• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-WNDR4500v2-V1.0.0.60_1.0.38/src/linux/linux-2.6/Documentation/sound/alsa/DocBook/
1<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook V4.1//EN">
2
3<book>
4<?dbhtml filename="index.html">
5
6<!-- ****************************************************** -->
7<!-- Header  -->
8<!-- ****************************************************** -->
9  <bookinfo>
10    <title>Writing an ALSA Driver</title>
11    <author>
12      <firstname>Takashi</firstname>
13      <surname>Iwai</surname>
14      <affiliation>
15        <address>
16          <email>tiwai@suse.de</email>
17        </address>
18      </affiliation>
19     </author>
20
21     <date>November 17, 2005</date>
22     <edition>0.3.6</edition>
23
24    <abstract>
25      <para>
26        This document describes how to write an ALSA (Advanced Linux
27        Sound Architecture) driver.
28      </para>
29    </abstract>
30
31    <legalnotice>
32    <para>
33    Copyright (c) 2002-2005  Takashi Iwai <email>tiwai@suse.de</email>
34    </para>
35
36    <para>
37    This document is free; you can redistribute it and/or modify it
38    under the terms of the GNU General Public License as published by
39    the Free Software Foundation; either version 2 of the License, or
40    (at your option) any later version. 
41    </para>
42
43    <para>
44    This document is distributed in the hope that it will be useful,
45    but <emphasis>WITHOUT ANY WARRANTY</emphasis>; without even the
46    implied warranty of <emphasis>MERCHANTABILITY or FITNESS FOR A
47    PARTICULAR PURPOSE</emphasis>. See the GNU General Public License
48    for more details.
49    </para>
50
51    <para>
52    You should have received a copy of the GNU General Public
53    License along with this program; if not, write to the Free
54    Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
55    MA 02111-1307 USA
56    </para>
57    </legalnotice>
58
59  </bookinfo>
60
61<!-- ****************************************************** -->
62<!-- Preface  -->
63<!-- ****************************************************** -->
64  <preface id="preface">
65    <title>Preface</title>
66    <para>
67      This document describes how to write an
68      <ulink url="http://www.alsa-project.org/"><citetitle>
69      ALSA (Advanced Linux Sound Architecture)</citetitle></ulink>
70      driver. The document focuses mainly on the PCI soundcard.
71      In the case of other device types, the API might
72      be different, too. However, at least the ALSA kernel API is
73      consistent, and therefore it would be still a bit help for
74      writing them.
75    </para>
76
77    <para>
78    The target of this document is ones who already have enough
79    skill of C language and have the basic knowledge of linux
80    kernel programming.  This document doesn't explain the general
81    topics of linux kernel codes and doesn't cover the detail of
82    implementation of each low-level driver.  It describes only how is
83    the standard way to write a PCI sound driver on ALSA.
84    </para>
85
86    <para>
87      If you are already familiar with the older ALSA ver.0.5.x, you
88    can check the drivers such as <filename>es1938.c</filename> or
89    <filename>maestro3.c</filename> which have also almost the same
90    code-base in the ALSA 0.5.x tree, so you can compare the differences.
91    </para>
92
93    <para>
94      This document is still a draft version. Any feedbacks and
95    corrections, please!!
96    </para>
97  </preface>
98
99
100<!-- ****************************************************** -->
101<!-- File Tree Structure  -->
102<!-- ****************************************************** -->
103  <chapter id="file-tree">
104    <title>File Tree Structure</title>
105
106    <section id="file-tree-general">
107      <title>General</title>
108      <para>
109        The ALSA drivers are provided in the two ways.
110      </para>
111
112      <para>
113        One is the trees provided as a tarball or via cvs from the
114      ALSA's ftp site, and another is the 2.6 (or later) Linux kernel
115      tree. To synchronize both, the ALSA driver tree is split into
116      two different trees: alsa-kernel and alsa-driver. The former
117      contains purely the source codes for the Linux 2.6 (or later)
118      tree. This tree is designed only for compilation on 2.6 or
119      later environment. The latter, alsa-driver, contains many subtle
120      files for compiling the ALSA driver on the outside of Linux
121      kernel like configure script, the wrapper functions for older,
122      2.2 and 2.4 kernels, to adapt the latest kernel API,
123      and additional drivers which are still in development or in
124      tests.  The drivers in alsa-driver tree will be moved to
125      alsa-kernel (eventually 2.6 kernel tree) once when they are
126      finished and confirmed to work fine.
127      </para>
128
129      <para>
130        The file tree structure of ALSA driver is depicted below. Both
131        alsa-kernel and alsa-driver have almost the same file
132        structure, except for <quote>core</quote> directory. It's
133        named as <quote>acore</quote> in alsa-driver tree. 
134
135        <example>
136          <title>ALSA File Tree Structure</title>
137          <literallayout>
138        sound
139                /core
140                        /oss
141                        /seq
142                                /oss
143                                /instr
144                /ioctl32
145                /include
146                /drivers
147                        /mpu401
148                        /opl3
149                /i2c
150                        /l3
151                /synth
152                        /emux
153                /pci
154                        /(cards)
155                /isa
156                        /(cards)
157                /arm
158                /ppc
159                /sparc
160                /usb
161                /pcmcia /(cards)
162                /oss
163          </literallayout>
164        </example>
165      </para>
166    </section>
167
168    <section id="file-tree-core-directory">
169      <title>core directory</title>
170      <para>
171        This directory contains the middle layer, that is, the heart
172      of ALSA drivers. In this directory, the native ALSA modules are
173      stored. The sub-directories contain different modules and are
174      dependent upon the kernel config. 
175      </para>
176
177      <section id="file-tree-core-directory-oss">
178        <title>core/oss</title>
179
180        <para>
181          The codes for PCM and mixer OSS emulation modules are stored
182        in this directory. The rawmidi OSS emulation is included in
183        the ALSA rawmidi code since it's quite small. The sequencer
184        code is stored in core/seq/oss directory (see
185        <link linkend="file-tree-core-directory-seq-oss"><citetitle>
186        below</citetitle></link>).
187        </para>
188      </section>
189
190      <section id="file-tree-core-directory-ioctl32">
191        <title>core/ioctl32</title>
192
193        <para>
194          This directory contains the 32bit-ioctl wrappers for 64bit
195        architectures such like x86-64, ppc64 and sparc64. For 32bit
196        and alpha architectures, these are not compiled. 
197        </para>
198      </section>
199
200      <section id="file-tree-core-directory-seq">
201        <title>core/seq</title>
202        <para>
203          This and its sub-directories are for the ALSA
204        sequencer. This directory contains the sequencer core and
205        primary sequencer modules such like snd-seq-midi,
206        snd-seq-virmidi, etc. They are compiled only when
207        <constant>CONFIG_SND_SEQUENCER</constant> is set in the kernel
208        config. 
209        </para>
210      </section>
211
212      <section id="file-tree-core-directory-seq-oss">
213        <title>core/seq/oss</title>
214        <para>
215          This contains the OSS sequencer emulation codes.
216        </para>
217      </section>
218
219      <section id="file-tree-core-directory-deq-instr">
220        <title>core/seq/instr</title>
221        <para>
222          This directory contains the modules for the sequencer
223        instrument layer. 
224        </para>
225      </section>
226    </section>
227
228    <section id="file-tree-include-directory">
229      <title>include directory</title>
230      <para>
231        This is the place for the public header files of ALSA drivers,
232      which are to be exported to the user-space, or included by
233      several files at different directories. Basically, the private
234      header files should not be placed in this directory, but you may
235      still find files there, due to historical reason :) 
236      </para>
237    </section>
238
239    <section id="file-tree-drivers-directory">
240      <title>drivers directory</title>
241      <para>
242        This directory contains the codes shared among different drivers
243      on the different architectures.  They are hence supposed not to be
244      architecture-specific.
245      For example, the dummy pcm driver and the serial MIDI
246      driver are found in this directory. In the sub-directories,
247      there are the codes for components which are independent from
248      bus and cpu architectures. 
249      </para>
250
251      <section id="file-tree-drivers-directory-mpu401">
252        <title>drivers/mpu401</title>
253        <para>
254          The MPU401 and MPU401-UART modules are stored here.
255        </para>
256      </section>
257
258      <section id="file-tree-drivers-directory-opl3">
259        <title>drivers/opl3 and opl4</title>
260        <para>
261          The OPL3 and OPL4 FM-synth stuff is found here.
262        </para>
263      </section>
264    </section>
265
266    <section id="file-tree-i2c-directory">
267      <title>i2c directory</title>
268      <para>
269        This contains the ALSA i2c components.
270      </para>
271
272      <para>
273        Although there is a standard i2c layer on Linux, ALSA has its
274      own i2c codes for some cards, because the soundcard needs only a
275      simple operation and the standard i2c API is too complicated for
276      such a purpose. 
277      </para>
278
279      <section id="file-tree-i2c-directory-l3">
280        <title>i2c/l3</title>
281        <para>
282          This is a sub-directory for ARM L3 i2c.
283        </para>
284      </section>
285    </section>
286
287    <section id="file-tree-synth-directory">
288        <title>synth directory</title>
289        <para>
290          This contains the synth middle-level modules.
291        </para>
292
293        <para>
294          So far, there is only Emu8000/Emu10k1 synth driver under
295        synth/emux sub-directory. 
296        </para>
297    </section>
298
299    <section id="file-tree-pci-directory">
300      <title>pci directory</title>
301      <para>
302        This and its sub-directories hold the top-level card modules
303      for PCI soundcards and the codes specific to the PCI BUS.
304      </para>
305
306      <para>
307        The drivers compiled from a single file is stored directly on
308      pci directory, while the drivers with several source files are
309      stored on its own sub-directory (e.g. emu10k1, ice1712). 
310      </para>
311    </section>
312
313    <section id="file-tree-isa-directory">
314      <title>isa directory</title>
315      <para>
316        This and its sub-directories hold the top-level card modules
317      for ISA soundcards. 
318      </para>
319    </section>
320
321    <section id="file-tree-arm-ppc-sparc-directories">
322      <title>arm, ppc, and sparc directories</title>
323      <para>
324        These are for the top-level card modules which are
325      specific to each given architecture. 
326      </para>
327    </section>
328
329    <section id="file-tree-usb-directory">
330      <title>usb directory</title>
331      <para>
332        This contains the USB-audio driver. On the latest version, the
333      USB MIDI driver is integrated together with usb-audio driver. 
334      </para>
335    </section>
336
337    <section id="file-tree-pcmcia-directory">
338      <title>pcmcia directory</title>
339      <para>
340        The PCMCIA, especially PCCard drivers will go here. CardBus
341      drivers will be on pci directory, because its API is identical
342      with the standard PCI cards. 
343      </para>
344    </section>
345
346    <section id="file-tree-oss-directory">
347      <title>oss directory</title>
348      <para>
349        The OSS/Lite source files are stored here on Linux 2.6 (or
350      later) tree. (In the ALSA driver tarball, it's empty, of course :) 
351      </para>
352    </section>
353  </chapter>
354
355
356<!-- ****************************************************** -->
357<!-- Basic Flow for PCI Drivers  -->
358<!-- ****************************************************** -->
359  <chapter id="basic-flow">
360    <title>Basic Flow for PCI Drivers</title>
361
362    <section id="basic-flow-outline">
363      <title>Outline</title>
364      <para>
365        The minimum flow of PCI soundcard is like the following:
366
367        <itemizedlist>
368          <listitem><para>define the PCI ID table (see the section
369          <link linkend="pci-resource-entries"><citetitle>PCI Entries
370          </citetitle></link>).</para></listitem> 
371          <listitem><para>create <function>probe()</function> callback.</para></listitem>
372          <listitem><para>create <function>remove()</function> callback.</para></listitem>
373          <listitem><para>create pci_driver table which contains the three pointers above.</para></listitem>
374          <listitem><para>create <function>init()</function> function just calling <function>pci_register_driver()</function> to register the pci_driver table defined above.</para></listitem>
375          <listitem><para>create <function>exit()</function> function to call <function>pci_unregister_driver()</function> function.</para></listitem>
376        </itemizedlist>
377      </para>
378    </section>
379
380    <section id="basic-flow-example">
381      <title>Full Code Example</title>
382      <para>
383        The code example is shown below. Some parts are kept
384      unimplemented at this moment but will be filled in the
385      succeeding sections. The numbers in comment lines of
386      <function>snd_mychip_probe()</function> function are the
387      markers. 
388
389        <example>
390          <title>Basic Flow for PCI Drivers Example</title>
391          <programlisting>
392<![CDATA[
393  #include <sound/driver.h>
394  #include <linux/init.h>
395  #include <linux/pci.h>
396  #include <linux/slab.h>
397  #include <sound/core.h>
398  #include <sound/initval.h>
399
400  /* module parameters (see "Module Parameters") */
401  static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
402  static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
403  static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
404
405  /* definition of the chip-specific record */
406  struct mychip {
407          struct snd_card *card;
408          // rest of implementation will be in the section
409          // "PCI Resource Managements"
410  };
411
412  /* chip-specific destructor
413   * (see "PCI Resource Managements")
414   */
415  static int snd_mychip_free(struct mychip *chip)
416  {
417          .... // will be implemented later...
418  }
419
420  /* component-destructor
421   * (see "Management of Cards and Components")
422   */
423  static int snd_mychip_dev_free(struct snd_device *device)
424  {
425          return snd_mychip_free(device->device_data);
426  }
427
428  /* chip-specific constructor
429   * (see "Management of Cards and Components")
430   */
431  static int __devinit snd_mychip_create(struct snd_card *card,
432                                         struct pci_dev *pci,
433                                         struct mychip **rchip)
434  {
435          struct mychip *chip;
436          int err;
437          static struct snd_device_ops ops = {
438                 .dev_free = snd_mychip_dev_free,
439          };
440
441          *rchip = NULL;
442
443          // check PCI availability here
444          // (see "PCI Resource Managements")
445          ....
446
447          /* allocate a chip-specific data with zero filled */
448          chip = kzalloc(sizeof(*chip), GFP_KERNEL);
449          if (chip == NULL)
450                  return -ENOMEM;
451
452          chip->card = card;
453
454          // rest of initialization here; will be implemented
455          // later, see "PCI Resource Managements"
456          ....
457
458          if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL,
459                                    chip, &ops)) < 0) {
460                  snd_mychip_free(chip);
461                  return err;
462          }
463
464          snd_card_set_dev(card, &pci->dev);
465
466          *rchip = chip;
467          return 0;
468  }
469
470  /* constructor -- see "Constructor" sub-section */
471  static int __devinit snd_mychip_probe(struct pci_dev *pci,
472                               const struct pci_device_id *pci_id)
473  {
474          static int dev;
475          struct snd_card *card;
476          struct mychip *chip;
477          int err;
478
479          /* (1) */
480          if (dev >= SNDRV_CARDS)
481                  return -ENODEV;
482          if (!enable[dev]) {
483                  dev++;
484                  return -ENOENT;
485          }
486
487          /* (2) */
488          card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0);
489          if (card == NULL)
490                  return -ENOMEM;
491
492          /* (3) */
493          if ((err = snd_mychip_create(card, pci, &chip)) < 0) {
494                  snd_card_free(card);
495                  return err;
496          }
497
498          /* (4) */
499          strcpy(card->driver, "My Chip");
500          strcpy(card->shortname, "My Own Chip 123");
501          sprintf(card->longname, "%s at 0x%lx irq %i",
502                  card->shortname, chip->ioport, chip->irq);
503
504          /* (5) */
505          .... // implemented later
506
507          /* (6) */
508          if ((err = snd_card_register(card)) < 0) {
509                  snd_card_free(card);
510                  return err;
511          }
512
513          /* (7) */
514          pci_set_drvdata(pci, card);
515          dev++;
516          return 0;
517  }
518
519  /* destructor -- see "Destructor" sub-section */
520  static void __devexit snd_mychip_remove(struct pci_dev *pci)
521  {
522          snd_card_free(pci_get_drvdata(pci));
523          pci_set_drvdata(pci, NULL);
524  }
525]]>
526          </programlisting>
527        </example>
528      </para>
529    </section>
530
531    <section id="basic-flow-constructor">
532      <title>Constructor</title>
533      <para>
534        The real constructor of PCI drivers is probe callback. The
535      probe callback and other component-constructors which are called
536      from probe callback should be defined with
537      <parameter>__devinit</parameter> prefix. You 
538      cannot use <parameter>__init</parameter> prefix for them,
539      because any PCI device could be a hotplug device. 
540      </para>
541
542      <para>
543        In the probe callback, the following scheme is often used.
544      </para>
545
546      <section id="basic-flow-constructor-device-index">
547        <title>1) Check and increment the device index.</title>
548        <para>
549          <informalexample>
550            <programlisting>
551<![CDATA[
552  static int dev;
553  ....
554  if (dev >= SNDRV_CARDS)
555          return -ENODEV;
556  if (!enable[dev]) {
557          dev++;
558          return -ENOENT;
559  }
560]]>
561            </programlisting>
562          </informalexample>
563
564        where enable[dev] is the module option.
565        </para>
566
567        <para>
568          At each time probe callback is called, check the
569        availability of the device. If not available, simply increment
570        the device index and returns. dev will be incremented also
571        later (<link
572        linkend="basic-flow-constructor-set-pci"><citetitle>step
573        7</citetitle></link>). 
574        </para>
575      </section>
576
577      <section id="basic-flow-constructor-create-card">
578        <title>2) Create a card instance</title>
579        <para>
580          <informalexample>
581            <programlisting>
582<![CDATA[
583  struct snd_card *card;
584  ....
585  card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0);
586]]>
587            </programlisting>
588          </informalexample>
589        </para>
590
591        <para>
592          The detail will be explained in the section
593          <link linkend="card-management-card-instance"><citetitle>
594          Management of Cards and Components</citetitle></link>.
595        </para>
596      </section>
597
598      <section id="basic-flow-constructor-create-main">
599        <title>3) Create a main component</title>
600        <para>
601          In this part, the PCI resources are allocated.
602
603          <informalexample>
604            <programlisting>
605<![CDATA[
606  struct mychip *chip;
607  ....
608  if ((err = snd_mychip_create(card, pci, &chip)) < 0) {
609          snd_card_free(card);
610          return err;
611  }
612]]>
613            </programlisting>
614          </informalexample>
615
616          The detail will be explained in the section <link
617        linkend="pci-resource"><citetitle>PCI Resource
618        Managements</citetitle></link>.
619        </para>
620      </section>
621
622      <section id="basic-flow-constructor-main-component">
623        <title>4) Set the driver ID and name strings.</title>
624        <para>
625          <informalexample>
626            <programlisting>
627<![CDATA[
628  strcpy(card->driver, "My Chip");
629  strcpy(card->shortname, "My Own Chip 123");
630  sprintf(card->longname, "%s at 0x%lx irq %i",
631          card->shortname, chip->ioport, chip->irq);
632]]>
633            </programlisting>
634          </informalexample>
635
636          The driver field holds the minimal ID string of the
637        chip. This is referred by alsa-lib's configurator, so keep it
638        simple but unique. 
639          Even the same driver can have different driver IDs to
640        distinguish the functionality of each chip type. 
641        </para>
642
643        <para>
644          The shortname field is a string shown as more verbose
645        name. The longname field contains the information which is
646        shown in <filename>/proc/asound/cards</filename>. 
647        </para>
648      </section>
649
650      <section id="basic-flow-constructor-create-other">
651        <title>5) Create other components, such as mixer, MIDI, etc.</title>
652        <para>
653          Here you define the basic components such as
654          <link linkend="pcm-interface"><citetitle>PCM</citetitle></link>,
655          mixer (e.g. <link linkend="api-ac97"><citetitle>AC97</citetitle></link>),
656          MIDI (e.g. <link linkend="midi-interface"><citetitle>MPU-401</citetitle></link>),
657          and other interfaces.
658          Also, if you want a <link linkend="proc-interface"><citetitle>proc
659        file</citetitle></link>, define it here, too.
660        </para>
661      </section>
662
663      <section id="basic-flow-constructor-register-card">
664        <title>6) Register the card instance.</title>
665        <para>
666          <informalexample>
667            <programlisting>
668<![CDATA[
669  if ((err = snd_card_register(card)) < 0) {
670          snd_card_free(card);
671          return err;
672  }
673]]>
674            </programlisting>
675          </informalexample>
676        </para>
677
678        <para>
679          Will be explained in the section <link
680        linkend="card-management-registration"><citetitle>Management
681        of Cards and Components</citetitle></link>, too. 
682        </para>
683      </section>
684
685      <section id="basic-flow-constructor-set-pci">
686        <title>7) Set the PCI driver data and return zero.</title>
687        <para>
688          <informalexample>
689            <programlisting>
690<![CDATA[
691        pci_set_drvdata(pci, card);
692        dev++;
693        return 0;
694]]>
695            </programlisting>
696          </informalexample>
697
698          In the above, the card record is stored. This pointer is
699        referred in the remove callback and power-management
700        callbacks, too. 
701        </para>
702      </section>
703    </section>
704
705    <section id="basic-flow-destructor">
706      <title>Destructor</title>
707      <para>
708        The destructor, remove callback, simply releases the card
709      instance. Then the ALSA middle layer will release all the
710      attached components automatically. 
711      </para>
712
713      <para>
714        It would be typically like the following:
715
716        <informalexample>
717          <programlisting>
718<![CDATA[
719  static void __devexit snd_mychip_remove(struct pci_dev *pci)
720  {
721          snd_card_free(pci_get_drvdata(pci));
722          pci_set_drvdata(pci, NULL);
723  }
724]]>
725          </programlisting>
726        </informalexample>
727
728        The above code assumes that the card pointer is set to the PCI
729	driver data.
730      </para>
731    </section>
732
733    <section id="basic-flow-header-files">
734      <title>Header Files</title>
735      <para>
736        For the above example, at least the following include files
737      are necessary. 
738
739        <informalexample>
740          <programlisting>
741<![CDATA[
742  #include <sound/driver.h>
743  #include <linux/init.h>
744  #include <linux/pci.h>
745  #include <linux/slab.h>
746  #include <sound/core.h>
747  #include <sound/initval.h>
748]]>
749          </programlisting>
750        </informalexample>
751
752	where the last one is necessary only when module options are
753      defined in the source file.  If the codes are split to several
754      files, the file without module options don't need them.
755      </para>
756
757      <para>
758        In addition to them, you'll need
759      <filename>&lt;linux/interrupt.h&gt;</filename> for the interrupt
760      handling, and <filename>&lt;asm/io.h&gt;</filename> for the i/o
761      access. If you use <function>mdelay()</function> or
762      <function>udelay()</function> functions, you'll need to include
763      <filename>&lt;linux/delay.h&gt;</filename>, too. 
764      </para>
765
766      <para>
767      The ALSA interfaces like PCM or control API are defined in other
768      header files as <filename>&lt;sound/xxx.h&gt;</filename>.
769      They have to be included after
770      <filename>&lt;sound/core.h&gt;</filename>.
771      </para>
772
773    </section>
774  </chapter>
775
776
777<!-- ****************************************************** -->
778<!-- Management of Cards and Components  -->
779<!-- ****************************************************** -->
780  <chapter id="card-management">
781    <title>Management of Cards and Components</title>
782
783    <section id="card-management-card-instance">
784      <title>Card Instance</title>
785      <para>
786      For each soundcard, a <quote>card</quote> record must be allocated.
787      </para>
788
789      <para>
790      A card record is the headquarters of the soundcard.  It manages
791      the list of whole devices (components) on the soundcard, such as
792      PCM, mixers, MIDI, synthesizer, and so on.  Also, the card
793      record holds the ID and the name strings of the card, manages
794      the root of proc files, and controls the power-management states
795      and hotplug disconnections.  The component list on the card
796      record is used to manage the proper releases of resources at
797      destruction. 
798      </para>
799
800      <para>
801        As mentioned above, to create a card instance, call
802      <function>snd_card_new()</function>.
803
804        <informalexample>
805          <programlisting>
806<![CDATA[
807  struct snd_card *card;
808  card = snd_card_new(index, id, module, extra_size);
809]]>
810          </programlisting>
811        </informalexample>
812      </para>
813
814      <para>
815        The function takes four arguments, the card-index number, the
816        id string, the module pointer (usually
817        <constant>THIS_MODULE</constant>),
818        and the size of extra-data space.  The last argument is used to
819        allocate card-&gt;private_data for the
820        chip-specific data.  Note that this data
821        <emphasis>is</emphasis> allocated by
822        <function>snd_card_new()</function>.
823      </para>
824    </section>
825
826    <section id="card-management-component">
827      <title>Components</title>
828      <para>
829        After the card is created, you can attach the components
830      (devices) to the card instance. On ALSA driver, a component is
831      represented as a struct <structname>snd_device</structname> object.
832      A component can be a PCM instance, a control interface, a raw
833      MIDI interface, etc.  Each of such instances has one component
834      entry.
835      </para>
836
837      <para>
838        A component can be created via
839        <function>snd_device_new()</function> function. 
840
841        <informalexample>
842          <programlisting>
843<![CDATA[
844  snd_device_new(card, SNDRV_DEV_XXX, chip, &ops);
845]]>
846          </programlisting>
847        </informalexample>
848      </para>
849
850      <para>
851        This takes the card pointer, the device-level
852      (<constant>SNDRV_DEV_XXX</constant>), the data pointer, and the
853      callback pointers (<parameter>&amp;ops</parameter>). The
854      device-level defines the type of components and the order of
855      registration and de-registration.  For most of components, the
856      device-level is already defined.  For a user-defined component,
857      you can use <constant>SNDRV_DEV_LOWLEVEL</constant>.
