1/* refclock_ees - clock driver for the EES M201 receiver */
2
3#ifdef HAVE_CONFIG_H
4#include <config.h>
5#endif
6
7#if defined(REFCLOCK) && defined(CLOCK_MSFEES) && defined(PPS)
8
9/* Currently REQUIRES STREAM and PPSCD. CLK and CBREAK modes
10 * were removed as the code was overly hairy, they weren't in use
11 * (hence probably didn't work).  Still in RCS file at cl.cam.ac.uk
12 */
13
14#include "ntpd.h"
15#include "ntp_io.h"
16#include "ntp_refclock.h"
17#include "ntp_unixtime.h"
18#include "ntp_calendar.h"
19
20#include <ctype.h>
21#if defined(HAVE_BSD_TTYS)
22#include <sgtty.h>
23#endif /* HAVE_BSD_TTYS */
24#if defined(HAVE_SYSV_TTYS)
25#include <termio.h>
26#endif /* HAVE_SYSV_TTYS */
27#if defined(HAVE_TERMIOS)
28#include <termios.h>
29#endif
30#if defined(STREAM)
31#include <stropts.h>
32#endif
33
34#ifdef HAVE_SYS_TERMIOS_H
35# include <sys/termios.h>
36#endif
37#ifdef HAVE_SYS_PPSCLOCK_H
38# include <sys/ppsclock.h>
39#endif
40
41#include "ntp_stdlib.h"
42
43int dbg = 0;
44/*
45	fudgefactor	= fudgetime1;
46	os_delay	= fudgetime2;
47	   offset_fudge	= os_delay + fudgefactor + inherent_delay;
48	stratumtouse	= fudgeval1 & 0xf
49	dbg		= fudgeval2;
50	sloppyclockflag	= flags & CLK_FLAG1;
51		1	  log smoothing summary when processing sample
52		4	  dump the buffer from the clock
53		8	  EIOGETKD the last n uS time stamps
54	if (flags & CLK_FLAG2 && unitinuse) ees->leaphold = 0;
55	ees->dump_vals	= flags & CLK_FLAG3;
56	ees->usealldata	= flags & CLK_FLAG4;
57
58
59	bug->values[0] = (ees->lasttime) ? current_time - ees->lasttime : 0;
60	bug->values[1] = (ees->clocklastgood)?current_time-ees->clocklastgood:0;
61	bug->values[2] = (u_long)ees->status;
62	bug->values[3] = (u_long)ees->lastevent;
63	bug->values[4] = (u_long)ees->reason;
64	bug->values[5] = (u_long)ees->nsamples;
65	bug->values[6] = (u_long)ees->codestate;
66	bug->values[7] = (u_long)ees->day;
67	bug->values[8] = (u_long)ees->hour;
68	bug->values[9] = (u_long)ees->minute;
69	bug->values[10] = (u_long)ees->second;
70	bug->values[11] = (u_long)ees->tz;
71	bug->values[12] = ees->yearstart;
72	bug->values[13] = (ees->leaphold > current_time) ?
73				ees->leaphold - current_time : 0;
74	bug->values[14] = inherent_delay[unit].l_uf;
75	bug->values[15] = offset_fudge[unit].l_uf;
76
77	bug->times[0] = ees->reftime;
78	bug->times[1] = ees->arrvtime;
79	bug->times[2] = ees->lastsampletime;
80	bug->times[3] = ees->offset;
81	bug->times[4] = ees->lowoffset;
82	bug->times[5] = ees->highoffset;
83	bug->times[6] = inherent_delay[unit];
84	bug->times[8] = os_delay[unit];
85	bug->times[7] = fudgefactor[unit];
86	bug->times[9] = offset_fudge[unit];
87	bug->times[10]= ees->yearstart, 0;
88	*/
89
90/* This should support the use of an EES M201 receiver with RS232
91 * output (modified to transmit time once per second).
92 *
93 * For the format of the message sent by the clock, see the EESM_
94 * definitions below.
95 *
96 * It appears to run free for an integral number of minutes, until the error
97 * reaches 4mS, at which point it steps at second = 01.
98 * It appears that sometimes it steps 4mS (say at 7 min interval),
99 * then the next minute it decides that it was an error, so steps back.
100 * On the next minute it steps forward again :-(
101 * This is typically 16.5uS/S then 3975uS at the 4min re-sync,
102 * or 9.5uS/S then 3990.5uS at a 7min re-sync,
103 * at which point it may lose the "00" second time stamp.
104 * I assume that the most accurate time is just AFTER the re-sync.
105 * Hence remember the last cycle interval,
106 *
107 * Can run in any one of:
108 *
109 *	PPSCD	PPS signal sets CD which interupts, and grabs the current TOD
110 *	(sun)		*in the interupt code*, so as to avoid problems with
111 *			the STREAMS scheduling.
112 *
113 * It appears that it goes 16.5 uS slow each second, then every 4 mins it
114 * generates no "00" second tick, and gains 3975 uS. Ho Hum ! (93/2/7)
115 */
116
117/* Definitions */
118#ifndef	MAXUNITS
119#define	MAXUNITS	4	/* maximum number of EES units permitted */
120#endif
121
122#ifndef	EES232
123#define	EES232	"/dev/ees%d"	/* Device to open to read the data */
124#endif
125
126/* Other constant stuff */
127#ifndef	EESPRECISION
128#define	EESPRECISION	(-10)		/* what the heck - 2**-10 = 1ms */
129#endif
130#ifndef	EESREFID
131#define	EESREFID	"MSF\0"		/* String to identify the clock */
132#endif
133#ifndef	EESHSREFID
134#define	EESHSREFID	(0x7f7f0000 | ((REFCLK_MSF_EES) << 8)) /* Numeric refid */
135#endif
136
137/* Description of clock */
138#define	EESDESCRIPTION		"EES M201 MSF Receiver"
139
140/* Speed we run the clock port at. If this is changed the UARTDELAY
141 * value should be recomputed to suit.
142 */
143#ifndef	SPEED232
144#define	SPEED232	B9600	/* 9600 baud */
145#endif
146
147/* What is the inherent delay for this mode of working, i.e. when is the
148 * data time stamped.
149 */
150#define	SAFETY_SHIFT	10	/* Split the shift to avoid overflow */
151#define	BITS_TO_L_FP(bits, baud) \
152(((((bits)*2 +1) << (FRACTION_PREC-SAFETY_SHIFT)) / (2*baud)) << SAFETY_SHIFT)
153#define	INH_DELAY_CBREAK	BITS_TO_L_FP(119, 9600)
154#define	INH_DELAY_PPS		BITS_TO_L_FP(  0, 9600)
155
156#ifndef	STREAM_PP1
157#define	STREAM_PP1	"ppsclocd\0<-- patch space for module name1 -->"
158#endif
159#ifndef	STREAM_PP2
160#define	STREAM_PP2	"ppsclock\0<-- patch space for module name2 -->"
161#endif
162
163     /* Offsets of the bytes of the serial line code.  The clock gives
164 * local time with a GMT/BST indication. The EESM_ definitions
165 * give offsets into ees->lastcode.
166 */
167#define EESM_CSEC	 0	/* centiseconds - always zero in our clock  */
168#define EESM_SEC	 1	/* seconds in BCD			    */
169#define EESM_MIN	 2	/* minutes in BCD			    */
170#define EESM_HOUR	 3	/* hours in BCD				    */
171#define EESM_DAYWK	 4	/* day of week (Sun = 0 etc)		    */
172#define EESM_DAY	 5	/* day of month in BCD			    */
173#define EESM_MON	 6	/* month in BCD				    */
174#define EESM_YEAR	 7	/* year MOD 100 in BCD			    */
175#define EESM_LEAP	 8	/* 0x0f if leap year, otherwise zero        */
176#define EESM_BST	 9	/* 0x03 if BST, 0x00 if GMT		    */
177#define EESM_MSFOK	10	/* 0x3f if radio good, otherwise zero	    */
178				/* followed by a frame alignment byte (0xff) /
179				/  which is not put into the lastcode buffer*/
180
181/* Length of the serial time code, in characters.  The first length
182 * is less the frame alignment byte.
