1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * tools/testing/selftests/kvm/include/x86_64/processor.h
4 *
5 * Copyright (C) 2018, Google LLC.
6 */
7
8#ifndef SELFTEST_KVM_PROCESSOR_H
9#define SELFTEST_KVM_PROCESSOR_H
10
11#include <assert.h>
12#include <stdint.h>
13#include <syscall.h>
14
15#include <asm/msr-index.h>
16#include <asm/prctl.h>
17
18#include <linux/kvm_para.h>
19#include <linux/stringify.h>
20
21#include "kvm_util.h"
22#include "ucall_common.h"
23
24extern bool host_cpu_is_intel;
25extern bool host_cpu_is_amd;
26
27/* Forced emulation prefix, used to invoke the emulator unconditionally. */
28#define KVM_FEP "ud2; .byte 'k', 'v', 'm';"
29
30#define NMI_VECTOR		0x02
31
32#define X86_EFLAGS_FIXED	 (1u << 1)
33
34#define X86_CR4_VME		(1ul << 0)
35#define X86_CR4_PVI		(1ul << 1)
36#define X86_CR4_TSD		(1ul << 2)
37#define X86_CR4_DE		(1ul << 3)
38#define X86_CR4_PSE		(1ul << 4)
39#define X86_CR4_PAE		(1ul << 5)
40#define X86_CR4_MCE		(1ul << 6)
41#define X86_CR4_PGE		(1ul << 7)
42#define X86_CR4_PCE		(1ul << 8)
43#define X86_CR4_OSFXSR		(1ul << 9)
44#define X86_CR4_OSXMMEXCPT	(1ul << 10)
45#define X86_CR4_UMIP		(1ul << 11)
46#define X86_CR4_LA57		(1ul << 12)
47#define X86_CR4_VMXE		(1ul << 13)
48#define X86_CR4_SMXE		(1ul << 14)
49#define X86_CR4_FSGSBASE	(1ul << 16)
50#define X86_CR4_PCIDE		(1ul << 17)
51#define X86_CR4_OSXSAVE		(1ul << 18)
52#define X86_CR4_SMEP		(1ul << 20)
53#define X86_CR4_SMAP		(1ul << 21)
54#define X86_CR4_PKE		(1ul << 22)
55
56struct xstate_header {
57	u64				xstate_bv;
58	u64				xcomp_bv;
59	u64				reserved[6];
60} __attribute__((packed));
61
62struct xstate {
63	u8				i387[512];
64	struct xstate_header		header;
65	u8				extended_state_area[0];
66} __attribute__ ((packed, aligned (64)));
67
68#define XFEATURE_MASK_FP		BIT_ULL(0)
69#define XFEATURE_MASK_SSE		BIT_ULL(1)
70#define XFEATURE_MASK_YMM		BIT_ULL(2)
71#define XFEATURE_MASK_BNDREGS		BIT_ULL(3)
72#define XFEATURE_MASK_BNDCSR		BIT_ULL(4)
73#define XFEATURE_MASK_OPMASK		BIT_ULL(5)
74#define XFEATURE_MASK_ZMM_Hi256		BIT_ULL(6)
75#define XFEATURE_MASK_Hi16_ZMM		BIT_ULL(7)
76#define XFEATURE_MASK_PT		BIT_ULL(8)
77#define XFEATURE_MASK_PKRU		BIT_ULL(9)
78#define XFEATURE_MASK_PASID		BIT_ULL(10)
79#define XFEATURE_MASK_CET_USER		BIT_ULL(11)
80#define XFEATURE_MASK_CET_KERNEL	BIT_ULL(12)
81#define XFEATURE_MASK_LBR		BIT_ULL(15)
82#define XFEATURE_MASK_XTILE_CFG		BIT_ULL(17)
83#define XFEATURE_MASK_XTILE_DATA	BIT_ULL(18)
84
85#define XFEATURE_MASK_AVX512		(XFEATURE_MASK_OPMASK | \
86					 XFEATURE_MASK_ZMM_Hi256 | \
87					 XFEATURE_MASK_Hi16_ZMM)
88#define XFEATURE_MASK_XTILE		(XFEATURE_MASK_XTILE_DATA | \
89					 XFEATURE_MASK_XTILE_CFG)
90
91/* Note, these are ordered alphabetically to match kvm_cpuid_entry2.  Eww. */
92enum cpuid_output_regs {
93	KVM_CPUID_EAX,
94	KVM_CPUID_EBX,
95	KVM_CPUID_ECX,
96	KVM_CPUID_EDX
97};
98
99/*
100 * Pack the information into a 64-bit value so that each X86_FEATURE_XXX can be
101 * passed by value with no overhead.
102 */
103struct kvm_x86_cpu_feature {
104	u32	function;
105	u16	index;
106	u8	reg;
107	u8	bit;
108};
109#define	KVM_X86_CPU_FEATURE(fn, idx, gpr, __bit)				\
110({										\
111	struct kvm_x86_cpu_feature feature = {					\
112		.function = fn,							\
113		.index = idx,							\
114		.reg = KVM_CPUID_##gpr,						\
115		.bit = __bit,							\
116	};									\
117										\
118	kvm_static_assert((fn & 0xc0000000) == 0 ||				\
119			  (fn & 0xc0000000) == 0x40000000 ||			\
120			  (fn & 0xc0000000) == 0x80000000 ||			\
121			  (fn & 0xc0000000) == 0xc0000000);			\
122	kvm_static_assert(idx < BIT(sizeof(feature.index) * BITS_PER_BYTE));	\
123	feature;								\
124})
125
126/*
127 * Basic Leafs, a.k.a. Intel defined
128 */
129#define	X86_FEATURE_MWAIT		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 3)
130#define	X86_FEATURE_VMX			KVM_X86_CPU_FEATURE(0x1, 0, ECX, 5)
131#define	X86_FEATURE_SMX			KVM_X86_CPU_FEATURE(0x1, 0, ECX, 6)
132#define	X86_FEATURE_PDCM		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 15)
133#define	X86_FEATURE_PCID		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 17)
134#define X86_FEATURE_X2APIC		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 21)
135#define	X86_FEATURE_MOVBE		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 22)
136#define	X86_FEATURE_TSC_DEADLINE_TIMER	KVM_X86_CPU_FEATURE(0x1, 0, ECX, 24)
137#define	X86_FEATURE_XSAVE		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 26)
138#define	X86_FEATURE_OSXSAVE		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 27)
139#define	X86_FEATURE_RDRAND		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 30)
140#define	X86_FEATURE_HYPERVISOR		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 31)
141#define X86_FEATURE_PAE			KVM_X86_CPU_FEATURE(0x1, 0, EDX, 6)
142#define	X86_FEATURE_MCE			KVM_X86_CPU_FEATURE(0x1, 0, EDX, 7)
143#define	X86_FEATURE_APIC		KVM_X86_CPU_FEATURE(0x1, 0, EDX, 9)
144#define	X86_FEATURE_CLFLUSH		KVM_X86_CPU_FEATURE(0x1, 0, EDX, 19)
145#define	X86_FEATURE_XMM			KVM_X86_CPU_FEATURE(0x1, 0, EDX, 25)
146#define	X86_FEATURE_XMM2		KVM_X86_CPU_FEATURE(0x1, 0, EDX, 26)
147#define	X86_FEATURE_FSGSBASE		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 0)
148#define	X86_FEATURE_TSC_ADJUST		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 1)
149#define	X86_FEATURE_SGX			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 2)
150#define	X86_FEATURE_HLE			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 4)