858      </para>
859
860      <para>
861      This function itself doesn't allocate the data space. The data
862      must be allocated manually beforehand, and its pointer is passed
863      as the argument. This pointer is used as the identifier
864      (<parameter>chip</parameter> in the above example) for the
865      instance. 
866      </para>
867
868      <para>
869        Each ALSA pre-defined component such as ac97 or pcm calls
870      <function>snd_device_new()</function> inside its
871      constructor. The destructor for each component is defined in the
872      callback pointers.  Hence, you don't need to take care of
873      calling a destructor for such a component.
874      </para>
875
876      <para>
877        If you would like to create your own component, you need to
878      set the destructor function to dev_free callback in
879      <parameter>ops</parameter>, so that it can be released
880      automatically via <function>snd_card_free()</function>. The
881      example will be shown later as an implementation of a
882      chip-specific data. 
883      </para>
884    </section>
885
886    <section id="card-management-chip-specific">
887      <title>Chip-Specific Data</title>
888      <para>
889      The chip-specific information, e.g. the i/o port address, its
890      resource pointer, or the irq number, is stored in the
891      chip-specific record.
892
893        <informalexample>
894          <programlisting>
895<![CDATA[
896  struct mychip {
897          ....
898  };
899]]>
900          </programlisting>
901        </informalexample>
902      </para>
903
904      <para>
905        In general, there are two ways to allocate the chip record.
906      </para>
907
908      <section id="card-management-chip-specific-snd-card-new">
909        <title>1. Allocating via <function>snd_card_new()</function>.</title>
910        <para>
911          As mentioned above, you can pass the extra-data-length to the 4th argument of <function>snd_card_new()</function>, i.e.
912
913          <informalexample>
914            <programlisting>
915<![CDATA[
916  card = snd_card_new(index[dev], id[dev], THIS_MODULE, sizeof(struct mychip));
917]]>
918            </programlisting>
919          </informalexample>
920
921          whether struct <structname>mychip</structname> is the type of the chip record.
922        </para>
923
924        <para>
925          In return, the allocated record can be accessed as
926
927          <informalexample>
928            <programlisting>
929<![CDATA[
930  struct mychip *chip = card->private_data;
931]]>
932            </programlisting>
933          </informalexample>
934
935          With this method, you don't have to allocate twice.
936          The record is released together with the card instance.
937        </para>
938      </section>
939
940      <section id="card-management-chip-specific-allocate-extra">
941        <title>2. Allocating an extra device.</title>
942
943        <para>
944          After allocating a card instance via
945          <function>snd_card_new()</function> (with
946          <constant>NULL</constant> on the 4th arg), call
947          <function>kzalloc()</function>. 
948
949          <informalexample>
950            <programlisting>
951<![CDATA[
952  struct snd_card *card;
953  struct mychip *chip;
954  card = snd_card_new(index[dev], id[dev], THIS_MODULE, NULL);
955  .....
956  chip = kzalloc(sizeof(*chip), GFP_KERNEL);
957]]>
958            </programlisting>
959          </informalexample>
960        </para>
961
962        <para>
963          The chip record should have the field to hold the card
964          pointer at least, 
965
966          <informalexample>
967            <programlisting>
968<![CDATA[
969  struct mychip {
970          struct snd_card *card;
971          ....
972  };
973]]>
974            </programlisting>
975          </informalexample>
976        </para>
977
978        <para>
979          Then, set the card pointer in the returned chip instance.
980
981          <informalexample>
982            <programlisting>
983<![CDATA[
984  chip->card = card;
985]]>
986            </programlisting>
987          </informalexample>
988        </para>
989
990        <para>
991          Next, initialize the fields, and register this chip
992          record as a low-level device with a specified
993          <parameter>ops</parameter>, 
994
995          <informalexample>
996            <programlisting>
997<![CDATA[
998  static struct snd_device_ops ops = {
999          .dev_free =        snd_mychip_dev_free,
1000  };
1001  ....
1002  snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
1003]]>
1004            </programlisting>
1005          </informalexample>
1006
1007          <function>snd_mychip_dev_free()</function> is the
1008        device-destructor function, which will call the real
1009        destructor. 
1010        </para>
1011
1012        <para>
1013          <informalexample>
1014            <programlisting>
1015<![CDATA[
1016  static int snd_mychip_dev_free(struct snd_device *device)
1017  {
1018          return snd_mychip_free(device->device_data);
1019  }
1020]]>
1021            </programlisting>
1022          </informalexample>
1023
1024          where <function>snd_mychip_free()</function> is the real destructor.
1025        </para>
1026      </section>
1027    </section>
1028
1029    <section id="card-management-registration">
1030      <title>Registration and Release</title>
1031      <para>
1032        After all components are assigned, register the card instance
1033      by calling <function>snd_card_register()</function>. The access
1034      to the device files are enabled at this point. That is, before
1035      <function>snd_card_register()</function> is called, the
1036      components are safely inaccessible from external side. If this
1037      call fails, exit the probe function after releasing the card via
1038      <function>snd_card_free()</function>. 
1039      </para>
1040
1041      <para>
1042        For releasing the card instance, you can call simply
1043      <function>snd_card_free()</function>. As already mentioned, all
1044      components are released automatically by this call. 
1045      </para>
1046
1047      <para>
1048        As further notes, the destructors (both
1049      <function>snd_mychip_dev_free</function> and
1050      <function>snd_mychip_free</function>) cannot be defined with
1051      <parameter>__devexit</parameter> prefix, because they may be
1052      called from the constructor, too, at the false path. 
1053      </para>
1054
1055      <para>
1056      For a device which allows hotplugging, you can use
1057      <function>snd_card_free_when_closed</function>.  This one will
1058      postpone the destruction until all devices are closed.
1059      </para>
1060
1061    </section>
1062
1063  </chapter>
1064
1065
1066<!-- ****************************************************** -->
1067<!-- PCI Resource Managements  -->
1068<!-- ****************************************************** -->
1069  <chapter id="pci-resource">
1070    <title>PCI Resource Managements</title>
1071
1072    <section id="pci-resource-example">
1073      <title>Full Code Example</title>
1074      <para>
1075        In this section, we'll finish the chip-specific constructor,
1076      destructor and PCI entries. The example code is shown first,
1077      below. 
1078
1079        <example>
1080          <title>PCI Resource Managements Example</title>
1081          <programlisting>
1082<![CDATA[
1083  struct mychip {
1084          struct snd_card *card;
1085          struct pci_dev *pci;
1086
1087          unsigned long port;
1088          int irq;
1089  };
1090
1091  static int snd_mychip_free(struct mychip *chip)
1092  {
1093          /* disable hardware here if any */
1094          .... // (not implemented in this document)
1095
1096          /* release the irq */
1097          if (chip->irq >= 0)
1098                  free_irq(chip->irq, chip);
1099          /* release the i/o ports & memory */
1100          pci_release_regions(chip->pci);
1101          /* disable the PCI entry */
1102          pci_disable_device(chip->pci);
1103          /* release the data */
1104          kfree(chip);
1105          return 0;
1106  }
1107
1108  /* chip-specific constructor */
1109  static int __devinit snd_mychip_create(struct snd_card *card,
1110                                         struct pci_dev *pci,
1111                                         struct mychip **rchip)
1112  {
1113          struct mychip *chip;
1114          int err;
1115          static struct snd_device_ops ops = {
1116                 .dev_free = snd_mychip_dev_free,
1117          };
1118
1119          *rchip = NULL;
1120
1121          /* initialize the PCI entry */
1122          if ((err = pci_enable_device(pci)) < 0)
1123                  return err;
1124          /* check PCI availability (28bit DMA) */
1125          if (pci_set_dma_mask(pci, DMA_28BIT_MASK) < 0 ||
1126              pci_set_consistent_dma_mask(pci, DMA_28BIT_MASK) < 0) {
1127                  printk(KERN_ERR "error to set 28bit mask DMA\n");
1128                  pci_disable_device(pci);
1129                  return -ENXIO;
1130          }
1131
1132          chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1133          if (chip == NULL) {
1134                  pci_disable_device(pci);
1135                  return -ENOMEM;
1136          }
1137
1138          /* initialize the stuff */
1139          chip->card = card;
1140          chip->pci = pci;
1141          chip->irq = -1;
1142
1143          /* (1) PCI resource allocation */
1144          if ((err = pci_request_regions(pci, "My Chip")) < 0) {
1145                  kfree(chip);
1146                  pci_disable_device(pci);
1147                  return err;
1148          }
1149          chip->port = pci_resource_start(pci, 0);
1150          if (request_irq(pci->irq, snd_mychip_interrupt,
1151                          IRQF_SHARED, "My Chip", chip)) {
1152                  printk(KERN_ERR "cannot grab irq %d\n", pci->irq);
1153                  snd_mychip_free(chip);
1154                  return -EBUSY;
1155          }
1156          chip->irq = pci->irq;
1157
1158          /* (2) initialization of the chip hardware */
1159          .... //   (not implemented in this document)
1160
1161          if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL,
1162                                    chip, &ops)) < 0) {
1163                  snd_mychip_free(chip);
1164                  return err;
1165          }
1166
1167          snd_card_set_dev(card, &pci->dev);
1168
1169          *rchip = chip;
1170          return 0;
1171  }        
1172
1173  /* PCI IDs */
1174  static struct pci_device_id snd_mychip_ids[] = {
1175          { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR,
1176            PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, },
1177          ....
1178          { 0, }
1179  };
1180  MODULE_DEVICE_TABLE(pci, snd_mychip_ids);
1181
1182  /* pci_driver definition */
1183  static struct pci_driver driver = {
1184          .name = "My Own Chip",
1185          .id_table = snd_mychip_ids,
1186          .probe = snd_mychip_probe,
1187          .remove = __devexit_p(snd_mychip_remove),
1188  };
1189
1190  /* initialization of the module */
1191  static int __init alsa_card_mychip_init(void)
1192  {
1193          return pci_register_driver(&driver);
1194  }
1195
1196  /* clean up the module */
1197  static void __exit alsa_card_mychip_exit(void)
1198  {
1199          pci_unregister_driver(&driver);
1200  }
1201
1202  module_init(alsa_card_mychip_init)
1203  module_exit(alsa_card_mychip_exit)
1204
1205  EXPORT_NO_SYMBOLS; /* for old kernels only */
1206]]>
1207          </programlisting>
1208        </example>
1209      </para>
1210    </section>
1211
1212    <section id="pci-resource-some-haftas">
1213      <title>Some Hafta's</title>
1214      <para>
1215        The allocation of PCI resources is done in the
1216      <function>probe()</function> function, and usually an extra
1217      <function>xxx_create()</function> function is written for this
1218      purpose.
1219      </para>
1220
1221      <para>
1222        In the case of PCI devices, you have to call at first
1223      <function>pci_enable_device()</function> function before
1224      allocating resources. Also, you need to set the proper PCI DMA
1225      mask to limit the accessed i/o range. In some cases, you might
1226      need to call <function>pci_set_master()</function> function,
1227      too.
1228      </para>
1229
1230      <para>
1231        Suppose the 28bit mask, and the code to be added would be like:
1232
1233        <informalexample>
1234          <programlisting>
1235<![CDATA[
1236  if ((err = pci_enable_device(pci)) < 0)
1237          return err;
1238  if (pci_set_dma_mask(pci, DMA_28BIT_MASK) < 0 ||
1239      pci_set_consistent_dma_mask(pci, DMA_28BIT_MASK) < 0) {
1240          printk(KERN_ERR "error to set 28bit mask DMA\n");
1241          pci_disable_device(pci);
1242          return -ENXIO;
1243  }
1244  
1245]]>
1246          </programlisting>
1247        </informalexample>
1248      </para>
1249    </section>
1250
1251    <section id="pci-resource-resource-allocation">
1252      <title>Resource Allocation</title>
1253      <para>
1254        The allocation of I/O ports and irqs are done via standard kernel
1255      functions. Unlike ALSA ver.0.5.x., there are no helpers for
1256      that. And these resources must be released in the destructor
1257      function (see below). Also, on ALSA 0.9.x, you don't need to
1258      allocate (pseudo-)DMA for PCI like ALSA 0.5.x.
1259      </para>
1260
1261      <para>
1262        Now assume that this PCI device has an I/O port with 8 bytes
1263        and an interrupt. Then struct <structname>mychip</structname> will have the
1264        following fields:
1265
1266        <informalexample>
1267          <programlisting>
1268<![CDATA[
1269  struct mychip {
1270          struct snd_card *card;
1271
1272          unsigned long port;
1273          int irq;
1274  };
1275]]>
1276          </programlisting>
1277        </informalexample>
1278      </para>
1279
1280      <para>
1281        For an i/o port (and also a memory region), you need to have
1282      the resource pointer for the standard resource management. For
1283      an irq, you have to keep only the irq number (integer). But you
1284      need to initialize this number as -1 before actual allocation,
1285      since irq 0 is valid. The port address and its resource pointer
1286      can be initialized as null by
1287      <function>kzalloc()</function> automatically, so you
1288      don't have to take care of resetting them. 
1289      </para>
1290
1291      <para>
1292        The allocation of an i/o port is done like this:
1293
1294        <informalexample>
1295          <programlisting>
1296<![CDATA[
1297  if ((err = pci_request_regions(pci, "My Chip")) < 0) { 
1298          kfree(chip);
1299          pci_disable_device(pci);
1300          return err;
1301  }
1302  chip->port = pci_resource_start(pci, 0);
1303]]>
1304          </programlisting>
1305        </informalexample>
1306      </para>
1307
1308      <para>
1309        <!-- obsolete -->
1310        It will reserve the i/o port region of 8 bytes of the given
1311      PCI device. The returned value, chip-&gt;res_port, is allocated
1312      via <function>kmalloc()</function> by
1313      <function>request_region()</function>. The pointer must be
1314      released via <function>kfree()</function>, but there is some
1315      problem regarding this. This issue will be explained more below.
1316      </para>
1317
1318      <para>
1319        The allocation of an interrupt source is done like this:
1320
1321        <informalexample>
1322          <programlisting>
1323<![CDATA[
1324  if (request_irq(pci->irq, snd_mychip_interrupt,
1325                  IRQF_DISABLED|IRQF_SHARED, "My Chip", chip)) {
1326          printk(KERN_ERR "cannot grab irq %d\n", pci->irq);
1327          snd_mychip_free(chip);
1328          return -EBUSY;
1329  }
1330  chip->irq = pci->irq;
1331]]>
1332          </programlisting>
1333        </informalexample>
1334
1335        where <function>snd_mychip_interrupt()</function> is the
1336      interrupt handler defined <link
1337      linkend="pcm-interface-interrupt-handler"><citetitle>later</citetitle></link>.
1338      Note that chip-&gt;irq should be defined
1339      only when <function>request_irq()</function> succeeded.
1340      </para>
1341
1342      <para>
1343      On the PCI bus, the interrupts can be shared. Thus,
1344      <constant>IRQF_SHARED</constant> is given as the interrupt flag of
1345      <function>request_irq()</function>. 
1346      </para>
1347
1348      <para>
1349        The last argument of <function>request_irq()</function> is the
1350      data pointer passed to the interrupt handler. Usually, the
1351      chip-specific record is used for that, but you can use what you
1352      like, too. 
1353      </para>
1354
1355      <para>
1356        I won't define the detail of the interrupt handler at this
1357        point, but at least its appearance can be explained now. The
1358        interrupt handler looks usually like the following: 
1359
1360        <informalexample>
1361          <programlisting>
1362<![CDATA[
1363  static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id)
1364  {
1365          struct mychip *chip = dev_id;
1366          ....
1367          return IRQ_HANDLED;
1368  }
1369]]>
1370          </programlisting>
1371        </informalexample>
1372      </para>
1373
1374      <para>
1375        Now let's write the corresponding destructor for the resources
1376      above. The role of destructor is simple: disable the hardware
1377      (if already activated) and release the resources. So far, we
1378      have no hardware part, so the disabling is not written here. 
1379      </para>
1380
1381      <para>
1382        For releasing the resources, <quote>check-and-release</quote>
1383        method is a safer way. For the interrupt, do like this: 
1384
1385        <informalexample>
1386          <programlisting>
1387<![CDATA[
1388  if (chip->irq >= 0)
1389          free_irq(chip->irq, chip);
1390]]>
1391          </programlisting>
1392        </informalexample>
1393
1394        Since the irq number can start from 0, you should initialize
1395        chip-&gt;irq with a negative value (e.g. -1), so that you can
1396        check the validity of the irq number as above.
1397      </para>
1398
1399      <para>
1400        When you requested I/O ports or memory regions via
1401	<function>pci_request_region()</function> or
1402	<function>pci_request_regions()</function> like this example,
1403	release the resource(s) using the corresponding function,
1404	<function>pci_release_region()</function> or
1405	<function>pci_release_regions()</function>.
1406
1407        <informalexample>
1408          <programlisting>
1409<![CDATA[
1410  pci_release_regions(chip->pci);
1411]]>
1412          </programlisting>
1413        </informalexample>
1414      </para>
1415
1416      <para>
1417	When you requested manually via <function>request_region()</function>
1418	or <function>request_mem_region</function>, you can release it via
1419	<function>release_resource()</function>.  Suppose that you keep
1420	the resource pointer returned from <function>request_region()</function>
1421	in chip-&gt;res_port, the release procedure looks like below:
1422
1423        <informalexample>
1424          <programlisting>
1425<![CDATA[
1426  release_and_free_resource(chip->res_port);
1427]]>
1428          </programlisting>
1429        </informalexample>
1430      </para>
1431
1432      <para>
1433      Don't forget to call <function>pci_disable_device()</function>
1434      before all finished.
1435      </para>
1436
1437      <para>
1438        And finally, release the chip-specific record.
1439
1440        <informalexample>
1441          <programlisting>
1442<![CDATA[
1443  kfree(chip);
1444]]>
1445          </programlisting>
1446        </informalexample>
1447      </para>
1448
1449      <para>
1450      Again, remember that you cannot
1451      set <parameter>__devexit</parameter> prefix for this destructor. 
1452      </para>
1453
1454      <para>
1455      We didn't implement the hardware-disabling part in the above.
1456      If you need to do this, please note that the destructor may be
1457      called even before the initialization of the chip is completed.
1458      It would be better to have a flag to skip the hardware-disabling
1459      if the hardware was not initialized yet.
1460      </para>
1461
1462      <para>
1463      When the chip-data is assigned to the card using
1464      <function>snd_device_new()</function> with
1465      <constant>SNDRV_DEV_LOWLELVEL</constant> , its destructor is 
1466      called at the last.  That is, it is assured that all other
1467      components like PCMs and controls have been already released.
1468      You don't have to call stopping PCMs, etc. explicitly, but just
1469      stop the hardware in the low-level.
1470      </para>
1471
1472      <para>
1473        The management of a memory-mapped region is almost as same as
1474        the management of an i/o port. You'll need three fields like
1475        the following: 
1476
1477        <informalexample>
1478          <programlisting>
1479<![CDATA[
1480  struct mychip {
1481          ....
1482          unsigned long iobase_phys;
1483          void __iomem *iobase_virt;
1484  };
1485]]>
1486          </programlisting>
1487        </informalexample>
1488
1489        and the allocation would be like below:
1490
1491        <informalexample>
1492          <programlisting>
1493<![CDATA[
1494  if ((err = pci_request_regions(pci, "My Chip")) < 0) {
1495          kfree(chip);
1496          return err;
1497  }
1498  chip->iobase_phys = pci_resource_start(pci, 0);
1499  chip->iobase_virt = ioremap_nocache(chip->iobase_phys,
1500                                      pci_resource_len(pci, 0));
1501]]>
1502          </programlisting>
1503        </informalexample>
1504        
1505        and the corresponding destructor would be:
1506
1507        <informalexample>
1508          <programlisting>
1509<![CDATA[
1510  static int snd_mychip_free(struct mychip *chip)
1511  {
1512          ....
1513          if (chip->iobase_virt)
1514                  iounmap(chip->iobase_virt);
1515          ....
1516          pci_release_regions(chip->pci);
1517          ....
1518  }
1519]]>
1520          </programlisting>
1521        </informalexample>
1522      </para>
1523
1524    </section>
1525
1526    <section id="pci-resource-device-struct">
1527      <title>Registration of Device Struct</title>
1528      <para>
1529	At some point, typically after calling <function>snd_device_new()</function>,
1530	you need to register the struct <structname>device</structname> of the chip
1531	you're handling for udev and co.  ALSA provides a macro for compatibility with
1532	older kernels.  Simply call like the following:
1533        <informalexample>
1534          <programlisting>
1535<![CDATA[
1536  snd_card_set_dev(card, &pci->dev);
1537]]>
1538          </programlisting>
1539        </informalexample>
1540	so that it stores the PCI's device pointer to the card.  This will be
1541	referred by ALSA core functions later when the devices are registered.
1542      </para>
1543      <para>
1544	In the case of non-PCI, pass the proper device struct pointer of the BUS
1545	instead.  (In the case of legacy ISA without PnP, you don't have to do
1546	anything.)
1547      </para>
1548    </section>
1549
1550    <section id="pci-resource-entries">
1551      <title>PCI Entries</title>
1552      <para>
1553        So far, so good. Let's finish the rest of missing PCI
1554      stuffs. At first, we need a
1555      <structname>pci_device_id</structname> table for this
1556      chipset. It's a table of PCI vendor/device ID number, and some
1557      masks. 
1558      </para>
1559
1560      <para>
1561        For example,
1562
1563        <informalexample>
1564          <programlisting>
1565<![CDATA[
1566  static struct pci_device_id snd_mychip_ids[] = {
1567          { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR,
1568            PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, },
1569          ....
1570          { 0, }
1571  };
1572  MODULE_DEVICE_TABLE(pci, snd_mychip_ids);
1573]]>
1574          </programlisting>
1575        </informalexample>
1576      </para>
1577
1578      <para>
1579        The first and second fields of
1580      <structname>pci_device_id</structname> struct are the vendor and
1581      device IDs. If you have nothing special to filter the matching
1582      devices, you can use the rest of fields like above. The last
1583      field of <structname>pci_device_id</structname> struct is a
1584      private data for this entry. You can specify any value here, for
1585      example, to tell the type of different operations per each
1586      device IDs. Such an example is found in intel8x0 driver. 
1587      </para>
1588
1589      <para>
1590        The last entry of this list is the terminator. You must
1591      specify this all-zero entry. 
1592      </para>
1593
1594      <para>
1595        Then, prepare the <structname>pci_driver</structname> record:
1596
1597        <informalexample>
1598          <programlisting>
1599<![CDATA[
1600  static struct pci_driver driver = {
1601          .name = "My Own Chip",
1602          .id_table = snd_mychip_ids,
1603          .probe = snd_mychip_probe,
1604          .remove = __devexit_p(snd_mychip_remove),
1605  };
1606]]>
1607          </programlisting>
1608        </informalexample>
1609      </para>
1610
1611      <para>
1612        The <structfield>probe</structfield> and
1613      <structfield>remove</structfield> functions are what we already
1614      defined in 
1615      the previous sections. The <structfield>remove</structfield> should
1616      be defined with 
1617      <function>__devexit_p()</function> macro, so that it's not
1618      defined for built-in (and non-hot-pluggable) case. The
1619      <structfield>name</structfield> 
1620      field is the name string of this device. Note that you must not
1621      use a slash <quote>/</quote> in this string. 
1622      </para>
1623
1624      <para>
1625        And at last, the module entries:
1626
1627        <informalexample>
1628          <programlisting>
1629<![CDATA[
1630  static int __init alsa_card_mychip_init(void)
1631  {
1632          return pci_register_driver(&driver);
1633  }
1634
1635  static void __exit alsa_card_mychip_exit(void)
1636  {
1637          pci_unregister_driver(&driver);
1638  }
1639
1640  module_init(alsa_card_mychip_init)
1641  module_exit(alsa_card_mychip_exit)
1642]]>
1643          </programlisting>
1644        </informalexample>
1645      </para>
1646
1647      <para>
1648        Note that these module entries are tagged with
1649      <parameter>__init</parameter> and 
1650      <parameter>__exit</parameter> prefixes, not
1651      <parameter>__devinit</parameter> nor
1652      <parameter>__devexit</parameter>.
1653      </para>
1654
1655      <para>
1656        Oh, one thing was forgotten. If you have no exported symbols,
1657        you need to declare it on 2.2 or 2.4 kernels (on 2.6 kernels
1658        it's not necessary, though).
1659
1660        <informalexample>
1661          <programlisting>
1662<![CDATA[
1663  EXPORT_NO_SYMBOLS;
1664]]>
1665          </programlisting>
1666        </informalexample>
1667
1668        That's all!
1669      </para>
1670    </section>
1671  </chapter>
1672
1673
1674<!-- ****************************************************** -->
1675<!-- PCM Interface  -->
1676<!-- ****************************************************** -->
1677  <chapter id="pcm-interface">
1678    <title>PCM Interface</title>
1679
1680    <section id="pcm-interface-general">
1681      <title>General</title>
1682      <para>
1683        The PCM middle layer of ALSA is quite powerful and it is only
1684      necessary for each driver to implement the low-level functions
1685      to access its hardware.
1686      </para>
1687
1688      <para>
1689        For accessing to the PCM layer, you need to include
1690      <filename>&lt;sound/pcm.h&gt;</filename> above all. In addition,
1691      <filename>&lt;sound/pcm_params.h&gt;</filename> might be needed
1692      if you access to some functions related with hw_param. 