183 */
184#define	LENEESPRT	(EESM_MSFOK+1)
185#define	LENEESCODE	(LENEESPRT+1)
186
187     /* Code state. */
188#define	EESCS_WAIT	0       /* waiting for start of timecode */
189#define	EESCS_GOTSOME	1	/* have an incomplete time code buffered */
190
191     /* Default fudge factor and character to receive */
192#define	DEFFUDGETIME	0	/* Default user supplied fudge factor */
193#ifndef	DEFOSTIME
194#define	DEFOSTIME	0	/* Default OS delay -- passed by Make ? */
195#endif
196#define	DEFINHTIME	INH_DELAY_PPS /* inherent delay due to sample point*/
197
198     /* Limits on things.  Reduce the number of samples to SAMPLEREDUCE by median
199 * elimination.  If we're running with an accurate clock, chose the BESTSAMPLE
200 * as the estimated offset, otherwise average the remainder.
201 */
202#define	FULLSHIFT	6			/* NCODES root 2 */
203#define NCODES		(1<< FULLSHIFT)		/* 64 */
204#define	REDUCESHIFT	(FULLSHIFT -1)		/* SAMPLEREDUCE root 2 */
205
206     /* Towards the high ( Why ?) end of half */
207#define	BESTSAMPLE	((samplereduce * 3) /4)	/* 24 */
208
209     /* Leap hold time.  After a leap second the clock will no longer be
210 * reliable until it resynchronizes.  Hope 40 minutes is enough. */
211#define	EESLEAPHOLD	(40 * 60)
212
213#define	EES_STEP_F	(1 << 24) /* the receiver steps in units of about 4ms */
214#define	EES_STEP_F_GRACE (EES_STEP_F/8) /*Allow for slop of 1/8 which is .5ms*/
215#define	EES_STEP_NOTE	(1 << 21)/* Log any unexpected jumps, say .5 ms .... */
216#define	EES_STEP_NOTES	50	/* Only do a limited number */
217#define	MAX_STEP	16	/* Max number of steps to remember */
218
219     /* debug is a bit mask of debugging that is wanted */
220#define	DB_SYSLOG_SMPLI		0x0001
221#define	DB_SYSLOG_SMPLE		0x0002
222#define	DB_SYSLOG_SMTHI		0x0004
223#define	DB_SYSLOG_NSMTHE	0x0008
224#define	DB_SYSLOG_NSMTHI	0x0010
225#define	DB_SYSLOG_SMTHE		0x0020
226#define	DB_PRINT_EV		0x0040
227#define	DB_PRINT_CDT		0x0080
228#define	DB_PRINT_CDTC		0x0100
229#define	DB_SYSLOG_KEEPD		0x0800
230#define	DB_SYSLOG_KEEPE		0x1000
231#define	DB_LOG_DELTAS		0x2000
232#define	DB_PRINT_DELTAS		0x4000
233#define	DB_LOG_AWAITMORE	0x8000
234#define	DB_LOG_SAMPLES		0x10000
235#define	DB_NO_PPS		0x20000
236#define	DB_INC_PPS		0x40000
237#define	DB_DUMP_DELTAS		0x80000
238
239     struct eesunit {			/* EES unit control structure. */
240	     struct peer *peer;		/* associated peer structure */
241	     struct refclockio io;		/* given to the I/O handler */
242	     l_fp	reftime;		/* reference time */
243	     l_fp	lastsampletime;		/* time as in txt from last EES msg */
244	     l_fp	arrvtime;		/* Time at which pkt arrived */
245	     l_fp	codeoffsets[NCODES];	/* the time of arrival of 232 codes */
246	     l_fp	offset;			/* chosen offset        (for clkbug) */
247	     l_fp	lowoffset;		/* lowest sample offset (for clkbug) */
248	     l_fp	highoffset;		/* highest   "     "    (for clkbug) */
249	     char	lastcode[LENEESCODE+6];	/* last time code we received */
250	     u_long	lasttime;		/* last time clock heard from */
251	     u_long	clocklastgood;		/* last time good radio seen */
252	     u_char	lencode;		/* length of code in buffer */
253	     u_char	nsamples;		/* number of samples we've collected */
254	     u_char	codestate;		/* state of 232 code reception */
255	     u_char	unit;			/* unit number for this guy */
256	     u_char	status;			/* clock status */
257	     u_char	lastevent;		/* last clock event */
258	     u_char	reason;			/* reason for last abort */
259	     u_char	hour;			/* hour of day */
260	     u_char	minute;			/* minute of hour */
261	     u_char	second;			/* seconds of minute */
262	     char	tz;			/* timezone from clock */
263	     u_char	ttytype;		/* method used */
264	     u_char	dump_vals;		/* Should clock values be dumped */
265	     u_char	usealldata;		/* Use ALL samples */
266	     u_short	day;			/* day of year from last code */
267	     u_long	yearstart;		/* start of current year */
268	     u_long	leaphold;		/* time of leap hold expiry */
269	     u_long	badformat;		/* number of bad format codes */
270	     u_long	baddata;		/* number of invalid time codes */
271	     u_long	timestarted;		/* time we started this */
272	     long	last_pps_no;		/* The serial # of the last PPS */
273	     char	fix_pending;		/* Is a "sync to time" pending ? */
274	     /* Fine tuning - compensate for 4 mS ramping .... */
275	     l_fp	last_l;			/* last time stamp */
276	     u_char	last_steps[MAX_STEP];	/* Most recent n steps */
277	     int	best_av_step;		/* Best guess at average step */
278	     char	best_av_step_count;	/* # of steps over used above */
279	     char	this_step;		/* Current pos in buffer */
280	     int	last_step_late;		/* How late the last step was (0-59) */
281	     long	jump_fsecs;		/* # of fractions of a sec last jump */
282	     u_long	last_step;		/* time of last step */
283	     int	last_step_secs;		/* Number of seconds in last step */
284	     int	using_ramp;		/* 1 -> noemal, -1 -> over stepped */
285     };
286#define	last_sec	last_l.l_ui
287#define	last_sfsec	last_l.l_f
288#define	this_uisec	((ees->arrvtime).l_ui)
289#define	this_sfsec	((ees->arrvtime).l_f)
290#define	msec(x)		((x) / (1<<22))
291#define	LAST_STEPS	(sizeof ees->last_steps / sizeof ees->last_steps[0])
292#define	subms(x)	((((((x < 0) ? (-(x)) : (x)) % (1<<22))/2) * 625) / (1<<(22 -5)))
293
294/* Bitmask for what methods to try to use -- currently only PPS enabled */
295#define	T_CBREAK	1
296#define	T_PPS		8
297/* macros to test above */
298#define	is_cbreak(x)	((x)->ttytype & T_CBREAK)
299#define	is_pps(x)	((x)->ttytype & T_PPS)
300#define	is_any(x)	((x)->ttytype)
301
302#define	CODEREASON	20	/* reason codes */
303
304/* Data space for the unit structures.  Note that we allocate these on
305 * the fly, but never give them back. */
306static struct eesunit *eesunits[MAXUNITS];
307static u_char unitinuse[MAXUNITS];
308
309/* Keep the fudge factors separately so they can be set even
310 * when no clock is configured. */
311static l_fp inherent_delay[MAXUNITS];		/* when time stamp is taken */
312static l_fp fudgefactor[MAXUNITS];		/* fudgetime1 */
313static l_fp os_delay[MAXUNITS];			/* fudgetime2 */
314static l_fp offset_fudge[MAXUNITS];		/* Sum of above */
315static u_char stratumtouse[MAXUNITS];
316static u_char sloppyclockflag[MAXUNITS];
317
318static int deltas[60];
319
320static l_fp acceptable_slop; /* = { 0, 1 << (FRACTION_PREC -2) }; */
321static l_fp onesec; /* = { 1, 0 }; */
322
323#ifndef	DUMP_BUF_SIZE	/* Size of buffer to be used by dump_buf */
324#define	DUMP_BUF_SIZE	10112
325#endif