151#define	X86_FEATURE_SMEP	        KVM_X86_CPU_FEATURE(0x7, 0, EBX, 7)
152#define	X86_FEATURE_INVPCID		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 10)
153#define	X86_FEATURE_RTM			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 11)
154#define	X86_FEATURE_MPX			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 14)
155#define	X86_FEATURE_SMAP		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 20)
156#define	X86_FEATURE_PCOMMIT		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 22)
157#define	X86_FEATURE_CLFLUSHOPT		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 23)
158#define	X86_FEATURE_CLWB		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 24)
159#define	X86_FEATURE_UMIP		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 2)
160#define	X86_FEATURE_PKU			KVM_X86_CPU_FEATURE(0x7, 0, ECX, 3)
161#define	X86_FEATURE_OSPKE		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 4)
162#define	X86_FEATURE_LA57		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 16)
163#define	X86_FEATURE_RDPID		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 22)
164#define	X86_FEATURE_SGX_LC		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 30)
165#define	X86_FEATURE_SHSTK		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 7)
166#define	X86_FEATURE_IBT			KVM_X86_CPU_FEATURE(0x7, 0, EDX, 20)
167#define	X86_FEATURE_AMX_TILE		KVM_X86_CPU_FEATURE(0x7, 0, EDX, 24)
168#define	X86_FEATURE_SPEC_CTRL		KVM_X86_CPU_FEATURE(0x7, 0, EDX, 26)
169#define	X86_FEATURE_ARCH_CAPABILITIES	KVM_X86_CPU_FEATURE(0x7, 0, EDX, 29)
170#define	X86_FEATURE_PKS			KVM_X86_CPU_FEATURE(0x7, 0, ECX, 31)
171#define	X86_FEATURE_XTILECFG		KVM_X86_CPU_FEATURE(0xD, 0, EAX, 17)
172#define	X86_FEATURE_XTILEDATA		KVM_X86_CPU_FEATURE(0xD, 0, EAX, 18)
173#define	X86_FEATURE_XSAVES		KVM_X86_CPU_FEATURE(0xD, 1, EAX, 3)
174#define	X86_FEATURE_XFD			KVM_X86_CPU_FEATURE(0xD, 1, EAX, 4)
175#define X86_FEATURE_XTILEDATA_XFD	KVM_X86_CPU_FEATURE(0xD, 18, ECX, 2)
176
177/*
178 * Extended Leafs, a.k.a. AMD defined
179 */
180#define	X86_FEATURE_SVM			KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 2)
181#define	X86_FEATURE_NX			KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 20)
182#define	X86_FEATURE_GBPAGES		KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 26)
183#define	X86_FEATURE_RDTSCP		KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 27)
184#define	X86_FEATURE_LM			KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 29)
185#define	X86_FEATURE_INVTSC		KVM_X86_CPU_FEATURE(0x80000007, 0, EDX, 8)
186#define	X86_FEATURE_RDPRU		KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 4)
187#define	X86_FEATURE_AMD_IBPB		KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 12)
188#define	X86_FEATURE_NPT			KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 0)
189#define	X86_FEATURE_LBRV		KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 1)
190#define	X86_FEATURE_NRIPS		KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 3)
191#define X86_FEATURE_TSCRATEMSR          KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 4)
192#define X86_FEATURE_PAUSEFILTER         KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 10)
193#define X86_FEATURE_PFTHRESHOLD         KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 12)
194#define	X86_FEATURE_VGIF		KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 16)
195#define X86_FEATURE_SEV			KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 1)
196#define X86_FEATURE_SEV_ES		KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 3)
197
198/*
199 * KVM defined paravirt features.
200 */
201#define X86_FEATURE_KVM_CLOCKSOURCE	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 0)
202#define X86_FEATURE_KVM_NOP_IO_DELAY	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 1)
203#define X86_FEATURE_KVM_MMU_OP		KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 2)
204#define X86_FEATURE_KVM_CLOCKSOURCE2	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 3)
205#define X86_FEATURE_KVM_ASYNC_PF	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 4)
206#define X86_FEATURE_KVM_STEAL_TIME	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 5)
207#define X86_FEATURE_KVM_PV_EOI		KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 6)
208#define X86_FEATURE_KVM_PV_UNHALT	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 7)
209/* Bit 8 apparently isn't used?!?! */
210#define X86_FEATURE_KVM_PV_TLB_FLUSH	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 9)
211#define X86_FEATURE_KVM_ASYNC_PF_VMEXIT	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 10)
212#define X86_FEATURE_KVM_PV_SEND_IPI	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 11)
213#define X86_FEATURE_KVM_POLL_CONTROL	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 12)
214#define X86_FEATURE_KVM_PV_SCHED_YIELD	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 13)
215#define X86_FEATURE_KVM_ASYNC_PF_INT	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 14)
216#define X86_FEATURE_KVM_MSI_EXT_DEST_ID	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 15)
217#define X86_FEATURE_KVM_HC_MAP_GPA_RANGE	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 16)
218#define X86_FEATURE_KVM_MIGRATION_CONTROL	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 17)
219
220/*
221 * Same idea as X86_FEATURE_XXX, but X86_PROPERTY_XXX retrieves a multi-bit
222 * value/property as opposed to a single-bit feature.  Again, pack the info
223 * into a 64-bit value to pass by value with no overhead.