1693      </para>
1694
1695      <para>
1696        Each card device can have up to four pcm instances. A pcm
1697      instance corresponds to a pcm device file. The limitation of
1698      number of instances comes only from the available bit size of
1699      the linux's device number. Once when 64bit device number is
1700      used, we'll have more available pcm instances. 
1701      </para>
1702
1703      <para>
1704        A pcm instance consists of pcm playback and capture streams,
1705      and each pcm stream consists of one or more pcm substreams. Some
1706      soundcard supports the multiple-playback function. For example,
1707      emu10k1 has a PCM playback of 32 stereo substreams. In this case, at
1708      each open, a free substream is (usually) automatically chosen
1709      and opened. Meanwhile, when only one substream exists and it was
1710      already opened, the succeeding open will result in the blocking
1711      or the error with <constant>EAGAIN</constant> according to the
1712      file open mode. But you don't have to know the detail in your
1713      driver. The PCM middle layer will take all such jobs. 
1714      </para>
1715    </section>
1716
1717    <section id="pcm-interface-example">
1718      <title>Full Code Example</title>
1719      <para>
1720      The example code below does not include any hardware access
1721      routines but shows only the skeleton, how to build up the PCM
1722      interfaces.
1723
1724        <example>
1725          <title>PCM Example Code</title>
1726          <programlisting>
1727<![CDATA[
1728  #include <sound/pcm.h>
1729  ....
1730
1731  /* hardware definition */
1732  static struct snd_pcm_hardware snd_mychip_playback_hw = {
1733          .info = (SNDRV_PCM_INFO_MMAP |
1734                   SNDRV_PCM_INFO_INTERLEAVED |
1735                   SNDRV_PCM_INFO_BLOCK_TRANSFER |
1736                   SNDRV_PCM_INFO_MMAP_VALID),
1737          .formats =          SNDRV_PCM_FMTBIT_S16_LE,
1738          .rates =            SNDRV_PCM_RATE_8000_48000,
1739          .rate_min =         8000,
1740          .rate_max =         48000,
1741          .channels_min =     2,
1742          .channels_max =     2,
1743          .buffer_bytes_max = 32768,
1744          .period_bytes_min = 4096,
1745          .period_bytes_max = 32768,
1746          .periods_min =      1,
1747          .periods_max =      1024,
1748  };
1749
1750  /* hardware definition */
1751  static struct snd_pcm_hardware snd_mychip_capture_hw = {
1752          .info = (SNDRV_PCM_INFO_MMAP |
1753                   SNDRV_PCM_INFO_INTERLEAVED |
1754                   SNDRV_PCM_INFO_BLOCK_TRANSFER |
1755                   SNDRV_PCM_INFO_MMAP_VALID),
1756          .formats =          SNDRV_PCM_FMTBIT_S16_LE,
1757          .rates =            SNDRV_PCM_RATE_8000_48000,
1758          .rate_min =         8000,
1759          .rate_max =         48000,
1760          .channels_min =     2,
1761          .channels_max =     2,
1762          .buffer_bytes_max = 32768,
1763          .period_bytes_min = 4096,
1764          .period_bytes_max = 32768,
1765          .periods_min =      1,
1766          .periods_max =      1024,
1767  };
1768
1769  /* open callback */
1770  static int snd_mychip_playback_open(struct snd_pcm_substream *substream)
1771  {
1772          struct mychip *chip = snd_pcm_substream_chip(substream);
1773          struct snd_pcm_runtime *runtime = substream->runtime;
1774
1775          runtime->hw = snd_mychip_playback_hw;
1776          // more hardware-initialization will be done here
1777          return 0;
1778  }
1779
1780  /* close callback */
1781  static int snd_mychip_playback_close(struct snd_pcm_substream *substream)
1782  {
1783          struct mychip *chip = snd_pcm_substream_chip(substream);
1784          // the hardware-specific codes will be here
1785          return 0;
1786
1787  }
1788
1789  /* open callback */
1790  static int snd_mychip_capture_open(struct snd_pcm_substream *substream)
1791  {
1792          struct mychip *chip = snd_pcm_substream_chip(substream);
1793          struct snd_pcm_runtime *runtime = substream->runtime;
1794
1795          runtime->hw = snd_mychip_capture_hw;
1796          // more hardware-initialization will be done here
1797          return 0;
1798  }
1799
1800  /* close callback */
1801  static int snd_mychip_capture_close(struct snd_pcm_substream *substream)
1802  {
1803          struct mychip *chip = snd_pcm_substream_chip(substream);
1804          // the hardware-specific codes will be here
1805          return 0;
1806
1807  }
1808
1809  /* hw_params callback */
1810  static int snd_mychip_pcm_hw_params(struct snd_pcm_substream *substream,
1811                               struct snd_pcm_hw_params *hw_params)
1812  {
1813          return snd_pcm_lib_malloc_pages(substream,
1814                                     params_buffer_bytes(hw_params));
1815  }
1816
1817  /* hw_free callback */
1818  static int snd_mychip_pcm_hw_free(struct snd_pcm_substream *substream)
1819  {
1820          return snd_pcm_lib_free_pages(substream);
1821  }
1822
1823  /* prepare callback */
1824  static int snd_mychip_pcm_prepare(struct snd_pcm_substream *substream)
1825  {
1826          struct mychip *chip = snd_pcm_substream_chip(substream);
1827          struct snd_pcm_runtime *runtime = substream->runtime;
1828
1829          /* set up the hardware with the current configuration
1830           * for example...
1831           */
1832          mychip_set_sample_format(chip, runtime->format);
1833          mychip_set_sample_rate(chip, runtime->rate);
1834          mychip_set_channels(chip, runtime->channels);
1835          mychip_set_dma_setup(chip, runtime->dma_addr,
1836                               chip->buffer_size,
1837                               chip->period_size);
1838          return 0;
1839  }
1840
1841  /* trigger callback */
1842  static int snd_mychip_pcm_trigger(struct snd_pcm_substream *substream,
1843                                    int cmd)
1844  {
1845          switch (cmd) {
1846          case SNDRV_PCM_TRIGGER_START:
1847                  // do something to start the PCM engine
1848                  break;
1849          case SNDRV_PCM_TRIGGER_STOP:
1850                  // do something to stop the PCM engine
1851                  break;
1852          default:
1853                  return -EINVAL;
1854          }
1855  }
1856
1857  /* pointer callback */
1858  static snd_pcm_uframes_t
1859  snd_mychip_pcm_pointer(struct snd_pcm_substream *substream)
1860  {
1861          struct mychip *chip = snd_pcm_substream_chip(substream);
1862          unsigned int current_ptr;
1863
1864          /* get the current hardware pointer */
1865          current_ptr = mychip_get_hw_pointer(chip);
1866          return current_ptr;
1867  }
1868
1869  /* operators */
1870  static struct snd_pcm_ops snd_mychip_playback_ops = {
1871          .open =        snd_mychip_playback_open,
1872          .close =       snd_mychip_playback_close,
1873          .ioctl =       snd_pcm_lib_ioctl,
1874          .hw_params =   snd_mychip_pcm_hw_params,
1875          .hw_free =     snd_mychip_pcm_hw_free,
1876          .prepare =     snd_mychip_pcm_prepare,
1877          .trigger =     snd_mychip_pcm_trigger,
1878          .pointer =     snd_mychip_pcm_pointer,
1879  };
1880
1881  /* operators */
1882  static struct snd_pcm_ops snd_mychip_capture_ops = {
1883          .open =        snd_mychip_capture_open,
1884          .close =       snd_mychip_capture_close,
1885          .ioctl =       snd_pcm_lib_ioctl,
1886          .hw_params =   snd_mychip_pcm_hw_params,
1887          .hw_free =     snd_mychip_pcm_hw_free,
1888          .prepare =     snd_mychip_pcm_prepare,
1889          .trigger =     snd_mychip_pcm_trigger,
1890          .pointer =     snd_mychip_pcm_pointer,
1891  };
1892
1893  /*
1894   *  definitions of capture are omitted here...
1895   */
1896
1897  /* create a pcm device */
1898  static int __devinit snd_mychip_new_pcm(struct mychip *chip)
1899  {
1900          struct snd_pcm *pcm;
1901          int err;
1902
1903          if ((err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1,
1904                                 &pcm)) < 0) 
1905                  return err;
1906          pcm->private_data = chip;
1907          strcpy(pcm->name, "My Chip");
1908          chip->pcm = pcm;
1909          /* set operators */
1910          snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1911                          &snd_mychip_playback_ops);
1912          snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
1913                          &snd_mychip_capture_ops);
1914          /* pre-allocation of buffers */
1915          /* NOTE: this may fail */
1916          snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1917                                                snd_dma_pci_data(chip->pci),
1918                                                64*1024, 64*1024);
1919          return 0;
1920  }
1921]]>
1922          </programlisting>
1923        </example>
1924      </para>
1925    </section>
1926
1927    <section id="pcm-interface-constructor">
1928      <title>Constructor</title>
1929      <para>
1930        A pcm instance is allocated by <function>snd_pcm_new()</function>
1931      function. It would be better to create a constructor for pcm,
1932      namely, 
1933
1934        <informalexample>
1935          <programlisting>
1936<![CDATA[
1937  static int __devinit snd_mychip_new_pcm(struct mychip *chip)
1938  {
1939          struct snd_pcm *pcm;
1940          int err;
1941
1942          if ((err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1,
1943                                 &pcm)) < 0) 
1944                  return err;
1945          pcm->private_data = chip;
1946          strcpy(pcm->name, "My Chip");
1947          chip->pcm = pcm;
1948	  ....
1949          return 0;
1950  }
1951]]>
1952          </programlisting>
1953        </informalexample>
1954      </para>
1955
1956      <para>
1957        The <function>snd_pcm_new()</function> function takes the four
1958      arguments. The first argument is the card pointer to which this
1959      pcm is assigned, and the second is the ID string. 
1960      </para>
1961
1962      <para>
1963        The third argument (<parameter>index</parameter>, 0 in the
1964      above) is the index of this new pcm. It begins from zero. When
1965      you will create more than one pcm instances, specify the
1966      different numbers in this argument. For example,
1967      <parameter>index</parameter> = 1 for the second PCM device.  
1968      </para>
1969
1970      <para>
1971        The fourth and fifth arguments are the number of substreams
1972      for playback and capture, respectively. Here both 1 are given in
1973      the above example.  When no playback or no capture is available,
1974      pass 0 to the corresponding argument.
1975      </para>
1976
1977      <para>
1978        If a chip supports multiple playbacks or captures, you can
1979      specify more numbers, but they must be handled properly in
1980      open/close, etc. callbacks.  When you need to know which
1981      substream you are referring to, then it can be obtained from
1982      struct <structname>snd_pcm_substream</structname> data passed to each callback
1983      as follows: 
1984
1985        <informalexample>
1986          <programlisting>
1987<![CDATA[
1988  struct snd_pcm_substream *substream;
1989  int index = substream->number;
1990]]>
1991          </programlisting>
1992        </informalexample>
1993      </para>
1994
1995      <para>
1996        After the pcm is created, you need to set operators for each
1997        pcm stream. 
1998
1999        <informalexample>
2000          <programlisting>
2001<![CDATA[
2002  snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
2003                  &snd_mychip_playback_ops);
2004  snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
2005                  &snd_mychip_capture_ops);
2006]]>
2007          </programlisting>
2008        </informalexample>
2009      </para>
2010
2011      <para>
2012        The operators are defined typically like this:
2013
2014        <informalexample>
2015          <programlisting>
2016<![CDATA[
2017  static struct snd_pcm_ops snd_mychip_playback_ops = {
2018          .open =        snd_mychip_pcm_open,
2019          .close =       snd_mychip_pcm_close,
2020          .ioctl =       snd_pcm_lib_ioctl,
2021          .hw_params =   snd_mychip_pcm_hw_params,
2022          .hw_free =     snd_mychip_pcm_hw_free,
2023          .prepare =     snd_mychip_pcm_prepare,
2024          .trigger =     snd_mychip_pcm_trigger,
2025          .pointer =     snd_mychip_pcm_pointer,
2026  };
2027]]>
2028          </programlisting>
2029        </informalexample>
2030
2031        Each of callbacks is explained in the subsection 
2032        <link linkend="pcm-interface-operators"><citetitle>
2033        Operators</citetitle></link>.
2034      </para>
2035
2036      <para>
2037        After setting the operators, most likely you'd like to
2038        pre-allocate the buffer. For the pre-allocation, simply call
2039        the following: 
2040
2041        <informalexample>
2042          <programlisting>
2043<![CDATA[
2044  snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
2045                                        snd_dma_pci_data(chip->pci),
2046                                        64*1024, 64*1024);
2047]]>
2048          </programlisting>
2049        </informalexample>
2050
2051        It will allocate up to 64kB buffer as default. The details of
2052      buffer management will be described in the later section <link
2053      linkend="buffer-and-memory"><citetitle>Buffer and Memory
2054      Management</citetitle></link>. 
2055      </para>
2056
2057      <para>
2058        Additionally, you can set some extra information for this pcm
2059        in pcm-&gt;info_flags.
2060        The available values are defined as
2061        <constant>SNDRV_PCM_INFO_XXX</constant> in
2062        <filename>&lt;sound/asound.h&gt;</filename>, which is used for
2063        the hardware definition (described later). When your soundchip
2064        supports only half-duplex, specify like this: 
2065
2066        <informalexample>
2067          <programlisting>
2068<![CDATA[
2069  pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
2070]]>
2071          </programlisting>
2072        </informalexample>
2073      </para>
2074    </section>
2075
2076    <section id="pcm-interface-destructor">
2077      <title>... And the Destructor?</title>
2078      <para>
2079        The destructor for a pcm instance is not always
2080      necessary. Since the pcm device will be released by the middle
2081      layer code automatically, you don't have to call destructor
2082      explicitly.
2083      </para>
2084
2085      <para>
2086        The destructor would be necessary when you created some
2087        special records internally and need to release them. In such a
2088        case, set the destructor function to
2089        pcm-&gt;private_free: 
2090
2091        <example>
2092          <title>PCM Instance with a Destructor</title>
2093          <programlisting>
2094<![CDATA[
2095  static void mychip_pcm_free(struct snd_pcm *pcm)
2096  {
2097          struct mychip *chip = snd_pcm_chip(pcm);
2098          /* free your own data */
2099          kfree(chip->my_private_pcm_data);
2100          // do what you like else
2101          ....
2102  }
2103
2104  static int __devinit snd_mychip_new_pcm(struct mychip *chip)
2105  {
2106          struct snd_pcm *pcm;
2107          ....
2108          /* allocate your own data */
2109          chip->my_private_pcm_data = kmalloc(...);
2110          /* set the destructor */
2111          pcm->private_data = chip;
2112          pcm->private_free = mychip_pcm_free;
2113          ....
2114  }
2115]]>
2116          </programlisting>
2117        </example>
2118      </para>
2119    </section>
2120
2121    <section id="pcm-interface-runtime">
2122      <title>Runtime Pointer - The Chest of PCM Information</title>
2123	<para>
2124	  When the PCM substream is opened, a PCM runtime instance is
2125	allocated and assigned to the substream. This pointer is
2126	accessible via <constant>substream-&gt;runtime</constant>.
2127	This runtime pointer holds the various information; it holds
2128	the copy of hw_params and sw_params configurations, the buffer
2129	pointers, mmap records, spinlocks, etc.  Almost everything you
2130	need for controlling the PCM can be found there.
2131	</para>
2132
2133	<para>
2134	The definition of runtime instance is found in
2135	<filename>&lt;sound/pcm.h&gt;</filename>.  Here is the
2136	copy from the file.
2137          <informalexample>
2138            <programlisting>
2139<![CDATA[
2140struct _snd_pcm_runtime {
2141	/* -- Status -- */
2142	struct snd_pcm_substream *trigger_master;
2143	snd_timestamp_t trigger_tstamp;	/* trigger timestamp */
2144	int overrange;
2145	snd_pcm_uframes_t avail_max;
2146	snd_pcm_uframes_t hw_ptr_base;	/* Position at buffer restart */
2147	snd_pcm_uframes_t hw_ptr_interrupt; /* Position at interrupt time*/
2148
2149	/* -- HW params -- */
2150	snd_pcm_access_t access;	/* access mode */
2151	snd_pcm_format_t format;	/* SNDRV_PCM_FORMAT_* */
2152	snd_pcm_subformat_t subformat;	/* subformat */
2153	unsigned int rate;		/* rate in Hz */
2154	unsigned int channels;		/* channels */
2155	snd_pcm_uframes_t period_size;	/* period size */
2156	unsigned int periods;		/* periods */
2157	snd_pcm_uframes_t buffer_size;	/* buffer size */
2158	unsigned int tick_time;		/* tick time */
2159	snd_pcm_uframes_t min_align;	/* Min alignment for the format */
2160	size_t byte_align;
2161	unsigned int frame_bits;
2162	unsigned int sample_bits;
2163	unsigned int info;
2164	unsigned int rate_num;
2165	unsigned int rate_den;
2166
2167	/* -- SW params -- */
2168	struct timespec tstamp_mode;	/* mmap timestamp is updated */
2169  	unsigned int period_step;
2170	unsigned int sleep_min;		/* min ticks to sleep */
2171	snd_pcm_uframes_t xfer_align;	/* xfer size need to be a multiple */
2172	snd_pcm_uframes_t start_threshold;
2173	snd_pcm_uframes_t stop_threshold;
2174	snd_pcm_uframes_t silence_threshold; /* Silence filling happens when
2175						noise is nearest than this */
2176	snd_pcm_uframes_t silence_size;	/* Silence filling size */
2177	snd_pcm_uframes_t boundary;	/* pointers wrap point */
2178
2179	snd_pcm_uframes_t silenced_start;
2180	snd_pcm_uframes_t silenced_size;
2181
2182	snd_pcm_sync_id_t sync;		/* hardware synchronization ID */
2183
2184	/* -- mmap -- */
2185	volatile struct snd_pcm_mmap_status *status;
2186	volatile struct snd_pcm_mmap_control *control;
2187	atomic_t mmap_count;
2188
2189	/* -- locking / scheduling -- */
2190	spinlock_t lock;
2191	wait_queue_head_t sleep;
2192	struct timer_list tick_timer;
2193	struct fasync_struct *fasync;
2194
2195	/* -- private section -- */
2196	void *private_data;
2197	void (*private_free)(struct snd_pcm_runtime *runtime);
2198
2199	/* -- hardware description -- */
2200	struct snd_pcm_hardware hw;
2201	struct snd_pcm_hw_constraints hw_constraints;
2202
2203	/* -- interrupt callbacks -- */
2204	void (*transfer_ack_begin)(struct snd_pcm_substream *substream);
2205	void (*transfer_ack_end)(struct snd_pcm_substream *substream);
2206
2207	/* -- timer -- */
2208	unsigned int timer_resolution;	/* timer resolution */
2209
2210	/* -- DMA -- */           
2211	unsigned char *dma_area;	/* DMA area */
2212	dma_addr_t dma_addr;		/* physical bus address (not accessible from main CPU) */
2213	size_t dma_bytes;		/* size of DMA area */
2214
2215	struct snd_dma_buffer *dma_buffer_p;	/* allocated buffer */
2216
2217#if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
2218	/* -- OSS things -- */
2219	struct snd_pcm_oss_runtime oss;
2220#endif
2221};
2222]]>
2223            </programlisting>
2224          </informalexample>
2225	</para>
2226
2227	<para>
2228	  For the operators (callbacks) of each sound driver, most of
2229	these records are supposed to be read-only.  Only the PCM
2230	middle-layer changes / updates these info.  The exceptions are
2231	the hardware description (hw), interrupt callbacks
2232	(transfer_ack_xxx), DMA buffer information, and the private
2233	data.  Besides, if you use the standard buffer allocation
2234	method via <function>snd_pcm_lib_malloc_pages()</function>,
2235	you don't need to set the DMA buffer information by yourself.
2236	</para>
2237
2238	<para>
2239	In the sections below, important records are explained.
2240	</para>
2241
2242	<section id="pcm-interface-runtime-hw">
2243	<title>Hardware Description</title>
2244	<para>
2245	  The hardware descriptor (struct <structname>snd_pcm_hardware</structname>)
2246	contains the definitions of the fundamental hardware
2247	configuration.  Above all, you'll need to define this in
2248	<link linkend="pcm-interface-operators-open-callback"><citetitle>
2249	the open callback</citetitle></link>.
2250	Note that the runtime instance holds the copy of the
2251	descriptor, not the pointer to the existing descriptor.  That
2252	is, in the open callback, you can modify the copied descriptor
2253	(<constant>runtime-&gt;hw</constant>) as you need.  For example, if the maximum
2254	number of channels is 1 only on some chip models, you can
2255	still use the same hardware descriptor and change the
2256	channels_max later:
2257          <informalexample>
2258            <programlisting>
2259<![CDATA[
2260          struct snd_pcm_runtime *runtime = substream->runtime;
2261          ...
2262          runtime->hw = snd_mychip_playback_hw; /* common definition */
2263          if (chip->model == VERY_OLD_ONE)
2264                  runtime->hw.channels_max = 1;
2265]]>
2266            </programlisting>
2267          </informalexample>
2268	</para>
2269
2270	<para>
2271	  Typically, you'll have a hardware descriptor like below:
2272          <informalexample>
2273            <programlisting>
2274<![CDATA[
2275  static struct snd_pcm_hardware snd_mychip_playback_hw = {
2276          .info = (SNDRV_PCM_INFO_MMAP |
2277                   SNDRV_PCM_INFO_INTERLEAVED |
2278                   SNDRV_PCM_INFO_BLOCK_TRANSFER |
2279                   SNDRV_PCM_INFO_MMAP_VALID),
2280          .formats =          SNDRV_PCM_FMTBIT_S16_LE,
2281          .rates =            SNDRV_PCM_RATE_8000_48000,
2282          .rate_min =         8000,
2283          .rate_max =         48000,
2284          .channels_min =     2,
2285          .channels_max =     2,
2286          .buffer_bytes_max = 32768,
2287          .period_bytes_min = 4096,
2288          .period_bytes_max = 32768,
2289          .periods_min =      1,
2290          .periods_max =      1024,
2291  };
2292]]>
2293            </programlisting>
2294          </informalexample>
2295        </para>
2296
2297        <para>
2298	<itemizedlist>
2299	<listitem><para>
2300          The <structfield>info</structfield> field contains the type and
2301        capabilities of this pcm. The bit flags are defined in
2302        <filename>&lt;sound/asound.h&gt;</filename> as
2303        <constant>SNDRV_PCM_INFO_XXX</constant>. Here, at least, you
2304        have to specify whether the mmap is supported and which
2305        interleaved format is supported.
2306        When the mmap is supported, add
2307        <constant>SNDRV_PCM_INFO_MMAP</constant> flag here. When the
2308        hardware supports the interleaved or the non-interleaved
2309        format, <constant>SNDRV_PCM_INFO_INTERLEAVED</constant> or
2310        <constant>SNDRV_PCM_INFO_NONINTERLEAVED</constant> flag must
2311        be set, respectively. If both are supported, you can set both,
2312        too. 
2313        </para>
2314
2315        <para>
2316          In the above example, <constant>MMAP_VALID</constant> and
2317        <constant>BLOCK_TRANSFER</constant> are specified for OSS mmap
2318        mode. Usually both are set. Of course,
2319        <constant>MMAP_VALID</constant> is set only if the mmap is
2320        really supported. 
2321        </para>
2322
2323        <para>
2324          The other possible flags are
2325        <constant>SNDRV_PCM_INFO_PAUSE</constant> and
2326        <constant>SNDRV_PCM_INFO_RESUME</constant>. The
2327        <constant>PAUSE</constant> bit means that the pcm supports the
2328        <quote>pause</quote> operation, while the
2329        <constant>RESUME</constant> bit means that the pcm supports
2330        the full <quote>suspend/resume</quote> operation.
2331	If <constant>PAUSE</constant> flag is set,
2332	the <structfield>trigger</structfield> callback below
2333        must handle the corresponding (pause push/release) commands.
2334	The suspend/resume trigger commands can be defined even without
2335	<constant>RESUME</constant> flag.  See <link
2336	linkend="power-management"><citetitle>
2337	Power Management</citetitle></link> section for details.
2338        </para>
2339
2340	<para>
2341	  When the PCM substreams can be synchronized (typically,
2342	synchronized start/stop of a playback and a capture streams),
2343	you can give <constant>SNDRV_PCM_INFO_SYNC_START</constant>,
2344	too.  In this case, you'll need to check the linked-list of
2345	PCM substreams in the trigger callback.  This will be
2346	described in the later section.
2347	</para>
2348	</listitem>
2349
2350	<listitem>
2351        <para>
2352          <structfield>formats</structfield> field contains the bit-flags
2353        of supported formats (<constant>SNDRV_PCM_FMTBIT_XXX</constant>).
2354        If the hardware supports more than one format, give all or'ed
2355        bits.  In the example above, the signed 16bit little-endian
2356        format is specified.
2357        </para>
2358	</listitem>
2359
2360	<listitem>
2361        <para>
2362        <structfield>rates</structfield> field contains the bit-flags of
2363        supported rates (<constant>SNDRV_PCM_RATE_XXX</constant>).
2364        When the chip supports continuous rates, pass
2365        <constant>CONTINUOUS</constant> bit additionally.
2366        The pre-defined rate bits are provided only for typical
2367	rates. If your chip supports unconventional rates, you need to add
2368        <constant>KNOT</constant> bit and set up the hardware
2369        constraint manually (explained later).
