167754Smsmith// object.cc -- support for an object file for linking in gold
267754Smsmith
367754Smsmith// Copyright (C) 2006-2020 Free Software Foundation, Inc.
4129684Snjl// Written by Ian Lance Taylor <iant@google.com>.
567754Smsmith
667754Smsmith// This file is part of gold.
767754Smsmith
867754Smsmith// This program is free software; you can redistribute it and/or modify
967754Smsmith// it under the terms of the GNU General Public License as published by
1067754Smsmith// the Free Software Foundation; either version 3 of the License, or
1167754Smsmith// (at your option) any later version.
12126372Snjl
1370243Smsmith// This program is distributed in the hope that it will be useful,
1467754Smsmith// but WITHOUT ANY WARRANTY; without even the implied warranty of
1567754Smsmith// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
1667754Smsmith// GNU General Public License for more details.
1767754Smsmith
1867754Smsmith// You should have received a copy of the GNU General Public License
1967754Smsmith// along with this program; if not, write to the Free Software
2067754Smsmith// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
2167754Smsmith// MA 02110-1301, USA.
2267754Smsmith
2367754Smsmith#include "gold.h"
2467754Smsmith
2567754Smsmith#include <cerrno>
2667754Smsmith#include <cstring>
2767754Smsmith#include <cstdarg>
2867754Smsmith#include "demangle.h"
2967754Smsmith#include "libiberty.h"
3067754Smsmith
3167754Smsmith#include "gc.h"
3267754Smsmith#include "target-select.h"
3367754Smsmith#include "dwarf_reader.h"
3467754Smsmith#include "layout.h"
3567754Smsmith#include "output.h"
3667754Smsmith#include "symtab.h"
3767754Smsmith#include "cref.h"
3867754Smsmith#include "reloc.h"
3967754Smsmith#include "object.h"
4067754Smsmith#include "dynobj.h"
4167754Smsmith#include "plugin.h"
4267754Smsmith#include "compressed_output.h"
4367754Smsmith#include "incremental.h"
4467754Smsmith#include "merge.h"
4567754Smsmith
4667754Smsmithnamespace gold
4767754Smsmith{
4867754Smsmith
4967754Smsmith// Struct Read_symbols_data.
5067754Smsmith
5167754Smsmith// Destroy any remaining File_view objects and buffers of decompressed
5267754Smsmith// sections.
5367754Smsmith
5467754SmsmithRead_symbols_data::~Read_symbols_data()
5567754Smsmith{
5667754Smsmith  if (this->section_headers != NULL)
5767754Smsmith    delete this->section_headers;
5867754Smsmith  if (this->section_names != NULL)
5967754Smsmith    delete this->section_names;
6067754Smsmith  if (this->symbols != NULL)
6167754Smsmith    delete this->symbols;
6267754Smsmith  if (this->symbol_names != NULL)
6367754Smsmith    delete this->symbol_names;
6467754Smsmith  if (this->versym != NULL)
6567754Smsmith    delete this->versym;
6667754Smsmith  if (this->verdef != NULL)
6767754Smsmith    delete this->verdef;
6867754Smsmith  if (this->verneed != NULL)
6967754Smsmith    delete this->verneed;
7067754Smsmith}
7167754Smsmith
7267754Smsmith// Class Xindex.
7367754Smsmith
7467754Smsmith// Initialize the symtab_xindex_ array.  Find the SHT_SYMTAB_SHNDX
7567754Smsmith// section and read it in.  SYMTAB_SHNDX is the index of the symbol
7667754Smsmith// table we care about.
7767754Smsmith
7867754Smsmithtemplate<int size, bool big_endian>
7967754Smsmithvoid
8067754SmsmithXindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
8167754Smsmith{
8267754Smsmith  if (!this->symtab_xindex_.empty())
8367754Smsmith    return;
8467754Smsmith
8567754Smsmith  gold_assert(symtab_shndx != 0);
8667754Smsmith
8767754Smsmith  // Look through the sections in reverse order, on the theory that it
8867754Smsmith  // is more likely to be near the end than the beginning.
8967754Smsmith  unsigned int i = object->shnum();
9067754Smsmith  while (i > 0)
9167754Smsmith    {
9267754Smsmith      --i;
9367754Smsmith      if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
9467754Smsmith	  && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
9567754Smsmith	{
9667754Smsmith	  this->read_symtab_xindex<size, big_endian>(object, i, NULL);
9767754Smsmith	  return;
9867754Smsmith	}
9967754Smsmith    }
10067754Smsmith
10167754Smsmith  object->error(_("missing SHT_SYMTAB_SHNDX section"));
10267754Smsmith}
10367754Smsmith
10467754Smsmith// Read in the symtab_xindex_ array, given the section index of the
10567754Smsmith// SHT_SYMTAB_SHNDX section.  If PSHDRS is not NULL, it points at the
10667754Smsmith// section headers.
10767754Smsmith
10867754Smsmithtemplate<int size, bool big_endian>
10967754Smsmithvoid
11067754SmsmithXindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
11167754Smsmith			   const unsigned char* pshdrs)
11267754Smsmith{
11367754Smsmith  section_size_type bytecount;
11467754Smsmith  const unsigned char* contents;
11567754Smsmith  if (pshdrs == NULL)
11667754Smsmith    contents = object->section_contents(xindex_shndx, &bytecount, false);
11767754Smsmith  else
11867754Smsmith    {
11967754Smsmith      const unsigned char* p = (pshdrs
12067754Smsmith				+ (xindex_shndx
12167754Smsmith				   * elfcpp::Elf_sizes<size>::shdr_size));
12267754Smsmith      typename elfcpp::Shdr<size, big_endian> shdr(p);
12367754Smsmith      bytecount = convert_to_section_size_type(shdr.get_sh_size());
12467754Smsmith      contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
12577424Smsmith    }
12691116Smsmith
12767754Smsmith  gold_assert(this->symtab_xindex_.empty());
12867754Smsmith  this->symtab_xindex_.reserve(bytecount / 4);
12967754Smsmith  for (section_size_type i = 0; i < bytecount; i += 4)
13067754Smsmith    {
13167754Smsmith      unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
13267754Smsmith      // We preadjust the section indexes we save.
13367754Smsmith      this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
13467754Smsmith    }
13567754Smsmith}
13667754Smsmith
13777424Smsmith// Symbol symndx has a section of SHN_XINDEX; return the real section
13867754Smsmith// index.
13967754Smsmith
14067754Smsmithunsigned int
14167754SmsmithXindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
14267754Smsmith{
14367754Smsmith  if (symndx >= this->symtab_xindex_.size())
14467754Smsmith    {
14567754Smsmith      object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
14667754Smsmith		    symndx);
14767754Smsmith      return elfcpp::SHN_UNDEF;
14867754Smsmith    }
14967754Smsmith  unsigned int shndx = this->symtab_xindex_[symndx];
15067754Smsmith  if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
15167754Smsmith    {
15299679Siwasaki      object->error(_("extended index for symbol %u out of range: %u"),
15367754Smsmith		    symndx, shndx);
15467754Smsmith      return elfcpp::SHN_UNDEF;
15567754Smsmith    }
15691116Smsmith  return shndx;
15767754Smsmith}
15867754Smsmith
15991116Smsmith// Class Object.
16067754Smsmith
16167754Smsmith// Report an error for this object file.  This is used by the
162114237Snjl// elfcpp::Elf_file interface, and also called by the Object code
16367754Smsmith// itself.
164114237Snjl
16567754Smsmithvoid
16667754SmsmithObject::error(const char* format, ...) const
16767754Smsmith{
16867754Smsmith  va_list args;
16967754Smsmith  va_start(args, format);
17067754Smsmith  char* buf = NULL;
17191116Smsmith  if (vasprintf(&buf, format, args) < 0)
17291116Smsmith    gold_nomem();
17367754Smsmith  va_end(args);
17499679Siwasaki  gold_error(_("%s: %s"), this->name().c_str(), buf);
17567754Smsmith  free(buf);
17691116Smsmith}
17767754Smsmith
17899679Siwasaki// Return a view of the contents of a section.
17967754Smsmith
18067754Smsmithconst unsigned char*
18167754SmsmithObject::section_contents(unsigned int shndx, section_size_type* plen,
18267754Smsmith			 bool cache)
18367754Smsmith{ return this->do_section_contents(shndx, plen, cache); }
18467754Smsmith
18567754Smsmith// Read the section data into SD.  This is code common to Sized_relobj_file
18667754Smsmith// and Sized_dynobj, so we put it into Object.
18767754Smsmith
18867754Smsmithtemplate<int size, bool big_endian>
18967754Smsmithvoid
19067754SmsmithObject::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
19177424Smsmith			  Read_symbols_data* sd)
19267754Smsmith{
19367754Smsmith  const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
19467754Smsmith
19567754Smsmith  // Read the section headers.
19667754Smsmith  const off_t shoff = elf_file->shoff();
19767754Smsmith  const unsigned int shnum = this->shnum();
19867754Smsmith  sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
19967754Smsmith					       true, true);
20067754Smsmith
20167754Smsmith  // Read the section names.
20267754Smsmith  const unsigned char* pshdrs = sd->section_headers->data();
20367754Smsmith  const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
20467754Smsmith  typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
20567754Smsmith
20699679Siwasaki  if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
20767754Smsmith    this->error(_("section name section has wrong type: %u"),
20867754Smsmith		static_cast<unsigned int>(shdrnames.get_sh_type()));
20967754Smsmith
21091116Smsmith  sd->section_names_size =
21167754Smsmith    convert_to_section_size_type(shdrnames.get_sh_size());
21267754Smsmith  sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
21391116Smsmith					     sd->section_names_size, false,
21467754Smsmith					     false);
21567754Smsmith}
21691116Smsmith
21767754Smsmith// If NAME is the name of a special .gnu.warning section, arrange for
218114237Snjl// the warning to be issued.  SHNDX is the section index.  Return
21967754Smsmith// whether it is a warning section.
22067754Smsmith
22167754Smsmithbool
22267754SmsmithObject::handle_gnu_warning_section(const char* name, unsigned int shndx,
22367754Smsmith				   Symbol_table* symtab)
22467754Smsmith{
22567754Smsmith  const char warn_prefix[] = ".gnu.warning.";
22691116Smsmith  const int warn_prefix_len = sizeof warn_prefix - 1;
22791116Smsmith  if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
22867754Smsmith    {
22999679Siwasaki      // Read the section contents to get the warning text.  It would
23067754Smsmith      // be nicer if we only did this if we have to actually issue a
23167754Smsmith      // warning.  Unfortunately, warnings are issued as we relocate
23267754Smsmith      // sections.  That means that we can not lock the object then,
23399679Siwasaki      // as we might try to issue the same warning multiple times
23467754Smsmith      // simultaneously.
23567754Smsmith      section_size_type len;
23667754Smsmith      const unsigned char* contents = this->section_contents(shndx, &len,
23767754Smsmith							     false);
23867754Smsmith      if (len == 0)
23967754Smsmith	{
24067754Smsmith	  const char* warning = name + warn_prefix_len;
24167754Smsmith	  contents = reinterpret_cast<const unsigned char*>(warning);
24267754Smsmith	  len = strlen(warning);
24367754Smsmith	}
24467754Smsmith      std::string warning(reinterpret_cast<const char*>(contents), len);
24567754Smsmith      symtab->add_warning(name + warn_prefix_len, this, warning);
24677424Smsmith      return true;
24767754Smsmith    }
24867754Smsmith  return false;
24967754Smsmith}
25067754Smsmith
25167754Smsmith// If NAME is the name of the special section which indicates that
25267754Smsmith// this object was compiled with -fsplit-stack, mark it accordingly.
25367754Smsmith
25467754Smsmithbool
25567754SmsmithObject::handle_split_stack_section(const char* name)
25667754Smsmith{
25767754Smsmith  if (strcmp(name, ".note.GNU-split-stack") == 0)
25867754Smsmith    {
25967754Smsmith      this->uses_split_stack_ = true;
26067754Smsmith      return true;
26199679Siwasaki    }
26267754Smsmith  if (strcmp(name, ".note.GNU-no-split-stack") == 0)
26367754Smsmith    {
26467754Smsmith      this->has_no_split_stack_ = true;
26591116Smsmith      return true;
26667754Smsmith    }
26767754Smsmith  return false;
26891116Smsmith}
26967754Smsmith
27067754Smsmith// Class Relobj
27191116Smsmith
27267754Smsmithtemplate<int size>
273114237Snjlvoid
27467754SmsmithRelobj::initialize_input_to_output_map(unsigned int shndx,
27567754Smsmith	  typename elfcpp::Elf_types<size>::Elf_Addr starting_address,
27667754Smsmith	  Unordered_map<section_offset_type,
27767754Smsmith	  typename elfcpp::Elf_types<size>::Elf_Addr>* output_addresses) const {
27867754Smsmith  Object_merge_map *map = this->object_merge_map_;
279114237Snjl  map->initialize_input_to_output_map<size>(shndx, starting_address,
280114237Snjl					    output_addresses);
281114237Snjl}
282114237Snjl
283114237Snjlvoid
284114237SnjlRelobj::add_merge_mapping(Output_section_data *output_data,
28567754Smsmith                          unsigned int shndx, section_offset_type offset,
286114237Snjl                          section_size_type length,
28767754Smsmith                          section_offset_type output_offset) {
288114237Snjl  Object_merge_map* object_merge_map = this->get_or_create_merge_map();
289114237Snjl  object_merge_map->add_mapping(output_data, shndx, offset, length, output_offset);
290114237Snjl}
291114237Snjl
292114237Snjlbool
293114237SnjlRelobj::merge_output_offset(unsigned int shndx, section_offset_type offset,
294114237Snjl                            section_offset_type *poutput) const {
295114237Snjl  Object_merge_map* object_merge_map = this->object_merge_map_;
296114237Snjl  if (object_merge_map == NULL)
297114237Snjl    return false;
298114237Snjl  return object_merge_map->get_output_offset(shndx, offset, poutput);
299114237Snjl}
300114237Snjl
301114237Snjlconst Output_section_data*
302114237SnjlRelobj::find_merge_section(unsigned int shndx) const {
303114237Snjl  Object_merge_map* object_merge_map = this->object_merge_map_;
304114237Snjl  if (object_merge_map == NULL)
305114237Snjl    return NULL;
306114237Snjl  return object_merge_map->find_merge_section(shndx);
307114237Snjl}
308114237Snjl
309114237Snjl// To copy the symbols data read from the file to a local data structure.
310114237Snjl// This function is called from do_layout only while doing garbage
311114237Snjl// collection.
312114237Snjl
313114237Snjlvoid
314114237SnjlRelobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
315114237Snjl			  unsigned int section_header_size)
316114237Snjl{
317114237Snjl  gc_sd->section_headers_data =
318114237Snjl	 new unsigned char[(section_header_size)];
319114237Snjl  memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
320114237Snjl	 section_header_size);
321114237Snjl  gc_sd->section_names_data =
322114237Snjl	 new unsigned char[sd->section_names_size];
323114237Snjl  memcpy(gc_sd->section_names_data, sd->section_names->data(),
324114237Snjl	 sd->section_names_size);
325114237Snjl  gc_sd->section_names_size = sd->section_names_size;
32667754Smsmith  if (sd->symbols != NULL)
327114237Snjl    {
32867754Smsmith      gc_sd->symbols_data =
329114237Snjl	     new unsigned char[sd->symbols_size];
330114237Snjl      memcpy(gc_sd->symbols_data, sd->symbols->data(),
331114237Snjl	    sd->symbols_size);
33267754Smsmith    }
33367754Smsmith  else
33467754Smsmith    {
33567754Smsmith      gc_sd->symbols_data = NULL;
336114237Snjl    }
33791116Smsmith  gc_sd->symbols_size = sd->symbols_size;
33867754Smsmith  gc_sd->external_symbols_offset = sd->external_symbols_offset;
33999679Siwasaki  if (sd->symbol_names != NULL)
34067754Smsmith    {
341114237Snjl      gc_sd->symbol_names_data =
34267754Smsmith	     new unsigned char[sd->symbol_names_size];
34399679Siwasaki      memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
34467754Smsmith	    sd->symbol_names_size);
34567754Smsmith    }
34667754Smsmith  else
34767754Smsmith    {
34867754Smsmith      gc_sd->symbol_names_data = NULL;
34967754Smsmith    }
35067754Smsmith  gc_sd->symbol_names_size = sd->symbol_names_size;
35167754Smsmith}
35267754Smsmith
35367754Smsmith// This function determines if a particular section name must be included
35467754Smsmith// in the link.  This is used during garbage collection to determine the
35577424Smsmith// roots of the worklist.
