1/*
2 * Copyright 2011-2021 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License").  You may not use
5 * this file except in compliance with the License.  You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10/*
11 * All low level APIs are deprecated for public use, but still ok for internal
12 * use where we're using them to implement the higher level EVP interface, as is
13 * the case here.
14 */
15#include "internal/deprecated.h"
16
17#include "cipher_aes_cbc_hmac_sha.h"
18
19#if !defined(AES_CBC_HMAC_SHA_CAPABLE) || !defined(AESNI_CAPABLE)
20int ossl_cipher_capable_aes_cbc_hmac_sha256(void)
21{
22    return 0;
23}
24
25const PROV_CIPHER_HW_AES_HMAC_SHA *ossl_prov_cipher_hw_aes_cbc_hmac_sha256(void)
26{
27    return NULL;
28}
29#else
30
31# include <openssl/rand.h>
32# include "crypto/evp.h"
33# include "internal/constant_time.h"
34
35void sha256_block_data_order(void *c, const void *p, size_t len);
36int aesni_cbc_sha256_enc(const void *inp, void *out, size_t blocks,
37                         const AES_KEY *key, unsigned char iv[16],
38                         SHA256_CTX *ctx, const void *in0);
39
40int ossl_cipher_capable_aes_cbc_hmac_sha256(void)
41{
42    return AESNI_CBC_HMAC_SHA_CAPABLE
43           && aesni_cbc_sha256_enc(NULL, NULL, 0, NULL, NULL, NULL, NULL);
44}
45
46static int aesni_cbc_hmac_sha256_init_key(PROV_CIPHER_CTX *vctx,
47                                          const unsigned char *key,
48                                          size_t keylen)
49{
50    int ret;
51    PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx;
52    PROV_AES_HMAC_SHA256_CTX *sctx = (PROV_AES_HMAC_SHA256_CTX *)vctx;
53
54    if (ctx->base.enc)
55        ret = aesni_set_encrypt_key(key, ctx->base.keylen * 8, &ctx->ks);
56    else
57        ret = aesni_set_decrypt_key(key, ctx->base.keylen * 8, &ctx->ks);
58
59    SHA256_Init(&sctx->head);    /* handy when benchmarking */
60    sctx->tail = sctx->head;
61    sctx->md = sctx->head;
62
63    ctx->payload_length = NO_PAYLOAD_LENGTH;
64
65    vctx->removetlspad = 1;
66    vctx->removetlsfixed = SHA256_DIGEST_LENGTH + AES_BLOCK_SIZE;
67
68    return ret < 0 ? 0 : 1;
69}
70
71void sha256_block_data_order(void *c, const void *p, size_t len);
72
73static void sha256_update(SHA256_CTX *c, const void *data, size_t len)
74{
75    const unsigned char *ptr = data;
76    size_t res;
77
78    if ((res = c->num)) {
79        res = SHA256_CBLOCK - res;
80        if (len < res)
81            res = len;
82        SHA256_Update(c, ptr, res);
83        ptr += res;
84        len -= res;
85    }
86
87    res = len % SHA256_CBLOCK;
88    len -= res;
89
90    if (len) {
91        sha256_block_data_order(c, ptr, len / SHA256_CBLOCK);
92
93        ptr += len;
94        c->Nh += len >> 29;
95        c->Nl += len <<= 3;
96        if (c->Nl < (unsigned int)len)
97            c->Nh++;
98    }
99
100    if (res)
101        SHA256_Update(c, ptr, res);
102}
103
104# if !defined(OPENSSL_NO_MULTIBLOCK)
105
106typedef struct {
107    unsigned int A[8], B[8], C[8], D[8], E[8], F[8], G[8], H[8];
108} SHA256_MB_CTX;
109
110typedef struct {
111    const unsigned char *ptr;
112    int blocks;
113} HASH_DESC;
114
115typedef struct {
116    const unsigned char *inp;
117    unsigned char *out;
118    int blocks;
119    u64 iv[2];
120} CIPH_DESC;
121
122void sha256_multi_block(SHA256_MB_CTX *, const HASH_DESC *, int);
123void aesni_multi_cbc_encrypt(CIPH_DESC *, void *, int);
124
125static size_t tls1_multi_block_encrypt(void *vctx,
126                                       unsigned char *out,
127                                       const unsigned char *inp,