2370        </para>
2371	</listitem>
2372
2373	<listitem>
2374	<para>
2375	<structfield>rate_min</structfield> and
2376	<structfield>rate_max</structfield> define the minimal and
2377	maximal sample rate.  This should correspond somehow to
2378	<structfield>rates</structfield> bits.
2379	</para>
2380	</listitem>
2381
2382	<listitem>
2383	<para>
2384	<structfield>channel_min</structfield> and
2385	<structfield>channel_max</structfield> 
2386	define, as you might already expected, the minimal and maximal
2387	number of channels.
2388	</para>
2389	</listitem>
2390
2391	<listitem>
2392	<para>
2393	<structfield>buffer_bytes_max</structfield> defines the
2394	maximal buffer size in bytes.  There is no
2395	<structfield>buffer_bytes_min</structfield> field, since
2396	it can be calculated from the minimal period size and the
2397	minimal number of periods.
2398	Meanwhile, <structfield>period_bytes_min</structfield> and
2399	define the minimal and maximal size of the period in bytes.
2400	<structfield>periods_max</structfield> and
2401	<structfield>periods_min</structfield> define the maximal and
2402	minimal number of periods in the buffer.
2403        </para>
2404
2405	<para>
2406	The <quote>period</quote> is a term, that corresponds to
2407	fragment in the OSS world.  The period defines the size at
2408	which the PCM interrupt is generated. This size strongly
2409	depends on the hardware. 
2410	Generally, the smaller period size will give you more
2411	interrupts, that is, more controls. 
2412	In the case of capture, this size defines the input latency.
2413	On the other hand, the whole buffer size defines the
2414	output latency for the playback direction.
2415	</para>
2416	</listitem>
2417
2418	<listitem>
2419	<para>
2420	There is also a field <structfield>fifo_size</structfield>.
2421	This specifies the size of the hardware FIFO, but it's not
2422	used currently in the driver nor in the alsa-lib.  So, you
2423	can ignore this field.
2424	</para>
2425	</listitem>
2426	</itemizedlist>
2427	</para>
2428	</section>
2429
2430	<section id="pcm-interface-runtime-config">
2431	<title>PCM Configurations</title>
2432	<para>
2433	Ok, let's go back again to the PCM runtime records.
2434	The most frequently referred records in the runtime instance are
2435	the PCM configurations.
2436	The PCM configurations are stored on runtime instance
2437	after the application sends <type>hw_params</type> data via
2438	alsa-lib.  There are many fields copied from hw_params and
2439	sw_params structs.  For example,
2440	<structfield>format</structfield> holds the format type
2441	chosen by the application.  This field contains the enum value
2442	<constant>SNDRV_PCM_FORMAT_XXX</constant>.
2443	</para>
2444
2445	<para>
2446	One thing to be noted is that the configured buffer and period
2447	sizes are stored in <quote>frames</quote> in the runtime
2448        In the ALSA world, 1 frame = channels * samples-size.
2449	For conversion between frames and bytes, you can use the
2450	helper functions, <function>frames_to_bytes()</function> and
2451          <function>bytes_to_frames()</function>. 
2452          <informalexample>
2453            <programlisting>
2454<![CDATA[
2455  period_bytes = frames_to_bytes(runtime, runtime->period_size);
2456]]>
2457            </programlisting>
2458          </informalexample>
2459        </para>
2460
2461	<para>
2462	Also, many software parameters (sw_params) are
2463	stored in frames, too.  Please check the type of the field.
2464	<type>snd_pcm_uframes_t</type> is for the frames as unsigned
2465	integer while <type>snd_pcm_sframes_t</type> is for the frames
2466	as signed integer.
2467	</para>
2468	</section>
2469
2470	<section id="pcm-interface-runtime-dma">
2471	<title>DMA Buffer Information</title>
2472	<para>
2473	The DMA buffer is defined by the following four fields,
2474	<structfield>dma_area</structfield>,
2475	<structfield>dma_addr</structfield>,
2476	<structfield>dma_bytes</structfield> and
2477	<structfield>dma_private</structfield>.
2478	The <structfield>dma_area</structfield> holds the buffer
2479	pointer (the logical address).  You can call
2480	<function>memcpy</function> from/to 
2481	this pointer.  Meanwhile, <structfield>dma_addr</structfield>
2482	holds the physical address of the buffer.  This field is
2483	specified only when the buffer is a linear buffer.
2484	<structfield>dma_bytes</structfield> holds the size of buffer
2485	in bytes.  <structfield>dma_private</structfield> is used for
2486	the ALSA DMA allocator.
2487	</para>
2488
2489	<para>
2490	If you use a standard ALSA function,
2491	<function>snd_pcm_lib_malloc_pages()</function>, for
2492	allocating the buffer, these fields are set by the ALSA middle
2493	layer, and you should <emphasis>not</emphasis> change them by
2494	yourself.  You can read them but not write them.
2495	On the other hand, if you want to allocate the buffer by
2496	yourself, you'll need to manage it in hw_params callback.
2497	At least, <structfield>dma_bytes</structfield> is mandatory.
2498	<structfield>dma_area</structfield> is necessary when the
2499	buffer is mmapped.  If your driver doesn't support mmap, this
2500	field is not necessary.  <structfield>dma_addr</structfield>
2501	is also not mandatory.  You can use
2502	<structfield>dma_private</structfield> as you like, too.
2503	</para>
2504	</section>
2505
2506	<section id="pcm-interface-runtime-status">
2507	<title>Running Status</title>
2508	<para>
2509	The running status can be referred via <constant>runtime-&gt;status</constant>.
2510	This is the pointer to struct <structname>snd_pcm_mmap_status</structname>
2511	record.  For example, you can get the current DMA hardware
2512	pointer via <constant>runtime-&gt;status-&gt;hw_ptr</constant>.
2513	</para>
2514
2515	<para>
2516	The DMA application pointer can be referred via
2517	<constant>runtime-&gt;control</constant>, which points
2518	struct <structname>snd_pcm_mmap_control</structname> record.
2519	However, accessing directly to this value is not recommended.
2520	</para>
2521	</section>
2522
2523	<section id="pcm-interface-runtime-private">
2524	<title>Private Data</title> 
2525	<para>
2526	You can allocate a record for the substream and store it in
2527	<constant>runtime-&gt;private_data</constant>.  Usually, this
2528	done in
2529	<link linkend="pcm-interface-operators-open-callback"><citetitle>
2530	the open callback</citetitle></link>.
2531	Don't mix this with <constant>pcm-&gt;private_data</constant>.
2532	The <constant>pcm-&gt;private_data</constant> usually points the
2533	chip instance assigned statically at the creation of PCM, while the 
2534	<constant>runtime-&gt;private_data</constant> points a dynamic
2535	data created at the PCM open callback.
2536
2537          <informalexample>
2538            <programlisting>
2539<![CDATA[
2540  static int snd_xxx_open(struct snd_pcm_substream *substream)
2541  {
2542          struct my_pcm_data *data;
2543          ....
2544          data = kmalloc(sizeof(*data), GFP_KERNEL);
2545          substream->runtime->private_data = data;
2546          ....
2547  }
2548]]>
2549            </programlisting>
2550          </informalexample>
2551        </para>
2552
2553        <para>
2554          The allocated object must be released in
2555	<link linkend="pcm-interface-operators-open-callback"><citetitle>
2556	the close callback</citetitle></link>.
2557        </para>
2558	</section>
2559
2560	<section id="pcm-interface-runtime-intr">
2561	<title>Interrupt Callbacks</title>
2562	<para>
2563	The field <structfield>transfer_ack_begin</structfield> and
2564	<structfield>transfer_ack_end</structfield> are called at
2565	the beginning and the end of
2566	<function>snd_pcm_period_elapsed()</function>, respectively. 
2567	</para>
2568	</section>
2569
2570    </section>
2571
2572    <section id="pcm-interface-operators">
2573      <title>Operators</title>
2574      <para>
2575        OK, now let me explain the detail of each pcm callback
2576      (<parameter>ops</parameter>). In general, every callback must
2577      return 0 if successful, or a negative number with the error
2578      number such as <constant>-EINVAL</constant> at any
2579      error. 
2580      </para>
2581
2582      <para>
2583        The callback function takes at least the argument with
2584        <structname>snd_pcm_substream</structname> pointer. For retrieving the
2585        chip record from the given substream instance, you can use the
2586        following macro. 
2587
2588        <informalexample>
2589          <programlisting>
2590<![CDATA[
2591  int xxx() {
2592          struct mychip *chip = snd_pcm_substream_chip(substream);
2593          ....
2594  }
2595]]>
2596          </programlisting>
2597        </informalexample>
2598
2599	The macro reads <constant>substream-&gt;private_data</constant>,
2600	which is a copy of <constant>pcm-&gt;private_data</constant>.
2601	You can override the former if you need to assign different data
2602	records per PCM substream.  For example, cmi8330 driver assigns
2603	different private_data for playback and capture directions,
2604	because it uses two different codecs (SB- and AD-compatible) for
2605	different directions.
2606      </para>
2607
2608      <section id="pcm-interface-operators-open-callback">
2609        <title>open callback</title>
2610        <para>
2611          <informalexample>
2612            <programlisting>
2613<![CDATA[
2614  static int snd_xxx_open(struct snd_pcm_substream *substream);
2615]]>
2616            </programlisting>
2617          </informalexample>
2618
2619          This is called when a pcm substream is opened.
2620        </para>
2621
2622        <para>
2623          At least, here you have to initialize the runtime-&gt;hw
2624          record. Typically, this is done by like this: 
2625
2626          <informalexample>
2627            <programlisting>
2628<![CDATA[
2629  static int snd_xxx_open(struct snd_pcm_substream *substream)
2630  {
2631          struct mychip *chip = snd_pcm_substream_chip(substream);
2632          struct snd_pcm_runtime *runtime = substream->runtime;
2633
2634          runtime->hw = snd_mychip_playback_hw;
2635          return 0;
2636  }
2637]]>
2638            </programlisting>
2639          </informalexample>
2640
2641          where <parameter>snd_mychip_playback_hw</parameter> is the
2642          pre-defined hardware description.
2643	</para>
2644
2645	<para>
2646	You can allocate a private data in this callback, as described
2647	in <link linkend="pcm-interface-runtime-private"><citetitle>
2648	Private Data</citetitle></link> section.
2649	</para>
2650
2651	<para>
2652	If the hardware configuration needs more constraints, set the
2653	hardware constraints here, too.
2654	See <link linkend="pcm-interface-constraints"><citetitle>
2655	Constraints</citetitle></link> for more details.
2656	</para>
2657      </section>
2658
2659      <section id="pcm-interface-operators-close-callback">
2660        <title>close callback</title>
2661        <para>
2662          <informalexample>
2663            <programlisting>
2664<![CDATA[
2665  static int snd_xxx_close(struct snd_pcm_substream *substream);
2666]]>
2667            </programlisting>
2668          </informalexample>
2669
2670          Obviously, this is called when a pcm substream is closed.
2671        </para>
2672
2673        <para>
2674          Any private instance for a pcm substream allocated in the
2675          open callback will be released here. 
2676
2677          <informalexample>
2678            <programlisting>
2679<![CDATA[
2680  static int snd_xxx_close(struct snd_pcm_substream *substream)
2681  {
2682          ....
2683          kfree(substream->runtime->private_data);
2684          ....
2685  }
2686]]>
2687            </programlisting>
2688          </informalexample>
2689        </para>
2690      </section>
2691
2692      <section id="pcm-interface-operators-ioctl-callback">
2693        <title>ioctl callback</title>
2694        <para>
2695          This is used for any special action to pcm ioctls. But
2696        usually you can pass a generic ioctl callback, 
2697        <function>snd_pcm_lib_ioctl</function>.
2698        </para>
2699      </section>
2700
2701      <section id="pcm-interface-operators-hw-params-callback">
2702        <title>hw_params callback</title>
2703        <para>
2704          <informalexample>
2705            <programlisting>
2706<![CDATA[
2707  static int snd_xxx_hw_params(struct snd_pcm_substream *substream,
2708                               struct snd_pcm_hw_params *hw_params);
2709]]>
2710            </programlisting>
2711          </informalexample>
2712
2713          This and <structfield>hw_free</structfield> callbacks exist
2714        only on ALSA 0.9.x. 
2715        </para>
2716
2717        <para>
2718          This is called when the hardware parameter
2719        (<structfield>hw_params</structfield>) is set
2720        up by the application, 
2721        that is, once when the buffer size, the period size, the
2722        format, etc. are defined for the pcm substream. 
2723        </para>
2724
2725        <para>
2726          Many hardware set-up should be done in this callback,
2727        including the allocation of buffers. 
2728        </para>
2729
2730        <para>
2731          Parameters to be initialized are retrieved by
2732          <function>params_xxx()</function> macros. For allocating a
2733          buffer, you can call a helper function, 
2734
2735          <informalexample>
2736            <programlisting>
2737<![CDATA[
2738  snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
2739]]>
2740            </programlisting>
2741          </informalexample>
2742
2743          <function>snd_pcm_lib_malloc_pages()</function> is available
2744	  only when the DMA buffers have been pre-allocated.
2745	  See the section <link
2746	  linkend="buffer-and-memory-buffer-types"><citetitle>
2747	  Buffer Types</citetitle></link> for more details.
2748        </para>
2749
2750        <para>
2751          Note that this and <structfield>prepare</structfield> callbacks
2752        may be called multiple times per initialization.
2753        For example, the OSS emulation may
2754        call these callbacks at each change via its ioctl. 
2755        </para>
2756
2757        <para>
2758          Thus, you need to take care not to allocate the same buffers
2759        many times, which will lead to memory leak!  Calling the
2760        helper function above many times is OK. It will release the
2761        previous buffer automatically when it was already allocated. 
2762        </para>
2763
2764        <para>
2765          Another note is that this callback is non-atomic
2766        (schedulable). This is important, because the
2767        <structfield>trigger</structfield> callback 
2768        is atomic (non-schedulable). That is, mutex or any
2769        schedule-related functions are not available in
2770        <structfield>trigger</structfield> callback.
2771	Please see the subsection
2772	<link linkend="pcm-interface-atomicity"><citetitle>
2773	Atomicity</citetitle></link> for details.
2774        </para>
2775      </section>
2776
2777      <section id="pcm-interface-operators-hw-free-callback">
2778        <title>hw_free callback</title>
2779        <para>
2780          <informalexample>
2781            <programlisting>
2782<![CDATA[
2783  static int snd_xxx_hw_free(struct snd_pcm_substream *substream);
2784]]>
2785            </programlisting>
2786          </informalexample>
2787        </para>
2788
2789        <para>
2790          This is called to release the resources allocated via
2791          <structfield>hw_params</structfield>. For example, releasing the
2792          buffer via 
2793          <function>snd_pcm_lib_malloc_pages()</function> is done by
2794          calling the following: 
2795
2796          <informalexample>
2797            <programlisting>
2798<![CDATA[
2799  snd_pcm_lib_free_pages(substream);
2800]]>
2801            </programlisting>
2802          </informalexample>
2803        </para>
2804
2805        <para>
2806          This function is always called before the close callback is called.
2807          Also, the callback may be called multiple times, too.
2808          Keep track whether the resource was already released. 
2809        </para>
2810      </section>
2811
2812      <section id="pcm-interface-operators-prepare-callback">
2813       <title>prepare callback</title>
2814        <para>
2815          <informalexample>
2816            <programlisting>
2817<![CDATA[
2818  static int snd_xxx_prepare(struct snd_pcm_substream *substream);
2819]]>
2820            </programlisting>
2821          </informalexample>
2822        </para>
2823
2824        <para>
2825          This callback is called when the pcm is
2826        <quote>prepared</quote>. You can set the format type, sample
2827        rate, etc. here. The difference from
2828        <structfield>hw_params</structfield> is that the 
2829        <structfield>prepare</structfield> callback will be called at each
2830        time 
2831        <function>snd_pcm_prepare()</function> is called, i.e. when
2832        recovered after underruns, etc. 
2833        </para>
2834
2835        <para>
2836	Note that this callback became non-atomic since the recent version.
2837	You can use schedule-related functions safely in this callback now.
2838        </para>
2839
2840        <para>
2841          In this and the following callbacks, you can refer to the
2842        values via the runtime record,
2843        substream-&gt;runtime.
2844        For example, to get the current
2845        rate, format or channels, access to
2846        runtime-&gt;rate,
2847        runtime-&gt;format or
2848        runtime-&gt;channels, respectively. 
2849        The physical address of the allocated buffer is set to
2850	runtime-&gt;dma_area.  The buffer and period sizes are
2851	in runtime-&gt;buffer_size and runtime-&gt;period_size,
2852	respectively.
2853        </para>
2854
2855        <para>
2856          Be careful that this callback will be called many times at
2857        each set up, too. 
2858        </para>
2859      </section>
2860
2861      <section id="pcm-interface-operators-trigger-callback">
2862        <title>trigger callback</title>
2863        <para>
2864          <informalexample>
2865            <programlisting>
2866<![CDATA[
2867  static int snd_xxx_trigger(struct snd_pcm_substream *substream, int cmd);
2868]]>
2869            </programlisting>
2870          </informalexample>
2871
2872          This is called when the pcm is started, stopped or paused.
2873        </para>
2874
2875        <para>
2876          Which action is specified in the second argument,
2877          <constant>SNDRV_PCM_TRIGGER_XXX</constant> in
2878          <filename>&lt;sound/pcm.h&gt;</filename>. At least,
2879          <constant>START</constant> and <constant>STOP</constant>
2880          commands must be defined in this callback. 
2881
2882          <informalexample>
2883            <programlisting>
2884<![CDATA[
2885  switch (cmd) {
2886  case SNDRV_PCM_TRIGGER_START:
2887          // do something to start the PCM engine
2888          break;
2889  case SNDRV_PCM_TRIGGER_STOP:
2890          // do something to stop the PCM engine
2891          break;
2892  default:
2893          return -EINVAL;
2894  }
2895]]>
2896            </programlisting>
2897          </informalexample>
2898        </para>
2899
2900        <para>
2901          When the pcm supports the pause operation (given in info
2902        field of the hardware table), <constant>PAUSE_PUSE</constant>
2903        and <constant>PAUSE_RELEASE</constant> commands must be
2904        handled here, too. The former is the command to pause the pcm,
2905        and the latter to restart the pcm again. 
2906        </para>
2907
2908        <para>
2909          When the pcm supports the suspend/resume operation,
2910	regardless of full or partial suspend/resume support,
2911        <constant>SUSPEND</constant> and <constant>RESUME</constant>
2912        commands must be handled, too.
2913        These commands are issued when the power-management status is
2914        changed.  Obviously, the <constant>SUSPEND</constant> and
2915        <constant>RESUME</constant>
2916        do suspend and resume of the pcm substream, and usually, they
2917        are identical with <constant>STOP</constant> and
2918        <constant>START</constant> commands, respectively.
2919	  See <link linkend="power-management"><citetitle>
2920	Power Management</citetitle></link> section for details.
2921        </para>
2922
2923        <para>
2924          As mentioned, this callback is atomic.  You cannot call
2925	  the function going to sleep.
2926	  The trigger callback should be as minimal as possible,
2927	  just really triggering the DMA.  The other stuff should be
2928	  initialized hw_params and prepare callbacks properly
2929	  beforehand.
2930        </para>
2931      </section>
2932
2933      <section id="pcm-interface-operators-pointer-callback">
2934        <title>pointer callback</title>
2935        <para>
2936          <informalexample>
2937            <programlisting>
2938<![CDATA[
2939  static snd_pcm_uframes_t snd_xxx_pointer(struct snd_pcm_substream *substream)
2940]]>
2941            </programlisting>
2942          </informalexample>
2943
2944          This callback is called when the PCM middle layer inquires
2945        the current hardware position on the buffer. The position must
2946        be returned in frames (which was in bytes on ALSA 0.5.x),
2947        ranged from 0 to buffer_size - 1.
2948        </para>
2949
2950        <para>
2951          This is called usually from the buffer-update routine in the
2952        pcm middle layer, which is invoked when
2953        <function>snd_pcm_period_elapsed()</function> is called in the
2954        interrupt routine. Then the pcm middle layer updates the
2955        position and calculates the available space, and wakes up the
2956        sleeping poll threads, etc. 
2957        </para>
2958
2959        <para>
2960          This callback is also atomic.
2961        </para>
2962      </section>
2963
2964      <section id="pcm-interface-operators-copy-silence">
2965        <title>copy and silence callbacks</title>
2966        <para>
2967          These callbacks are not mandatory, and can be omitted in
2968        most cases. These callbacks are used when the hardware buffer
2969        cannot be on the normal memory space. Some chips have their
2970        own buffer on the hardware which is not mappable. In such a
2971        case, you have to transfer the data manually from the memory
2972        buffer to the hardware buffer. Or, if the buffer is
2973        non-contiguous on both physical and virtual memory spaces,
2974        these callbacks must be defined, too. 
2975        </para>
2976
2977        <para>
2978          If these two callbacks are defined, copy and set-silence
2979        operations are done by them. The detailed will be described in
2980        the later section <link
2981        linkend="buffer-and-memory"><citetitle>Buffer and Memory
2982        Management</citetitle></link>. 
2983        </para>
2984      </section>
2985
2986      <section id="pcm-interface-operators-ack">
2987        <title>ack callback</title>
2988        <para>
2989          This callback is also not mandatory. This callback is called
2990        when the appl_ptr is updated in read or write operations.
2991        Some drivers like emu10k1-fx and cs46xx need to track the
2992	current appl_ptr for the internal buffer, and this callback
2993	is useful only for such a purpose.
2994	</para>
2995	<para>
2996	  This callback is atomic.
2997	</para>
2998      </section>
2999
3000      <section id="pcm-interface-operators-page-callback">
3001        <title>page callback</title>
3002
3003        <para>
3004          This callback is also not mandatory. This callback is used
3005        mainly for the non-contiguous buffer. The mmap calls this
3006        callback to get the page address. Some examples will be
3007        explained in the later section <link
3008        linkend="buffer-and-memory"><citetitle>Buffer and Memory
3009        Management</citetitle></link>, too. 
3010        </para>
3011      </section>
3012    </section>
3013
3014    <section id="pcm-interface-interrupt-handler">
3015      <title>Interrupt Handler</title>
3016      <para>
3017        The rest of pcm stuff is the PCM interrupt handler. The
3018      role of PCM interrupt handler in the sound driver is to update
3019      the buffer position and to tell the PCM middle layer when the
3020      buffer position goes across the prescribed period size. To
3021      inform this, call <function>snd_pcm_period_elapsed()</function>
3022      function. 
3023      </para>
3024
3025      <para>
3026        There are several types of sound chips to generate the interrupts.
3027      </para>
3028
3029      <section id="pcm-interface-interrupt-handler-boundary">
3030        <title>Interrupts at the period (fragment) boundary</title>
3031        <para>
3032          This is the most frequently found type:  the hardware
3033        generates an interrupt at each period boundary.
3034	In this case, you can call
3035        <function>snd_pcm_period_elapsed()</function> at each 
3036        interrupt. 
3037        </para>
3038
3039        <para>
3040          <function>snd_pcm_period_elapsed()</function> takes the
3041        substream pointer as its argument. Thus, you need to keep the
3042        substream pointer accessible from the chip instance. For
3043        example, define substream field in the chip record to hold the
3044        current running substream pointer, and set the pointer value
3045        at open callback (and reset at close callback). 
3046        </para>
3047
3048        <para>
3049          If you acquire a spinlock in the interrupt handler, and the
3050        lock is used in other pcm callbacks, too, then you have to
3051        release the lock before calling
3052        <function>snd_pcm_period_elapsed()</function>, because
3053        <function>snd_pcm_period_elapsed()</function> calls other pcm
3054        callbacks inside. 
3055        </para>
3056
3057        <para>
3058          A typical coding would be like:
3059
3060          <example>
3061	    <title>Interrupt Handler Case #1</title>
3062            <programlisting>
3063<![CDATA[
3064  static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id)
3065  {
3066          struct mychip *chip = dev_id;
3067          spin_lock(&chip->lock);
3068          ....
3069          if (pcm_irq_invoked(chip)) {
3070                  /* call updater, unlock before it */
3071                  spin_unlock(&chip->lock);
3072                  snd_pcm_period_elapsed(chip->substream);
3073                  spin_lock(&chip->lock);
3074                  // acknowledge the interrupt if necessary
3075          }
3076          ....
3077          spin_unlock(&chip->lock);
3078          return IRQ_HANDLED;
3079  }
3080]]>
3081            </programlisting>
3082          </example>
3083        </para>
3084      </section>
3085
3086      <section id="pcm-interface-interrupt-handler-timer">
3087        <title>High-frequent timer interrupts</title>
3088        <para>
3089	This is the case when the hardware doesn't generate interrupts
3090        at the period boundary but do timer-interrupts at the fixed
3091        timer rate (e.g. es1968 or ymfpci drivers). 
3092        In this case, you need to check the current hardware
3093        position and accumulates the processed sample length at each
3094        interrupt.  When the accumulated size overcomes the period
3095        size, call 
3096        <function>snd_pcm_period_elapsed()</function> and reset the
3097        accumulator. 
3098        </para>
3099
3100        <para>
3101          A typical coding would be like the following.
3102
3103          <example>
3104	    <title>Interrupt Handler Case #2</title>
3105            <programlisting>
3106<![CDATA[
3107  static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id)
3108  {
3109          struct mychip *chip = dev_id;
3110          spin_lock(&chip->lock);
3111          ....