35667754Smsmith
35767754Smsmithbool
35867754SmsmithRelobj::is_section_name_included(const char* name)
35967754Smsmith{
36067754Smsmith  if (is_prefix_of(".ctors", name)
36167754Smsmith      || is_prefix_of(".dtors", name)
36267754Smsmith      || is_prefix_of(".note", name)
36367754Smsmith      || is_prefix_of(".init", name)
36467754Smsmith      || is_prefix_of(".fini", name)
36567754Smsmith      || is_prefix_of(".gcc_except_table", name)
36667754Smsmith      || is_prefix_of(".jcr", name)
36767754Smsmith      || is_prefix_of(".preinit_array", name)
36867754Smsmith      || (is_prefix_of(".text", name)
36967754Smsmith	  && strstr(name, "personality"))
370129684Snjl      || (is_prefix_of(".data", name)
37167754Smsmith	  && strstr(name, "personality"))
37267754Smsmith      || (is_prefix_of(".sdata", name)
37391116Smsmith	  && strstr(name, "personality"))
37467754Smsmith      || (is_prefix_of(".gnu.linkonce.d", name)
37567754Smsmith	  && strstr(name, "personality"))
37691116Smsmith      || (is_prefix_of(".rodata", name)
37767754Smsmith	  && strstr(name, "nptl_version")))
37867754Smsmith    {
37991116Smsmith      return true;
38067754Smsmith    }
38167754Smsmith  return false;
38267754Smsmith}
38377424Smsmith
38491116Smsmith// Finalize the incremental relocation information.  Allocates a block
38591116Smsmith// of relocation entries for each symbol, and sets the reloc_bases_
38691116Smsmith// array to point to the first entry in each block.  If CLEAR_COUNTS
38767754Smsmith// is TRUE, also clear the per-symbol relocation counters.
38891116Smsmith
38991116Smsmithvoid
39091116SmsmithRelobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
39167754Smsmith{
39267754Smsmith  unsigned int nsyms = this->get_global_symbols()->size();
39367754Smsmith  this->reloc_bases_ = new unsigned int[nsyms];
39467754Smsmith
39567754Smsmith  gold_assert(this->reloc_bases_ != NULL);
39677424Smsmith  gold_assert(layout->incremental_inputs() != NULL);
39767754Smsmith
39884491Smsmith  unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
39984491Smsmith  for (unsigned int i = 0; i < nsyms; ++i)
40084491Smsmith    {
40191116Smsmith      this->reloc_bases_[i] = rindex;
40291116Smsmith      rindex += this->reloc_counts_[i];
40384491Smsmith      if (clear_counts)
40467754Smsmith	this->reloc_counts_[i] = 0;
40567754Smsmith    }
40691116Smsmith  layout->incremental_inputs()->set_reloc_count(rindex);
40767754Smsmith}
40899679Siwasaki
40991116SmsmithObject_merge_map*
41099679SiwasakiRelobj::get_or_create_merge_map()
41191116Smsmith{
41267754Smsmith  if (!this->object_merge_map_)
413129684Snjl    this->object_merge_map_ = new Object_merge_map();
414129684Snjl  return this->object_merge_map_;
415129684Snjl}
416129684Snjl
41767754Smsmith// Class Sized_relobj.
41877424Smsmith
41967754Smsmith// Iterate over local symbols, calling a visitor class V for each GOT offset
420129684Snjl// associated with a local symbol.
42167754Smsmith
42267754Smsmithtemplate<int size, bool big_endian>
42377424Smsmithvoid
42467754SmsmithSized_relobj<size, big_endian>::do_for_all_local_got_entries(
42591116Smsmith    Got_offset_list::Visitor* v) const
42667754Smsmith{
42767754Smsmith  unsigned int nsyms = this->local_symbol_count();
42867754Smsmith  for (unsigned int i = 0; i < nsyms; i++)
429    {
430      Local_got_entry_key key(i, 0);
431      Local_got_offsets::const_iterator p = this->local_got_offsets_.find(key);
432      if (p != this->local_got_offsets_.end())
433	{
434	  const Got_offset_list* got_offsets = p->second;
435	  got_offsets->for_all_got_offsets(v);
436	}
437    }
438}
439
440// Get the address of an output section.
441
442template<int size, bool big_endian>
443uint64_t
444Sized_relobj<size, big_endian>::do_output_section_address(
445    unsigned int shndx)
446{
447  // If the input file is linked as --just-symbols, the output
448  // section address is the input section address.
449  if (this->just_symbols())
450    return this->section_address(shndx);
451
452  const Output_section* os = this->do_output_section(shndx);
453  gold_assert(os != NULL);
454  return os->address();
455}
456
457// Class Sized_relobj_file.
458
459template<int size, bool big_endian>
460Sized_relobj_file<size, big_endian>::Sized_relobj_file(
461    const std::string& name,
462    Input_file* input_file,
463    off_t offset,
464    const elfcpp::Ehdr<size, big_endian>& ehdr)
465  : Sized_relobj<size, big_endian>(name, input_file, offset),
466    elf_file_(this, ehdr),
467    symtab_shndx_(-1U),
468    local_symbol_count_(0),
469    output_local_symbol_count_(0),
470    output_local_dynsym_count_(0),
471    symbols_(),
472    defined_count_(0),
473    local_symbol_offset_(0),
474    local_dynsym_offset_(0),
475    local_values_(),
476    local_plt_offsets_(),
477    kept_comdat_sections_(),
478    has_eh_frame_(false),
479    is_deferred_layout_(false),
480    deferred_layout_(),
481    deferred_layout_relocs_(),
482    output_views_(NULL)
483{
484  this->e_type_ = ehdr.get_e_type();
485}
486
487template<int size, bool big_endian>
488Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
489{
490}
491
492// Set up an object file based on the file header.  This sets up the
493// section information.
494
495template<int size, bool big_endian>
496void
497Sized_relobj_file<size, big_endian>::do_setup()
498{
499  const unsigned int shnum = this->elf_file_.shnum();
500  this->set_shnum(shnum);
501}
502
503// Find the SHT_SYMTAB section, given the section headers.  The ELF
504// standard says that maybe in the future there can be more than one
505// SHT_SYMTAB section.  Until somebody figures out how that could
506// work, we assume there is only one.
507
508template<int size, bool big_endian>
509void
510Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
511{
512  const unsigned int shnum = this->shnum();
513  this->symtab_shndx_ = 0;
514  if (shnum > 0)
515    {
516      // Look through the sections in reverse order, since gas tends
517      // to put the symbol table at the end.
518      const unsigned char* p = pshdrs + shnum * This::shdr_size;
519      unsigned int i = shnum;
520      unsigned int xindex_shndx = 0;
521      unsigned int xindex_link = 0;
522      while (i > 0)
523	{
524	  --i;
525	  p -= This::shdr_size;
526	  typename This::Shdr shdr(p);
527	  if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
528	    {
529	      this->symtab_shndx_ = i;
530	      if (xindex_shndx > 0 && xindex_link == i)
531		{
532		  Xindex* xindex =
533		    new Xindex(this->elf_file_.large_shndx_offset());
534		  xindex->read_symtab_xindex<size, big_endian>(this,
535							       xindex_shndx,
536							       pshdrs);
537		  this->set_xindex(xindex);
538		}
539	      break;
540	    }
541
542	  // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
543	  // one.  This will work if it follows the SHT_SYMTAB
544	  // section.
545	  if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
546	    {
547	      xindex_shndx = i;
548	      xindex_link = this->adjust_shndx(shdr.get_sh_link());
549	    }
550	}
551    }
552}
553
554// Return the Xindex structure to use for object with lots of
555// sections.
556
557template<int size, bool big_endian>
558Xindex*
559Sized_relobj_file<size, big_endian>::do_initialize_xindex()
560{
561  gold_assert(this->symtab_shndx_ != -1U);
562  Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
563  xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
564  return xindex;
565}
566
567// Return whether SHDR has the right type and flags to be a GNU
568// .eh_frame section.
569
570template<int size, bool big_endian>
571bool
572Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
573    const elfcpp::Shdr<size, big_endian>* shdr) const
574{
575  elfcpp::Elf_Word sh_type = shdr->get_sh_type();
576  return ((sh_type == elfcpp::SHT_PROGBITS
577	   || sh_type == parameters->target().unwind_section_type())
578	  && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
579}
580
581// Find the section header with the given name.
582
583template<int size, bool big_endian>
584const unsigned char*
585Object::find_shdr(
586    const unsigned char* pshdrs,
587    const char* name,
588    const char* names,
589    section_size_type names_size,
590    const unsigned char* hdr) const
591{
592  const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
593  const unsigned int shnum = this->shnum();
594  const unsigned char* hdr_end = pshdrs + shdr_size * shnum;
595  size_t sh_name = 0;
596
597  while (1)
598    {
599      if (hdr)
600	{
601	  // We found HDR last time we were called, continue looking.
602	  typename elfcpp::Shdr<size, big_endian> shdr(hdr);
603	  sh_name = shdr.get_sh_name();
604	}
605      else
606	{
607	  // Look for the next occurrence of NAME in NAMES.
608	  // The fact that .shstrtab produced by current GNU tools is
609	  // string merged means we shouldn't have both .not.foo and
610	  // .foo in .shstrtab, and multiple .foo sections should all
611	  // have the same sh_name.  However, this is not guaranteed
612	  // by the ELF spec and not all ELF object file producers may
613	  // be so clever.
614	  size_t len = strlen(name) + 1;
615	  const char *p = sh_name ? names + sh_name + len : names;
616	  p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names),
617						   name, len));
618	  if (p == NULL)
619	    return NULL;
620	  sh_name = p - names;
621	  hdr = pshdrs;
622	  if (sh_name == 0)
623	    return hdr;
624	}
625
626      hdr += shdr_size;
627      while (hdr < hdr_end)
628	{
629	  typename elfcpp::Shdr<size, big_endian> shdr(hdr);
630	  if (shdr.get_sh_name() == sh_name)
631	    return hdr;
632	  hdr += shdr_size;
633	}
634      hdr = NULL;
635      if (sh_name == 0)
636	return hdr;
637    }
638}
639
640// Return whether there is a GNU .eh_frame section, given the section
641// headers and the section names.
642
643template<int size, bool big_endian>
644bool
645Sized_relobj_file<size, big_endian>::find_eh_frame(
646    const unsigned char* pshdrs,
647    const char* names,
648    section_size_type names_size) const
649{
650  const unsigned char* s = NULL;
651
652  while (1)
653    {
654      s = this->template find_shdr<size, big_endian>(pshdrs, ".eh_frame",
655						     names, names_size, s);
656      if (s == NULL)
657	return false;
658
659      typename This::Shdr shdr(s);
660      if (this->check_eh_frame_flags(&shdr))
661	return true;
662    }
663}
664
665// Return TRUE if this is a section whose contents will be needed in the
666// Add_symbols task.  This function is only called for sections that have
667// already passed the test in is_compressed_debug_section() and the debug
668// section name prefix, ".debug"/".zdebug", has been skipped.
669
670static bool
671need_decompressed_section(const char* name)
672{
673  if (*name++ != '_')
674    return false;
675
676#ifdef ENABLE_THREADS
677  // Decompressing these sections now will help only if we're
678  // multithreaded.
679  if (parameters->options().threads())
680    {
681      // We will need .zdebug_str if this is not an incremental link
682      // (i.e., we are processing string merge sections) or if we need
683      // to build a gdb index.
684      if ((!parameters->incremental() || parameters->options().gdb_index())
685	  && strcmp(name, "str") == 0)
686	return true;
687
688      // We will need these other sections when building a gdb index.
689      if (parameters->options().gdb_index()
690	  && (strcmp(name, "info") == 0
691	      || strcmp(name, "types") == 0
692	      || strcmp(name, "pubnames") == 0
693	      || strcmp(name, "pubtypes") == 0
694	      || strcmp(name, "ranges") == 0
695	      || strcmp(name, "abbrev") == 0))
696	return true;
697    }
698#endif
699
700  // Even when single-threaded, we will need .zdebug_str if this is
701  // not an incremental link and we are building a gdb index.
702  // Otherwise, we would decompress the section twice: once for
703  // string merge processing, and once for building the gdb index.
704  if (!parameters->incremental()
705      && parameters->options().gdb_index()
706      && strcmp(name, "str") == 0)
707    return true;
708
709  return false;
710}
711
712// Build a table for any compressed debug sections, mapping each section index
713// to the uncompressed size and (if needed) the decompressed contents.
714
715template<int size, bool big_endian>
716Compressed_section_map*
717build_compressed_section_map(
718    const unsigned char* pshdrs,
719    unsigned int shnum,
720    const char* names,
721    section_size_type names_size,
722    Object* obj,
723    bool decompress_if_needed)
724{
725  Compressed_section_map* uncompressed_map = new Compressed_section_map();
726  const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
727  const unsigned char* p = pshdrs + shdr_size;
728
729  for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
730    {
731      typename elfcpp::Shdr<size, big_endian> shdr(p);
732      if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
733	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
734	{
735	  if (shdr.get_sh_name() >= names_size)
736	    {
737	      obj->error(_("bad section name offset for section %u: %lu"),
738			 i, static_cast<unsigned long>(shdr.get_sh_name()));
739	      continue;
740	    }
741
742	  const char* name = names + shdr.get_sh_name();
743	  bool is_compressed = ((shdr.get_sh_flags()
744				 & elfcpp::SHF_COMPRESSED) != 0);
745	  bool is_zcompressed = (!is_compressed
746				 && is_compressed_debug_section(name));
747
748	  if (is_zcompressed || is_compressed)
749	    {
750	      section_size_type len;
751	      const unsigned char* contents =
752		  obj->section_contents(i, &len, false);
753	      uint64_t uncompressed_size;
754	      Compressed_section_info info;
755	      if (is_zcompressed)
756		{
757		  // Skip over the ".zdebug" prefix.
758		  name += 7;
759		  uncompressed_size = get_uncompressed_size(contents, len);
760		  info.addralign = shdr.get_sh_addralign();
761		}
762	      else
763		{
764		  // Skip over the ".debug" prefix.
765		  name += 6;
766		  elfcpp::Chdr<size, big_endian> chdr(contents);
767		  uncompressed_size = chdr.get_ch_size();
768		  info.addralign = chdr.get_ch_addralign();
769		}
770	      info.size = convert_to_section_size_type(uncompressed_size);
771	      info.flag = shdr.get_sh_flags();
772	      info.contents = NULL;
773	      if (uncompressed_size != -1ULL)
774		{
775		  unsigned char* uncompressed_data = NULL;
776		  if (decompress_if_needed && need_decompressed_section(name))
777		    {
778		      uncompressed_data = new unsigned char[uncompressed_size];
779		      if (decompress_input_section(contents, len,
780						   uncompressed_data,
781						   uncompressed_size,
782						   size, big_endian,
783						   shdr.get_sh_flags()))
784			info.contents = uncompressed_data;
785		      else
786			delete[] uncompressed_data;
787		    }
788		  (*uncompressed_map)[i] = info;
789		}
790	    }
791	}
792    }
793  return uncompressed_map;
794}
795
796// Stash away info for a number of special sections.
797// Return true if any of the sections found require local symbols to be read.