128                                       size_t inp_len, int n4x)
129{                               /* n4x is 1 or 2 */
130    PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx;
131    PROV_AES_HMAC_SHA256_CTX *sctx = (PROV_AES_HMAC_SHA256_CTX *)vctx;
132    HASH_DESC hash_d[8], edges[8];
133    CIPH_DESC ciph_d[8];
134    unsigned char storage[sizeof(SHA256_MB_CTX) + 32];
135    union {
136        u64 q[16];
137        u32 d[32];
138        u8 c[128];
139    } blocks[8];
140    SHA256_MB_CTX *mctx;
141    unsigned int frag, last, packlen, i;
142    unsigned int x4 = 4 * n4x, minblocks, processed = 0;
143    size_t ret = 0;
144    u8 *IVs;
145#  if defined(BSWAP8)
146    u64 seqnum;
147#  endif
148
149    /* ask for IVs in bulk */
150    if (RAND_bytes_ex(ctx->base.libctx, (IVs = blocks[0].c), 16 * x4, 0) <= 0)
151        return 0;
152
153    mctx = (SHA256_MB_CTX *) (storage + 32 - ((size_t)storage % 32)); /* align */
154
155    frag = (unsigned int)inp_len >> (1 + n4x);
156    last = (unsigned int)inp_len + frag - (frag << (1 + n4x));
157    if (last > frag && ((last + 13 + 9) % 64) < (x4 - 1)) {
158        frag++;
159        last -= x4 - 1;
160    }
161
162    packlen = 5 + 16 + ((frag + 32 + 16) & -16);
163
164    /* populate descriptors with pointers and IVs */
165    hash_d[0].ptr = inp;
166    ciph_d[0].inp = inp;
167    /* 5+16 is place for header and explicit IV */
168    ciph_d[0].out = out + 5 + 16;
169    memcpy(ciph_d[0].out - 16, IVs, 16);
170    memcpy(ciph_d[0].iv, IVs, 16);
171    IVs += 16;
172
173    for (i = 1; i < x4; i++) {
174        ciph_d[i].inp = hash_d[i].ptr = hash_d[i - 1].ptr + frag;
175        ciph_d[i].out = ciph_d[i - 1].out + packlen;
176        memcpy(ciph_d[i].out - 16, IVs, 16);
177        memcpy(ciph_d[i].iv, IVs, 16);
178        IVs += 16;
179    }
180
181#  if defined(BSWAP8)
182    memcpy(blocks[0].c, sctx->md.data, 8);
183    seqnum = BSWAP8(blocks[0].q[0]);
184#  endif
185
186    for (i = 0; i < x4; i++) {
187        unsigned int len = (i == (x4 - 1) ? last : frag);
188#  if !defined(BSWAP8)
189        unsigned int carry, j;
190#  endif
191
192        mctx->A[i] = sctx->md.h[0];
193        mctx->B[i] = sctx->md.h[1];
194        mctx->C[i] = sctx->md.h[2];
195        mctx->D[i] = sctx->md.h[3];
196        mctx->E[i] = sctx->md.h[4];
197        mctx->F[i] = sctx->md.h[5];
198        mctx->G[i] = sctx->md.h[6];
199        mctx->H[i] = sctx->md.h[7];
200
201        /* fix seqnum */
202#  if defined(BSWAP8)
203        blocks[i].q[0] = BSWAP8(seqnum + i);
204#  else
205        for (carry = i, j = 8; j--;) {
206            blocks[i].c[j] = ((u8 *)sctx->md.data)[j] + carry;
207            carry = (blocks[i].c[j] - carry) >> (sizeof(carry) * 8 - 1);
208        }
209#  endif
210        blocks[i].c[8] = ((u8 *)sctx->md.data)[8];
211        blocks[i].c[9] = ((u8 *)sctx->md.data)[9];
212        blocks[i].c[10] = ((u8 *)sctx->md.data)[10];
213        /* fix length */
214        blocks[i].c[11] = (u8)(len >> 8);
215        blocks[i].c[12] = (u8)(len);
216
217        memcpy(blocks[i].c + 13, hash_d[i].ptr, 64 - 13);
218        hash_d[i].ptr += 64 - 13;
219        hash_d[i].blocks = (len - (64 - 13)) / 64;
220
221        edges[i].ptr = blocks[i].c;
222        edges[i].blocks = 1;
223    }
224
225    /* hash 13-byte headers and first 64-13 bytes of inputs */
226    sha256_multi_block(mctx, edges, n4x);
227    /* hash bulk inputs */
228#  define MAXCHUNKSIZE    2048
229#  if     MAXCHUNKSIZE%64
230#   error  "MAXCHUNKSIZE is not divisible by 64"
231#  elif   MAXCHUNKSIZE
232    /*
233     * goal is to minimize pressure on L1 cache by moving in shorter steps,