3112          if (pcm_irq_invoked(chip)) {
3113                  unsigned int last_ptr, size;
3114                  /* get the current hardware pointer (in frames) */
3115                  last_ptr = get_hw_ptr(chip);
3116                  /* calculate the processed frames since the
3117                   * last update
3118                   */
3119                  if (last_ptr < chip->last_ptr)
3120                          size = runtime->buffer_size + last_ptr 
3121                                   - chip->last_ptr; 
3122                  else
3123                          size = last_ptr - chip->last_ptr;
3124                  /* remember the last updated point */
3125                  chip->last_ptr = last_ptr;
3126                  /* accumulate the size */
3127                  chip->size += size;
3128                  /* over the period boundary? */
3129                  if (chip->size >= runtime->period_size) {
3130                          /* reset the accumulator */
3131                          chip->size %= runtime->period_size;
3132                          /* call updater */
3133                          spin_unlock(&chip->lock);
3134                          snd_pcm_period_elapsed(substream);
3135                          spin_lock(&chip->lock);
3136                  }
3137                  // acknowledge the interrupt if necessary
3138          }
3139          ....
3140          spin_unlock(&chip->lock);
3141          return IRQ_HANDLED;
3142  }
3143]]>
3144            </programlisting>
3145          </example>
3146        </para>
3147      </section>
3148
3149      <section id="pcm-interface-interrupt-handler-both">
3150        <title>On calling <function>snd_pcm_period_elapsed()</function></title>
3151        <para>
3152          In both cases, even if more than one period are elapsed, you
3153        don't have to call
3154        <function>snd_pcm_period_elapsed()</function> many times. Call
3155        only once. And the pcm layer will check the current hardware
3156        pointer and update to the latest status. 
3157        </para>
3158      </section>
3159    </section>
3160
3161    <section id="pcm-interface-atomicity">
3162      <title>Atomicity</title>
3163      <para>
3164      One of the most important (and thus difficult to debug) problem
3165      on the kernel programming is the race condition.
3166      On linux kernel, usually it's solved via spin-locks or
3167      semaphores.  In general, if the race condition may
3168      happen in the interrupt handler, it's handled as atomic, and you
3169      have to use spinlock for protecting the critical session.  If it
3170      never happens in the interrupt and it may take relatively long
3171      time, you should use semaphore.
3172      </para>
3173
3174      <para>
3175      As already seen, some pcm callbacks are atomic and some are
3176      not.  For example, <parameter>hw_params</parameter> callback is
3177      non-atomic, while <parameter>trigger</parameter> callback is
3178      atomic.  This means, the latter is called already in a spinlock
3179      held by the PCM middle layer. Please take this atomicity into
3180      account when you use a spinlock or a semaphore in the callbacks.
3181      </para>
3182
3183      <para>
3184      In the atomic callbacks, you cannot use functions which may call
3185      <function>schedule</function> or go to
3186      <function>sleep</function>.  The semaphore and mutex do sleep,
3187      and hence they cannot be used inside the atomic callbacks
3188      (e.g. <parameter>trigger</parameter> callback).
3189      For taking a certain delay in such a callback, please use
3190      <function>udelay()</function> or <function>mdelay()</function>.
3191      </para>
3192
3193      <para>
3194      All three atomic callbacks (trigger, pointer, and ack) are
3195      called with local interrupts disabled.
3196      </para>
3197
3198    </section>
3199    <section id="pcm-interface-constraints">
3200      <title>Constraints</title>
3201      <para>
3202        If your chip supports unconventional sample rates, or only the
3203      limited samples, you need to set a constraint for the
3204      condition. 
3205      </para>
3206
3207      <para>
3208        For example, in order to restrict the sample rates in the some
3209        supported values, use
3210	<function>snd_pcm_hw_constraint_list()</function>.
3211	You need to call this function in the open callback.
3212
3213        <example>
3214	  <title>Example of Hardware Constraints</title>
3215          <programlisting>
3216<![CDATA[
3217  static unsigned int rates[] =
3218          {4000, 10000, 22050, 44100};
3219  static struct snd_pcm_hw_constraint_list constraints_rates = {
3220          .count = ARRAY_SIZE(rates),
3221          .list = rates,
3222          .mask = 0,
3223  };
3224
3225  static int snd_mychip_pcm_open(struct snd_pcm_substream *substream)
3226  {
3227          int err;
3228          ....
3229          err = snd_pcm_hw_constraint_list(substream->runtime, 0,
3230                                           SNDRV_PCM_HW_PARAM_RATE,
3231                                           &constraints_rates);
3232          if (err < 0)
3233                  return err;
3234          ....
3235  }
3236]]>
3237          </programlisting>
3238        </example>
3239      </para>
3240
3241      <para>
3242        There are many different constraints.
3243        Look in <filename>sound/pcm.h</filename> for a complete list.
3244        You can even define your own constraint rules.
3245        For example, let's suppose my_chip can manage a substream of 1 channel
3246        if and only if the format is S16_LE, otherwise it supports any format
3247        specified in the <structname>snd_pcm_hardware</structname> structure (or in any
3248        other constraint_list). You can build a rule like this:
3249
3250        <example>
3251	  <title>Example of Hardware Constraints for Channels</title>
3252	  <programlisting>
3253<![CDATA[
3254  static int hw_rule_format_by_channels(struct snd_pcm_hw_params *params,
3255                                        struct snd_pcm_hw_rule *rule)
3256  {
3257          struct snd_interval *c = hw_param_interval(params,
3258                SNDRV_PCM_HW_PARAM_CHANNELS);
3259          struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
3260          struct snd_mask fmt;
3261
3262          snd_mask_any(&fmt);    /* Init the struct */
3263          if (c->min < 2) {
3264                  fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_LE;
3265                  return snd_mask_refine(f, &fmt);
3266          }
3267          return 0;
3268  }
3269]]>
3270          </programlisting>
3271        </example>
3272      </para>
3273 
3274      <para>
3275        Then you need to call this function to add your rule:
3276
3277       <informalexample>
3278	 <programlisting>
3279<![CDATA[
3280  snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
3281                      hw_rule_channels_by_format, 0, SNDRV_PCM_HW_PARAM_FORMAT,
3282                      -1);
3283]]>
3284          </programlisting>
3285        </informalexample>
3286      </para>
3287
3288      <para>
3289        The rule function is called when an application sets the number of
3290        channels. But an application can set the format before the number of
3291        channels. Thus you also need to define the inverse rule:
3292
3293       <example>
3294	 <title>Example of Hardware Constraints for Channels</title>
3295	 <programlisting>
3296<![CDATA[
3297  static int hw_rule_channels_by_format(struct snd_pcm_hw_params *params,
3298                                        struct snd_pcm_hw_rule *rule)
3299  {
3300          struct snd_interval *c = hw_param_interval(params,
3301                        SNDRV_PCM_HW_PARAM_CHANNELS);
3302          struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
3303          struct snd_interval ch;
3304
3305          snd_interval_any(&ch);
3306          if (f->bits[0] == SNDRV_PCM_FMTBIT_S16_LE) {
3307                  ch.min = ch.max = 1;
3308                  ch.integer = 1;
3309                  return snd_interval_refine(c, &ch);
3310          }
3311          return 0;
3312  }
3313]]>
3314          </programlisting>
3315        </example>
3316      </para>
3317
3318      <para>
3319      ...and in the open callback:
3320       <informalexample>
3321	 <programlisting>
3322<![CDATA[
3323  snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
3324                      hw_rule_format_by_channels, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
3325                      -1);
3326]]>
3327          </programlisting>
3328        </informalexample>
3329      </para>
3330
3331      <para>
3332        I won't explain more details here, rather I
3333        would like to say, <quote>Luke, use the source.</quote>
3334      </para>
3335    </section>
3336
3337  </chapter>
3338
3339
3340<!-- ****************************************************** -->
3341<!-- Control Interface  -->
3342<!-- ****************************************************** -->
3343  <chapter id="control-interface">
3344    <title>Control Interface</title>
3345
3346    <section id="control-interface-general">
3347      <title>General</title>
3348      <para>
3349        The control interface is used widely for many switches,
3350      sliders, etc. which are accessed from the user-space. Its most
3351      important use is the mixer interface. In other words, on ALSA
3352      0.9.x, all the mixer stuff is implemented on the control kernel
3353      API (while there was an independent mixer kernel API on 0.5.x). 
3354      </para>
3355
3356      <para>
3357        ALSA has a well-defined AC97 control module. If your chip
3358      supports only the AC97 and nothing else, you can skip this
3359      section. 
3360      </para>
3361
3362      <para>
3363        The control API is defined in
3364      <filename>&lt;sound/control.h&gt;</filename>.
3365      Include this file if you add your own controls.
3366      </para>
3367    </section>
3368
3369    <section id="control-interface-definition">
3370      <title>Definition of Controls</title>
3371      <para>
3372        For creating a new control, you need to define the three
3373      callbacks: <structfield>info</structfield>,
3374      <structfield>get</structfield> and
3375      <structfield>put</structfield>. Then, define a
3376      struct <structname>snd_kcontrol_new</structname> record, such as: 
3377
3378        <example>
3379	  <title>Definition of a Control</title>
3380          <programlisting>
3381<![CDATA[
3382  static struct snd_kcontrol_new my_control __devinitdata = {
3383          .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3384          .name = "PCM Playback Switch",
3385          .index = 0,
3386          .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
3387          .private_value = 0xffff,
3388          .info = my_control_info,
3389          .get = my_control_get,
3390          .put = my_control_put
3391  };
3392]]>
3393          </programlisting>
3394        </example>
3395      </para>
3396
3397      <para>
3398        Most likely the control is created via
3399      <function>snd_ctl_new1()</function>, and in such a case, you can
3400      add <parameter>__devinitdata</parameter> prefix to the
3401      definition like above. 
3402      </para>
3403
3404      <para>
3405        The <structfield>iface</structfield> field specifies the type of
3406      the control, <constant>SNDRV_CTL_ELEM_IFACE_XXX</constant>, which
3407      is usually <constant>MIXER</constant>.
3408      Use <constant>CARD</constant> for global controls that are not
3409      logically part of the mixer.
3410      If the control is closely associated with some specific device on
3411      the sound card, use <constant>HWDEP</constant>,
3412      <constant>PCM</constant>, <constant>RAWMIDI</constant>,
3413      <constant>TIMER</constant>, or <constant>SEQUENCER</constant>, and
3414      specify the device number with the
3415      <structfield>device</structfield> and
3416      <structfield>subdevice</structfield> fields.
3417      </para>
3418
3419      <para>
3420        The <structfield>name</structfield> is the name identifier
3421      string. On ALSA 0.9.x, the control name is very important,
3422      because its role is classified from its name. There are
3423      pre-defined standard control names. The details are described in
3424      the subsection
3425      <link linkend="control-interface-control-names"><citetitle>
3426      Control Names</citetitle></link>.
3427      </para>
3428
3429      <para>
3430        The <structfield>index</structfield> field holds the index number
3431      of this control. If there are several different controls with
3432      the same name, they can be distinguished by the index
3433      number. This is the case when 
3434      several codecs exist on the card. If the index is zero, you can
3435      omit the definition above. 
3436      </para>
3437
3438      <para>
3439        The <structfield>access</structfield> field contains the access
3440      type of this control. Give the combination of bit masks,
3441      <constant>SNDRV_CTL_ELEM_ACCESS_XXX</constant>, there.
3442      The detailed will be explained in the subsection
3443      <link linkend="control-interface-access-flags"><citetitle>
3444      Access Flags</citetitle></link>.
3445      </para>
3446
3447      <para>
3448        The <structfield>private_value</structfield> field contains
3449      an arbitrary long integer value for this record. When using
3450      generic <structfield>info</structfield>,
3451      <structfield>get</structfield> and
3452      <structfield>put</structfield> callbacks, you can pass a value 
3453      through this field. If several small numbers are necessary, you can
3454      combine them in bitwise. Or, it's possible to give a pointer
3455      (casted to unsigned long) of some record to this field, too. 
3456      </para>
3457
3458      <para>
3459        The other three are
3460	<link linkend="control-interface-callbacks"><citetitle>
3461	callback functions</citetitle></link>.
3462      </para>
3463    </section>
3464
3465    <section id="control-interface-control-names">
3466      <title>Control Names</title>
3467      <para>
3468        There are some standards for defining the control names. A
3469      control is usually defined from the three parts as
3470      <quote>SOURCE DIRECTION FUNCTION</quote>. 
3471      </para>
3472
3473      <para>
3474        The first, <constant>SOURCE</constant>, specifies the source
3475      of the control, and is a string such as <quote>Master</quote>,
3476      <quote>PCM</quote>, <quote>CD</quote> or
3477      <quote>Line</quote>. There are many pre-defined sources. 
3478      </para>
3479
3480      <para>
3481        The second, <constant>DIRECTION</constant>, is one of the
3482      following strings according to the direction of the control:
3483      <quote>Playback</quote>, <quote>Capture</quote>, <quote>Bypass
3484      Playback</quote> and <quote>Bypass Capture</quote>. Or, it can
3485      be omitted, meaning both playback and capture directions. 
3486      </para>
3487
3488      <para>
3489        The third, <constant>FUNCTION</constant>, is one of the
3490      following strings according to the function of the control:
3491      <quote>Switch</quote>, <quote>Volume</quote> and
3492      <quote>Route</quote>. 
3493      </para>
3494
3495      <para>
3496        The example of control names are, thus, <quote>Master Capture
3497      Switch</quote> or <quote>PCM Playback Volume</quote>. 
3498      </para>
3499
3500      <para>
3501        There are some exceptions:
3502      </para>
3503
3504      <section id="control-interface-control-names-global">
3505        <title>Global capture and playback</title>
3506        <para>
3507          <quote>Capture Source</quote>, <quote>Capture Switch</quote>
3508        and <quote>Capture Volume</quote> are used for the global
3509        capture (input) source, switch and volume. Similarly,
3510        <quote>Playback Switch</quote> and <quote>Playback
3511        Volume</quote> are used for the global output gain switch and
3512        volume. 
3513        </para>
3514      </section>
3515
3516      <section id="control-interface-control-names-tone">
3517        <title>Tone-controls</title>
3518        <para>
3519          tone-control switch and volumes are specified like
3520        <quote>Tone Control - XXX</quote>, e.g. <quote>Tone Control -
3521        Switch</quote>, <quote>Tone Control - Bass</quote>,
3522        <quote>Tone Control - Center</quote>.  
3523        </para>
3524      </section>
3525
3526      <section id="control-interface-control-names-3d">
3527        <title>3D controls</title>
3528        <para>
3529          3D-control switches and volumes are specified like <quote>3D
3530        Control - XXX</quote>, e.g. <quote>3D Control -
3531        Switch</quote>, <quote>3D Control - Center</quote>, <quote>3D
3532        Control - Space</quote>. 
3533        </para>
3534      </section>
3535
3536      <section id="control-interface-control-names-mic">
3537        <title>Mic boost</title>
3538        <para>
3539          Mic-boost switch is set as <quote>Mic Boost</quote> or
3540        <quote>Mic Boost (6dB)</quote>. 
3541        </para>
3542
3543        <para>
3544          More precise information can be found in
3545        <filename>Documentation/sound/alsa/ControlNames.txt</filename>.
3546        </para>
3547      </section>
3548    </section>
3549
3550    <section id="control-interface-access-flags">
3551      <title>Access Flags</title>
3552
3553      <para>
3554      The access flag is the bit-flags which specifies the access type
3555      of the given control.  The default access type is
3556      <constant>SNDRV_CTL_ELEM_ACCESS_READWRITE</constant>, 
3557      which means both read and write are allowed to this control.
3558      When the access flag is omitted (i.e. = 0), it is
3559      regarded as <constant>READWRITE</constant> access as default. 
3560      </para>
3561
3562      <para>
3563      When the control is read-only, pass
3564      <constant>SNDRV_CTL_ELEM_ACCESS_READ</constant> instead.
3565      In this case, you don't have to define
3566      <structfield>put</structfield> callback.
3567      Similarly, when the control is write-only (although it's a rare
3568      case), you can use <constant>WRITE</constant> flag instead, and
3569      you don't need <structfield>get</structfield> callback.
3570      </para>
3571
3572      <para>
3573      If the control value changes frequently (e.g. the VU meter),
3574      <constant>VOLATILE</constant> flag should be given.  This means
3575      that the control may be changed without
3576      <link linkend="control-interface-change-notification"><citetitle>
3577      notification</citetitle></link>.  Applications should poll such
3578      a control constantly.
3579      </para>
3580
3581      <para>
3582      When the control is inactive, set
3583      <constant>INACTIVE</constant> flag, too.
3584      There are <constant>LOCK</constant> and
3585      <constant>OWNER</constant> flags for changing the write
3586      permissions.
3587      </para>
3588
3589    </section>
3590
3591    <section id="control-interface-callbacks">
3592      <title>Callbacks</title>
3593
3594      <section id="control-interface-callbacks-info">
3595        <title>info callback</title>
3596        <para>
3597          The <structfield>info</structfield> callback is used to get
3598        the detailed information of this control. This must store the
3599        values of the given struct <structname>snd_ctl_elem_info</structname>
3600        object. For example, for a boolean control with a single
3601        element will be: 
3602
3603          <example>
3604	    <title>Example of info callback</title>
3605            <programlisting>
3606<![CDATA[
3607  static int snd_myctl_info(struct snd_kcontrol *kcontrol,
3608                          struct snd_ctl_elem_info *uinfo)
3609  {
3610          uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
3611          uinfo->count = 1;
3612          uinfo->value.integer.min = 0;
3613          uinfo->value.integer.max = 1;
3614          return 0;
3615  }
3616]]>
3617            </programlisting>
3618          </example>
3619        </para>
3620
3621        <para>
3622          The <structfield>type</structfield> field specifies the type
3623        of the control. There are <constant>BOOLEAN</constant>,
3624        <constant>INTEGER</constant>, <constant>ENUMERATED</constant>,
3625        <constant>BYTES</constant>, <constant>IEC958</constant> and
3626        <constant>INTEGER64</constant>. The
3627        <structfield>count</structfield> field specifies the 
3628        number of elements in this control. For example, a stereo
3629        volume would have count = 2. The
3630        <structfield>value</structfield> field is a union, and 
3631        the values stored are depending on the type. The boolean and
3632        integer are identical. 
3633        </para>
3634
3635        <para>
3636          The enumerated type is a bit different from others.  You'll
3637          need to set the string for the currently given item index. 
3638
3639          <informalexample>
3640            <programlisting>
3641<![CDATA[
3642  static int snd_myctl_info(struct snd_kcontrol *kcontrol,
3643                          struct snd_ctl_elem_info *uinfo)
3644  {
3645          static char *texts[4] = {
3646                  "First", "Second", "Third", "Fourth"
3647          };
3648          uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
3649          uinfo->count = 1;
3650          uinfo->value.enumerated.items = 4;
3651          if (uinfo->value.enumerated.item > 3)
3652                  uinfo->value.enumerated.item = 3;
3653          strcpy(uinfo->value.enumerated.name,
3654                 texts[uinfo->value.enumerated.item]);
3655          return 0;
3656  }
3657]]>
3658            </programlisting>
3659          </informalexample>
3660        </para>
3661      </section>
3662
3663      <section id="control-interface-callbacks-get">
3664        <title>get callback</title>
3665
3666        <para>
3667          This callback is used to read the current value of the
3668        control and to return to the user-space. 
3669        </para>
3670
3671        <para>
3672          For example,
3673
3674          <example>
3675	    <title>Example of get callback</title>
3676            <programlisting>
3677<![CDATA[
3678  static int snd_myctl_get(struct snd_kcontrol *kcontrol,
3679                           struct snd_ctl_elem_value *ucontrol)
3680  {
3681          struct mychip *chip = snd_kcontrol_chip(kcontrol);
3682          ucontrol->value.integer.value[0] = get_some_value(chip);
3683          return 0;
3684  }
3685]]>
3686            </programlisting>
3687          </example>
3688        </para>
3689
3690        <para>
3691	The <structfield>value</structfield> field is depending on
3692        the type of control as well as on info callback.  For example,
3693	the sb driver uses this field to store the register offset,
3694        the bit-shift and the bit-mask.  The
3695        <structfield>private_value</structfield> is set like
3696          <informalexample>
3697            <programlisting>
3698<![CDATA[
3699  .private_value = reg | (shift << 16) | (mask << 24)
3700]]>
3701            </programlisting>
3702          </informalexample>
3703	and is retrieved in callbacks like
3704          <informalexample>
3705            <programlisting>
3706<![CDATA[
3707  static int snd_sbmixer_get_single(struct snd_kcontrol *kcontrol,
3708                                    struct snd_ctl_elem_value *ucontrol)
3709  {
3710          int reg = kcontrol->private_value & 0xff;
3711          int shift = (kcontrol->private_value >> 16) & 0xff;
3712          int mask = (kcontrol->private_value >> 24) & 0xff;
3713          ....
3714  }
3715]]>
3716            </programlisting>
3717          </informalexample>
3718	</para>
3719
3720	<para>
3721	In <structfield>get</structfield> callback, you have to fill all the elements if the
3722        control has more than one elements,
3723        i.e. <structfield>count</structfield> &gt; 1.
3724	In the example above, we filled only one element
3725        (<structfield>value.integer.value[0]</structfield>) since it's
3726        assumed as <structfield>count</structfield> = 1.
3727        </para>
3728      </section>
3729
3730      <section id="control-interface-callbacks-put">
3731        <title>put callback</title>
3732
3733        <para>
3734          This callback is used to write a value from the user-space.
3735        </para>
3736
3737        <para>
3738          For example,
3739
3740          <example>
3741	    <title>Example of put callback</title>
3742            <programlisting>
3743<![CDATA[
3744  static int snd_myctl_put(struct snd_kcontrol *kcontrol,
3745                           struct snd_ctl_elem_value *ucontrol)
3746  {
3747          struct mychip *chip = snd_kcontrol_chip(kcontrol);
3748          int changed = 0;
3749          if (chip->current_value !=
3750               ucontrol->value.integer.value[0]) {
3751                  change_current_value(chip,
3752                              ucontrol->value.integer.value[0]);
3753                  changed = 1;
3754          }
3755          return changed;
3756  }
3757]]>
3758            </programlisting>
3759          </example>
3760
3761          As seen above, you have to return 1 if the value is
3762        changed. If the value is not changed, return 0 instead. 
3763	If any fatal error happens, return a negative error code as
3764        usual.
3765        </para>
3766
3767        <para>
3768	Like <structfield>get</structfield> callback,
3769	when the control has more than one elements,
3770	all elements must be evaluated in this callback, too.
3771        </para>
3772      </section>
3773
3774      <section id="control-interface-callbacks-all">
3775        <title>Callbacks are not atomic</title>
3776        <para>
3777          All these three callbacks are basically not atomic.
3778        </para>
3779      </section>
3780    </section>
3781
3782    <section id="control-interface-constructor">
3783      <title>Constructor</title>
3784      <para>
3785        When everything is ready, finally we can create a new
3786      control. For creating a control, there are two functions to be
3787      called, <function>snd_ctl_new1()</function> and
3788      <function>snd_ctl_add()</function>. 
3789      </para>
3790
3791      <para>
3792        In the simplest way, you can do like this:
3793
3794        <informalexample>
3795          <programlisting>
3796<![CDATA[
3797  if ((err = snd_ctl_add(card, snd_ctl_new1(&my_control, chip))) < 0)
3798          return err;
3799]]>
3800          </programlisting>
3801        </informalexample>
3802
3803        where <parameter>my_control</parameter> is the
3804      struct <structname>snd_kcontrol_new</structname> object defined above, and chip
3805      is the object pointer to be passed to
3806      kcontrol-&gt;private_data 
3807      which can be referred in callbacks. 
3808      </para>
3809
3810      <para>
3811        <function>snd_ctl_new1()</function> allocates a new
3812      <structname>snd_kcontrol</structname> instance (that's why the definition
3813      of <parameter>my_control</parameter> can be with
3814      <parameter>__devinitdata</parameter> 
3815      prefix), and <function>snd_ctl_add</function> assigns the given
3816      control component to the card. 
3817      </para>
3818    </section>
3819
3820    <section id="control-interface-change-notification">
3821      <title>Change Notification</title>
3822      <para>
3823        If you need to change and update a control in the interrupt
3824      routine, you can call <function>snd_ctl_notify()</function>. For
3825      example, 
3826
3827        <informalexample>
3828          <programlisting>
3829<![CDATA[
3830  snd_ctl_notify(card, SNDRV_CTL_EVENT_MASK_VALUE, id_pointer);
3831]]>
3832          </programlisting>
3833        </informalexample>
3834
3835        This function takes the card pointer, the event-mask, and the
3836      control id pointer for the notification. The event-mask
3837      specifies the types of notification, for example, in the above
3838      example, the change of control values is notified.
3839      The id pointer is the pointer of struct <structname>snd_ctl_elem_id</structname>
3840      to be notified.
3841      You can find some examples in <filename>es1938.c</filename> or
3842      <filename>es1968.c</filename> for hardware volume interrupts. 
3843      </para>
3844    </section>
3845
3846  </chapter>
3847
3848
3849<!-- ****************************************************** -->
3850<!-- API for AC97 Codec  -->
3851<!-- ****************************************************** -->
3852  <chapter id="api-ac97">
3853    <title>API for AC97 Codec</title>
3854
3855    <section>
3856      <title>General</title>
3857      <para>
3858        The ALSA AC97 codec layer is a well-defined one, and you don't
3859      have to write many codes to control it. Only low-level control
3860      routines are necessary. The AC97 codec API is defined in
3861      <filename>&lt;sound/ac97_codec.h&gt;</filename>. 