224 */
225struct kvm_x86_cpu_property {
226	u32	function;
227	u8	index;
228	u8	reg;
229	u8	lo_bit;
230	u8	hi_bit;
231};
232#define	KVM_X86_CPU_PROPERTY(fn, idx, gpr, low_bit, high_bit)			\
233({										\
234	struct kvm_x86_cpu_property property = {				\
235		.function = fn,							\
236		.index = idx,							\
237		.reg = KVM_CPUID_##gpr,						\
238		.lo_bit = low_bit,						\
239		.hi_bit = high_bit,						\
240	};									\
241										\
242	kvm_static_assert(low_bit < high_bit);					\
243	kvm_static_assert((fn & 0xc0000000) == 0 ||				\
244			  (fn & 0xc0000000) == 0x40000000 ||			\
245			  (fn & 0xc0000000) == 0x80000000 ||			\
246			  (fn & 0xc0000000) == 0xc0000000);			\
247	kvm_static_assert(idx < BIT(sizeof(property.index) * BITS_PER_BYTE));	\
248	property;								\
249})
250
251#define X86_PROPERTY_MAX_BASIC_LEAF		KVM_X86_CPU_PROPERTY(0, 0, EAX, 0, 31)
252#define X86_PROPERTY_PMU_VERSION		KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 0, 7)
253#define X86_PROPERTY_PMU_NR_GP_COUNTERS		KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 8, 15)
254#define X86_PROPERTY_PMU_GP_COUNTERS_BIT_WIDTH	KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 16, 23)
255#define X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH	KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 24, 31)
256#define X86_PROPERTY_PMU_EVENTS_MASK		KVM_X86_CPU_PROPERTY(0xa, 0, EBX, 0, 7)
257#define X86_PROPERTY_PMU_FIXED_COUNTERS_BITMASK	KVM_X86_CPU_PROPERTY(0xa, 0, ECX, 0, 31)
258#define X86_PROPERTY_PMU_NR_FIXED_COUNTERS	KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 0, 4)
259#define X86_PROPERTY_PMU_FIXED_COUNTERS_BIT_WIDTH	KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 5, 12)
260
261#define X86_PROPERTY_SUPPORTED_XCR0_LO		KVM_X86_CPU_PROPERTY(0xd,  0, EAX,  0, 31)
262#define X86_PROPERTY_XSTATE_MAX_SIZE_XCR0	KVM_X86_CPU_PROPERTY(0xd,  0, EBX,  0, 31)
263#define X86_PROPERTY_XSTATE_MAX_SIZE		KVM_X86_CPU_PROPERTY(0xd,  0, ECX,  0, 31)
264#define X86_PROPERTY_SUPPORTED_XCR0_HI		KVM_X86_CPU_PROPERTY(0xd,  0, EDX,  0, 31)
265
266#define X86_PROPERTY_XSTATE_TILE_SIZE		KVM_X86_CPU_PROPERTY(0xd, 18, EAX,  0, 31)
267#define X86_PROPERTY_XSTATE_TILE_OFFSET		KVM_X86_CPU_PROPERTY(0xd, 18, EBX,  0, 31)
268#define X86_PROPERTY_AMX_MAX_PALETTE_TABLES	KVM_X86_CPU_PROPERTY(0x1d, 0, EAX,  0, 31)
269#define X86_PROPERTY_AMX_TOTAL_TILE_BYTES	KVM_X86_CPU_PROPERTY(0x1d, 1, EAX,  0, 15)
270#define X86_PROPERTY_AMX_BYTES_PER_TILE		KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 16, 31)
271#define X86_PROPERTY_AMX_BYTES_PER_ROW		KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 0,  15)
272#define X86_PROPERTY_AMX_NR_TILE_REGS		KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 16, 31)
273#define X86_PROPERTY_AMX_MAX_ROWS		KVM_X86_CPU_PROPERTY(0x1d, 1, ECX, 0,  15)
274
275#define X86_PROPERTY_MAX_KVM_LEAF		KVM_X86_CPU_PROPERTY(0x40000000, 0, EAX, 0, 31)
276
277#define X86_PROPERTY_MAX_EXT_LEAF		KVM_X86_CPU_PROPERTY(0x80000000, 0, EAX, 0, 31)
278#define X86_PROPERTY_MAX_PHY_ADDR		KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 0, 7)
279#define X86_PROPERTY_MAX_VIRT_ADDR		KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 8, 15)
280#define X86_PROPERTY_SEV_C_BIT			KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 0, 5)
281#define X86_PROPERTY_PHYS_ADDR_REDUCTION	KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 6, 11)
282
283#define X86_PROPERTY_MAX_CENTAUR_LEAF		KVM_X86_CPU_PROPERTY(0xC0000000, 0, EAX, 0, 31)
284
285/*
286 * Intel's architectural PMU events are bizarre.  They have a "feature" bit
287 * that indicates the feature is _not_ supported, and a property that states
288 * the length of the bit mask of unsupported features.  A feature is supported
289 * if the size of the bit mask is larger than the "unavailable" bit, and said
290 * bit is not set.  Fixed counters also bizarre enumeration, but inverted from
291 * arch events for general purpose counters.  Fixed counters are supported if a
292 * feature flag is set **OR** the total number of fixed counters is greater
293 * than index of the counter.
294 *
295 * Wrap the events for general purpose and fixed counters to simplify checking
296 * whether or not a given architectural event is supported.
297 */
298struct kvm_x86_pmu_feature {
299	struct kvm_x86_cpu_feature f;
300};
301#define	KVM_X86_PMU_FEATURE(__reg, __bit)				\
302({									\
303	struct kvm_x86_pmu_feature feature = {				\
304		.f = KVM_X86_CPU_FEATURE(0xa, 0, __reg, __bit),		\
305	};								\
306									\
307	kvm_static_assert(KVM_CPUID_##__reg == KVM_CPUID_EBX ||		\
308			  KVM_CPUID_##__reg == KVM_CPUID_ECX);		\
309	feature;							\
310})
311
312#define X86_PMU_FEATURE_CPU_CYCLES			KVM_X86_PMU_FEATURE(EBX, 0)
313#define X86_PMU_FEATURE_INSNS_RETIRED			KVM_X86_PMU_FEATURE(EBX, 1)
314#define X86_PMU_FEATURE_REFERENCE_CYCLES		KVM_X86_PMU_FEATURE(EBX, 2)
315#define X86_PMU_FEATURE_LLC_REFERENCES			KVM_X86_PMU_FEATURE(EBX, 3)
316#define X86_PMU_FEATURE_LLC_MISSES			KVM_X86_PMU_FEATURE(EBX, 4)
317#define X86_PMU_FEATURE_BRANCH_INSNS_RETIRED		KVM_X86_PMU_FEATURE(EBX, 5)
318#define X86_PMU_FEATURE_BRANCHES_MISPREDICTED		KVM_X86_PMU_FEATURE(EBX, 6)
319#define X86_PMU_FEATURE_TOPDOWN_SLOTS			KVM_X86_PMU_FEATURE(EBX, 7)
320
321#define X86_PMU_FEATURE_INSNS_RETIRED_FIXED		KVM_X86_PMU_FEATURE(ECX, 0)
322#define X86_PMU_FEATURE_CPU_CYCLES_FIXED		KVM_X86_PMU_FEATURE(ECX, 1)
323#define X86_PMU_FEATURE_REFERENCE_TSC_CYCLES_FIXED	KVM_X86_PMU_FEATURE(ECX, 2)
324#define X86_PMU_FEATURE_TOPDOWN_SLOTS_FIXED		KVM_X86_PMU_FEATURE(ECX, 3)
325
326static inline unsigned int x86_family(unsigned int eax)
327{
328	unsigned int x86;
329
330	x86 = (eax >> 8) & 0xf;
331
332	if (x86 == 0xf)
333		x86 += (eax >> 20) & 0xff;
334
335	return x86;
336}
337
338static inline unsigned int x86_model(unsigned int eax)
339{
340	return ((eax >> 12) & 0xf0) | ((eax >> 4) & 0x0f);
341}
342
343/* Page table bitfield declarations */
344#define PTE_PRESENT_MASK        BIT_ULL(0)
345#define PTE_WRITABLE_MASK       BIT_ULL(1)
346#define PTE_USER_MASK           BIT_ULL(2)
347#define PTE_ACCESSED_MASK       BIT_ULL(5)
348#define PTE_DIRTY_MASK          BIT_ULL(6)
349#define PTE_LARGE_MASK          BIT_ULL(7)
350#define PTE_GLOBAL_MASK         BIT_ULL(8)
351#define PTE_NX_MASK             BIT_ULL(63)
352
353#define PHYSICAL_PAGE_MASK      GENMASK_ULL(51, 12)
354
355#define PAGE_SHIFT		12
356#define PAGE_SIZE		(1ULL << PAGE_SHIFT)
357#define PAGE_MASK		(~(PAGE_SIZE-1) & PHYSICAL_PAGE_MASK)
358
359#define HUGEPAGE_SHIFT(x)	(PAGE_SHIFT + (((x) - 1) * 9))
360#define HUGEPAGE_SIZE(x)	(1UL << HUGEPAGE_SHIFT(x))
361#define HUGEPAGE_MASK(x)	(~(HUGEPAGE_SIZE(x) - 1) & PHYSICAL_PAGE_MASK)
362
363#define PTE_GET_PA(pte)		((pte) & PHYSICAL_PAGE_MASK)
364#define PTE_GET_PFN(pte)        (PTE_GET_PA(pte) >> PAGE_SHIFT)
365