234     * so that hashed data is still in the cache by the time we encrypt it
235     */
236    minblocks = ((frag <= last ? frag : last) - (64 - 13)) / 64;
237    if (minblocks > MAXCHUNKSIZE / 64) {
238        for (i = 0; i < x4; i++) {
239            edges[i].ptr = hash_d[i].ptr;
240            edges[i].blocks = MAXCHUNKSIZE / 64;
241            ciph_d[i].blocks = MAXCHUNKSIZE / 16;
242        }
243        do {
244            sha256_multi_block(mctx, edges, n4x);
245            aesni_multi_cbc_encrypt(ciph_d, &ctx->ks, n4x);
246
247            for (i = 0; i < x4; i++) {
248                edges[i].ptr = hash_d[i].ptr += MAXCHUNKSIZE;
249                hash_d[i].blocks -= MAXCHUNKSIZE / 64;
250                edges[i].blocks = MAXCHUNKSIZE / 64;
251                ciph_d[i].inp += MAXCHUNKSIZE;
252                ciph_d[i].out += MAXCHUNKSIZE;
253                ciph_d[i].blocks = MAXCHUNKSIZE / 16;
254                memcpy(ciph_d[i].iv, ciph_d[i].out - 16, 16);
255            }
256            processed += MAXCHUNKSIZE;
257            minblocks -= MAXCHUNKSIZE / 64;
258        } while (minblocks > MAXCHUNKSIZE / 64);
259    }
260#  endif
261#  undef  MAXCHUNKSIZE
262    sha256_multi_block(mctx, hash_d, n4x);
263
264    memset(blocks, 0, sizeof(blocks));
265    for (i = 0; i < x4; i++) {
266        unsigned int len = (i == (x4 - 1) ? last : frag),
267            off = hash_d[i].blocks * 64;
268        const unsigned char *ptr = hash_d[i].ptr + off;
269
270        off = (len - processed) - (64 - 13) - off; /* remainder actually */
271        memcpy(blocks[i].c, ptr, off);
272        blocks[i].c[off] = 0x80;
273        len += 64 + 13;         /* 64 is HMAC header */
274        len *= 8;               /* convert to bits */
275        if (off < (64 - 8)) {
276#  ifdef BSWAP4
277            blocks[i].d[15] = BSWAP4(len);
278#  else
279            PUTU32(blocks[i].c + 60, len);
280#  endif
281            edges[i].blocks = 1;
282        } else {
283#  ifdef BSWAP4
284            blocks[i].d[31] = BSWAP4(len);
285#  else
286            PUTU32(blocks[i].c + 124, len);
287#  endif
288            edges[i].blocks = 2;
289        }
290        edges[i].ptr = blocks[i].c;
291    }
292
293    /* hash input tails and finalize */
294    sha256_multi_block(mctx, edges, n4x);
295
296    memset(blocks, 0, sizeof(blocks));
297    for (i = 0; i < x4; i++) {
298#  ifdef BSWAP4
299        blocks[i].d[0] = BSWAP4(mctx->A[i]);
300        mctx->A[i] = sctx->tail.h[0];
301        blocks[i].d[1] = BSWAP4(mctx->B[i]);
302        mctx->B[i] = sctx->tail.h[1];
303        blocks[i].d[2] = BSWAP4(mctx->C[i]);
304        mctx->C[i] = sctx->tail.h[2];
305        blocks[i].d[3] = BSWAP4(mctx->D[i]);
306        mctx->D[i] = sctx->tail.h[3];
307        blocks[i].d[4] = BSWAP4(mctx->E[i]);
308        mctx->E[i] = sctx->tail.h[4];
309        blocks[i].d[5] = BSWAP4(mctx->F[i]);
310        mctx->F[i] = sctx->tail.h[5];
311        blocks[i].d[6] = BSWAP4(mctx->G[i]);
312        mctx->G[i] = sctx->tail.h[6];
313        blocks[i].d[7] = BSWAP4(mctx->H[i]);
314        mctx->H[i] = sctx->tail.h[7];
315        blocks[i].c[32] = 0x80;
316        blocks[i].d[15] = BSWAP4((64 + 32) * 8);
317#  else
318        PUTU32(blocks[i].c + 0, mctx->A[i]);
319        mctx->A[i] = sctx->tail.h[0];
320        PUTU32(blocks[i].c + 4, mctx->B[i]);
321        mctx->B[i] = sctx->tail.h[1];
322        PUTU32(blocks[i].c + 8, mctx->C[i]);
323        mctx->C[i] = sctx->tail.h[2];
324        PUTU32(blocks[i].c + 12, mctx->D[i]);
325        mctx->D[i] = sctx->tail.h[3];
326        PUTU32(blocks[i].c + 16, mctx->E[i]);
327        mctx->E[i] = sctx->tail.h[4];
328        PUTU32(blocks[i].c + 20, mctx->F[i]);