798
799template<int size, bool big_endian>
800bool
801Sized_relobj_file<size, big_endian>::do_find_special_sections(
802    Read_symbols_data* sd)
803{
804  const unsigned char* const pshdrs = sd->section_headers->data();
805  const unsigned char* namesu = sd->section_names->data();
806  const char* names = reinterpret_cast<const char*>(namesu);
807
808  if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
809    this->has_eh_frame_ = true;
810
811  Compressed_section_map* compressed_sections =
812    build_compressed_section_map<size, big_endian>(
813      pshdrs, this->shnum(), names, sd->section_names_size, this, true);
814  if (compressed_sections != NULL)
815    this->set_compressed_sections(compressed_sections);
816
817  return (this->has_eh_frame_
818	  || (!parameters->options().relocatable()
819	      && parameters->options().gdb_index()
820	      && (memmem(names, sd->section_names_size, "debug_info", 11) != NULL
821		  || memmem(names, sd->section_names_size,
822			    "debug_types", 12) != NULL)));
823}
824
825// Read the sections and symbols from an object file.
826
827template<int size, bool big_endian>
828void
829Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
830{
831  this->base_read_symbols(sd);
832}
833
834// Read the sections and symbols from an object file.  This is common
835// code for all target-specific overrides of do_read_symbols().
836
837template<int size, bool big_endian>
838void
839Sized_relobj_file<size, big_endian>::base_read_symbols(Read_symbols_data* sd)
840{
841  this->read_section_data(&this->elf_file_, sd);
842
843  const unsigned char* const pshdrs = sd->section_headers->data();
844
845  this->find_symtab(pshdrs);
846
847  bool need_local_symbols = this->do_find_special_sections(sd);
848
849  sd->symbols = NULL;
850  sd->symbols_size = 0;
851  sd->external_symbols_offset = 0;
852  sd->symbol_names = NULL;
853  sd->symbol_names_size = 0;
854
855  if (this->symtab_shndx_ == 0)
856    {
857      // No symbol table.  Weird but legal.
858      return;
859    }
860
861  // Get the symbol table section header.
862  typename This::Shdr symtabshdr(pshdrs
863				 + this->symtab_shndx_ * This::shdr_size);
864  gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
865
866  // If this object has a .eh_frame section, or if building a .gdb_index
867  // section and there is debug info, we need all the symbols.
868  // Otherwise we only need the external symbols.  While it would be
869  // simpler to just always read all the symbols, I've seen object
870  // files with well over 2000 local symbols, which for a 64-bit
871  // object file format is over 5 pages that we don't need to read
872  // now.
873
874  const int sym_size = This::sym_size;
875  const unsigned int loccount = symtabshdr.get_sh_info();
876  this->local_symbol_count_ = loccount;
877  this->local_values_.resize(loccount);
878  section_offset_type locsize = loccount * sym_size;
879  off_t dataoff = symtabshdr.get_sh_offset();
880  section_size_type datasize =
881    convert_to_section_size_type(symtabshdr.get_sh_size());
882  off_t extoff = dataoff + locsize;
883  section_size_type extsize = datasize - locsize;
884
885  off_t readoff = need_local_symbols ? dataoff : extoff;
886  section_size_type readsize = need_local_symbols ? datasize : extsize;
887
888  if (readsize == 0)
889    {
890      // No external symbols.  Also weird but also legal.
891      return;
892    }
893
894  File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
895
896  // Read the section header for the symbol names.
897  unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
898  if (strtab_shndx >= this->shnum())
899    {
900      this->error(_("invalid symbol table name index: %u"), strtab_shndx);
901      return;
902    }
903  typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
904  if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
905    {
906      this->error(_("symbol table name section has wrong type: %u"),
907		  static_cast<unsigned int>(strtabshdr.get_sh_type()));
908      return;
909    }
910
911  // Read the symbol names.
912  File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
913					       strtabshdr.get_sh_size(),
914					       false, true);
915
916  sd->symbols = fvsymtab;
917  sd->symbols_size = readsize;
918  sd->external_symbols_offset = need_local_symbols ? locsize : 0;
919  sd->symbol_names = fvstrtab;
920  sd->symbol_names_size =
921    convert_to_section_size_type(strtabshdr.get_sh_size());
922}
923
924// Return the section index of symbol SYM.  Set *VALUE to its value in
925// the object file.  Set *IS_ORDINARY if this is an ordinary section
926// index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
927// Note that for a symbol which is not defined in this object file,
928// this will set *VALUE to 0 and return SHN_UNDEF; it will not return
929// the final value of the symbol in the link.
930
931template<int size, bool big_endian>
932unsigned int
933Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
934							      Address* value,
935							      bool* is_ordinary)
936{
937  section_size_type symbols_size;
938  const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
939							&symbols_size,
940							false);
941
942  const size_t count = symbols_size / This::sym_size;
943  gold_assert(sym < count);
944
945  elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
946  *value = elfsym.get_st_value();
947
948  return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
949}
950
951// Return whether to include a section group in the link.  LAYOUT is
952// used to keep track of which section groups we have already seen.
953// INDEX is the index of the section group and SHDR is the section
954// header.  If we do not want to include this group, we set bits in
955// OMIT for each section which should be discarded.
956
957template<int size, bool big_endian>
958bool
959Sized_relobj_file<size, big_endian>::include_section_group(
960    Symbol_table* symtab,
961    Layout* layout,
962    unsigned int index,
963    const char* name,
964    const unsigned char* shdrs,
965    const char* section_names,
966    section_size_type section_names_size,
967    std::vector<bool>* omit)
968{
969  // Read the section contents.
970  typename This::Shdr shdr(shdrs + index * This::shdr_size);
971  const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
972					     shdr.get_sh_size(), true, false);
973  const elfcpp::Elf_Word* pword =
974    reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
975
976  // The first word contains flags.  We only care about COMDAT section
977  // groups.  Other section groups are always included in the link
978  // just like ordinary sections.
979  elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
980
981  // Look up the group signature, which is the name of a symbol.  ELF
982  // uses a symbol name because some group signatures are long, and
983  // the name is generally already in the symbol table, so it makes
984  // sense to put the long string just once in .strtab rather than in
985  // both .strtab and .shstrtab.
986
987  // Get the appropriate symbol table header (this will normally be
988  // the single SHT_SYMTAB section, but in principle it need not be).
989  const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
990  typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
991
992  // Read the symbol table entry.
993  unsigned int symndx = shdr.get_sh_info();
994  if (symndx >= symshdr.get_sh_size() / This::sym_size)
995    {
996      this->error(_("section group %u info %u out of range"),
997		  index, symndx);
998      return false;
999    }
1000  off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
1001  const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
1002					     false);
1003  elfcpp::Sym<size, big_endian> sym(psym);
1004
1005  // Read the symbol table names.
1006  section_size_type symnamelen;
1007  const unsigned char* psymnamesu;
1008  psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
1009				      &symnamelen, true);
1010  const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
1011
1012  // Get the section group signature.
1013  if (sym.get_st_name() >= symnamelen)
1014    {
1015      this->error(_("symbol %u name offset %u out of range"),
1016		  symndx, sym.get_st_name());
1017      return false;
1018    }
1019
1020  std::string signature(psymnames + sym.get_st_name());
1021
1022  // It seems that some versions of gas will create a section group
1023  // associated with a section symbol, and then fail to give a name to
1024  // the section symbol.  In such a case, use the name of the section.
1025  if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
1026    {
1027      bool is_ordinary;
1028      unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
1029						      sym.get_st_shndx(),
1030						      &is_ordinary);
1031      if (!is_ordinary || sym_shndx >= this->shnum())
1032	{
1033	  this->error(_("symbol %u invalid section index %u"),
1034		      symndx, sym_shndx);
1035	  return false;
1036	}
1037      typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
1038      if (member_shdr.get_sh_name() < section_names_size)
1039	signature = section_names + member_shdr.get_sh_name();
1040    }
1041
1042  // Record this section group in the layout, and see whether we've already
1043  // seen one with the same signature.
1044  bool include_group;
1045  bool is_comdat;
1046  Kept_section* kept_section = NULL;
1047
1048  if ((flags & elfcpp::GRP_COMDAT) == 0)
1049    {
1050      include_group = true;
1051      is_comdat = false;
1052    }
1053  else
1054    {
1055      include_group = layout->find_or_add_kept_section(signature,
1056						       this, index, true,
1057						       true, &kept_section);
1058      is_comdat = true;
1059    }
1060
1061  if (is_comdat && include_group)
1062    {
1063      Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1064      if (incremental_inputs != NULL)
1065	incremental_inputs->report_comdat_group(this, signature.c_str());
1066    }
1067
1068  size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
1069
1070  std::vector<unsigned int> shndxes;
1071  bool relocate_group = include_group && parameters->options().relocatable();
1072  if (relocate_group)
1073    shndxes.reserve(count - 1);
1074
1075  for (size_t i = 1; i < count; ++i)
1076    {
1077      elfcpp::Elf_Word shndx =
1078	this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
1079
1080      if (relocate_group)
1081	shndxes.push_back(shndx);
1082
1083      if (shndx >= this->shnum())
1084	{
1085	  this->error(_("section %u in section group %u out of range"),
1086		      shndx, index);
1087	  continue;
1088	}
1089
1090      // Check for an earlier section number, since we're going to get
1091      // it wrong--we may have already decided to include the section.
1092      if (shndx < index)
1093	this->error(_("invalid section group %u refers to earlier section %u"),
1094		    index, shndx);
1095
1096      // Get the name of the member section.
1097      typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
1098      if (member_shdr.get_sh_name() >= section_names_size)
1099	{
1100	  // This is an error, but it will be diagnosed eventually
1101	  // in do_layout, so we don't need to do anything here but
1102	  // ignore it.
1103	  continue;
1104	}
1105      std::string mname(section_names + member_shdr.get_sh_name());
1106
1107      if (include_group)
1108	{
1109	  if (is_comdat)
1110	    kept_section->add_comdat_section(mname, shndx,
1111					     member_shdr.get_sh_size());
1112	}
1113      else
1114	{
1115	  (*omit)[shndx] = true;
1116
1117	  // Store a mapping from this section to the Kept_section
1118	  // information for the group.  This mapping is used for
1119	  // relocation processing and diagnostics.
1120	  // If the kept section is a linkonce section, we don't
1121	  // bother with it unless the comdat group contains just
1122	  // a single section, making it easy to match up.
1123	  if (is_comdat
1124	      && (kept_section->is_comdat() || count == 2))
1125	    this->set_kept_comdat_section(shndx, true, symndx,
1126					  member_shdr.get_sh_size(),
1127					  kept_section);
1128	}
1129    }
1130
1131  if (relocate_group)
1132    layout->layout_group(symtab, this, index, name, signature.c_str(),
1133			 shdr, flags, &shndxes);
1134
1135  return include_group;
1136}
1137
1138// Whether to include a linkonce section in the link.  NAME is the
1139// name of the section and SHDR is the section header.
1140
1141// Linkonce sections are a GNU extension implemented in the original
1142// GNU linker before section groups were defined.  The semantics are
1143// that we only include one linkonce section with a given name.  The
1144// name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
1145// where T is the type of section and SYMNAME is the name of a symbol.
1146// In an attempt to make linkonce sections interact well with section
1147// groups, we try to identify SYMNAME and use it like a section group
1148// signature.  We want to block section groups with that signature,
1149// but not other linkonce sections with that signature.  We also use
1150// the full name of the linkonce section as a normal section group
1151// signature.
1152
1153template<int size, bool big_endian>
1154bool
1155Sized_relobj_file<size, big_endian>::include_linkonce_section(
1156    Layout* layout,
1157    unsigned int index,
1158    const char* name,
1159    const elfcpp::Shdr<size, big_endian>& shdr)
1160{
1161  typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1162  // In general the symbol name we want will be the string following
1163  // the last '.'.  However, we have to handle the case of
1164  // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1165  // some versions of gcc.  So we use a heuristic: if the name starts
1166  // with ".gnu.linkonce.t.", we use everything after that.  Otherwise
1167  // we look for the last '.'.  We can't always simply skip
1168  // ".gnu.linkonce.X", because we have to deal with cases like
1169  // ".gnu.linkonce.d.rel.ro.local".
1170  const char* const linkonce_t = ".gnu.linkonce.t.";
1171  const char* symname;
1172  if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
1173    symname = name + strlen(linkonce_t);
1174  else
1175    symname = strrchr(name, '.') + 1;
1176  std::string sig1(symname);
1177  std::string sig2(name);
1178  Kept_section* kept1;
1179  Kept_section* kept2;
1180  bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
1181						   false, &kept1);
1182  bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
1183						   true, &kept2);
1184
1185  if (!include2)
1186    {
1187      // We are not including this section because we already saw the
1188      // name of the section as a signature.  This normally implies
1189      // that the kept section is another linkonce section.  If it is
1190      // the same size, record it as the section which corresponds to
1191      // this one.
1192      if (kept2->object() != NULL && !kept2->is_comdat())
1193	this->set_kept_comdat_section(index, false, 0, sh_size, kept2);
1194    }
1195  else if (!include1)
1196    {
1197      // The section is being discarded on the basis of its symbol
1198      // name.  This means that the corresponding kept section was
1199      // part of a comdat group, and it will be difficult to identify
1200      // the specific section within that group that corresponds to
1201      // this linkonce section.  We'll handle the simple case where
1202      // the group has only one member section.  Otherwise, it's not
1203      // worth the effort.
1204      if (kept1->object() != NULL && kept1->is_comdat())
1205	this->set_kept_comdat_section(index, false, 0, sh_size, kept1);
1206    }
1207  else
1208    {
1209      kept1->set_linkonce_size(sh_size);
1210      kept2->set_linkonce_size(sh_size);
1211    }
1212
1213  return include1 && include2;
1214}
1215
1216// Layout an input section.
1217
1218template<int size, bool big_endian>
1219inline void
1220Sized_relobj_file<size, big_endian>::layout_section(
1221    Layout* layout,
1222    unsigned int shndx,
1223    const char* name,
1224    const typename This::Shdr& shdr,
1225    unsigned int sh_type,
1226    unsigned int reloc_shndx,
1227    unsigned int reloc_type)
1228{
1229  off_t offset;
1230  Output_section* os = layout->layout(this, shndx, name, shdr, sh_type,
1231				      reloc_shndx, reloc_type, &offset);
1232
1233  this->output_sections()[shndx] = os;
1234  if (offset == -1)
1235    this->section_offsets()[shndx] = invalid_address;
1236  else
1237    this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1238
1239  // If this section requires special handling, and if there are
1240  // relocs that apply to it, then we must do the special handling
1241  // before we apply the relocs.
1242  if (offset == -1 && reloc_shndx != 0)
1243    this->set_relocs_must_follow_section_writes();
1244}
1245
1246// Layout an input .eh_frame section.
1247
1248template<int size, bool big_endian>
1249void
1250Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1251    Layout* layout,
1252    const unsigned char* symbols_data,
1253    section_size_type symbols_size,
1254    const unsigned char* symbol_names_data,
1255    section_size_type symbol_names_size,
1256    unsigned int shndx,
1257    const typename This::Shdr& shdr,
1258    unsigned int reloc_shndx,
1259    unsigned int reloc_type)
1260{
1261  gold_assert(this->has_eh_frame_);
1262
1263  off_t offset;
1264  Output_section* os = layout->layout_eh_frame(this,
1265					       symbols_data,
1266					       symbols_size,
1267					       symbol_names_data,
1268					       symbol_names_size,
1269					       shndx,
1270					       shdr,
1271					       reloc_shndx,
1272					       reloc_type,
1273					       &offset);
1274  this->output_sections()[shndx] = os;
1275  if (os == NULL || offset == -1)
1276    this->section_offsets()[shndx] = invalid_address;
1277  else
1278    this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1279
1280  // If this section requires special handling, and if there are
1281  // relocs that aply to it, then we must do the special handling
1282  // before we apply the relocs.
1283  if (os != NULL && offset == -1 && reloc_shndx != 0)
1284    this->set_relocs_must_follow_section_writes();
1285}
1286
1287// Layout an input .note.gnu.property section.
1288
1289// This note section has an *extremely* non-standard layout.
1290// The gABI spec says that ELF-64 files should have 8-byte fields and
1291// 8-byte alignment in the note section, but the Gnu tools generally
1292// use 4-byte fields and 4-byte alignment (see the comment for
1293// Layout::create_note).  This section uses 4-byte fields (i.e.,
1294// namesz, descsz, and type are always 4 bytes), the name field is
1295// padded to a multiple of 4 bytes, but the desc field is padded
1296// to a multiple of 4 or 8 bytes, depending on the ELF class.