366/* General Registers in 64-Bit Mode */
367struct gpr64_regs {
368	u64 rax;
369	u64 rcx;
370	u64 rdx;
371	u64 rbx;
372	u64 rsp;
373	u64 rbp;
374	u64 rsi;
375	u64 rdi;
376	u64 r8;
377	u64 r9;
378	u64 r10;
379	u64 r11;
380	u64 r12;
381	u64 r13;
382	u64 r14;
383	u64 r15;
384};
385
386struct desc64 {
387	uint16_t limit0;
388	uint16_t base0;
389	unsigned base1:8, type:4, s:1, dpl:2, p:1;
390	unsigned limit1:4, avl:1, l:1, db:1, g:1, base2:8;
391	uint32_t base3;
392	uint32_t zero1;
393} __attribute__((packed));
394
395struct desc_ptr {
396	uint16_t size;
397	uint64_t address;
398} __attribute__((packed));
399
400struct kvm_x86_state {
401	struct kvm_xsave *xsave;
402	struct kvm_vcpu_events events;
403	struct kvm_mp_state mp_state;
404	struct kvm_regs regs;
405	struct kvm_xcrs xcrs;
406	struct kvm_sregs sregs;
407	struct kvm_debugregs debugregs;
408	union {
409		struct kvm_nested_state nested;
410		char nested_[16384];
411	};
412	struct kvm_msrs msrs;
413};
414
415static inline uint64_t get_desc64_base(const struct desc64 *desc)
416{
417	return ((uint64_t)desc->base3 << 32) |
418		(desc->base0 | ((desc->base1) << 16) | ((desc->base2) << 24));
419}
420
421static inline uint64_t rdtsc(void)
422{
423	uint32_t eax, edx;
424	uint64_t tsc_val;
425	/*
426	 * The lfence is to wait (on Intel CPUs) until all previous
427	 * instructions have been executed. If software requires RDTSC to be
428	 * executed prior to execution of any subsequent instruction, it can
429	 * execute LFENCE immediately after RDTSC
430	 */
431	__asm__ __volatile__("lfence; rdtsc; lfence" : "=a"(eax), "=d"(edx));
432	tsc_val = ((uint64_t)edx) << 32 | eax;
433	return tsc_val;
434}
435
436static inline uint64_t rdtscp(uint32_t *aux)
437{
438	uint32_t eax, edx;
439
440	__asm__ __volatile__("rdtscp" : "=a"(eax), "=d"(edx), "=c"(*aux));
441	return ((uint64_t)edx) << 32 | eax;
442}
443
444static inline uint64_t rdmsr(uint32_t msr)
445{
446	uint32_t a, d;
447
448	__asm__ __volatile__("rdmsr" : "=a"(a), "=d"(d) : "c"(msr) : "memory");
449
450	return a | ((uint64_t) d << 32);
451}
452
453static inline void wrmsr(uint32_t msr, uint64_t value)
454{
455	uint32_t a = value;
456	uint32_t d = value >> 32;
457
458	__asm__ __volatile__("wrmsr" :: "a"(a), "d"(d), "c"(msr) : "memory");
459}
460
461
462static inline uint16_t inw(uint16_t port)
463{
464	uint16_t tmp;
465
466	__asm__ __volatile__("in %%dx, %%ax"
467		: /* output */ "=a" (tmp)
468		: /* input */ "d" (port));
469
470	return tmp;
471}
472
473static inline uint16_t get_es(void)
474{
475	uint16_t es;
476
477	__asm__ __volatile__("mov %%es, %[es]"
478			     : /* output */ [es]"=rm"(es));
479	return es;
480}
481
482static inline uint16_t get_cs(void)
483{
484	uint16_t cs;
485
486	__asm__ __volatile__("mov %%cs, %[cs]"
487			     : /* output */ [cs]"=rm"(cs));
488	return cs;
489}
490
491static inline uint16_t get_ss(void)
492{
493	uint16_t ss;
494
495	__asm__ __volatile__("mov %%ss, %[ss]"
496			     : /* output */ [ss]"=rm"(ss));
497	return ss;
498}
499
500static inline uint16_t get_ds(void)
501{
502	uint16_t ds;
503
504	__asm__ __volatile__("mov %%ds, %[ds]"
505			     : /* output */ [ds]"=rm"(ds));
506	return ds;
507}
508
509static inline uint16_t get_fs(void)
510{
511	uint16_t fs;
512
513	__asm__ __volatile__("mov %%fs, %[fs]"
514			     : /* output */ [fs]"=rm"(fs));
515	return fs;
516}
517
518static inline uint16_t get_gs(void)
519{
520	uint16_t gs;
521
522	__asm__ __volatile__("mov %%gs, %[gs]"
523			     : /* output */ [gs]"=rm"(gs));
524	return gs;
525}
526
527static inline uint16_t get_tr(void)
528{
529	uint16_t tr;
530
531	__asm__ __volatile__("str %[tr]"
532			     : /* output */ [tr]"=rm"(tr));
533	return tr;
534}
535
536static inline uint64_t get_cr0(void)
537{
538	uint64_t cr0;
539
540	__asm__ __volatile__("mov %%cr0, %[cr0]"
541			     : /* output */ [cr0]"=r"(cr0));
542	return cr0;
543}
544
545static inline uint64_t get_cr3(void)
546{
547	uint64_t cr3;
548
549	__asm__ __volatile__("mov %%cr3, %[cr3]"
550			     : /* output */ [cr3]"=r"(cr3));
551	return cr3;
552}
553
554static inline uint64_t get_cr4(void)
555{
556	uint64_t cr4;
557
558	__asm__ __volatile__("mov %%cr4, %[cr4]"
559			     : /* output */ [cr4]"=r"(cr4));
560	return cr4;
561}
562
563static inline void set_cr4(uint64_t val)
564{
565	__asm__ __volatile__("mov %0, %%cr4" : : "r" (val) : "memory");
566}
567
568static inline u64 xgetbv(u32 index)
569{
570	u32 eax, edx;
571
572	__asm__ __volatile__("xgetbv;"
573		     : "=a" (eax), "=d" (edx)
574		     : "c" (index));
575	return eax | ((u64)edx << 32);
576}
577
578static inline void xsetbv(u32 index, u64 value)
579{
580	u32 eax = value;
581	u32 edx = value >> 32;
582
583	__asm__ __volatile__("xsetbv" :: "a" (eax), "d" (edx), "c" (index));
584}
585
586static inline void wrpkru(u32 pkru)
587{
588	/* Note, ECX and EDX are architecturally required to be '0'. */
589	asm volatile(".byte 0x0f,0x01,0xef\n\t"
590		     : : "a" (pkru), "c"(0), "d"(0));
591}
592
593static inline struct desc_ptr get_gdt(void)
594{
595	struct desc_ptr gdt;
596	__asm__ __volatile__("sgdt %[gdt]"
597			     : /* output */ [gdt]"=m"(gdt));
598	return gdt;
599}
600
601static inline struct desc_ptr get_idt(void)
602{
603	struct desc_ptr idt;
604	__asm__ __volatile__("sidt %[idt]"
605			     : /* output */ [idt]"=m"(idt));
606	return idt;
607}
608
609static inline void outl(uint16_t port, uint32_t value)
610{
611	__asm__ __volatile__("outl %%eax, %%dx" : : "d"(port), "a"(value));
612}
613
614static inline void __cpuid(uint32_t function, uint32_t index,
615			   uint32_t *eax, uint32_t *ebx,
616			   uint32_t *ecx, uint32_t *edx)
617{
618	*eax = function;
619	*ecx = index;
620
621	asm volatile("cpuid"
622	    : "=a" (*eax),
623	      "=b" (*ebx),
624	      "=c" (*ecx),
625	      "=d" (*edx)
626	    : "0" (*eax), "2" (*ecx)
627	    : "memory");
628}
629
630static inline void cpuid(uint32_t function,
631			 uint32_t *eax, uint32_t *ebx,
632			 uint32_t *ecx, uint32_t *edx)
633{
634	return __cpuid(function, 0, eax, ebx, ecx, edx);
635}
636
637static inline uint32_t this_cpu_fms(void)
638{
639	uint32_t eax, ebx, ecx, edx;
640
641	cpuid(1, &eax, &ebx, &ecx, &edx);
642	return eax;
643}
644
645static inline uint32_t this_cpu_family(void)
646{
647	return x86_family(this_cpu_fms());
648}
649
650static inline uint32_t this_cpu_model(void)
651{
652	return x86_model(this_cpu_fms());
653}
654
655static inline bool this_cpu_vendor_string_is(const char *vendor)
656{
657	const uint32_t *chunk = (const uint32_t *)vendor;
658	uint32_t eax, ebx, ecx, edx;
659
660	cpuid(0, &eax, &ebx, &ecx, &edx);
661	return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]);
662}
663
664static inline bool this_cpu_is_intel(void)
665{
666	return this_cpu_vendor_string_is("GenuineIntel");
667}
668
669/*
670 * Exclude early K5 samples with a vendor string of "AMDisbetter!"