329        mctx->F[i] = sctx->tail.h[5];
330        PUTU32(blocks[i].c + 24, mctx->G[i]);
331        mctx->G[i] = sctx->tail.h[6];
332        PUTU32(blocks[i].c + 28, mctx->H[i]);
333        mctx->H[i] = sctx->tail.h[7];
334        blocks[i].c[32] = 0x80;
335        PUTU32(blocks[i].c + 60, (64 + 32) * 8);
336#  endif /* BSWAP */
337        edges[i].ptr = blocks[i].c;
338        edges[i].blocks = 1;
339    }
340
341    /* finalize MACs */
342    sha256_multi_block(mctx, edges, n4x);
343
344    for (i = 0; i < x4; i++) {
345        unsigned int len = (i == (x4 - 1) ? last : frag), pad, j;
346        unsigned char *out0 = out;
347
348        memcpy(ciph_d[i].out, ciph_d[i].inp, len - processed);
349        ciph_d[i].inp = ciph_d[i].out;
350
351        out += 5 + 16 + len;
352
353        /* write MAC */
354        PUTU32(out + 0, mctx->A[i]);
355        PUTU32(out + 4, mctx->B[i]);
356        PUTU32(out + 8, mctx->C[i]);
357        PUTU32(out + 12, mctx->D[i]);
358        PUTU32(out + 16, mctx->E[i]);
359        PUTU32(out + 20, mctx->F[i]);
360        PUTU32(out + 24, mctx->G[i]);
361        PUTU32(out + 28, mctx->H[i]);
362        out += 32;
363        len += 32;
364
365        /* pad */
366        pad = 15 - len % 16;
367        for (j = 0; j <= pad; j++)
368            *(out++) = pad;
369        len += pad + 1;
370
371        ciph_d[i].blocks = (len - processed) / 16;
372        len += 16;              /* account for explicit iv */
373
374        /* arrange header */
375        out0[0] = ((u8 *)sctx->md.data)[8];
376        out0[1] = ((u8 *)sctx->md.data)[9];
377        out0[2] = ((u8 *)sctx->md.data)[10];
378        out0[3] = (u8)(len >> 8);
379        out0[4] = (u8)(len);
380
381        ret += len + 5;
382        inp += frag;
383    }
384
385    aesni_multi_cbc_encrypt(ciph_d, &ctx->ks, n4x);
386
387    OPENSSL_cleanse(blocks, sizeof(blocks));
388    OPENSSL_cleanse(mctx, sizeof(*mctx));
389
390    ctx->multiblock_encrypt_len = ret;
391    return ret;
392}
393# endif /* !OPENSSL_NO_MULTIBLOCK */
394
395static int aesni_cbc_hmac_sha256_cipher(PROV_CIPHER_CTX *vctx,
396                                        unsigned char *out,
397                                        const unsigned char *in, size_t len)
398{
399    PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx;
400    PROV_AES_HMAC_SHA256_CTX *sctx = (PROV_AES_HMAC_SHA256_CTX *)vctx;
401    unsigned int l;
402    size_t plen = ctx->payload_length;
403    size_t iv = 0; /* explicit IV in TLS 1.1 and * later */
404    size_t aes_off = 0, blocks;
405    size_t sha_off = SHA256_CBLOCK - sctx->md.num;
406
407    ctx->payload_length = NO_PAYLOAD_LENGTH;
408
409    if (len % AES_BLOCK_SIZE)
410        return 0;
411
412    if (ctx->base.enc) {
413        if (plen == NO_PAYLOAD_LENGTH)
414            plen = len;
415        else if (len !=
416                 ((plen + SHA256_DIGEST_LENGTH +
417                   AES_BLOCK_SIZE) & -AES_BLOCK_SIZE))
418            return 0;
419        else if (ctx->aux.tls_ver >= TLS1_1_VERSION)
420            iv = AES_BLOCK_SIZE;
421
422        /*
423         * Assembly stitch handles AVX-capable processors, but its
424         * performance is not optimal on AMD Jaguar, ~40% worse, for
425         * unknown reasons. Incidentally processor in question supports
426         * AVX, but not AMD-specific XOP extension, which can be used
427         * to identify it and avoid stitch invocation. So that after we
428         * establish that current CPU supports AVX, we even see if it's
429         * either even XOP-capable Bulldozer-based or GenuineIntel one.
430         * But SHAEXT-capable go ahead...