1297// The individual properties within the desc field always use
1298// 4-byte pr_type and pr_datasz fields, but pr_data is padded to
1299// a multiple of 4 or 8 bytes, depending on the ELF class.
1300
1301template<int size, bool big_endian>
1302void
1303Sized_relobj_file<size, big_endian>::layout_gnu_property_section(
1304    Layout* layout,
1305    unsigned int shndx)
1306{
1307  section_size_type contents_len;
1308  const unsigned char* pcontents = this->section_contents(shndx,
1309							  &contents_len,
1310							  false);
1311  const unsigned char* pcontents_end = pcontents + contents_len;
1312
1313  // Loop over all the notes in this section.
1314  while (pcontents < pcontents_end)
1315    {
1316      if (pcontents + 16 > pcontents_end)
1317	{
1318	  gold_warning(_("%s: corrupt .note.gnu.property section "
1319			 "(note too short)"),
1320		       this->name().c_str());
1321	  return;
1322	}
1323
1324      size_t namesz = elfcpp::Swap<32, big_endian>::readval(pcontents);
1325      size_t descsz = elfcpp::Swap<32, big_endian>::readval(pcontents + 4);
1326      unsigned int ntype = elfcpp::Swap<32, big_endian>::readval(pcontents + 8);
1327      const unsigned char* pname = pcontents + 12;
1328
1329      if (namesz != 4 || strcmp(reinterpret_cast<const char*>(pname), "GNU") != 0)
1330	{
1331	  gold_warning(_("%s: corrupt .note.gnu.property section "
1332			 "(name is not 'GNU')"),
1333		       this->name().c_str());
1334	  return;
1335	}
1336
1337      if (ntype != elfcpp::NT_GNU_PROPERTY_TYPE_0)
1338	{
1339	  gold_warning(_("%s: unsupported note type %d "
1340			 "in .note.gnu.property section"),
1341		       this->name().c_str(), ntype);
1342	  return;
1343	}
1344
1345      size_t aligned_namesz = align_address(namesz, 4);
1346      const unsigned char* pdesc = pname + aligned_namesz;
1347
1348      if (pdesc + descsz > pcontents + contents_len)
1349	{
1350	  gold_warning(_("%s: corrupt .note.gnu.property section"),
1351		       this->name().c_str());
1352	  return;
1353	}
1354
1355      const unsigned char* pprop = pdesc;
1356
1357      // Loop over the program properties in this note.
1358      while (pprop < pdesc + descsz)
1359	{
1360	  if (pprop + 8 > pdesc + descsz)
1361	    {
1362	      gold_warning(_("%s: corrupt .note.gnu.property section"),
1363			   this->name().c_str());
1364	      return;
1365	    }
1366	  unsigned int pr_type = elfcpp::Swap<32, big_endian>::readval(pprop);
1367	  size_t pr_datasz = elfcpp::Swap<32, big_endian>::readval(pprop + 4);
1368	  pprop += 8;
1369	  if (pprop + pr_datasz > pdesc + descsz)
1370	    {
1371	      gold_warning(_("%s: corrupt .note.gnu.property section"),
1372			   this->name().c_str());
1373	      return;
1374	    }
1375	  layout->layout_gnu_property(ntype, pr_type, pr_datasz, pprop, this);
1376	  pprop += align_address(pr_datasz, size / 8);
1377	}
1378
1379      pcontents = pdesc + align_address(descsz, size / 8);
1380    }
1381}
1382
1383// This a copy of lto_section defined in GCC (lto-streamer.h)
1384
1385struct lto_section
1386{
1387  int16_t major_version;
1388  int16_t minor_version;
1389  unsigned char slim_object;
1390
1391  /* Flags is a private field that is not defined publicly.  */
1392  uint16_t flags;
1393};
1394
1395// Lay out the input sections.  We walk through the sections and check
1396// whether they should be included in the link.  If they should, we
1397// pass them to the Layout object, which will return an output section
1398// and an offset.
1399// This function is called twice sometimes, two passes, when mapping
1400// of input sections to output sections must be delayed.
1401// This is true for the following :
1402// * Garbage collection (--gc-sections): Some input sections will be
1403// discarded and hence the assignment must wait until the second pass.
1404// In the first pass,  it is for setting up some sections as roots to
1405// a work-list for --gc-sections and to do comdat processing.
1406// * Identical Code Folding (--icf=<safe,all>): Some input sections
1407// will be folded and hence the assignment must wait.
1408// * Using plugins to map some sections to unique segments: Mapping
1409// some sections to unique segments requires mapping them to unique
1410// output sections too.  This can be done via plugins now and this
1411// information is not available in the first pass.
1412
1413template<int size, bool big_endian>
1414void
1415Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1416					       Layout* layout,
1417					       Read_symbols_data* sd)
1418{
1419  const unsigned int unwind_section_type =
1420      parameters->target().unwind_section_type();
1421  const unsigned int shnum = this->shnum();
1422
1423  /* Should this function be called twice?  */
1424  bool is_two_pass = (parameters->options().gc_sections()
1425		      || parameters->options().icf_enabled()
1426		      || layout->is_unique_segment_for_sections_specified());
1427
1428  /* Only one of is_pass_one and is_pass_two is true.  Both are false when
1429     a two-pass approach is not needed.  */
1430  bool is_pass_one = false;
1431  bool is_pass_two = false;
1432
1433  Symbols_data* gc_sd = NULL;
1434
1435  /* Check if do_layout needs to be two-pass.  If so, find out which pass
1436     should happen.  In the first pass, the data in sd is saved to be used
1437     later in the second pass.  */
1438  if (is_two_pass)
1439    {
1440      gc_sd = this->get_symbols_data();
1441      if (gc_sd == NULL)
1442	{
1443	  gold_assert(sd != NULL);
1444	  is_pass_one = true;
1445	}
1446      else
1447	{
1448	  if (parameters->options().gc_sections())
1449	    gold_assert(symtab->gc()->is_worklist_ready());
1450	  if (parameters->options().icf_enabled())
1451	    gold_assert(symtab->icf()->is_icf_ready());
1452	  is_pass_two = true;
1453	}
1454    }
1455
1456  if (shnum == 0)
1457    return;
1458
1459  if (is_pass_one)
1460    {
1461      // During garbage collection save the symbols data to use it when
1462      // re-entering this function.
1463      gc_sd = new Symbols_data;
1464      this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1465      this->set_symbols_data(gc_sd);
1466    }
1467
1468  const unsigned char* section_headers_data = NULL;
1469  section_size_type section_names_size;
1470  const unsigned char* symbols_data = NULL;
1471  section_size_type symbols_size;
1472  const unsigned char* symbol_names_data = NULL;
1473  section_size_type symbol_names_size;
1474
1475  if (is_two_pass)
1476    {
1477      section_headers_data = gc_sd->section_headers_data;
1478      section_names_size = gc_sd->section_names_size;
1479      symbols_data = gc_sd->symbols_data;
1480      symbols_size = gc_sd->symbols_size;
1481      symbol_names_data = gc_sd->symbol_names_data;
1482      symbol_names_size = gc_sd->symbol_names_size;
1483    }
1484  else
1485    {
1486      section_headers_data = sd->section_headers->data();
1487      section_names_size = sd->section_names_size;
1488      if (sd->symbols != NULL)
1489	symbols_data = sd->symbols->data();
1490      symbols_size = sd->symbols_size;
1491      if (sd->symbol_names != NULL)
1492	symbol_names_data = sd->symbol_names->data();
1493      symbol_names_size = sd->symbol_names_size;
1494    }
1495
1496  // Get the section headers.
1497  const unsigned char* shdrs = section_headers_data;
1498  const unsigned char* pshdrs;
1499
1500  // Get the section names.
1501  const unsigned char* pnamesu = (is_two_pass
1502				  ? gc_sd->section_names_data
1503				  : sd->section_names->data());
1504
1505  const char* pnames = reinterpret_cast<const char*>(pnamesu);
1506
1507  // If any input files have been claimed by plugins, we need to defer
1508  // actual layout until the replacement files have arrived.
1509  const bool should_defer_layout =
1510      (parameters->options().has_plugins()
1511       && parameters->options().plugins()->should_defer_layout());
1512  unsigned int num_sections_to_defer = 0;
1513
1514  // For each section, record the index of the reloc section if any.
1515  // Use 0 to mean that there is no reloc section, -1U to mean that
1516  // there is more than one.
1517  std::vector<unsigned int> reloc_shndx(shnum, 0);
1518  std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1519  // Skip the first, dummy, section.
1520  pshdrs = shdrs + This::shdr_size;
1521  for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1522    {
1523      typename This::Shdr shdr(pshdrs);
1524
1525      // Count the number of sections whose layout will be deferred.
1526      if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1527	++num_sections_to_defer;
1528
1529      unsigned int sh_type = shdr.get_sh_type();
1530      if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1531	{
1532	  unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1533	  if (target_shndx == 0 || target_shndx >= shnum)
1534	    {
1535	      this->error(_("relocation section %u has bad info %u"),
1536			  i, target_shndx);
1537	      continue;
1538	    }
1539
1540	  if (reloc_shndx[target_shndx] != 0)
1541	    reloc_shndx[target_shndx] = -1U;
1542	  else
1543	    {
1544	      reloc_shndx[target_shndx] = i;
1545	      reloc_type[target_shndx] = sh_type;
1546	    }
1547	}
1548    }
1549
1550  Output_sections& out_sections(this->output_sections());
1551  std::vector<Address>& out_section_offsets(this->section_offsets());
1552
1553  if (!is_pass_two)
1554    {
1555      out_sections.resize(shnum);
1556      out_section_offsets.resize(shnum);
1557    }
1558
1559  // If we are only linking for symbols, then there is nothing else to
1560  // do here.
1561  if (this->input_file()->just_symbols())
1562    {
1563      if (!is_pass_two)
1564	{
1565	  delete sd->section_headers;
1566	  sd->section_headers = NULL;
1567	  delete sd->section_names;
1568	  sd->section_names = NULL;
1569	}
1570      return;
1571    }
1572
1573  if (num_sections_to_defer > 0)
1574    {
1575      parameters->options().plugins()->add_deferred_layout_object(this);
1576      this->deferred_layout_.reserve(num_sections_to_defer);
1577      this->is_deferred_layout_ = true;
1578    }
1579
1580  // Whether we've seen a .note.GNU-stack section.
1581  bool seen_gnu_stack = false;
1582  // The flags of a .note.GNU-stack section.
1583  uint64_t gnu_stack_flags = 0;
1584
1585  // Keep track of which sections to omit.
1586  std::vector<bool> omit(shnum, false);
1587
1588  // Keep track of reloc sections when emitting relocations.
1589  const bool relocatable = parameters->options().relocatable();
1590  const bool emit_relocs = (relocatable
1591			    || parameters->options().emit_relocs());
1592  std::vector<unsigned int> reloc_sections;
1593
1594  // Keep track of .eh_frame sections.
1595  std::vector<unsigned int> eh_frame_sections;
1596
1597  // Keep track of .debug_info and .debug_types sections.
1598  std::vector<unsigned int> debug_info_sections;
1599  std::vector<unsigned int> debug_types_sections;
1600
1601  // Skip the first, dummy, section.
1602  pshdrs = shdrs + This::shdr_size;
1603  for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1604    {
1605      typename This::Shdr shdr(pshdrs);
1606      const unsigned int sh_name = shdr.get_sh_name();
1607      unsigned int sh_type = shdr.get_sh_type();
1608
1609      if (sh_name >= section_names_size)
1610	{
1611	  this->error(_("bad section name offset for section %u: %lu"),
1612		      i, static_cast<unsigned long>(sh_name));
1613	  return;
1614	}
1615
1616      const char* name = pnames + sh_name;
1617
1618      if (!is_pass_two)
1619	{
1620	  if (this->handle_gnu_warning_section(name, i, symtab))
1621	    {
1622	      if (!relocatable && !parameters->options().shared())
1623		omit[i] = true;
1624	    }
1625
1626	  // The .note.GNU-stack section is special.  It gives the
1627	  // protection flags that this object file requires for the stack
1628	  // in memory.
1629	  if (strcmp(name, ".note.GNU-stack") == 0)
1630	    {
1631	      seen_gnu_stack = true;
1632	      gnu_stack_flags |= shdr.get_sh_flags();
1633	      omit[i] = true;
1634	    }
1635
1636	  // The .note.GNU-split-stack section is also special.  It
1637	  // indicates that the object was compiled with
1638	  // -fsplit-stack.
1639	  if (this->handle_split_stack_section(name))
1640	    {
1641	      if (!relocatable && !parameters->options().shared())
1642		omit[i] = true;
1643	    }
1644
1645	  // Skip attributes section.
1646	  if (parameters->target().is_attributes_section(name))
1647	    {
1648	      omit[i] = true;
1649	    }
1650
1651	  // Handle .note.gnu.property sections.
1652	  if (sh_type == elfcpp::SHT_NOTE
1653	      && strcmp(name, ".note.gnu.property") == 0)
1654	    {
1655	      this->layout_gnu_property_section(layout, i);
1656	      omit[i] = true;
1657	    }
1658
1659	  bool discard = omit[i];
1660	  if (!discard)
1661	    {
1662	      if (sh_type == elfcpp::SHT_GROUP)
1663		{
1664		  if (!this->include_section_group(symtab, layout, i, name,
1665						   shdrs, pnames,
1666						   section_names_size,
1667						   &omit))
1668		    discard = true;
1669		}
1670	      else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1671		       && Layout::is_linkonce(name))
1672		{
1673		  if (!this->include_linkonce_section(layout, i, name, shdr))
1674		    discard = true;
1675		}
1676	    }
1677
1678	  // Add the section to the incremental inputs layout.
1679	  Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1680	  if (incremental_inputs != NULL
1681	      && !discard
1682	      && can_incremental_update(sh_type))
1683	    {
1684	      off_t sh_size = shdr.get_sh_size();
1685	      section_size_type uncompressed_size;
1686	      if (this->section_is_compressed(i, &uncompressed_size))
1687		sh_size = uncompressed_size;
1688	      incremental_inputs->report_input_section(this, i, name, sh_size);
1689	    }
1690
1691	  if (discard)
1692	    {
1693	      // Do not include this section in the link.
1694	      out_sections[i] = NULL;
1695	      out_section_offsets[i] = invalid_address;
1696	      continue;
1697	    }
1698	}
1699
1700      if (is_pass_one && parameters->options().gc_sections())
1701	{
1702	  if (this->is_section_name_included(name)
1703	      || layout->keep_input_section (this, name)
1704	      || sh_type == elfcpp::SHT_INIT_ARRAY
1705	      || sh_type == elfcpp::SHT_FINI_ARRAY)
1706	    {
1707	      symtab->gc()->worklist().push_back(Section_id(this, i));
1708	    }
1709	  // If the section name XXX can be represented as a C identifier
1710	  // it cannot be discarded if there are references to
1711	  // __start_XXX and __stop_XXX symbols.  These need to be
1712	  // specially handled.
1713	  if (is_cident(name))
1714	    {
1715	      symtab->gc()->add_cident_section(name, Section_id(this, i));
1716	    }
1717	}
1718
1719      // When doing a relocatable link we are going to copy input
1720      // reloc sections into the output.  We only want to copy the
1721      // ones associated with sections which are not being discarded.
1722      // However, we don't know that yet for all sections.  So save
1723      // reloc sections and process them later. Garbage collection is
1724      // not triggered when relocatable code is desired.
1725      if (emit_relocs
1726	  && (sh_type == elfcpp::SHT_REL
1727	      || sh_type == elfcpp::SHT_RELA))
1728	{
1729	  reloc_sections.push_back(i);
1730	  continue;
1731	}
1732
1733      if (relocatable && sh_type == elfcpp::SHT_GROUP)
1734	continue;
1735
1736      // The .eh_frame section is special.  It holds exception frame
1737      // information that we need to read in order to generate the
1738      // exception frame header.  We process these after all the other
1739      // sections so that the exception frame reader can reliably
1740      // determine which sections are being discarded, and discard the
1741      // corresponding information.