671 */
672static inline bool this_cpu_is_amd(void)
673{
674	return this_cpu_vendor_string_is("AuthenticAMD");
675}
676
677static inline uint32_t __this_cpu_has(uint32_t function, uint32_t index,
678				      uint8_t reg, uint8_t lo, uint8_t hi)
679{
680	uint32_t gprs[4];
681
682	__cpuid(function, index,
683		&gprs[KVM_CPUID_EAX], &gprs[KVM_CPUID_EBX],
684		&gprs[KVM_CPUID_ECX], &gprs[KVM_CPUID_EDX]);
685
686	return (gprs[reg] & GENMASK(hi, lo)) >> lo;
687}
688
689static inline bool this_cpu_has(struct kvm_x86_cpu_feature feature)
690{
691	return __this_cpu_has(feature.function, feature.index,
692			      feature.reg, feature.bit, feature.bit);
693}
694
695static inline uint32_t this_cpu_property(struct kvm_x86_cpu_property property)
696{
697	return __this_cpu_has(property.function, property.index,
698			      property.reg, property.lo_bit, property.hi_bit);
699}
700
701static __always_inline bool this_cpu_has_p(struct kvm_x86_cpu_property property)
702{
703	uint32_t max_leaf;
704
705	switch (property.function & 0xc0000000) {
706	case 0:
707		max_leaf = this_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
708		break;
709	case 0x40000000:
710		max_leaf = this_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
711		break;
712	case 0x80000000:
713		max_leaf = this_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
714		break;
715	case 0xc0000000:
716		max_leaf = this_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
717	}
718	return max_leaf >= property.function;
719}
720
721static inline bool this_pmu_has(struct kvm_x86_pmu_feature feature)
722{
723	uint32_t nr_bits;
724
725	if (feature.f.reg == KVM_CPUID_EBX) {
726		nr_bits = this_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
727		return nr_bits > feature.f.bit && !this_cpu_has(feature.f);
728	}
729
730	GUEST_ASSERT(feature.f.reg == KVM_CPUID_ECX);
731	nr_bits = this_cpu_property(X86_PROPERTY_PMU_NR_FIXED_COUNTERS);
732	return nr_bits > feature.f.bit || this_cpu_has(feature.f);
733}
734
735static __always_inline uint64_t this_cpu_supported_xcr0(void)
736{
737	if (!this_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO))
738		return 0;
739
740	return this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) |
741	       ((uint64_t)this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32);
742}
743
744typedef u32		__attribute__((vector_size(16))) sse128_t;
745#define __sse128_u	union { sse128_t vec; u64 as_u64[2]; u32 as_u32[4]; }
746#define sse128_lo(x)	({ __sse128_u t; t.vec = x; t.as_u64[0]; })
747#define sse128_hi(x)	({ __sse128_u t; t.vec = x; t.as_u64[1]; })
748
749static inline void read_sse_reg(int reg, sse128_t *data)
750{
751	switch (reg) {
752	case 0:
753		asm("movdqa %%xmm0, %0" : "=m"(*data));
754		break;
755	case 1:
756		asm("movdqa %%xmm1, %0" : "=m"(*data));
757		break;
758	case 2:
759		asm("movdqa %%xmm2, %0" : "=m"(*data));
760		break;
761	case 3:
762		asm("movdqa %%xmm3, %0" : "=m"(*data));
763		break;
764	case 4:
765		asm("movdqa %%xmm4, %0" : "=m"(*data));
766		break;
767	case 5:
768		asm("movdqa %%xmm5, %0" : "=m"(*data));
769		break;
770	case 6:
771		asm("movdqa %%xmm6, %0" : "=m"(*data));
772		break;
773	case 7:
774		asm("movdqa %%xmm7, %0" : "=m"(*data));
775		break;
776	default:
777		BUG();
778	}
779}
780
781static inline void write_sse_reg(int reg, const sse128_t *data)
782{
783	switch (reg) {
784	case 0:
785		asm("movdqa %0, %%xmm0" : : "m"(*data));
786		break;
787	case 1:
788		asm("movdqa %0, %%xmm1" : : "m"(*data));
789		break;
790	case 2:
791		asm("movdqa %0, %%xmm2" : : "m"(*data));
792		break;
793	case 3:
794		asm("movdqa %0, %%xmm3" : : "m"(*data));
795		break;
796	case 4:
797		asm("movdqa %0, %%xmm4" : : "m"(*data));
798		break;
799	case 5:
800		asm("movdqa %0, %%xmm5" : : "m"(*data));
801		break;
802	case 6:
803		asm("movdqa %0, %%xmm6" : : "m"(*data));
804		break;
805	case 7:
806		asm("movdqa %0, %%xmm7" : : "m"(*data));
807		break;
808	default:
809		BUG();
810	}
811}
812
813static inline void cpu_relax(void)
814{
815	asm volatile("rep; nop" ::: "memory");
816}
817
818#define ud2()			\
819	__asm__ __volatile__(	\
820		"ud2\n"	\
821		)
822
823#define hlt()			\
824	__asm__ __volatile__(	\
825		"hlt\n"	\
826		)
827
828struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu);
829void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state);
830void kvm_x86_state_cleanup(struct kvm_x86_state *state);
831
832const struct kvm_msr_list *kvm_get_msr_index_list(void);
833const struct kvm_msr_list *kvm_get_feature_msr_index_list(void);
834bool kvm_msr_is_in_save_restore_list(uint32_t msr_index);
835uint64_t kvm_get_feature_msr(uint64_t msr_index);
836
837static inline void vcpu_msrs_get(struct kvm_vcpu *vcpu,
838				 struct kvm_msrs *msrs)
839{
840	int r = __vcpu_ioctl(vcpu, KVM_GET_MSRS, msrs);
841
842	TEST_ASSERT(r == msrs->nmsrs,
843		    "KVM_GET_MSRS failed, r: %i (failed on MSR %x)",
844		    r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
845}
846static inline void vcpu_msrs_set(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs)
847{
848	int r = __vcpu_ioctl(vcpu, KVM_SET_MSRS, msrs);
849
850	TEST_ASSERT(r == msrs->nmsrs,
851		    "KVM_SET_MSRS failed, r: %i (failed on MSR %x)",
852		    r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
853}
854static inline void vcpu_debugregs_get(struct kvm_vcpu *vcpu,
855				      struct kvm_debugregs *debugregs)
856{
857	vcpu_ioctl(vcpu, KVM_GET_DEBUGREGS, debugregs);
858}
859static inline void vcpu_debugregs_set(struct kvm_vcpu *vcpu,
860				      struct kvm_debugregs *debugregs)
861{
862	vcpu_ioctl(vcpu, KVM_SET_DEBUGREGS, debugregs);
863}
864static inline void vcpu_xsave_get(struct kvm_vcpu *vcpu,
865				  struct kvm_xsave *xsave)
866{
867	vcpu_ioctl(vcpu, KVM_GET_XSAVE, xsave);
868}
869static inline void vcpu_xsave2_get(struct kvm_vcpu *vcpu,
870				   struct kvm_xsave *xsave)
871{
872	vcpu_ioctl(vcpu, KVM_GET_XSAVE2, xsave);
873}
874static inline void vcpu_xsave_set(struct kvm_vcpu *vcpu,
875				  struct kvm_xsave *xsave)
876{
877	vcpu_ioctl(vcpu, KVM_SET_XSAVE, xsave);
878}
879static inline void vcpu_xcrs_get(struct kvm_vcpu *vcpu,