431         */
432        if (((OPENSSL_ia32cap_P[2] & (1 << 29)) ||         /* SHAEXT? */
433             ((OPENSSL_ia32cap_P[1] & (1 << (60 - 32))) && /* AVX? */
434              ((OPENSSL_ia32cap_P[1] & (1 << (43 - 32)))   /* XOP? */
435               | (OPENSSL_ia32cap_P[0] & (1 << 30))))) &&  /* "Intel CPU"? */
436            plen > (sha_off + iv) &&
437            (blocks = (plen - (sha_off + iv)) / SHA256_CBLOCK)) {
438            sha256_update(&sctx->md, in + iv, sha_off);
439
440            (void)aesni_cbc_sha256_enc(in, out, blocks, &ctx->ks,
441                                       ctx->base.iv,
442                                       &sctx->md, in + iv + sha_off);
443            blocks *= SHA256_CBLOCK;
444            aes_off += blocks;
445            sha_off += blocks;
446            sctx->md.Nh += blocks >> 29;
447            sctx->md.Nl += blocks <<= 3;
448            if (sctx->md.Nl < (unsigned int)blocks)
449                sctx->md.Nh++;
450        } else {
451            sha_off = 0;
452        }
453        sha_off += iv;
454        sha256_update(&sctx->md, in + sha_off, plen - sha_off);
455
456        if (plen != len) {      /* "TLS" mode of operation */
457            if (in != out)
458                memcpy(out + aes_off, in + aes_off, plen - aes_off);
459
460            /* calculate HMAC and append it to payload */
461            SHA256_Final(out + plen, &sctx->md);
462            sctx->md = sctx->tail;
463            sha256_update(&sctx->md, out + plen, SHA256_DIGEST_LENGTH);
464            SHA256_Final(out + plen, &sctx->md);
465
466            /* pad the payload|hmac */
467            plen += SHA256_DIGEST_LENGTH;
468            for (l = len - plen - 1; plen < len; plen++)
469                out[plen] = l;
470            /* encrypt HMAC|padding at once */
471            aesni_cbc_encrypt(out + aes_off, out + aes_off, len - aes_off,
472                              &ctx->ks, ctx->base.iv, 1);
473        } else {
474            aesni_cbc_encrypt(in + aes_off, out + aes_off, len - aes_off,
475                              &ctx->ks, ctx->base.iv, 1);
476        }
477    } else {
478        union {
479            unsigned int u[SHA256_DIGEST_LENGTH / sizeof(unsigned int)];
480            unsigned char c[64 + SHA256_DIGEST_LENGTH];
481        } mac, *pmac;
482
483        /* arrange cache line alignment */
484        pmac = (void *)(((size_t)mac.c + 63) & ((size_t)0 - 64));
485
486        /* decrypt HMAC|padding at once */
487        aesni_cbc_encrypt(in, out, len, &ctx->ks,
488                          ctx->base.iv, 0);
489
490        if (plen != NO_PAYLOAD_LENGTH) { /* "TLS" mode of operation */
491            size_t inp_len, mask, j, i;
492            unsigned int res, maxpad, pad, bitlen;
493            int ret = 1;
494            union {
495                unsigned int u[SHA_LBLOCK];
496                unsigned char c[SHA256_CBLOCK];
497            } *data = (void *)sctx->md.data;
498
499            if ((ctx->aux.tls_aad[plen - 4] << 8 | ctx->aux.tls_aad[plen - 3])
500                >= TLS1_1_VERSION)
501                iv = AES_BLOCK_SIZE;
502
503            if (len < (iv + SHA256_DIGEST_LENGTH + 1))
504                return 0;
505
506            /* omit explicit iv */
507            out += iv;
508            len -= iv;
509
510            /* figure out payload length */
511            pad = out[len - 1];
512            maxpad = len - (SHA256_DIGEST_LENGTH + 1);
513            maxpad |= (255 - maxpad) >> (sizeof(maxpad) * 8 - 8);
514            maxpad &= 255;
515
516            mask = constant_time_ge(maxpad, pad);
517            ret &= mask;
518            /*
519             * If pad is invalid then we will fail the above test but we must
520             * continue anyway because we are in constant time code. However,
521             * we'll use the maxpad value instead of the supplied pad to make
522             * sure we perform well defined pointer arithmetic.