3862      </para>
3863    </section>
3864
3865    <section id="api-ac97-example">
3866      <title>Full Code Example</title>
3867      <para>
3868          <example>
3869	    <title>Example of AC97 Interface</title>
3870            <programlisting>
3871<![CDATA[
3872  struct mychip {
3873          ....
3874          struct snd_ac97 *ac97;
3875          ....
3876  };
3877
3878  static unsigned short snd_mychip_ac97_read(struct snd_ac97 *ac97,
3879                                             unsigned short reg)
3880  {
3881          struct mychip *chip = ac97->private_data;
3882          ....
3883          // read a register value here from the codec
3884          return the_register_value;
3885  }
3886
3887  static void snd_mychip_ac97_write(struct snd_ac97 *ac97,
3888                                   unsigned short reg, unsigned short val)
3889  {
3890          struct mychip *chip = ac97->private_data;
3891          ....
3892          // write the given register value to the codec
3893  }
3894
3895  static int snd_mychip_ac97(struct mychip *chip)
3896  {
3897          struct snd_ac97_bus *bus;
3898          struct snd_ac97_template ac97;
3899          int err;
3900          static struct snd_ac97_bus_ops ops = {
3901                  .write = snd_mychip_ac97_write,
3902                  .read = snd_mychip_ac97_read,
3903          };
3904
3905          if ((err = snd_ac97_bus(chip->card, 0, &ops, NULL, &bus)) < 0)
3906                  return err;
3907          memset(&ac97, 0, sizeof(ac97));
3908          ac97.private_data = chip;
3909          return snd_ac97_mixer(bus, &ac97, &chip->ac97);
3910  }
3911
3912]]>
3913          </programlisting>
3914        </example>
3915      </para>
3916    </section>
3917
3918    <section id="api-ac97-constructor">
3919      <title>Constructor</title>
3920      <para>
3921        For creating an ac97 instance, first call <function>snd_ac97_bus</function>
3922      with an <type>ac97_bus_ops_t</type> record with callback functions.
3923
3924        <informalexample>
3925          <programlisting>
3926<![CDATA[
3927  struct snd_ac97_bus *bus;
3928  static struct snd_ac97_bus_ops ops = {
3929        .write = snd_mychip_ac97_write,
3930        .read = snd_mychip_ac97_read,
3931  };
3932
3933  snd_ac97_bus(card, 0, &ops, NULL, &pbus);
3934]]>
3935          </programlisting>
3936        </informalexample>
3937
3938      The bus record is shared among all belonging ac97 instances.
3939      </para>
3940
3941      <para>
3942      And then call <function>snd_ac97_mixer()</function> with an
3943      struct <structname>snd_ac97_template</structname>
3944      record together with the bus pointer created above.
3945
3946        <informalexample>
3947          <programlisting>
3948<![CDATA[
3949  struct snd_ac97_template ac97;
3950  int err;
3951
3952  memset(&ac97, 0, sizeof(ac97));
3953  ac97.private_data = chip;
3954  snd_ac97_mixer(bus, &ac97, &chip->ac97);
3955]]>
3956          </programlisting>
3957        </informalexample>
3958
3959        where chip-&gt;ac97 is the pointer of a newly created
3960        <type>ac97_t</type> instance.
3961        In this case, the chip pointer is set as the private data, so that
3962        the read/write callback functions can refer to this chip instance.
3963        This instance is not necessarily stored in the chip
3964	record.  When you need to change the register values from the
3965        driver, or need the suspend/resume of ac97 codecs, keep this
3966        pointer to pass to the corresponding functions.
3967      </para>
3968    </section>
3969
3970    <section id="api-ac97-callbacks">
3971      <title>Callbacks</title>
3972      <para>
3973        The standard callbacks are <structfield>read</structfield> and
3974      <structfield>write</structfield>. Obviously they 
3975      correspond to the functions for read and write accesses to the
3976      hardware low-level codes. 
3977      </para>
3978
3979      <para>
3980        The <structfield>read</structfield> callback returns the
3981        register value specified in the argument. 
3982
3983        <informalexample>
3984          <programlisting>
3985<![CDATA[
3986  static unsigned short snd_mychip_ac97_read(struct snd_ac97 *ac97,
3987                                             unsigned short reg)
3988  {
3989          struct mychip *chip = ac97->private_data;
3990          ....
3991          return the_register_value;
3992  }
3993]]>
3994          </programlisting>
3995        </informalexample>
3996
3997        Here, the chip can be cast from ac97-&gt;private_data.
3998      </para>
3999
4000      <para>
4001        Meanwhile, the <structfield>write</structfield> callback is
4002        used to set the register value. 
4003
4004        <informalexample>
4005          <programlisting>
4006<![CDATA[
4007  static void snd_mychip_ac97_write(struct snd_ac97 *ac97,
4008                       unsigned short reg, unsigned short val)
4009]]>
4010          </programlisting>
4011        </informalexample>
4012      </para>
4013
4014      <para>
4015      These callbacks are non-atomic like the callbacks of control API.
4016      </para>
4017
4018      <para>
4019        There are also other callbacks:
4020      <structfield>reset</structfield>,
4021      <structfield>wait</structfield> and
4022      <structfield>init</structfield>. 
4023      </para>
4024
4025      <para>
4026        The <structfield>reset</structfield> callback is used to reset
4027      the codec. If the chip requires a special way of reset, you can
4028      define this callback. 
4029      </para>
4030
4031      <para>
4032        The <structfield>wait</structfield> callback is used for a
4033      certain wait at the standard initialization of the codec. If the
4034      chip requires the extra wait-time, define this callback. 
4035      </para>
4036
4037      <para>
4038        The <structfield>init</structfield> callback is used for
4039      additional initialization of the codec.
4040      </para>
4041    </section>
4042
4043    <section id="api-ac97-updating-registers">
4044      <title>Updating Registers in The Driver</title>
4045      <para>
4046        If you need to access to the codec from the driver, you can
4047      call the following functions:
4048      <function>snd_ac97_write()</function>,
4049      <function>snd_ac97_read()</function>,
4050      <function>snd_ac97_update()</function> and
4051      <function>snd_ac97_update_bits()</function>. 
4052      </para>
4053
4054      <para>
4055        Both <function>snd_ac97_write()</function> and
4056        <function>snd_ac97_update()</function> functions are used to
4057        set a value to the given register
4058        (<constant>AC97_XXX</constant>). The difference between them is
4059        that <function>snd_ac97_update()</function> doesn't write a
4060        value if the given value has been already set, while
4061        <function>snd_ac97_write()</function> always rewrites the
4062        value. 
4063
4064        <informalexample>
4065          <programlisting>
4066<![CDATA[
4067  snd_ac97_write(ac97, AC97_MASTER, 0x8080);
4068  snd_ac97_update(ac97, AC97_MASTER, 0x8080);
4069]]>
4070          </programlisting>
4071        </informalexample>
4072      </para>
4073
4074      <para>
4075        <function>snd_ac97_read()</function> is used to read the value
4076        of the given register. For example, 
4077
4078        <informalexample>
4079          <programlisting>
4080<![CDATA[
4081  value = snd_ac97_read(ac97, AC97_MASTER);
4082]]>
4083          </programlisting>
4084        </informalexample>
4085      </para>
4086
4087      <para>
4088        <function>snd_ac97_update_bits()</function> is used to update
4089        some bits of the given register.  
4090
4091        <informalexample>
4092          <programlisting>
4093<![CDATA[
4094  snd_ac97_update_bits(ac97, reg, mask, value);
4095]]>
4096          </programlisting>
4097        </informalexample>
4098      </para>
4099
4100      <para>
4101        Also, there is a function to change the sample rate (of a
4102        certain register such as
4103        <constant>AC97_PCM_FRONT_DAC_RATE</constant>) when VRA or
4104        DRA is supported by the codec:
4105        <function>snd_ac97_set_rate()</function>. 
4106
4107        <informalexample>
4108          <programlisting>
4109<![CDATA[
4110  snd_ac97_set_rate(ac97, AC97_PCM_FRONT_DAC_RATE, 44100);
4111]]>
4112          </programlisting>
4113        </informalexample>
4114      </para>
4115
4116      <para>
4117        The following registers are available for setting the rate:
4118      <constant>AC97_PCM_MIC_ADC_RATE</constant>,
4119      <constant>AC97_PCM_FRONT_DAC_RATE</constant>,
4120      <constant>AC97_PCM_LR_ADC_RATE</constant>,
4121      <constant>AC97_SPDIF</constant>. When the
4122      <constant>AC97_SPDIF</constant> is specified, the register is
4123      not really changed but the corresponding IEC958 status bits will
4124      be updated. 
4125      </para>
4126    </section>
4127
4128    <section id="api-ac97-clock-adjustment">
4129      <title>Clock Adjustment</title>
4130      <para>
4131        On some chip, the clock of the codec isn't 48000 but using a
4132      PCI clock (to save a quartz!). In this case, change the field
4133      bus-&gt;clock to the corresponding
4134      value. For example, intel8x0 
4135      and es1968 drivers have the auto-measurement function of the
4136      clock. 
4137      </para>
4138    </section>
4139
4140    <section id="api-ac97-proc-files">
4141      <title>Proc Files</title>
4142      <para>
4143        The ALSA AC97 interface will create a proc file such as
4144      <filename>/proc/asound/card0/codec97#0/ac97#0-0</filename> and
4145      <filename>ac97#0-0+regs</filename>. You can refer to these files to
4146      see the current status and registers of the codec. 
4147      </para>
4148    </section>
4149
4150    <section id="api-ac97-multiple-codecs">
4151      <title>Multiple Codecs</title>
4152      <para>
4153        When there are several codecs on the same card, you need to
4154      call <function>snd_ac97_mixer()</function> multiple times with
4155      ac97.num=1 or greater. The <structfield>num</structfield> field
4156      specifies the codec 
4157      number. 
4158      </para>
4159
4160      <para>
4161        If you have set up multiple codecs, you need to either write
4162      different callbacks for each codec or check
4163      ac97-&gt;num in the 
4164      callback routines. 
4165      </para>
4166    </section>
4167
4168  </chapter>
4169
4170
4171<!-- ****************************************************** -->
4172<!-- MIDI (MPU401-UART) Interface  -->
4173<!-- ****************************************************** -->
4174  <chapter id="midi-interface">
4175    <title>MIDI (MPU401-UART) Interface</title>
4176
4177    <section id="midi-interface-general">
4178      <title>General</title>
4179      <para>
4180        Many soundcards have built-in MIDI (MPU401-UART)
4181      interfaces. When the soundcard supports the standard MPU401-UART
4182      interface, most likely you can use the ALSA MPU401-UART API. The
4183      MPU401-UART API is defined in
4184      <filename>&lt;sound/mpu401.h&gt;</filename>. 
4185      </para>
4186
4187      <para>
4188        Some soundchips have similar but a little bit different
4189      implementation of mpu401 stuff. For example, emu10k1 has its own
4190      mpu401 routines. 
4191      </para>
4192    </section>
4193
4194    <section id="midi-interface-constructor">
4195      <title>Constructor</title>
4196      <para>
4197        For creating a rawmidi object, call
4198      <function>snd_mpu401_uart_new()</function>. 
4199
4200        <informalexample>
4201          <programlisting>
4202<![CDATA[
4203  struct snd_rawmidi *rmidi;
4204  snd_mpu401_uart_new(card, 0, MPU401_HW_MPU401, port, info_flags,
4205                      irq, irq_flags, &rmidi);
4206]]>
4207          </programlisting>
4208        </informalexample>
4209      </para>
4210
4211      <para>
4212        The first argument is the card pointer, and the second is the
4213      index of this component. You can create up to 8 rawmidi
4214      devices. 
4215      </para>
4216
4217      <para>
4218        The third argument is the type of the hardware,
4219      <constant>MPU401_HW_XXX</constant>. If it's not a special one,
4220      you can use <constant>MPU401_HW_MPU401</constant>. 
4221      </para>
4222
4223      <para>
4224        The 4th argument is the i/o port address. Many
4225      backward-compatible MPU401 has an i/o port such as 0x330. Or, it
4226      might be a part of its own PCI i/o region. It depends on the
4227      chip design. 
4228      </para>
4229
4230      <para>
4231	The 5th argument is bitflags for additional information.
4232        When the i/o port address above is a part of the PCI i/o
4233      region, the MPU401 i/o port might have been already allocated
4234      (reserved) by the driver itself. In such a case, pass a bit flag
4235      <constant>MPU401_INFO_INTEGRATED</constant>,
4236      and 
4237      the mpu401-uart layer will allocate the i/o ports by itself. 
4238      </para>
4239
4240	<para>
4241	When the controller supports only the input or output MIDI stream,
4242	pass <constant>MPU401_INFO_INPUT</constant> or
4243	<constant>MPU401_INFO_OUTPUT</constant> bitflag, respectively.
4244	Then the rawmidi instance is created as a single stream.
4245	</para>
4246
4247	<para>
4248	<constant>MPU401_INFO_MMIO</constant> bitflag is used to change
4249	the access method to MMIO (via readb and writeb) instead of
4250	iob and outb.  In this case, you have to pass the iomapped address
4251	to <function>snd_mpu401_uart_new()</function>.
4252	</para>
4253
4254	<para>
4255	When <constant>MPU401_INFO_TX_IRQ</constant> is set, the output
4256	stream isn't checked in the default interrupt handler.  The driver
4257	needs to call <function>snd_mpu401_uart_interrupt_tx()</function>
4258	by itself to start processing the output stream in irq handler.
4259	</para>
4260
4261      <para>
4262        Usually, the port address corresponds to the command port and
4263        port + 1 corresponds to the data port. If not, you may change
4264        the <structfield>cport</structfield> field of
4265        struct <structname>snd_mpu401</structname> manually 
4266        afterward. However, <structname>snd_mpu401</structname> pointer is not
4267        returned explicitly by
4268        <function>snd_mpu401_uart_new()</function>. You need to cast
4269        rmidi-&gt;private_data to
4270        <structname>snd_mpu401</structname> explicitly, 
4271
4272        <informalexample>
4273          <programlisting>
4274<![CDATA[
4275  struct snd_mpu401 *mpu;
4276  mpu = rmidi->private_data;
4277]]>
4278          </programlisting>
4279        </informalexample>
4280
4281        and reset the cport as you like:
4282
4283        <informalexample>
4284          <programlisting>
4285<![CDATA[
4286  mpu->cport = my_own_control_port;
4287]]>
4288          </programlisting>
4289        </informalexample>
4290      </para>
4291
4292      <para>
4293        The 6th argument specifies the irq number for UART. If the irq
4294      is already allocated, pass 0 to the 7th argument
4295      (<parameter>irq_flags</parameter>). Otherwise, pass the flags
4296      for irq allocation 
4297      (<constant>SA_XXX</constant> bits) to it, and the irq will be
4298      reserved by the mpu401-uart layer. If the card doesn't generates
4299      UART interrupts, pass -1 as the irq number. Then a timer
4300      interrupt will be invoked for polling. 
4301      </para>
4302    </section>
4303
4304    <section id="midi-interface-interrupt-handler">
4305      <title>Interrupt Handler</title>
4306      <para>
4307        When the interrupt is allocated in
4308      <function>snd_mpu401_uart_new()</function>, the private
4309      interrupt handler is used, hence you don't have to do nothing
4310      else than creating the mpu401 stuff. Otherwise, you have to call
4311      <function>snd_mpu401_uart_interrupt()</function> explicitly when
4312      a UART interrupt is invoked and checked in your own interrupt
4313      handler.  
4314      </para>
4315
4316      <para>
4317        In this case, you need to pass the private_data of the
4318        returned rawmidi object from
4319        <function>snd_mpu401_uart_new()</function> as the second
4320        argument of <function>snd_mpu401_uart_interrupt()</function>. 
4321
4322        <informalexample>
4323          <programlisting>
4324<![CDATA[
4325  snd_mpu401_uart_interrupt(irq, rmidi->private_data, regs);
4326]]>
4327          </programlisting>
4328        </informalexample>
4329      </para>
4330    </section>
4331
4332  </chapter>
4333
4334
4335<!-- ****************************************************** -->
4336<!-- RawMIDI Interface  -->
4337<!-- ****************************************************** -->
4338  <chapter id="rawmidi-interface">
4339    <title>RawMIDI Interface</title>
4340
4341    <section id="rawmidi-interface-overview">
4342      <title>Overview</title>
4343
4344      <para>
4345      The raw MIDI interface is used for hardware MIDI ports that can
4346      be accessed as a byte stream.  It is not used for synthesizer
4347      chips that do not directly understand MIDI.
4348      </para>
4349
4350      <para>
4351      ALSA handles file and buffer management.  All you have to do is
4352      to write some code to move data between the buffer and the
4353      hardware.
4354      </para>
4355
4356      <para>
4357      The rawmidi API is defined in
4358      <filename>&lt;sound/rawmidi.h&gt;</filename>.
4359      </para>
4360    </section>
4361
4362    <section id="rawmidi-interface-constructor">
4363      <title>Constructor</title>
4364
4365      <para>
4366      To create a rawmidi device, call the
4367      <function>snd_rawmidi_new</function> function:
4368        <informalexample>
4369          <programlisting>
4370<![CDATA[
4371  struct snd_rawmidi *rmidi;
4372  err = snd_rawmidi_new(chip->card, "MyMIDI", 0, outs, ins, &rmidi);
4373  if (err < 0)
4374          return err;
4375  rmidi->private_data = chip;
4376  strcpy(rmidi->name, "My MIDI");
4377  rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT |
4378                      SNDRV_RAWMIDI_INFO_INPUT |
4379                      SNDRV_RAWMIDI_INFO_DUPLEX;
4380]]>
4381          </programlisting>
4382        </informalexample>
4383      </para>
4384
4385      <para>
4386      The first argument is the card pointer, the second argument is
4387      the ID string.
4388      </para>
4389
4390      <para>
4391      The third argument is the index of this component.  You can
4392      create up to 8 rawmidi devices.
4393      </para>
4394
4395      <para>
4396      The fourth and fifth arguments are the number of output and
4397      input substreams, respectively, of this device.  (A substream is
4398      the equivalent of a MIDI port.)
4399      </para>
4400
4401      <para>
4402      Set the <structfield>info_flags</structfield> field to specify
4403      the capabilities of the device.
4404      Set <constant>SNDRV_RAWMIDI_INFO_OUTPUT</constant> if there is
4405      at least one output port,
4406      <constant>SNDRV_RAWMIDI_INFO_INPUT</constant> if there is at
4407      least one input port,
4408      and <constant>SNDRV_RAWMIDI_INFO_DUPLEX</constant> if the device
4409      can handle output and input at the same time.
4410      </para>
4411
4412      <para>
4413      After the rawmidi device is created, you need to set the
4414      operators (callbacks) for each substream.  There are helper
4415      functions to set the operators for all substream of a device:
4416        <informalexample>
4417          <programlisting>
4418<![CDATA[
4419  snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_mymidi_output_ops);
4420  snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_mymidi_input_ops);
4421]]>
4422          </programlisting>
4423        </informalexample>
4424      </para>
4425
4426      <para>
4427      The operators are usually defined like this:
4428        <informalexample>
4429          <programlisting>
4430<![CDATA[
4431  static struct snd_rawmidi_ops snd_mymidi_output_ops = {
4432          .open =    snd_mymidi_output_open,
4433          .close =   snd_mymidi_output_close,
4434          .trigger = snd_mymidi_output_trigger,
4435  };
4436]]>
4437          </programlisting>
4438        </informalexample>
4439      These callbacks are explained in the <link
4440      linkend="rawmidi-interface-callbacks"><citetitle>Callbacks</citetitle></link>
4441      section.
4442      </para>
4443
4444      <para>
4445      If there is more than one substream, you should give each one a
4446      unique name:
4447        <informalexample>
4448          <programlisting>
4449<![CDATA[
4450  struct list_head *list;
4451  struct snd_rawmidi_substream *substream;
4452  list_for_each(list, &rmidi->streams[SNDRV_RAWMIDI_STREAM_OUTPUT].substreams) {
4453          substream = list_entry(list, struct snd_rawmidi_substream, list);
4454          sprintf(substream->name, "My MIDI Port %d", substream->number + 1);
4455  }
4456  /* same for SNDRV_RAWMIDI_STREAM_INPUT */
4457]]>
4458          </programlisting>
4459        </informalexample>
4460      </para>
4461    </section>
4462
4463    <section id="rawmidi-interface-callbacks">
4464      <title>Callbacks</title>
4465
4466      <para>
4467      In all callbacks, the private data that you've set for the
4468      rawmidi device can be accessed as
4469      substream-&gt;rmidi-&gt;private_data.
4470      <!-- <code> isn't available before DocBook 4.3 -->
4471      </para>
4472
4473      <para>
4474      If there is more than one port, your callbacks can determine the
4475      port index from the struct snd_rawmidi_substream data passed to each
4476      callback:
4477        <informalexample>
4478          <programlisting>
4479<![CDATA[
4480  struct snd_rawmidi_substream *substream;
4481  int index = substream->number;
4482]]>
4483          </programlisting>
4484        </informalexample>
4485      </para>
4486
4487      <section id="rawmidi-interface-op-open">
4488      <title><function>open</function> callback</title>
4489
4490        <informalexample>
4491          <programlisting>
4492<![CDATA[
4493  static int snd_xxx_open(struct snd_rawmidi_substream *substream);
4494]]>
4495          </programlisting>
4496        </informalexample>
4497
4498        <para>
4499        This is called when a substream is opened.
4500        You can initialize the hardware here, but you should not yet
4501        start transmitting/receiving data.
4502        </para>
4503      </section>
4504
4505      <section id="rawmidi-interface-op-close">
4506      <title><function>close</function> callback</title>
4507
4508        <informalexample>
4509          <programlisting>
4510<![CDATA[
4511  static int snd_xxx_close(struct snd_rawmidi_substream *substream);
4512]]>
4513          </programlisting>
4514        </informalexample>
4515
4516        <para>
4517        Guess what.
4518        </para>
4519
4520        <para>
4521        The <function>open</function> and <function>close</function>
4522        callbacks of a rawmidi device are serialized with a mutex,
4523        and can sleep.
4524        </para>
4525      </section>
4526
4527      <section id="rawmidi-interface-op-trigger-out">
4528      <title><function>trigger</function> callback for output
4529      substreams</title>
4530
4531        <informalexample>
4532          <programlisting>
4533<![CDATA[
4534  static void snd_xxx_output_trigger(struct snd_rawmidi_substream *substream, int up);
4535]]>
4536          </programlisting>
4537        </informalexample>
4538
4539        <para>
4540        This is called with a nonzero <parameter>up</parameter>
4541        parameter when there is some data in the substream buffer that
4542        must be transmitted.
4543        </para>
4544
4545        <para>
4546        To read data from the buffer, call
4547        <function>snd_rawmidi_transmit_peek</function>.  It will
4548        return the number of bytes that have been read; this will be
4549        less than the number of bytes requested when there is no more
4550        data in the buffer.
4551        After the data has been transmitted successfully, call
4552        <function>snd_rawmidi_transmit_ack</function> to remove the
4553        data from the substream buffer:
4554          <informalexample>
4555            <programlisting>
4556<![CDATA[
4557  unsigned char data;
4558  while (snd_rawmidi_transmit_peek(substream, &data, 1) == 1) {
4559          if (snd_mychip_try_to_transmit(data))
4560                  snd_rawmidi_transmit_ack(substream, 1);
4561          else
4562                  break; /* hardware FIFO full */
4563  }
4564]]>
4565            </programlisting>
4566          </informalexample>
4567        </para>
4568
4569        <para>
4570        If you know beforehand that the hardware will accept data, you
4571        can use the <function>snd_rawmidi_transmit</function> function
4572        which reads some data and removes it from the buffer at once:
4573          <informalexample>
4574            <programlisting>
4575<![CDATA[
4576  while (snd_mychip_transmit_possible()) {
4577          unsigned char data;
4578          if (snd_rawmidi_transmit(substream, &data, 1) != 1)
4579                  break; /* no more data */
4580          snd_mychip_transmit(data);
4581  }
4582]]>
4583            </programlisting>
4584          </informalexample>
4585        </para>
4586
4587        <para>
4588        If you know beforehand how many bytes you can accept, you can
4589        use a buffer size greater than one with the
4590        <function>snd_rawmidi_transmit*</function> functions.
4591        </para>
4592
4593        <para>
4594        The <function>trigger</function> callback must not sleep.  If
4595        the hardware FIFO is full before the substream buffer has been
4596        emptied, you have to continue transmitting data later, either
4597        in an interrupt handler, or with a timer if the hardware
4598        doesn't have a MIDI transmit interrupt.
4599        </para>
4600
4601        <para>
4602        The <function>trigger</function> callback is called with a
4603        zero <parameter>up</parameter> parameter when the transmission
4604        of data should be aborted.
4605        </para>
4606      </section>
4607
4608      <section id="rawmidi-interface-op-trigger-in">
4609      <title><function>trigger</function> callback for input
4610      substreams</title>
4611
4612        <informalexample>
4613          <programlisting>
4614<![CDATA[
4615  static void snd_xxx_input_trigger(struct snd_rawmidi_substream *substream, int up);
4616]]>
4617          </programlisting>
4618        </informalexample>
4619
4620        <para>
4621        This is called with a nonzero <parameter>up</parameter>
4622        parameter to enable receiving data, or with a zero
4623        <parameter>up</parameter> parameter do disable receiving data.
4624        </para>
4625
4626        <para>
4627        The <function>trigger</function> callback must not sleep; the
4628        actual reading of data from the device is usually done in an
4629        interrupt handler.