1742      if (this->check_eh_frame_flags(&shdr)
1743	  && strcmp(name, ".eh_frame") == 0)
1744	{
1745	  // If the target has a special unwind section type, let's
1746	  // canonicalize it here.
1747	  sh_type = unwind_section_type;
1748	  if (!relocatable)
1749	    {
1750	      if (is_pass_one)
1751		{
1752		  if (this->is_deferred_layout())
1753		    out_sections[i] = reinterpret_cast<Output_section*>(2);
1754		  else
1755		    out_sections[i] = reinterpret_cast<Output_section*>(1);
1756		  out_section_offsets[i] = invalid_address;
1757		}
1758	      else if (this->is_deferred_layout())
1759		{
1760		  out_sections[i] = reinterpret_cast<Output_section*>(2);
1761		  out_section_offsets[i] = invalid_address;
1762		  this->deferred_layout_.push_back(
1763		      Deferred_layout(i, name, sh_type, pshdrs,
1764				      reloc_shndx[i], reloc_type[i]));
1765		}
1766	      else
1767		eh_frame_sections.push_back(i);
1768	      continue;
1769	    }
1770	}
1771
1772      if (is_pass_two && parameters->options().gc_sections())
1773	{
1774	  // This is executed during the second pass of garbage
1775	  // collection. do_layout has been called before and some
1776	  // sections have been already discarded. Simply ignore
1777	  // such sections this time around.
1778	  if (out_sections[i] == NULL)
1779	    {
1780	      gold_assert(out_section_offsets[i] == invalid_address);
1781	      continue;
1782	    }
1783	  if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1784	      && symtab->gc()->is_section_garbage(this, i))
1785	      {
1786		if (parameters->options().print_gc_sections())
1787		  gold_info(_("%s: removing unused section from '%s'"
1788			      " in file '%s'"),
1789			    program_name, this->section_name(i).c_str(),
1790			    this->name().c_str());
1791		out_sections[i] = NULL;
1792		out_section_offsets[i] = invalid_address;
1793		continue;
1794	      }
1795	}
1796
1797      if (is_pass_two && parameters->options().icf_enabled())
1798	{
1799	  if (out_sections[i] == NULL)
1800	    {
1801	      gold_assert(out_section_offsets[i] == invalid_address);
1802	      continue;
1803	    }
1804	  if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1805	      && symtab->icf()->is_section_folded(this, i))
1806	      {
1807		if (parameters->options().print_icf_sections())
1808		  {
1809		    Section_id folded =
1810				symtab->icf()->get_folded_section(this, i);
1811		    Relobj* folded_obj =
1812				reinterpret_cast<Relobj*>(folded.first);
1813		    gold_info(_("%s: ICF folding section '%s' in file '%s' "
1814				"into '%s' in file '%s'"),
1815			      program_name, this->section_name(i).c_str(),
1816			      this->name().c_str(),
1817			      folded_obj->section_name(folded.second).c_str(),
1818			      folded_obj->name().c_str());
1819		  }
1820		out_sections[i] = NULL;
1821		out_section_offsets[i] = invalid_address;
1822		continue;
1823	      }
1824	}
1825
1826      // Defer layout here if input files are claimed by plugins.  When gc
1827      // is turned on this function is called twice; we only want to do this
1828      // on the first pass.
1829      if (!is_pass_two
1830          && this->is_deferred_layout()
1831          && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1832	{
1833	  this->deferred_layout_.push_back(Deferred_layout(i, name, sh_type,
1834							   pshdrs,
1835							   reloc_shndx[i],
1836							   reloc_type[i]));
1837	  // Put dummy values here; real values will be supplied by
1838	  // do_layout_deferred_sections.
1839	  out_sections[i] = reinterpret_cast<Output_section*>(2);
1840	  out_section_offsets[i] = invalid_address;
1841	  continue;
1842	}
1843
1844      // During gc_pass_two if a section that was previously deferred is
1845      // found, do not layout the section as layout_deferred_sections will
1846      // do it later from gold.cc.
1847      if (is_pass_two
1848	  && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1849	continue;
1850
1851      if (is_pass_one)
1852	{
1853	  // This is during garbage collection. The out_sections are
1854	  // assigned in the second call to this function.
1855	  out_sections[i] = reinterpret_cast<Output_section*>(1);
1856	  out_section_offsets[i] = invalid_address;
1857	}
1858      else
1859	{
1860	  // When garbage collection is switched on the actual layout
1861	  // only happens in the second call.
1862	  this->layout_section(layout, i, name, shdr, sh_type, reloc_shndx[i],
1863			       reloc_type[i]);
1864
1865	  // When generating a .gdb_index section, we do additional
1866	  // processing of .debug_info and .debug_types sections after all
1867	  // the other sections for the same reason as above.
1868	  if (!relocatable
1869	      && parameters->options().gdb_index()
1870	      && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1871	    {
1872	      if (strcmp(name, ".debug_info") == 0
1873		  || strcmp(name, ".zdebug_info") == 0)
1874		debug_info_sections.push_back(i);
1875	      else if (strcmp(name, ".debug_types") == 0
1876		       || strcmp(name, ".zdebug_types") == 0)
1877		debug_types_sections.push_back(i);
1878	    }
1879	}
1880
1881      /* GCC uses .gnu.lto_.lto.<some_hash> as a LTO bytecode information
1882	 section.  */
1883      const char *lto_section_name = ".gnu.lto_.lto.";
1884      if (strncmp (name, lto_section_name, strlen (lto_section_name)) == 0)
1885	{
1886	  section_size_type contents_len;
1887	  const unsigned char* pcontents
1888	    = this->section_contents(i, &contents_len, false);
1889	  if (contents_len >= sizeof(lto_section))
1890	    {
1891	      const lto_section* lsection
1892		= reinterpret_cast<const lto_section*>(pcontents);
1893	      if (lsection->slim_object)
1894		layout->set_lto_slim_object();
1895	    }
1896	}
1897    }
1898
1899  if (!is_pass_two)
1900    {
1901      layout->merge_gnu_properties(this);
1902      layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1903    }
1904
1905  // Handle the .eh_frame sections after the other sections.
1906  gold_assert(!is_pass_one || eh_frame_sections.empty());
1907  for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1908       p != eh_frame_sections.end();
1909       ++p)
1910    {
1911      unsigned int i = *p;
1912      const unsigned char* pshdr;
1913      pshdr = section_headers_data + i * This::shdr_size;
1914      typename This::Shdr shdr(pshdr);
1915
1916      this->layout_eh_frame_section(layout,
1917				    symbols_data,
1918				    symbols_size,
1919				    symbol_names_data,
1920				    symbol_names_size,
1921				    i,
1922				    shdr,
1923				    reloc_shndx[i],
1924				    reloc_type[i]);
1925    }
1926
1927  // When doing a relocatable link handle the reloc sections at the
1928  // end.  Garbage collection  and Identical Code Folding is not
1929  // turned on for relocatable code.
1930  if (emit_relocs)
1931    this->size_relocatable_relocs();
1932
1933  gold_assert(!is_two_pass || reloc_sections.empty());
1934
1935  for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1936       p != reloc_sections.end();
1937       ++p)
1938    {
1939      unsigned int i = *p;
1940      const unsigned char* pshdr;
1941      pshdr = section_headers_data + i * This::shdr_size;
1942      typename This::Shdr shdr(pshdr);
1943
1944      unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1945      if (data_shndx >= shnum)
1946	{
1947	  // We already warned about this above.
1948	  continue;
1949	}
1950
1951      Output_section* data_section = out_sections[data_shndx];
1952      if (data_section == reinterpret_cast<Output_section*>(2))
1953	{
1954	  if (is_pass_two)
1955	    continue;
1956	  // The layout for the data section was deferred, so we need
1957	  // to defer the relocation section, too.
1958	  const char* name = pnames + shdr.get_sh_name();
1959	  this->deferred_layout_relocs_.push_back(
1960	      Deferred_layout(i, name, shdr.get_sh_type(), pshdr, 0,
1961			      elfcpp::SHT_NULL));
1962	  out_sections[i] = reinterpret_cast<Output_section*>(2);
1963	  out_section_offsets[i] = invalid_address;
1964	  continue;
1965	}
1966      if (data_section == NULL)
1967	{
1968	  out_sections[i] = NULL;
1969	  out_section_offsets[i] = invalid_address;
1970	  continue;
1971	}
1972
1973      Relocatable_relocs* rr = new Relocatable_relocs();
1974      this->set_relocatable_relocs(i, rr);
1975
1976      Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1977						rr);
1978      out_sections[i] = os;
1979      out_section_offsets[i] = invalid_address;
1980    }
1981
1982  // When building a .gdb_index section, scan the .debug_info and
1983  // .debug_types sections.
1984  gold_assert(!is_pass_one
1985	      || (debug_info_sections.empty() && debug_types_sections.empty()));
1986  for (std::vector<unsigned int>::const_iterator p
1987	   = debug_info_sections.begin();
1988       p != debug_info_sections.end();
1989       ++p)
1990    {
1991      unsigned int i = *p;
1992      layout->add_to_gdb_index(false, this, symbols_data, symbols_size,
1993			       i, reloc_shndx[i], reloc_type[i]);
1994    }
1995  for (std::vector<unsigned int>::const_iterator p
1996	   = debug_types_sections.begin();
1997       p != debug_types_sections.end();
1998       ++p)
1999    {
2000      unsigned int i = *p;
2001      layout->add_to_gdb_index(true, this, symbols_data, symbols_size,
2002			       i, reloc_shndx[i], reloc_type[i]);
2003    }
2004
2005  if (is_pass_two)
2006    {
2007      delete[] gc_sd->section_headers_data;
2008      delete[] gc_sd->section_names_data;
2009      delete[] gc_sd->symbols_data;
2010      delete[] gc_sd->symbol_names_data;
2011      this->set_symbols_data(NULL);
2012    }
2013  else
2014    {
2015      delete sd->section_headers;
2016      sd->section_headers = NULL;
2017      delete sd->section_names;
2018      sd->section_names = NULL;
2019    }
2020}
2021
2022// Layout sections whose layout was deferred while waiting for
2023// input files from a plugin.
2024
2025template<int size, bool big_endian>
2026void
2027Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
2028{
2029  typename std::vector<Deferred_layout>::iterator deferred;
2030
2031  for (deferred = this->deferred_layout_.begin();
2032       deferred != this->deferred_layout_.end();
2033       ++deferred)
2034    {
2035      typename This::Shdr shdr(deferred->shdr_data_);
2036
2037      if (!parameters->options().relocatable()
2038	  && deferred->name_ == ".eh_frame"
2039	  && this->check_eh_frame_flags(&shdr))
2040	{
2041	  // Checking is_section_included is not reliable for
2042	  // .eh_frame sections, because they do not have an output
2043	  // section.  This is not a problem normally because we call
2044	  // layout_eh_frame_section unconditionally, but when
2045	  // deferring sections that is not true.  We don't want to
2046	  // keep all .eh_frame sections because that will cause us to
2047	  // keep all sections that they refer to, which is the wrong
2048	  // way around.  Instead, the eh_frame code will discard
2049	  // .eh_frame sections that refer to discarded sections.
2050
2051	  // Reading the symbols again here may be slow.
2052	  Read_symbols_data sd;
2053	  this->base_read_symbols(&sd);
2054	  this->layout_eh_frame_section(layout,
2055					sd.symbols->data(),
2056					sd.symbols_size,
2057					sd.symbol_names->data(),
2058					sd.symbol_names_size,
2059					deferred->shndx_,
2060					shdr,
2061					deferred->reloc_shndx_,
2062					deferred->reloc_type_);
2063	  continue;
2064	}
2065
2066      // If the section is not included, it is because the garbage collector
2067      // decided it is not needed.  Avoid reverting that decision.
2068      if (!this->is_section_included(deferred->shndx_))
2069	continue;
2070
2071      this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
2072			   shdr, shdr.get_sh_type(), deferred->reloc_shndx_,
2073			   deferred->reloc_type_);
2074    }
2075
2076  this->deferred_layout_.clear();
2077
2078  // Now handle the deferred relocation sections.
2079
2080  Output_sections& out_sections(this->output_sections());
2081  std::vector<Address>& out_section_offsets(this->section_offsets());
2082
2083  for (deferred = this->deferred_layout_relocs_.begin();
2084       deferred != this->deferred_layout_relocs_.end();
2085       ++deferred)
2086    {
2087      unsigned int shndx = deferred->shndx_;
2088      typename This::Shdr shdr(deferred->shdr_data_);
2089      unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
2090
2091      Output_section* data_section = out_sections[data_shndx];
2092      if (data_section == NULL)
2093	{
2094	  out_sections[shndx] = NULL;
2095	  out_section_offsets[shndx] = invalid_address;
2096	  continue;
2097	}
2098
2099      Relocatable_relocs* rr = new Relocatable_relocs();
2100      this->set_relocatable_relocs(shndx, rr);
2101
2102      Output_section* os = layout->layout_reloc(this, shndx, shdr,
2103						data_section, rr);
2104      out_sections[shndx] = os;
2105      out_section_offsets[shndx] = invalid_address;
2106    }
2107}
2108
2109// Add the symbols to the symbol table.
2110
2111template<int size, bool big_endian>
2112void
2113Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
2114						    Read_symbols_data* sd,
2115						    Layout* layout)
2116{
2117  if (sd->symbols == NULL)
2118    {
2119      gold_assert(sd->symbol_names == NULL);
2120      return;
2121    }
2122
2123  const int sym_size = This::sym_size;
2124  size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2125		     / sym_size);
2126  if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
2127    {
2128      this->error(_("size of symbols is not multiple of symbol size"));
2129      return;
2130    }
2131
2132  this->symbols_.resize(symcount);
2133
2134  if (!parameters->options().relocatable()
2135      && layout->is_lto_slim_object ())
2136    gold_info(_("%s: plugin needed to handle lto object"),
2137	      this->name().c_str());
2138
2139  const char* sym_names =
2140    reinterpret_cast<const char*>(sd->symbol_names->data());
2141  symtab->add_from_relobj(this,
2142			  sd->symbols->data() + sd->external_symbols_offset,
2143			  symcount, this->local_symbol_count_,
2144			  sym_names, sd->symbol_names_size,
2145			  &this->symbols_,
2146			  &this->defined_count_);
2147
2148  delete sd->symbols;
2149  sd->symbols = NULL;
2150  delete sd->symbol_names;
2151  sd->symbol_names = NULL;
2152}
2153
2154// Find out if this object, that is a member of a lib group, should be included
2155// in the link. We check every symbol defined by this object. If the symbol
2156// table has a strong undefined reference to that symbol, we have to include
2157// the object.
2158
2159template<int size, bool big_endian>
2160Archive::Should_include
2161Sized_relobj_file<size, big_endian>::do_should_include_member(
2162    Symbol_table* symtab,
2163    Layout* layout,
2164    Read_symbols_data* sd,
2165    std::string* why)
2166{
2167  char* tmpbuf = NULL;
2168  size_t tmpbuflen = 0;
2169  const char* sym_names =
2170      reinterpret_cast<const char*>(sd->symbol_names->data());
2171  const unsigned char* syms =
2172      sd->symbols->data() + sd->external_symbols_offset;
2173  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2174  size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2175			 / sym_size);
2176
2177  const unsigned char* p = syms;
2178
2179  for (size_t i = 0; i < symcount; ++i, p += sym_size)
2180    {
2181      elfcpp::Sym<size, big_endian> sym(p);
2182      unsigned int st_shndx = sym.get_st_shndx();
2183      if (st_shndx == elfcpp::SHN_UNDEF)
2184	continue;
2185
2186      unsigned int st_name = sym.get_st_name();
2187      const char* name = sym_names + st_name;
2188      Symbol* symbol;
2189      Archive::Should_include t = Archive::should_include_member(symtab,
2190								 layout,
2191								 name,
2192								 &symbol, why,
2193								 &tmpbuf,
2194								 &tmpbuflen);
2195      if (t == Archive::SHOULD_INCLUDE_YES)
2196	{
2197	  if (tmpbuf != NULL)
2198	    free(tmpbuf);
2199	  return t;
2200	}
2201    }
2202  if (tmpbuf != NULL)
2203    free(tmpbuf);
2204  return Archive::SHOULD_INCLUDE_UNKNOWN;
2205}
2206
2207// Iterate over global defined symbols, calling a visitor class V for each.