880				 struct kvm_xcrs *xcrs)
881{
882	vcpu_ioctl(vcpu, KVM_GET_XCRS, xcrs);
883}
884static inline void vcpu_xcrs_set(struct kvm_vcpu *vcpu, struct kvm_xcrs *xcrs)
885{
886	vcpu_ioctl(vcpu, KVM_SET_XCRS, xcrs);
887}
888
889const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid,
890					       uint32_t function, uint32_t index);
891const struct kvm_cpuid2 *kvm_get_supported_cpuid(void);
892const struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void);
893const struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vcpu *vcpu);
894
895static inline uint32_t kvm_cpu_fms(void)
896{
897	return get_cpuid_entry(kvm_get_supported_cpuid(), 0x1, 0)->eax;
898}
899
900static inline uint32_t kvm_cpu_family(void)
901{
902	return x86_family(kvm_cpu_fms());
903}
904
905static inline uint32_t kvm_cpu_model(void)
906{
907	return x86_model(kvm_cpu_fms());
908}
909
910bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid,
911		   struct kvm_x86_cpu_feature feature);
912
913static inline bool kvm_cpu_has(struct kvm_x86_cpu_feature feature)
914{
915	return kvm_cpuid_has(kvm_get_supported_cpuid(), feature);
916}
917
918uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid,
919			    struct kvm_x86_cpu_property property);
920
921static inline uint32_t kvm_cpu_property(struct kvm_x86_cpu_property property)
922{
923	return kvm_cpuid_property(kvm_get_supported_cpuid(), property);
924}
925
926static __always_inline bool kvm_cpu_has_p(struct kvm_x86_cpu_property property)
927{
928	uint32_t max_leaf;
929
930	switch (property.function & 0xc0000000) {
931	case 0:
932		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
933		break;
934	case 0x40000000:
935		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
936		break;
937	case 0x80000000:
938		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
939		break;
940	case 0xc0000000:
941		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
942	}
943	return max_leaf >= property.function;
944}
945
946static inline bool kvm_pmu_has(struct kvm_x86_pmu_feature feature)
947{
948	uint32_t nr_bits;
949
950	if (feature.f.reg == KVM_CPUID_EBX) {
951		nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
952		return nr_bits > feature.f.bit && !kvm_cpu_has(feature.f);
953	}
954
955	TEST_ASSERT_EQ(feature.f.reg, KVM_CPUID_ECX);
956	nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_NR_FIXED_COUNTERS);
957	return nr_bits > feature.f.bit || kvm_cpu_has(feature.f);
958}
959
960static __always_inline uint64_t kvm_cpu_supported_xcr0(void)
961{
962	if (!kvm_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO))
963		return 0;
964
965	return kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) |
966	       ((uint64_t)kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32);
967}
968
969static inline size_t kvm_cpuid2_size(int nr_entries)
970{
971	return sizeof(struct kvm_cpuid2) +
972	       sizeof(struct kvm_cpuid_entry2) * nr_entries;
973}
974
975/*
976 * Allocate a "struct kvm_cpuid2* instance, with the 0-length arrary of
977 * entries sized to hold @nr_entries.  The caller is responsible for freeing
978 * the struct.
979 */
980static inline struct kvm_cpuid2 *allocate_kvm_cpuid2(int nr_entries)
981{
982	struct kvm_cpuid2 *cpuid;
983
984	cpuid = malloc(kvm_cpuid2_size(nr_entries));
985	TEST_ASSERT(cpuid, "-ENOMEM when allocating kvm_cpuid2");
986
987	cpuid->nent = nr_entries;
988
989	return cpuid;
990}
991
992void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid);
993void vcpu_set_hv_cpuid(struct kvm_vcpu *vcpu);
994
995static inline struct kvm_cpuid_entry2 *__vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
996							      uint32_t function,
997							      uint32_t index)
998{
999	return (struct kvm_cpuid_entry2 *)get_cpuid_entry(vcpu->cpuid,
1000							  function, index);
1001}
1002
1003static inline struct kvm_cpuid_entry2 *vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
1004							    uint32_t function)
1005{
1006	return __vcpu_get_cpuid_entry(vcpu, function, 0);
1007}
1008
1009static inline int __vcpu_set_cpuid(struct kvm_vcpu *vcpu)
1010{
1011	int r;
1012
1013	TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
1014	r = __vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
1015	if (r)
1016		return r;
1017
1018	/* On success, refresh the cache to pick up adjustments made by KVM. */
1019	vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid);
1020	return 0;
1021}
1022
1023static inline void vcpu_set_cpuid(struct kvm_vcpu *vcpu)
1024{
1025	TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
1026	vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
1027
1028	/* Refresh the cache to pick up adjustments made by KVM. */
1029	vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid);
1030}
1031
1032void vcpu_set_cpuid_property(struct kvm_vcpu *vcpu,
1033			     struct kvm_x86_cpu_property property,
1034			     uint32_t value);
1035void vcpu_set_cpuid_maxphyaddr(struct kvm_vcpu *vcpu, uint8_t maxphyaddr);
1036
1037void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function);
1038
1039static inline bool vcpu_cpuid_has(struct kvm_vcpu *vcpu,
1040				  struct kvm_x86_cpu_feature feature)
1041{
1042	struct kvm_cpuid_entry2 *entry;
1043
1044	entry = __vcpu_get_cpuid_entry(vcpu, feature.function, feature.index);
1045	return *((&entry->eax) + feature.reg) & BIT(feature.bit);
1046}
1047
1048void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu,
1049				     struct kvm_x86_cpu_feature feature,
1050				     bool set);
1051
1052static inline void vcpu_set_cpuid_feature(struct kvm_vcpu *vcpu,
1053					  struct kvm_x86_cpu_feature feature)
1054{
1055	vcpu_set_or_clear_cpuid_feature(vcpu, feature, true);
1056
1057}
1058
1059static inline void vcpu_clear_cpuid_feature(struct kvm_vcpu *vcpu,
1060					    struct kvm_x86_cpu_feature feature)
1061{
1062	vcpu_set_or_clear_cpuid_feature(vcpu, feature, false);
1063}
1064
1065uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index);
1066int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value);
1067
1068/*
1069 * Assert on an MSR access(es) and pretty print the MSR name when possible.