326
327/* ees_reset - reset the count back to zero */
328#define	ees_reset(ees) (ees)->nsamples = 0; \
329(ees)->codestate = EESCS_WAIT
330
331/* ees_event - record and report an event */
332#define	ees_event(ees, evcode) if ((ees)->status != (u_char)(evcode)) \
333ees_report_event((ees), (evcode))
334
335     /* Find the precision of the system clock by reading it */
336#define	USECS	1000000
337#define	MINSTEP	5	/* some systems increment uS on each call */
338#define	MAXLOOPS (USECS/9)
339
340/*
341 * Function prototypes
342 */
343
344static	int	msfees_start	P((int unit, struct peer *peer));
345static	void	msfees_shutdown	P((int unit, struct peer *peer));
346static	void	msfees_poll	P((int unit, struct peer *peer));
347static	void	msfees_init	P((void));
348static	void	dump_buf	P((l_fp *coffs, int from, int to, char *text));
349static	void	ees_report_event P((struct eesunit *ees, int code));
350static	void	ees_receive	P((struct recvbuf *rbufp));
351static	void	ees_process	P((struct eesunit *ees));
352#ifdef QSORT_USES_VOID_P
353static	int	offcompare	P((const void *va, const void *vb));
354#else
355static	int	offcompare	P((const l_fp *a, const l_fp *b));
356#endif /* QSORT_USES_VOID_P */
357
358
359/*
360 * Transfer vector
361 */
362struct	refclock refclock_msfees = {
363	msfees_start,		/* start up driver */
364	msfees_shutdown,	/* shut down driver */
365	msfees_poll,		/* transmit poll message */
366	noentry,		/* not used */
367	msfees_init,		/* initialize driver */
368	noentry,		/* not used */
369	NOFLAGS			/* not used */
370};
371
372
373static void
374dump_buf(
375	l_fp *coffs,
376	int from,
377	int to,
378	char *text
379	)
380{
381	char buff[DUMP_BUF_SIZE + 80];
382	int i;
383	register char *ptr = buff;
384
385	sprintf(ptr, text);
386	for (i=from; i<to; i++)
387	{	while (*ptr) ptr++;
388	if ((ptr-buff) > DUMP_BUF_SIZE) msyslog(LOG_DEBUG, "D: %s", ptr=buff);
389	sprintf(ptr, " %06d", ((int)coffs[i].l_f) / 4295);
390	}
391	msyslog(LOG_DEBUG, "D: %s", buff);
392}
393
394/* msfees_init - initialize internal ees driver data */
395static void
396msfees_init(void)
397{
398	register int i;
399	/* Just zero the data arrays */
400	memset((char *)eesunits, 0, sizeof eesunits);
401	memset((char *)unitinuse, 0, sizeof unitinuse);
402
403	acceptable_slop.l_ui = 0;
404	acceptable_slop.l_uf = 1 << (FRACTION_PREC -2);
405
406	onesec.l_ui = 1;
407	onesec.l_uf = 0;
408
409	/* Initialize fudge factors to default. */
410	for (i = 0; i < MAXUNITS; i++) {
411		fudgefactor[i].l_ui	= 0;
412		fudgefactor[i].l_uf	= DEFFUDGETIME;
413		os_delay[i].l_ui	= 0;
414		os_delay[i].l_uf	= DEFOSTIME;
415		inherent_delay[i].l_ui	= 0;
416		inherent_delay[i].l_uf	= DEFINHTIME;
417		offset_fudge[i]		= os_delay[i];
418		L_ADD(&offset_fudge[i], &fudgefactor[i]);
419		L_ADD(&offset_fudge[i], &inherent_delay[i]);
420		stratumtouse[i]		= 0;
421		sloppyclockflag[i]	= 0;
422	}
423}
424
425
426/* msfees_start - open the EES devices and initialize data for processing */
427static int
428msfees_start(
429	int unit,
430	struct peer *peer
431	)
432{
433	register struct eesunit *ees;
434	register int i;
435	int fd232 = -1;
436	char eesdev[20];
437	struct termios ttyb, *ttyp;
438	struct refclockproc *pp;
439	pp = peer->procptr;
440
441	if (unit >= MAXUNITS) {
442		msyslog(LOG_ERR, "ees clock: unit number %d invalid (max %d)",
443			unit, MAXUNITS-1);
444		return 0;
445	}
446	if (unitinuse[unit]) {
447		msyslog(LOG_ERR, "ees clock: unit number %d in use", unit);
448		return 0;
449	}
450
451	/* Unit okay, attempt to open the devices.  We do them both at
452	 * once to make sure we can */
453	(void) sprintf(eesdev, EES232, unit);
454
455	fd232 = open(eesdev, O_RDWR, 0777);
456	if (fd232 == -1) {
457		msyslog(LOG_ERR, "ees clock: open of %s failed: %m", eesdev);
458		return 0;
459	}
460
461#ifdef	TIOCEXCL
462	/* Set for exclusive use */
463	if (ioctl(fd232, TIOCEXCL, (char *)0) < 0) {
464		msyslog(LOG_ERR, "ees clock: ioctl(%s, TIOCEXCL): %m", eesdev);
465		goto screwed;
466	}
467#endif
468
469	/* STRIPPED DOWN VERSION: Only PPS CD is supported at the moment */
470
471	/* Set port characteristics.  If we don't have a STREAMS module or
472	 * a clock line discipline, cooked mode is just usable, even though it
473	 * strips the top bit.  The only EES byte which uses the top
474	 * bit is the year, and we don't use that anyway. If we do
475	 * have the line discipline, we choose raw mode, and the
476	 * line discipline code will block up the messages.
477	 */
478
479	/* STIPPED DOWN VERSION: Only PPS CD is supported at the moment */
480
481	ttyp = &ttyb;
482	if (tcgetattr(fd232, ttyp) < 0) {
483		msyslog(LOG_ERR, "msfees_start: tcgetattr(%s): %m", eesdev);
484		goto screwed;
485	}
486
487	ttyp->c_iflag = IGNBRK|IGNPAR|ICRNL;
488	ttyp->c_cflag = SPEED232|CS8|CLOCAL|CREAD;
489	ttyp->c_oflag = 0;
490	ttyp->c_lflag = ICANON;
491	ttyp->c_cc[VERASE] = ttyp->c_cc[VKILL] = '\0';
492	if (tcsetattr(fd232, TCSANOW, ttyp) < 0) {
493		msyslog(LOG_ERR, "msfees_start: tcsetattr(%s): %m", eesdev);
494		goto screwed;
495	}
496
497	if (tcflush(fd232, TCIOFLUSH) < 0) {
498		msyslog(LOG_ERR, "msfees_start: tcflush(%s): %m", eesdev);
499		goto screwed;
500	}
501
502	inherent_delay[unit].l_uf = INH_DELAY_PPS;
503
504	/* offset fudge (how *late* the timestamp is) = fudge + os delays */
505	offset_fudge[unit] = os_delay[unit];
506	L_ADD(&offset_fudge[unit], &fudgefactor[unit]);
507	L_ADD(&offset_fudge[unit], &inherent_delay[unit]);
508
509	/* Looks like this might succeed.  Find memory for the structure.
510	 * Look to see if there are any unused ones, if not we malloc() one.
511	 */
512	if (eesunits[unit] != 0) /* The one we want is okay */
513	    ees = eesunits[unit];
514	else {
515		/* Look for an unused, but allocated struct */
516		for (i = 0; i < MAXUNITS; i++) {
517			if (!unitinuse[i] && eesunits[i] != 0)
518			    break;
519		}
520
521		if (i < MAXUNITS) {	/* Reclaim this one */
522			ees = eesunits[i];
523			eesunits[i] = 0;
524		}			/* no spare -- make a new one */
525		else ees = (struct eesunit *) emalloc(sizeof(struct eesunit));
526	}
527	memset((char *)ees, 0, sizeof(struct eesunit));
528	eesunits[unit] = ees;
529
530	/* Set up the structures */
531	ees->peer	= peer;
532	ees->unit	= (u_char)unit;
533	ees->timestarted= current_time;
534	ees->ttytype	= 0;
535	ees->io.clock_recv= ees_receive;
536	ees->io.srcclock= (caddr_t)ees;
537	ees->io.datalen	= 0;
538	ees->io.fd	= fd232;
539
540	/* Okay.  Push one of the two (linked into the kernel, or dynamically
541	 * loaded) STREAMS module, and give it to the I/O code to start
542	 * receiving stuff.