523             */
524            pad = constant_time_select(mask, pad, maxpad);
525
526            inp_len = len - (SHA256_DIGEST_LENGTH + pad + 1);
527
528            ctx->aux.tls_aad[plen - 2] = inp_len >> 8;
529            ctx->aux.tls_aad[plen - 1] = inp_len;
530
531            /* calculate HMAC */
532            sctx->md = sctx->head;
533            sha256_update(&sctx->md, ctx->aux.tls_aad, plen);
534
535            /* code with lucky-13 fix */
536            len -= SHA256_DIGEST_LENGTH; /* amend mac */
537            if (len >= (256 + SHA256_CBLOCK)) {
538                j = (len - (256 + SHA256_CBLOCK)) & (0 - SHA256_CBLOCK);
539                j += SHA256_CBLOCK - sctx->md.num;
540                sha256_update(&sctx->md, out, j);
541                out += j;
542                len -= j;
543                inp_len -= j;
544            }
545
546            /* but pretend as if we hashed padded payload */
547            bitlen = sctx->md.Nl + (inp_len << 3); /* at most 18 bits */
548# ifdef BSWAP4
549            bitlen = BSWAP4(bitlen);
550# else
551            mac.c[0] = 0;
552            mac.c[1] = (unsigned char)(bitlen >> 16);
553            mac.c[2] = (unsigned char)(bitlen >> 8);
554            mac.c[3] = (unsigned char)bitlen;
555            bitlen = mac.u[0];
556# endif /* BSWAP */
557
558            pmac->u[0] = 0;
559            pmac->u[1] = 0;
560            pmac->u[2] = 0;
561            pmac->u[3] = 0;
562            pmac->u[4] = 0;
563            pmac->u[5] = 0;
564            pmac->u[6] = 0;
565            pmac->u[7] = 0;
566
567            for (res = sctx->md.num, j = 0; j < len; j++) {
568                size_t c = out[j];
569                mask = (j - inp_len) >> (sizeof(j) * 8 - 8);
570                c &= mask;
571                c |= 0x80 & ~mask & ~((inp_len - j) >> (sizeof(j) * 8 - 8));
572                data->c[res++] = (unsigned char)c;
573
574                if (res != SHA256_CBLOCK)
575                    continue;
576
577                /* j is not incremented yet */
578                mask = 0 - ((inp_len + 7 - j) >> (sizeof(j) * 8 - 1));
579                data->u[SHA_LBLOCK - 1] |= bitlen & mask;
580                sha256_block_data_order(&sctx->md, data, 1);
581                mask &= 0 - ((j - inp_len - 72) >> (sizeof(j) * 8 - 1));
582                pmac->u[0] |= sctx->md.h[0] & mask;
583                pmac->u[1] |= sctx->md.h[1] & mask;
584                pmac->u[2] |= sctx->md.h[2] & mask;
585                pmac->u[3] |= sctx->md.h[3] & mask;
586                pmac->u[4] |= sctx->md.h[4] & mask;
587                pmac->u[5] |= sctx->md.h[5] & mask;
588                pmac->u[6] |= sctx->md.h[6] & mask;
589                pmac->u[7] |= sctx->md.h[7] & mask;
590                res = 0;
591            }
592
593            for (i = res; i < SHA256_CBLOCK; i++, j++)
594                data->c[i] = 0;
595
596            if (res > SHA256_CBLOCK - 8) {
597                mask = 0 - ((inp_len + 8 - j) >> (sizeof(j) * 8 - 1));
598                data->u[SHA_LBLOCK - 1] |= bitlen & mask;
599                sha256_block_data_order(&sctx->md, data, 1);
600                mask &= 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1));
601                pmac->u[0] |= sctx->md.h[0] & mask;
602                pmac->u[1] |= sctx->md.h[1] & mask;
603                pmac->u[2] |= sctx->md.h[2] & mask;
604                pmac->u[3] |= sctx->md.h[3] & mask;
605                pmac->u[4] |= sctx->md.h[4] & mask;
606                pmac->u[5] |= sctx->md.h[5] & mask;
607                pmac->u[6] |= sctx->md.h[6] & mask;
608                pmac->u[7] |= sctx->md.h[7] & mask;
609
610                memset(data, 0, SHA256_CBLOCK);
611                j += 64;
612            }
613            data->u[SHA_LBLOCK - 1] = bitlen;
614            sha256_block_data_order(&sctx->md, data, 1);
615            mask = 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1));
616            pmac->u[0] |= sctx->md.h[0] & mask;
617            pmac->u[1] |= sctx->md.h[1] & mask;
618            pmac->u[2] |= sctx->md.h[2] & mask;