2208
2209template<int size, bool big_endian>
2210void
2211Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
2212    Read_symbols_data* sd,
2213    Library_base::Symbol_visitor_base* v)
2214{
2215  const char* sym_names =
2216      reinterpret_cast<const char*>(sd->symbol_names->data());
2217  const unsigned char* syms =
2218      sd->symbols->data() + sd->external_symbols_offset;
2219  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2220  size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2221		     / sym_size);
2222  const unsigned char* p = syms;
2223
2224  for (size_t i = 0; i < symcount; ++i, p += sym_size)
2225    {
2226      elfcpp::Sym<size, big_endian> sym(p);
2227      if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
2228	v->visit(sym_names + sym.get_st_name());
2229    }
2230}
2231
2232// Return whether the local symbol SYMNDX has a PLT offset.
2233
2234template<int size, bool big_endian>
2235bool
2236Sized_relobj_file<size, big_endian>::local_has_plt_offset(
2237    unsigned int symndx) const
2238{
2239  typename Local_plt_offsets::const_iterator p =
2240    this->local_plt_offsets_.find(symndx);
2241  return p != this->local_plt_offsets_.end();
2242}
2243
2244// Get the PLT offset of a local symbol.
2245
2246template<int size, bool big_endian>
2247unsigned int
2248Sized_relobj_file<size, big_endian>::do_local_plt_offset(
2249    unsigned int symndx) const
2250{
2251  typename Local_plt_offsets::const_iterator p =
2252    this->local_plt_offsets_.find(symndx);
2253  gold_assert(p != this->local_plt_offsets_.end());
2254  return p->second;
2255}
2256
2257// Set the PLT offset of a local symbol.
2258
2259template<int size, bool big_endian>
2260void
2261Sized_relobj_file<size, big_endian>::set_local_plt_offset(
2262    unsigned int symndx, unsigned int plt_offset)
2263{
2264  std::pair<typename Local_plt_offsets::iterator, bool> ins =
2265    this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
2266  gold_assert(ins.second);
2267}
2268
2269// First pass over the local symbols.  Here we add their names to
2270// *POOL and *DYNPOOL, and we store the symbol value in
2271// THIS->LOCAL_VALUES_.  This function is always called from a
2272// singleton thread.  This is followed by a call to
2273// finalize_local_symbols.
2274
2275template<int size, bool big_endian>
2276void
2277Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
2278							    Stringpool* dynpool)
2279{
2280  gold_assert(this->symtab_shndx_ != -1U);
2281  if (this->symtab_shndx_ == 0)
2282    {
2283      // This object has no symbols.  Weird but legal.
2284      return;
2285    }
2286
2287  // Read the symbol table section header.
2288  const unsigned int symtab_shndx = this->symtab_shndx_;
2289  typename This::Shdr symtabshdr(this,
2290				 this->elf_file_.section_header(symtab_shndx));
2291  gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2292
2293  // Read the local symbols.
2294  const int sym_size = This::sym_size;
2295  const unsigned int loccount = this->local_symbol_count_;
2296  gold_assert(loccount == symtabshdr.get_sh_info());
2297  off_t locsize = loccount * sym_size;
2298  const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2299					      locsize, true, true);
2300
2301  // Read the symbol names.
2302  const unsigned int strtab_shndx =
2303    this->adjust_shndx(symtabshdr.get_sh_link());
2304  section_size_type strtab_size;
2305  const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2306							&strtab_size,
2307							true);
2308  const char* pnames = reinterpret_cast<const char*>(pnamesu);
2309
2310  // Loop over the local symbols.
2311
2312  const Output_sections& out_sections(this->output_sections());
2313  std::vector<Address>& out_section_offsets(this->section_offsets());
2314  unsigned int shnum = this->shnum();
2315  unsigned int count = 0;
2316  unsigned int dyncount = 0;
2317  // Skip the first, dummy, symbol.
2318  psyms += sym_size;
2319  bool strip_all = parameters->options().strip_all();
2320  bool discard_all = parameters->options().discard_all();
2321  bool discard_locals = parameters->options().discard_locals();
2322  bool discard_sec_merge = parameters->options().discard_sec_merge();
2323  for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2324    {
2325      elfcpp::Sym<size, big_endian> sym(psyms);
2326
2327      Symbol_value<size>& lv(this->local_values_[i]);
2328
2329      bool is_ordinary;
2330      unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2331						  &is_ordinary);
2332      lv.set_input_shndx(shndx, is_ordinary);
2333
2334      if (sym.get_st_type() == elfcpp::STT_SECTION)
2335	lv.set_is_section_symbol();
2336      else if (sym.get_st_type() == elfcpp::STT_TLS)
2337	lv.set_is_tls_symbol();
2338      else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
2339	lv.set_is_ifunc_symbol();
2340
2341      // Save the input symbol value for use in do_finalize_local_symbols().
2342      lv.set_input_value(sym.get_st_value());
2343
2344      // Decide whether this symbol should go into the output file.
2345
2346      if (is_ordinary
2347	  && shndx < shnum
2348	  && (out_sections[shndx] == NULL
2349	      || (out_sections[shndx]->order() == ORDER_EHFRAME
2350		  && out_section_offsets[shndx] == invalid_address)))
2351	{
2352	  // This is either a discarded section or an optimized .eh_frame
2353	  // section.
2354	  lv.set_no_output_symtab_entry();
2355	  gold_assert(!lv.needs_output_dynsym_entry());
2356	  continue;
2357	}
2358
2359      if (sym.get_st_type() == elfcpp::STT_SECTION
2360	  || !this->adjust_local_symbol(&lv))
2361	{
2362	  lv.set_no_output_symtab_entry();
2363	  gold_assert(!lv.needs_output_dynsym_entry());
2364	  continue;
2365	}
2366
2367      if (sym.get_st_name() >= strtab_size)
2368	{
2369	  this->error(_("local symbol %u section name out of range: %u >= %u"),
2370		      i, sym.get_st_name(),
2371		      static_cast<unsigned int>(strtab_size));
2372	  lv.set_no_output_symtab_entry();
2373	  continue;
2374	}
2375
2376      const char* name = pnames + sym.get_st_name();
2377
2378      // If needed, add the symbol to the dynamic symbol table string pool.
2379      if (lv.needs_output_dynsym_entry())
2380	{
2381	  dynpool->add(name, true, NULL);
2382	  ++dyncount;
2383	}
2384
2385      if (strip_all
2386	  || (discard_all && lv.may_be_discarded_from_output_symtab()))
2387	{
2388	  lv.set_no_output_symtab_entry();
2389	  continue;
2390	}
2391
2392      // By default, discard temporary local symbols in merge sections.
2393      // If --discard-locals option is used, discard all temporary local
2394      // symbols.  These symbols start with system-specific local label
2395      // prefixes, typically .L for ELF system.  We want to be compatible
2396      // with GNU ld so here we essentially use the same check in
2397      // bfd_is_local_label().  The code is different because we already
2398      // know that:
2399      //
2400      //   - the symbol is local and thus cannot have global or weak binding.
2401      //   - the symbol is not a section symbol.
2402      //   - the symbol has a name.
2403      //
2404      // We do not discard a symbol if it needs a dynamic symbol entry.
2405      if ((discard_locals
2406	   || (discard_sec_merge
2407	       && is_ordinary
2408	       && out_section_offsets[shndx] == invalid_address))
2409	  && sym.get_st_type() != elfcpp::STT_FILE
2410	  && !lv.needs_output_dynsym_entry()
2411	  && lv.may_be_discarded_from_output_symtab()
2412	  && parameters->target().is_local_label_name(name))
2413	{
2414	  lv.set_no_output_symtab_entry();
2415	  continue;
2416	}
2417
2418      // Discard the local symbol if -retain_symbols_file is specified
2419      // and the local symbol is not in that file.
2420      if (!parameters->options().should_retain_symbol(name))
2421	{
2422	  lv.set_no_output_symtab_entry();
2423	  continue;
2424	}
2425
2426      // Add the symbol to the symbol table string pool.
2427      pool->add(name, true, NULL);
2428      ++count;
2429    }
2430
2431  this->output_local_symbol_count_ = count;
2432  this->output_local_dynsym_count_ = dyncount;
2433}
2434
2435// Compute the final value of a local symbol.
2436
2437template<int size, bool big_endian>
2438typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2439Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2440    unsigned int r_sym,
2441    const Symbol_value<size>* lv_in,
2442    Symbol_value<size>* lv_out,
2443    bool relocatable,
2444    const Output_sections& out_sections,
2445    const std::vector<Address>& out_offsets,
2446    const Symbol_table* symtab)
2447{
2448  // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2449  // we may have a memory leak.
2450  gold_assert(lv_out->has_output_value());
2451
2452  bool is_ordinary;
2453  unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2454
2455  // Set the output symbol value.
2456
2457  if (!is_ordinary)
2458    {
2459      if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2460	lv_out->set_output_value(lv_in->input_value());
2461      else
2462	{
2463	  this->error(_("unknown section index %u for local symbol %u"),
2464		      shndx, r_sym);
2465	  lv_out->set_output_value(0);
2466	  return This::CFLV_ERROR;
2467	}
2468    }
2469  else
2470    {
2471      if (shndx >= this->shnum())
2472	{
2473	  this->error(_("local symbol %u section index %u out of range"),
2474		      r_sym, shndx);
2475	  lv_out->set_output_value(0);
2476	  return This::CFLV_ERROR;
2477	}
2478
2479      Output_section* os = out_sections[shndx];
2480      Address secoffset = out_offsets[shndx];
2481      if (symtab->is_section_folded(this, shndx))
2482	{
2483	  gold_assert(os == NULL && secoffset == invalid_address);
2484	  // Get the os of the section it is folded onto.
2485	  Section_id folded = symtab->icf()->get_folded_section(this,
2486								shndx);
2487	  gold_assert(folded.first != NULL);
2488	  Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2489	    <Sized_relobj_file<size, big_endian>*>(folded.first);
2490	  os = folded_obj->output_section(folded.second);
2491	  gold_assert(os != NULL);
2492	  secoffset = folded_obj->get_output_section_offset(folded.second);
2493
2494	  // This could be a relaxed input section.
2495	  if (secoffset == invalid_address)
2496	    {
2497	      const Output_relaxed_input_section* relaxed_section =
2498		os->find_relaxed_input_section(folded_obj, folded.second);
2499	      gold_assert(relaxed_section != NULL);
2500	      secoffset = relaxed_section->address() - os->address();
2501	    }
2502	}
2503
2504      if (os == NULL)
2505	{
2506	  // This local symbol belongs to a section we are discarding.
2507	  // In some cases when applying relocations later, we will
2508	  // attempt to match it to the corresponding kept section,
2509	  // so we leave the input value unchanged here.
2510	  return This::CFLV_DISCARDED;
2511	}
2512      else if (secoffset == invalid_address)
2513	{
2514	  uint64_t start;
2515
2516	  // This is a SHF_MERGE section or one which otherwise
2517	  // requires special handling.
2518	  if (os->order() == ORDER_EHFRAME)
2519	    {
2520	      // This local symbol belongs to a discarded or optimized
2521	      // .eh_frame section.  Just treat it like the case in which
2522	      // os == NULL above.
2523	      gold_assert(this->has_eh_frame_);
2524	      return This::CFLV_DISCARDED;
2525	    }
2526	  else if (!lv_in->is_section_symbol())
2527	    {
2528	      // This is not a section symbol.  We can determine
2529	      // the final value now.
2530	      uint64_t value =
2531		os->output_address(this, shndx, lv_in->input_value());
2532	      if (relocatable)
2533		value -= os->address();
2534	      lv_out->set_output_value(value);
2535	    }
2536	  else if (!os->find_starting_output_address(this, shndx, &start))
2537	    {
2538	      // This is a section symbol, but apparently not one in a
2539	      // merged section.  First check to see if this is a relaxed
2540	      // input section.  If so, use its address.  Otherwise just
2541	      // use the start of the output section.  This happens with
2542	      // relocatable links when the input object has section
2543	      // symbols for arbitrary non-merge sections.
2544	      const Output_section_data* posd =
2545		os->find_relaxed_input_section(this, shndx);
2546	      if (posd != NULL)
2547		{
2548		  uint64_t value = posd->address();
2549		  if (relocatable)
2550		    value -= os->address();
2551		  lv_out->set_output_value(value);
2552		}
2553	      else
2554		lv_out->set_output_value(os->address());
2555	    }
2556	  else
2557	    {
2558	      // We have to consider the addend to determine the
2559	      // value to use in a relocation.  START is the start
2560	      // of this input section.  If we are doing a relocatable
2561	      // link, use offset from start output section instead of
2562	      // address.
2563	      Address adjusted_start =
2564		relocatable ? start - os->address() : start;
2565	      Merged_symbol_value<size>* msv =
2566		new Merged_symbol_value<size>(lv_in->input_value(),
2567					      adjusted_start);
2568	      lv_out->set_merged_symbol_value(msv);
2569	    }
2570	}
2571      else if (lv_in->is_tls_symbol()
2572               || (lv_in->is_section_symbol()
2573                   && (os->flags() & elfcpp::SHF_TLS)))
2574	lv_out->set_output_value(os->tls_offset()
2575				 + secoffset
2576				 + lv_in->input_value());
2577      else
2578	lv_out->set_output_value((relocatable ? 0 : os->address())
2579				 + secoffset
2580				 + lv_in->input_value());
2581    }
2582  return This::CFLV_OK;
2583}
2584
2585// Compute final local symbol value.  R_SYM is the index of a local
2586// symbol in symbol table.  LV points to a symbol value, which is
2587// expected to hold the input value and to be over-written by the
2588// final value.  SYMTAB points to a symbol table.  Some targets may want
2589// to know would-be-finalized local symbol values in relaxation.
2590// Hence we provide this method.  Since this method updates *LV, a
2591// callee should make a copy of the original local symbol value and
2592// use the copy instead of modifying an object's local symbols before
2593// everything is finalized.  The caller should also free up any allocated
2594// memory in the return value in *LV.
2595template<int size, bool big_endian>
2596typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2597Sized_relobj_file<size, big_endian>::compute_final_local_value(
2598    unsigned int r_sym,
2599    const Symbol_value<size>* lv_in,
2600    Symbol_value<size>* lv_out,
2601    const Symbol_table* symtab)
2602{
2603  // This is just a wrapper of compute_final_local_value_internal.
2604  const bool relocatable = parameters->options().relocatable();
2605  const Output_sections& out_sections(this->output_sections());
2606  const std::vector<Address>& out_offsets(this->section_offsets());
2607  return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2608						  relocatable, out_sections,
2609						  out_offsets, symtab);
2610}
2611
2612// Finalize the local symbols.  Here we set the final value in
2613// THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2614// This function is always called from a singleton thread.  The actual
2615// output of the local symbols will occur in a separate task.
2616
2617template<int size, bool big_endian>
2618unsigned int
2619Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2620    unsigned int index,
2621    off_t off,
2622    Symbol_table* symtab)
2623{
2624  gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2625
2626  const unsigned int loccount = this->local_symbol_count_;
2627  this->local_symbol_offset_ = off;
2628
2629  const bool relocatable = parameters->options().relocatable();
2630  const Output_sections& out_sections(this->output_sections());
2631  const std::vector<Address>& out_offsets(this->section_offsets());
2632
2633  for (unsigned int i = 1; i < loccount; ++i)
2634    {
2635      Symbol_value<size>* lv = &this->local_values_[i];
2636
2637      Compute_final_local_value_status cflv_status =
2638	this->compute_final_local_value_internal(i, lv, lv, relocatable,
2639						 out_sections, out_offsets,
2640						 symtab);
2641      switch (cflv_status)
2642	{
2643	case CFLV_OK:
2644	  if (!lv->is_output_symtab_index_set())
2645	    {
2646	      lv->set_output_symtab_index(index);
2647	      ++index;
2648	    }
2649	  if (lv->is_ifunc_symbol()
2650	      && (lv->has_output_symtab_entry()
2651		  || lv->needs_output_dynsym_entry()))
2652	    symtab->set_has_gnu_output();
2653	  break;
2654	case CFLV_DISCARDED:
2655	case CFLV_ERROR:
2656	  // Do nothing.