543	 */
544
545#ifdef STREAM
546	{
547		int rc1;
548		/* Pop any existing onews first ... */
549		while (ioctl(fd232, I_POP, 0 ) >= 0) ;
550
551		/* Now try pushing either of the possible modules */
552		if ((rc1=ioctl(fd232, I_PUSH, STREAM_PP1)) < 0 &&
553		    ioctl(fd232, I_PUSH, STREAM_PP2) < 0) {
554			msyslog(LOG_ERR,
555				"ees clock: Push of `%s' and `%s' to %s failed %m",
556				STREAM_PP1, STREAM_PP2, eesdev);
557			goto screwed;
558		}
559		else {
560			NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */
561				msyslog(LOG_INFO, "I: ees clock: PUSHed %s on %s",
562					(rc1 >= 0) ? STREAM_PP1 : STREAM_PP2, eesdev);
563			ees->ttytype |= T_PPS;
564		}
565	}
566#endif /* STREAM */
567
568	/* Add the clock */
569	if (!io_addclock(&ees->io)) {
570		/* Oh shit.  Just close and return. */
571		msyslog(LOG_ERR, "ees clock: io_addclock(%s): %m", eesdev);
572		goto screwed;
573	}
574
575
576	/* All done.  Initialize a few random peer variables, then
577	 * return success. */
578	peer->precision	= sys_precision;
579	peer->stratum	= stratumtouse[unit];
580	if (stratumtouse[unit] <= 1) {
581		memcpy((char *)&pp->refid, EESREFID, 4);
582		if (unit > 0 && unit < 10)
583		    ((char *)&pp->refid)[3] = '0' + unit;
584	} else {
585		peer->refid = htonl(EESHSREFID);
586	}
587	unitinuse[unit] = 1;
588	pp->unitptr = (caddr_t) &eesunits[unit];
589	pp->clockdesc = EESDESCRIPTION;
590	msyslog(LOG_ERR, "ees clock: %s OK on %d", eesdev, unit);
591	return (1);
592
593    screwed:
594	if (fd232 != -1)
595	    (void) close(fd232);
596	return (0);
597}
598
599
600/* msfees_shutdown - shut down a EES clock */
601static void
602msfees_shutdown(
603	int unit,
604	struct peer *peer
605	)
606{
607	register struct eesunit *ees;
608
609	if (unit >= MAXUNITS) {
610		msyslog(LOG_ERR,
611			"ees clock: INTERNAL ERROR, unit number %d invalid (max %d)",
612			unit, MAXUNITS);
613		return;
614	}
615	if (!unitinuse[unit]) {
616		msyslog(LOG_ERR,
617			"ees clock: INTERNAL ERROR, unit number %d not in use", unit);
618		return;
619	}
620
621	/* Tell the I/O module to turn us off.  We're history. */
622	ees = eesunits[unit];
623	io_closeclock(&ees->io);
624	unitinuse[unit] = 0;
625}
626
627
628/* ees_report_event - note the occurance of an event */
629static void
630ees_report_event(
631	struct eesunit *ees,
632	int code
633	)
634{
635	if (ees->status != (u_char)code) {
636		ees->status = (u_char)code;
637		if (code != CEVNT_NOMINAL)
638		    ees->lastevent = (u_char)code;
639		/* Should report event to trap handler in here.
640		 * Soon...
641		 */
642	}
643}
644
645
646/* ees_receive - receive data from the serial interface on an EES clock */
647static void
648ees_receive(
649	struct recvbuf *rbufp
650	)
651{
652	register int n_sample;
653	register int day;
654	register struct eesunit *ees;
655	register u_char *dpt;		/* Data PoinTeR: move along ... */
656	register u_char *dpend;		/* Points just *after* last data char */
657	register char *cp;
658	l_fp tmp;
659	int call_pps_sample = 0;
660	l_fp pps_arrvstamp;
661	int	sincelast;
662	int	pps_step = 0;
663	int	suspect_4ms_step = 0;
664	struct ppsclockev ppsclockev;
665	long *ptr = (long *) &ppsclockev;
666	int rc;
667	int request;
668#ifdef HAVE_CIOGETEV
669	request = CIOGETEV;
670#endif
671#ifdef HAVE_TIOCGPPSEV
672	request = TIOCGPPSEV;
673#endif
674
675	/* Get the clock this applies to and a pointer to the data */
676	ees = (struct eesunit *)rbufp->recv_srcclock;
677	dpt = (u_char *)&rbufp->recv_space;
678	dpend = dpt + rbufp->recv_length;
679	if ((dbg & DB_LOG_AWAITMORE) && (rbufp->recv_length != LENEESCODE))
680	    printf("[%d] ", rbufp->recv_length);
681
682	/* Check out our state and process appropriately */
683	switch (ees->codestate) {
684	    case EESCS_WAIT:
685		/* Set an initial guess at the timestamp as the recv time.
686		 * If just running in CBREAK mode, we can't improve this.
687		 * If we have the CLOCK Line Discipline, PPSCD, or sime such,
688		 * then we will do better later ....
689		 */
690		ees->arrvtime = rbufp->recv_time;
691		ees->codestate = EESCS_GOTSOME;
692		ees->lencode = 0;
693		/*FALLSTHROUGH*/
694
695	    case EESCS_GOTSOME:
696		cp = &(ees->lastcode[ees->lencode]);
697
698		/* Gobble the bytes until the final (possibly stripped) 0xff */
699		while (dpt < dpend && (*dpt & 0x7f) != 0x7f) {
700			*cp++ = (char)*dpt++;
701			ees->lencode++;
702			/* Oh dear -- too many bytes .. */
703			if (ees->lencode > LENEESPRT) {
704				NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */
705					msyslog(LOG_INFO,
706						"I: ees clock: %d + %d > %d [%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x]",
707						ees->lencode, dpend - dpt, LENEESPRT,
708#define D(x) (ees->lastcode[x])
709						D(0), D(1), D(2), D(3), D(4), D(5), D(6),
710						D(7), D(8), D(9), D(10), D(11), D(12));
711#undef	D
712				ees->badformat++;
713				ees->reason = CODEREASON + 1;
714				ees_event(ees, CEVNT_BADREPLY);
715				ees_reset(ees);
716				return;
717			}
718		}
719		/* Gave up because it was end of the buffer, rather than ff */
720		if (dpt == dpend) {
721			/* Incomplete.  Wait for more. */
722			if (dbg & DB_LOG_AWAITMORE)
723			    msyslog(LOG_INFO,
724				    "I: ees clock %d: %p == %p: await more",
725				    ees->unit, dpt, dpend);
726			return;
727		}
728
729		/* This shouldn't happen ... ! */
730		if ((*dpt & 0x7f) != 0x7f) {
731			msyslog(LOG_INFO, "I: ees clock: %0x & 0x7f != 0x7f", *dpt);
732			ees->badformat++;
733			ees->reason = CODEREASON + 2;
734			ees_event(ees, CEVNT_BADREPLY);
735			ees_reset(ees);
736			return;
737		}
738
739		/* Skip the 0xff */
740		dpt++;
741
742		/* Finally, got a complete buffer.  Mainline code will
743		 * continue on. */
744		cp = ees->lastcode;
745		break;
746
747	    default:
748		msyslog(LOG_ERR, "ees clock: INTERNAL ERROR: %d state %d",
749			ees->unit, ees->codestate);
750		ees->reason = CODEREASON + 5;
751		ees_event(ees, CEVNT_FAULT);
752		ees_reset(ees);
753		return;
754	}
755
756	/* Boy!  After all that crap, the lastcode buffer now contains
757	 * something we hope will be a valid time code.  Do length
758	 * checks and sanity checks on constant data.
