1025{
1026	struct crypt_config *cc = ti->private;
1027
1028	if (argc < 2)
1029		goto error;
1030
1031	if (!strnicmp(argv[0], MESG_STR("key"))) {
1032		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1033			DMWARN("not suspended during key manipulation.");
1034			return -EINVAL;
1035		}
1036		if (argc == 3 && !strnicmp(argv[1], MESG_STR("set")))
1037			return crypt_set_key(cc, argv[2]);
1038		if (argc == 2 && !strnicmp(argv[1], MESG_STR("wipe")))
1039			return crypt_wipe_key(cc);
1040	}
1041
1042error:
1043	DMWARN("unrecognised message received.");
1044	return -EINVAL;
1045}
1046
1047static struct target_type crypt_target = {
1048	.name   = "crypt",
1049	.version= {1, 5, 0},
1050	.module = THIS_MODULE,
1051	.ctr    = crypt_ctr,
1052	.dtr    = crypt_dtr,
1053	.map    = crypt_map,
1054	.status = crypt_status,
1055	.postsuspend = crypt_postsuspend,
1056	.preresume = crypt_preresume,
1057	.resume = crypt_resume,
1058	.message = crypt_message,
1059};
1060
1061static int __init dm_crypt_init(void)
1062{
1063	int r;
1064
1065	_crypt_io_pool = kmem_cache_create("dm-crypt_io",
1066	                                   sizeof(struct crypt_io),
1067	                                   0, 0, NULL, NULL);
1068	if (!_crypt_io_pool)
1069		return -ENOMEM;
1070
1071	_kcryptd_workqueue = create_workqueue("kcryptd");
1072	if (!_kcryptd_workqueue) {
1073		r = -ENOMEM;
1074		DMERR("couldn't create kcryptd");
1075		goto bad1;
1076	}
1077
1078	r = dm_register_target(&crypt_target);
1079	if (r < 0) {
1080		DMERR("register failed %d", r);
1081		goto bad2;
1082	}
1083
1084	return 0;
1085
1086bad2:
1087	destroy_workqueue(_kcryptd_workqueue);
1088bad1:
1089	kmem_cache_destroy(_crypt_io_pool);
1090	return r;
1091}
1092
1093static void __exit dm_crypt_exit(void)
1094{
1095	int r = dm_unregister_target(&crypt_target);
1096
1097	if (r < 0)
1098		DMERR("unregister failed %d", r);
1099
1100	destroy_workqueue(_kcryptd_workqueue);
1101	kmem_cache_destroy(_crypt_io_pool);
1102}
1103
1104module_init(dm_crypt_init);
1105module_exit(dm_crypt_exit);
1106
1107MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1108MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1109MODULE_LICENSE("GPL");
1110