4630        </para>
4631
4632        <para>
4633        When data reception is enabled, your interrupt handler should
4634        call <function>snd_rawmidi_receive</function> for all received
4635        data:
4636          <informalexample>
4637            <programlisting>
4638<![CDATA[
4639  void snd_mychip_midi_interrupt(...)
4640  {
4641          while (mychip_midi_available()) {
4642                  unsigned char data;
4643                  data = mychip_midi_read();
4644                  snd_rawmidi_receive(substream, &data, 1);
4645          }
4646  }
4647]]>
4648            </programlisting>
4649          </informalexample>
4650        </para>
4651      </section>
4652
4653      <section id="rawmidi-interface-op-drain">
4654      <title><function>drain</function> callback</title>
4655
4656        <informalexample>
4657          <programlisting>
4658<![CDATA[
4659  static void snd_xxx_drain(struct snd_rawmidi_substream *substream);
4660]]>
4661          </programlisting>
4662        </informalexample>
4663
4664        <para>
4665        This is only used with output substreams.  This function should wait
4666        until all data read from the substream buffer has been transmitted.
4667        This ensures that the device can be closed and the driver unloaded
4668        without losing data.
4669        </para>
4670
4671        <para>
4672        This callback is optional.  If you do not set
4673        <structfield>drain</structfield> in the struct snd_rawmidi_ops
4674        structure, ALSA will simply wait for 50&nbsp;milliseconds
4675        instead.
4676        </para>
4677      </section>
4678    </section>
4679
4680  </chapter>
4681
4682
4683<!-- ****************************************************** -->
4684<!-- Miscellaneous Devices  -->
4685<!-- ****************************************************** -->
4686  <chapter id="misc-devices">
4687    <title>Miscellaneous Devices</title>
4688
4689    <section id="misc-devices-opl3">
4690      <title>FM OPL3</title>
4691      <para>
4692        The FM OPL3 is still used on many chips (mainly for backward
4693      compatibility). ALSA has a nice OPL3 FM control layer, too. The
4694      OPL3 API is defined in
4695      <filename>&lt;sound/opl3.h&gt;</filename>. 
4696      </para>
4697
4698      <para>
4699        FM registers can be directly accessed through direct-FM API,
4700      defined in <filename>&lt;sound/asound_fm.h&gt;</filename>. In
4701      ALSA native mode, FM registers are accessed through
4702      Hardware-Dependant Device direct-FM extension API, whereas in
4703      OSS compatible mode, FM registers can be accessed with OSS
4704      direct-FM compatible API on <filename>/dev/dmfmX</filename> device. 
4705      </para>
4706
4707      <para>
4708        For creating the OPL3 component, you have two functions to
4709        call. The first one is a constructor for <type>opl3_t</type>
4710        instance. 
4711
4712        <informalexample>
4713          <programlisting>
4714<![CDATA[
4715  struct snd_opl3 *opl3;
4716  snd_opl3_create(card, lport, rport, OPL3_HW_OPL3_XXX,
4717                  integrated, &opl3);
4718]]>
4719          </programlisting>
4720        </informalexample>
4721      </para>
4722
4723      <para>
4724        The first argument is the card pointer, the second one is the
4725      left port address, and the third is the right port address. In
4726      most cases, the right port is placed at the left port + 2. 
4727      </para>
4728
4729      <para>
4730        The fourth argument is the hardware type.
4731      </para>
4732
4733      <para>
4734        When the left and right ports have been already allocated by
4735      the card driver, pass non-zero to the fifth argument
4736      (<parameter>integrated</parameter>). Otherwise, opl3 module will
4737      allocate the specified ports by itself. 
4738      </para>
4739
4740      <para>
4741        When the accessing to the hardware requires special method
4742        instead of the standard I/O access, you can create opl3 instance
4743        separately with <function>snd_opl3_new()</function>.
4744
4745        <informalexample>
4746          <programlisting>
4747<![CDATA[
4748  struct snd_opl3 *opl3;
4749  snd_opl3_new(card, OPL3_HW_OPL3_XXX, &opl3);
4750]]>
4751          </programlisting>
4752        </informalexample>
4753      </para>
4754
4755      <para>
4756	Then set <structfield>command</structfield>,
4757	<structfield>private_data</structfield> and
4758	<structfield>private_free</structfield> for the private
4759	access function, the private data and the destructor.
4760	The l_port and r_port are not necessarily set.  Only the
4761	command must be set properly.  You can retrieve the data
4762	from opl3-&gt;private_data field.
4763      </para>
4764
4765      <para>
4766	After creating the opl3 instance via <function>snd_opl3_new()</function>,
4767	call <function>snd_opl3_init()</function> to initialize the chip to the
4768	proper state.  Note that <function>snd_opl3_create()</function> always
4769	calls it internally.
4770      </para>
4771
4772      <para>
4773        If the opl3 instance is created successfully, then create a
4774        hwdep device for this opl3. 
4775
4776        <informalexample>
4777          <programlisting>
4778<![CDATA[
4779  struct snd_hwdep *opl3hwdep;
4780  snd_opl3_hwdep_new(opl3, 0, 1, &opl3hwdep);
4781]]>
4782          </programlisting>
4783        </informalexample>
4784      </para>
4785
4786      <para>
4787        The first argument is the <type>opl3_t</type> instance you
4788      created, and the second is the index number, usually 0. 
4789      </para>
4790
4791      <para>
4792        The third argument is the index-offset for the sequencer
4793      client assigned to the OPL3 port. When there is an MPU401-UART,
4794      give 1 for here (UART always takes 0). 
4795      </para>
4796    </section>
4797
4798    <section id="misc-devices-hardware-dependent">
4799      <title>Hardware-Dependent Devices</title>
4800      <para>
4801        Some chips need the access from the user-space for special
4802      controls or for loading the micro code. In such a case, you can
4803      create a hwdep (hardware-dependent) device. The hwdep API is
4804      defined in <filename>&lt;sound/hwdep.h&gt;</filename>. You can
4805      find examples in opl3 driver or
4806      <filename>isa/sb/sb16_csp.c</filename>. 
4807      </para>
4808
4809      <para>
4810        Creation of the <type>hwdep</type> instance is done via
4811        <function>snd_hwdep_new()</function>. 
4812
4813        <informalexample>
4814          <programlisting>
4815<![CDATA[
4816  struct snd_hwdep *hw;
4817  snd_hwdep_new(card, "My HWDEP", 0, &hw);
4818]]>
4819          </programlisting>
4820        </informalexample>
4821
4822        where the third argument is the index number.
4823      </para>
4824
4825      <para>
4826        You can then pass any pointer value to the
4827        <parameter>private_data</parameter>.
4828        If you assign a private data, you should define the
4829        destructor, too. The destructor function is set to
4830        <structfield>private_free</structfield> field.  
4831
4832        <informalexample>
4833          <programlisting>
4834<![CDATA[
4835  struct mydata *p = kmalloc(sizeof(*p), GFP_KERNEL);
4836  hw->private_data = p;
4837  hw->private_free = mydata_free;
4838]]>
4839          </programlisting>
4840        </informalexample>
4841
4842        and the implementation of destructor would be:
4843
4844        <informalexample>
4845          <programlisting>
4846<![CDATA[
4847  static void mydata_free(struct snd_hwdep *hw)
4848  {
4849          struct mydata *p = hw->private_data;
4850          kfree(p);
4851  }
4852]]>
4853          </programlisting>
4854        </informalexample>
4855      </para>
4856
4857      <para>
4858        The arbitrary file operations can be defined for this
4859        instance. The file operators are defined in
4860        <parameter>ops</parameter> table. For example, assume that
4861        this chip needs an ioctl. 
4862
4863        <informalexample>
4864          <programlisting>
4865<![CDATA[
4866  hw->ops.open = mydata_open;
4867  hw->ops.ioctl = mydata_ioctl;
4868  hw->ops.release = mydata_release;
4869]]>
4870          </programlisting>
4871        </informalexample>
4872
4873        And implement the callback functions as you like.
4874      </para>
4875    </section>
4876
4877    <section id="misc-devices-IEC958">
4878      <title>IEC958 (S/PDIF)</title>
4879      <para>
4880        Usually the controls for IEC958 devices are implemented via
4881      control interface. There is a macro to compose a name string for
4882      IEC958 controls, <function>SNDRV_CTL_NAME_IEC958()</function>
4883      defined in <filename>&lt;include/asound.h&gt;</filename>.  
4884      </para>
4885
4886      <para>
4887        There are some standard controls for IEC958 status bits. These
4888      controls use the type <type>SNDRV_CTL_ELEM_TYPE_IEC958</type>,
4889      and the size of element is fixed as 4 bytes array
4890      (value.iec958.status[x]). For <structfield>info</structfield>
4891      callback, you don't specify 
4892      the value field for this type (the count field must be set,
4893      though). 
4894      </para>
4895
4896      <para>
4897        <quote>IEC958 Playback Con Mask</quote> is used to return the
4898      bit-mask for the IEC958 status bits of consumer mode. Similarly,
4899      <quote>IEC958 Playback Pro Mask</quote> returns the bitmask for
4900      professional mode. They are read-only controls, and are defined
4901      as MIXER controls (iface =
4902      <constant>SNDRV_CTL_ELEM_IFACE_MIXER</constant>).  
4903      </para>
4904
4905      <para>
4906        Meanwhile, <quote>IEC958 Playback Default</quote> control is
4907      defined for getting and setting the current default IEC958
4908      bits. Note that this one is usually defined as a PCM control
4909      (iface = <constant>SNDRV_CTL_ELEM_IFACE_PCM</constant>),
4910      although in some places it's defined as a MIXER control. 
4911      </para>
4912
4913      <para>
4914        In addition, you can define the control switches to
4915      enable/disable or to set the raw bit mode. The implementation
4916      will depend on the chip, but the control should be named as
4917      <quote>IEC958 xxx</quote>, preferably using
4918      <function>SNDRV_CTL_NAME_IEC958()</function> macro. 
4919      </para>
4920
4921      <para>
4922        You can find several cases, for example,
4923      <filename>pci/emu10k1</filename>,
4924      <filename>pci/ice1712</filename>, or
4925      <filename>pci/cmipci.c</filename>.  
4926      </para>
4927    </section>
4928
4929  </chapter>
4930
4931
4932<!-- ****************************************************** -->
4933<!-- Buffer and Memory Management  -->
4934<!-- ****************************************************** -->
4935  <chapter id="buffer-and-memory">
4936    <title>Buffer and Memory Management</title>
4937
4938    <section id="buffer-and-memory-buffer-types">
4939      <title>Buffer Types</title>
4940      <para>
4941        ALSA provides several different buffer allocation functions
4942      depending on the bus and the architecture. All these have a
4943      consistent API. The allocation of physically-contiguous pages is
4944      done via 
4945      <function>snd_malloc_xxx_pages()</function> function, where xxx
4946      is the bus type. 
4947      </para>
4948
4949      <para>
4950        The allocation of pages with fallback is
4951      <function>snd_malloc_xxx_pages_fallback()</function>. This
4952      function tries to allocate the specified pages but if the pages
4953      are not available, it tries to reduce the page sizes until the
4954      enough space is found.
4955      </para>
4956
4957      <para>
4958      For releasing the space, call
4959      <function>snd_free_xxx_pages()</function> function. 
4960      </para>
4961
4962      <para>
4963      Usually, ALSA drivers try to allocate and reserve
4964       a large contiguous physical space
4965       at the time the module is loaded for the later use.
4966       This is called <quote>pre-allocation</quote>.
4967       As already written, you can call the following function at the
4968       construction of pcm instance (in the case of PCI bus). 
4969
4970        <informalexample>
4971          <programlisting>
4972<![CDATA[
4973  snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
4974                                        snd_dma_pci_data(pci), size, max);
4975]]>
4976          </programlisting>
4977        </informalexample>
4978
4979        where <parameter>size</parameter> is the byte size to be
4980      pre-allocated and the <parameter>max</parameter> is the maximal
4981      size to be changed via <filename>prealloc</filename> proc file.
4982      The allocator will try to get as large area as possible
4983      within the given size. 
4984      </para>
4985
4986      <para>
4987      The second argument (type) and the third argument (device pointer)
4988      are dependent on the bus.
4989      In the case of ISA bus, pass <function>snd_dma_isa_data()</function>
4990      as the third argument with <constant>SNDRV_DMA_TYPE_DEV</constant> type.
4991      For the continuous buffer unrelated to the bus can be pre-allocated
4992      with <constant>SNDRV_DMA_TYPE_CONTINUOUS</constant> type and the
4993      <function>snd_dma_continuous_data(GFP_KERNEL)</function> device pointer,
4994      whereh <constant>GFP_KERNEL</constant> is the kernel allocation flag to
4995      use.  For the SBUS, <constant>SNDRV_DMA_TYPE_SBUS</constant> and
4996      <function>snd_dma_sbus_data(sbus_dev)</function> are used instead.
4997      For the PCI scatter-gather buffers, use
4998      <constant>SNDRV_DMA_TYPE_DEV_SG</constant> with
4999      <function>snd_dma_pci_data(pci)</function>
5000      (see the section
5001          <link linkend="buffer-and-memory-non-contiguous"><citetitle>Non-Contiguous Buffers
5002          </citetitle></link>).
5003      </para>
5004
5005      <para>
5006        Once when the buffer is pre-allocated, you can use the
5007        allocator in the <structfield>hw_params</structfield> callback 
5008
5009        <informalexample>
5010          <programlisting>
5011<![CDATA[
5012  snd_pcm_lib_malloc_pages(substream, size);
5013]]>
5014          </programlisting>
5015        </informalexample>
5016
5017        Note that you have to pre-allocate to use this function.
5018      </para>
5019    </section>
5020
5021    <section id="buffer-and-memory-external-hardware">
5022      <title>External Hardware Buffers</title>
5023      <para>
5024        Some chips have their own hardware buffers and the DMA
5025      transfer from the host memory is not available. In such a case,
5026      you need to either 1) copy/set the audio data directly to the
5027      external hardware buffer, or 2) make an intermediate buffer and
5028      copy/set the data from it to the external hardware buffer in
5029      interrupts (or in tasklets, preferably).
5030      </para>
5031
5032      <para>
5033        The first case works fine if the external hardware buffer is enough
5034      large.  This method doesn't need any extra buffers and thus is
5035      more effective. You need to define the
5036      <structfield>copy</structfield> and
5037      <structfield>silence</structfield> callbacks for 
5038      the data transfer. However, there is a drawback: it cannot
5039      be mmapped. The examples are GUS's GF1 PCM or emu8000's
5040      wavetable PCM. 
5041      </para>
5042
5043      <para>
5044        The second case allows the mmap of the buffer, although you have
5045      to handle an interrupt or a tasklet for transferring the data
5046      from the intermediate buffer to the hardware buffer. You can find an
5047      example in vxpocket driver. 
5048      </para>
5049
5050      <para>
5051        Another case is that the chip uses a PCI memory-map
5052      region for the buffer instead of the host memory. In this case,
5053      mmap is available only on certain architectures like intel. In
5054      non-mmap mode, the data cannot be transferred as the normal
5055      way. Thus you need to define <structfield>copy</structfield> and
5056      <structfield>silence</structfield> callbacks as well 
5057      as in the cases above. The examples are found in
5058      <filename>rme32.c</filename> and <filename>rme96.c</filename>. 
5059      </para>
5060
5061      <para>
5062        The implementation of <structfield>copy</structfield> and
5063        <structfield>silence</structfield> callbacks depends upon 
5064        whether the hardware supports interleaved or non-interleaved
5065        samples. The <structfield>copy</structfield> callback is
5066        defined like below, a bit 
5067        differently depending whether the direction is playback or
5068        capture: 
5069
5070        <informalexample>
5071          <programlisting>
5072<![CDATA[
5073  static int playback_copy(struct snd_pcm_substream *substream, int channel,
5074               snd_pcm_uframes_t pos, void *src, snd_pcm_uframes_t count);
5075  static int capture_copy(struct snd_pcm_substream *substream, int channel,
5076               snd_pcm_uframes_t pos, void *dst, snd_pcm_uframes_t count);
5077]]>
5078          </programlisting>
5079        </informalexample>
5080      </para>
5081
5082      <para>
5083        In the case of interleaved samples, the second argument
5084      (<parameter>channel</parameter>) is not used. The third argument
5085      (<parameter>pos</parameter>) points the 
5086      current position offset in frames. 
5087      </para>
5088
5089      <para>
5090        The meaning of the fourth argument is different between
5091      playback and capture. For playback, it holds the source data
5092      pointer, and for capture, it's the destination data pointer. 
5093      </para>
5094
5095      <para>
5096        The last argument is the number of frames to be copied.
5097      </para>
5098
5099      <para>
5100        What you have to do in this callback is again different
5101        between playback and capture directions. In the case of
5102        playback, you do: copy the given amount of data
5103        (<parameter>count</parameter>) at the specified pointer
5104        (<parameter>src</parameter>) to the specified offset
5105        (<parameter>pos</parameter>) on the hardware buffer. When
5106        coded like memcpy-like way, the copy would be like: 
5107
5108        <informalexample>
5109          <programlisting>
5110<![CDATA[
5111  my_memcpy(my_buffer + frames_to_bytes(runtime, pos), src,
5112            frames_to_bytes(runtime, count));
5113]]>
5114          </programlisting>
5115        </informalexample>
5116      </para>
5117
5118      <para>
5119        For the capture direction, you do: copy the given amount of
5120        data (<parameter>count</parameter>) at the specified offset
5121        (<parameter>pos</parameter>) on the hardware buffer to the
5122        specified pointer (<parameter>dst</parameter>). 
5123
5124        <informalexample>
5125          <programlisting>
5126<![CDATA[
5127  my_memcpy(dst, my_buffer + frames_to_bytes(runtime, pos),
5128            frames_to_bytes(runtime, count));
5129]]>
5130          </programlisting>
5131        </informalexample>
5132
5133        Note that both of the position and the data amount are given
5134      in frames. 
5135      </para>
5136
5137      <para>
5138        In the case of non-interleaved samples, the implementation
5139      will be a bit more complicated. 
5140      </para>
5141
5142      <para>
5143        You need to check the channel argument, and if it's -1, copy
5144      the whole channels. Otherwise, you have to copy only the
5145      specified channel. Please check
5146      <filename>isa/gus/gus_pcm.c</filename> as an example. 
5147      </para>
5148
5149      <para>
5150        The <structfield>silence</structfield> callback is also
5151        implemented in a similar way. 
5152
5153        <informalexample>
5154          <programlisting>
5155<![CDATA[
5156  static int silence(struct snd_pcm_substream *substream, int channel,
5157                     snd_pcm_uframes_t pos, snd_pcm_uframes_t count);
5158]]>
5159          </programlisting>
5160        </informalexample>
5161      </para>
5162
5163      <para>
5164        The meanings of arguments are identical with the
5165      <structfield>copy</structfield> 
5166      callback, although there is no <parameter>src/dst</parameter>
5167      argument. In the case of interleaved samples, the channel
5168      argument has no meaning, as well as on
5169      <structfield>copy</structfield> callback.  
5170      </para>
5171
5172      <para>
5173        The role of <structfield>silence</structfield> callback is to
5174        set the given amount 
5175        (<parameter>count</parameter>) of silence data at the
5176        specified offset (<parameter>pos</parameter>) on the hardware
5177        buffer. Suppose that the data format is signed (that is, the
5178        silent-data is 0), and the implementation using a memset-like
5179        function would be like: 
5180
5181        <informalexample>
5182          <programlisting>
5183<![CDATA[
5184  my_memcpy(my_buffer + frames_to_bytes(runtime, pos), 0,
5185            frames_to_bytes(runtime, count));
5186]]>
5187          </programlisting>
5188        </informalexample>
5189      </para>
5190
5191      <para>
5192        In the case of non-interleaved samples, again, the
5193      implementation becomes a bit more complicated. See, for example,
5194      <filename>isa/gus/gus_pcm.c</filename>. 
5195      </para>
5196    </section>
5197
5198    <section id="buffer-and-memory-non-contiguous">
5199      <title>Non-Contiguous Buffers</title>
5200      <para>
5201        If your hardware supports the page table like emu10k1 or the
5202      buffer descriptors like via82xx, you can use the scatter-gather
5203      (SG) DMA. ALSA provides an interface for handling SG-buffers.
5204      The API is provided in <filename>&lt;sound/pcm.h&gt;</filename>. 
5205      </para>
5206
5207      <para>
5208        For creating the SG-buffer handler, call
5209        <function>snd_pcm_lib_preallocate_pages()</function> or
5210        <function>snd_pcm_lib_preallocate_pages_for_all()</function>
5211        with <constant>SNDRV_DMA_TYPE_DEV_SG</constant>
5212	in the PCM constructor like other PCI pre-allocator.
5213        You need to pass the <function>snd_dma_pci_data(pci)</function>,
5214        where pci is the struct <structname>pci_dev</structname> pointer
5215        of the chip as well.
5216        The <type>struct snd_sg_buf</type> instance is created as
5217        substream-&gt;dma_private. You can cast
5218        the pointer like: 
5219
5220        <informalexample>
5221          <programlisting>
5222<![CDATA[
5223  struct snd_sg_buf *sgbuf = (struct snd_sg_buf *)substream->dma_private;
5224]]>
5225          </programlisting>
5226        </informalexample>
5227      </para>
5228
5229      <para>
5230        Then call <function>snd_pcm_lib_malloc_pages()</function>
5231      in <structfield>hw_params</structfield> callback
5232      as well as in the case of normal PCI buffer.
5233      The SG-buffer handler will allocate the non-contiguous kernel
5234      pages of the given size and map them onto the virtually contiguous
5235      memory.  The virtual pointer is addressed in runtime-&gt;dma_area.
5236      The physical address (runtime-&gt;dma_addr) is set to zero,
5237      because the buffer is physically non-contigous.
5238      The physical address table is set up in sgbuf-&gt;table.
5239      You can get the physical address at a certain offset via
5240      <function>snd_pcm_sgbuf_get_addr()</function>. 
5241      </para>
5242
5243      <para>
5244        When a SG-handler is used, you need to set
5245      <function>snd_pcm_sgbuf_ops_page</function> as
5246      the <structfield>page</structfield> callback.
5247      (See <link linkend="pcm-interface-operators-page-callback">
5248      <citetitle>page callback section</citetitle></link>.)
5249      </para>
5250
5251      <para>
5252        For releasing the data, call
5253      <function>snd_pcm_lib_free_pages()</function> in the
5254      <structfield>hw_free</structfield> callback as usual.
5255      </para>
5256    </section>
5257
5258    <section id="buffer-and-memory-vmalloced">
5259      <title>Vmalloc'ed Buffers</title>
5260      <para>
5261        It's possible to use a buffer allocated via
5262      <function>vmalloc</function>, for example, for an intermediate
5263      buffer. Since the allocated pages are not contiguous, you need
5264      to set the <structfield>page</structfield> callback to obtain
5265      the physical address at every offset. 
5266      </para>
5267
5268      <para>
5269        The implementation of <structfield>page</structfield> callback
5270        would be like this: 
5271
5272        <informalexample>
5273          <programlisting>
5274<![CDATA[
5275  #include <linux/vmalloc.h>
5276
5277  /* get the physical page pointer on the given offset */
5278  static struct page *mychip_page(struct snd_pcm_substream *substream,
5279                                  unsigned long offset)
5280  {
5281          void *pageptr = substream->runtime->dma_area + offset;
5282          return vmalloc_to_page(pageptr);
5283  }
5284]]>
5285          </programlisting>
5286        </informalexample>
5287      </para>
5288    </section>
5289
5290  </chapter>
5291
5292
5293<!-- ****************************************************** -->
5294<!-- Proc Interface  -->
5295<!-- ****************************************************** -->
5296  <chapter id="proc-interface">
5297    <title>Proc Interface</title>
5298    <para>
5299      ALSA provides an easy interface for procfs. The proc files are
5300      very useful for debugging. I recommend you set up proc files if
5301      you write a driver and want to get a running status or register
5302      dumps. The API is found in
5303      <filename>&lt;sound/info.h&gt;</filename>. 
5304    </para>
5305
5306    <para>
5307      For creating a proc file, call
5308      <function>snd_card_proc_new()</function>. 
5309
5310      <informalexample>
5311        <programlisting>
5312<![CDATA[
5313  struct snd_info_entry *entry;
5314  int err = snd_card_proc_new(card, "my-file", &entry);
5315]]>
5316        </programlisting>
5317      </informalexample>
5318
5319      where the second argument specifies the proc-file name to be
5320    created. The above example will create a file
5321    <filename>my-file</filename> under the card directory,
5322    e.g. <filename>/proc/asound/card0/my-file</filename>. 
5323    </para>
5324
5325    <para>
5326    Like other components, the proc entry created via
5327    <function>snd_card_proc_new()</function> will be registered and
5328    released automatically in the card registration and release
5329    functions.
5330    </para>
5331
5332    <para>
5333      When the creation is successful, the function stores a new
5334    instance at the pointer given in the third argument.
5335    It is initialized as a text proc file for read only.  For using
5336    this proc file as a read-only text file as it is, set the read
5337    callback with a private data via 
5338     <function>snd_info_set_text_ops()</function>.