759	 */
760	ees->codestate = EESCS_WAIT;
761	ees->lasttime = current_time;
762	if (ees->lencode != LENEESPRT) {
763		ees->badformat++;
764		ees->reason = CODEREASON + 6;
765		ees_event(ees, CEVNT_BADREPLY);
766		ees_reset(ees);
767		return;
768	}
769
770	cp = ees->lastcode;
771
772	/* Check that centisecond is zero */
773	if (cp[EESM_CSEC] != 0) {
774		ees->baddata++;
775		ees->reason = CODEREASON + 7;
776		ees_event(ees, CEVNT_BADREPLY);
777		ees_reset(ees);
778		return;
779	}
780
781	/* Check flag formats */
782	if (cp[EESM_LEAP] != 0 && cp[EESM_LEAP] != 0x0f) {
783		ees->badformat++;
784		ees->reason = CODEREASON + 8;
785		ees_event(ees, CEVNT_BADREPLY);
786		ees_reset(ees);
787		return;
788	}
789
790	if (cp[EESM_BST] != 0 && cp[EESM_BST] != 0x03) {
791		ees->badformat++;
792		ees->reason = CODEREASON + 9;
793		ees_event(ees, CEVNT_BADREPLY);
794		ees_reset(ees);
795		return;
796	}
797
798	if (cp[EESM_MSFOK] != 0 && cp[EESM_MSFOK] != 0x3f) {
799		ees->badformat++;
800		ees->reason = CODEREASON + 10;
801		ees_event(ees, CEVNT_BADREPLY);
802		ees_reset(ees);
803		return;
804	}
805
806	/* So far, so good.  Compute day, hours, minutes, seconds,
807	 * time zone.  Do range checks on these.
808	 */
809
810#define bcdunpack(val)	( (((val)>>4) & 0x0f) * 10 + ((val) & 0x0f) )
811#define istrue(x)	((x)?1:0)
812
813	ees->second  = bcdunpack(cp[EESM_SEC]);  /* second       */
814	ees->minute  = bcdunpack(cp[EESM_MIN]);  /* minute       */
815	ees->hour    = bcdunpack(cp[EESM_HOUR]); /* hour         */
816
817	day          = bcdunpack(cp[EESM_DAY]);  /* day of month */
818
819	switch (bcdunpack(cp[EESM_MON])) {       /* month        */
820
821		/*  Add in lengths of all previous months.  Add one more
822		    if it is a leap year and after February.
823		*/
824	    case 12:	day += NOV;			  /*FALLSTHROUGH*/
825	    case 11:	day += OCT;			  /*FALLSTHROUGH*/
826	    case 10:	day += SEP;			  /*FALLSTHROUGH*/
827	    case  9:	day += AUG;			  /*FALLSTHROUGH*/
828	    case  8:	day += JUL;			  /*FALLSTHROUGH*/
829	    case  7:	day += JUN;			  /*FALLSTHROUGH*/
830	    case  6:	day += MAY;			  /*FALLSTHROUGH*/
831	    case  5:	day += APR;			  /*FALLSTHROUGH*/
832	    case  4:	day += MAR;			  /*FALLSTHROUGH*/
833	    case  3:	day += FEB;
834		if (istrue(cp[EESM_LEAP])) day++; /*FALLSTHROUGH*/
835	    case  2:	day += JAN;			  /*FALLSTHROUGH*/
836	    case  1:	break;
837	    default:	ees->baddata++;
838		ees->reason = CODEREASON + 11;
839		ees_event(ees, CEVNT_BADDATE);
840		ees_reset(ees);
841		return;
842	}
843
844	ees->day     = day;
845
846	/* Get timezone. The clocktime routine wants the number
847	 * of hours to add to the delivered time to get UT.
848	 * Currently -1 if BST flag set, 0 otherwise.  This
849	 * is the place to tweak things if double summer time
850	 * ever happens.
851	 */
852	ees->tz      = istrue(cp[EESM_BST]) ? -1 : 0;
853
854	if (ees->day > 366 || ees->day < 1 ||
855	    ees->hour > 23 || ees->minute > 59 || ees->second > 59) {
856		ees->baddata++;
857		ees->reason = CODEREASON + 12;
858		ees_event(ees, CEVNT_BADDATE);
859		ees_reset(ees);
860		return;
861	}
862
863	n_sample = ees->nsamples;
864
865	/* Now, compute the reference time value: text -> tmp.l_ui */
866	if (!clocktime(ees->day, ees->hour, ees->minute, ees->second,
867		       ees->tz, rbufp->recv_time.l_ui, &ees->yearstart,
868		       &tmp.l_ui)) {
869		ees->baddata++;
870		ees->reason = CODEREASON + 13;
871		ees_event(ees, CEVNT_BADDATE);
872		ees_reset(ees);
873		return;
874	}
875	tmp.l_uf = 0;
876
877	/*  DON'T use ees->arrvtime -- it may be < reftime */
878	ees->lastsampletime = tmp;
879
880	/* If we are synchronised to the radio, update the reference time.
881	 * Also keep a note of when clock was last good.
882	 */
883	if (istrue(cp[EESM_MSFOK])) {
884		ees->reftime = tmp;
885		ees->clocklastgood = current_time;
886	}
887
888
889	/* Compute the offset.  For the fractional part of the
890	 * offset we use the expected delay for the message.
891	 */
892	ees->codeoffsets[n_sample].l_ui = tmp.l_ui;
893	ees->codeoffsets[n_sample].l_uf = 0;
894
895	/* Number of seconds since the last step */
896	sincelast = this_uisec - ees->last_step;
897
898	memset((char *) &ppsclockev, 0, sizeof ppsclockev);
899
900	rc = ioctl(ees->io.fd, request, (char *) &ppsclockev);
901	if (dbg & DB_PRINT_EV) fprintf(stderr,
902					 "[%x] CIOGETEV u%d %d (%x %d) gave %d (%d): %08lx %08lx %ld\n",
903					 DB_PRINT_EV, ees->unit, ees->io.fd, request, is_pps(ees),
904					 rc, errno, ptr[0], ptr[1], ptr[2]);
905
906	/* If we managed to get the time of arrival, process the info */
907	if (rc >= 0) {
908		int conv = -1;
909		pps_step = ppsclockev.serial - ees->last_pps_no;
910
911		/* Possible that PPS triggered, but text message didn't */
912		if (pps_step == 2) msyslog(LOG_ERR, "pps step = 2 @ %02d", ees->second);
913		if (pps_step == 2 && ees->second == 1) suspect_4ms_step |= 1;
914		if (pps_step == 2 && ees->second == 2) suspect_4ms_step |= 4;
915
916		/* allow for single loss of PPS only */
917		if (pps_step != 1 && pps_step != 2)
918		    fprintf(stderr, "PPS step: %d too far off %ld (%d)\n",
919			    ppsclockev.serial, ees->last_pps_no, pps_step);
920		else if (!buftvtots((char *) &(ppsclockev.tv), &pps_arrvstamp))
921		    fprintf(stderr, "buftvtots failed\n");
922		else {	/* if ((ABS(time difference) - 0.25) < 0)
923			 * then believe it ...