2657	  break;
2658	default:
2659	  gold_unreachable();
2660	}
2661    }
2662  return index;
2663}
2664
2665// Set the output dynamic symbol table indexes for the local variables.
2666
2667template<int size, bool big_endian>
2668unsigned int
2669Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2670    unsigned int index)
2671{
2672  const unsigned int loccount = this->local_symbol_count_;
2673  for (unsigned int i = 1; i < loccount; ++i)
2674    {
2675      Symbol_value<size>& lv(this->local_values_[i]);
2676      if (lv.needs_output_dynsym_entry())
2677	{
2678	  lv.set_output_dynsym_index(index);
2679	  ++index;
2680	}
2681    }
2682  return index;
2683}
2684
2685// Set the offset where local dynamic symbol information will be stored.
2686// Returns the count of local symbols contributed to the symbol table by
2687// this object.
2688
2689template<int size, bool big_endian>
2690unsigned int
2691Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2692{
2693  gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2694  this->local_dynsym_offset_ = off;
2695  return this->output_local_dynsym_count_;
2696}
2697
2698// If Symbols_data is not NULL get the section flags from here otherwise
2699// get it from the file.
2700
2701template<int size, bool big_endian>
2702uint64_t
2703Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2704{
2705  Symbols_data* sd = this->get_symbols_data();
2706  if (sd != NULL)
2707    {
2708      const unsigned char* pshdrs = sd->section_headers_data
2709				    + This::shdr_size * shndx;
2710      typename This::Shdr shdr(pshdrs);
2711      return shdr.get_sh_flags();
2712    }
2713  // If sd is NULL, read the section header from the file.
2714  return this->elf_file_.section_flags(shndx);
2715}
2716
2717// Get the section's ent size from Symbols_data.  Called by get_section_contents
2718// in icf.cc
2719
2720template<int size, bool big_endian>
2721uint64_t
2722Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2723{
2724  Symbols_data* sd = this->get_symbols_data();
2725  gold_assert(sd != NULL);
2726
2727  const unsigned char* pshdrs = sd->section_headers_data
2728				+ This::shdr_size * shndx;
2729  typename This::Shdr shdr(pshdrs);
2730  return shdr.get_sh_entsize();
2731}
2732
2733// Write out the local symbols.
2734
2735template<int size, bool big_endian>
2736void
2737Sized_relobj_file<size, big_endian>::write_local_symbols(
2738    Output_file* of,
2739    const Stringpool* sympool,
2740    const Stringpool* dynpool,
2741    Output_symtab_xindex* symtab_xindex,
2742    Output_symtab_xindex* dynsym_xindex,
2743    off_t symtab_off)
2744{
2745  const bool strip_all = parameters->options().strip_all();
2746  if (strip_all)
2747    {
2748      if (this->output_local_dynsym_count_ == 0)
2749	return;
2750      this->output_local_symbol_count_ = 0;
2751    }
2752
2753  gold_assert(this->symtab_shndx_ != -1U);
2754  if (this->symtab_shndx_ == 0)
2755    {
2756      // This object has no symbols.  Weird but legal.
2757      return;
2758    }
2759
2760  // Read the symbol table section header.
2761  const unsigned int symtab_shndx = this->symtab_shndx_;
2762  typename This::Shdr symtabshdr(this,
2763				 this->elf_file_.section_header(symtab_shndx));
2764  gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2765  const unsigned int loccount = this->local_symbol_count_;
2766  gold_assert(loccount == symtabshdr.get_sh_info());
2767
2768  // Read the local symbols.
2769  const int sym_size = This::sym_size;
2770  off_t locsize = loccount * sym_size;
2771  const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2772					      locsize, true, false);
2773
2774  // Read the symbol names.
2775  const unsigned int strtab_shndx =
2776    this->adjust_shndx(symtabshdr.get_sh_link());
2777  section_size_type strtab_size;
2778  const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2779							&strtab_size,
2780							false);
2781  const char* pnames = reinterpret_cast<const char*>(pnamesu);
2782
2783  // Get views into the output file for the portions of the symbol table
2784  // and the dynamic symbol table that we will be writing.
2785  off_t output_size = this->output_local_symbol_count_ * sym_size;
2786  unsigned char* oview = NULL;
2787  if (output_size > 0)
2788    oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2789				output_size);
2790
2791  off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2792  unsigned char* dyn_oview = NULL;
2793  if (dyn_output_size > 0)
2794    dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2795				    dyn_output_size);
2796
2797  const Output_sections& out_sections(this->output_sections());
2798
2799  gold_assert(this->local_values_.size() == loccount);
2800
2801  unsigned char* ov = oview;
2802  unsigned char* dyn_ov = dyn_oview;
2803  psyms += sym_size;
2804  for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2805    {
2806      elfcpp::Sym<size, big_endian> isym(psyms);
2807
2808      Symbol_value<size>& lv(this->local_values_[i]);
2809
2810      bool is_ordinary;
2811      unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2812						     &is_ordinary);
2813      if (is_ordinary)
2814	{
2815	  gold_assert(st_shndx < out_sections.size());
2816	  if (out_sections[st_shndx] == NULL)
2817	    continue;
2818	  st_shndx = out_sections[st_shndx]->out_shndx();
2819	  if (st_shndx >= elfcpp::SHN_LORESERVE)
2820	    {
2821	      if (lv.has_output_symtab_entry())
2822		symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2823	      if (lv.has_output_dynsym_entry())
2824		dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2825	      st_shndx = elfcpp::SHN_XINDEX;
2826	    }
2827	}
2828
2829      // Write the symbol to the output symbol table.
2830      if (lv.has_output_symtab_entry())
2831	{
2832	  elfcpp::Sym_write<size, big_endian> osym(ov);
2833
2834	  gold_assert(isym.get_st_name() < strtab_size);
2835	  const char* name = pnames + isym.get_st_name();
2836	  osym.put_st_name(sympool->get_offset(name));
2837	  osym.put_st_value(lv.value(this, 0));
2838	  osym.put_st_size(isym.get_st_size());
2839	  osym.put_st_info(isym.get_st_info());
2840	  osym.put_st_other(isym.get_st_other());
2841	  osym.put_st_shndx(st_shndx);
2842
2843	  ov += sym_size;
2844	}
2845
2846      // Write the symbol to the output dynamic symbol table.
2847      if (lv.has_output_dynsym_entry())
2848	{
2849	  gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2850	  elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2851
2852	  gold_assert(isym.get_st_name() < strtab_size);
2853	  const char* name = pnames + isym.get_st_name();
2854	  osym.put_st_name(dynpool->get_offset(name));
2855	  osym.put_st_value(lv.value(this, 0));
2856	  osym.put_st_size(isym.get_st_size());
2857	  osym.put_st_info(isym.get_st_info());
2858	  osym.put_st_other(isym.get_st_other());
2859	  osym.put_st_shndx(st_shndx);
2860
2861	  dyn_ov += sym_size;
2862	}
2863    }
2864
2865
2866  if (output_size > 0)
2867    {
2868      gold_assert(ov - oview == output_size);
2869      of->write_output_view(symtab_off + this->local_symbol_offset_,
2870			    output_size, oview);
2871    }
2872
2873  if (dyn_output_size > 0)
2874    {
2875      gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2876      of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2877			    dyn_oview);
2878    }
2879}
2880
2881// Set *INFO to symbolic information about the offset OFFSET in the
2882// section SHNDX.  Return true if we found something, false if we
2883// found nothing.
2884
2885template<int size, bool big_endian>
2886bool
2887Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2888    unsigned int shndx,
2889    off_t offset,
2890    Symbol_location_info* info)
2891{
2892  if (this->symtab_shndx_ == 0)
2893    return false;
2894
2895  section_size_type symbols_size;
2896  const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2897							&symbols_size,
2898							false);
2899
2900  unsigned int symbol_names_shndx =
2901    this->adjust_shndx(this->section_link(this->symtab_shndx_));
2902  section_size_type names_size;
2903  const unsigned char* symbol_names_u =
2904    this->section_contents(symbol_names_shndx, &names_size, false);
2905  const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2906
2907  const int sym_size = This::sym_size;
2908  const size_t count = symbols_size / sym_size;
2909
2910  const unsigned char* p = symbols;
2911  for (size_t i = 0; i < count; ++i, p += sym_size)
2912    {
2913      elfcpp::Sym<size, big_endian> sym(p);
2914
2915      if (sym.get_st_type() == elfcpp::STT_FILE)
2916	{
2917	  if (sym.get_st_name() >= names_size)
2918	    info->source_file = "(invalid)";
2919	  else
2920	    info->source_file = symbol_names + sym.get_st_name();
2921	  continue;
2922	}
2923
2924      bool is_ordinary;
2925      unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2926						     &is_ordinary);
2927      if (is_ordinary
2928	  && st_shndx == shndx
2929	  && static_cast<off_t>(sym.get_st_value()) <= offset
2930	  && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2931	      > offset))
2932	{
2933	  info->enclosing_symbol_type = sym.get_st_type();
2934	  if (sym.get_st_name() > names_size)
2935	    info->enclosing_symbol_name = "(invalid)";
2936	  else
2937	    {
2938	      info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2939	      if (parameters->options().do_demangle())
2940		{
2941		  char* demangled_name = cplus_demangle(
2942		      info->enclosing_symbol_name.c_str(),
2943		      DMGL_ANSI | DMGL_PARAMS);
2944		  if (demangled_name != NULL)
2945		    {
2946		      info->enclosing_symbol_name.assign(demangled_name);
2947		      free(demangled_name);
2948		    }
2949		}
2950	    }
2951	  return true;
2952	}
2953    }
2954
2955  return false;
2956}
2957
2958// Look for a kept section corresponding to the given discarded section,
2959// and return its output address.  This is used only for relocations in
2960// debugging sections.  If we can't find the kept section, return 0.
2961
2962template<int size, bool big_endian>
2963typename Sized_relobj_file<size, big_endian>::Address
2964Sized_relobj_file<size, big_endian>::map_to_kept_section(
2965    unsigned int shndx,
2966    std::string& section_name,
2967    bool* pfound) const
2968{
2969  Kept_section* kept_section;
2970  bool is_comdat;
2971  uint64_t sh_size;
2972  unsigned int symndx;
2973  bool found = false;
2974
2975  if (this->get_kept_comdat_section(shndx, &is_comdat, &symndx, &sh_size,
2976				    &kept_section))
2977    {
2978      Relobj* kept_object = kept_section->object();
2979      unsigned int kept_shndx = 0;
2980      if (!kept_section->is_comdat())
2981        {
2982	  // The kept section is a linkonce section.
2983	  if (sh_size == kept_section->linkonce_size())
2984	    found = true;
2985        }
2986      else
2987	{
2988	  if (is_comdat)
2989	    {
2990	      // Find the corresponding kept section.
2991	      // Since we're using this mapping for relocation processing,
2992	      // we don't want to match sections unless they have the same
2993	      // size.
2994	      uint64_t kept_size = 0;
2995	      if (kept_section->find_comdat_section(section_name, &kept_shndx,
2996						    &kept_size))
2997		{
2998		  if (sh_size == kept_size)
2999		    found = true;
3000		}
3001	    }
3002	  else
3003	    {
3004	      uint64_t kept_size = 0;
3005	      if (kept_section->find_single_comdat_section(&kept_shndx,
3006							   &kept_size)
3007		  && sh_size == kept_size)
3008		found = true;
3009	    }
3010	}
3011
3012      if (found)
3013	{
3014	  Sized_relobj_file<size, big_endian>* kept_relobj =
3015	    static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
3016	  Output_section* os = kept_relobj->output_section(kept_shndx);
3017	  Address offset = kept_relobj->get_output_section_offset(kept_shndx);
3018	  if (os != NULL && offset != invalid_address)
3019	    {
3020	      *pfound = true;
3021	      return os->address() + offset;
3022	    }
3023	}
3024    }
3025  *pfound = false;
3026  return 0;
3027}
3028
3029// Look for a kept section corresponding to the given discarded section,
3030// and return its object file.
3031
3032template<int size, bool big_endian>
3033Relobj*
3034Sized_relobj_file<size, big_endian>::find_kept_section_object(
3035    unsigned int shndx, unsigned int *symndx_p) const
3036{
3037  Kept_section* kept_section;
3038  bool is_comdat;
3039  uint64_t sh_size;
3040  if (this->get_kept_comdat_section(shndx, &is_comdat, symndx_p, &sh_size,
3041				    &kept_section))
3042    return kept_section->object();
3043  return NULL;
3044}
3045
3046// Return the name of symbol SYMNDX.
3047
3048template<int size, bool big_endian>
3049const char*
3050Sized_relobj_file<size, big_endian>::get_symbol_name(unsigned int symndx)
3051{
3052  if (this->symtab_shndx_ == 0)
3053    return NULL;
3054
3055  section_size_type symbols_size;
3056  const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
3057							&symbols_size,
3058							false);
3059
3060  unsigned int symbol_names_shndx =
3061    this->adjust_shndx(this->section_link(this->symtab_shndx_));
3062  section_size_type names_size;
3063  const unsigned char* symbol_names_u =
3064    this->section_contents(symbol_names_shndx, &names_size, false);
3065  const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
3066
3067  const unsigned char* p = symbols + symndx * This::sym_size;
3068
3069  if (p >= symbols + symbols_size)
3070    return NULL;
3071
3072  elfcpp::Sym<size, big_endian> sym(p);
3073
3074  return symbol_names + sym.get_st_name();
3075}
3076
3077// Get symbol counts.
3078
3079template<int size, bool big_endian>
3080void
3081Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
3082    const Symbol_table*,
3083    size_t* defined,
3084    size_t* used) const
3085{
3086  *defined = this->defined_count_;
3087  size_t count = 0;
3088  for (typename Symbols::const_iterator p = this->symbols_.begin();
3089       p != this->symbols_.end();
3090       ++p)
3091    if (*p != NULL
3092	&& (*p)->source() == Symbol::FROM_OBJECT
3093	&& (*p)->object() == this
3094	&& (*p)->is_defined())
3095      ++count;
3096  *used = count;
3097}
3098
3099// Return a view of the decompressed contents of a section.  Set *PLEN
3100// to the size.  Set *IS_NEW to true if the contents need to be freed
3101// by the caller.
3102
3103const unsigned char*
3104Object::decompressed_section_contents(
3105    unsigned int shndx,
3106    section_size_type* plen,
3107    bool* is_new,
3108    uint64_t* palign)
3109{
3110  section_size_type buffer_size;
3111  const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size,
3112							  false);
3113
3114  if (this->compressed_sections_ == NULL)
3115    {
3116      *plen = buffer_size;
3117      *is_new = false;
3118      return buffer;
3119    }
3120
3121  Compressed_section_map::const_iterator p =
3122      this->compressed_sections_->find(shndx);
3123  if (p == this->compressed_sections_->end())
3124    {
3125      *plen = buffer_size;
3126      *is_new = false;
3127      return buffer;
3128    }
3129
3130  section_size_type uncompressed_size = p->second.size;
3131  if (p->second.contents != NULL)
3132    {
3133      *plen = uncompressed_size;
3134      *is_new = false;
3135      if (palign != NULL)
3136	*palign = p->second.addralign;
3137      return p->second.contents;
3138    }
3139
3140  unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
3141  if (!decompress_input_section(buffer,
3142				buffer_size,
3143				uncompressed_data,
3144				uncompressed_size,
3145				elfsize(),
3146				is_big_endian(),
3147				p->second.flag))
3148    this->error(_("could not decompress section %s"),
3149		this->do_section_name(shndx).c_str());
3150
3151  // We could cache the results in p->second.contents and store
3152  // false in *IS_NEW, but build_compressed_section_map() would
3153  // have done so if it had expected it to be profitable.  If
3154  // we reach this point, we expect to need the contents only
3155  // once in this pass.