1070 * Note, the caller provides the stringified name so that the name of macro is
1071 * printed, not the value the macro resolves to (due to macro expansion).
1072 */
1073#define TEST_ASSERT_MSR(cond, fmt, msr, str, args...)				\
1074do {										\
1075	if (__builtin_constant_p(msr)) {					\
1076		TEST_ASSERT(cond, fmt, str, args);				\
1077	} else if (!(cond)) {							\
1078		char buf[16];							\
1079										\
1080		snprintf(buf, sizeof(buf), "MSR 0x%x", msr);			\
1081		TEST_ASSERT(cond, fmt, buf, args);				\
1082	}									\
1083} while (0)
1084
1085/*
1086 * Returns true if KVM should return the last written value when reading an MSR
1087 * from userspace, e.g. the MSR isn't a command MSR, doesn't emulate state that
1088 * is changing, etc.  This is NOT an exhaustive list!  The intent is to filter
1089 * out MSRs that are not durable _and_ that a selftest wants to write.
1090 */
1091static inline bool is_durable_msr(uint32_t msr)
1092{
1093	return msr != MSR_IA32_TSC;
1094}
1095
1096#define vcpu_set_msr(vcpu, msr, val)							\
1097do {											\
1098	uint64_t r, v = val;								\
1099											\
1100	TEST_ASSERT_MSR(_vcpu_set_msr(vcpu, msr, v) == 1,				\
1101			"KVM_SET_MSRS failed on %s, value = 0x%lx", msr, #msr, v);	\
1102	if (!is_durable_msr(msr))							\
1103		break;									\
1104	r = vcpu_get_msr(vcpu, msr);							\
1105	TEST_ASSERT_MSR(r == v, "Set %s to '0x%lx', got back '0x%lx'", msr, #msr, v, r);\
1106} while (0)
1107
1108void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits);
1109void kvm_init_vm_address_properties(struct kvm_vm *vm);
1110bool vm_is_unrestricted_guest(struct kvm_vm *vm);
1111
1112struct ex_regs {
1113	uint64_t rax, rcx, rdx, rbx;
1114	uint64_t rbp, rsi, rdi;
1115	uint64_t r8, r9, r10, r11;
1116	uint64_t r12, r13, r14, r15;
1117	uint64_t vector;
1118	uint64_t error_code;
1119	uint64_t rip;
1120	uint64_t cs;
1121	uint64_t rflags;
1122};
1123
1124struct idt_entry {
1125	uint16_t offset0;
1126	uint16_t selector;
1127	uint16_t ist : 3;
1128	uint16_t : 5;
1129	uint16_t type : 4;
1130	uint16_t : 1;
1131	uint16_t dpl : 2;
1132	uint16_t p : 1;
1133	uint16_t offset1;
1134	uint32_t offset2; uint32_t reserved;
1135};
1136
1137void vm_install_exception_handler(struct kvm_vm *vm, int vector,
1138			void (*handler)(struct ex_regs *));
1139
1140/* If a toddler were to say "abracadabra". */
1141#define KVM_EXCEPTION_MAGIC 0xabacadabaULL
1142
1143/*
1144 * KVM selftest exception fixup uses registers to coordinate with the exception
1145 * handler, versus the kernel's in-memory tables and KVM-Unit-Tests's in-memory
1146 * per-CPU data.  Using only registers avoids having to map memory into the
1147 * guest, doesn't require a valid, stable GS.base, and reduces the risk of
1148 * for recursive faults when accessing memory in the handler.  The downside to
1149 * using registers is that it restricts what registers can be used by the actual
1150 * instruction.  But, selftests are 64-bit only, making register* pressure a
1151 * minor concern.  Use r9-r11 as they are volatile, i.e. don't need to be saved
1152 * by the callee, and except for r11 are not implicit parameters to any
1153 * instructions.  Ideally, fixup would use r8-r10 and thus avoid implicit
1154 * parameters entirely, but Hyper-V's hypercall ABI uses r8 and testing Hyper-V
1155 * is higher priority than testing non-faulting SYSCALL/SYSRET.
1156 *
1157 * Note, the fixup handler deliberately does not handle #DE, i.e. the vector
1158 * is guaranteed to be non-zero on fault.
1159 *
1160 * REGISTER INPUTS:
1161 * r9  = MAGIC
1162 * r10 = RIP
1163 * r11 = new RIP on fault
1164 *
1165 * REGISTER OUTPUTS:
1166 * r9  = exception vector (non-zero)
1167 * r10 = error code
1168 */
1169#define __KVM_ASM_SAFE(insn, fep)				\
1170	"mov $" __stringify(KVM_EXCEPTION_MAGIC) ", %%r9\n\t"	\
1171	"lea 1f(%%rip), %%r10\n\t"				\
1172	"lea 2f(%%rip), %%r11\n\t"				\
1173	fep "1: " insn "\n\t"					\
1174	"xor %%r9, %%r9\n\t"					\
1175	"2:\n\t"						\
1176	"mov  %%r9b, %[vector]\n\t"				\
1177	"mov  %%r10, %[error_code]\n\t"
1178
1179#define KVM_ASM_SAFE(insn) __KVM_ASM_SAFE(insn, "")
1180#define KVM_ASM_SAFE_FEP(insn) __KVM_ASM_SAFE(insn, KVM_FEP)
1181
1182#define KVM_ASM_SAFE_OUTPUTS(v, ec)	[vector] "=qm"(v), [error_code] "=rm"(ec)
1183#define KVM_ASM_SAFE_CLOBBERS	"r9", "r10", "r11"
1184
1185#define kvm_asm_safe(insn, inputs...)					\
1186({									\
1187	uint64_t ign_error_code;					\
1188	uint8_t vector;							\
1189									\
1190	asm volatile(KVM_ASM_SAFE(insn)					\
1191		     : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code)	\
1192		     : inputs						\
1193		     : KVM_ASM_SAFE_CLOBBERS);				\
1194	vector;								\
1195})
1196
1197#define kvm_asm_safe_ec(insn, error_code, inputs...)			\
1198({									\
1199	uint8_t vector;							\
1200									\
1201	asm volatile(KVM_ASM_SAFE(insn)					\
1202		     : KVM_ASM_SAFE_OUTPUTS(vector, error_code)		\
1203		     : inputs						\
1204		     : KVM_ASM_SAFE_CLOBBERS);				\
1205	vector;								\
1206})
1207
1208#define kvm_asm_safe_fep(insn, inputs...)				\
1209({									\
1210	uint64_t ign_error_code;					\
1211	uint8_t vector;							\
1212									\
1213	asm volatile(KVM_ASM_SAFE(insn)					\
1214		     : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code)	\
1215		     : inputs						\
1216		     : KVM_ASM_SAFE_CLOBBERS);				\
1217	vector;								\
1218})
1219
1220#define kvm_asm_safe_ec_fep(insn, error_code, inputs...)		\
1221({									\
1222	uint8_t vector;							\
1223									\
1224	asm volatile(KVM_ASM_SAFE_FEP(insn)				\
1225		     : KVM_ASM_SAFE_OUTPUTS(vector, error_code)		\
1226		     : inputs						\
1227		     : KVM_ASM_SAFE_CLOBBERS);				\
1228	vector;								\
1229})
1230
1231#define BUILD_READ_U64_SAFE_HELPER(insn, _fep, _FEP)			\
1232static inline uint8_t insn##_safe ##_fep(uint32_t idx, uint64_t *val)	\
1233{									\
1234	uint64_t error_code;						\
1235	uint8_t vector;							\
1236	uint32_t a, d;							\
1237									\
1238	asm volatile(KVM_ASM_SAFE##_FEP(#insn)				\
1239		     : "=a"(a), "=d"(d),				\
1240		       KVM_ASM_SAFE_OUTPUTS(vector, error_code)		\
1241		     : "c"(idx)						\
1242		     : KVM_ASM_SAFE_CLOBBERS);				\
1243									\
1244	*val = (uint64_t)a | ((uint64_t)d << 32);			\
1245	return vector;							\
1246}
1247
1248/*
1249 * Generate {insn}_safe() and {insn}_safe_fep() helpers for instructions that
1250 * use ECX as in input index, and EDX:EAX as a 64-bit output.