924			 */
925			l_fp diff;
926			diff = pps_arrvstamp;
927			conv = 0;
928			L_SUB(&diff, &ees->arrvtime);
929			if (dbg & DB_PRINT_CDT)
930			    printf("[%x] Have %lx.%08lx and %lx.%08lx -> %lx.%08lx @ %s",
931				   DB_PRINT_CDT, (long)ees->arrvtime.l_ui, (long)ees->arrvtime.l_uf,
932				   (long)pps_arrvstamp.l_ui, (long)pps_arrvstamp.l_uf,
933				   (long)diff.l_ui, (long)diff.l_uf,
934				   ctime(&(ppsclockev.tv.tv_sec)));
935			if (L_ISNEG(&diff)) M_NEG(diff.l_ui, diff.l_uf);
936			L_SUB(&diff, &acceptable_slop);
937			if (L_ISNEG(&diff)) {	/* AOK -- pps_sample */
938				ees->arrvtime = pps_arrvstamp;
939				conv++;
940				call_pps_sample++;
941			}
942			/* Some loss of some signals around sec = 1 */
943			else if (ees->second == 1) {
944				diff = pps_arrvstamp;
945				L_ADD(&diff, &onesec);
946				L_SUB(&diff, &ees->arrvtime);
947				if (L_ISNEG(&diff)) M_NEG(diff.l_ui, diff.l_uf);
948				L_SUB(&diff, &acceptable_slop);
949				msyslog(LOG_ERR, "Have sec==1 slip %ds a=%08x-p=%08x -> %x.%08x (u=%d) %s",
950					pps_arrvstamp.l_ui - ees->arrvtime.l_ui,
951					pps_arrvstamp.l_uf,
952					ees->arrvtime.l_uf,
953					diff.l_ui, diff.l_uf,
954					(int)ppsclockev.tv.tv_usec,
955					ctime(&(ppsclockev.tv.tv_sec)));
956				if (L_ISNEG(&diff)) {	/* AOK -- pps_sample */
957					suspect_4ms_step |= 2;
958					ees->arrvtime = pps_arrvstamp;
959					L_ADD(&ees->arrvtime, &onesec);
960					conv++;
961					call_pps_sample++;
962				}
963			}
964		}
965		ees->last_pps_no = ppsclockev.serial;
966		if (dbg & DB_PRINT_CDTC)
967		    printf(
968			    "[%x] %08lx %08lx %d u%d (%d %d)\n",
969			    DB_PRINT_CDTC, (long)pps_arrvstamp.l_ui,
970			    (long)pps_arrvstamp.l_uf, conv, ees->unit,
971			    call_pps_sample, pps_step);
972	}
973
974	/* See if there has been a 4ms jump at a minute boundry */
975	{	l_fp	delta;
976#define	delta_isec	delta.l_ui
977#define	delta_ssec	delta.l_i
978#define	delta_sfsec	delta.l_f
979	long	delta_f_abs;
980
981	delta.l_i = ees->arrvtime.l_i;
982	delta.l_f = ees->arrvtime.l_f;
983
984	L_SUB(&delta, &ees->last_l);
985	delta_f_abs = delta_sfsec;
986	if (delta_f_abs < 0) delta_f_abs = -delta_f_abs;
987
988	/* Dump the deltas each minute */
989	if (dbg & DB_DUMP_DELTAS)
990	{	if (/*0 <= ees->second && */
991		ees->second < ((sizeof deltas) / (sizeof deltas[0]))) deltas[ees->second] = delta_sfsec;
992	/* Dump on second 1, as second 0 sometimes missed */
993	if (ees->second == 1) {
994		char text[16 * ((sizeof deltas) / (sizeof deltas[0]))];
995		char *cptr=text;
996		int i;
997		for (i=0; i<((sizeof deltas) / (sizeof deltas[0])); i++) {
998			sprintf(cptr, " %d.%04d",
999				msec(deltas[i]), subms(deltas[i]));
1000			while (*cptr) cptr++;
1001		}
1002		msyslog(LOG_ERR, "Deltas: %d.%04d<->%d.%04d: %s",
1003			msec(EES_STEP_F - EES_STEP_F_GRACE), subms(EES_STEP_F - EES_STEP_F_GRACE),
1004			msec(EES_STEP_F + EES_STEP_F_GRACE), subms(EES_STEP_F + EES_STEP_F_GRACE),
1005			text+1);
1006		for (i=0; i<((sizeof deltas) / (sizeof deltas[0])); i++) deltas[i] = 0;
1007	}
1008	}
1009
1010	/* Lets see if we have a 4 mS step at a minute boundaary */
1011	if (	((EES_STEP_F - EES_STEP_F_GRACE) < delta_f_abs) &&
1012		(delta_f_abs < (EES_STEP_F + EES_STEP_F_GRACE)) &&
1013		(ees->second == 0 || ees->second == 1 || ees->second == 2) &&
1014		(sincelast < 0 || sincelast > 122)
1015		) {	/* 4ms jump at min boundry */
1016		int old_sincelast;
1017		int count=0;
1018		int sum = 0;
1019		/* Yes -- so compute the ramp time */
1020		if (ees->last_step == 0) sincelast = 0;
1021		old_sincelast = sincelast;
1022
1023		/* First time in, just set "ees->last_step" */
1024		if(ees->last_step) {
1025			int other_step = 0;
1026			int third_step = 0;
1027			int this_step = (sincelast + (60 /2)) / 60;
1028			int p_step = ees->this_step;
1029			int p;
1030			ees->last_steps[p_step] = this_step;
1031			p= p_step;
1032			p_step++;
1033			if (p_step >= LAST_STEPS) p_step = 0;
1034			ees->this_step = p_step;
1035				/* Find the "average" interval */
1036			while (p != p_step) {
1037				int this = ees->last_steps[p];
1038				if (this == 0) break;
1039				if (this != this_step) {
1040					if (other_step == 0 && (
1041						this== (this_step +2) ||
1042						this== (this_step -2) ||
1043						this== (this_step +1) ||
1044						this== (this_step -1)))
1045					    other_step = this;
1046					if (other_step != this) {
1047						int idelta = (this_step - other_step);
1048						if (idelta < 0) idelta = - idelta;
1049						if (third_step == 0 && (
1050							(idelta == 1) ? (
1051								this == (other_step +1) ||
1052								this == (other_step -1) ||
1053								this == (this_step +1) ||
1054								this == (this_step -1))
1055							:
1056							(
1057								this == (this_step + other_step)/2
1058								)
1059							)) third_step = this;
1060						if (third_step != this) break;
1061					}
1062				}
1063				sum += this;
1064				p--;
1065				if (p < 0) p += LAST_STEPS;
1066				count++;
1067			}
1068			msyslog(LOG_ERR, "MSF%d: %d: This=%d (%d), other=%d/%d, sum=%d, count=%d, pps_step=%d, suspect=%x", ees->unit, p, ees->last_steps[p], this_step, other_step, third_step, sum, count, pps_step, suspect_4ms_step);
1069			if (count != 0) sum = ((sum * 60) + (count /2)) / count;
1070#define	SV(x) (ees->last_steps[(x + p_step) % LAST_STEPS])
1071			msyslog(LOG_ERR, "MSF%d: %x steps %d: %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d",
1072				ees->unit, suspect_4ms_step, p_step, SV(0), SV(1), SV(2), SV(3), SV(4), SV(5), SV(6),
1073				SV(7), SV(8), SV(9), SV(10), SV(11), SV(12), SV(13), SV(14), SV(15));
1074			printf("MSF%d: steps %d: %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d\n",
1075			       ees->unit, p_step, SV(0), SV(1), SV(2), SV(3), SV(4), SV(5), SV(6),
1076			       SV(7), SV(8), SV(9), SV(10), SV(11), SV(12), SV(13), SV(14), SV(15));
1077#undef SV
1078			ees->jump_fsecs = delta_sfsec;
1079			ees->using_ramp = 1;
1080			if (sincelast > 170)
1081			    ees->last_step_late += sincelast - ((sum) ? sum : ees->last_step_secs);
1082			else ees->last_step_late = 30;
1083			if (ees->last_step_late < -60 || ees->last_step_late > 120) ees->last_step_late = 30;
1084			if (ees->last_step_late < 0) ees->last_step_late = 0;
1085			if (ees->last_step_late >= 60) ees->last_step_late = 59;
1086			sincelast = 0;
1087		}
1088		else {	/* First time in -- just save info */
1089			ees->last_step_late = 30;
1090			ees->jump_fsecs = delta_sfsec;
1091			ees->using_ramp = 1;
1092			sum = 4 * 60;
1093		}
1094		ees->last_step = this_uisec;
1095		printf("MSF%d: d=%3ld.%04ld@%d :%d:%d:$%d:%d:%d\n",
1096		       ees->unit, (long)msec(delta_sfsec), (long)subms(delta_sfsec),
1097		       ees->second, old_sincelast, ees->last_step_late, count, sum,
1098		       ees->last_step_secs);
1099		msyslog(LOG_ERR, "MSF%d: d=%3d.%04d@%d :%d:%d:%d:%d:%d",
1100			ees->unit, msec(delta_sfsec), subms(delta_sfsec), ees->second,
1101			old_sincelast, ees->last_step_late, count, sum, ees->last_step_secs);
1102		if (sum) ees->last_step_secs = sum;
1103	}
1104	/* OK, so not a 4ms step at a minute boundry */
1105	else {
1106		if (suspect_4ms_step) msyslog(LOG_ERR,
1107					      "MSF%d: suspect = %x, but delta of %d.%04d [%d.%04d<%d.%04d<%d.%04d: %d %d]",
1108					      ees->unit, suspect_4ms_step, msec(delta_sfsec), subms(delta_sfsec),
1109					      msec(EES_STEP_F - EES_STEP_F_GRACE),
1110					      subms(EES_STEP_F - EES_STEP_F_GRACE),
1111					      (int)msec(delta_f_abs),
1112					      (int)subms(delta_f_abs),
1113					      msec(EES_STEP_F + EES_STEP_F_GRACE),
1114					      subms(EES_STEP_F + EES_STEP_F_GRACE),
1115					      ees->second,
1116					      sincelast);
1117		if ((delta_f_abs > EES_STEP_NOTE) && ees->last_l.l_i) {
1118			static int ees_step_notes = EES_STEP_NOTES;
1119			if (ees_step_notes > 0) {
1120				ees_step_notes--;
1121				printf("MSF%d: D=%3ld.%04ld@%02d :%d%s\n",
1122				       ees->unit, (long)msec(delta_sfsec), (long)subms(delta_sfsec),
1123				       ees->second, sincelast, ees_step_notes ? "" : " -- NO MORE !");
1124				msyslog(LOG_ERR, "MSF%d: D=%3d.%04d@%02d :%d%s",
1125					ees->unit, msec(delta_sfsec), subms(delta_sfsec), ees->second, (ees->last_step) ? sincelast : -1, ees_step_notes ? "" : " -- NO MORE !");
1126			}
1127		}
1128	}
1129	}
1130	ees->last_l = ees->arrvtime;
1131
1132	/* IF we have found that it's ramping
1133	 * && it's within twice the expected ramp period
1134	 * && there is a non zero step size (avoid /0 !)