5339
5340      <informalexample>
5341        <programlisting>
5342<![CDATA[
5343  snd_info_set_text_ops(entry, chip, my_proc_read);
5344]]>
5345        </programlisting>
5346      </informalexample>
5347    
5348    where the second argument (<parameter>chip</parameter>) is the
5349    private data to be used in the callbacks. The third parameter
5350    specifies the read buffer size and the fourth
5351    (<parameter>my_proc_read</parameter>) is the callback function, which
5352    is defined like
5353
5354      <informalexample>
5355        <programlisting>
5356<![CDATA[
5357  static void my_proc_read(struct snd_info_entry *entry,
5358                           struct snd_info_buffer *buffer);
5359]]>
5360        </programlisting>
5361      </informalexample>
5362    
5363    </para>
5364
5365    <para>
5366    In the read callback, use <function>snd_iprintf()</function> for
5367    output strings, which works just like normal
5368    <function>printf()</function>.  For example,
5369
5370      <informalexample>
5371        <programlisting>
5372<![CDATA[
5373  static void my_proc_read(struct snd_info_entry *entry,
5374                           struct snd_info_buffer *buffer)
5375  {
5376          struct my_chip *chip = entry->private_data;
5377
5378          snd_iprintf(buffer, "This is my chip!\n");
5379          snd_iprintf(buffer, "Port = %ld\n", chip->port);
5380  }
5381]]>
5382        </programlisting>
5383      </informalexample>
5384    </para>
5385
5386    <para>
5387    The file permission can be changed afterwards.  As default, it's
5388    set as read only for all users.  If you want to add the write
5389    permission to the user (root as default), set like below:
5390
5391      <informalexample>
5392        <programlisting>
5393<![CDATA[
5394 entry->mode = S_IFREG | S_IRUGO | S_IWUSR;
5395]]>
5396        </programlisting>
5397      </informalexample>
5398
5399    and set the write buffer size and the callback
5400
5401      <informalexample>
5402        <programlisting>
5403<![CDATA[
5404  entry->c.text.write = my_proc_write;
5405]]>
5406        </programlisting>
5407      </informalexample>
5408    </para>
5409
5410    <para>
5411      For the write callback, you can use
5412    <function>snd_info_get_line()</function> to get a text line, and
5413    <function>snd_info_get_str()</function> to retrieve a string from
5414    the line. Some examples are found in
5415    <filename>core/oss/mixer_oss.c</filename>, core/oss/and
5416    <filename>pcm_oss.c</filename>. 
5417    </para>
5418
5419    <para>
5420      For a raw-data proc-file, set the attributes like the following:
5421
5422      <informalexample>
5423        <programlisting>
5424<![CDATA[
5425  static struct snd_info_entry_ops my_file_io_ops = {
5426          .read = my_file_io_read,
5427  };
5428
5429  entry->content = SNDRV_INFO_CONTENT_DATA;
5430  entry->private_data = chip;
5431  entry->c.ops = &my_file_io_ops;
5432  entry->size = 4096;
5433  entry->mode = S_IFREG | S_IRUGO;
5434]]>
5435        </programlisting>
5436      </informalexample>
5437    </para>
5438
5439    <para>
5440      The callback is much more complicated than the text-file
5441      version. You need to use a low-level i/o functions such as
5442      <function>copy_from/to_user()</function> to transfer the
5443      data.
5444
5445      <informalexample>
5446        <programlisting>
5447<![CDATA[
5448  static long my_file_io_read(struct snd_info_entry *entry,
5449                              void *file_private_data,
5450                              struct file *file,
5451                              char *buf,
5452                              unsigned long count,
5453                              unsigned long pos)
5454  {
5455          long size = count;
5456          if (pos + size > local_max_size)
5457                  size = local_max_size - pos;
5458          if (copy_to_user(buf, local_data + pos, size))
5459                  return -EFAULT;
5460          return size;
5461  }
5462]]>
5463        </programlisting>
5464      </informalexample>
5465    </para>
5466
5467  </chapter>
5468
5469
5470<!-- ****************************************************** -->
5471<!-- Power Management  -->
5472<!-- ****************************************************** -->
5473  <chapter id="power-management">
5474    <title>Power Management</title>
5475    <para>
5476      If the chip is supposed to work with suspend/resume
5477      functions, you need to add the power-management codes to the
5478      driver. The additional codes for the power-management should be
5479      <function>ifdef</function>'ed with
5480      <constant>CONFIG_PM</constant>. 
5481    </para>
5482
5483	<para>
5484	If the driver supports the suspend/resume
5485	<emphasis>fully</emphasis>, that is, the device can be
5486	properly resumed to the status at the suspend is called,
5487	you can set <constant>SNDRV_PCM_INFO_RESUME</constant> flag
5488	to pcm info field.  Usually, this is possible when the
5489	registers of ths chip can be safely saved and restored to the
5490	RAM.  If this is set, the trigger callback is called with
5491	<constant>SNDRV_PCM_TRIGGER_RESUME</constant> after resume
5492	callback is finished. 
5493	</para>
5494
5495	<para>
5496	Even if the driver doesn't support PM fully but only the
5497	partial suspend/resume is possible, it's still worthy to
5498	implement suspend/resume callbacks.  In such a case, applications
5499	would reset the status by calling
5500	<function>snd_pcm_prepare()</function> and restart the stream
5501	appropriately.  Hence, you can define suspend/resume callbacks
5502	below but don't set <constant>SNDRV_PCM_INFO_RESUME</constant>
5503	info flag to the PCM.
5504	</para>
5505	
5506	<para>
5507	Note that the trigger with SUSPEND can be always called when
5508	<function>snd_pcm_suspend_all</function> is called,
5509	regardless of <constant>SNDRV_PCM_INFO_RESUME</constant> flag.
5510	The <constant>RESUME</constant> flag affects only the behavior
5511	of <function>snd_pcm_resume()</function>.
5512	(Thus, in theory,
5513	<constant>SNDRV_PCM_TRIGGER_RESUME</constant> isn't needed
5514	to be handled in the trigger callback when no
5515	<constant>SNDRV_PCM_INFO_RESUME</constant> flag is set.  But,
5516	it's better to keep it for compatibility reason.)
5517	</para>
5518    <para>
5519      In the earlier version of ALSA drivers, a common
5520      power-management layer was provided, but it has been removed.
5521      The driver needs to define the suspend/resume hooks according to
5522      the bus the device is assigned.  In the case of PCI driver, the
5523      callbacks look like below:
5524
5525      <informalexample>
5526        <programlisting>
5527<![CDATA[
5528  #ifdef CONFIG_PM
5529  static int snd_my_suspend(struct pci_dev *pci, pm_message_t state)
5530  {
5531          .... /* do things for suspend */
5532          return 0;
5533  }
5534  static int snd_my_resume(struct pci_dev *pci)
5535  {
5536          .... /* do things for suspend */
5537          return 0;
5538  }
5539  #endif
5540]]>
5541        </programlisting>
5542      </informalexample>
5543    </para>
5544
5545    <para>
5546      The scheme of the real suspend job is as following.
5547
5548      <orderedlist>
5549        <listitem><para>Retrieve the card and the chip data.</para></listitem>
5550        <listitem><para>Call <function>snd_power_change_state()</function> with
5551	  <constant>SNDRV_CTL_POWER_D3hot</constant> to change the
5552	  power status.</para></listitem>
5553        <listitem><para>Call <function>snd_pcm_suspend_all()</function> to suspend the running PCM streams.</para></listitem>
5554	<listitem><para>If AC97 codecs are used, call
5555	<function>snd_ac97_suspend()</function> for each codec.</para></listitem>
5556        <listitem><para>Save the register values if necessary.</para></listitem>
5557        <listitem><para>Stop the hardware if necessary.</para></listitem>
5558        <listitem><para>Disable the PCI device by calling
5559	  <function>pci_disable_device()</function>.  Then, call
5560          <function>pci_save_state()</function> at last.</para></listitem>
5561      </orderedlist>
5562    </para>
5563
5564    <para>
5565      A typical code would be like:
5566
5567      <informalexample>
5568        <programlisting>
5569<![CDATA[
5570  static int mychip_suspend(struct pci_dev *pci, pm_message_t state)
5571  {
5572          /* (1) */
5573          struct snd_card *card = pci_get_drvdata(pci);
5574          struct mychip *chip = card->private_data;
5575          /* (2) */
5576          snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
5577          /* (3) */
5578          snd_pcm_suspend_all(chip->pcm);
5579          /* (4) */
5580          snd_ac97_suspend(chip->ac97);
5581          /* (5) */
5582          snd_mychip_save_registers(chip);
5583          /* (6) */
5584          snd_mychip_stop_hardware(chip);
5585          /* (7) */
5586          pci_disable_device(pci);
5587          pci_save_state(pci);
5588          return 0;
5589  }
5590]]>
5591        </programlisting>
5592      </informalexample>
5593    </para>
5594
5595    <para>
5596    The scheme of the real resume job is as following.
5597
5598    <orderedlist>
5599    <listitem><para>Retrieve the card and the chip data.</para></listitem>
5600    <listitem><para>Set up PCI.  First, call <function>pci_restore_state()</function>.
5601    	Then enable the pci device again by calling <function>pci_enable_device()</function>.
5602	Call <function>pci_set_master()</function> if necessary, too.</para></listitem>
5603    <listitem><para>Re-initialize the chip.</para></listitem>
5604    <listitem><para>Restore the saved registers if necessary.</para></listitem>
5605    <listitem><para>Resume the mixer, e.g. calling
5606    <function>snd_ac97_resume()</function>.</para></listitem>
5607    <listitem><para>Restart the hardware (if any).</para></listitem>
5608    <listitem><para>Call <function>snd_power_change_state()</function> with
5609	<constant>SNDRV_CTL_POWER_D0</constant> to notify the processes.</para></listitem>
5610    </orderedlist>
5611    </para>
5612
5613    <para>
5614    A typical code would be like:
5615
5616      <informalexample>
5617        <programlisting>
5618<![CDATA[
5619  static int mychip_resume(struct pci_dev *pci)
5620  {
5621          /* (1) */
5622          struct snd_card *card = pci_get_drvdata(pci);
5623          struct mychip *chip = card->private_data;
5624          /* (2) */
5625          pci_restore_state(pci);
5626          pci_enable_device(pci);
5627          pci_set_master(pci);
5628          /* (3) */
5629          snd_mychip_reinit_chip(chip);
5630          /* (4) */
5631          snd_mychip_restore_registers(chip);
5632          /* (5) */
5633          snd_ac97_resume(chip->ac97);
5634          /* (6) */
5635          snd_mychip_restart_chip(chip);
5636          /* (7) */
5637          snd_power_change_state(card, SNDRV_CTL_POWER_D0);
5638          return 0;
5639  }
5640]]>
5641        </programlisting>
5642      </informalexample>
5643    </para>
5644
5645    <para>
5646	As shown in the above, it's better to save registers after
5647	suspending the PCM operations via
5648	<function>snd_pcm_suspend_all()</function> or
5649	<function>snd_pcm_suspend()</function>.  It means that the PCM
5650	streams are already stoppped when the register snapshot is
5651	taken.  But, remind that you don't have to restart the PCM
5652	stream in the resume callback. It'll be restarted via 
5653	trigger call with <constant>SNDRV_PCM_TRIGGER_RESUME</constant>
5654	when necessary.
5655    </para>
5656
5657    <para>
5658      OK, we have all callbacks now. Let's set them up. In the
5659      initialization of the card, make sure that you can get the chip
5660      data from the card instance, typically via
5661      <structfield>private_data</structfield> field, in case you
5662      created the chip data individually.
5663
5664      <informalexample>
5665        <programlisting>
5666<![CDATA[
5667  static int __devinit snd_mychip_probe(struct pci_dev *pci,
5668                               const struct pci_device_id *pci_id)
5669  {
5670          ....
5671          struct snd_card *card;
5672          struct mychip *chip;
5673          ....
5674          card = snd_card_new(index[dev], id[dev], THIS_MODULE, NULL);
5675          ....
5676          chip = kzalloc(sizeof(*chip), GFP_KERNEL);
5677          ....
5678          card->private_data = chip;
5679          ....
5680  }
5681]]>
5682        </programlisting>
5683      </informalexample>
5684
5685	When you created the chip data with
5686	<function>snd_card_new()</function>, it's anyway accessible
5687	via <structfield>private_data</structfield> field.
5688
5689      <informalexample>
5690        <programlisting>
5691<![CDATA[
5692  static int __devinit snd_mychip_probe(struct pci_dev *pci,
5693                               const struct pci_device_id *pci_id)
5694  {
5695          ....
5696          struct snd_card *card;
5697          struct mychip *chip;
5698          ....
5699          card = snd_card_new(index[dev], id[dev], THIS_MODULE,
5700                              sizeof(struct mychip));
5701          ....
5702          chip = card->private_data;
5703          ....
5704  }
5705]]>
5706        </programlisting>
5707      </informalexample>
5708
5709    </para>
5710
5711    <para>
5712      If you need a space for saving the registers, allocate the
5713	buffer for it here, too, since it would be fatal
5714    if you cannot allocate a memory in the suspend phase.
5715    The allocated buffer should be released in the corresponding
5716    destructor.
5717    </para>
5718
5719    <para>
5720      And next, set suspend/resume callbacks to the pci_driver.
5721
5722      <informalexample>
5723        <programlisting>
5724<![CDATA[
5725  static struct pci_driver driver = {
5726          .name = "My Chip",
5727          .id_table = snd_my_ids,
5728          .probe = snd_my_probe,
5729          .remove = __devexit_p(snd_my_remove),
5730  #ifdef CONFIG_PM
5731          .suspend = snd_my_suspend,
5732          .resume = snd_my_resume,
5733  #endif
5734  };
5735]]>
5736        </programlisting>
5737      </informalexample>
5738    </para>
5739
5740  </chapter>
5741
5742
5743<!-- ****************************************************** -->
5744<!-- Module Parameters  -->
5745<!-- ****************************************************** -->
5746  <chapter id="module-parameters">
5747    <title>Module Parameters</title>
5748    <para>
5749      There are standard module options for ALSA. At least, each
5750      module should have <parameter>index</parameter>,
5751      <parameter>id</parameter> and <parameter>enable</parameter>
5752      options. 
5753    </para>
5754
5755    <para>
5756      If the module supports multiple cards (usually up to
5757      8 = <constant>SNDRV_CARDS</constant> cards), they should be
5758      arrays.  The default initial values are defined already as
5759      constants for ease of programming:
5760
5761      <informalexample>
5762        <programlisting>
5763<![CDATA[
5764  static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
5765  static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
5766  static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
5767]]>
5768        </programlisting>
5769      </informalexample>
5770    </para>
5771
5772    <para>
5773      If the module supports only a single card, they could be single
5774    variables, instead.  <parameter>enable</parameter> option is not
5775    always necessary in this case, but it wouldn't be so bad to have a
5776    dummy option for compatibility.
5777    </para>
5778
5779    <para>
5780      The module parameters must be declared with the standard
5781    <function>module_param()()</function>,
5782    <function>module_param_array()()</function> and
5783    <function>MODULE_PARM_DESC()</function> macros.
5784    </para>
5785
5786    <para>
5787      The typical coding would be like below:
5788
5789      <informalexample>
5790        <programlisting>
5791<![CDATA[
5792  #define CARD_NAME "My Chip"
5793
5794  module_param_array(index, int, NULL, 0444);
5795  MODULE_PARM_DESC(index, "Index value for " CARD_NAME " soundcard.");
5796  module_param_array(id, charp, NULL, 0444);
5797  MODULE_PARM_DESC(id, "ID string for " CARD_NAME " soundcard.");
5798  module_param_array(enable, bool, NULL, 0444);
5799  MODULE_PARM_DESC(enable, "Enable " CARD_NAME " soundcard.");
5800]]>
5801        </programlisting>
5802      </informalexample>
5803    </para>
5804
5805    <para>
5806      Also, don't forget to define the module description, classes,
5807      license and devices. Especially, the recent modprobe requires to
5808      define the module license as GPL, etc., otherwise the system is
5809      shown as <quote>tainted</quote>. 
5810
5811      <informalexample>
5812        <programlisting>
5813<![CDATA[
5814  MODULE_DESCRIPTION("My Chip");
5815  MODULE_LICENSE("GPL");
5816  MODULE_SUPPORTED_DEVICE("{{Vendor,My Chip Name}}");
5817]]>
5818        </programlisting>
5819      </informalexample>
5820    </para>
5821
5822  </chapter>
5823
5824
5825<!-- ****************************************************** -->
5826<!-- How To Put Your Driver  -->
5827<!-- ****************************************************** -->
5828  <chapter id="how-to-put-your-driver">
5829    <title>How To Put Your Driver Into ALSA Tree</title>
5830	<section>
5831	<title>General</title>
5832	<para>
5833	So far, you've learned how to write the driver codes.
5834	And you might have a question now: how to put my own
5835	driver into the ALSA driver tree?
5836	Here (finally :) the standard procedure is described briefly.
5837	</para>
5838
5839	<para>
5840	Suppose that you'll create a new PCI driver for the card
5841	<quote>xyz</quote>.  The card module name would be
5842	snd-xyz.  The new driver is usually put into alsa-driver
5843	tree, <filename>alsa-driver/pci</filename> directory in
5844	the case of PCI cards.
5845	Then the driver is evaluated, audited and tested
5846	by developers and users.  After a certain time, the driver
5847	will go to alsa-kernel tree (to the corresponding directory,
5848	such as <filename>alsa-kernel/pci</filename>) and eventually
5849	integrated into Linux 2.6 tree (the directory would be
5850	<filename>linux/sound/pci</filename>).
5851	</para>
5852
5853	<para>
5854	In the following sections, the driver code is supposed
5855	to be put into alsa-driver tree.  The two cases are assumed:
5856	a driver consisting of a single source file and one consisting
5857	of several source files.
5858	</para>
5859	</section>
5860
5861	<section>
5862	<title>Driver with A Single Source File</title>
5863	<para>
5864	<orderedlist>
5865	<listitem>
5866	<para>
5867	Modify alsa-driver/pci/Makefile
5868	</para>
5869
5870	<para>
5871	Suppose you have a file xyz.c.  Add the following
5872	two lines
5873      <informalexample>
5874        <programlisting>
5875<![CDATA[
5876  snd-xyz-objs := xyz.o
5877  obj-$(CONFIG_SND_XYZ) += snd-xyz.o
5878]]>
5879        </programlisting>
5880      </informalexample>
5881	</para>
5882	</listitem>
5883
5884	<listitem>
5885	<para>
5886	Create the Kconfig entry
5887	</para>
5888
5889	<para>
5890	Add the new entry of Kconfig for your xyz driver.
5891      <informalexample>
5892        <programlisting>
5893<![CDATA[
5894  config SND_XYZ
5895          tristate "Foobar XYZ"
5896          depends on SND
5897          select SND_PCM
5898          help
5899            Say Y here to include support for Foobar XYZ soundcard.
5900
5901            To compile this driver as a module, choose M here: the module
5902            will be called snd-xyz.
5903]]>
5904        </programlisting>
5905      </informalexample>
5906
5907	the line, select SND_PCM, specifies that the driver xyz supports
5908	PCM.  In addition to SND_PCM, the following components are
5909	supported for select command:
5910	SND_RAWMIDI, SND_TIMER, SND_HWDEP, SND_MPU401_UART,
5911	SND_OPL3_LIB, SND_OPL4_LIB, SND_VX_LIB, SND_AC97_CODEC.
5912	Add the select command for each supported component.
5913	</para>
5914
5915	<para>
5916	Note that some selections imply the lowlevel selections.
5917	For example, PCM includes TIMER, MPU401_UART includes RAWMIDI,
5918	AC97_CODEC includes PCM, and OPL3_LIB includes HWDEP.
5919	You don't need to give the lowlevel selections again.
5920	</para>
5921
5922	<para>
5923	For the details of Kconfig script, refer to the kbuild
5924	documentation.
5925	</para>
5926
5927	</listitem>
5928
5929	<listitem>
5930	<para>
5931	Run cvscompile script to re-generate the configure script and
5932	build the whole stuff again.
5933	</para>
5934	</listitem>
5935	</orderedlist>
5936	</para>
5937	</section>
5938
5939	<section>
5940	<title>Drivers with Several Source Files</title>
5941	<para>
5942	Suppose that the driver snd-xyz have several source files.
5943	They are located in the new subdirectory,
5944	pci/xyz.
5945
5946	<orderedlist>
5947	<listitem>
5948	<para>
5949	Add a new directory (<filename>xyz</filename>) in
5950	<filename>alsa-driver/pci/Makefile</filename> like below
5951
5952      <informalexample>
5953        <programlisting>
5954<![CDATA[
5955  obj-$(CONFIG_SND) += xyz/
5956]]>
5957        </programlisting>
5958      </informalexample>
5959	</para>
5960	</listitem>
5961
5962	<listitem>
5963	<para>
5964	Under the directory <filename>xyz</filename>, create a Makefile
5965
5966      <example>
5967	<title>Sample Makefile for a driver xyz</title>
5968        <programlisting>
5969<![CDATA[
5970  ifndef SND_TOPDIR
5971  SND_TOPDIR=../..
5972  endif
5973
5974  include $(SND_TOPDIR)/toplevel.config
5975  include $(SND_TOPDIR)/Makefile.conf
5976
5977  snd-xyz-objs := xyz.o abc.o def.o
5978
5979  obj-$(CONFIG_SND_XYZ) += snd-xyz.o
5980
5981  include $(SND_TOPDIR)/Rules.make
5982]]>
5983        </programlisting>
5984      </example>
5985	</para>
5986	</listitem>
5987
5988	<listitem>
5989	<para>
5990	Create the Kconfig entry
5991	</para>
5992
5993	<para>
5994	This procedure is as same as in the last section.
5995	</para>
5996	</listitem>
5997
5998	<listitem>
5999	<para>
6000	Run cvscompile script to re-generate the configure script and
6001	build the whole stuff again.
6002	</para>
6003	</listitem>
6004	</orderedlist>
6005	</para>
6006	</section>
6007
6008  </chapter>
6009
6010<!-- ****************************************************** -->
6011<!-- Useful Functions  -->
6012<!-- ****************************************************** -->
6013  <chapter id="useful-functions">
6014    <title>Useful Functions</title>
6015
6016    <section id="useful-functions-snd-printk">
6017      <title><function>snd_printk()</function> and friends</title>
6018      <para>
6019        ALSA provides a verbose version of
6020      <function>printk()</function> function. If a kernel config
6021      <constant>CONFIG_SND_VERBOSE_PRINTK</constant> is set, this
6022      function prints the given message together with the file name
6023      and the line of the caller. The <constant>KERN_XXX</constant>
6024      prefix is processed as 
6025      well as the original <function>printk()</function> does, so it's
6026      recommended to add this prefix, e.g. 
6027
6028        <informalexample>
6029          <programlisting>
6030<![CDATA[
6031  snd_printk(KERN_ERR "Oh my, sorry, it's extremely bad!\n");
6032]]>
6033          </programlisting>
6034        </informalexample>
6035      </para>
6036
6037      <para>
6038        There are also <function>printk()</function>'s for
6039      debugging. <function>snd_printd()</function> can be used for
6040      general debugging purposes. If
6041      <constant>CONFIG_SND_DEBUG</constant> is set, this function is
6042      compiled, and works just like
6043      <function>snd_printk()</function>. If the ALSA is compiled
6044      without the debugging flag, it's ignored. 
6045      </para>
6046
6047      <para>
6048        <function>snd_printdd()</function> is compiled in only when
6049      <constant>CONFIG_SND_DEBUG_DETECT</constant> is set. Please note
6050      that <constant>DEBUG_DETECT</constant> is not set as default
6051      even if you configure the alsa-driver with
6052      <option>--with-debug=full</option> option. You need to give
6053      explicitly <option>--with-debug=detect</option> option instead. 
6054      </para>
6055    </section>
6056
6057    <section id="useful-functions-snd-assert">
6058      <title><function>snd_assert()</function></title>
6059      <para>
6060        <function>snd_assert()</function> macro is similar with the
6061      normal <function>assert()</function> macro. For example,  
6062
6063        <informalexample>
6064          <programlisting>
6065<![CDATA[
6066  snd_assert(pointer != NULL, return -EINVAL);
6067]]>
6068          </programlisting>
6069        </informalexample>
6070      </para>
6071
6072      <para>
6073        The first argument is the expression to evaluate, and the
6074      second argument is the action if it fails. When
6075      <constant>CONFIG_SND_DEBUG</constant>, is set, it will show an
6076      error message such as <computeroutput>BUG? (xxx)</computeroutput>
6077      together with stack trace.
6078      </para>
6079      <para>
6080	 When no debug flag is set, this macro is ignored. 
6081      </para>
6082    </section>
6083
6084    <section id="useful-functions-snd-bug">
6085      <title><function>snd_BUG()</function></title>
6086      <para>
6087        It shows <computeroutput>BUG?</computeroutput> message and
6088      stack trace as well as <function>snd_assert</function> at the point.
6089      It's useful to show that a fatal error happens there. 
6090      </para>
6091      <para>
6092	 When no debug flag is set, this macro is ignored. 
6093      </para>
6094    </section>
6095  </chapter>
6096
6097
6098<!-- ****************************************************** -->
6099<!-- Acknowledgments  -->
6100<!-- ****************************************************** -->
6101  <chapter id="acknowledgments">
6102    <title>Acknowledgments</title>
6103    <para>
6104      I would like to thank Phil Kerr for his help for improvement and
6105      corrections of this document. 
6106    </para>
6107    <para>
6108    Kevin Conder reformatted the original plain-text to the
6109    DocBook format.
6110    </para>
6111    <para>
6112    Giuliano Pochini corrected typos and contributed the example codes
6113    in the hardware constraints section.
6114    </para>
6115  </chapter>
6116
6117
6118</book>
6119