619            pmac->u[3] |= sctx->md.h[3] & mask;
620            pmac->u[4] |= sctx->md.h[4] & mask;
621            pmac->u[5] |= sctx->md.h[5] & mask;
622            pmac->u[6] |= sctx->md.h[6] & mask;
623            pmac->u[7] |= sctx->md.h[7] & mask;
624
625# ifdef BSWAP4
626            pmac->u[0] = BSWAP4(pmac->u[0]);
627            pmac->u[1] = BSWAP4(pmac->u[1]);
628            pmac->u[2] = BSWAP4(pmac->u[2]);
629            pmac->u[3] = BSWAP4(pmac->u[3]);
630            pmac->u[4] = BSWAP4(pmac->u[4]);
631            pmac->u[5] = BSWAP4(pmac->u[5]);
632            pmac->u[6] = BSWAP4(pmac->u[6]);
633            pmac->u[7] = BSWAP4(pmac->u[7]);
634# else
635            for (i = 0; i < 8; i++) {
636                res = pmac->u[i];
637                pmac->c[4 * i + 0] = (unsigned char)(res >> 24);
638                pmac->c[4 * i + 1] = (unsigned char)(res >> 16);
639                pmac->c[4 * i + 2] = (unsigned char)(res >> 8);
640                pmac->c[4 * i + 3] = (unsigned char)res;
641            }
642# endif /* BSWAP */
643            len += SHA256_DIGEST_LENGTH;
644            sctx->md = sctx->tail;
645            sha256_update(&sctx->md, pmac->c, SHA256_DIGEST_LENGTH);
646            SHA256_Final(pmac->c, &sctx->md);
647
648            /* verify HMAC */
649            out += inp_len;
650            len -= inp_len;
651            /* code containing lucky-13 fix */
652            {
653                unsigned char *p =
654                    out + len - 1 - maxpad - SHA256_DIGEST_LENGTH;
655                size_t off = out - p;
656                unsigned int c, cmask;
657
658                for (res = 0, i = 0, j = 0;
659                     j < maxpad + SHA256_DIGEST_LENGTH;
660                     j++) {
661                    c = p[j];
662                    cmask =
663                        ((int)(j - off - SHA256_DIGEST_LENGTH)) >>
664                        (sizeof(int) * 8 - 1);
665                    res |= (c ^ pad) & ~cmask; /* ... and padding */
666                    cmask &= ((int)(off - 1 - j)) >> (sizeof(int) * 8 - 1);
667                    res |= (c ^ pmac->c[i]) & cmask;
668                    i += 1 & cmask;
669                }
670
671                res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1));
672                ret &= (int)~res;
673            }
674            return ret;
675        } else {
676            sha256_update(&sctx->md, out, len);
677        }
678    }
679
680    return 1;
681}
682
683/* EVP_CTRL_AEAD_SET_MAC_KEY */
684static void aesni_cbc_hmac_sha256_set_mac_key(void *vctx,
685                                              const unsigned char *mackey,
686                                              size_t len)
687{
688    PROV_AES_HMAC_SHA256_CTX *ctx = (PROV_AES_HMAC_SHA256_CTX *)vctx;
689    unsigned int i;
690    unsigned char hmac_key[64];
691
692    memset(hmac_key, 0, sizeof(hmac_key));
693
694    if (len > sizeof(hmac_key)) {
695        SHA256_Init(&ctx->head);
696        sha256_update(&ctx->head, mackey, len);
697        SHA256_Final(hmac_key, &ctx->head);
698    } else {
699        memcpy(hmac_key, mackey, len);
700    }
701
702    for (i = 0; i < sizeof(hmac_key); i++)
703        hmac_key[i] ^= 0x36; /* ipad */
704    SHA256_Init(&ctx->head);
705    sha256_update(&ctx->head, hmac_key, sizeof(hmac_key));
706
707    for (i = 0; i < sizeof(hmac_key); i++)
708        hmac_key[i] ^= 0x36 ^ 0x5c; /* opad */
709    SHA256_Init(&ctx->tail);
710    sha256_update(&ctx->tail, hmac_key, sizeof(hmac_key));
711
712    OPENSSL_cleanse(hmac_key, sizeof(hmac_key));
713}
714
715/* EVP_CTRL_AEAD_TLS1_AAD */
716static int aesni_cbc_hmac_sha256_set_tls1_aad(void *vctx,
717                                              unsigned char *aad_rec, int aad_len)
718{
719    PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx;
720    PROV_AES_HMAC_SHA256_CTX *sctx = (PROV_AES_HMAC_SHA256_CTX *)vctx;
721    unsigned char *p = aad_rec;
722    unsigned int len;
723
724    if (aad_len != EVP_AEAD_TLS1_AAD_LEN)
725        return -1;
726
727    len = p[aad_len - 2] << 8 | p[aad_len - 1];
728
729    if (ctx->base.enc) {