1135	 * THEN we twiddle things
1136	 */
1137	if (ees->using_ramp &&
1138	    sincelast < (ees->last_step_secs)*2 &&
1139	    ees->last_step_secs)
1140	{	long	sec_of_ramp = sincelast + ees->last_step_late;
1141	long	fsecs;
1142	l_fp	inc;
1143
1144	/* Ramp time may vary, so may ramp for longer than last time */
1145	if (sec_of_ramp > (ees->last_step_secs + 120))
1146	    sec_of_ramp =  ees->last_step_secs;
1147
1148	/* sec_of_ramp * ees->jump_fsecs may overflow 2**32 */
1149	fsecs = sec_of_ramp * (ees->jump_fsecs /  ees->last_step_secs);
1150
1151	if (dbg & DB_LOG_DELTAS) msyslog(LOG_ERR,
1152					   "[%x] MSF%d: %3ld/%03d -> d=%11ld (%d|%ld)",
1153					   DB_LOG_DELTAS,
1154					   ees->unit, sec_of_ramp, ees->last_step_secs, fsecs,
1155					   pps_arrvstamp.l_f, pps_arrvstamp.l_f + fsecs);
1156	if (dbg & DB_PRINT_DELTAS) printf(
1157		"MSF%d: %3ld/%03d -> d=%11ld (%ld|%ld)\n",
1158		ees->unit, sec_of_ramp, ees->last_step_secs, fsecs,
1159		(long)pps_arrvstamp.l_f, pps_arrvstamp.l_f + fsecs);
1160
1161	/* Must sign extend the result */
1162	inc.l_i = (fsecs < 0) ? -1 : 0;
1163	inc.l_f = fsecs;
1164	if (dbg & DB_INC_PPS)
1165	{	L_SUB(&pps_arrvstamp, &inc);
1166	L_SUB(&ees->arrvtime, &inc);
1167	}
1168	else
1169	{	L_ADD(&pps_arrvstamp, &inc);
1170	L_ADD(&ees->arrvtime, &inc);
1171	}
1172	}
1173	else {
1174		if (dbg & DB_LOG_DELTAS) msyslog(LOG_ERR,
1175						   "[%x] MSF%d: ees->using_ramp=%d, sincelast=%x / %x, ees->last_step_secs=%x",
1176						   DB_LOG_DELTAS,
1177						   ees->unit, ees->using_ramp,
1178						   sincelast,
1179						   (ees->last_step_secs)*2,
1180						   ees->last_step_secs);
1181		if (dbg & DB_PRINT_DELTAS) printf(
1182			"[%x] MSF%d: ees->using_ramp=%d, sincelast=%x / %x, ees->last_step_secs=%x\n",
1183			DB_LOG_DELTAS,
1184			ees->unit, ees->using_ramp,
1185			sincelast,
1186			(ees->last_step_secs)*2,
1187			ees->last_step_secs);
1188	}
1189
1190	L_SUB(&ees->arrvtime, &offset_fudge[ees->unit]);
1191	L_SUB(&pps_arrvstamp, &offset_fudge[ees->unit]);
1192
1193	if (call_pps_sample && !(dbg & DB_NO_PPS)) {
1194		/* Sigh -- it expects its args negated */
1195		L_NEG(&pps_arrvstamp);
1196		/*
1197		 * I had to disable this here, since it appears there is no pointer to the
1198		 * peer structure.
1199		 *
1200		 (void) pps_sample(peer, &pps_arrvstamp);
1201		*/
1202	}
1203
1204	/* Subtract off the local clock time stamp */
1205	L_SUB(&ees->codeoffsets[n_sample], &ees->arrvtime);
1206	if (dbg & DB_LOG_SAMPLES) msyslog(LOG_ERR,
1207					    "MSF%d: [%x] %d (ees: %d %d) (pps: %d %d)%s",
1208					    ees->unit, DB_LOG_DELTAS, n_sample,
1209					    ees->codeoffsets[n_sample].l_f,
1210					    ees->codeoffsets[n_sample].l_f / 4295,
1211					    pps_arrvstamp.l_f,
1212					    pps_arrvstamp.l_f /4295,
1213					    (dbg & DB_NO_PPS) ? " [no PPS]" : "");
1214
1215	if (ees->nsamples++ == NCODES-1) ees_process(ees);
1216
1217	/* Done! */
1218}
1219
1220
1221/* offcompare - auxiliary comparison routine for offset sort */
1222
1223#ifdef QSORT_USES_VOID_P
1224static int
1225offcompare(
1226	const void *va,
1227	const void *vb
1228	)
1229{
1230	const l_fp *a = (const l_fp *)va;
1231	const l_fp *b = (const l_fp *)vb;
1232	return(L_ISGEQ(a, b) ? (L_ISEQU(a, b) ? 0 : 1) : -1);
1233}
1234#else
1235static int
1236offcompare(
1237	const l_fp *a,
1238	const l_fp *b
1239	)
1240{
1241	return(L_ISGEQ(a, b) ? (L_ISEQU(a, b) ? 0 : 1) : -1);
1242}
1243#endif /* QSORT_USES_VOID_P */
1244
1245
1246/* ees_process - process a pile of samples from the clock */
1247static void
1248ees_process(
1249	struct eesunit *ees
1250	)
1251{
1252	static int last_samples = -1;
1253	register int i, j;
1254	register int noff;
1255	register l_fp *coffs = ees->codeoffsets;
1256	l_fp offset, tmp;
1257	double dispersion;	/* ++++ */
1258	int lostsync, isinsync;
1259	int samples = ees->nsamples;
1260	int samplelog = 0;	/* keep "gcc -Wall" happy ! */
1261	int samplereduce = (samples + 1) / 2;
1262	double doffset;
1263
1264	/* Reset things to zero so we don't have to worry later */
1265	ees_reset(ees);
1266
1267	if (sloppyclockflag[ees->unit]) {
1268		samplelog = (samples <  2) ? 0 :
1269			(samples <  5) ? 1 :
1270			(samples <  9) ? 2 :
1271			(samples < 17) ? 3 :
1272			(samples < 33) ? 4 : 5;
1273		samplereduce = (1 << samplelog);
1274	}
1275
1276	if (samples != last_samples &&
1277	    ((samples != (last_samples-1)) || samples < 3)) {
1278		msyslog(LOG_ERR, "Samples=%d (%d), samplereduce=%d ....",
1279			samples, last_samples, samplereduce);
1280		last_samples = samples;
1281	}
1282	if (samples < 1) return;
1283
1284	/* If requested, dump the raw data we have in the buffer */
1285	if (ees->dump_vals) dump_buf(coffs, 0, samples, "Raw  data  is:");
1286
1287	/* Sort the offsets, trim off the extremes, then choose one. */
1288	qsort(
1289#ifdef QSORT_USES_VOID_P
1290	    (void *)
1291#else
1292	    (char *)
1293#endif
1294	    coffs, (size_t)samples, sizeof(l_fp), offcompare);
1295
1296	noff = samples;
1297	i = 0;
1298	while ((noff - i) > samplereduce) {
1299		/* Trim off the sample which is further away
1300		 * from the median.  We work this out by doubling
1301		 * the median, subtracting off the end samples, and
1302		 * looking at the sign of the answer, using the
1303		 * identity (c-b)-(b-a) == 2*b-a-c
1304		 */
1305		tmp = coffs[(noff + i)/2];
1306		L_ADD(&tmp, &tmp);
1307		L_SUB(&tmp, &coffs[i]);
1308		L_SUB(&tmp, &coffs[noff-1]);
1309		if (L_ISNEG(&tmp)) noff--; else i++;
1310	}
1311
1312	/* If requested, dump the reduce data we have in the buffer */
1313	if (ees->dump_vals) dump_buf(coffs, i, noff, "Reduced    to:");
1314
1315	/* What we do next depends on the setting of the sloppy clock flag.