3156  *plen = uncompressed_size;
3157  *is_new = true;
3158  if (palign != NULL)
3159    *palign = p->second.addralign;
3160  return uncompressed_data;
3161}
3162
3163// Discard any buffers of uncompressed sections.  This is done
3164// at the end of the Add_symbols task.
3165
3166void
3167Object::discard_decompressed_sections()
3168{
3169  if (this->compressed_sections_ == NULL)
3170    return;
3171
3172  for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
3173       p != this->compressed_sections_->end();
3174       ++p)
3175    {
3176      if (p->second.contents != NULL)
3177	{
3178	  delete[] p->second.contents;
3179	  p->second.contents = NULL;
3180	}
3181    }
3182}
3183
3184// Input_objects methods.
3185
3186// Add a regular relocatable object to the list.  Return false if this
3187// object should be ignored.
3188
3189bool
3190Input_objects::add_object(Object* obj)
3191{
3192  // Print the filename if the -t/--trace option is selected.
3193  if (parameters->options().trace())
3194    gold_info("%s", obj->name().c_str());
3195
3196  if (!obj->is_dynamic())
3197    this->relobj_list_.push_back(static_cast<Relobj*>(obj));
3198  else
3199    {
3200      // See if this is a duplicate SONAME.
3201      Dynobj* dynobj = static_cast<Dynobj*>(obj);
3202      const char* soname = dynobj->soname();
3203
3204      Unordered_map<std::string, Object*>::value_type val(soname, obj);
3205      std::pair<Unordered_map<std::string, Object*>::iterator, bool> ins =
3206	this->sonames_.insert(val);
3207      if (!ins.second)
3208	{
3209	  // We have already seen a dynamic object with this soname.
3210	  // If any instances of this object on the command line have
3211	  // the --no-as-needed flag, make sure the one we keep is
3212	  // marked so.
3213	  if (!obj->as_needed())
3214	    {
3215	      gold_assert(ins.first->second != NULL);
3216	      ins.first->second->clear_as_needed();
3217	    }
3218	  return false;
3219	}
3220
3221      this->dynobj_list_.push_back(dynobj);
3222    }
3223
3224  // Add this object to the cross-referencer if requested.
3225  if (parameters->options().user_set_print_symbol_counts()
3226      || parameters->options().cref())
3227    {
3228      if (this->cref_ == NULL)
3229	this->cref_ = new Cref();
3230      this->cref_->add_object(obj);
3231    }
3232
3233  return true;
3234}
3235
3236// For each dynamic object, record whether we've seen all of its
3237// explicit dependencies.
3238
3239void
3240Input_objects::check_dynamic_dependencies() const
3241{
3242  bool issued_copy_dt_needed_error = false;
3243  for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
3244       p != this->dynobj_list_.end();
3245       ++p)
3246    {
3247      const Dynobj::Needed& needed((*p)->needed());
3248      bool found_all = true;
3249      Dynobj::Needed::const_iterator pneeded;
3250      for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
3251	{
3252	  if (this->sonames_.find(*pneeded) == this->sonames_.end())
3253	    {
3254	      found_all = false;
3255	      break;
3256	    }
3257	}
3258      (*p)->set_has_unknown_needed_entries(!found_all);
3259
3260      // --copy-dt-needed-entries aka --add-needed is a GNU ld option
3261      // that gold does not support.  However, they cause no trouble
3262      // unless there is a DT_NEEDED entry that we don't know about;
3263      // warn only in that case.
3264      if (!found_all
3265	  && !issued_copy_dt_needed_error
3266	  && (parameters->options().copy_dt_needed_entries()
3267	      || parameters->options().add_needed()))
3268	{
3269	  const char* optname;
3270	  if (parameters->options().copy_dt_needed_entries())
3271	    optname = "--copy-dt-needed-entries";
3272	  else
3273	    optname = "--add-needed";
3274	  gold_error(_("%s is not supported but is required for %s in %s"),
3275		     optname, (*pneeded).c_str(), (*p)->name().c_str());
3276	  issued_copy_dt_needed_error = true;
3277	}
3278    }
3279}
3280
3281// Start processing an archive.
3282
3283void
3284Input_objects::archive_start(Archive* archive)
3285{
3286  if (parameters->options().user_set_print_symbol_counts()
3287      || parameters->options().cref())
3288    {
3289      if (this->cref_ == NULL)
3290	this->cref_ = new Cref();
3291      this->cref_->add_archive_start(archive);
3292    }
3293}
3294
3295// Stop processing an archive.
3296
3297void
3298Input_objects::archive_stop(Archive* archive)
3299{
3300  if (parameters->options().user_set_print_symbol_counts()
3301      || parameters->options().cref())
3302    this->cref_->add_archive_stop(archive);
3303}
3304
3305// Print symbol counts
3306
3307void
3308Input_objects::print_symbol_counts(const Symbol_table* symtab) const
3309{
3310  if (parameters->options().user_set_print_symbol_counts()
3311      && this->cref_ != NULL)
3312    this->cref_->print_symbol_counts(symtab);
3313}
3314
3315// Print a cross reference table.
3316
3317void
3318Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
3319{
3320  if (parameters->options().cref() && this->cref_ != NULL)
3321    this->cref_->print_cref(symtab, f);
3322}
3323
3324// Relocate_info methods.
3325
3326// Return a string describing the location of a relocation when file
3327// and lineno information is not available.  This is only used in
3328// error messages.
3329
3330template<int size, bool big_endian>
3331std::string
3332Relocate_info<size, big_endian>::location(size_t, off_t offset) const
3333{
3334  Sized_dwarf_line_info<size, big_endian> line_info(this->object);
3335  std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
3336  if (!ret.empty())
3337    return ret;
3338
3339  ret = this->object->name();
3340
3341  Symbol_location_info info;
3342  if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
3343    {
3344      if (!info.source_file.empty())
3345	{
3346	  ret += ":";
3347	  ret += info.source_file;
3348	}
3349      ret += ":";
3350      if (info.enclosing_symbol_type == elfcpp::STT_FUNC)
3351	ret += _("function ");
3352      ret += info.enclosing_symbol_name;
3353      return ret;
3354    }
3355
3356  ret += "(";
3357  ret += this->object->section_name(this->data_shndx);
3358  char buf[100];
3359  snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
3360  ret += buf;
3361  return ret;
3362}
3363
3364} // End namespace gold.
3365
3366namespace
3367{
3368
3369using namespace gold;
3370
3371// Read an ELF file with the header and return the appropriate
3372// instance of Object.
3373
3374template<int size, bool big_endian>
3375Object*
3376make_elf_sized_object(const std::string& name, Input_file* input_file,
3377		      off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
3378		      bool* punconfigured)
3379{
3380  Target* target = select_target(input_file, offset,
3381				 ehdr.get_e_machine(), size, big_endian,
3382				 ehdr.get_e_ident()[elfcpp::EI_OSABI],
3383				 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
3384  if (target == NULL)
3385    gold_fatal(_("%s: unsupported ELF machine number %d"),
3386	       name.c_str(), ehdr.get_e_machine());
3387
3388  if (!parameters->target_valid())
3389    set_parameters_target(target);
3390  else if (target != &parameters->target())
3391    {
3392      if (punconfigured != NULL)
3393	*punconfigured = true;
3394      else
3395	gold_error(_("%s: incompatible target"), name.c_str());
3396      return NULL;
3397    }
3398
3399  return target->make_elf_object<size, big_endian>(name, input_file, offset,
3400						   ehdr);
3401}
3402
3403} // End anonymous namespace.
3404
3405namespace gold
3406{
3407
3408// Return whether INPUT_FILE is an ELF object.
3409
3410bool
3411is_elf_object(Input_file* input_file, off_t offset,
3412	      const unsigned char** start, int* read_size)
3413{
3414  off_t filesize = input_file->file().filesize();
3415  int want = elfcpp::Elf_recognizer::max_header_size;
3416  if (filesize - offset < want)
3417    want = filesize - offset;
3418
3419  const unsigned char* p = input_file->file().get_view(offset, 0, want,
3420						       true, false);
3421  *start = p;
3422  *read_size = want;
3423
3424  return elfcpp::Elf_recognizer::is_elf_file(p, want);
3425}
3426
3427// Read an ELF file and return the appropriate instance of Object.
3428
3429Object*
3430make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
3431		const unsigned char* p, section_offset_type bytes,
3432		bool* punconfigured)
3433{
3434  if (punconfigured != NULL)
3435    *punconfigured = false;
3436
3437  std::string error;
3438  bool big_endian = false;
3439  int size = 0;
3440  if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
3441					       &big_endian, &error))
3442    {
3443      gold_error(_("%s: %s"), name.c_str(), error.c_str());
3444      return NULL;
3445    }
3446
3447  if (size == 32)
3448    {
3449      if (big_endian)
3450	{
3451#ifdef HAVE_TARGET_32_BIG
3452	  elfcpp::Ehdr<32, true> ehdr(p);
3453	  return make_elf_sized_object<32, true>(name, input_file,
3454						 offset, ehdr, punconfigured);
3455#else
3456	  if (punconfigured != NULL)
3457	    *punconfigured = true;
3458	  else
3459	    gold_error(_("%s: not configured to support "
3460			 "32-bit big-endian object"),
3461		       name.c_str());
3462	  return NULL;
3463#endif
3464	}
3465      else
3466	{
3467#ifdef HAVE_TARGET_32_LITTLE
3468	  elfcpp::Ehdr<32, false> ehdr(p);
3469	  return make_elf_sized_object<32, false>(name, input_file,
3470						  offset, ehdr, punconfigured);
3471#else
3472	  if (punconfigured != NULL)
3473	    *punconfigured = true;
3474	  else
3475	    gold_error(_("%s: not configured to support "
3476			 "32-bit little-endian object"),
3477		       name.c_str());
3478	  return NULL;
3479#endif
3480	}
3481    }
3482  else if (size == 64)
3483    {
3484      if (big_endian)
3485	{
3486#ifdef HAVE_TARGET_64_BIG
3487	  elfcpp::Ehdr<64, true> ehdr(p);
3488	  return make_elf_sized_object<64, true>(name, input_file,
3489						 offset, ehdr, punconfigured);
3490#else
3491	  if (punconfigured != NULL)
3492	    *punconfigured = true;
3493	  else
3494	    gold_error(_("%s: not configured to support "
3495			 "64-bit big-endian object"),
3496		       name.c_str());
3497	  return NULL;
3498#endif
3499	}
3500      else
3501	{
3502#ifdef HAVE_TARGET_64_LITTLE
3503	  elfcpp::Ehdr<64, false> ehdr(p);
3504	  return make_elf_sized_object<64, false>(name, input_file,
3505						  offset, ehdr, punconfigured);
3506#else
3507	  if (punconfigured != NULL)
3508	    *punconfigured = true;
3509	  else
3510	    gold_error(_("%s: not configured to support "
3511			 "64-bit little-endian object"),
3512		       name.c_str());
3513	  return NULL;
3514#endif
3515	}
3516    }
3517  else
3518    gold_unreachable();
3519}
3520
3521// Instantiate the templates we need.
3522
3523#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3524template
3525void
3526Relobj::initialize_input_to_output_map<64>(unsigned int shndx,
3527      elfcpp::Elf_types<64>::Elf_Addr starting_address,
3528      Unordered_map<section_offset_type,
3529      elfcpp::Elf_types<64>::Elf_Addr>* output_addresses) const;
3530#endif
3531
3532#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3533template
3534void
3535Relobj::initialize_input_to_output_map<32>(unsigned int shndx,
3536      elfcpp::Elf_types<32>::Elf_Addr starting_address,
3537      Unordered_map<section_offset_type,
3538      elfcpp::Elf_types<32>::Elf_Addr>* output_addresses) const;
3539#endif
3540
3541#ifdef HAVE_TARGET_32_LITTLE
3542template
3543void
3544Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
3545				     Read_symbols_data*);
3546template
3547const unsigned char*
3548Object::find_shdr<32,false>(const unsigned char*, const char*, const char*,
3549			    section_size_type, const unsigned char*) const;
3550#endif
3551
3552#ifdef HAVE_TARGET_32_BIG
3553template
3554void
3555Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
3556				    Read_symbols_data*);
3557template
3558const unsigned char*
3559Object::find_shdr<32,true>(const unsigned char*, const char*, const char*,
3560			   section_size_type, const unsigned char*) const;
3561#endif
3562
3563#ifdef HAVE_TARGET_64_LITTLE
3564template
3565void
3566Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
3567				     Read_symbols_data*);
3568template
3569const unsigned char*
3570Object::find_shdr<64,false>(const unsigned char*, const char*, const char*,
3571			    section_size_type, const unsigned char*) const;
3572#endif
3573
3574#ifdef HAVE_TARGET_64_BIG
3575template
3576void
3577Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
3578				    Read_symbols_data*);
3579template
3580const unsigned char*
3581Object::find_shdr<64,true>(const unsigned char*, const char*, const char*,
3582			   section_size_type, const unsigned char*) const;
3583#endif
3584
3585#ifdef HAVE_TARGET_32_LITTLE
3586template
3587class Sized_relobj<32, false>;
3588
3589template
3590class Sized_relobj_file<32, false>;
3591#endif
3592
3593#ifdef HAVE_TARGET_32_BIG
3594template
3595class Sized_relobj<32, true>;
3596
3597template
3598class Sized_relobj_file<32, true>;
3599#endif
3600
3601#ifdef HAVE_TARGET_64_LITTLE
3602template
3603class Sized_relobj<64, false>;
3604
3605template
3606class Sized_relobj_file<64, false>;
3607#endif
3608
3609#ifdef HAVE_TARGET_64_BIG
3610template
3611class Sized_relobj<64, true>;
3612
3613template
3614class Sized_relobj_file<64, true>;
3615#endif
3616
3617#ifdef HAVE_TARGET_32_LITTLE
3618template
3619struct Relocate_info<32, false>;
3620#endif
3621
3622#ifdef HAVE_TARGET_32_BIG
3623template
3624struct Relocate_info<32, true>;
3625#endif
3626
3627#ifdef HAVE_TARGET_64_LITTLE
3628template
3629struct Relocate_info<64, false>;
3630#endif
3631
3632#ifdef HAVE_TARGET_64_BIG
3633template
3634struct Relocate_info<64, true>;
3635#endif
3636
3637#ifdef HAVE_TARGET_32_LITTLE
3638template
3639void
3640Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
3641
3642template
3643void
3644Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
3645				      const unsigned char*);
3646#endif
3647
3648#ifdef HAVE_TARGET_32_BIG
3649template
3650void
3651Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
3652
3653template
3654void
3655Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
3656				     const unsigned char*);
3657#endif
3658
3659#ifdef HAVE_TARGET_64_LITTLE
3660template
3661void
3662Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
3663
3664template
3665void
3666Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
3667				      const unsigned char*);
3668#endif
3669
3670#ifdef HAVE_TARGET_64_BIG
3671template
3672void
3673Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3674
3675template
3676void
3677Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3678				     const unsigned char*);
3679#endif
3680
3681#ifdef HAVE_TARGET_32_LITTLE
3682template
3683Compressed_section_map*
3684build_compressed_section_map<32, false>(const unsigned char*, unsigned int,
3685					const char*, section_size_type,
3686					Object*, bool);
3687#endif
3688
3689#ifdef HAVE_TARGET_32_BIG
3690template
3691Compressed_section_map*
3692build_compressed_section_map<32, true>(const unsigned char*, unsigned int,
3693					const char*, section_size_type,
3694					Object*, bool);
3695#endif
3696
3697#ifdef HAVE_TARGET_64_LITTLE
3698template
3699Compressed_section_map*
3700build_compressed_section_map<64, false>(const unsigned char*, unsigned int,
3701					const char*, section_size_type,
3702					Object*, bool);
3703#endif
3704
3705#ifdef HAVE_TARGET_64_BIG
3706template
3707Compressed_section_map*
3708build_compressed_section_map<64, true>(const unsigned char*, unsigned int,
3709					const char*, section_size_type,
3710					Object*, bool);
3711#endif
3712
3713} // End namespace gold.
3714