730        ctx->payload_length = len;
731        if ((ctx->aux.tls_ver =
732             p[aad_len - 4] << 8 | p[aad_len - 3]) >= TLS1_1_VERSION) {
733            if (len < AES_BLOCK_SIZE)
734                return 0;
735            len -= AES_BLOCK_SIZE;
736            p[aad_len - 2] = len >> 8;
737            p[aad_len - 1] = len;
738        }
739        sctx->md = sctx->head;
740        sha256_update(&sctx->md, p, aad_len);
741        ctx->tls_aad_pad = (int)(((len + SHA256_DIGEST_LENGTH +
742                                   AES_BLOCK_SIZE) & -AES_BLOCK_SIZE)
743                                   - len);
744        return 1;
745    } else {
746        memcpy(ctx->aux.tls_aad, p, aad_len);
747        ctx->payload_length = aad_len;
748        ctx->tls_aad_pad = SHA256_DIGEST_LENGTH;
749        return 1;
750    }
751}
752
753# if !defined(OPENSSL_NO_MULTIBLOCK)
754/* EVP_CTRL_TLS1_1_MULTIBLOCK_MAX_BUFSIZE */
755static int aesni_cbc_hmac_sha256_tls1_multiblock_max_bufsize(
756    void *vctx)
757{
758    PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx;
759
760    OPENSSL_assert(ctx->multiblock_max_send_fragment != 0);
761    return (int)(5 + 16
762                 + (((int)ctx->multiblock_max_send_fragment + 32 + 16) & -16));
763}
764
765/* EVP_CTRL_TLS1_1_MULTIBLOCK_AAD */
766static int aesni_cbc_hmac_sha256_tls1_multiblock_aad(
767    void *vctx, EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param)
768{
769    PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx;
770    PROV_AES_HMAC_SHA256_CTX *sctx = (PROV_AES_HMAC_SHA256_CTX *)vctx;
771    unsigned int n4x = 1, x4;
772    unsigned int frag, last, packlen, inp_len;
773
774    inp_len = param->inp[11] << 8 | param->inp[12];
775
776    if (ctx->base.enc) {
777        if ((param->inp[9] << 8 | param->inp[10]) < TLS1_1_VERSION)
778            return -1;
779
780        if (inp_len) {
781            if (inp_len < 4096)
782                return 0; /* too short */
783
784            if (inp_len >= 8192 && OPENSSL_ia32cap_P[2] & (1 << 5))
785                n4x = 2; /* AVX2 */
786        } else if ((n4x = param->interleave / 4) && n4x <= 2)
787            inp_len = param->len;
788        else
789            return -1;
790
791        sctx->md = sctx->head;
792        sha256_update(&sctx->md, param->inp, 13);
793
794        x4 = 4 * n4x;
795        n4x += 1;
796
797        frag = inp_len >> n4x;
798        last = inp_len + frag - (frag << n4x);
799        if (last > frag && ((last + 13 + 9) % 64 < (x4 - 1))) {
800            frag++;
801            last -= x4 - 1;
802        }
803
804        packlen = 5 + 16 + ((frag + 32 + 16) & -16);
805        packlen = (packlen << n4x) - packlen;
806        packlen += 5 + 16 + ((last + 32 + 16) & -16);
807
808        param->interleave = x4;
809        /* The returned values used by get need to be stored */
810        ctx->multiblock_interleave = x4;
811        ctx->multiblock_aad_packlen = packlen;
812        return 1;
813    }
814    return -1;      /* not yet */
815}
816
817/* EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT */
818static int aesni_cbc_hmac_sha256_tls1_multiblock_encrypt(
819    void *ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param)
820{
821    return (int)tls1_multi_block_encrypt(ctx, param->out,
822                                         param->inp, param->len,
823                                         param->interleave / 4);
824}
825# endif
826
827static const PROV_CIPHER_HW_AES_HMAC_SHA cipher_hw_aes_hmac_sha256 = {
828    {
829      aesni_cbc_hmac_sha256_init_key,
830      aesni_cbc_hmac_sha256_cipher
831    },
832    aesni_cbc_hmac_sha256_set_mac_key,
833    aesni_cbc_hmac_sha256_set_tls1_aad,
834# if !defined(OPENSSL_NO_MULTIBLOCK)
835    aesni_cbc_hmac_sha256_tls1_multiblock_max_bufsize,
836    aesni_cbc_hmac_sha256_tls1_multiblock_aad,
837    aesni_cbc_hmac_sha256_tls1_multiblock_encrypt
838# endif
839};
840
841const PROV_CIPHER_HW_AES_HMAC_SHA *ossl_prov_cipher_hw_aes_cbc_hmac_sha256(void)
842{
843    return &cipher_hw_aes_hmac_sha256;
844}
845
846#endif /* !defined(AES_CBC_HMAC_SHA_CAPABLE) || !defined(AESNI_CAPABLE) */
847