1316	 * If it is on, average the remainder to derive our estimate.
1317	 * Otherwise, just pick a representative value from the remaining stuff
1318	 */
1319	if (sloppyclockflag[ees->unit]) {
1320		offset.l_ui = offset.l_uf = 0;
1321		for (j = i; j < noff; j++)
1322		    L_ADD(&offset, &coffs[j]);
1323		for (j = samplelog; j > 0; j--)
1324		    L_RSHIFTU(&offset);
1325	}
1326	else offset = coffs[i+BESTSAMPLE];
1327
1328	/* Compute the dispersion as the difference between the
1329	 * lowest and highest offsets that remain in the
1330	 * consideration list.
1331	 *
1332	 * It looks like MOST clocks have MOD (max error), so halve it !
1333	 */
1334	tmp = coffs[noff-1];
1335	L_SUB(&tmp, &coffs[i]);
1336#define	FRACT_SEC(n) ((1 << 30) / (n/2))
1337	dispersion = LFPTOFP(&tmp) / 2; /* ++++ */
1338	if (dbg & (DB_SYSLOG_SMPLI | DB_SYSLOG_SMPLE)) msyslog(
1339		(dbg & DB_SYSLOG_SMPLE) ? LOG_ERR : LOG_INFO,
1340		"I: [%x] Offset=%06d (%d), disp=%f%s [%d], %d %d=%d %d:%d %d=%d %d",
1341		dbg & (DB_SYSLOG_SMPLI | DB_SYSLOG_SMPLE),
1342		offset.l_f / 4295, offset.l_f,
1343		(dispersion * 1526) / 100,
1344		(sloppyclockflag[ees->unit]) ? " by averaging" : "",
1345		FRACT_SEC(10) / 4295,
1346		(coffs[0].l_f) / 4295,
1347		i,
1348		(coffs[i].l_f) / 4295,
1349		(coffs[samples/2].l_f) / 4295,
1350		(coffs[i+BESTSAMPLE].l_f) / 4295,
1351		noff-1,
1352		(coffs[noff-1].l_f) / 4295,
1353		(coffs[samples-1].l_f) / 4295);
1354
1355	/* Are we playing silly wotsits ?
1356	 * If we are using all data, see if there is a "small" delta,
1357	 * and if so, blurr this with 3/4 of the delta from the last value
1358	 */
1359	if (ees->usealldata && ees->offset.l_uf) {
1360		long diff = (long) (ees->offset.l_uf - offset.l_uf);
1361
1362		/* is the delta small enough ? */
1363		if ((- FRACT_SEC(100)) < diff && diff < FRACT_SEC(100)) {
1364			int samd = (64 * 4) / samples;
1365			long new;
1366			if (samd < 2) samd = 2;
1367			new = offset.l_uf + ((diff * (samd -1)) / samd);
1368
1369			/* Sign change -> need to fix up int part */
1370			if ((new & 0x80000000) !=
1371			    (((long) offset.l_uf) & 0x80000000))
1372			{	NLOG(NLOG_CLOCKINFO) /* conditional if clause for conditional syslog */
1373					msyslog(LOG_INFO, "I: %lx != %lx (%lx %lx), so add %d",
1374						new & 0x80000000,
1375						((long) offset.l_uf) & 0x80000000,
1376						new, (long) offset.l_uf,
1377						(new < 0) ? -1 : 1);
1378				offset.l_ui += (new < 0) ? -1 : 1;
1379			}
1380			dispersion /= 4;
1381			if (dbg & (DB_SYSLOG_SMTHI | DB_SYSLOG_SMTHE)) msyslog(
1382				(dbg & DB_SYSLOG_SMTHE) ? LOG_ERR : LOG_INFO,
1383				"I: [%x] Smooth data: %ld -> %ld, dispersion now %f",
1384				dbg & (DB_SYSLOG_SMTHI | DB_SYSLOG_SMTHE),
1385				((long) offset.l_uf) / 4295, new / 4295,
1386				(dispersion * 1526) / 100);
1387			offset.l_uf = (unsigned long) new;
1388		}
1389		else if (dbg & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE)) msyslog(
1390			(dbg & DB_SYSLOG_NSMTHE) ? LOG_ERR : LOG_INFO,
1391			"[%x] No smooth as delta not %d < %ld < %d",
1392			dbg & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE),
1393			- FRACT_SEC(100), diff, FRACT_SEC(100));
1394	}
1395	else if (dbg & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE)) msyslog(
1396		(dbg & DB_SYSLOG_NSMTHE) ? LOG_ERR : LOG_INFO,
1397		"I: [%x] No smooth as flag=%x and old=%x=%d (%d:%d)",
1398		dbg & (DB_SYSLOG_NSMTHI | DB_SYSLOG_NSMTHE),
1399		ees->usealldata, ees->offset.l_f, ees->offset.l_uf,
1400		offset.l_f, ees->offset.l_f - offset.l_f);
1401
1402	/* Collect offset info for debugging info */
1403	ees->offset = offset;
1404	ees->lowoffset = coffs[i];
1405	ees->highoffset = coffs[noff-1];
1406
1407	/* Determine synchronization status.  Can be unsync'd either
1408	 * by a report from the clock or by a leap hold.
1409	 *
1410	 * Loss of the radio signal for a short time does not cause
1411	 * us to go unsynchronised, since the receiver keeps quite
1412	 * good time on its own.  The spec says 20ms in 4 hours; the
1413	 * observed drift in our clock (Cambridge) is about a second
1414	 * a day, but even that keeps us within the inherent tolerance
1415	 * of the clock for about 15 minutes. Observation shows that
1416	 * the typical "short" outage is 3 minutes, so to allow us
1417	 * to ride out those, we will give it 5 minutes.
1418	 */
1419	lostsync = current_time - ees->clocklastgood > 300 ? 1 : 0;
1420	isinsync = (lostsync || ees->leaphold > current_time) ? 0 : 1;
1421
1422	/* Done.  Use time of last good, synchronised code as the
1423	 * reference time, and lastsampletime as the receive time.
1424	 */
1425	if (ees->fix_pending) {
1426		msyslog(LOG_ERR, "MSF%d: fix_pending=%d -> jump %x.%08x\n",
1427			ees->fix_pending, ees->unit, offset.l_i, offset.l_f);
1428		ees->fix_pending = 0;
1429	}
1430	LFPTOD(&offset, doffset);
1431	refclock_receive(ees->peer);
1432	ees_event(ees, lostsync ? CEVNT_PROP : CEVNT_NOMINAL);
1433}
1434
1435/* msfees_poll - called by the transmit procedure */
1436static void
1437msfees_poll(
1438	int unit,
1439	struct peer *peer
1440	)
1441{
1442	if (unit >= MAXUNITS) {
1443		msyslog(LOG_ERR, "ees clock poll: INTERNAL: unit %d invalid",
1444			unit);
1445		return;
1446	}
1447	if (!unitinuse[unit]) {
1448		msyslog(LOG_ERR, "ees clock poll: INTERNAL: unit %d unused",
1449			unit);
1450		return;
1451	}
1452
1453	ees_process(eesunits[unit]);
1454
1455	if ((current_time - eesunits[unit]->lasttime) > 150)
1456	    ees_event(eesunits[unit], CEVNT_FAULT);
1457}
1458
1459
1460#else
1461int refclock_msfees_bs;
1462#endif /* REFCLOCK */
1463