1251 */
1252#define BUILD_READ_U64_SAFE_HELPERS(insn)				\
1253	BUILD_READ_U64_SAFE_HELPER(insn, , )				\
1254	BUILD_READ_U64_SAFE_HELPER(insn, _fep, _FEP)			\
1255
1256BUILD_READ_U64_SAFE_HELPERS(rdmsr)
1257BUILD_READ_U64_SAFE_HELPERS(rdpmc)
1258BUILD_READ_U64_SAFE_HELPERS(xgetbv)
1259
1260static inline uint8_t wrmsr_safe(uint32_t msr, uint64_t val)
1261{
1262	return kvm_asm_safe("wrmsr", "a"(val & -1u), "d"(val >> 32), "c"(msr));
1263}
1264
1265static inline uint8_t xsetbv_safe(uint32_t index, uint64_t value)
1266{
1267	u32 eax = value;
1268	u32 edx = value >> 32;
1269
1270	return kvm_asm_safe("xsetbv", "a" (eax), "d" (edx), "c" (index));
1271}
1272
1273bool kvm_is_tdp_enabled(void);
1274
1275static inline bool kvm_is_pmu_enabled(void)
1276{
1277	return get_kvm_param_bool("enable_pmu");
1278}
1279
1280static inline bool kvm_is_forced_emulation_enabled(void)
1281{
1282	return !!get_kvm_param_integer("force_emulation_prefix");
1283}
1284
1285uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr,
1286				    int *level);
1287uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr);
1288
1289uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
1290		       uint64_t a3);
1291uint64_t __xen_hypercall(uint64_t nr, uint64_t a0, void *a1);
1292void xen_hypercall(uint64_t nr, uint64_t a0, void *a1);
1293
1294static inline uint64_t __kvm_hypercall_map_gpa_range(uint64_t gpa,
1295						     uint64_t size, uint64_t flags)
1296{
1297	return kvm_hypercall(KVM_HC_MAP_GPA_RANGE, gpa, size >> PAGE_SHIFT, flags, 0);
1298}
1299
1300static inline void kvm_hypercall_map_gpa_range(uint64_t gpa, uint64_t size,
1301					       uint64_t flags)
1302{
1303	uint64_t ret = __kvm_hypercall_map_gpa_range(gpa, size, flags);
1304
1305	GUEST_ASSERT(!ret);
1306}
1307
1308void __vm_xsave_require_permission(uint64_t xfeature, const char *name);
1309
1310#define vm_xsave_require_permission(xfeature)	\
1311	__vm_xsave_require_permission(xfeature, #xfeature)
1312
1313enum pg_level {
1314	PG_LEVEL_NONE,
1315	PG_LEVEL_4K,
1316	PG_LEVEL_2M,
1317	PG_LEVEL_1G,
1318	PG_LEVEL_512G,
1319	PG_LEVEL_NUM
1320};
1321
1322#define PG_LEVEL_SHIFT(_level) ((_level - 1) * 9 + 12)
1323#define PG_LEVEL_SIZE(_level) (1ull << PG_LEVEL_SHIFT(_level))
1324
1325#define PG_SIZE_4K PG_LEVEL_SIZE(PG_LEVEL_4K)
1326#define PG_SIZE_2M PG_LEVEL_SIZE(PG_LEVEL_2M)
1327#define PG_SIZE_1G PG_LEVEL_SIZE(PG_LEVEL_1G)
1328
1329void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level);
1330void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1331		    uint64_t nr_bytes, int level);
1332
1333/*
1334 * Basic CPU control in CR0
1335 */
1336#define X86_CR0_PE          (1UL<<0) /* Protection Enable */
1337#define X86_CR0_MP          (1UL<<1) /* Monitor Coprocessor */
1338#define X86_CR0_EM          (1UL<<2) /* Emulation */
1339#define X86_CR0_TS          (1UL<<3) /* Task Switched */
1340#define X86_CR0_ET          (1UL<<4) /* Extension Type */
1341#define X86_CR0_NE          (1UL<<5) /* Numeric Error */
1342#define X86_CR0_WP          (1UL<<16) /* Write Protect */
1343#define X86_CR0_AM          (1UL<<18) /* Alignment Mask */
1344#define X86_CR0_NW          (1UL<<29) /* Not Write-through */
1345#define X86_CR0_CD          (1UL<<30) /* Cache Disable */
1346#define X86_CR0_PG          (1UL<<31) /* Paging */
1347
1348#define PFERR_PRESENT_BIT 0
1349#define PFERR_WRITE_BIT 1
1350#define PFERR_USER_BIT 2
1351#define PFERR_RSVD_BIT 3
1352#define PFERR_FETCH_BIT 4
1353#define PFERR_PK_BIT 5
1354#define PFERR_SGX_BIT 15
1355#define PFERR_GUEST_FINAL_BIT 32
1356#define PFERR_GUEST_PAGE_BIT 33
1357#define PFERR_IMPLICIT_ACCESS_BIT 48
1358
1359#define PFERR_PRESENT_MASK	BIT(PFERR_PRESENT_BIT)
1360#define PFERR_WRITE_MASK	BIT(PFERR_WRITE_BIT)
1361#define PFERR_USER_MASK		BIT(PFERR_USER_BIT)
1362#define PFERR_RSVD_MASK		BIT(PFERR_RSVD_BIT)
1363#define PFERR_FETCH_MASK	BIT(PFERR_FETCH_BIT)
1364#define PFERR_PK_MASK		BIT(PFERR_PK_BIT)
1365#define PFERR_SGX_MASK		BIT(PFERR_SGX_BIT)
1366#define PFERR_GUEST_FINAL_MASK	BIT_ULL(PFERR_GUEST_FINAL_BIT)
1367#define PFERR_GUEST_PAGE_MASK	BIT_ULL(PFERR_GUEST_PAGE_BIT)
1368#define PFERR_IMPLICIT_ACCESS	BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT)
1369
1370bool sys_clocksource_is_based_on_tsc(void);
1371
1372#endif /* SELFTEST_KVM_PROCESSOR_H */
1373